
Conquering Aspects with Caesar

Mira Mezini
Darmstadt University of Technology

D-64283 Darmstadt, Germany

mezini@informatik.tu-darmstadt.de

Klaus Ostermann
Darmstadt University of Technology

D-64283 Darmstadt, Germany

ostermann@informatik.tu-darmstadt.de

ABSTRACT
Join point interception (JPI), is considered an important
cornerstone of aspect-oriented languages. However, we claim
that JPI alone does not suffice for a modular structuring of
aspects. We propose Caesar 1, a model for aspect-oriented
programming with a higher-level module concept on top of
JPI, which enables reuse and componentization of aspects,
allows us to use aspects polymorphically, and introduces a
novel concept for dynamic aspect deployment.

1. INTRODUCTION
A popular view of aspects is one of modules that define

(i) points in the execution of a base program to intercept
(joinpoints), and (ii) how to react at these points. We be-
lieve, however, that more powerful means for structuring
aspect code are needed on top of join point interception
(JPI), namely, better support (a) for expressing an aspect
as a set of collaborating abstractions, comprising the modu-
lar structure of the world as seen by the aspect, and (b) for
structuring the interaction between two parts of an aspect:
aspect implementation, and aspect binding (integration) into
a particular code base.

To clarify the terminology, let us consider a simple and
well-known example: the subject-observer pattern [6]. As
far as (a) is concerned: The world as seen by this aspect
consists of two abstractions, subject and observer, which
are mutually recursive in that the definition of each of them
refers to the other one. The definition of the observer aspect
should clearly define these two abstractions as two modules
that interact with each other via well defined interfaces. As
far as (b) is concerned: The implementation part comprises
in this case the implementation of methods such as addOb-

server(), removeObserver() and changed(), say by means
of a LinkedList. Of course, other implementations are pos-
sible, e.g., one that executes the observer notifications asyn-
chronously, or one that employs buffering to eliminate du-

1Check out the project homepage for up-to-date news:
www.st.informatik.tu-darmstadt.de/pages/projects/caesar/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AOSD’03,March 17 - 21, 2003, Boston, USA.
Copyright 2002 ACM 1-58113-660-9/03/002 ...$5.00.

plicated notifications. The binding part, on the other hand,
comprises details about how to integrate the observer pro-
tocol into a particular context mapping the roles “Subject”
and “Observer” to particular application classes, e.g., JBut-
ton and MyActionListener. An example for such binding
details would be the extraction of the part of the subject
state (e.g., JButton) to be passed over to the observers along
a change notification, as well as how the notification is per-
formed in terms of the method to call on the observer site.

The advantage of supporting the definition of an aspect
as a set of mutually recursive abstractions that interact via
well-defined interfaces is more or less a direct derivate of
the advantages of the object-oriented approach to model-
ing a world of discourse; for this reason it does not require
particular justification at this stage of the discussion.

A short discussion is needed, though, to justify the re-
quirement for decoupling aspect implementation from aspect
binding. An aspect implementation that is tightly coupled
with a particular aspect binding, by the virtue of being de-
fined within the same module, cannot be reused with other
possible bindings. Hence, this particular aspect implementa-
tion must be rewritten for every meaningful binding, thereby
rendering the application tangled, since the aspect imple-
mentation becomes itself crosscutting. Especially for non-
trivial aspects with complex implementations, this rewriting
of the aspect implementation is tedious and error-prone.

An aspect binding that is tightly coupled to a specific
aspect implementation is also undesirable. A binding trans-
lates the concepts, terms, and abstractions of the applica-
tion’s world into the world of the particular aspect domain;
its usage is not limited to a specific aspect implementation.
Consider e.g., an aspect binding that transforms a particu-
lar business application data model to the domain of graphs
with nodes and edges. Such a graph view is useful with
different graph algorithms.

Without dedicated language support it is rather difficult
to separate aspect implementation and binding properly.
We will elaborate on this claim in Sec. 2, where we inves-
tigate the AspectJ approach to separation of aspect imple-
mentation and binding via abstract aspects. The discussion
in Sec. 2 will also reveal the deficiencies of AspectJ’s JPI-
based approach with respect to modeling multiple mutually
recursive abstractions.

To solve these problems, we propose the Caesar model
in Sec. 3, which is based on the notion of collaboration in-
terfaces (CI) presented in [11] as a means to better support
a-posteriori integration of independent components into ex-
isting applications. We show that CIs and the related no-

90

public abstract aspect ObserverProtocol {
protected interface Subject { }
protected interface Observer { }
private WeakHashMap perSubjectObservers;
protected List getObservers(Subject s) {

if (perSubjectObservers == null)
perSubjectObservers = new WeakHashMap();

List observers =
(List) perSubjectObservers.get(s);

if (observers == null) {
observers = new LinkedList();
perSubjectObservers.put(s, observers);

}
return observers;

}
public void addObserver(Subject s,Observer o){

getObservers(s).add(o);
}
public void removeObserver(Subject s,Observer o){

getObservers(s).remove(o);
}
abstract protected void

updateObserver(Subject s, Observer o);

abstract protected pointcut subjectChange(Subject s);

after(Subject s): subjectChange(s) {
Iterator iter = getObservers(s).iterator();
while (iter.hasNext())

updateObserver(s, ((Observer)iter.next()));
}

}

Figure 1: Reusable observer protocol in AspectJ

tions of separated CI implementations and CI bindings, once
properly adopted to the needs of aspect-orientation, can also
be applied to support a more modular structuring of aspect
code and better aspect reuse. In Sec. 4 we evaluate Caesar
with respect to the problems identified in Sec. 2. Related
work will be discussed in Sec. 5. Sec. 6 summarizes the
paper and outlines future work.

2. PROBLEM STATEMENT
In this section we discuss the deficiencies of a JPI-based

approach to aspect structuring. Please note that the discus-
sion in this section is by no way a critique on the notions
of JPIs and advices. On the contrary, recognizing them as
pivotal concepts of aspect-oriented languages, we emphasize
the need for higher-level module concepts on top of them.

For illustrating the problems, we use as an example the
implementation of the observer pattern in AspectJ proposed
in [7] by Hannemann and Kiczales , as shown in Fig. 1 and
Fig. 2, whereby Fig. 1 shows a reusable implementation of
the observer protocol in AspectJ, while Fig. 2 binds it to
particular classes.

The basic idea in Fig. 1 is that the aspect ObserverPro-

tocol declares an abstract pointcut that represents change
events in the Subject classes. The empty interfaces Sub-

ject and Observer are marker interfaces that are used in
the binding to map the application classes to their roles. The
observers for each subject are stored in a global WeakHashMap
(the weak references are required in order to prevent a mem-
ory leak) that maps a subject to a list of observers. In case
of a subject change all observers are notified by means of the
abstract method updateObserver(), which is overridden in

public aspect ColorObserver extends ObserverProtocol
declare parents: Point implements Subject;
declare parents: Line implements Subject;
declare parents: Screen implements Observer;

protected pointcut subjectChange(Subject s):
(call(void Point.setColor(Color)) ||
call(void Line.setColor(Color))) && target(s);

protected void updateObserver(Subject s, Observer o) {
((Screen)o).display("Color change.");

}
}

Figure 2: Binding of observer protocol in AspectJ

the binding aspect in order to fill in the appropriate update
logic.

This proposal has two main advantages. First, Fig. 1 is
indeed a reusable implementation of the observer protocol:
Nothing in the implementation is specific to a particular
binding of this functionality. This is because the authors [7]
recognize the need to separate aspect implementation and
aspect binding. Second, the same role, e.g., Subject, can be
mapped to multiple different classes, e.g., Point and Line as
in Fig. 2. It would also be no problem to assign two roles,
e.g., Subject and Observer, to the same class, or assign
the same role twice to the same class in two different bind-
ings. For example, a Point can be simultaneously a subject
concerning coordinate changes ias well as color changes. In
terms of [14], the observer “component” in Fig. 1 is inde-
pendently extensible.

These features are probably the rationale for the author’s
decision against an alternative (simpler) implementation of
the observer protocol in AspectJ. The alternative solution of
which we speak is to declare addObserver() and removeOb-

server() in the interface Subject and then (in the bind-
ing) inject these methods into the corresponding classes by
means of a so-called introduction, - AspectJ’s open class
mechanism. Similarly, a LinkedList could be introduced
into every Subject class, thereby rendering the perSubjec-

tObservers map unnecessary. However, with this solution,
a class could not have two different instantiations of the
Subject role, because then the class would have multiple
implementations of the same method (e.g., addObserver()),
hence resulting in a compiler error. In other words, we would
loose independent extensibility.

Now, let us take a critical look on this solution. We iden-
tify the following problems.

Lacking support for multi-abstraction aspects
Note that all methods in Fig. 1 and 2 are top-level methods
of the enclosing aspect class. For example, addObserver(),
which is conceptually a method of the subject role, is a top-
level method whose first parameter is the respective Subject
object. This design is conceptually questionable leading to
a poor separation of concerns inside the aspect: The enclos-
ing class contains all methods of all abstractions that are
defined in the particular aspect and therefore becomes eas-
ily bloated. In a way, this is a rather procedural style of
programming, contradictory to one of the fundamentals of
object-oriented programming, according to which a type def-
inition contains all methods that belong to its interface. It

91

is also contradictory to the aspect-oriented vision of defining
crosscutting modules in terms of their own modular struc-
ture. The structure of the aspect in Fig. 1 is one of empty
abstractions and unstructured method definitions, and as
such not particularly modular.

The implications of this design decision are not only of a
conceptual, but also of a practical nature. First, we cannot
pass objects that play a role R to other classes that expect an
instance of that role. Envisage, for illustration, a role Com-

parable with a method compareTo(). If we want to pass
an object as a Comparable to another class, e.g., a sorting
class, then the approach in Fig. 1 and 2 based on introduc-
ing an empty interface and encoding all methods as top-level
methods of the enclosing class, does not work. The alter-
native would be to use AspectJ’s introduction mechanism
to introduce the interface and its methods directly into the
respective class but then again we would loose independent
extensibility, as discussed above. For example, a Point could
be compared to another Point by means of their geometri-
cal distance

√
x2 + y2 as well as their Manhattan distance

‖x‖+‖y‖ to the origin, which would require two independent
implementations of the Comparable abstraction.

A similar problem shows up, if some interaction between
the abstractions that build up the aspect’s model of the
world - Subject and Observer in our example - is needed.
The interaction in Fig. 1 is very simple: a subject passes it-
self on calling the notify method on each observer, but the
parameter gets never used in the binding of the aspect in
Fig. 2. It is more realistic that observers would want more
detailed information of what state change actually happened
on the subject’s site. This would require some query meth-
ods in the interface of the subject. Using the AspectJ design
”pattern” exemplified in Fig.1 and Fig. 2, where abstractions
are typeless, we would have to declare such query methods
also at the top level, e.g., getState(Subject s). The query
methods would have to be declared abstract in Fig. 1 since
their implementation is binding specific and should be im-
plemented by the concrete binding subaspect in Fig. 2. How-
ever, it is not possible to implement different query methods
for Point and Line, i.e., it is not possible to dynamically
dispatch with regard to the type of the base objects being
decorated with the subject functionality.

With the solution in Fig. 1 and 2 it is also pretty awk-
ward to associate state with the individual abstractions in
the definition of the aspect. For example, the observers of
all subjects are stored in a global hash map perSubjectO-

bservers. Besides the dangers of such a global bottleneck,
the access and management of state becomes pretty clumsy.
The example in Fig. 1 is relatively simple because state is
associated with only one of the abstractions (Subject) and
this state consists of only one “field”. However, the general
case is that multiple abstractions in the module structure
of the aspect may declare multiple fields. A simple exam-
ple would be an implementation where observers maintain a
history of the observed state change, e.g., when they need to
react on change bundles rather than on individual changes.
If we consider the case that all roles need many different
fields then the code might very easily become a mess, if all
these fields are hosted by the outer aspect.

The problem with modeling state becomes even worse,
once we consider the case of role inheritance, e.g., Special-
Subject inheriting from Subject. In this case, we would
end up simulating shared data fields manually. This prob-

lem with modeling state applies to the aspect binding as
well. There we might also want to associate state with the
objects that are mapped to the aspect roles, e.g., in order
to cache computed values.

Summarizing the problems so far, what we would like to
have is a nested class structure of aspect implementation
and aspect binding within which we can assign methods and
state to every aspect role in isolation.

Lacking support for sophisticated mapping
The second kind of problem with the solution in Fig. 1
and 2 is that the mapping from aspect abstractions to base
classes by means of the declare parents construct works
only when each aspect abstraction has a corresponding base
class to which it is mapped directly. However, this is not
always the case. Consider e.g., a scenario in which there
is no class Line and every Point object has a collection of
neighbor points. If we want to map this data structure to
a graph aspect defined in terms of Node and Edge abstrac-
tions, then an edge would be represented by two adjacent
points, but there is no abstraction in the base application
to which we can map the Edge abstraction. The latter is
only implicitly and indirectly represented by the collections
of adjacent points.

Lacking support for reusable aspect bindings
Third, every aspect binding is coupled to one particular im-
plementation. For example, the ColorObserver binding in
Fig. 2 is hardwired to the observer pattern implementation
in Fig. 1, although the binding itself is not dependent on
the implementation details of the observer pattern. The ob-
server pattern is not a very good example to illustrate the
usefulness of a binding that can be used with many different
implementations; a better example is that of an aspect bind-
ing that maps an arbitrary data structure, e.g., the classes
of an abstract syntax tree, to a general tree representation.
Many different implementations of a tree make sense in con-
junction with such a binding, e.g., one that displays trees on
the screen or one that performs algorithms on trees. That
is, one might want to be able to write some functionality
that is parameterized with a particular binding type, but
is polymorphic with respect to the implementation. This
is, however, not possible, if the binding is coupled to the
implementation.

Lacking support for aspectual polymorphism
The fourth deficiency concerns aspect deployment. We say
that the ColorObserver aspect in Fig. 2 is statically de-
ployed. By this we mean that once compiled together with
the package containing the figure classes, the changes in the
particular points in the execution of point and line objects
implied by ColorObserver aspect are effective. Which is to
say that it is not possible to determine at runtime, whether
to apply the aspect at all, or which implementation of the
aspect to apply, e.g., a LinkedList version, or one with asyn-
chronous notifications. We say that aspectual polymorphism
is missing, in the sense that the code is not polymorphic
with respect to the types and implementations of the as-
pects affecting it after compilation.

3. THE CAESAR MODEL
A core feature of Caesar is the notion of an aspect collab-

oration interface (ACI for short) – an interface definition for

92

aspects with multiple mutually recursive nested types. The
purpose of an ACI is the decoupling of aspect implementa-
tions and aspect bindings which are defined in independent,
but indirectly connected, modules. The idea is that while
being independent of each other, these modules implement
disjoint parts of a common ACI, which indirectly relates
them as parts of a whole. We illustrate our ideas also by
means of the observer example. Fig. 3, 4, and 5 show an
ACI for the observer protocol, an aspect implementation,
and an aspect binding, respectively, each of which will be
discussed in the course of this section.

3.1 Aspect Collaboration Interfaces
An ACI consists, in general, of several mutually recursive

nested ACIs - one for each abstraction in the modular struc-
ture of the aspect. The ACI ObserverProtocol in Fig. 3,
for example, has two nested ACIs, Subject and Observer,
that are mutually recursive in that the name of one type
is used to define the other one and vice versa. A simple
ACI that does not contain other nested ACIs, e.g., Subject,
is a special kind of interface that lays down a bidirectional
communication protocol between any possible implementa-
tion and binding of the corresponding abstraction. It does
so by distinguishing between two part-interfaces: the pro-
vided and the expected facets of the abstraction, consisting
of methods declared with the modifiers provided and ex-

pected, respectively. Hence, we can redefine an ACI as con-
sisting of expected and provided declarations for the aspect
as a whole as well as a set of mutually recursive nested ACIs
- one for each abstraction in the modular structure of the
aspect.

The provided facet of an aspect lays down what the as-
pect provides to any context in which it is applied. The
observer ACI in Fig. 3 specifies that any implementation of
ObserverProtocol must provide an implementation of the
three provided methods of Subject2. On the other side, the
expected facet of an aspect makes explicit what the aspect
expects from the context in which it will be applied, in or-
der to be able to supply what the provided facet promises.
Hence, the expected facet declares methods whose imple-
mentation is binding specific.

Consider for instance, the part of the observer protocol
concerned with communicating relevant state from the sub-
ject to observers, when a change is notified. What part of
subject’s state is relevant, and how this state should be ex-
tracted for being passed to observers is highly dependent
on what classes play the the subject and observer roles in a
particular context. Furthermore, the operation to be called
on the observer as part of the notification is also binding-
specific. This is why notify() and getState() are declared
with the modifier expected in Fig. 3.

An ACI’s provided and expected facets are implemented
in different modules, called aspect implementations and as-
pect bindings respectively. However, all implementations
and bindings of the same ACI are indirectly connected to
each other, since they implement two facets of the same
whole. The common ACI serves as a medium for bidirec-
tional communication between them: Any module that im-
plements one of the facets can freely use declarations in the

2In this example, the Observer abstraction does not have
any provided methods. However, one can easily think of
other examples where more than one abstraction declare a
non-empty provided facet.

interface ObserverProtocol {
interface Subject {

provided void addObserver(Observer o);
provided void removeObserver(Observer o);
provided void changed();
expected String getState();

}
interface Observer { expected void notify(Subject s); }

}

Figure 3: ACI for observer protocol

class ObserverProtocolImpl implements ObserverProtocol {
class Subject {

List observers = new LinkedList();
void addObserver(Observer o) { observers.add(o);}
void removeObserver(Observer o) {

observers.remove(o);
}
void changed() {

Iterator it = observers.iterator();
while (iter.hasNext())

((Observer)iter.next()).notify(this);
}

}
}

Figure 4: Sample impl. of observer protocol

other facet. This loose coupling is the key to independent
reuse of implementations and bindings.

3.2 Aspect Implementations
An aspect implementation must implement all methods

in the provided facet of the corresponding ACI, i.e., all as-
pect level provided methods, as well as provided facets of all
nested ACIs. Fig. 4 shows a simple implementation of the
ObserverProtocol ACI. Similarly, we could write another
implementation of ObserverProtocol, say, a class AsyncOb-
serverImpl that implements ObserverProtocol and real-
izes a notification strategy with asynchronous updates.

As illustrated in Fig. 4, an aspect implementation is a
class that declares itself with an implements clause. Pro-
vided facets of the nested ACIs are implemented in nested
classes which have the same names as their respective nested
ACIs (see e.g., ObserverProtocolImpl.Subject in Fig. 4).
The implementation of provided methods can call expected
methods of the same or of other abstractions of the same
aspect. For example, Subject.changed() calls notify(),
which is declared in the expected facet of ObserverProto-
col.Observer. Nested implementation classes are free to de-
fine additional state and behavior (as, e.g., the observers

field in Subject). Since ObserverProtocol.Observer has
no provided methods, there is no Observer class in Fig. 4,
but we could have added additional state and behavior with
Observer, if necessary.

3.3 Aspect Bindings
An aspect binding implements all expected methods in

the aspect’s CI and in its nested interfaces. Fig. 5 shows a
binding of ObserverProtocol which maps the subject role to
Point and Line and the observer role to Screen. The class
ColorObserver declares itself as a binding of ObserverPro-
tocol by means of a binds clause.

93

class ColorObserver binds ObserverProtocol {
class PointSubject binds Subject wraps Point {

String getState() {
return "Point colored "+wrappee.getColor();

}
}
class LineSubject binds Subject wraps Line {

String getState() {
return "Line colored "+wrappee.getColor();

}
}
class ScreenObserver binds Observer wraps Screen {

void notify(Subject s) {
wrappee.display("Color changed: "+s.getState());

}
}
after(Point p): (call(void p.setColor(Color)))

{ PointSubject(p).changed(); }
after(Line l): (call(void l.setColor(Color)))

{ LineSubject(l).changed(); }
}

Figure 5: Sample binding of observer protocol

For each nested ACI of ObserverProtocol, i.e., Subject
and Observer, there might be zero, one, or more nested
bindings inside ColorObserver. The latter are also declared
with a binds clause and must implement all expected meth-
ods in the corresponding interface. The relation between
nested types in an ACI and their binding classes is not es-
tablished by name identity, since there might be more than
one binding for the same abstraction within the same bind-
ing class, as in Fig. 5.

Aspect binding is almost pure OO: A binding class refers
to one or more base objects and uses their interface for im-
plementing the expected facet of the aspect abstraction. The
aspect binding in Fig. 5 uses only three non-OO features: (a)
the wrap clause and the wrappee keyword, (b) wrapper re-
cycling and (c) pointcuts/advices. Features (b) and (c) will
be explained in Sec. 3.4, and 3.5. The wraps clause and the
keyword wrappee are syntactic sugars for the common case,
when each aspect abstraction is mapped to exactly one base
class. For example,

class PointSubject binds Subject wraps Point {...}

is syntactic sugar for

class PointSubject binds Subject {
Point wrappee;
PointSubject(Point wrappee) { this.wrappee = wrappee; }
...

}

In general, a wrapper class may have an arbitrary number of
“wrappees” that can be initialized or computed in the con-
structor. Due to bindings being almost pure OO in Caesar,
the programmer is able to encode more complicated cases,
where the relation to application objects has to be computed
or is represented by multiple application objects (see [11] for
more details).

3.4 Wrapper Instantiation
A subtle ı́ssue when using wrappers is how to avoid that

multiple wrappers are created for the same base object
(called wrapper identity hell [11]). Our solution is a mecha-
nism called wrapper recycling. Syntactically, wrapper recy-
cling refers to the fact that, instead of creating an instance

class MovableFigures {
class MovableFigure implements Movable wraps Figure {

void moveBy(int x, int y) {};
}
class MovableFigure implements Movable wraps Point {

void moveBy(int x, int y) {
wrappee.setX(wrappee.getX()+x);
wrappee.setY(wrappee.getY()+y);

}
}
class MovableFigure implements Movable wraps Line {

void moveBy(int x, int y) {
MovableFigure(wrappee.getP1()).moveBy(x,y);
MovableFigure(wrappee.getP2()).moveBy(x,y);

}
}

}
class Test {

MovableFigures mv = new MovableFigures();
void move(Figure f) {

mv.MovableFigure(f).moveBy(5,7);
}

Figure 6: Using most specific wrappers

of a wrapper W with a standard new W(constructorargs)

constructor call, a wrapper is retrieved with the construct
outerClassInstance.W(constructorargs). For illustra-
tion consider the expressions PointSubject(p) and Line-

Subject(l)3 in the after-advices in Fig. 5. We use the usual
Java scoping rules, i.e., PointSubject(p) is just an abbre-
viation for this.PointSubject(p).

The semantics of wrapper recycling is that it guarantees
a unique wrapper for every (set of) wrappees in the context
of an outerClassInstance. The call to the wrapper recy-
cling operation PointSubject(p) is equivalent to the corre-
sponding constructor call only if a wrapper for p does not
already exist. That is, two subsequent wrapper retrievals for
a point yield the same PointSubject instance - the identity
and state of the wrapper are preserved. For more details on
wrapper recycling semantics we refer to [11].

Another interesting feature of Caesar is its notion of
most specific wrappers: A mechanism that determines the
most specific wrapper for an object based on the object’s
runtime type, when multiple nested binding classes with
the same name are available. Consider, e.g., MovableFig-
ures in Fig. 6, which contains three nested classes named
MovableFigure. These classes have different constructors,
though (recall that the wraps clause is just syntactic sugar
for a corresponding constructor). On a constructor- or wrap-
per recycling call, the dynamic type of the argument deter-
mines the actual nested binding to instantiate/recycle. For
example, if Test.move(Figure) in Fig. 6 is called with a
Point as the actual parameter f, the wrapper recycling call
mv.MovableFigure(f) returns an instance of the Movable-

Figure implementation that wraps Point.
The mechanism of most specific wrapper is very similar to

multiple dispatch in languages such as CLOS, Cecil [3], or
MultiJava [4]. More precisely, if one thinks of the construc-
tors of nested classes as factory methods of the enclosing
instance, then our mechanism is an application of multiple
dispatch at these factory methods.

3Recall that the clauses wraps Point and wraps Line imply
corresponding constructors.

94

public class ColorObserver binds ObserverProtocol {
... as before ...

after(Subject s):
(call(void Point.setColor(Color))

with s = PointSubject(target)) ||
(call(void Line.setColor(Color))

with s = LineSubject(target)) {
s.changed();

}
}

Figure 7: Alternative binding of observer

class CO extends
ObserverProtocol<ColorObserver,ObserverProtocolImpl> {};

Figure 8: Weavelet composition

3.5 Pointcuts and Advices
As illustrated in Fig. 5, Caesaralso have advices and

pointcuts, which while being similar to AspectJ, differ from
it in two points. The first difference concerns the decora-
tion of executing (target) objects at a join point with aspect
types. This decoration is implicit in AspectJ. For illustra-
tion, consider the pointcut subjectChange in Fig. 2: The
base object, s, brought into the scope of ColorObserver by
the join point target, whose type is either Line or Point,
is automatically seen as being of type Subject within Col-

orObserver (see the parameter type of the pointcut).
On the contrary, the conversion is explicit in Caesar, via

wrapper recycling calls. In Fig. 5, we avoided type conver-
sions in a pointcut, in order to avoid mingling the discussion
on wrapper recycling with that on pointcuts and advices.
For this reason, we defined different pointcuts for Point and
Line. A shorter variant of the same binding, where we use
conversions in the pointcuts, in given in Fig. 7. Note the ex-
plicit calls to wrapper recycling operators within the with

clauses in Fig. 7; they allow us to decorate basis objects
with different aspect facets in each “case” of the pointcut.
We prefer the explicit variant because it increases program-
mer’s expressiveness: H/she can choose among several con-
structors of the binding classes, if more than one is available
(see [11] for more details).

The second and more important difference between Cae-
sar and AspectJ pointcuts and advices is at the semantic
level. Compiling a binding class that contains advice def-
initions does not have any effect on the base application’s
semantics. This is because an aspect (its implementation
and binding) must be explicitly deployed in Caesar. Only
the advice definitions of explicitly deployed aspects are exe-
cuted, as elaborated in the following.

3.6 Weavelets and Deployment
In order to gain a complete realization of an aspect type,

an implementation-binding pair needs to be composed into
a new unit called a weavelet. An example of a weavelet is the
class CO in Fig. 8, which represents a complete realization
of the ObserverProtocol interface that combines the im-
plementation ObserverProtocolImpl with the binding Col-

orObserver, denoted by the declaration after the extends

clause.
A weavelet is a new class within which the respective im-

plementations of the expected and provided methods from

deploy class CO extends
ObserverProtocol<ColorObserver,ObserverProtocolImpl>{};

...
void register(Point p, Screen s) {

CO.THIS.PointSubject(p).addObserver(
CO.THIS.ScreenObserver(s));

}

Figure 9: Static Aspect Deployment

the binding and implementation parts are composed. The
composition takes place recursively for the nested classes:
All nested classes with a binds declaration are combined
with the corresponding implementation from the implemen-
tation class.

A weavelet has to be deployed in order to activate its
pointcuts and advices. A weavelet deployment is syntac-
tically denoted by the modifier deploy and comprises ba-
sically two steps: (a) create an instance of the weavelet at
hand and (b) call the deploy operation on it. One can choose
between static (load-time) and dynamic deployment.

Static deployment
Static deployment is expressed by the deploy keyword be a
modifier of a final static field declaration. Semantically,
it means that the advices and pointcuts in the instance that
has been assigned to the field become active. For example,
co is deployed when Test is loaded in the following code
extract:

class Test ... {
deploy public static final CO co = new CO();
...

}

The object assigned to co could also be computed in a
static method; hence, the weavelet that is actually de-
ployed might also be a subtype of CO, thereby enabling static
aspectual polymorphism. The deploy keyword can also be
used as a class modifier. This variant should be regarded
syntactic sugar in the sense that

deploy class CO ... { ... }

is equivalent to declaring a deployed field named THIS as in:

class CO ... {
deploy public static final CO THIS = new CO();
...

}

Fig. 9 shows the declaration of a statically deployed color
observer protocol together with sample code which shows
how the deployed weavelet instance can be accessed (reg-
ister()). Since CO.THIS is deployed, the pointcuts of the
observer protocol are active, i.e., color changes in points and
lines will be propagated to CO.THIS.

Using deploy as a class modifier is appropriate if we need
only one instance of the aspect and if aspectual polymor-
phism is not required. By means of deploy as a field modi-
fier we can create and deploy multiple instances of the same
weavelet and select from different weavelets using aspec-
tual polymorphism. Having two instances of, say, the CO

weavelet in the observer example would mean that every
Point and Line would have two independent facets as sub-
ject with independent lists of observers. An example that

95

class Logging {
after(): (call(void Point.setX(int)) ||

call(void Point.setY(int))) {
System.out.println("Coordinates changed");

}
}
class VerboseLogging extends Logging {

after(): (call(void Point.setColor(Color)) {
System.out.println("Color changed");

}
}
class Main {

public static void main(String args[]) {
Logging l = null;
Point p[] = createSamplePoints();
if (args[0].equals("-log"))

l = new Logging();
else if (args[0].equals("-verbose"))

l = new VerboseLogging();
deploy (l) { modify(p); }

}
public static void modify(Point p[]) {

p[3].setX(5);
p[2].setColor(Color.RED);

}
}

Figure 10: Polymorphic aspect deployment

makes more sense is the association of color to elements of a
data structure which can be seen as nodes of a graph. Mul-
tiple independent instances of the corresponding weavelet
would represent multiple independent colorings of the graph.
Other examples can be derived from role modeling, where
frequently one object has to play the same role twice, for
example, a person is employee in two independent compa-
nies. Static aspectual polymorphism is useful if we want
to select a particular weavelet based on conditions that are
known at load-time. For example, based on the number of
processors or the multi-threading support, one might either
choose a usual observer pattern implementation or one with
asynchronous updates.

Dynamic Deployment
Dynamic deployment is denoted by the keyword deploy used
as a block statement. The rationale behind dynamic deploy-
ment is that frequently we cannot determine which variant
of an aspect should be applied (or whether we need the as-
pect at all) until runtime. Consider e.g., a program with dif-
ferent logging options, i.e., without logging, with standard
logging, and with “verbose” logging. In Caesar, this can be
implemented as in Fig. 104: We have two different logging
aspects related by inheritancem, Logging and VerBoseLog-

ging), and we choose one of them at runtime, depending on
the command line arguments with which the program has
been started.

The interesting point is the deploy block statement in
Main.main, which means that the advices defined in the an-
notated aspect instance l become active in the control flow
of the deploy block, in this case, during the execution of
modify(f). In particular, other independent threads that

4In order to keep the example simple, we do not use sepa-
rate binding and implementation here - if separation of im-
plementation and binding would be overkill, we can collapse
both parts into a single unit.

deploy class LoggingDeployment {
around(final String s[]): cflow(Main.main(String[])

&& args(s) && (call(void Main.modify(Point[])) {
Logging l = null;
if (...) l = new Logging(); else ... ;
deploy (l) in { proceed(s); }

}
}
class Main {

public static void main(String args[]) {
Point p[] = createSamplePoints();
modify(p);

}
public static void modify(Point p[]) {...}

}

Figure 11: Aspect deployment aspects

execute the same code are not be affected by the deploy

clause. Please note that the advices and pointcuts that will
be activated in the deploy block are not statically known; l
is only known by its upper bound Logging (l could have also
been passed as a parameter). In other words, the advices
are late bound, similarly to late method binding, hence our
term aspectual polymorphism. If l is null the deploy clause
has no effects at all.

The usefulness of dynamic deployment becomes clear if
we consider a “simulation” of this functionality by means
of static deployment. With static deployment, we would
have to encode the different variants by conditional logic in
the aspect code, 5. The structure of the aspect would get
awkward because all variants of the aspect are tangled inside
a single aspect module. In a way, this is similar to simulating
late binding in a non-OO language, hence we see dynamic
aspectual polymorphism as an imperative consequence of
integrating aspects into the OO concept world. Also, such
programs would be very fragile with respect to concurrent
programs and additional synchronization measures would be
required.

An interesting question is whether the aspect deployment
code should also be separated from the rest of the code. If
desired this can easily be done with another aspect whose
responsibility is the deployment of the logging aspect, as
indicated in Fig. 11. In this figure, the aspect LoggingDe-

ployment (which is itself deployed statically) computes and
deploys an appropriate logging aspect by means of an around

advice, i.e., the proceed() call is executed in the context of
the logging aspect.

3.7 Virtual Classes and Static Typing
In Caesar, all nested interfaces of a CI and all classes that

implement or bind such interfaces, are virtual types/classes,
as in the family polymorphism approach [5]. Similar to fields
and methods, virtual types also become properties of objects
of the class in which they are defined. Hence, their deno-
tation can only be dynamically determined in the context
of an instance of the enclosing class. The rationale behind
using family polymorphism lies in its power with respect
to reuse and polymorphism at the level of multiple related

5Our example also uses conditional logic in Main.main.
However, we select the logging variant once and never have
to do any checks again (a factory object could have been
used, as well) whereas without dynamic deployment the
check would be redone at every joinpoint.

96

public class LazyColorObserver extends ColorObserver {
override class ScreenObserver {

int count = 0;
void notify(Subject s) {

count++;
if (count >= 10) { super.notify(s); count = 0; }

}
}

}

Figure 12: Lazy color observer

abstractions.
If we want to have a variant of a binding, weavelet, or

CI, we can refine the respective entity by creating an ex-
tension within which the nested virtual types/classes can
be overridden. LazyColorObserver in Fig. 12 refines the
behavior of ColorObserver in Fig. 5 by using virtual class
overriding (declared with the keyword override) - a lazy
ScreenObserver reacts only after being notified ten times
about a change. The important observation to make here is
that even if the definition of PointSubject and LineSubject

are inherited unchanged, references to Observer within their
respective implementations will automatically be bound to
LazyColorObserver.ScreenObserver during the execution
of any method on an instance of LazyColorObserver.

However, this flexibility is not paid for with loss of static
typing: An improvement of the type system proposed in [5]
preserves the ability to detect type errors at compile time.
The integration of virtual classes [9] and family polymor-
phism [5] with collaboration interfaces and their implemen-
tation and binding units has already been described in [11].
Hence, for more details on reuse and typing issues we refer
to [11] and [5].

4. EVALUATION
This section discusses how Caesar copes with the prob-

lems outlined in Sec. 2. In addition, we will elaborate on
how Caesar’s explicit aspect instantiation and deployment
relate to AspectJ-like languages, where aspects are only im-
plicitly created and which do not have a notion of aspect
deployment.

Problems Revisited
Recall that we identified the following problems in Sec. 2:
(1) lacking support for multi-abstraction aspects, (2) lacking
support for sophisticated mapping of aspect abstractions to
base classes, (3) lacking support for reuse of aspect bindings,
(4) acking support for aspectual polymorphism. In the fol-
lowing we will explain how each of these problems is solved
in Caesar.

Ad 1:. As was shown in the code in Fig. 3, 4, and 5, each ab-
straction in the vocabulary of the world as it is decomposed
from the point of view of an aspect, is defined in its own
full-fledged module with a well-defined interface. Methods
in the interface of one abstraction can be called by methods
of other abstractions within the same aspect, or from the
outside. Consider e.g., the call of Subject.notify(...) in
the implementation of ObserverProtocolImpl in Fig. 4, or
the invocation of CO.THIS.addObserver(...) in Fig. 9.

Due to this finer-grained modularization of the aspect it-

self, the runtime system is able to dispatch methods not only
based on the instance of the aspect, but also based on the
particular abstraction in execution. Consider, for example,
the getState() method in the definition of Subject, which
was implemented differently for point-subjects and for line-
subjects, while being uniformly used in the update logic (cf.
Fig. 5). As was pointed out in Sec. 2, the same polymor-
phism would not be possible, if there were only aspect-level
methods. Furthermore, due to the incorporation of virtual
classes, it is easy to encode different variants of a multi-
abstraction aspect, as exemplified in Fig. 12.

Let us now consider the issue of defining state for the
individual abstractions pertaining to an aspect. As it was
shown by examples in the previous section, each abstrac-
tion in the modular structure can declare its own state, e.g.,
observers in Subject. Hence, there is no need for defin-
ing data structures that ”globally” maintain aspect-related
state of all base objects in a single place, as e.g., perSub-
jectObservers in Fig. 1. Similarly, state can be added to
the abstractions at the binding side, such as e.g., the count

field in Fig. 12.

Ad 2:. In our model bindings are Java classes with some ad-
ditional features. As such, the definition of mappings from
aspect abstractions to the classes of a base application can
make use of the full expressiveness of an general purpose OO
language. There is nothing to prevent a Caesar program-
mer in coding any mapping no matter how sophisticated.
A more detailed discussion on this issue supported also by
better examples can be found in [11].

Ad 3:. Different weavelets can combine an aspect binding
with different aspect implementations. On the other hand,
different weavelets can combine (and reuse) a particular as-
pect implementation with multiple different bindings. For
example, we can combine the observer protocol binding to
JButton and MyActionListener with the LinkedList or the
AsynchronousUpdate observer implementation, and on the
other hand combine the same observer implementation, say
AsynchronousUpdate, with multiple different bindings, e.g.,
to JButton/MyActionListener and ListModel/JList. As a
consequence, one can define functionality that is polymor-
phic with respect to (a) aspect implementations by being
written to a certain aspect binding type, (b) aspect bind-
ings by being written to a certain aspect implementation
type, or (c) both of them, by being written to an ACI.

Ad 4:. As already discussed in Sec. 3.6, our approach
does support aspectual polymorphism. For example, the
modify(Point p[]) method in Fig. 10 is polymorphic with
respect to aspects that might be defined in the future. It is
even possible to run the same method concurrently within
two different threads with and without the logging aspect.

Explicit vs. Implicit Aspect Instantiation/Deployment
The question we pose here is: How does our notion of ex-
plicit aspect instantiation and deployment relate to AspectJ-
like languages, within which aspects are only implicitly cre-
ated and which do not have a notion of aspect deploy-
ment? In AspectJ, aspect instantiation can be controlled by
means of the aspect modifiers isSingleton (this is the de-
fault), perThis/perTarget, and percflow/percflowbelow.

97

In Caesar, these aspect instantiation strategies turn out to
be special cases or “patterns” of the more general model in
Caesar.

Tab. 1 describes how the AspectJ instantiation strategies
can be simulated in Caesar. The isSingleton case is ob-
vious. The perThis modifier can be simulated by creating a
wrapper class and using wrapper recycling in order to refer
to the state that is associated with each point. Simulat-
ing perTarget is identical to perThis, except that we would
have to exchange this(p) by target(p). More interesting is
AspectJ’s percflow modifier, which means that an instance
of the aspect is created for each flow of control of the join
points picked out by the annotated pointcut. The semantics
of percflow can be simulated by using a deployment aspect
ADepl that uses dynamic deployment at the respective starts
of control flow.

What do we gain if all the cases in Tab. 1 can already
be handled very well by AspectJ? To answer this question
recall that AspectJ instantiation strategies are just special
cases of a more general model in Caesar. This has two
implications. First, we do not need special new keywords to
express the semantics of AspectJ instantiation, thereby ren-
dering the conceptual model more slender. Second and more
importantly, our model allows us to express instantiation
and deployment semantics that cannot easily be expressed
in AspectJ.

When using AspectJ’s perThis of perTarget modifiers,
state can be only associated with objects that are caller or
callee, respectively, in a pointcut. In Caesar, state can be
associated with arbitrary objects and arbitrary relations be-
tween objects. For example, we could associate state with
every pair of this and target, or with any argument of
a method call. In the percflow case we can either simu-
late the AspectJ semantics but we could also do something
more sophisticated, e.g., deploy an instance of an optimiza-
tion aspect only if the number of calls to the method to be
optimized is executed more than a certain threshold.

5. RELATED WORK
Open classes: An open class is a class to which new fields

or methods can be added without editing the class directly.
For example, in MultiJava [4] additional methods can be
attached to a class. In AspectJ, methods as well as fields
can be added to a class by means of introductions. As al-
ready discussed in Sec. 2, open classes are in contrast to the
concept of independent extensibility [14], an essential pre-
requisite for reusable and extensible software. On contrary,
Caesar offers an alternative to open classes that is even
more powerful and does not violate independent extensibil-
ity.

Adaptive Plug and Play Components (APPCs) [10] and
their aspect-oriented variant of Aspectual Components [8]
are related to our work in that both approaches support
the definition of multi-abstraction components/aspects and
have a vague definition of required and provided interfaces.
However, the latter feature was not well integrated with
the type system. Recognizing this deficiency, the successor
model of Pluggable Composite Adapters (PCAs) [12] even
dropped this notion and reduced the declaration of the ex-
pected interface to a set of standard abstract methods. With
the notion of collaboration interfaces, Caesar represents a
qualitative improvement over all three models, as far as sup-
port for multi-abstraction aspects is concerned. Due to the

lack of a CI notion, connectors and adapters in APPC, As-
pectual Components, and PCA models are bound to a fixed
implementation of an aspect and cannot be reused. In addi-
tion, [10] and [8] rely on a dedicated mapping sublanguage
that is less powerful than our object-oriented wrappers with
wrapper recycling. Finally, the lack of the notion of virtual
types is another drawback of these approaches as compared
to the work presented here.

Delegation layers [13] are an approach to decompose a
collaboration into layers and compose these layers dynam-
ically at runtime. We plan to integrate delegation layers
with Caesar in order to organize aspect implementations
and bindings in layers and compose them dynamically.

Caesar is also related to Hyper/J and its notion of multi-
dimensional separation of concerns (MDSOC) [15]. Our as-
pect bindings, which serve as a translator from one domain
to another domain, allow to view and use a system from
many different perspectives. This is similar to the MD-
SOC idea of having multiple concern dimensions such that
the program can be projected on each concern hyper plane.
Apart from that, Caesar is very different from Hyper/J. In
Hyper/J, one can define an independent component in a hy-
perslice. Hyperslices are independent of their context of use
by the feature of being declaratively complete, i.e., they de-
clare as abstract method everything that they need, but can-
not implement themselves. A hyperslice is integrated into
an existing application by means of composition rules speci-
fied in a hypermodule. As the result, new code is generated
by mixing the hyperslice code into the existing code. Similar
to PCAs, Hyper/J [15] also lacks the notion of collaboration
interfaces and the reuse of bindings related to it: Either the
modules to be composed are not independent due to the
usage of the “merge-by-name” composition strategy or the
modules are independent but then the non-reusable compo-
sition specification gets very complex. Similar to APPC and
Aspectual Component models, Hyper/J’s approach is class-
based: it is not possible to add the functionality defined in
a hyperslice to individual objects. Furthermore, Hyper/J’s
sublanguage for mapping specifications from different hy-
perslices is fairly complex and not well integrated into the
common OO framework.

Lasagne [16] is a runtime architecture that features
aspect-oriented concepts. An aspect is implemented as a
layer of wrappers. Aspects can be composed at run-time,
enabling dynamic customization of systems, and context-
sensitive selection of aspects is realized, enabling client-
specific customization of systems. Although Lasagne is an
architectural approach focusing on middleware (instead of a
general purpose language extension as Caesar), it has some
similarity with Caesar. In particular, Lasagne also features
extensions that are created and deployed at runtime, and it
also provides means to restrict the visibility of an extension
to a particular scope (as our deploy block statement).

In [2] an extension of the composition filter model [1]
geared more towards aspect-oriented programming is dis-
cussed. With composition filters, it is possible to define
various filters for incoming and outgoing messages of an ob-
ject. By means of superimposition [2], it is possible to apply
these filters to objects that are specified via a join point dec-
laration similar to AspectJ pointcuts. Composition filters
have no dedicated means to separate aspect implementation
and binding, and there is notion of deployment or aspectual
polymorphism. In comparison with Caesar, where almost

98

aspect A isSingleton { State s; } deploy class A { State s; }

aspect A perThis(pointChanges) {
pointcut pointChanges():

call (Point.setX(int));
State s;
after(Point p): pointChanges() && this(p) { ...s... }

}

deploy class A {
class PointWrapper wraps Point { State s; }
after(Point p):
calls(Point.setX(int) && this(p) {

...PointWrapper(p).s;... }
}

aspect A percflow(pointChanges) {
pointcut pointChanges(): call (Point.setX(int));
State s;
after(): somePointCut() { ... }

}

class A {
State s;
after(): somePointCut {}

}
deploy class ADepl {

around():call (Point.setX(int)) {
deploy (new A()) { proceed(); }

}
}

Table 1: Aspect Instantiation in AspectJ (left) and Caesar (right)

everything is specified as usual OO code, composition filters
are more declarative. On one hand, this makes it easier to
express kinds of concerns that are easily expressible with the
declarative sublanguage, but on the other hand it restricts
is applicability to arbitrary kinds of concerns.

6. SUMMARY
In this paper, we argued that join point interception (JPI),

that is, intercepting and eventually modifying the execution
of running code at certain points, alone does not suffice for
a modular structuring of aspects, resulting in tangled as-
pect code. We discussed several problems resulting from the
lack of an appropriate higher-level module construct on top
of join points and advices. We proposed Caesar, a model
for aspect-oriented programming with a higher-level module
concept on top of JPI, which enables reuse and componenti-
zation of aspects, allows us to use aspects polymorphically,
and introduces a novel concept for dynamic aspect deploy-
ment. Caesar is based on the notion of an aspect collabora-
tion interface (ACI) presented in [11]. In this paper we show
that ACIs and the related notions of separated ACI imple-
mentations and ACI bindings, once properly adopted to the
needs of aspect-orientation, can also be applied to support a
more modular structuring of aspect code and better aspect
reuse.

7. REFERENCES
[1] M. Aksit, L. Bergmans, and S. Vural. An

object-oriented language-database integration model:
The composition-filters approach. In Proceedings of
ECOOP ’92, 1992.

[2] L. Bergmans and M. Aksit. Composing multiple
concerns using composition filters. 2001. Available at
trese.cs.utwente.nl/composition filters/.

[3] C. Chambers. Object-oriented multi-methods in Cecil.
In Proceedings ECCOP ’92, 1992.

[4] C. Clifton, G. T. Leavens, C. Chambers, and
T. Millstein. MultiJava: Modular open classes and
symmetric multiple dispatch for Java. In Proceedings
OOSPLA ’00, 2000.

[5] E. Ernst. Family polymorphism. In Proceedings of
ECOOP ’01, LNCS 2072, pages 303–326. Springer,
2001.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns. Addison Wesley, 1995.

[7] J. Hannemann and G. Kiczales. Design pattern
implementation in Java and AspectJ. In Proceedings
OOPSLA ’02, ACM SIGPLAN Notices, 2002.

[8] K. Lieberherr, D. Lorenz, and M. Mezini.
Programming with aspectual components. Technical
Report NU-CCS-99-01, March 1999.

[9] O. L. Madsen and B. Møller-Pedersen. Virtual classes:
A powerful mechanism in object-oriented
programming. In Proceedings of OOPSLA ’89. ACM
SIGPLAN, 1989.

[10] M. Mezini and K. Lieberherr. Adaptive plug-and-play
components for evolutionary software development. In
Proceedings OOPSLA ’98, ACM SIGPLAN Notices,
1998.

[11] M. Mezini and K. Ostermann. Integrating independent
components with on-demand remodularization. In
Proceedings of OOPSLA ’02, 2002.

[12] M. Mezini, L. Seiter, and K. Lieberherr. Component
integration with pluggable composite adapters. In
M. Aksit, editor, Software Architectures and
Component Technology: The State of the Art in
Research and Practice. Kluwer, 2001.

[13] K. Ostermann. Dynamically composable
collaborations with delegation layers. In Proceedings of
ECOOP ’02, LNCS 2374, Springer, 2002.

[14] C. Szyperski. Independently extensible systems –
software engineering potential and challenges. In
Proceedings 19th Australian Computer Science
Conference. Australian Computer Science
Communications, 1996.

[15] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N
degrees of separation: Multi-dimensional separation of
concerns. In Proc. International Conference on
Software Engineering (ICSE 99), 1999.

[16] E. Truyen, B. Vanhaute, W. Joosen, P. Verbaeten,
and B. N. Joergensen. Dynamic and selective
combination of extensions in component-based
applications. In Proceedings of the 23rd International
Conference on Software Engineering (ICSE’01), 2001.

99

