
Program Refactoring using Functional Aspects

Sven Apel
Dept. of Informatics and Mathematics

University of Passau, Germany
apel@uni-passau.de

Christian Kästner
School of Computer Science

University of Magdeburg, Germany
ckaestne@ovgu.de

Don Batory
Dept. of Computer Sciences

University of Texas at Austin, USA
batory@cs.utexas.edu

Abstract
A functional aspect is an aspect that has the semantics of a trans-
formation; it is a function that maps a program to an advised pro-
gram. Functional aspects are composed by function composition. In
this paper, we explore functional aspects in the context of aspect-
oriented refactoring. We show that refactoring legacy applications
using functional aspects is just as flexible and expressive as tradi-
tional aspects (functional aspects can be refactored in any order),
while having a simpler semantics (aspect composition is just func-
tion composition), and causes fewer undesirable interactions be-
tween aspects (the number of potential interactions between func-
tional aspects is half the number of potential interactions between
traditional aspects). We analyze several aspect-oriented programs
of different sizes to support our claims.

Categories and Subject Descriptors D.2.7 [Software]: Soft-
ware Engineering—Distribution, Maintenance, and Enhancement;
D.3.3 [Software]: Programming Languages—Language Constructs
and Features

General Terms Design, Languages

Keywords Functional Aspects, Aspect-Oriented Refactoring,
Stepwise Refinement, Aspect Interactions, Pseudo-Commutativity

1. Introduction
Aspect-oriented refactoring (AOR) is the process of decomposing
a legacy program into a well-structured core and a set of aspects
that implement concerns that crosscut the core functionality [10,
32, 26]. This process improves the structure of a legacy program
by gradually untangling code pieces and encapsulating them into
aspects while preserving the program’s behavior.

The essence of AOR can be expressed mathematically. The
following equation expresses behavioral equality between a legacy
program P and a program Pn woven with n aspects (A1, . . . , An),
which has been refactored in order to detach aspects incrementally.

P = A1 ∗A2 ∗ · · · ∗An−1 ∗An ∗ Pn (1)
The effect of the operator ‘∗’ denotes aspect weaving. AOR is the
inverse process of aspect weaving. While AOR detaches aspects
from a program, aspect weaving combines them back together.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
GPCE’08, October 19–23, 2008, Nashville, Tennessee, USA.
Copyright c© 2008 ACM 978-1-60558-267-2/08/10. . . $5.00

1A2

A A43

A

Figure 1. Potential interac-
tions of traditional aspects.

1A2

A A43

A

Figure 2. Potential interac-
tions of functional aspects.

Aspects in popular aspect-oriented languages like AspectJ1

or AspectC++2 are applied at once. We call those aspects tradi-
tional. Unless explicitly declared with declare precedence
the weaving order is not specified. Furthermore, advice has global
effects. That is, a piece of advice in aspect Ai can advise members
and introductions of any other aspect (Fig. 1). Inter-type decla-
rations (’introductions’) can introduce members into any class of
program Pn and into any other aspect Ai. In theory, the number of
potential aspect interactions (Ai advises or refers to Aj) grows by
O(n2), although in practice, a desire is for aspect interactions to
be well-understood.

AOR and Stepwise Development
A different perspective on aspects and AOR can be found in the
practice of stepwise refinement [36, 41, 8, 7, 37]. The idea behind
stepwise refinement is to develop a program from a minimal base
and successively apply refinements that implement different design
decisions in distinct development steps.

Usually, refinements are modeled as functions; they receive a
program as input and produce a modified program as output. This
interpretation is not far from an intuitive understanding of aspects.
For example, P = A1(P1) denotes an aspect A1 that takes a pro-
gram P1 as input and produces the modified program P . Weaving a
sequence of n factored aspects is modeled by consecutive function
application:

P = A1(A2(. . . An−1(An(Pn)) . . .)) (2)

This sequence could be continued by substituting Pn for a detached
aspect An+1 that takes a refactored program Pn+1 as input.

In contrast to traditional aspects, we refer to aspects that are
transformations and are composed like functions as functional as-
pects. Unlike traditional aspects, functional aspects impose a fixed
order on aspect weaving and restrict the scope of aspects to artifacts
introduced earlier. This is because a transformation affects and ex-
tends only that program that was produced by previous develop-
ment steps [36]. In the composition A1(A2(P2)), transformation
A1 modifies what is produced by applying transformation A2 to

1 http://www.eclipse.org/aspectj/
2 http://www.aspectc.org/

159161

apel@uni-passau.de
ckaestne@ovgu.de
batory@cs.utexas.edu
http://www.eclipse.org/aspectj/
http://www.aspectc.org/

program P2. Transformation A2 is unaware of A1 and, thus, can-
not affect A1.

This restriction limits the number of potential interactions be-
tween different refinements. As shown in Figure 2, modeling as-
pects as functions leads to a different interaction pattern, one that
is theoretically half as complex compared to the traditional one,
shown in Figure 1. Therefore, it has been argued that functional
aspects may potentially improve program comprehensibility [29].
Modeling aspects as functions is consistent with prior and cur-
rent research on software design, program generation, and program
refactoring [41, 36, 7, 15, 29, 27].

We have extended ARJ compiler [2] in order to support and
experiment with functional aspects. It can be downloaded at the
project’s web site.3

Perspective, Goals, and Contributions
We start with the premises that functional aspects ease understand-
ing and are more disciplined regarding SWR as discusses in ear-
lier work [29]. We do not discuss advantages or disadvantages of
functional aspects compared to traditional aspects (e.g., with regard
to readability or maintainability), but note that functional aspects
correspond to a form of stepwise refinement, and hence to a time-
honored approach to software development. Moreover, we focus
on syntactical relationships between functional and traditional as-
pects and not on whether aspects encapsulate a concern properly or
behave according to a specification.

Our work provides a theoretical basis that establishes that func-
tional aspects are as expressive as traditional aspects. The read-
ability and maintainability discussion does not invalidate our re-
sults since functional aspects embody a fundamental form of think-
ing about software development: program extensions (e.g., im-
plemented via aspects) are functions that map programs to pro-
grams [41, 8, 36, 7].

However, function evaluation imposes a fixed weaving order,
but also a fixed refactoring order. That is, we cannot factor out as-
pect A1 in a first step, i.e., P = A1(P1), and then factor out aspect
A2, i.e., P = A1(A2(P2)), where A2 affects A1. So functional as-
pects may be simpler as they reduce possible interactions, but may
be harder to use as the order in which functional aspects are com-
posed must be known a priori. That is, it would seem that A1 must
be refactored first in Equation 2, then A2, A3, and so on and as last
aspect An. Knowing this order up-front is unlikely.

Consequently, we raise a fundamental question regarding func-
tional aspects: does the order in which functional aspects are refac-
tored (i.e., detached from the base program) matter? In this paper,
we show three things:

• Refactoring legacy applications using functional aspects is just
as flexible and expressive as traditional aspects in that func-
tional aspects can be refactored in any order.4

• The semantics of functional aspects is simpler than of tradi-
tional aspects since composition of functional aspects is just
function composition.

• Using functional aspects causes fewer undesirable aspects inter-
actions than using traditional aspects because the number of po-
tential interactions between functional aspects is half the num-
ber of potential interactions between traditional aspects.

3 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
4 Note, we believe that the order in which traditional aspects are refactored
does not matter is an assumption of the AOP community; our results suggest
why this assumption has a basis in fact.

We evaluate our proposal by refactoring functional aspects in a
small-sized legacy application and by analyzing several third-party
aspect-oriented programs of different sizes.

This paper is an extension of a workshop paper [5] and makes
the following contributions (where only the first was presented
in [5]):

• We classify aspect interactions and introduce the notion of
pseudo-commutativity.

• We present a formal model and algorithm describing the oper-
ations required for pseudo-commutativity and the constraints a
pseudo-commutative transformation must satisfy.

• Using this formal model, we show that pseudo-commutativity
works for all common Java and AspectJ language constructs.

• We explore functional aspects in more realistic software projects
and confirm the claims arising from our model.

2. Aspect Interactions
Dependencies between aspects can be caused by two different
kinds of aspect interactions: references and shared join points [13].

1. Aspects referring other aspects depend on these aspects. Ref-
erences include calling or advising members or introductions
of these aspects. Treating aspects as functions requires that the
referenced aspects are woven previously.

2. A shared join point is a join point advised by more than one
aspect.5 An aspect interferes with another aspect when the set
of join points they advise contains at least one shared join
point. In case of such overlapping join point sets, the order
of weaving aspects matters, because different orders result in
different program behavior. The weaving order of functional
aspects is enforced by their composition order, hence there is
no need for declare precedence statements.

3. A Model of Functional Aspects
Dependencies between functional aspects impose a fixed refactor-
ing and weaving order. We show how to alter this order without af-
fecting program behavior. All code examples and formulas in this
section refer to functional aspects.

3.1 Commutativity
Two aspects A and B are commutative if they can be swapped
without affecting program semantics. Commutativity is the ideal
case and yields the most flexibility in permuting refactoring orders:

A(B(P)) = B(A(P)) (3)
The left-hand side of the (behavioral) equality means A is factored
first, then B; the right-hand side means B is factored first, and
then A. A precondition for commutativity of aspects is that these
aspects do not interact with each other, i.e., they do not reference
each others introductions and they do not share join points.6

In Figure 3, we exemplify two independent aspects Foo and
Bar implemented in AspectJ. They do not refer to each other and
they advise disjoint sets of join points (calls to the methods m and
n).

5 Some AOP publications distinguish between ‘join points’ which occur
dynamically during the execution of a program and ‘join point shadows’,
the location of a join point in the static code. We refer to the latter.
6 Note that there might be aspects that advise the same join point and being
swapped do not change the observeable program behavior [38]. However,
without knowledge of the programmer this cannot be guaranteed, e.g., think
of I/O operations that do not change advised data but whose execution order
matters.

160162

http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/

1 aspect Foo {
2 before() : call(* n()) { ... }
3 }

4 aspect Bar {
5 before() : call(* m()) { ... }
6 }

Figure 3. Two commutative aspects.

3.2 Pseudo-Commutativity
Two functional aspects A and B are pseudo-commutative, if (1)
they are not commutative, but (2) they can be transformed to A′

and B′, so that swapping them does not affect program behavior:

A(B(P)) = B′(A′(P)) (4)

Equation (4) means that for a pair of functional aspects (A, B) there
is a pseudo-commutative pair of functional aspects (A′, B′), so that
applying either pair results in the same composite transformation.7

Although the implementations of A and B differ from A′ and B′,
they implement the same concerns but in a different way.8

In the following, we illustrate several examples of pseudo-
commutativity and how it is used to resolve different kinds of aspect
dependencies. Then, we present general guidelines – illustrated by
the examples below – for transforming pairs of functional aspects
into pseudo-commutative pairs. Finally, we present a formal model
of their transformations.

3.2.1 Resolving Referential Dependencies
Let Foo and Bar be functional aspects, and Foo refers to Bar by
calling the static9 method bar (Fig. 4). Since both are functional
aspects, Bar has to be woven first because of the referential depen-
dency; the only correct order is Foo(Bar(Prog)).

1 aspect Foo {
2 void foo() { Bar.bar(); }
3 before() : call(* n()) { foo(); }
4 }

5 aspect Bar {
6 static void bar() { ... }
7 before() : call(* m()) { ... }
8 }

Figure 4. Two referentially dependent aspects.

However, applying the notion of pseudo-commutativity, we can
create two functional aspects Foo’ and Bar’ that implement
the same concerns but in a different way, so that the expressions
Bar’(Foo’(Prog)) and Foo(Bar(Prog)) result in equivalent pro-
grams. Thus, using pseudo-commutativity, we achieve the same
flexible refactoring order as with traditional aspects. In Figure 5,
we depict one possible pair of Foo’ and Bar’. Foo’ no longer
calls method bar in Bar’ directly (Line 2). Instead, Bar’ itself
triggers the invocation of bar by advising the execution of foo
(Line 8). The advice is executed before that join point in Foo’ that
is responsible for calling bar. Note, the basic semantics of Foo

7 Note, the transformation from traditional aspects to functional aspects
described by Lopez-Herrejon et al. [29] is closely related to pseudo-
commutativity.
8 A related idea can be found in design maintenance systems: program
transformations implement design decisions in a stepwise manner. Baxter
has shown that the order of design decisions can be altered by altering the
transformations [8].
9 We use static methods only for the purpose of a concise example, without
loss of generality.

and Bar – advising n and m as well as bar is invoked when foo
is executed – are preserved by Foo’ and Bar’.

1 aspect Foo′ {
2 void foo() { /∗ ref. removed ∗/ }
3 before() : call(* n()) { foo(); }
4 }

5 aspect Bar′ {
6 static void bar() { ... }
7 before() : call(* m()) { ... }
8 before() : execution(void foo()) { bar(); }
9 }

Figure 5. Resolving a referential dependency.

In our example, we removed a method call and replaced it by
implicit invocation in another aspect in order to swap both. Now
suppose that one aspect refers to another via advice. Interestingly,
this is the opposite case of removing a method call reference. Take
Bar’ and Foo’ as example (Fig. 5) where Bar’ advises Foo’.
To remove this reference (in order to swap aspects), we have to
find their pseudo-commutative counterparts – these are exactly the
original aspects Foo and Bar (Fig. 4).

Cyclic referential dependencies, in which two aspects mutu-
ally reference each other, are not possible with functional aspects.
Cyclic referential dependencies of traditional aspects, can be re-
solved simply by reverting only those references pointing in one
direction. That is, we achieve pseudo-commutativity even for as-
pects that would have cyclic dependencies when implemented tra-
ditionally.

Note that the property of pseudo-commutativity exploits the
AOP mechanism of dependency inversion, i.e., the ability to reverse
the dependency between modules [33]. It provides a flexibility
needed for AOR using functional aspects.

3.2.2 Resolving Shared Join Point Dependencies
Two aspects interact with each other when they advise overlapping
sets of join points. Naturally, the order matters in this situation for
both functional and traditional aspects. Weaving in different orders
results in different execution orders of involved advice and thus
in different program behavior. Suppose the two traditional aspects
Foo and Bar advise the same method call as in Figure 6, changing
the weaving order would either execute foo before bar or vice
versa.

1 void main() { n(); ... }

2 aspect Foo {
3 void foo() { ... }
4 before() : execution(* main()) {foo();}
5 }

6 aspect Bar {
7 void bar() { ... }
8 before() : execution(* main()) {bar();}
9 }

Figure 6. A shared join point dependency.

We use pseudo-commutativity to resolve shared join point de-
pendencies, i.e., to transform the pair functional aspects (Foo,
Bar) into their pseudo-commutative counter-parts (Foo’, Bar’).
Note, for this transformation, we also have to adapt the program P
that contains the shared join point.

As shown in Figure 7, a method n is called within main. Right
before calling method n our two concerns are to be executed, first
Foo and then Bar. Factoring both concerns using two aspects Foo
and Bar would be possible only in one order, first Bar then Foo.

161163

In order to be able to swap Foo and Bar (i.e., its pseudo-
commutative siblings), we prepare the code associated with the tar-
get join points themselves, i.e., as illustrated above, we change the
base program P (which contains only main) to a modified base
program P ′. A simple way to do so is to add a hook for each piece
of advice that extends a join point; more sophisticated ways are de-
scribed later. A straightforward implementation is to add a method
call to a new method and move all statements from the original
method to the new one. Now, there are two methods that can be ad-
vised, the original method main and the new hook method. The
advice that is to be executed first advises the main method, the
other one the hook method, as shown in Figures 7 and 8. If more
than two aspects advise the same join points, multiple nested hook
methods need to be created. Having two join points by introducing
hooks fixes the concern execution order. This allows us to alter the
refactoring and the weaving order (i.e., to swap aspects) because
now we do not bind both aspects to the execution of main, but to
calling individual join points. Thus, the weaving order no longer
influences the execution order.

1 void main() { n(); ... }

1 void main() { hook(); }
2 void hook() { n(); ... }

Figure 7. A shared join point without (top) and with hooks (bot-
tom).

1 aspect Foo′ {
2 void foo() { ... }
3 before() : call(* main()) { foo(); }
4 }

5 aspect Bar′ {
6 void bar() { ... }
7 before() : call(* hook()) { bar(); }
8 }

Figure 8. Binding advice to hooks.

Clearly, there are other ways to achieve the same effect, such
as using annotations to mark the relevant positions in the code [24]
or to use more expressive pointcut mechanisms [17, 35] and more
fine-grained join point models [18, 30]. It is also worth mention-
ing that code preparation (i.e., including information into the code
for subsequent extension/advice) decreases obliviousness [14], but
at the same time pinpoints the execution order and makes it ex-
plicit. Nevertheless, for the sake of simplicity, we use simple hook
methods (i.e., methods that are empty and are inoked only for the
purpose of exposing a join/extension point). Hooks are sufficient to
illustrate the idea. They can be replaced by annotations or by using
a more sophisticated pointcut language obtaining a more elegant
solution.

3.3 Formalization and Algorithm
So far, we have illustrated the idea of pseudo-commutativity by
means of examples. Now, we sketch a simple formalization, for
two reasons. First, it specifies the operations required for pseudo-
commutativity and, second, it defines the constraints a pseudo-
commutative transformation must satisfy. Using this formalization,
we can show that pseudo-commutativity works for all common
Java and AspectJ constructs. We refrain from using calculi like
Featherweight Java because they are too complex for our purposes
and introduce our own model instead.10

10 Featherweight Java provides many typing and evaluation rules that are
not necessary for our problem. Furthermore, an extension of Featherweight

3.3.1 Basic Definitions
A program p consists of a number of classes from the set of classes
C and aspects from the set of aspects A:

p ⊆ C ∪ A (5)

Classes and aspects both have a set of inner program elements.
For classes these are methods, fields, inner classes, initializers, etc.
Aspects can have additional elements like inter-type declarations
or advice. For our purpose, the concrete nature of these inner ele-
ments does not matter. We are only interested in two properties that
are responsible for dependencies: references and extensions. Refer-
ences can be caused, for example, by invoking methods, accessing
fields, or instantiating objects, inter-type declarations or advice. Ex-
tensions, on the other hand, occur when a piece of advice extends a
join point.

Classes and aspects are both constructed from an infinite set L
that contains all possible members a given programming language
can express, e.g., all possible methods that can be expressed in Java
(Equation 6). Furthermore, we introduce a function r that returns
the set of aspects that reference a program element and a function
e that returns the set of aspects that extend a program element
(Equation 7).11

∀A ∈ p : A ⊆ L (6)

r : L→ P(A); e : L→ P(A) (7)

3.3.2 Commutativity and Pseudo-Commutativity
Two aspects A and B are commutative if three conditions hold.
First, program elements in A must not be referenced by aspect
B and vice versa. If there was such a reference with functional
aspects, it would not be possible to weave the referenced aspect
after the referring one. Second, program elements in A must not
extend elements in B and vice versa. If there was an extension, this
would require the extended aspect to be woven before the extending
one. Finally, no program element in the whole program p must
be extended by both aspects. If a program element was extended
multiple times, the program behavior might depend on the order in
which the aspects are woven:

A(B(P)) = B(A(P))
⇔ ∀l ∈ A : B /∈ r(l) ∧B /∈ e(l)
∧ ∀l ∈ B : A /∈ r(l) ∧A /∈ e(l)
∧ ∀X ∈ p : ∀l ∈ X : A /∈ e(X) ∨B /∈ e(X)

(8)

l is a meta-variable for program elements inside an aspect, X is a
meta-variable for aspects or classes inside the program.

Pseudo-commutativity is the transformation of two functional
aspects A and B – where A is woven after B – into A′ and B′

so that A(B(P)) = B′(A′(P)). This requires the following three
conditions:

1. As A is woven after B, the program elements in A may not be
referenced or extended by B (∀l ∈ A : B /∈ r(l) ∧ B /∈ e(l)).
This condition is already satisfied when A and B are indeed
functional aspects.

2. As A′ is woven before B′, it may not reference or extend
program elements from B′ (∀l ∈ B′ : A′ /∈ r(l) ∧A′ /∈ e(l)).

Java toward AspectJ either complicates the model further [20] or does not
cover the core of Java [40].
11 Note that classes have no constructs to extend aspects, references be-
tween classes are irrelevant because classes are compiled before weaving.
Furthermore, we consider classes referencing aspects bad design since it
violates the inversion of control and obliviousness principles. Though, we
could model it, it would complicate the formalism without adding anything
new.

162164

3. No program elements in the whole program may be extended
both by A′ and B′ (∀X ∈ p : ∀l ∈ X : A′ /∈ e(X) ∨ B′ /∈
e(X)).

3.3.3 Transforming Referential Dependencies
Referential dependencies are caused by violations against Condi-
tion 2. That means that a program element in an aspect is referenced
or extended by an aspect now woven earlier. In this section, we limit
our discussion to methods (that can reference other methods) and
advice (that can reference and extend other methods). Later on, we
explain whether and how these discussions can be generalized.

For illustration, we extend our notation by further information.
Although not needed for our model, it helps to understand pseudo-
commutative transformations and may be used eventually for an
automation of the transformation steps. Equation 9 illustrates the
notation we will use in the remainder. It describes three aspects A,
B, and C, each with several program elements like m, n, and o
(e.g., methods, fields, inter-type declarations, advice). References
are illustrated with ‘ref ’-arrows below a term. For example, in
aspect A, m references n, and o references k in B. Furthermore,
extensions are denoted by ‘ext’-arrows above a term, for example
l in B is extended both by m in A and p in C. We can directly
transfer the conditions for pseudo-commutativity to this notation.
Conditions 1 and 2 require that all arrows between two aspects
point in the same direction (e.g., B must be woven before A and
C). Condition 3 is satisfied if above a term there are never two
‘ext’-arrows pointing to the same program element (violated in the
example because l in B is extended by A and C).

A{ . . . m

ref

>>

ext

((. . . n . . . o

ref

77. . .} B{ . . . l . . . k . . .} C{ . . . p

ext

uu . . . q}
ref

ii

(9)
We start with the two functional aspects A and B in Equa-

tion 10, in which the method m in A is referenced by method l
in B, which is similar to Figure 4.

A{ . . . m . . .} B{ . . . l

ref

gg . . .} (10)

These two aspects are not commutative because of the reference,
but we can transform them into A′ and B′ to achieve pseudo-
commutativity. This pseudo-commutative pair is obtained by cre-
ating a piece of advice a in A′ and moving the original reference
of B to the advice body in A′ (as done previously in Figure 5). As
we can see in Equation 11, the dependency between both aspects
is reverted, instead of a reference from B to A, there is now an
extension from A′ to B′.

A′{ . . . m . . . a

ref

cc

ext

''. . .} B′{ . . . l . . .} (11)

If it is not possible to directly advise method l in B′, e.g.,
because the reference was placed in the middle of the method, it
is necessary to expose a new join point by introducing a new hook
h, that is called from l and advised by a:12

A{ . . . m . . . a

ref

cc

ext

)). . .} B{ . . . l

ref

??. . . h . . .} (12)

12 As explained in Section 3.2, alternative mechanisms such as annotations
can be used.

This way it is always possible to replace a reference between
methods by advice. Similarly, we can always replace a piece of
advice with a method call. Consider the aspects A and B in Equa-
tion 13, in which advice a extends method m. They can be trans-
formed into A′ and B′, in which a is replaced by a method l, and
m directly calls l (Eq. 14).

A{ . . . m . . .} B{ . . . a

ext

uu . . .} (13)

A′{ . . . m

ref

55. . .} B′{ . . . l . . .}
(14)

3.3.4 Transformation of Shared Join Points
When two pieces of advice of the aspects A and B extend the same
program element X in any class or aspect of the program, in our
notation two ‘ext’-arrows point to the same element:

A{ . . . a

ext

**. . .} B{ . . . b

ext

)). . .} X{ . . . m . . .} (15)

To resolve the dependency, we introduce a new method h in X
and move the method body from m to h. We let m call h and let
the aspect that was originally woven first (B) advise h instead of
m. With the additional method call and the disjoint join points, the
two pieces of advice are always executed in the correct order.

A′{ . . . a

ext

**. . .} B′{ . . . b

ext

)). . .} X{ . . . m

ref

>>. . . h . . .}

(16)

3.3.5 Putting all Transformations Together
When two functional aspects A and B with the original weaving or-
der A(B(P)) are transformed in their pseudo-commutative coun-
terparts A′ and B′ with the weaving order ′B(A′(P)) the follow-
ing transformations are applied: First, A and B are copied to A′

and B′. Next, every reference from A′ to B′ is reversed and re-
placed by an extension from B′ to A′ as shown above. Second,
every extension from A′ to B′ is replaced by a reference from B′

to A′ as shown above. Finally, every shared join point is resolved
by introducing a hook method and separating both extensions. This
means that the individual transformations described above, might
need to be applied several times for different program elements in
A and B and for different shared join points in the program.

3.4 Generalization to Other Language Constructs
So far, we have demonstrated that we can transform references be-
tween methods and method extensions by pieces of advice. We
have also demonstrated that we can resolve shared join points
on methods. Our transformations are general and only use meta-
variables for program elements. They can be combined, and mul-
tiple references or extensions between two aspects can be resolved
by repeatedly applying these transformations. This leaves us with
a number of further possibilities of how references and extensions
can occur in Java and AspectJ not discussed so far:

1. Statements: a sequence of statements inside the middle of a
method can always be extracted into its own method (cf. Extract
Method Refactoring [15]), thus reducing statement extensions
to method extensions.

2. Inter-type declarations: inter-type declarations are treated as
members of aspects and can be handled completely like meth-
ods or fields.

163165

3. A piece of advice can reference a method: the body of a piece
of advice can be extracted into a new method, thus reducing
references from aspects to references from methods.

4. A method or piece of advice can reference a field: the field
access can be encapsulated in an access method, reducing it to
references between methods.

5. Object instantiation: Object instantiation can be encapsulated in
a factory method, and thus be reduced to method references.

6. Constructors and static initializers: Constructors and static ini-
tializers can both be handled as methods, because AspectJ pro-
vides pointcut designators to extend them.

Note, in some cases there might be alternative transformations. For
brevity, we only show a straightforward solution.

This is an informal argument that pseudo-commutativity trans-
formations are valid for all considered language constructs. While –
because of the complexity of Java and AspectJ – this cannot prove
completeness, i.e., that pseudo-commutativity is possible for any
pair of aspects with arbitrary language constructs, we still demon-
strate validity for all common language constructs we came across.

3.5 Summary & Discussion
Functional aspects can be refactored in any order, just as traditional
aspects. Functional aspects are either commutative or pseudo-
commutative. The latter case occurs when the refactoring order
enforces a weaving order that contradicts the initial aspect depen-
dencies. Its worth mentioning that although all refactoring orders
are possible, not all might be equally ‘difficult’ to handle. Even in
the small illustrative examples so far, one can argue which version
is easier to refactor or where the resulting code is easier to read.
For example, comparing Figures 4 and 5, developers would usu-
ally prefer the first implementation with less dependency inversion
and more direct calls. So, there might be a ‘natural order’ [25], in
which code would have been incrementally added if we developed
it from scratch. To get a deeper understanding of this problem and
to show the general applicability of pseudo-commutativity, we have
conducted several case studies.

4. Case Studies
As a proof of concept, we extended our ARJ compiler [2] to sup-
port functional aspects in AspectJ.13 ARJ is implemented on top of
the abc compiler framework [6]. The ARJ compiler expects a list
of aspects, i.e., an ordered list that enumerates all aspects that shall
be woven to a program. Receiving a list of aspects the ARJ com-
piler is able to determine which functional aspects are allowed to
advise which program elements. Specifically, ARJ utilizes pointcut
restructuring to adjust the set of captured join points in order to en-
force the function composition semantics. The actual restructuring
mechanism is described elsewhere [22].

In order to explore functional aspects in more realistic soft-
ware projects, we performed two case studies with Java and As-
pectJ. In first study we refactored GraphBenchmark a library of
graph data structures and algorithms, inspired by an earlier product
line of graph algorithms [28]. GraphBenchmark is a rather small
software project (793 lines of code – LOC).14 We started with
it because we were familiar with graph data structures and algo-
rithms which helped us to predict aspect interactions. We refac-
tored several functional aspects in different orderings while enforc-
ing functional weaving to demonstrate that by exploiting pseudo-
commutativity the refactoring order does not matter.

13 http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
14 For comparability, in all case studies, we removed blank lines and com-
ments and counted only lines with more than three characters.

In subsequent case studies, we collected statistics from four
further aspect-oriented programs (one program was refactored by
ourselves and three were third-party programs) of different sizes
(1,670 – 71,027 LOC) in order to estimate the (worst case) effort
required to transform aspects into their pseudo-commutative coun-
terparts. The worst case effort quantifies the overhead in using func-
tional aspects without having to forego the compositional flexibility
of traditional aspects.

4.1 Refactoring GraphBenchmark
GraphBenchmark implements a basic graph data structure with
weighted and directed edges and 9 algorithms, including depth-first
search, shortest path, connected components, and cycle checking.
We refactored 11 functional aspects that implement fundamental
design decisions.15 These design decisions cut across several clas-
ses, so that refactoring them into aspects improves the code quality
of the application. The implementation of GraphBenchmark that
we refactored contained 12 Java classes and interfaces implement-
ing 793 LOC16.

Since we were familiar with the domain, it was straightforward
to infer which aspects to detach. Also we knew some dependencies
which enabled us to experiment with different refactoring order-
ings. We considered one refactoring order first (Ordering #1) and
then applied pseudo-commutativity to derive the reverse order (Or-
dering #2). For brevity, we illustrate the refactorings of 4 aspects
only: Number for a vertex numbering algorithm, Connected for a
connected components algorithm, Cycles for a cycle checking al-
gorithm, and Search for two variants of a traversal algorithm, but
the results for other aspects are similar.

Ordering #1
We chose Number(Connected(Cycles(Search(P)))) as first the
refactoring order, which seemed natural because the first three al-
gorithms all use code of Search for traversing the vertices of the
graph.

While detaching the three aspects Number, Connected, and Cy-
cles we inverted several dependencies between aspects in order not
to violate their functional nature. For example, code from Number
is invoked by the main program P to display the vertex numbers
and to trigger the algorithm execution. To reverse this dependency
we moved one field to an inter-type declaration and one method call
to a piece of advice. Figure 9 shows the (unfactored) class Vertex
before refactoring and the detached aspect Number after refactor-
ing.

Overall, we resolved dependencies at 13 points when factoring
out the 4 aspects in order to preserve the function nature (moving 4
fields and 3 methods to inter-type declarations and 6 method calls
to pieces of advice).

Furthermore, we resolved several shared join point dependen-
cies: the aspects Number, Connected, and Cycles all advise 2 shared
join points in the base program. In Figure 10, we show the code for
Number as well as for one location of a shared join point. We in-
troduced a hook for each aspect and modified the piece of advice
accordingly (Line 11).

Ordering #2
The second ordering is the exact reverse of the first ordering:
Search(Cycles(Connected(Number(P)))). Especially, the fact that

15 Both, original and refactored version can be downloaded at http://
www.infosun.fim.uni-passau.de/cl/staff/apel/gg4
16 After refactoring, the program contained 926 LOC, caused by the addi-
tional overhead of aspects, i.e., 11 new aspect declarations, each containing
package, import, pointcut and advice declarations. It caused by aspects in
general, not by functional aspects in particular.

164166

http://wwwiti.cs.uni-magdeburg.de/iti_db/arj/
http://www.infosun.fim.uni-passau.de/cl/staff/apel/gg4
http://www.infosun.fim.uni-passau.de/cl/staff/apel/gg4

1 class Vertex
2 public int num;
3 public void display() {
4 System.out.println(num);
5 System.out.println(comp);
6 System.out.println(cycle);
7 } /∗ ... ∗/
8 }

9 aspect Number {
10 public int Vertex.num;
11 before(Vertex v) : this(v) &&
12 execution(void Vertex.display()) {
13 System.out.print(v.num);
14 } /∗ ... ∗/
15 }

Figure 9. Reversing a referential dependency between Vertex
and Number (excerpt).

1 class Vertex
2 public void display() {
3 hookDispNum();
4 hookDispConnected();
5 hookDispCycle();
6 } /∗ ... ∗/
7 }

8 aspect Number {
9 public int Vertex.num;

10 before(Vertex v) : this(v) &&
11 execution(void Vertex.hookDispNum()) {
12 System.out.print(v.num);
13 } /∗ ... ∗/
14 }

Figure 10. Resolving shared join point dependencies via hooks
(excerpt).

the aspects Number, Connected, and Cycles refer all to Search
makes this ordering unusual. Due to their function nature the as-
pects cannot refer directly to Search. It is interesting to test whether
we can transform them by applying pseudo-commutativity and to
explore how much code complexity increases. For example, in Fig-
ure 11 (Lines 1–6) we exemplify such a reference from aspect Num-
ber to aspect Search. By applying pseudo-commutativity we trans-
formed the code to no longer invoke the method graphSearch
directly. Instead, the invocation is triggered by the aspect Search
itself, as shown in Figure 11 (Lines 7–16).

Overall, we transformed all aspects of Ordering #1 to their
pseudo-commutative counterparts that are now composed in Or-
dering #2. All of the 13 referential dependencies are reverted and
the 2 shared join point dependencies are resolved as with Ordering
#1.

4.1.1 Summary & Discussion
The refactoring detached and encapsulated several design deci-
sions and encapsulates them in aspects. For example, instead of
implementing the graph and the main parts of all algorithms with
492 LOC, the class Graph only contains the basic graph and
benchmark code with 126 LOC and is easier to understand. The
behavior of both, the original and the refactored versions, is equiv-
alent.

Within the 4 discussed aspects we applied pseudo-commutative
transformations 29 times to resolve referential dependencies and 6
times to resolve dependencies caused by 2 shared join points. This
enabled us to reverse the refactoring order without violating the

1 /∗ before resolving reference ∗/
2 aspect Number {
3 void Graph.numVertices() {
4 graphSearch(new NumberWorkSpace());
5 } /∗ ... ∗/
6 }

7 /∗ after resolving reference ∗/
8 aspect Number {
9 void Graph.numVertices() { }

10 /∗ ... ∗/
11 }
12 aspect Search {
13 before(Graph g) : this(g) &&
14 execution(void Graph.numVertices()) {
15 g.GraphSearch(new NumberWorkSpace());
16 } /∗ ... ∗/
17 }

Figure 11. Resolving referential dependency in Ordering #2 (ex-
cerpt).

function composition semantics. Factoring further aspects showed
similar results – because their structure is similar. At least for our
study, functional aspects are equally flexible to traditional aspects.

It is worth mentioning that we observed that the aspect code of
Ordering #2 appears more complex than the code of Ordering #1
due to applying dependency inversion more often (16 instead of
8 times). It is also 15 LOC (2 %) longer. The first ordering appears
more natural, i.e., the order in which code would have been incre-
mentally added if we developed it from scratch: the code of Search
would be implemented first and Cycles, Connected, and Number
would be implemented afterward, because they depend on Search’s
functionality.

Though pseudo-commutativity enables us to permute the refac-
toring order, there might be orders that are more natural than oth-
ers, i.e., that minimize the effort in refactoring aspects. We found,
a natural order can be determined easily in GraphBenchmark by
analyzing the target domain, and a complicated functional aspect
implementation might even be considered as an indicator that the
current order is far-off a natural order. However, a thorough explo-
ration of these issues should be done in further work.

4.2 Analyzing Existing Aspect-Oriented Programs
To further demonstrate the applicability of pseudo-commutativity
and to estimate the maximum effort for a worst case refactoring
order with a maximum number of dependency inversion, we ana-
lyzed further 4 existing aspect-oriented programs, namely the As-
pectJ variants of Berkeley DB17 (which we refactored in a previous
study [21]), Prevayler18, the Online Auction System19, and AJH-
SQLDB20. These programs differ in code size and in their imple-
mentation characteristics as summarized in Table 1, which also in-
cludes GraphBenchmark as comparison. In the following, we dis-
cuss our main observations.

Note, only in Berkeley DB, we actually performed pseudo-
commutativity transformation and created functional aspects for
one refactoring order. In the remaining three programs, we only
analyzed dependencies (references and shared join points). Never-
theless, this is sufficient to determine the maximum effort (worst

17 http://wwwiti.cs.uni-magdeburg.de/iti_db/
research/berkeley/
18 http://www.msrg.utoronto.ca/code/
RefactoredPrevaylerSystem/
19 The sources were released kindly by A. Rashid.
20 http://sourceforge.net/projects/ajhsqldb/

165167

http://wwwiti.cs.uni-magdeburg.de/iti_db/research/berkeley/
http://wwwiti.cs.uni-magdeburg.de/iti_db/research/berkeley/
http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
http://www.msrg.utoronto.ca/code/RefactoredPrevaylerSystem/
http://sourceforge.net/projects/ajhsqldb/

case) that would be required if we had to reverse every single de-
pendency, i.e., if we refactored the program in one order and then
applied pseudo-commutativity to all aspects to reverse the order.

Usually, when refactoring functional aspects in an order that
is close to the natural order [25], the number of required pseudo-
commutativity transformations is significantly lower, because many
references already point into the correct direction and need not be
transformed. Still, the analysis of the maximum number of pseudo-
commutativity transformations gives a more accurate impression
of the effort required by functional aspects, than the number of
transformations for one specific order.

Berkeley DB
Berkeley DB is an embedded database system popular in both com-
mercial and open source applications. To make design decisions ex-
plicit and encapsulate their crosscutting implementation we refac-
tored 38 of them into aspects [21]. The size of the detached aspects
varies from small (6 LOC) to large aspects (1,867 LOC). Because
of their sheer size we split some aspects and grouped them in di-
rectories resulting in 151 aspects. Aspects were detached incremen-
tally, while observing dependencies to evaluate function aspects. A
comprehensive overview of Berkeley DB and the refactoring pro-
cess is given elsewhere [23].

Among the 38 features implemented with aspects, we found 53
pairs that interacted by references. Furthermore, there are 28 pairs
that interact by overlapping join points. However, this means from
703 (38 choose 2) aspect combinations, only 8 % interact in some
form in Berkeley DB. Most pairs of aspects are commutative.

The 53 interactions were caused by references, either by (1) a
method that is called from (or introduced by) by another aspect or
by (2) a method that is advised by another aspect. To resolve these
references, we applied the notion of pseudo-commutativity, even
for one cyclic reference. Only in a few cases, we needed additional
hooks, e.g., when the method call was in the middle of another
method.

During our refactorings we also found 28 shared join points that
were advised by 13 aspects. This number of shared join points is
low compared to the overall number of 528 join points that have
been advised (5.3 %). Moreover, only 4 shared join points were
advised by more than 2 aspects. Remarkably, the refactoring and
weaving order does not matter in 13 of these shared join points,
e.g., because they are just used to initialize independent variables
in a constructor. To resolve these interactions we created 38 hook
methods.

Online Auction System & AJHSQLDB
The auction system and the embedded database system AJH-
SQLDB are especially interesting because their aspects do not
reference each other. The auction system has only two inter-type
declarations and AJHSQLDB uses none. Except for the two inter-
type declarations in the auction system, all aspects only contain
pointcuts, advice, and private aspect member methods that are only
used inside the declaring aspect itself. Both use several homo-
geneous pieces of advice that advise many join points with the
same code. Especially, AJHSQLDB has several pieces of advice
that affect over 50 join points (e.g, exception handling, caching,
tracing). But even though 3,307 join points have been extended,
only 122 have been shared. Of these 122 shared join points the
order seems to matter only on 12 cases, because in all other
cases the order is not specified in the original implementation
using declare precedence. In the auction system, there is
no declare precedence statement at all, so the order does
not matter at any shared join point. Thus, the auction system can
already be used with functional aspects without changes and AJH-

SQLDB can easily be adapted to use functional aspects by applying
pseudo-commutativity to resolve only 12 shared join points.

Prevayler
Prevayler is an open source persistence layer for Java, that has been
decomposed into 55 aspects to encapsulate crosscutting concerns
and design decisions. Some of these aspects strongly interact. There
are 92 reference dependencies: 7 pieces of advice advise methods
introduced by another aspect, 24 extensions advise method calls
inside other aspects and 61 method calls reference methods in-
troduced by other aspects. Additionally, there are 14 shared join
points. If we implemented all aspects as functional aspects and then
applied pseudo-commutativity to every one of them, we had to ap-
ply dependency inversion at most 92 times and add hooks at the
14 shared join points.

4.2.1 Summary & Discussion
The analyzed aspect-oriented programs differ in size and their use
of aspect-oriented language features. However, the results concern-
ing functional aspects are similar. The number of reference depen-
dencies and shared join points is rather low. The large majority of
aspects do not interact, i.e., they do not reference each other and
they advise disjoint sets of join points. The remaining interactions
can be easily resolved using the notion of pseudo-commutativity.
Although using functional aspects requires some additional ef-
fort, because some references might need to be reversed and some
shared dependencies might need to be resolved, functional aspects
do not hinder the refactoring process. Additionally, we have shown
that the maximum number (worst case) of pseudo-commutativity
transformations needed when applying pseudo-commutativity to
all functional aspects is comparably low.

In our theoretical and empirical analysises we did not address
the issue whether functional aspects are more or less readable or
maintainable than traditional aspects. Though there are some argu-
ments brought forward in prior work [29], we do not consider them
definite. Our work provides a theoretical basis that establishes that
functional aspects are as expressive as traditional aspects. Empiri-
cal studies should follow to compare readability and maintainabil-
ity. However, the readability and maintainability discussion does
not invalidate our results since functional aspects embody a fun-
damental form of thinking about software development: program
extensions (e.g., implemented via aspects) are functions that map
programs to programs. This view has been shown useful in step-
wise refinement [41], generative programming [8], program fami-
lies [36], and software product lines [7].

5. Related Work
There are several proposed methods and principles for AOR,
e.g., [10, 32, 26]. Furthermore, recent studies explored the benefits
and drawbacks of refactoring software into aspects, e.g., [43, 11, 9].
None consider the potentially global effects aspects can have on a
program developed in a series of development steps.

A notable exception is the work of Lopez-Herrejon et al. [29].
They propose a fine-grained model for AOP that assumes a function
interpretation of aspects. Our work is based on this prior work and
can be understood as a case study of function composition and
AOR. However, our model is simpler because we do not study the
internal structures of aspects. Moreover, we examine the model’s
properties in the light of AOR.

Two others studies refactor existing aspects of a program into
alternative structures by using different modularization mecha-
nisms [27, 42]. There were no aspects that contradict the func-
tion model. Our recent studies on the relationship of aspects and
program features support this result [21, 3].

166168

Application LOC ASP ADV INT AJP REF SJP

GraphBenchmark 926 11 21 29 9 12 12
Berkeley DB 39,906 151 482 574 528 53 28
Auction System 1,670 9 18 2 51 0 2
AJHSQLDB 71,027 31 106 0 3,307 0 122
Prevayler 4,362 55 96 112 101 92 14

LOC: Lines of code; ASP: number of aspects; ADV: pieces of advice; INT: number of introductions;
AJP: advised join points; REF: reference dependencies; SJP: shared join points

Table 1. Statistics of five aspect-oriented programs

Several studies criticized the negative effects of global (un-
bounded) aspect quantification and put forward several solutions.
Lopez-Herrejon et al. [29] and McEachen et al. [31] discuss poten-
tial fault scenario arising from inadvertent aspect weaving. Open
modules [1, 34] and crosscutting interfaces [16] propose module
interfaces that specify explicitly which join points may be advised
– the others are hidden. Harmless advice is a restricted form of ad-
vice that is designed to obey a weak non-interference property [12].

In the light of functional aspects, the proposal of aspect refine-
ment (AR) [2] is related to higher-order functions. Since AR en-
ables to transform existing aspects by applying refinements, these
refinements can be understood as higher-order aspects, i.e., higher-
order functions. Also the close relationship of AR and higher-order
pointcuts and advice [39] has been noted [2].

Some studies propose a more general model of associating
aspects to development steps [19, 3, 2]. Thereby multiple aspects
(and classes) implement the change a development step applies to a
program. It is interesting to explore the implications for our model.
As mentioned, given multiple aspects per development step there
would be two kinds of weaving: (1) all-at-once weaving, which
weaves all aspects of a development step in one rush and (2) step-
wise weaving, which weaves the aspects of a series of development
steps one after the other. It has been noted that stepwise weaving is
more general than all-at-once weaving because it can express all-
at-once weaving but not vice versa [29].

By abstracting our formalization from methods and advice to
all language constructs that can reference or extend other language
constructs, we can easily transfer the idea of pseudo-commutativity
to stepwise refinement using other languages or tools like Jak [7] or
FSTComposer [4]. In the context of these approaches, the language
construct of advice is not available, but methods can be extended
by method refinements. At the same time, it formalizes the concept
of pseudo-commutativity for aspectual feature modules [3].

Finally, our results have been used to explore a notion of
pseudo-commutativity in the context of feature interactions [25].

6. Conclusions
In this paper, we explored whether functional aspects are as flexible
as traditional aspects with respect to altering the refactoring order.
We raised this question because, on one hand, earlier research
has shown that treating aspects as functions is beneficial as it
reduces program complexity by decreasing the number of potential
aspect interactions [29] and aligning with prior work on software
design [36, 41, 8, 7, 29], and, on the other hand, it seemed that
the traditional model was more flexible with regard to the order in
which aspects are factored.

We showed this is not the case: functional aspect interactions
caused by references and shared join points can be resolved by
pseudo-commutativity, the ability to swap functional aspect com-
position orders by altering aspect definitions. We explained that
every pair of aspects with referential dependencies or overlap-
ping join points can be transformed into a corresponding pseudo-

commutative pair. Our work provides a theoretical basis that es-
tablishes that functional aspects are as expressive as traditional as-
pects.

Our case studies support that functional aspects indeed are ap-
plicable to AOR. Even though different applications use aspects
differently, we could use functional aspects in a straightforward
way by applying pseudo-commutativity transformations a few
times. Even in our large case studies, the estimated maximum effort
for using functional aspects is manageable small.

Our work shows that stepwise refinement does not constrain the
known techniques of AOR. It has the same expressiveness than the
traditional approach but reduces potential interactions. It is more
disciplined with regard to composition.

An avenue of further work is to automate pseudo-commutative
transformations. Our formalization and algorithms suggest that this
should be possible. Furthermore, empirical studies should follow
to compare readability and maintainability of functional and tra-
ditional aspects in general and with respect different refactoring
orders in particular.

Acknowledgments
We thank Jia Liu for fruitful discussions and useful comments
on drafts of this paper. This work was supported in part by the
German Research Foundation (DFG), project number AP 206/2-1
and Batory’s NSF’s Science of Design Project #CCF-0438786 and
#CCF-0724979.

References
[1] J. Aldrich. Open Modules: Modular Reasoning about Advice. In

Proc. Europ. Conf. Object-Oriented Programming, volume 3586 of
LNCS, pages 144–168. Springer-Verlag, 2005.

[2] S. Apel, C. Kästner, T. Leich, and G. Saake. Aspect Refinement -
Unifying AOP and Stepwise Refinement. J. Object Technology –
Special Issue: TOOLS EUROPE 2007, 6(9):13–33, 2007.

[3] S. Apel, T. Leich, and G. Saake. Aspectual Feature Modules. IEEE
Trans. Softw. Eng., 34(2):162–180, 2008.

[4] S. Apel and C. Lengauer. Superimposition: A Language-Independent
Approach to Software Composition. In Proc. Int’l. Symp. Software
Composition, volume 4954 of LNCS, pages 20–35. Springer-Verlag,
2008.

[5] S. Apel and J. Liu. On the Notion of Functional Aspects in
Aspect-Oriented Refactoring. In Proc. ECOOP Workshop Aspects,
Dependencies, and Interactions, pages 1–9. Computing Department,
Lancaster University, 2006.

[6] P. Avgustinov, A. Christensen, L. Hendren, S. Kuzins, J. Lhotak,
O. Lhotak, O. de Moor, D. Sereni, G. Sittampalam, and J. Tibble. abc:
An Extensible AspectJ Compiler. Trans. Aspect-Oriented Software
Development, 1(1):293–334, 2006.

[7] D. Batory, J. Sarvela, and A. Rauschmayer. Scaling Step-Wise
Refinement. IEEE Trans. Softw. Eng., 30(6):355–371, 2004.

167169

[8] I. Baxter. Design Maintenance Systems. Comm. ACM, 35(4):73–89,
1992.

[9] Y. Coady and G. Kiczales. Back to the Future: A Retroactive Study
of Aspect Evolution in Operating System Code. In Proc. Int’l. Conf.
Aspect-Oriented Software Development, pages 50–59. ACM Press,
2003.

[10] L. Cole and P. Borba. Deriving Refactorings for AspectJ. In Proc.
Int’l. Conf. Aspect-Oriented Software Development, pages 123–134.
ACM Press, 2005.

[11] A. Colyer and A. Clement. Large-Scale AOSD for Middleware.
In Proc. Int’l. Conf. Aspect-Oriented Software Development, pages
56–65. ACM Press, 2004.

[12] D. Dantas and D. Walker. Harmless Advice. In Proc. Int’l. Symp.
Principles of Programming Languages, pages 383–396. ACM Press,
2006.

[13] R. Douence, P. Fradet, and M. Südholt. A Framework for the
Detection and Resolution of Aspect Interactions. In Proc. Int’l. Conf.
Generative Programming and Component Engineering, volume 2487
of LNCS, pages 173–188. Springer-Verlag, 2002.

[14] R. Filman and D. Friedman. Aspect-Oriented Programming Is
Quantification and Obliviousness. In Aspect-Oriented Software
Development, pages 21–35. Addison-Wesley, 2005.

[15] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refac-
toring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[16] W. Griswold, K. Sullivan, Y. Song, M. Shonle, N. Tewari, Y. Cai, and
H. Rajan. Modular Software Design with Crosscutting Interfaces.
IEEE Softw., 23(1):51–60, 2006.

[17] K. Gybels and J. Brichau. Arranging Language Features for More
Robust Pattern-Based Crosscuts. In Proc. Int’l. Conf. Aspect-Oriented
Software Development, pages 60–69. ACM Press, 2003.

[18] B. Harbulot and J. Gurd. A Join Point for Loops in AspectJ. In Proc.
Int’l. Conf. Aspect-Oriented Software Development, pages 63–74.
ACM Press, 2006.

[19] F. Hunleth and R. Cytron. Footprint and Feature Management
Using Aspect-Oriented Programming Techniques. SIGPLAN Not.,
37(7):38–45, 2002.

[20] F. Kammüller and H. Sudhof. Composing Safely — A Type System
for Aspects. In Proc. Int’l. Symp. Software Composition, volume
4954 of LNCS, pages 231–247. Springer-Verlag, 2008.

[21] C. Kästner, S. Apel, and D. Batory. A Case Study Implementing
Features using AspectJ. In Proc. Int’l. Software Product Line Conf.,
pages 222–232. IEEE CS Press, 2007.

[22] C. Kästner, S. Apel, and G. Saake. Implementing Bounded
Aspect Quantification in AspectJ. In Proc. ECOOP RAM-SE
Workshop, pages 111–122. School of Computer Science, University
of Magdeburg, 2006.

[23] K. Kästner. Aspect-Oriented Refactoring of Berkeley DB. Diploma
thesis, School of Computer Science, University of Magdeburg, 2007.

[24] G. Kiczales and M. Mezini. Separation of Concerns with Procedures,
Annotations, Advice, and Pointcuts. In Proc. Europ. Conf. Object-
Oriented Programming, volume 3586 of LNCS, pages 195–213.
Springer-Verlag, 2005.

[25] C. Kim, C. Kästner, and D. Batory. On the Modularity of Feature
Interactions. In Proc. Int’l. Conf. Generative Programming and
Component Engineering. ACM Press, 2008.

[26] R. Laddad. Aspect-Oriented Refactoring. Addison-Wesley, 2006.

[27] J. Liu, D. Batory, and C. Lengauer. Feature-Oriented Refactoring
of Legacy Applications. In Proc. Int’l. Conf. Software Engineering,
pages 112–121. ACM Press, 2006.

[28] R. Lopez-Herrejon and D. Batory. A Standard Problem for Evaluating
Product-Line Methodologies. In Proc. Int’l. Conf. Generative and
Component-Based Software Engineering, volume 2186 of LNCS,
pages 10–24. Springer-Verlag, 2001.

[29] R. Lopez-Herrejon, D. Batory, and C. Lengauer. A Disciplined
Approach to Aspect Composition. In Proc. Int’l. Symp. Partial
Evaluation and Semantics-Based Program Manipulation, pages 68–
77. ACM Press, 2006.

[30] H. Masuhara and K. Kawauchi. Dataflow Pointcut in Aspect-Oriented
Programming. In Proc. Asian Symp. Programming Languages and
Systems, volume 2895 of LNCS, pages 105–121. Springer-Verlag,
2003.

[31] N. McEachen and R. Alexander. Distributing Classes with Woven
Concerns: An Exploration of Potential Fault Scenarios. In Proc. Int’l.
Conf. Aspect-Oriented Software Development, pages 192–200. ACM
Press, 2005.

[32] M. Monteiro and J. Fernandes. Towards a Catalog of Aspect-
Oriented Refactorings. In Proc. Int’l. Conf. Aspect-Oriented Software
Development, pages 111–122. ACM Press, 2005.

[33] M. Nordberg. Aspect-Oriented Software Development, chap-
ter Aspect-Oriented Dependency Management, pages 557–584.
Addison-Wesley, 2005.

[34] N. Ongkingco, P. Avgustinov, J. Tibble, L. Hendren, O. de Moor, and
G. Sittampalam. Adding Open Modules to AspectJ. In Proc. Int’l.
Conf. Aspect-Oriented Software Development, pages 39–50. ACM
Press, 2006.

[35] K. Ostermann, M. Mezini, and C. Bockisch. Expressive Pointcuts
for Increased Modularity. In Proc. Europ. Conf. Object-Oriented
Programming, volume 3586 of LNCS, pages 214–240. Springer-
Verlag, 2005.

[36] D. Parnas. Designing Software for Ease of Extension and Contraction.
IEEE Trans. Softw. Eng., SE-5(2), 1979.

[37] V. Rajlich. Changing the Paradigm of Software Engineering. Comm.
ACM, 49(8):67–70, 2006.

[38] M. Rinard, A. Salcianu, and S. Bugrara. A Classification System
and Analysis for Aspect-Oriented Programs. In Proc. Int’l. Symp.
Foundations of Software Engineering, pages 147–158. ACM Press,
2004.

[39] D. Tucker and S. Krishnamurthi. Pointcuts and Advice in Higher-
Order Languages. In Proc. Int’l. Conf. Aspect-Oriented Software
Development, pages 158–167. ACM Press, 2003.

[40] D. Walker, S. Zdancewic, and J. Ligatti. A Theory of Aspects. In
Proc. Int’l. Conf. Functional Programming, pages 127–139. ACM
Press, 2003.

[41] N. Wirth. Program Development by Stepwise Refinement. Comm.
ACM, 14(4):221–227, 1971.

[42] B. Xin, S. McDirmid, E. Eide, and W. Hsieh. A Comparison of Jiazzi
and AspectJ for Feature-Wise Decomposition. Technical Report
UUCS-04-001, School of Computing, The University of Utah, 2004.

[43] C. Zhang and H. Jacobsen. Resolving Feature Convolution
in Middleware Systems. In Proc. Int’l. Conf. Object-Oriented
Programming, Systems, Languages, and Applications, pages 188–
205. ACM Press, 2004.

168170

	Introduction
	Aspect Interactions
	A Model of Functional Aspects
	Commutativity
	Pseudo-Commutativity
	Resolving Referential Dependencies
	Resolving Shared Join Point Dependencies

	Formalization and Algorithm
	Basic Definitions
	Commutativity and Pseudo-Commutativity
	Transforming Referential Dependencies
	Transformation of Shared Join Points
	Putting all Transformations Together

	Generalization to Other Language Constructs
	Summary & Discussion

	Case Studies
	Refactoring GraphBenchmark
	Summary & Discussion

	Analyzing Existing Aspect-Oriented Programs
	Summary & Discussion

	Related Work
	Conclusions

