
Vrĳe Universiteit Brussel
Faculteit Wetenschappen
Departement Informatica

System and Software Engineering Lab

Connecting High-Level Business Rules
with Object-Oriented Applications:
An approach using Aspect-Oriented

Programming and Model-Driven
Engineering

María Agustina Cibrán
June 2007

Proefschrift ingediend met het oog op het behalen van de graad van
Doctor in de Wetenschappen

Promotors: Prof. Dr. Viviane Jonckers, Dr. Maja D’Hondt

Print: Grafikon, Oostkamp

© 2007 Uitgeverĳ VUBPRESS

VUBPRESS is an imprint of ASP nv (Academic and Scientific Publishers nv)
Ravensteingalerĳ 28
B-1000 Brussels
Tel. ++32 (0)2 289 26 50
Fax ++32 (0)2 289 26 59
E-mail: info@vubpress.be
www.vubpress.be

ISBN 978 90 5487 428 7
NUR 980
Legal deposit D/2007/11.161/018

All rights reserved. No parts of this book may be reproduced or transmitted in any form or
by any means, electronic, mechanical, photocopying, recording, or otherwise, without the
prior written permission of the publisher and the author.

Abstract

This dissertation addresses the problem of connecting high-level, executable business
rules with existing object-oriented applications.

State-of-the-art research on developing object-oriented software applications with rule-
based knowledge advocates making rules explicit and separate from the object-oriented
core functionality. Although many approaches target this goal and are a considerable im-
provement on the solution that embeds rules as conditional statements in object-oriented
applications, these approaches still suffer from three major inherent problems.

First, even when business rules are successfully decoupled, the rule connection code is
still tangled with and scattered in the implementation of the core application functionality.
Therefore, when existing business rules need to be integrated differently, or when new
business rules need to be connected at unanticipated events, the source code of the core
application must be adapted manually at different places. Consequently, it becomes difficult
to localize, add, change or remove rule connections.

Secondly, regardless of the approach taken to decouple the business rules, executable
rules are ultimately low-level. This makes rules not understandable to domain experts who
are not adept at programming. A third, and closely related problem is a tight coupling
between the business rules and the existing implementation of the core application. This
causes rules to be fragile and not reusable, and prohibits the non-invasive realization of
rules in terms of unanticipated implementation elements. As a consequence, business rules
cannot be deployed by the domain experts without the intervention of a developer.

This dissertation presents a comprehensive solution to these problems, enabling existing
applications to integrate business rules at the domain level. The first problem is addressed
by encapsulating the rule connection in a separate module, decoupled from both the core
application functionality and the rules. This decoupling is not straightforward because
rule connections crosscut the core application functionality. Aspect-Oriented Programming
(AOP) provides new modularization mechanisms, i.e. aspects, for the encapsulation of
crosscutting code while ensuring dependency inversion between the core application and
the aspects. These properties make AOP suitable for encapsulating crosscutting rule con-
nections. This dissertation identifies commonalities and variabilities in the implementation
of rule connection aspects and proposes abstracting these recurrent issues as elements of
aspect patterns.

The second and third problems are addressed by building a layer of abstraction, a domain
model, which allows for the expression of business rules in terms of domain concepts. This
domain layer is able to represent domain concepts explicitly. A dedicated high-level business
rule language is provided which enables the expression of high-level rules in terms of the
domain concepts. Consequently, the coupling between the existing implementation of the
core application and the rules is loosened. Moreover, the domain model is evolvable, which
allows for the realization of unanticipated domain concepts and business rules that appear
as a result of domain evolution.

This dissertation observes that, although the proposed aspects are a suitable solution
to the problem of decoupling crosscutting rule connections, they exclude domain experts,
as these aspects reside at the implementation level. Moreover, rule connection aspects need
to take into account several recurrent issues, which renders the task of implementing these
aspects difficult for developers. This dissertation supports the expression of rule connections
at the domain level. A second dedicated high-level language is provided for this purpose.

The solution presented in this dissertation incorporates ideas from Model-Driven Engi-
neering (MDE) in order to achieve the automatic generation of executable implementations
for the high-level rules and rule connections. High-level rules and rule connections are
automatically transformed to rule objects and rule connection aspects respectively.

The approach presented in this dissertation is evaluated in the domain of Service-
Oriented Architecture (SOA). Service-oriented applications are very volatile: new services
appear, services become unavailable, non-functional properties of services vary (even at
run-time), and applications need to cope with all these changes. Moreover, clients also
change their requirements with respect to the selection and integration of services. This
dissertation shows how high-level business rules can automate the customization of service-
oriented applications. A Web services management layer, the WSML, is used as case study.
Two scenarios are presented: an evolution scenario, which shows that it is possible to add
new rules to the existing management framework, and a refactoring scenario, which shows
that existing rules in the core WSML implementation can be refactored and externalized
as high-level business rules.

Samenvatting

Deze verhandeling behandelt de verbinding tussen hoogniveau, uitvoerbare business
rules en bestaande objectgeoriënteerde applicaties.

Het huidige onderzoek rond de ontwikkeling van objectgeoriënteerde softwareapplicaties
met regelgebaseerde kennis pleit ervoor om regels expliciet te maken, en te scheiden van
de objectgeoriënteerde kernfunctionaliteit. Hoewel vele benaderingen dit doel beogen en
een aanzienlĳke verbetering vormen ten opzichte van de aanpak om regels als conditionele
uitdrukking in te bouwen in objectgeoriënteerde applicaties, vertonen zĳ nog steeds drie
belangrĳke tekortkomingen.

Ten eerste, zelfs wanneer de business rules succesvol ontkoppeld worden, blĳft de re-
gelverbindingscode vermengd met, en verspreid over de implementatie van de kernfunc-
tionaliteit van de applicatie. Wanneer bestaande business rules anders dienen te worden
geïntegreerd, of wanneer nieuwe regels moeten worden verbonden aan niet-geanticipeerde
gebeurtenissen, dient de broncode van de kernfunctionaliteit manueel op verscheidene plaat-
sen aangepast. Het wordt bĳgevolg moeilĳk om regelverbindingen te lokaliseren, toe te
voegen, te wĳzigen of te verwĳderen.

Ten tweede blĳven de uitvoerbare regels uitgedrukt op een laag niveau, onafhankelĳk
van de aanpak die gebruikt wordt om de business rules te ontkoppelen. Hierdoor zĳn de
regels niet begrĳpbaar voor de domeindeskundigen die geen technische programmeerkennis
hebben. Een derde, nauw verwant probleem is de sterke koppeling tussen de business rules
en de bestaande implementatie van de kernapplicatie. Hierdoor worden de regels breekbaar
en niet herbruikbaar, wat een niet-invasieve realisatie van regels die refereren naar niet-
geanticipeerde implementatie-elementen verhindert. Bĳgevolg kunnen business rules niet
worden ingezet door domeindeskundigen zonder de tussenkomst van een ontwikkelaar.

Deze verhandeling introduceert een brede oplossing voor deze problemen die toelaat om
business rules te integreren in bestaande applicaties op het domeinniveau. Het eerste prob-
leem wordt aangepakt door de regelverbindingen in te kapselen in een afzonderlĳke module,
losgekoppeld van zowel de hoofdfunctionaliteit van de applicatie als van de regels. Deze on-
tkoppeling ligt niet voor de hand aangezien de regelverbindingen de hoofdfunctionaliteit van
de applicatie als het ware doorsnĳden (Eng. crosscutting). Aspectgeoriënteerd program-
meren (AOP) biedt nieuwe modularisatietechnieken, zgn. aspecten, voor het inkapselen
van crosscutting code terwĳl ook de afhankelĳkheid tussen de kernapplicatie en de as-
pecten wordt omgekeerd. Deze eigenschappen maken AOP geschikt voor het inkapselen
van crosscutting regelverbindingen. Deze verhandeling identificeert gemeenschappelĳke en
veranderlĳke factoren in de implementatie van regelverbindingsaspecten, en stelt voor om
de terugkerende elementen te abstraheren als elementen van aspectpatronen.

Het tweede en derde probleem worden aangepakt door het opbouwen van een domein-
model, d.i. een abstractielaag die toelaat om de business rules uit te drukken met behulp
van domeinconcepten. Deze domeinlaag kan domeinconcepten expliciet voorstellen. Er
wordt een specifieke, hoogniveau business rule-taal aangeboden die de uitdrukking van
hoogniveau regels in termen van domeinconcepten mogelĳk maakt. Daardoor wordt een
minder sterke koppeling tussen de bestaande implementatie van de hoofdfunctionaliteit en
de regels bekomen. Bovendien kan het domeinmodel verder evolueren, hetgeen de real-
isatie van niet-geanticipeerde domeinconcepten en business rules, die ontstaan als gevolg
van domeinevolutie, mogelĳk maakt.

In deze verhandelingen stellen we vast dat, hoewel de voorgestelde aspecten een gepaste

oplossing bieden voor het probleem van het ontkoppelen van crosscutting regelverbindingen,
ze de domeindeskundigen uitsluiten, aangezien ze op implementatieniveau uitgedrukt wor-
den. Bovendien dienen deze aspecten met verscheidende terugkerende elementen rekening
te houden, wat het implementeren van deze aspecten bemoeilĳkt voor ontwikkelaars. Deze
verhandeling ondersteunt het uitdrukken van regelverbindingen op het domeinniveau met
een tweede specifieke hoogniveau taal.

De oplossing die in deze verhandeling wordt voorgesteld integreert ideeën uit het domein
van de modelgedreven softwareontwikkeling (MDE) om de automatische productie van
uitvoerbare implementaties van hoogniveau regels en regelverbindingen te bewerkstelligen.
Hoogniveau regels en regelverbindingen worden automatisch omgevormd tot respectievelĳk
regelobjecten en regelverbindingsaspecten.

De in deze verhandeling voorgestelde benadering wordt geëvalueerd binnen het domein
van de dienstgeoriënteerde architecturen (SOA). Dienstgeoriënteerde applicaties zĳn zeer
veranderlĳk: nieuwe diensten kunnen worden aangeboden, diensten kunnen onbeschikbaar
raken, en de niet-functionele eigenschappen van diensten kunnen veranderen (ook tĳdens
de uitvoering); applicaties dienen al deze veranderingen aan te kunnen. Daarenboven ve-
randeren cliënten hun vereisten met betrekking tot de selectie en integratie van diensten.
Deze verhandeling toont hoe hoogniveau business rules het op maat aanpassen van dien-
stgeoriënteerde applicaties kunnen automatiseren. Een dienstgeoriënteerd framework voor
Web services (genaamd WSML) wordt als case study gebruikt. Twee gevallen worden be-
handeld: een evolutiescenario toont dat het mogelĳk is om nieuwe regels toe te voegen aan
een bestaand management framework, en een refactoringscenario toont dat bestaande regels
in de WSML-implementatie afgescheiden kunnen worden als hoogniveau business rules.

Acknowledgements

It seems unbelievable to be writing the acknowledgments because it means I am finally
finishing my PhD thesis!!!

First of all, I would like to thank my promoter Viviane Jonckers, who gave me the
opportunity to pursue this degree by accepting me as a PhD student. I am grateful for
her precise and constructive advice, and for all the time and effort she spent reading and
re-reading many parts of my text. Her honest approach to guidance helped me stay focused
and productive.

I would like to show my appreciation for my co-promoter and friend Maja D’Hondt. I
found in Maja not only a great mentor and researcher, but also — most importantly — a
wonderful human being. Her proactive and positive attitude inspired me during these long
years of research and writing. Her presence was fundamental in keeping my motivation up
and her advice was always very useful. Thank you also, Maja, for always making time to
help me with the text, especially for having read and corrected chapter 6 more than 5 times!

I would like to express my gratitude to the members of my jury: Ana Moreira, Siobhán
Clarke, Geert-Jan Houben, Wolfgang De Meuter and Wim Vanderperren.

My colleagues at SSEL have created such a friendly atmosphere in the office and have
been very generous and helpful to me: Bruno De Fraine, Wim Vanderperren, Davy Suvée,
Miro Casanova, Dennis Wagelaar, Bart Verheecke, Ragnhild Van Der Straeten, Mathieu
Braem, Niels Joncheere and Dirk Deridder. During the first two years of my PhD I col-
laborated with Bart on the WSML. This project certainly taught me a lot, and for that I
am grateful. I would also like to thank Wim and Davy for their great help on JAsCo. I
particularly want to thank Bruno for helping me with latex and svn issues. Also, thank
you to Bruno and Bart for helping me with the Dutch version of the abstract. Thanks to
Dennis and Ragnhild for our discussions on MDE. In addition, thanks a lot to Wim, Dirk
and Bart for proofreading my text and for giving me invaluable feedback. Thanks also to
Fiona Coulter for reading my introduction and advising me on language.

Being so far away from home for so many years was not always easy. I would like to
thank all my friends in Brussels, who helped me feel more at home and accompanied me
during these years. Also thanks to them for keeping me entertained during endless milonga
nights.

A very special thanks goes to my parents, Agustín Alejandro Cibrán and María Cristina
Giménez, who always supported me with my projects and studies and were always present
despite the physical distance. Thanks for all the love and care you gave me during all the
years of my life, in any way (even over the phone!). I am extremely thankful to them! I also
appreciated my brother’s advice which was always very useful, so thank you to Federico
Gustavo Cibrán!

Finally, I would like to thank Felix Zimmermann for putting up with me during these
years. Felix always believed in me and was more convinced than me that I would successfully
get to the end. Even and especially, during the last and stressful months of hard work, he
still bore with me! So many thanks for that and for being so special to me!

Contents

Table of Contents i

List of Figures ix

List of Tables xi

List of Code Fragments xiv

List of High-Level Specifications xv

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Goals and Approach . 4
1.3 Integrating Business Rules with Object-Oriented Applications using Aspect-

Oriented Programming . 7
1.3.1 Aspect-Oriented Programming . 7
1.3.2 Requirements . 9
1.3.3 AOP for Decoupling Business Rule Connections 10
1.3.4 Distilling Aspect Patterns . 11

1.4 Expressing Executable Business Rules at the Domain Level using Model-
Driven Engineering . 11
1.4.1 Model-Driven Engineering . 13
1.4.2 Requirements . 13
1.4.3 Domain Entities . 13
1.4.4 High-Level Business Rules and Connections 15
1.4.5 Automatic Transformations . 16

1.5 Business Rules in Service-Oriented Applications 17
1.5.1 Web Services Management Layer (WSML) 17
1.5.2 High-level Business Rules in the WSML 17

1.6 Chapter Summaries . 18

2 Connecting Decoupled Business Rules with Object-Oriented Applications 21
2.1 Running Example: e-commerce . 21

2.1.1 Basic functionality . 22
2.2 Business Rules . 22
2.3 Business Rules for Personalization in the e-commerce Domain 23

2.3.1 Discount Business Rules . 24
2.3.2 Categorization Business Rules . 24

2.4 Applying Personalization Business Rules . 25
2.5 Rule Object Pattern . 26

2.5.1 Simple Rule Object . 26

CONTENTS ii

2.6 Implementing Rule Objects . 27
2.7 Integrating Rule Objects . 29
2.8 Towards a Flexible Rule Connection . 30

2.8.1 Denoting Rule Application Time with Dynamic Events 31
2.8.2 Exposing and Passing Available Contextual Information 31
2.8.3 Capturing, Exposing and Passing Unavailable Information 31
2.8.4 Introducing Unanticipated Information 33
2.8.5 Incorporating Rule Results . 33
2.8.6 Configuring and Reusing Rules and Their Connections 34
2.8.7 Controlling Rule Precedence, Combination and Exclusion 34
2.8.8 Controlling Rule Instantiation and Initialization 34
2.8.9 Connecting Rules . 34

2.9 Summary . 34

3 Aspect-Oriented Programming for Business Rule Connection 37
3.1 Aspect-Oriented Programming . 37
3.2 Comparing AOP approaches . 39
3.3 Selecting Suitable AOP Approaches . 40

3.3.1 Determining Required AOP Characteristics 40
3.3.2 Selecting Representative AOP Approaches 43

3.4 AOP for Rule Connection . 44
3.4.1 Denoting Rule Application Time with Dynamic Events 44

3.4.1.1 A Simple Event . 44
3.4.1.2 A More Sophisticated Event 45

3.4.2 Exposing and Passing Available Contextual Information 47
3.4.3 Capturing, Exposing and Passing Unavailable Information 49
3.4.4 Introducing Unanticipated Information 51
3.4.5 Incorporating Rule Results . 53
3.4.6 Configuring and Reusing Rules and Their Connections 53
3.4.7 Controlling Rule Precedence, Combination and Exclusion 55
3.4.8 Controlling Rule Instantiation and Initialization 58
3.4.9 Connecting Rules . 60

3.5 Discussion . 61
3.6 Summary . 62

4 Aspect Patterns for Business Rule Connection 63
4.1 Towards Aspect Patterns . 63
4.2 Identifying Rule Connection Elements . 64
4.3 Aspect Patterns for Rule Connection . 65

4.3.1 Dynamic rule application time . 66
4.3.2 Rule Activation Time . 69
4.3.3 Passing/Retrieving Information to/from the Rule 73

4.3.3.1 Contextual Information . 74
4.3.3.2 Non-Contextual Information 78
4.3.3.3 Unanticipated Information 79

4.4 Summary . 82

5 A Domain Model for Domain Entities, High-Level Business Rules and
High-Level Business Rule Connections 83
5.1 Model-Driven Engineering . 84

iii CONTENTS

5.1.1 Models . 84
5.1.1.1 Domain Modeling . 84
5.1.1.2 Gathering and Representing Domain Knowledge 85
5.1.1.3 Domain-Specific Languages 86

5.1.2 Transformations . 87
5.1.2.1 Classifying Transformations 87

5.2 Domain Entities . 88
5.3 High-Level Business Rules . 91

5.3.1 Rule . 91
5.3.2 Rule Properties . 93
5.3.3 Rule Parameters . 94
5.3.4 Rule Variables . 94

5.4 High-Level Business Rule Connections . 95
5.4.1 Rule Connection . 96
5.4.2 Connection Event . 96
5.4.3 Rule Activation Time . 98
5.4.4 Connection-Specific Information . 99

5.5 Transforming the High-Level Domain Model 100
5.5.1 Introduction to Transformation Systems 101

5.5.1.1 Transformation Granularity 101
5.5.1.2 Transformation Scope . 101

5.6 Transforming High-Level Business Rules and their Connections 102
5.6.1 Transforming High-Level Business Rules 102

5.6.1.1 Transforming BR . 103
5.6.1.2 Transforming PROPS . 104
5.6.1.3 Transforming USING . 105
5.6.1.4 Transforming WHERE . 105
5.6.1.5 Transforming IF and THEN 105

5.6.2 Transforming High-Level Business Rule Connections 107
5.6.2.1 Transforming CONNECT 111
5.6.2.2 Transforming PROPS . 111
5.6.2.3 Transforming BEFORE | AFTER | INSTEAD OF 111
5.6.2.4 Transforming MAPPING 112
5.6.2.5 Transforming CAPTURE 114
5.6.2.6 Transforming ACTIVATION 118

5.7 Summary . 118

6 Mapping Domain Knowledge To Implementation 121
6.1 Context: Advanced Domain Mappings . 121
6.2 The Mapping Language . 122

6.2.1 Basic Mappings . 123
6.2.2 High-Level Mappings . 126
6.2.3 Special Mapping Operators . 127
6.2.4 Mapping Events . 129

6.3 Use Case 1: Pulling Up a Class . 129
6.4 Use Case 2: Mapping One-to-Many Classes 130

6.4.1 Mapping to Union . 131
6.4.2 Mapping to Intersection . 136

6.5 Use Case 3: Anticipated Mappings . 137

CONTENTS iv

6.6 Use Case 4: Calculating Values at Execution Points 138
6.6.1 Dealing with Timing Information . 138
6.6.2 Dealing with Cached Information . 139

6.7 Use Case 5: Unanticipated Mappings . 139
6.8 Obtaining a Code Representation for the Mapping 141
6.9 Summary . 141

7 Implementation 143
7.1 Selected Technologies . 143
7.2 Architecture of the Domain Model Prototype 145
7.3 Implementation Goals . 146

7.3.1 Modularity . 146
7.3.2 Extensibility . 149
7.3.3 Flexibility . 149

7.4 From a High-Level Business Rule to a Java Rule Object 149
7.4.1 Parsing . 150
7.4.2 Translating . 150
7.4.3 Generating Rule Code . 151

7.5 From a High-Level Business Rule Connection to a JAsCo Aspect 152
7.5.1 Parsing . 152
7.5.2 Translating . 152
7.5.3 Generating Rule Connection Code 153

7.6 Translating Mapping Specifications . 153
7.6.1 Parsing . 153
7.6.2 Translating . 153

7.7 Challenges . 154
7.8 Summary . 154

8 Evaluation 169
8.1 Case Study: Web services Management Layer 169
8.2 Web-Services Management Layer (WSML) 171

8.2.1 Architecture of the WSML . 172
8.2.2 Selection, Management and Redirection in the WSML 174

8.2.2.1 Web Service Selection . 174
8.2.2.2 Client-Side Web Service Management 176
8.2.2.3 Web Service Redirection 177

8.2.3 Limitations of the WSML . 178
8.3 Evolution Scenario: Supporting Unanticipated Business Rules 179

8.3.1 Identifying Potential Configuration Business Rules 179
8.3.2 An Initial Domain Model . 180
8.3.3 Business Rules in Terms of Initial Domain Entities 184

8.3.3.1 Enabling Service Type Caching Based on Average Speed . 184
8.3.3.2 Adding Service Composition Monitoring Based on Price . . 185

8.3.4 Adding New Business Rules . 189
8.3.4.1 Anticipated Domain Entities 189
8.3.4.2 Calculating Values at Execution Points 190
8.3.4.3 Unanticipated Domain Entities 191

8.4 Refactoring Scenario: Externalizing Anticipated Selection Policies 193
8.4.1 Extending the Initial Domain Model 195

v CONTENTS

8.4.2 Expressing Selection Policies and their Connections at the Domain
Level . 196

8.4.3 Open Issues . 197
8.5 Discussion . 198
8.6 Summary . 199

9 Related Work 201
9.1 Business Rules Systems . 201

9.1.1 JRules . 201
9.1.1.1 Business Rules . 202
9.1.1.2 Domain Model . 202
9.1.1.3 Rule Integration and Execution 204

9.1.2 Haley Rules . 204
9.1.2.1 Business Rules . 205
9.1.2.2 Domain Model . 206
9.1.2.3 Rule Integration and Execution 207

9.1.3 VisualRules . 207
9.1.3.1 Business Rules . 207
9.1.3.2 Domain Model . 208
9.1.3.3 Rule Integration and Execution 209

9.1.4 JBoss Rules . 209
9.1.4.1 Business Rules . 210
9.1.4.2 Domain Model . 211
9.1.4.3 Rule Integration and Execution 211

9.1.5 RuleML . 212
9.1.5.1 Business Rules . 213
9.1.5.2 Domain Model . 213
9.1.5.3 Rule Integration and Execution 214

9.1.6 QuickRules . 215
9.1.6.1 Business Rules . 215
9.1.6.2 Domain Model . 215
9.1.6.3 Rule Integration and Execution 215

9.1.7 Summary . 216
9.2 Lightweight Business Rule Approaches . 217

9.2.1 Business Rules and Databases . 217
9.2.2 Business Rules and Design Patterns 218

9.3 AOP for Business Rules . 219
9.3.1 Decoupling Business Rules at Implementation Time 219
9.3.2 Decoupling Constraints at Design Time 220

9.4 Combining MDE and AOP . 220
9.5 Mapping Domain Knowledge To Implementation 222
9.6 Business Rules in Specific Application Domains 223

9.6.1 Business Rules in e-commerce Applications 223
9.6.2 QoS Business Rules in Service-Oriented Applications 223

9.7 Business Rules Methodologies, Vocabularies and Standards 224

10 Conclusions 227
10.1 Summary and Contributions . 227
10.2 Trade-offs and Future Work . 232

10.2.1 Modularity . 232

CONTENTS vi

10.2.2 Scalability . 232
10.2.3 Aspect Issues . 233

10.2.3.1 Overhead . 233
10.2.3.2 Interference . 233

10.2.4 Transformations . 233
10.2.5 Expressivity of High-level Languages 234

10.2.5.1 Temporal Rules . 234
10.2.5.2 Collections . 234
10.2.5.3 Events . 234
10.2.5.4 Rule-Based Languages . 235
10.2.5.5 Predefined Operators . 235

10.2.6 Raising the Level of Abstraction of AOP 235
10.2.7 Mapping . 235

10.2.7.1 MDE for Mapping Specification 236
10.2.7.2 Mapping to AOP . 236

10.2.8 Quantification . 236

A High-Level Business Rule Language 239
A.1 Non-Terminals . 239
A.2 Terminals . 241

B High-Level Business Rule Connection Language 243
B.1 Non-Terminals . 243
B.2 Terminals . 245

C High-Level Mapping Language 247
C.1 Non-terminals . 247
C.2 Terminals . 251

Bibliography 252

List of Figures

1.1 Overview of our approach for integrating business rules with AOP 8
1.2 Recurrent elements in a rule connection aspect 11
1.3 Overview of our approach for high-level business rules 12

2.1 Class diagram of a possible implementation solution for the e-commerce func-
tionality . 23

2.2 Rule Object Pattern . 26
2.3 Integration of price personalization rule objects using the Strategy and Dec-

orator design patterns . 30
2.4 More complex pattern-based design solution for achieving a price personal-

ization that differs per product and per customer 32

3.1 General architecture of the use of AOP for the modularization of rule con-
nections . 42

3.2 AspectJ’s solution illustrating the inheritance of aspects for the application
of rules . 56

3.3 A solution in pseudo-AspectJ code for the application of the BRPurchased-
ItemsDiscount according to whether a customer is frequent of not 59

5.1 Domain entity metamodel . 89
5.2 Graphical representation of some typical domain entities in the e-commerce

domain . 90
5.3 Business rule and domain entity metamodels and their relations 92
5.4 BRDiscount rule expressed in the high-level rule language 95
5.5 Business rule connection metamodel and its relations to the domain entity

metamodel and the business rule metamodel 97
5.6 High-level connection of BRDiscount rule at Checkout event 100
5.7 Transformation of ‘BR’ clause . 104
5.8 Transformation of ‘PROPS’ clause . 104
5.9 Transformation of ‘USING’ clause . 105
5.10 Transformation of ‘WHERE’ clause . 106
5.11 Transformation of ‘CONDITION’ and ‘ACTION’ clauses 106
5.12 Java class generated from the high-level BRDiscount rule 108
5.13 Transformations (1) and (2) . 109
5.14 Partial output of transformation (3) . 113
5.15 Transformations (3) and (4): case of a ‘before’ connection 115
5.16 Transformations (3) and (4): case of an ‘after’ connection 116
5.17 Transformation (3) and (4): case of an ‘instead of’ connection 116
5.18 Transformations (4) and (5) . 117
5.19 Transformation from the high-level connection of BRDiscount to JAsCo . . 119

LIST OF FIGURES viii

6.1 Entities and relations considered in both the domain and implementation levels123
6.2 Mapping to a union of core classes: Class1 is a (direct or indirect) subclass

of Class2 . 132
6.3 Mapping to a union of core classes: Class2 is navigable from Class1 133
6.4 Mapping to a union of core classes: the relevant instances of Class1 and

Class2 involved in the mapping are not related with respect to the required
information. 134

6.5 Example design scenario in the e-commerce application 135
6.6 Mapping from a domain class to the intersection of many OO classes 136

7.1 Overview of the domain model infrastructure 144
7.2 Overview of the DM class . 146
7.3 GUI of the domain model prototype . 147
7.4 Main classes implementing the parsing phase in the transformation of a high-

level business rule . 155
7.5 Main classes representing a parsed and translated high-level business rule . 156
7.6 Main classes implementing the parsing phase in the transformation of a high-

level business rule connection . 157
7.7 Main classes representing a parsed and translated high-level business rule

connection . 158
7.8 Main classes implementing the parsing phase of the transformation process

of a mapping specification . 159
7.9 Main classes representing a parsed and translated mapping 160
7.10 Main classes representing the kinds of expressions allowed in the definition

of a mapping . 161
7.11 Overview of the transformation process of a high-level business rule 162
7.12 Main classes implementing the translation phase in the transformation of a

high-level business rule . 163
7.13 Example of the translation from a concrete domain entity, involved in the

definition of a high-level rule, to its implementation 164
7.14 Overview of the transformation process of a high-level business rule connection165
7.15 Main classes implementing the translation phase in the transformation pro-

cess of a high-level business rule connection 166
7.16 Overview of the transformation process from the mapping specification of a

domain entity . 167

8.1 Architecture of the WSML (adapted from [Ver06]) 173
8.2 Service monitoring and service selection aspects in WSML (taken from [CVV+07])175
8.3 Basic redirection mechanism implemented in the WSML (adapted from [CVV+07])177

9.1 Using predefined business vocabulary in the definition of a high-level rule in
JRules (taken from [ILO04]) . 203

9.2 Using domain concepts in the definition of a high-level rule in JRules (taken
from [ILO04]) . 204

9.3 Example of the definition of a Haley business rule: different conditions con-
clude a single action (taken from [Hal05]) 205

9.4 Example of low-level Eclipse code representing the translation of a Haley
business rule (taken from [Hal05]) . 206

9.5 Example rule trees in Visual Rules (adapted from [Gmb06]) 208

ix LIST OF FIGURES

9.6 Example of the configuration of a predefined action type in Visual Rules
(taken from [Gmb06]) . 209

9.7 Example of a domain-specific rule in JBoss Rules (taken from [JBoa]) . . . 211
9.8 Example of the definition of domain specific concepts and their mappings in

JBoss Rules (taken from [JBoa]) . 212
9.9 Mapping domain concepts to Java entities in Mandarax (taken from presen-

tation titled “MANDARAX+ ORYX: An Open-Source Rule Platform”, by
J. Dietrich and G. Wagner (2004)) . 214

9.10 The Oryx natural language front-end for Mandarax (taken from presenta-
tion titled “MANDARAX+ ORYX: An Open-Source Rule Platform”, by J.
Dietrich and G. Wagner (2004)) . 215

9.11 Example of a decision table defined in QuickRules (taken from [YAS03]) . . 216

LIST OF FIGURES x

List of Tables

5.1 Transformations from high-level rule constructs to OOP implementations . 103
5.2 Transformations from high-level rule connection constructs to AOP imple-

mentations . 110

6.1 Instance correspondence relation between a domain class and the core classes
to which the domain class maps . 131

LIST OF TABLES xii

List of Code Fragments

2.1 Implementation of an abstract price discount rule object in Java. 27
2.2 Rule object implementing the BRChristmasDiscount rule in Java 28
2.3 Rule object implementing the BRGoldCustomer rule in Java 28
2.4 Rule object implementing the BRGoldCustomerDiscount rule in Java 28
3.1 AspectJ’s solution for denoting a simple event capturing the moment after

the invocation of the method Product.getPrice() 45
3.2 JAsCo’s solution for denoting a simple event capturing the moment after the

invocation of the method Product.getPrice(): the upper part shows the
abstract aspect bean whereas the lower part shows the concrete deployment 46

3.3 A solution in AspectJ for denoting a more complex event capturing the mo-
ment after the invocation of the method Product.getPrice() in the control
flow of the Shop.checkoutShoppingBasket(ShoppingBasket) method . . . 46

3.4 A solution in JAsCo for denoting a more complex event capturing the moment
after the invocation of the method Product.getPrice() in the control flow
of the Shop.checkoutShoppingBasket(ShoppingBasket) method 47

3.5 A solution in AspectJ for exposing (upper part) and passing to the rule (lower
part) information available in the context of the triggering pointcut 48

3.6 A solution in JAsCo for passing to the rule the information available in the
context of the triggering pointcut . 49

3.7 A solution in AspectJ for capturing information available at events other
than the triggering event and making it available to the rule 50

3.8 A solution in AspectJ based on open classes for introducing structure and
behavior . 52

3.9 A solution in JAsCo based on virtual mixins to introduce new behavior to
core classes . 52

3.10 A solution in AspectJ for applying the BRChristmasDiscount and the BRPur-
chasedItemsDiscount rules at the same event: the upper part shows the
extensions to the CaptureCustomer aspect in order to make the captured
customer available to the instance of ApplyBRPurchasedItemsDiscount; the
lower part shows the aspect for applying the BRPurchasedItemsDiscount on
the EPricePersonalisation.priceCalculation pointcut 54

4.1 Overview: JAsCo aspect bean for rule connection 66
4.2 Two possible realizations of a ‘before’ connection 67
4.3 Two possible realizations of an ‘after’ connection 68
4.4 Realization of an ‘instead of’ connection . 69
4.5 Rule activation considered ‘while’ execution of event 70
4.6 Rule activation considered ‘not while’ execution of event 71
4.7 Rule activation considered ‘not while’ execution of event 72
4.8 Rule activation considered ‘between’ the execution of two events 72

LIST OF CODE FRAGMENTS xiv

4.9 Before connection: exposing and passing target object to rule 75
4.10 Before connection: exposing and passing parameter to rule 76
4.11 After connection: exposing and passing return value object to rule 77
4.12 After connection: not passing return value to rule 78
4.13 Instead of connection: the rule’s attribute X represents the new return value

to be consider when proceeding with core application’s execution 79
4.14 Capturing non-contextual information . 80
4.15 Extending the core application with unanticipated information 81
6.1 Code generated for the realization of the loyaltyCategory domain property

added to the Customer domain class . 140
8.1 Generated rule object for ServiceTypeCachingBR rule 186
8.2 Generated aspect bean for ServiceTypeCachingBRConnection 187
8.3 Generated connector for the deployment of the ServiceTypeCachingBRCon-

nection aspect . 188

List of High-Level Specifications

8.1 Definition of the WSML domain class . 182
8.2 Definition of the MonitorableServiceProperty domain class 182
8.3 Definition of the MonitorableService domain class 183
8.4 Definition of the ServiceType domain class 183
8.5 Definition of the ServiceComposition domain class 183
8.6 Definition of the WebService domain class 184
8.7 Definition of events . 184
8.8 The ServiceTypeCachingBR rule . 185
8.9 Connection for the ServiceTypeCachingBR rule 185
8.10 The AddMonitoringToServiceCompositionBR rule and its high-level connection188
8.11 WebServiceSpeedCategoryBR business rule and its connection 192
8.12 Business rules that trigger actions according to the values of unanticipated

Web service categories . 194
8.13 Extensions of the ServiceType domain class to express selection policies a

the domain level . 195
8.14 New event capturing the executing of the addServiceComposition domain

operation . 195
8.15 Existing WSML selection imperative expressed as a high-level rule 196
8.16 Existing WSML selection guideline expressed as a high-level rule 197

LIST OF HIGH-LEVEL SPECIFICATIONS xvi

Chapter 1

Introduction

1.1 Problem Statement
In a competitive global business environment, software engineers and domain experts have
an increasingly difficult role to play. The software applications they create must accommo-
date to complex technical concerns and changing business needs. A particular challenge is
dealing with domain knowledge that is inherently volatile in real-world domains and busi-
nesses. Identifying this domain knowledge explicitly and managing it effectively is crucial.
Unfortunately, however, these are complex tasks, as domain knowledge is usually not local-
ized — rather, it is tangled and scattered in the implementation of software applications.
The approach developed in this dissertation can help software engineers and domain ex-
perts accommodate changes in volatile domain knowledge — thus putting order into the
new complexity of their tasks.

Domain knowledge refers to the concepts, and relations between concepts, which are in-
herent to a domain. It also refers to the constraints on those concepts and relations, and
rules that state how to infer or ‘calculate’ new concepts and relations [SAA+00]. In this
dissertation we focus on this last part of the domain knowledge also known as rule-based
knowledge. Rule-based knowledge can appear in different forms. Some applications have
knowledge-intensive subtasks, such as (semi-)automatic scheduling, intelligent help desks
and advanced support for configuring products and services. Other applications contain
rule-based knowledge embodying business policies or business rules. The Business Rules
Group defines a business rule as a statement that defines or constrains some aspect of the
business. It is intended to assert business structure or to control the behaviour of the business
[BRG01]. In the e-commerce domain for instance, business rules typically guide customer
preferences, discount strategies, return and refund policies, recommendations and so on. In
the domain of healthcare, more sophisticated business rules are present as complex legisla-
tion rules regulating the payment of medical costs by patients, or in the financial business
as for example international agreements on bank transfers. In this thesis we concentrate
on this latter kind of rule-based knowledge. The first category of rule-based knowledge is
considered in [D’H04] but is outside the scope of this thesis.

Besides the many rules that can be found in real-world domains, we observe that technical
domains are also business rules driven. In this dissertation we are particularly interested
in the domain of Service-Oriented Architecture (SOA) [PG03]. SOA advocates building
applications by selecting and integrating third-party Web services. This is a very volatile
application domain, as new services appear, services become unavailable, non-functional

Chapter 1. Introduction 2

properties of services vary (even at run-time), and as a result client applications need
to cope with all these changes. Moreover, client applications themselves change their re-
quirements with respect to which service functionality needs to be selected and integrated.
Therefore, we observe that service-oriented applications — and more specifically service
selection, integration and management — are driven by service criteria based on dynamic
non-functional service properties. These criteria are also examples of business rules that
need to be considered and managed accordingly in order to achieve high flexibility in this
kind of applications.

The applications considered in this dissertation typically provide a substantial core appli-
cation functionality tackling the many technical concerns and supporting the users in their
tasks. This core application functionality is usually developed and maintained using tradi-
tional software engineering techniques, such as object-oriented software development. We
observe that when using current software-engineering methodologies and techniques, busi-
ness rules are often implicit in the code, as if 〈condition〉 then 〈action〉 statements which
are tangled and scattered with the core application functionality. This complicates the task
of the application engineer, who has to have in mind the two aspects of the system, the
core functionality and the business rules, and has to manually integrate them accordingly.
Moreover, the presence of non-localized rules violates the principle of separation of concerns
[Dĳ76a; HL95; Par72], which states that the core functionality has to be separated from
other concerns of the system or aspects, in this case the rules. This lack of separation of
concerns has a negative impact on the understandability, maintainability, reusability and
evolvability of the whole application’s code.

State-of-the-art research on developing object-oriented software applications with rule-
based knowledge advocates making rules explicit and separate from the object-oriented
core functionality [vH01; Ros03; Dat00]. Moreover, this decoupling is pursued throughout
the whole software development process and as such, development of business rules also
progresses from the discovery phase, to analysis, design and finally implementation, at all
times keeping the rules separate from the core application functionality. These approaches
claim that separating business rules is crucial in order to trace them to business policies and
decisions, externalize them for a business audience, and evolve them, especially because they
do not necessarily change at the same pace as the core application functionality [Ars01].
Decoupling the two aspects of the system, the core functionality and the business rules, helps
reduce the dependencies between them which in turn improves overall understandability.
Furthermore, the two aspects of the systems can be developed, maintained and evolved
independently.

Many approaches exist that are targeted towards these goals and use radically differ-
ent technical solutions. First of all, business rules can be represented separately in the
object-oriented programming language itself. Specialized object-oriented design patterns
— referred to as Rule Object Patterns [Ars01] — are proposed for representing rule-based
knowledge explicitly and decoupled in object-oriented applications. Other approaches focus
on externalizing explicit rules using XML, such as Business Rule Beans [RDR+00]. Finally,
there are approaches based on rule-based systems which provide dedicated language con-
structs for representing rules, and manage the flow of rules automatically. Among them,
dozens of both commercial and academic so-called hybrid systems can be mentioned, which
integrate a fully-fledged rule-based language with a state-of-the-art object-oriented pro-
gramming language [ILO; YAS; FH03; JBob; Halb]. Hybrid in this context refers to the

3 1.1 Problem Statement

combination of the rule-based and object-oriented programming paradigms, as defined in
[D’H04]. Independently of the implementation mechanism, business rules are executed at
certain events, i.e. points in the execution of the core application functionality.

It is generally the case that once the initial application is developed, unanticipated busi-
ness rules often appear as a result of changes in the business requirements. In this thesis,
particular interest lies in the non-invasive adaptation of existing applications in order to
cope with the appearance of unanticipated business rules.

We observe that, although existing approaches that support the separation of business
rules from the core application considerably improve the more traditional object-oriented
software development, they still suffer from several inherent problems:

1. Rule connection code is crosscutting: The first problem is in relation to the
connection of the business rules with the existing core applications. By rule connection code
or rule connection we refer to the code not only in charge of triggering the application of the
rules at certain events, but also gathering the necessary information for their application and
incorporating their results in the rest of the core application functionality. We observe that,
even when the decoupling of the business rules is successfully achieved, the connection code
is still tangled with and scattered in the core application functionality. This situation occurs
independently of the concrete approach used for representing the rules. Therefore, when
either the existing business rules change the way they need to be integrated in the existing
application, or new business rules are added which need to be connected at unanticipated
events of the core application, the source code of the core application must be adapted
manually at different places. Consequently, it becomes difficult to localize, add, change or
remove rule connections.

2. Executable rules are low-level: We observe that regardless of the approach taken
to decouple business rules, executable rules are ultimately low-level: they are either im-
plemented in a rule-based language — which is invariably a programming language — or
expressed using design patterns or other technical solutions such as, for example, XML.
Some rule-based systems provide support for the expression of rules at the domain level.
However, high-level rules in these systems are not fully executable, as their deployment still
requires the manipulation of low-level rule representations. Moreover, as these systems cre-
ate overheads, they exclude certain applications. More lightweight approaches, on the other
hand, fail to express executable business rules at the domain level. Therefore, executable
business rules are not understandable to domain experts who are not adept at program-
ming and do not necessarily have technical skills. As a consequence, the deployment of
rules require the intervention of developers, who are in turn not experts in the domain.
This creates a communicational gap between the two which reduces understandability and
makes the software application error-prone.

3. A tight coupling exists between executable rules and the implementation of
the core application: Executable rules are expressed in terms of concrete implemen-
tation elements from the existing core application. This creates a tight coupling between
the business rules and the existing core application’s implementation, causing the following
three problems:

Chapter 1. Introduction 4

i Rules are fragile, as they become incorrect or invalid when the core implementation
elements they refer to change.

ii Rules are not reusable among other applications of the same domain.

iii Unanticipated rules require manual extension of the existing code: new (and unantic-
ipated) rules can appear that need to talk about concepts which are not present in the
existing implementation of the core application. Thus, to be able to implement these
new rules, code implementing the new concepts needs to be added manually to the ex-
isting implementation, which might result in scattering and tangling. Moreover, once
again, the domain expert is excluded as these extensions require a good understanding
of the existing implementation and therefore the need for having programming skills.

4. Executable rule connections are low-level and complex: Finally, connecting
executable (and low-level) rules requires manually writing code which is tightly coupled with
the existing implementation. Therefore, analogously to the problems identified for low-level
rules, low-level rule connections exclude the domain expert, are fragile, cannot be reused and
— when unanticipated — cannot be incorporated non-invasively in the existing application.
Also, writing rule connection code is a complex task for the application developer, as this
code needs to tackle many inherent and interrelated connection concerns (e.g. interrupt the
application at the rule application time, make the required information available to the rule,
trigger the rule, retrieve and incorporate the rule results, proceed with the core application,
etc.).

1.2 Research Goals and Approach

The goal of this dissertation is to provide a solution for the problems identified in the
previous section. We envisage a solution that enables existing applications to integrate
business rules in a high-level way. This dissertation considers both business rules that are
anticipated in some way in the implementation of the core functionality and business rules
that are unanticipated in the existing implementation and that appear as a result of changes
in the business requirements. The aim is to minimize the coupling between the two parts of
the application, i.e. core functionality and business rules, contributing to their independent
development, evolution and variability.

The problem of crosscutting rule connections can be addressed by encapsulating the
code implementing the rule connections in separate modules, decoupled from both the core
application functionality and the rules. This decoupling is not straightforward because
rule connections are tangled and scattered in the core applications, and thus support for
better separation of concerns is needed. The phenomenon of tangled and scattered code is
known as crosscutting code in the area of Aspect-Oriented Programming (AOP) [KLM+97].
AOP is an innovative approach that identifies the need for having new modularization
mechanisms that enable the encapsulation of crosscutting code. Although AOP is usually
employed for encapsulating implementation-level issues like logging and synchronization,
the idea of domain knowledge as an aspect is introduced in [DMW99] and [DC02]. One
of the advantages of AOP is that it introduces dependency inversion between the core
application and the aspects: the core application does not invoke the aspects explicitly but
instead the aspects actively ‘observe’ and react to certain events that occur during the core
application’s execution. This makes AOP suitable for encapsulating rule connections, as

5 1.2 Research Goals and Approach

the aim is to avoid having to manually change the core application’s code in many places
with calls to business rules. Therefore, the first step is to investigate the suitability of AOP
for encapsulating crosscutting business rule connections.

The second, third and fourth problems are addressed by building a layer of abstraction
— a domain model — on top of the existing implementation, the low-level rules and the
aspects encapsulating the rule connections.

In particular, the second problem is addressed by providing a high-level dedicated business
rule language as part of the domain model. This high-level language provides abstractions
for expressing business rules in domain terms and therefore it is easier to use and adopt by
domain experts than a fully-fledged programming language.

In order to solve the third problem, abstractions are provided in the domain model for
representing domain concepts explicitly. This allows to abstract over concrete implementa-
tion entities of the existing application. High-level rules are then expressed in terms of these
domain concepts. Consequently, the coupling between the existing implementation and the
rules is loosened (addressing problem 3-i), allowing rules to become reusable among appli-
cations that share the same domain abstractions (addressing problem 3-ii). Furthermore,
this domain model is intended to be evolvable, i.e. to be able to incorporate unanticipated
domain concepts that appear as a result of domain evolution (addressing problem 3-iii).
These extensions are intended to occur at the domain level — without having to write
new code manually — which enables the domain experts to also actively participate in the
definition of these new domain concepts.

During the course of this research, it was found that aspects are a good solution to
the first problem, but do not involve the domain expert as they reside completely at the
implementation level. This implies the need for having programming skills — and more
particularly AOP skills — to connect the rules with the core application, which again
excludes the domain expert. Moreover, connection aspects need to take into account several
recurrent issues, which complicates the task of the application engineer in charge of writing
these aspects from scratch every time a new rule connection is needed. Thus, analogously to
the rules, the abstraction of the rule connection aspects as higher-level entities, completely
specified at the domain level, is pursued. This addresses the fourth problem.

We pursue our high-level rules and rule connections to be executable so that they can be
directly integrated with the existing application. Thus, it is necessary to obtain executable
implementations for the high-level rules and connections. However, in order for the domain
experts to remain oblivious to the low-level implementations and to overcome the com-
municational gap that can exist between them and the developers, these implementations
need to be generated automatically. Model-Driven Engineering (MDE) aims at building
applications by defining models describing certain views of the software system at differ-
ent levels of abstraction and specifying how those models map [MCF03]. This mapping is
specified by model transformations. In MDE, model transformations specify how models
are refined, evolved into a new version, or used to generate executable code. Following
the MDE philosophy, we envision the definition of transformations in charge of generating
code for the high-level rules and connections. This generated code must be encapsulated
and well-modularized. Therefore, in the case of the crosscutting rule connections, aspects

Chapter 1. Introduction 6

are generated (solution for problem 1), avoiding tangled and scattered code. This is im-
portant since MDE is considered for only a ‘slice’ of the software development, i.e. the
business rules, and not the entire application. The rest of the application is developed and
maintained separately and therefore changes induced by the high-level approach must be
encapsulated.

The approach presented in this dissertation is advocated for certain kinds of existing
OO applications. In the case of an application which has a stable core functionality (i.e.
it does not change very frequently) that needs to be adapted or customized at different
points according to certain circumstances, this approach is beneficial. The adaptations
and customizations can be represented as business rules; business rule connections can
encapsulate the link between the two parts of the application, core application and rules.
Both parts can then change separately. This set up preserves the investment of building
the core OO application as rules and their connections change.

A second kind of applications which can also benefit from this approach is characterized
by a rich core functionality, in which a stable part and a set of pluggable functionalities
can be identified. At a given point in time, the stable part can be combined with one or
more pluggable parts, resulting in a complete instantiation of the application. However,
the guidelines for selecting and plugging the extra functionalities are not fixed but can vary
depending on the requirements. The approach presented in this dissertation can be used to
represent these configuration guidelines explicitly as business rules.

Note that in the case of an application that has as main functionality a problem solving
task (e.g. scheduling or diagnosis), a fully-fledged, rule-based system which relies on a
reasoning engine is preferred [SAA+00]. The core OO part in this kind of applications is
typically an interface to the rule-based system, being in charge of gathering all the necessary
data required for the reasoning process and triggering the activation of the rules at a few
localized points. The use of our approach in this kind of applications does not present
fundamental benefits as it does not contribute to the main challenge of building the rule
set. In addition, in real-time systems (e.g. airplane control or life-support systems), failures
cannot be tolerated and therefore the use of rules to adapt, customize, guide or configure
functionality requires the utmost care. This is however a general problem for all rule-based
systems and therefore not specific to this approach.

This dissertation envisions an approach that combines the advantages of AOP and MDE
in order to realize the integration of high-level business rules into existing object-oriented
applications. This leads us to the following hypothesis:

Aspect-oriented programming enables encapsulating and decoupling the rule con-
nection code in between the business rules and the core object-oriented function-
ality. Model-driven engineering enables the expression of high-level business
rules and connections that are also executable.

The remainder of this chapter is going to present our approach which is divided in three
parts. First, the challenges that appear when decoupling business rule connections from
object-oriented applications are introduced, AOP is briefly presented, and its suitability for
decoupling business rule connections in the form of aspects patterns is discussed (section

7
1.3 Integrating Business Rules with Object-Oriented Applications using

Aspect-Oriented Programming

1.3). Second, the domain model is presented, consisting of domain concepts as well as high-
level business rules and connections and the idea of using model transformations to link
the two models, i.e. domain and implementation models, in a transparent and automatic
way is introduced (section 1.4). Third, in this dissertation we analyze and show how the
proposed high-level business rules approach — intended for any domain — can be used in
particular for improving the flexibility of SOA. Our approach is evaluated in a non-trivial
and technical domain as well as concrete results are shown using a complex web services
management layer as a case study (section 1.5). Finally, the chapters of this dissertation
are summarized and the contributions are listed at the end of this chapter.

1.3 Integrating Business Rules with Object-Oriented Appli-
cations using Aspect-Oriented Programming

This dissertation proposes using AOP for the encapsulation of the crosscutting rule connec-
tion code. We identify a number of issues that need to be taken into account in the connec-
tion of the business rules with object-oriented functionality in order to improve flexibility
and configurability. These issues are independent of the concrete technology or approach
used to implement the business rules, whether it is object-oriented patterns, externalized
as XML, or implemented in a rule-based language.

In this dissertation, the focus is on the kind of business rules found in the applications
of our industrial partners, as well as the ones presented in books on business rules [vH01;
Ros03]. Examples of this kind of rules are price personalization discount rules typically
present in the e-commerce domain and drug interference rules in the medical domain. In
order to implement this kind of business rules, a lightweight approach can be taken that
does not rely on the full power of a rule-based system. Therefore, in this dissertation a
simple approach for implementing the business rules is chosen, namely the Rule-Object
Pattern [Ars01], as the main challenges are imposed by the rule connections and not the
rules themselves. Moreover, an approach based on a fully-fledged rule-based system might
be overkill for existing applications with relatively simple business rules. In our approach
the real challenges are posed by the connection of the rules — even relatively simple ones
— with existing core applications.

In order to encapsulate the rule connections, a good first step is to analyze and exper-
iment with existing general-purpose aspect-oriented approaches. Their ability to address
the identified connection requirements is investigated. As a result of this research, it is
observed that AOP features are suitable to accomplish the rule connection requirements.
An overview of the use of AOP for encapsulating the rule connection is shown in Figure
1.1. The arrow group (1) depicts the interception of the core application execution at the
places where the rule objects need to be executed, depicted as arrow group (2). The results
of this first experiment are also presented in [Cib02; CDJ03; CDS+03; CSD+04; CDS+05].

1.3.1 Aspect-Oriented Programming

A software application involves many heterogeneous concerns. Concerns are properties or
areas of interest in a system. Typically concerns can range from high-level notions like
security and quality-of-service to low-level notions such as caching, buffering, synchroniza-
tion and transaction management [EFB01]. In order to deal with all these heterogeneous
concerns in a software application, separation of concerns (SoC) is fundamental. SoC refers

Chapter 1. Introduction 8

2

Core Application Rule Connections Rule Objects

Connection
Aspect

Class1

Class2

Class3

ClassN

condition()
action()
apply()

BRClass1

condition()
action()
apply()

BRClass2

condition()
action()
apply()

BRClassN

1

Figure 1.1: Overview of our approach for integrating business rules with AOP

to the ability to identify, encapsulate, and manipulate only those parts of the software that
are relevant to a particular concept, goal or purpose [Dĳ76b; OT01]. SoC is a crucial prop-
erty for realizing comprehensible and maintainable software. It aims at being able to think
about the design and implementation of a system in natural units of concerns rather than
in units imposed by specific languages or tools. In other words, the idea is to adapt the
modularity of a system to reflect the way the software engineer thinks about a problem
rather than to adapt the way of thinking to the limitations imposed by the languages and
tools [KHH+01].

Once software systems reach a certain complexity, the modularization constructs provided
by current languages and environments fall short in separating all these heterogeneous —
and even sometimes interrelated — complex concerns. Aspect-Oriented Programming ar-
gues that some concerns of a system cannot be cleanly modularized using current software
engineering techniques. This is because these techniques generally provide a dominant
decomposition mechanism that is not suitable to capture and represent all kinds of con-
cerns that can be found in a software application [KLM+97]. This problem is identified
in [TOHS99] as the “tyranny of the dominant decomposition”: the program can be mod-
ularized in only one way at a time, and as a consequence the many concerns that do not
align with that modularization end up scattered across many modules and even tangled
with code that addresses other concerns. Examples of typical decompositions are objects in
the object-oriented paradigm, modules in the imperative paradigm, and rules in the rule-
based paradigm. In this thesis the concentration is on the object-oriented paradigm as a
decomposition mechanism.

The tangled and scattered concerns of a system are referred to as ‘system-wide’ concerns
as they do not nicely fit into the chosen modularization of the system. Therefore they
crosscut its main decomposition. Because crosscutting concerns are not encapsulated, it is
difficult to add, edit or remove them. Typical examples of well-known crosscutting concerns
in object-oriented applications are debugging concerns such as logging and contract verifi-
cation, security concerns such as confidentiality, access control and transactions as well as
verification of design or architectural constraints, systemic properties and features.

9
1.3 Integrating Business Rules with Object-Oriented Applications using

Aspect-Oriented Programming

Aspect-Oriented Programming aims at achieving a better separation of crosscutting con-
cerns in object-oriented software applications. To this end, AOP introduces a separate
module — called aspect — which is able to encapsulate the implementation of a crosscut-
ting concern. Moreover, AOP allows the description of the relationships that exist between
the different concerns of a system and the mechanisms to weave or compose them together
into a coherent program. Originally, separation of concerns was oriented towards implemen-
tation concerns. More recently, AOP (aspects at the implementation level) is not the only
area of discussion but additionally, debate surrounds Aspect-Oriented Software Develop-
ment (AOSD), as the community recognizes the need for separation of concerns throughout
the whole software development cycle. This is because crosscutting concerns may arise
at any stage of the software development life-cycle, including requirements specification,
analysis, design, implementation, debugging, etc.

At the implementation level, AOP introduces a new module called aspect that is able
to modularize crosscutting concerns. Typically an aspect consists of pointcut and advice
definitions. A pointcut identifies a set of points in the program’s execution where an aspect
can be applied. Each of these points is called a joinpoint. Thus, a pointcut specification is
a concise description of a set of joinpoints where the aspect should be applied. An advice
specifies a concrete behavior to be executed at a certain pointcut, typically before, after or
around the original behavior identified by the joinpoints. The additional logic defined in
a before advice or an after advice has to be executed before or after the original behavior
respectively. An around advice replaces the original behavior but is still able to invoke
it if necessary. The advice language typically consists of the host language augmented
with a limited number of special keywords that offer aspectual reflection and control over
the execution of the original joinpoint. In order to apply the advices at the joinpoints
specified in the aspect’s declared pointcuts, the aspect needs to be weaved with the base
application. Traditionally, weaving takes place at compile time, which means that the
advices are inserted into the target application at the source or byte-code level, however
more flexible approaches allow weaving to occur at runtime.

Although AOP is a rather recent paradigm, numerous aspect-oriented approaches have
already been proposed for which advanced tool support has been developed. These in-
clude AspectJ [KHH+01], Adaptive Programming [LOO01], Composition Filters [BA01],
JBoss/AOP [FR03], Spring/AOP [J+], AspectWerkz [BV] — which has recently merged
forces with AspectJ — and JAsCo [SVJ03]. Some of these approaches are currently reach-
ing maturity and are being used also in industrial projects, e.g. AspectJ, JBoss/AOP and
Spring/AOP. Another representative approach, radically different to the previous ones, is
Hyper/J [OT01].

1.3.2 Requirements

This dissertation identifies and analyses typical situations that occur when connecting rules
to the core application and observes that traditional approaches fail to solve them without
inducing invasive changes to the existing code. In order to achieve highly-flexible and
configurable business rules, a suitable approach must be able not only to encapsulate tangled
and scattered code, but also to accomplish a set of requirements that we identify [Cib02;
CDJ03; CDS+03; CSD+04; CDS+05], namely the ability to:

1. connect business rules to core application events which depend on run-time properties

Chapter 1. Introduction 10

2. expose information available at dynamic events and pass it to the business rules ap-
plicable at those events

3. provide means for capturing extra information also needed for the application of the
business rules but that is not available at the dynamic events that denote the rule
connection time

4. enable the introduction of unanticipated information required by the business rules

5. configure and reuse existing business rules at different dynamic events; analogously,
configure and reuse existing dynamic events with different rules

6. combine, prioritize and exclude business rules when they interfere with one another

7. control the instantiation and initialization of business rule connections

8. and preferably accomplish all the above dynamically — without interrupting the ap-
plication’s execution — and non-invasively — without changing the core application’s
code.

1.3.3 AOP for Decoupling Business Rule Connections

Several experiments are carried out as part of this dissertation with different AOP ap-
proaches which let us analyze their suitability with respect to the identified requirements.
We show in [Cib02; CDJ03] and [CDS+03; CDS+05] how AspectJ and JAsCo, respectively,
deal with the integration issues. The first experiment considers AspectJ [KHH+01], one of
the most mature and well-known AOP approaches. The main advantage of AspectJ is its
expressiveness with respect to describing and manipulating events of the core application.
This feature allows addressing the first three requirements successfully. However, AspectJ
only allows the static pluggability of aspects and thus it does not accomplish the dynamic
configurability requirement. A second experiment uses JAsCo [SVJ03], a dynamic aspect-
oriented approach which aims at integrating AOP ideas into Component-Based Software
Development (CBSD). JAsCo can be considered as an AspectJ-like approach, as they both
have a similar join-point model and structure aspects in a similar manner. However JAsCo
aspects are more reusable as all deployment details are encapsulated in a separate module
called connector. This feature enables a more fine-grained control over the instantiation and
initialization of the business rules. Moreover, explicit combination strategies can be defined
in connectors which enables the specification of more advanced and fine-grained business
rule combinations. Because JAsCo allows the dynamic pluggability of aspects, rules and
rule connections can be instantiated at run-time to fit the application at hand.

Other state-of-the-art AOP approaches — namely JBoss/AOP, JAC, HyperJ and As-
pectWerkz — were investigated as well and analyzed against the requirements [CSD+04].

These experiments let us observe that, even though there exist radical differences between
the current state-of-the-art AOP approaches — and therefore the identified requirements
were partially accomplished by them — AOP features are suitable to encapsulate the busi-
ness rule connections.

11
1.4 Expressing Executable Business Rules at the Domain Level using

Model-Driven Engineering

1.3.4 Distilling Aspect Patterns

The previous experiments have also shown that the aspects that encapsulate the rule con-
nections are built up of the same elements that vary with certain situations [Cib02; CDJ03;
CDS+03; CDS+05; CD06a]: rule application time, rule activation time, rule data manip-
ulation (passing and retrieving information to and from the rule, respectively) and rule
triggering. As such, we propose abstracting these recurrent issues in aspect patterns for
implementing different kinds of business rule connections. These patterns capture com-
monalities and variabilities in the implementation of the connection aspects. Figure 1.2
depicts the recurrent connection elements that are part of a connection aspect.

Core Application Rule Connections Rule Objects

Connection Aspect
designate rule

application time

designate rule
activation time

pass and retrieve
required data

Class1

Class2

Class3

ClassN

condition()
action()
apply()

BRClass1

condition()
action()
apply()

BRClass2

condition()
action()
apply()

BRClassN

capture non-
contextual data

add unanticipated data

trigger business rule

resume execution

Figure 1.2: Recurrent elements in a rule connection aspect

1.4 Expressing Executable Business Rules at the Domain
Level using Model-Driven Engineering

Understandability is one of the fundamental goals of software engineering. The definition of
understandability depends on the intended audience: management, domain expert, devel-
oper, or user. In this dissertation the intended audience are domain experts and developers.
The domain expert considered in this dissertation is an individual who is both experienced
and knowledgeable about a particular problem domain or area of interest as well as he or
she is knowledgeable about domain analysis and design techniques. Typically this domain
expert has some understanding of software systems without requiring a deep technical back-
ground or programming skills. This definition is in accordance to what Neighbors defines
as domain analyst in [Nei84]. In that work a domain analyst is the person responsible
for “conducting domain analysis, understanding the domain of application, and even per-
forming some system analysis as well as communicating with the players in each of these
areas”.

With this audience in mind, understandability is defined as the property that results from
hiding technical complexity. This definition is strongly related to the principle of abstrac-
tion, which can in turn be defined as the process of moving to a higher level, extracting

Chapter 1. Introduction 12

essential properties while omitting inessential details. In [RGI75], Ross et al recognize the
close relation between these two software engineering properties, motivating how increasing
abstraction helps improving understandability. The authors state that “abstractions em-
ployed to achieve the goal of understandability mean that each level of abstraction, while
presenting more and more detailed views of the system, must do so in terms which are
understandable to the intended audience”.

In order to involve the domain expert in the process of defining rules and their connec-
tion and to simplify this process for the developer, we propose a high-level domain model
which consists of three parts: domain entities, business rules about domain entities, and
connections of business rules to the core application in terms of domain entities. A mapping
between the domain entities, representing domain concepts, and the existing implementation
must be provided. Model transformations are used to translate high-level rules and connec-
tions to executable implementations using the mapping for the domain entities. An overview
of the domain model is depicted in Figure 1.3 and explained in the coming subsections. The
proposed domain model is also presented in [CD05; CDJ05; CDJ06a; CD06c; CD06a].

Class1

Class3

ClassN

Class2
condition()
action()
apply()

BRClass1

condition()
action()
apply()

BRClass2

condition()
action()
apply()

BRClassN

DC1 DC2

DC5

DC3

DC4

Domain-level

Implementation
level

BR connections

BRs
Domain Entities

Core
Application

Connection
AspectConnection
AspectConnection
Aspect

3

4

1 2

5

6

7

Figure 1.3: Overview of our approach for high-level business rules

The domain model approach presented in this dissertation improves understandability
because it increases the level of abstraction for expressing business rules and rule connections
and, most importantly, only abstracts those features that are of interest to the target
audience. On the one hand, the domain expert is not aware of the technical complexity:
he or she is able to express business rules in terms of the domain, without having to be
aware of how those rules and their connections as well as the core application are actually
implemented. Moreover, as the proposed dedicated languages are simpler than fully-fledged
programming languages — they offer simpler features than the ones found in programming
languages —, so that the domain expert is able to adopt them more easily. On the other
hand, the task of the developer is simplified, as he or she can now concentrate on the actual

13
1.4 Expressing Executable Business Rules at the Domain Level using

Model-Driven Engineering

problem of connecting business rules, without having to be an expert in the underlying
technologies, i.e. OOP and AOP.

1.4.1 Model-Driven Engineering

Model-driven engineering is an approach to software engineering that aims to raise the level
of abstraction and to develop and evolve complex software systems by means of manipu-
lating models. Therefore, models are its primary assets. A model describes a certain view
of the software system at a certain level of abstraction. For example in a bank application,
different models can be defined to represent customer management, transaction manage-
ment and account management. Models can be specified at different levels of abstraction
and sometimes also in different languages. The ultimate goal of MDE is to have a software
development environment at our disposal with off-the-shelf models and mapping functions
that transform one model into another. Mellor et al. [MCF03] state that “Model-driven
development is simply the notion that we can construct a model of a system that we can then
transform into the real thing”. Adopting this idea, this dissertation proposes a model that
can help the domain expert understand and express the business rules and connections; the
real thing is then having ‘executable’ implementations for the business rules and connections
that can be directly integrated in existing — and even running — applications. The manip-
ulation of models is achieved by means of model transformation, which is considered to be
the heart and soul of model-driven engineering [SK03]. A model transformation can encode
a refinement step, an evolution step, and even a code generation step. Moreover, a model
transformation can take one or multiple source models and produce one or multiple target
models. Furthermore, transformations can be classified into horizontal and vertical. In the
former case, source and target models are at the same level of abstraction whereas in the
latter, models reside at different levels of abstraction. In this work we use vertical transfor-
mations. More detailed information on model transformations and their classification can
be found in [SK03; MCG05].

1.4.2 Requirements

In the pursuit of our domain model, certain properties are desirable: high-level, meaning that
no details are exposed about the core application’s implementation which this model is built
upon; declarative, meaning that interest lies in what the high-level model specifies and not
how it is implemented. This model allows expressing rule logic in terms of concepts of the
real-world domain instead of entities from the existing implementation. Domain concepts
are captured in domain entities. These domain entities are used in the definition of the rules
and rule connections. The high-level nature of this domain model allows reusing domain
knowledge among different applications of the same domain or among different versions of
an evolving application.

1.4.3 Domain Entities

The domain entities represent the vocabulary of the domain of interest. They are the
building-blocks used in the definition of the high-level rules and their connections with the
core application. They are abstractions of domain knowledge that is either implicitly rep-
resented in the core application’s implementation or unanticipated. The high-level business
rules express relations between terms of the domain that are captured as domain entities.
Thus, rules are independent of implementation details. The high-level business rule connec-
tions specify how the rules are integrated with the core application and typically do so by

Chapter 1. Introduction 14

denoting events — also specified as high-level entities — at which the rules need to be ap-
plied as well as specifying how the available information matches the information expected
by the rules. Domain entities are illustrated by the circles and the relations between them
located in the upper-left part of Figure 1.3.

An essential step for achieving executable rules from high-level specifications is the defi-
nition of how the domain entities involved in those specifications are mapped to the imple-
mentation. In this dissertation we present an approach for making the mapping between the
domain and the implementation models explicit (depicted by the arrows labeled with (4) on
the left part of Figure 1.3). The definition of domain entities can follow two different flavors:
top-down and bottom-up. In both cases the existence of a core OO application is assumed.
The distinction between these two flavors lies in the starting point for the identification of
the domain entities of interest:

In the bottom-up view, the starting point is the solution domain. The domain concepts
of interest are identified in the existing solution and pulled up to the domain level. During
this process, some details that are important in the solution might not be meaningful to be
represented at the domain level and therefore might be hidden or adapted. Typically this
pulling up process is carried out by a developer or someone knowledgeable about the existing
implementation solution, in cooperation with a domain expert who guides the developer in
identifying the entities of interest. Once this first pulling up phase has been accomplished,
new domain entities can be added which do not necessarily correspond to identifiable ex-
isting implementation entities. This second phase in the definition of domain entities can
be carried out completely at the domain level, by combining other already defined domain
entities. Thus, the domain expert could perform this step without the intervention of a de-
veloper. In addition, for domain entities that are completely unanticipated in the existing
implementation, new implementation entities are generated automatically. Thus ideas from
MDE are applied for this automatic generation.

In the top-down view, the starting point is the problem domain. The first step consists of
defining domain entities of interest from the point of view of the problem domain. This step
can be carried out by the problem domain modeler or domain expert. Because the domain
expert is not knowledgeable about what is represented in the existing implemented solution,
he or she is not biased by the entities that already exist in the implementation. Secondly,
once the problem domain entities have been identified, they have to be mapped to the
implementation. The process of defining a mapping between a high-level problem domain
model and a low-level solution domain implementation will have to involve a collaboration
between the problem domain modeler (i.e. the domain expert) and the solution implementor
(i.e. the developer). Moreover, as in this scenario both models are defined in isolation, the
discrepancies between them might be numerous. Most likely, the domain entities would
not necessarily correspond in a one-to-one way to existing implementation entities. This
motivates the need for having a powerful mapping language which allows to overcome these
discrepancies. Our approach can deal with this scenario as well by providing a powerful
mapping language which allows for the definition of more complex mappings. Again, some
of these mappings still require the intervention of developers whereas others can be left to
the domain expert.

Other business rule approaches exist today which advocate the idea of mapping domain
concepts (used in the expression of the high-level rules) to implementation [ILO; YAS;

15
1.4 Expressing Executable Business Rules at the Domain Level using

Model-Driven Engineering

Inn; JBob; Halb]. However, in these approaches, the domain concepts are simple aliases
for implementation entities and thus a one-to-one mapping between them is assumed. As a
consequence, the domain models supported by these approaches are tightly coupled with the
implementation models. Moreover, when domain concepts have more complex realizations
at the implementation level, the need for supporting more complex mappings than the
one-to-one mappings arises.

This dissertation proposes and implements a dedicated mapping language that enhances
the current domain mapping support found in existing approaches in three innovative di-
rections:

• Domain entities can map to more than one implementation entity.

• Domain entities can explicitly represent derived information.

• Domain entities can be completely unanticipated in the existing implementation.

AOP is used in a transparent way for the realization of some of the mappings in these
directions. This dissertation also shows how the proposed mapping language can be used to
realize several mapping use cases, for example mappings to many entities, mappings that
require calculating values at execution points, anticipated and unanticipated mappings.

Although some mappings still require knowledge about the implementation, others can
be completely defined at the high level, in terms of other existing domain entities. In our
prototype implementation, mappings expressed in the dedicated mapping language are fully
and automatically translated into expressions that only involve implementation entities —
either in OOP or AOP. These expressions are used in the rule and rule connection imple-
mentations (explained in section 1.4.5). Moreover, using MDE ideas, for some high-level
mapping specifications, new implementation entities (aspects) are generated for the realiza-
tion of the mapping. The mapping ideas described in this dissertation are also presented in
[CDJ05; CDJ06a].

1.4.4 High-Level Business Rules and Connections

This dissertation proposes the expression of business rules in terms of domain concepts
captured as domain entities of a domain model. The idea of expressing rules at a higher-level
of abstraction is not new and therefore present in other existing approaches (e.g. JRules
[ILO], QuickRules [YAS], VisualRules [Inn], JBoss Rules [JBob] and HaleyRules [Halb]).
The same way rules are specified in current approaches, in our approach a high-level rule
is defined as an IF 〈condition〉 THEN 〈action〉 statement, meaning that the condition has
to be satisfied in order for the action to be performed. The 〈condition〉 and 〈action〉 parts
are expressed in terms of domain entities. This dissertation proposes and implements a
dedicated language which allows the expression of such high-level business rules.

We observe that current approaches that allow the expression of business rules in terms
of elements of a high-level business or domain model only support anticipated one-to-one
mappings from high-level business rules entities to existing implementation entities. As a
consequence, a tight coupling exists between the business or domain model and the imple-
mentation model. This is a problem since a high-level — and executable — specification
of business rules can be discrepant from the implementation of the core application func-
tionality. This is due to business rules not always being anticipated in the original core

Chapter 1. Introduction 16

application. Thus, one-to-one mappings are not enough to realize unanticipated business
rules. The real challenge is the realization of unanticipated business rules that requires
unanticipated domain vocabulary that is not present in the existing implementation. We
tackle this by supporting more sophisticated mappings for the domain entities involved in
the high-level rules, as presented in Section 5.2.

Analogously to the high-level business rule language, a second dedicated language is
proposed and implemented that allows the expression of rule connections at the domain
level. Therefore, rule connections are also separate and explicit entities at the domain level.
This language offers features that abstract from the recurrent connection issues captured
by the aspect patterns. Moreover, it supports a set of variations for each of these rule
connection issues. High-level rules and connections are depicted in the upper-right part
of Figure 1.3. The dotted arrows numbered (3) depict the definition of rules and rule
connections in terms of domain concepts made explicit as domain entities. Arrow (7)
indicates the relation that exists between a high-level business rule connection and the
high-level rule it connects. The high-level rule and rule connection dedicated languages are
also described in [CDJ05; CDJ06a; CD06c; CD06a].

1.4.5 Automatic Transformations

In order to make high-level rules executable, i.e. ready to be integrated with the existing
application according to their connections, we follow a Model-Driven Engineering approach:
the rules and connections are automatically translated to classes and aspects, respectively.
These transformations are illustrated in Figure 1.3 by the arrows (5) and (6). A different
transformation is proposed per different high-level feature. However, extra challenges appear
when translating a complete high-level rule connection specification which combines many
of these features: the output is not the result of simply concatenating the outputs of the
individual transformations for the involved features. On the contrary, the individual outputs
have to be combined in a non-trivial way in order to obtain a correct aspect. This makes
the transformation process more complex since these dependencies between the individual
transformations need to be taken into account.

Moreover, the transformations explore the mappings of the domain entities involved in
order to get an expression only in terms of implementation entities. This implementation is
included in the generated code of the aspects and classes. In case of one-to-one mappings
— directly pointing to implementation entities — this step is simple, as only existing im-
plementation entities need to be retrieved. However, this process becomes more complex as
nested mappings need to be explored.

Our approach maintains separation of concerns at both levels, the domain and the im-
plementation levels, thus facilitating traceability. Moreover, the automatically generated
code pertaining to rules and connections remains separated from the existing application
code and therefore does not interfere with the development and maintenance of the existing
application. The proposed transformations and the challenges of their implementation are
also presented in [CD06c; CD06a].

17 1.5 Business Rules in Service-Oriented Applications

1.5 Business Rules in Service-Oriented Applications

In service-oriented computing, applications are often created by integrating third-party Web
services. However, in order for client applications to achieve a high flexibility in this inte-
gration, advanced support for selection and client-side service management is fundamental.
This support is rarely provided in standard state-of-the-art service integration approaches
and tools. Moreover, we observe that the selection, integration and management of Web
services are driven by criteria based on non-functional service properties and QoS. For in-
stance, the service integration can be guided by rules that prefer fast and reliable services
or give priority to services with the least number of failures. Other rules govern the way
management should be carried out, e.g. advising the activation of a caching mechanism
for services that are too slow. Many of these business rules depend on dynamic service
properties that are only known at run time. Our objective is to achieve the decoupling
of service criteria that guides the service selection, integration and client-side management
as explicit business rules. We think that their explicit specification is crucial to achieve
a highly flexible and adaptable integration of services that best fit the client application’s
needs.

1.5.1 Web Services Management Layer (WSML)

As a first step towards achieving a flexible selection, integration and management of web
services, we developed a flexible layer in between the services and the client applications.
This layer is named Web Service Management Layer (WSML). The WSML is an AOP-based
management framework that provides support for the dynamic selection and integration of
services into client-applications and the client-side service management. It offers a reusable
library of selection, management and monitoring concerns — implemented as aspects —
that can be customized for different client applications. Additionally, it supports the explicit
definition of service criteria based on non-functional properties that govern the selection,
integration and management of services. This work is presented in [CVV+07; VCV+04;
VCJ04].

1.5.2 High-level Business Rules in the WSML

As a second step, we leverage the advantages of this mediation framework by decoupling
WSML configuration and customization business rules, and expressing them at the domain
level: first of all, many decisions about how the framework must be configured and cus-
tomized are taken either at deployment time, i.e. at the moment the WSML framework
is deployed on a concrete client application, or manually at run-time, i.e. through an in-
terface that requires human interaction. Examples of these decisions are: choosing which
aspects need to be plugged in, which parameters need to be used for their configuration and
which services are to be composed. Moreover, even though some anticipated selection and
management decisions are encapsulated in business rules, they are tangled and scattered
in the implementation of the framework, with negative effects on maintainability. Further-
more, adding new unanticipated rules implies manually modifying or adding code to the
framework at many places, which is not desirable. Therefore, extra support is needed to
— automatically and non-invasively — realize dynamic business rules that can vary at run
time and that are unanticipated at deployment time. We then propose using high-level busi-
ness rules to express and enforce the dynamic business rules that guide the configuration
and customization of the WSML. The approach presented in this dissertation is evaluated
with two scenarios: i) an evolution scenario, which shows that it is possible to add new

Chapter 1. Introduction 18

rules to the existing management framework, and ii) a refactoring scenario, which shows
that existing rules in the core WSML implementation can be refactored and externalized
as high-level business rules. This evaluation is also reported in [CDJ05; CDJ06a; CD06b].

1.6 Chapter Summaries

Chapter 2: Connecting Decoupled Business Rules with Object-Oriented Ap-
plications This chapter introduces the general concepts behind business rules and the
considerations that arise when decoupling them from object-oriented applications. A sim-
ple example application domain is introduced which is used throughout this dissertation.
As the goal of this dissertation is to integrate business rules in existing applications, having
to introduce the extra overhead induced by the use of a dedicated rule-based technology
might be overkill in some cases. Thus, we take a lightweight approach for implementing
decoupled rules which uses standard object-oriented software development, namely the Rule-
Object Pattern. We present how this pattern can be used in combination with other design
patterns to modularize the rule connection. We then identify and discuss fundamental con-
nection issues that are not tackled by this approach. We then identify a set of requirements,
which we believe are essential in order to successfully encapsulate the rule integration code.
These requirements are independent of a specific object-oriented programming language in
which the core application functionality is implemented, and independent of the business
rule representation used.

Chapter 3: Aspect-Oriented Programming for Business Rule Connection This
chapter focuses on demonstrating the suitability of Aspect-Oriented Programming for re-
alizing the technological requirements identified chapter 2. We first introduce the main
ideas advocated by AOP as well as give a general overview of some state-of-the-art AOP
approaches. We then describe the AOP characteristics that we consider are fundamental
for achieving the modularization of rule connection code. Two representative approaches
are then selected that adhere to the chosen characteristics, AspectJ and JAsCo. Concrete
examples in these approaches are presented along the chapter which show how the encap-
sulation of crosscutting rule connections can be successfully accomplished.

Chapter 4: Aspect Patterns for Business Rule Connection The experiments de-
scribed in chapter 3 let us observe that an AOP-based solution for the modularization of
a rule connection typically involves a set of recurrent connection issues. Moreover, these
issues vary in specific circumstances. In this chapter we identify and discuss these issues
that we call rule connection elements. Moreover, we make the distinction between elements
that are mandatory — i.e. need to be part of every rule connection — or optional — i.e.
might or might not be part be of a rule connection. Furthermore, we identify how and under
which circumstances these elements vary and analyze which AOP features are suitable to
implement each of these variations. We also observe that not all the variations of different
elements can be always combined as for instance the choice of a certain variation for one
element can restrict the set of possible variations for another element. As a result, this
analysis lets us distill a set of aspect patterns that can serve as guidelines for the implemen-
tation of rule connection aspects. These patterns rely on AOP characteristics which are
common to all approaches based on the pointcut-advice model. In this chapter JAsCo is
employed for illustration purposes.

19 1.6 Chapter Summaries

Chapter 5: A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections This chapter is concerned with one of
the ultimate goals of this dissertation, which is the consideration of the domain expert
as an active participant in the process of understanding, defining business rules and in-
tegrating them with the existing application. This chapter proposes building a high-level
domain model which incorporates ideas from MDE to achieve the integration of high-level
and executable business rules in existing applications. First of all, the ideas behind MDE
are presented. Secondly, we show how domain concepts can be explicitly captured and how
business rules and their connections to an existing core application can be defined in terms
of those explicit domain concepts. Thirdly, we present transformations that encapsulate the
translation from high-level rules and connections to implementation. High-level rules are
transformed into rule-objects whereas rule connections are transformed into aspects (follow-
ing the patterns defined in chapter 4). These transformations are carried out automatically
and transparently by our prototype implementation.

Chapter 6: Mapping Domain Knowledge To Implementation An essential step
for achieving the automatic generation of executable rules from high-level specifications is
the definition of how the domain entities involved in those specifications are mapped to the
implementation. This chapter presents an approach for making the mapping between the
domain and the implementation models explicit. We build on the current support provided
by existing approaches and enhance it in many directions. This chapter first motivates the
need for having more complex mappings. It then presents the main features of the proposed
and implemented mapping language. Finally it shows how this mapping language can be
used to realize five different mapping use cases.

Chapter 7: Implementation This chapter presents the prototype implementation de-
veloped as a proof of concept for the ideas presented in this dissertation. This prototype
supports the entire domain model explained in chapters 5 and 6. The core of this im-
plementation is a framework of OO classes for representing business rules, business rule
connections, domain entities and their mappings to implementation. Moreover, on top of
this core framework, three high-level dedicated languages are implemented: one for the
definition of high-level business rules, a second one supporting the definition of high-level
business rule connections and a third one for the definition of domain entities and their map-
pings. Parsers for these languages have been implemented. Semantical checks in charge of
validating high-level specifications against the domain entities defined in the domain model
are also supported. High-level specifications expressed in the dedicated rule and connection
languages are automatically translated to OOP and AOP programs respectively, following
the transformations described in chapter 5. Examples taken from the e-commerce case
study application are shown throughout this chapter.

Chapter 8: Evaluation In this chapter an evaluation of our approach is presented which
uses a case study in the domain of Service-Oriented Architectures (SOA), the Web-Services
Management Layer (WSML). Unlike the real-world domains (e.g. financial, medical) typ-
ically found in state-of-the-art business rules systems, the chosen case study is based on
a technical and challenging application domain, which let us show the expressive power of
our approach. The same way as real-world domains, this domain suffers from the problems
posed by the management of business rules and therefore can benefit from our approach.
Many rules need to be taken into account in order to cope with the inherent volatility of
service-oriented applications. We particularly focus on QoS criteria that guide the selection

Chapter 1. Introduction 20

and client-side management of Web services. This chapter first introduces the main ideas
behind the WSML and describes its general architecture and its approach to service selec-
tion, management and redirection. It then identifies current limitations of this layer with
respect to changing and adding new configuration business rules based on QoS. The actual
evaluation part is done in two scenarios: evolution and refactoring scenarios, where we show,
on the one hand, how our approach can realize the non-invasive addition of unanticipated
business rules to the WSML and, on the other hand, how existing selection policies can be
refactored and expressed at the high-level.

Chapter 9: Related Work This chapter analyzes different approaches that relate, in one
way or another, to the work presented in this dissertation. First, several (some commercial)
business rules systems are described with respect to their business rule languages, their
support for expressing business rules at the domain model and the rule execution model
they support. Then, lightweight approaches to business rules as well as other approaches
that also investigate the use of AOP for the decoupling of business rules are described.
Afterwards, approaches that aim at combining MDE and AOP are presented. We also
touched upon approaches that study the mapping between several knowledge representation
mechanisms. Some related approaches that also aim at externalizing business rules in the
domains considered in this dissertation, i.e. the e-commerce and service-oriented domains
are described as well. To conclude, some work on business rule methodologies, vocabularies
and rule engine standards is presented.

Chapter 10: Conclusions This chapter presents the conclusions of this dissertation. It
first summarizes the work presented in this dissertation while stressing our contributions.
This dissertation then ends with a discussion on trade-offs and future work.

Chapter 2

Connecting Decoupled Business
Rules with Object-Oriented
Applications

This chapter aims to introduce the general concepts behind business rules and the con-
siderations that arise when decoupling them from object-oriented applications. We first
introduce a simple example application domain which is used throughout this dissertation
for illustration purposes and give some examples of typical business rules in it (section 2.1).
In this dissertation we take a lightweight approach for implementing decoupled rules. As
our goal is to integrate business rules in existing applications, having to introduce the extra
overhead induced by the use of a dedicated rule-based technology might be overkill in some
cases. Therefore, this chapter presents an approach for the decoupling of business rules
which uses standard object-oriented software development, namely the Rule-Object Pattern
(section 2.5). Afterwards, we present a typical approach for connecting rule objects which is
based on the use of design patterns (section 2.7). However, we identify many fundamental
connection issues that are not tackled by this approach. We analyze these connection issues
and come up with a set of connection requirements which are presented and discussed at
the end of this chapter (section 2.8).

2.1 Running Example: e-commerce

The World Wide Web has become the standard computing platform for the development
of next-generation information systems. A new wave of Web-based applications such as
corporate portals, supply chain automation, and online marketplaces, is driving the need
for a more open, flexible, adaptable, and distributed infrastructure. Besides having to
deal with the many technical and complex issues inherent to the Web, in order for these
applications to stay competitive, they need to take into account the many heterogeneous
needs of their users and adapt accordingly. In this setting, Web applications are becoming
increasingly complex.

Examples of this kind of systems are e-commerce applications. These applications need
to keep up with an increasing complexity taking into account important issues such as
user profiles and personalization concerns among others. In this dissertation — similarly
to other existing approaches that also advocate the decoupling of business rules from core
applications [RDR+00; RFCS01; RSG01a; KRS00; IBM] — we choose the e-commerce as a

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 22

representative domain to illustrate our approach. In the next sections we present the basic
functionality of a simple e-commerce application and present typical business rules that we
encounter in this domain.

2.1.1 Basic functionality

This simple e-commerce application allows customers to order and buy products online.
The Shop class stores the available Products and keeps track of Customers and their
ShoppingBaskets containing products selected by them for eventual purchase. A Customer
refers to its ShopAccount which keeps track of the customer’s purchase history. Customers
belong to a LoyaltyCategory which can be either bronze, silver or gold. Customers can
also create orders for specific products which are processed asynchronously by the store.

When the customer confirms a purchase, the checkout(aShoppingBasket) method is in-
voked on the store. This causes the CheckoutProcess to be started. This process consists
of different steps, modelled as subclasses of CheckoutStep: payment, wrapping, shipping
and delivery. The first action taken as part of the checkout is to calculate the total price.
This is done by invoking the method getTotalPrice() on the ShoppingBasket received
as parameter. In this method, the individual prices of the selected products are obtained
(by invoking the getPrice() defined in Product) and summarized. Afterwards, the to-
tal amount spent and the number of purchased products are used to keep the customer’s
account up-to-date for auditing purposes. Figure 2.1 shows a class diagram of a possible
implementation solution for this basic functionality.

2.2 Business Rules

A business rule is defined by The Business Rules Group as a statement that defines or
constrains some aspect of the business. It is intended to assert business structure or to
control the behaviour of the business [BRG01]. Different kinds of business rules can be
distilled. For instance, von Halle [vH01] identifies the following categories:

• constraints: a constraint is a mandatory or suggested restriction on the behaviour of
the core application, such as a customer must not purchase more than 25 products at
one time.

• action enablers: an action enabler rule checks conditions at a certain event and upon
finding them true applies an action. An example is if a customer is registered, then
show his or her recommended products.

• derivations: there are two kinds of derivations:

– computations: a computation checks a condition and when the result is true,
provides an algorithm for calculating the value of a term using typical mathe-
matical operations. An example of a computation is if a customer is a frequent
customer then subtract 10% from the purchased products.

– inferences: an inference also checks a condition but upon finding it true estab-
lishes the truth of a new fact. An example inference states that if a customer
has purchased more than 20 products then he or she is a frequent customer.

In this dissertation we concentrate on derivation rules.

23 2.3 Business Rules for Personalization in the e-commerce Domain

purchase(product)
getShopAccount()
setCategory(category)
login()
logout

name: String
Customer

addProduct(product, amount)
removeProduct(product)
getTotalPrice()
getCustomer()

ShoppingBasket

addShopAccount(customer)
requestShoppingBasket(customer)
checkoutShoppingBasket(shoppingBasket)
increaseStock(product,amount)

Shop

getPurchasedProducts()
getAmountSpent()

accountId: int
amountSpent: float
purchasedProducts: int

ShopAccount

name: String
price: Float
kind: String

Product

products1
*

amountItems: int
Order

orderedProducts
1

*

*
1

startProcess(ShoppingBasket)
CheckoutProcess steps

1
CheckoutStep

ShippingWrappingPayment

*

getInstance()
LoyaltyCategory

GoldCategorySilverCategoryBronzeCategory

customer
category*

1

amount: int
Item

product

*

1

*

1

1

items

baskets

1

1

1

Delivery

getPrice()

customer

account

1

*
customers

<<creates>>

Figure 2.1: Class diagram of a possible implementation solution for the e-commerce functionality

2.3 Business Rules for Personalization in the e-commerce
Domain

In the running example, we focus on business rules for the personalization of e-commerce ap-
plications. Personalization has become a very important and pertinent issue in e-commerce
applications, as the special issue of the Communications of the ACM [cac02] shows. We can
observe nowadays that almost every e-commerce store includes some kind of personalization
in order to flexibly accommodate the user’s needs. In this section we list several commonly
found policies in e-commerce applications that are sources of personalization:

• policies typically found in online stores, e.g. Amazon (http://www.amazon.com) and

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 24

Proxis (http://www.proxis.be web site at amazon.co.uk) typically regulate:

– price discounting [GLC99]:
– recommendations
– availabilities of products
– returns
– delivery rates
– delivery restrictions
– refunds
– usage restrictions
– lead time to place an order
– canceling of orders
– creditworthiness, trustworthiness, and authorization
– customer fidelity categories

• policies for personalizing links, structure, content and behaviour of web pages [RSG01b]

• policies that determine the control flow of online purchases [AA01]

Extensive literature can be found on approaches that tackle some of these personaliza-
tion aspects. For instance, solutions to derive and explicitly model user profiles based on
information gathered from the internet can be found in [PE00] as well as recommendation
mechanisms are proposed in [SKR99]. Further requirements for the personalization of web
applications can be found in [KRS00].

In the following sections we focus on some of these personalization issues and give concrete
examples of business rules typically found in the e-commerce domain.

2.3.1 Discount Business Rules

Some examples of business rules for price personalisation of e-commerce applications are:

• BRChristmasDiscount: If today is Christmas then apply a 5% discount on any
customer’s purchase

• BRPurchasedDiscount: If a customer has purchased more than 2 products of the
same kind then she gets a 10% discount on the next product of that kind

In the first example, the discount should be applied on the current purchase whereas in
the second, the customer is entitled to a discount to be applied to her next purchase.

2.3.2 Categorization Business Rules

Other rules can be considered in order to classify customers in loyalty categories. Assume
that this decision is based on the amount of money customers already spent in the store.
The following rules can be defined:

25 2.4 Applying Personalization Business Rules

• BRBronzeCustomer: if a customer spent up to 200 euros then the customer’s loy-
alty category is bronze

• BRSilverCustomer: if a customer spent between 200 euros and 400 euros then the
customer’s loyalty category is silver

• BRGoldCustomer: if a customer spent more than 400 euros then the customer’s
loyalty category is gold

The fact that a customer belongs to a certain loyalty category can in turn be the reason
for the application of other price discounts. This is specified by the following example rule:

• BRGoldCustomerDiscount: If a customer’s loyalty category is gold then he or she
gets a 20% discount

2.4 Applying Personalization Business Rules

Typically business rules are applied at events which are well-defined points in the execution
of the core application functionality. They are based on the execution of core methods or
property accesses. Example events are:

• event1: After the price of a product is retrieved

• event2: After the customer has checked out

Moreover, the application of a given rule can be restricted to certain contexts. For
instance, a discount rule — which would typically be applied when the product price is
retrieved — can be restricted only to those price retrievals that occur while the customer is
checking out, or within the period of time between the moment the customer logs in and the
moment he/she adds a product to the shopping cart, or not while the customer is browsing
the products. Consider the following definition:

• event3: After the price of a product is retrieved while the customer is checking out

This last event only captures those price retrievals that occur in the context of the
checkout process. Therefore, price retrievals occurring for instance when simply browsing
the e-store’s catalog are not of interest, since personalized discounts do not apply.

We could for example trigger BRChristmasDiscount at event1, BRGoldCustomer at
event2 and BRGoldCustomerDiscount at event3. Moreover, BronzeCustomerRule and Sil-
verCustomerRule can also be triggered at the same event2, which shows that different rules
can be triggered at exactly the same event. Triggering different rules at the same event
might cause rules to interfere if they have conflicting actions — however this is not the case
in our example.

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 26

2.5 Rule Object Pattern

The separation of business rules is pursued along the different phases of the software devel-
opment process. In this section we present an approach that proposes using object-oriented
design patterns to tackle this separation from design to implementation, namely the Rule
Object Pattern. In this approach business rules are represented as Rule Objects. In this dis-
sertation we consider a simple version of this pattern for the representation of the business
rules. This representation is relevant also in the coming chapters, when integrating decou-
pled rules using AOP (chapter 3) and when translating high-level rules to classes (chapter
5).

apply(properties) {
 if (condition(properties))
 then action(properties) }

apply(properties) {
 strategy.apply(rules.properties) }

AbstractRule

apply(properties)

condition(properties)
action(properties)
apply(properties)

SingleRule

apply(properties)

CompoundRule

rules

name
value

Properties

properties

apply(rules,properties)

CombinationStrategy

strategy

apply(rules,properties)

MutualExclusionStrategy

apply(rules,properties)

OrderingStrategy ...

Figure 2.2: Rule Object Pattern

2.5.1 Simple Rule Object

The Rule-Object Pattern is proposed in [Ars01] as a solution to the common problems
encountered during the modeling, design and implementation of business rules. This pattern
suggests reifying business rules as Rule Objects. In its simplest form, a class is defined per
business rule implementing methods for its condition and action and another method for
triggering the application of the rule. These methods need to be explicitly invoked wherever
in the core application this rule logic is needed.

The Rule-Object Pattern can become quite elaborate by employing more sophisticated
design solutions. For instance, it advices encapsulating conditions and actions in their own
classes when they tend to increase in number and vary very often, making them interchange-
able and pluggable; also, rule objects can be parameterized with a property list containing
the data to be manipulated by the rule. Moreover, it suggests the use of any number of the
well-known design patterns [GHJV95]. For example, the Composite Pattern can be used

27 2.6 Implementing Rule Objects

to model related business rules that need to be triggered at the same events, the Strategy
Pattern can be used to model different conflict resolution mechanisms to solve rule inter-
ference, such as for instance mutual exclusion or ordering strategies. This basic set-up of
the Rule-Object Pattern that uses the Composite and Strategy patterns is shown in Figure
2.2. Furthermore — however not shown here — the Factory Pattern can be employed to
instantiate condition and action classes, and the Mediator Pattern to control the execution
of rule objects, conditions and actions, especially when they are compound.

2.6 Implementing Rule Objects

In this section we show how the Rule-Object Pattern can be used to implement some of the
example rules presented in section 2.2.

First of all, code fragment 2.1 shows the implementation of an abstract price person-
alization business rule in Java. The abstract class BRPriceDiscount defines a percentage
attribute and implements an abstract method condition() and a concrete method action-
(Float price). It also implements a method apply() that tests the condition, and performs
the action if the condition evaluates to true or returns the original price passed as parameter
if it does not. The method action() subtracts the percentage attribute from the original
price.

abstract public class BRPriceDiscount {
protected float percentage;
abstract public boolean condition();

public Float action(Float price) {
return(new Float(price-price*percentage/100));

}

public Float apply(Float price) {
if (condition())
return action(price);

else return price;
}

}

Code Fragment 2.1: Implementation of an abstract price discount rule object in Java.

The BRPriceDiscount abstract class can be subclassed with the implementation of
concrete price discount rules, such as the BRChristmasDiscount rule. This is shown in
code fragment 2.2. The BRChristmasDiscount class assigns a concrete value to the inher-
ited percentage attribute and provides a concrete implementation for the condition()
method which tests whether today is Christmas day. The class BRGoldCustomer (shown
in code fragment 2.3) is not a price discount rule and therefore does not inherit from
BRPriceDiscount. Instead, it determines the logic under which the customer’s category
must be considered gold. Its condition(Customer c) method checks whether the cus-
tomer received as parameter has spent more than 400 euros (information stored in the
customer’s shop account and retrieved by invoking the getAmountSpent() method on it).
The action(Customer c) method sets the customer loyalty category to gold by invoking
the method setCategory(LoyaltyCategory c).

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 28

public class BRChristmasDiscount extends BRPriceDiscount {
public BRChristmasDiscount() {
percentage = 5;

}

private boolean isChristmas() { ... }

public boolean condition() {
return isChristmas();

}
}

Code Fragment 2.2: Rule object implementing the BRChristmasDiscount rule in Java

class BRGoldCustomer {
public boolean condition(Customer c) {
return (c.getShopAccount().getAmountSpent() > 400);

}

public void action(Customer c) {
c.setCategory(GoldCategory.getInstance());

}

public Float apply(ShoppingBasket sb) {
if (condition(sb.getCustomer()))
return action(sb.getCustomer());

}
}

Code Fragment 2.3: Rule object implementing the BRGoldCustomer rule in Java

class BRGoldCustomerDiscount extends BRPriceDiscount {
percentage = 20;

public boolean condition(Customer c) {
return (c.category.isGold());

}

public Float apply(ShoppingBasket sb) {
if (condition(sb.getCustomer())) {
return action(sb.getTotalPrice());

else
return sb.getTotalPrice();

}
}

}

Code Fragment 2.4: Rule object implementing the BRGoldCustomerDiscount rule in Java

29 2.7 Integrating Rule Objects

Another concrete price discount rule is implemented by the BRGoldCustomerDiscount
class which therefore inherits from BRPriceDiscount (shown in code fragment 2.4). It
defines a new condition(Customer c) method that checks whether the loyalty category of
the customer received as parameter is gold. It also redefines the inherited action() and
apply() methods as they require a shopping basket object to be received as parameter.
This shopping basket object must be available and passed to the rule objects when they are
invoked.

2.7 Integrating Rule Objects

The usual way of connecting a rule object is by explicitly invoking its apply method. This
invocation has to be repeated everywhere in the code of the core application where that
rule logic is needed. For example, when considering the integration of the BRChristmasDis-
count at event1, the implementation of the getPrice() method defined in Product needs
to be modified to include the invocation of the apply() method on an instance of the
BRChristmasDiscount class. This is depicted in the following code fragment:

public Float getPrice() {
BRChristmasDiscount br = new BRChristmasDiscount();
return br.apply(this.price);

}

However, this way of connecting rule objects is not very flexible since it requires man-
ually changing the implementation of the getPrice() method — which is part of the core
functionality — every time the requirements for the connection of the business rules change.
Approaches have been proposed in [RSG01a; RFCS01] in order to achieve a more flexible
integration of business rules in e-commerce applications. They propose flexible design so-
lutions that build on top of the well-known design patterns [GHJV95] with the objective
to minimize coupling between rule objects and the core application. This is achieved by
introducing a set of intermediate objects (e.g. wrappers and personalizers) in charge of
deciding which rules to trigger and how to configure them.

In our example, we can avoid hardcoding the connection of the BRChristmasDiscount by
introducing a ProductWrapper object which delegates this responsibility onto a Product-
Personalizer object. Figure 2.3 shows this solution which uses the Strategy pattern for
modeling the product personalizers and the Decorator pattern for the product wrappers.
As a consequence, a higher flexibility is achieved as this design allows easily “switching”
between different personalized behaviors in different contexts, e.g. discounts applied to
a single product, to many products, to products that are part of a special promotional
package, etc. The same idea — although not shown here — can be used to personalize
other aspects, such as the recommendations and product information. Consequently, this
design solution can become quite elaborate as more patterns are employed and combined.

Although these patterns allow for a more flexible rule connection, they fall short when
integrating more sophisticated and unanticipated business rules at different dynamic events.
In the following section we analyze the encountered limitations and identify the necessary
requirements for achieving a fully flexible business rules connection. The connection issues
are also presented in [Cib02; CDJ03; CDS+03; CDS+05].

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 30

personalize(price) {
 ChristmasDiscountBR br = new ChristmasDiscountBR();
 return br.apply(price); }

getPrice() {
 return product.profile.personalizer.personalize(product.price); }

getPrice()

name: String
price: Float

Product

ProductProfile

personalize(price)

PricePersonalizer

profile

getPrice()
ProductWrapper

product

personalizer

Figure 2.3: Integration of price personalization rule objects using the Strategy and Decorator design
patterns

2.8 Towards a Flexible Rule Connection

We observe that existing approaches that deal with the decoupling of business rules suffer
from one common problem: they all focus on separating the business rules from the core
application, but do not support at all the encapsulation of the connection of the business
rules with the core application. Essentially, by rule connection code or rule connection we
refer to the code in charge of denoting the events at which rules are applied, capturing the
required data and making it available for rule manipulation. Using the existing business
rules approaches, however, one has to adapt the source code of the core application man-
ually in different places whenever a business rule is plugged in or out. Depending on the
approach this is done differently, but essentially the result is the same: the rule connection
code is scattered among many modules and tangled with code addressing other concerns of
the core application functionality. This situation is identified as crosscutting code in the
area of Aspect-Oriented Programming [KLM+97]. The encapsulation of crosscutting rule
connection code is crucial to achieve maximum business rules configurability.

The goal of this section is twofold:

i illustrate that, even when the rules are successfully decoupled, it is hard to integrate
them using standard object-oriented programming. We show this by presenting ex-
amples that require the core application code to be manually extended or modified
when the business rule connections change. Some examples are coded and others
are described, and clearly show that statements need to be added in different places
of the core application implementation. Moreover, the new code cannot be always
encapsulated in objects.

ii distill a set of requirements for achieving a flexible rule connection. We describe and
motivate the set of requirements that are essential for any technology to be suitable
to cleanly encapsulate the rule connection code and achieve high flexibility in the

31 2.8 Towards a Flexible Rule Connection

integration of the rules. These requirements are described independently of concrete
implementation languages and/or technologies. They will be revisited in the chapter
3 in which we show how AOP succeeds in meeting them.

2.8.1 Denoting Rule Application Time with Dynamic Events

The rule application time is denoted by events which capture well-defined points in the
execution of the core application where business rules are applied. Examples of events are
method invocations and property accesses. They can be distributed in the core application,
for example in objects with different types. Since business rules change often and new
ones are added regularly, it is generally not possible to anticipate all the events at which
they are going to be triggered. In current approaches, explicit hooks for the events have
to be foreseen in the core application. Moreover, dynamic events can depend on properties
only available at run-time, such as control flow in our example event3. Expressing this
event would typically be resolved by adding a flag which is set to true when the checkout
process is started, in other words when the checkout(aShoppingBasket) method is invoked
on a store. An extra condition evaluates this flag in ProductWrapper before delegating the
personalization of the product price on the corresponding personalizer. Consequently, the
extra flag and condition becomes tangled with and scattered among the core application’s
implementation. Hence, a mechanism is needed that allows specification of dynamic — and
even unanticipated — events that may depend on properties available at run-time, without
having to change the source code manually.

2.8.2 Exposing and Passing Available Contextual Information

This requirement identifies the need for making sure that the available data — that needs
to be manipulated by the rule — is passed to the rule at rule application time. Some rules
depend on properties of objects that are in the scope of the dynamic event that activates
the rules. In our example, the BRChristmasDiscount needs the system date as well as
the original product price that needs to be personalized. As the system date is global
information, it is always available and directly accessible to the rules. The original product
price can be obtained by retrieving the property price on the target product. This is only
possible because the integration of the rule is hardcoded in the method getPrice() of the
Product class, and because the required product object is the target object of this method
which can then be directly passed to the rule. However, as identified by the first requirement,
anticipating rule integrations results in crosscutting code and therefore a mechanism based
on dynamic events is preferred. These dynamic events must be able not only to denote well-
defined points in the execution of the core application, but also to expose and manipulate
the information available in the dynamic context of those events in order to pass it to the
rules at rule application time.

2.8.3 Capturing, Exposing and Passing Unavailable Information

Rules might also require information from specific objects that are outside the scope of
the dynamic event which activates the rules. Generally, capturing this unavailable data
at the point when it is available and retrieving it at the desired dynamic event involves
introducing a global variable or outfitting all methods in the control flow between those
points with an extra parameter, resulting in crosscutting code. We illustrate this situation
by introducing a simple change in the business requirements: imagine that the BRChrist-
masDiscount does not fix a 5% discount percentage but instead it specifies that a different

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 32

discount percentage must be applied depending on the actual customer. To incorporate
this change, the constructor of the BRChristmasDiscount class has to be modified so that
the percentage can be received as a parameter. A new design is depicted in Figure 2.4
which shows the changes that have to be introduced in the design of Figure 2.3 in order
to realize this requirement. Personalizers are introduced for the customers in order to ob-
tain a different personalized discount percentage per customer. Moreover, wrappers are
needed to add the getDiscount() functionality to the Customer class, again implemented
using the Decorator Pattern (shown in upper part of Figure 2.4). The ProductWrapper
class now defines the method getPrice(Customer) which delegates this functionality onto
a ProductProfile object and finally onto the right price product personalizer. The product
personalizer then first needs to query the discount percentage from the customer received as
parameter and use it to initialize the BRChristmasDiscount (shown in lower part of Figure
2.4). The problem of tangled and scattered code is clear: the ProductWrapper class had
to be modified to receive the customer as parameter; a new getPrice(aCustomer) method
had to be manually added; the objects requesting product prices now need to invoke the
new method getPrice(aCustomer) instead of the original getPrice().

personalize(Float price, Customer c) {
 ChristmasDiscountBR br =
 new ChristmasDiscountBR(c.getDiscount());
 return br.apply(price); }

personalize(Customer c) {
 if (c.category.isGold()) return 10;
 else return 5; }

getDiscount() {
 return customer.profile.personalizer.personalize(customer); }

...

name: String
frequent: boolean

Customer

getDiscount()
CustomerWrapper

personalize(Customer)
DiscountPersonalizer

CustomerProfile

personalizer

customer

profile

getPrice()

name: String
price: Float

Product

ProductProfile

personalize(price, c)

PricePersonalizer
personalizer

getPrice(Customer c) {
 return product.profile.personalizer.personalize(product.getPrice(), c); }

getPrice(Customer c)
ProductWrapper

product

profile

Figure 2.4: More complex pattern-based design solution for achieving a price personalization that
differs per product and per customer

We observe the need for a mechanism that is able to identify the points in the core
functionality where the required objects are available, capture and expose them in order

33 2.8 Towards a Flexible Rule Connection

to make them accessible to the rules, without having to change the core application’s code
manually.

2.8.4 Introducing Unanticipated Information

Consider the following rule:

BRFrequentCustomerDiscount: If a customer is frequent then he or she gets a 10%
discount

This rule requires information — namely the concept of frequent customer — that was
not explicitly foreseen at the moment the core functionality was designed and implemented.
This concept could be incorporated by extending the Customer class with some way of de-
termining when a customer is frequent. For instance, a new method isFrequent() can be
added, which returns whether the customer has purchased more than 20 products. Besides
having to add this functionality manually, this solution has the problem that it cannot
non-invasively change the way of determining when a customer is frequent. A more flexible
solution is to encapsulate the definition of frequent customer in a business rule:

BRFrequentCustomer: If a customer has purchased more than 20 products then he or
she is a frequent customer

However, this rule still expects the class Customer to have a boolean attribute frequent,
which is not anticipated in the original design and thus needs to be added manually. This
again results in crosscutting code. Therefore, when the need for unanticipated structure and
behaviour arises, a mechanism is needed that enables the non-invasive introduction of new
objects, attributes and operations to the existing implementation of the core application.
The new code should be encapsulated so that it can be reused or removed easily.

2.8.5 Incorporating Rule Results

Once a rule has been applied, the results of its application must be considered back in the
context of the core application’s execution. Depending on the mechanism used for imple-
menting the rules (whether it is rule objects or a rule-based language for instance) we might
need to process these results is different manners. For instance, a rule object can trigger a
certain action by means of invoking a method on an object of the core application. This invo-
cation can be side-effect free — in the case of a getter, e.g. Product.getPrice() — or it can
induce changes in the state of core application’s objects — when invoking setters or meth-
ods that change object’s properties, e.g. the method Shop.increaseStock(Product, int)
which modifies the shop’s stock. Rules implemented in a rule-based approach are more
declarative since it would not directly change the state of an object but instead new in-
formation will be inferred which then needs to be explicitly retrieved and considered —
or eventually discarded — in the core application’s execution. Of course nothing impedes
having more declarative rule objects that besides invoking methods on core application ob-
jects also conclude new information. In this case a mechanism is needed in order to retrieve
this new information and use it accordingly when proceeding with the core application’s
execution.

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 34

2.8.6 Configuring and Reusing Rules and Their Connections

The different parts of the rule connection, i.e. dynamic events, introduced and captured
data, must be configurable and reusable. It must be possible, for example, to connect new
business rules reusing a dynamic event at which other rules are applied. This might require
to configure differently the way the required and available data are mapped. For instance
the BRGoldCustomerDiscount can be connected at the same event event3 at which the
BRFrequentCustomerDiscount rule is applied, reusing also the way the required information
is mapped to the available one, as they both require the same objects — i.e. the original
price and the customer. Inversely, the same rule could be connected at different events. For
instance, BRChistmasDiscount can be connected at event2 instead of at event3.

2.8.7 Controlling Rule Precedence, Combination and Exclusion

Some rules may specify actions that conflict with the ones specified by other rules. In ad-
dition, some rules can have precedence over others or should not be applied when others
are deployed. This can be solved by explicitly specifying combination strategies as the ones
shown in Figure 2.2. For example, assume BRFrequentCustomerDiscount and BRGoldCus-
tomerDiscount are applied at the same event3 and that we want to avoid applying the two
discounts on a single purchase. Thus, we can specify that when both rules apply, BRFre-
quentCustomerDiscount mutually excludes BRGoldCustomerDiscount. In order to address
these complex interdependencies among rules, combining and prioritizing the modules that
encapsulate the rule connections is required. Moreover, we need to be able to explicitly
control the application of the rules.

2.8.8 Controlling Rule Instantiation and Initialization

It should be possible to control the instantiation of rules at different events, and vary their
initialization properties from one rule connection to another. For instance, the same rule
logic might still be valid but slightly modified, such as the Christmas discount being able
to vary from 5% to 10% according to certain conditions. Therefore a mechanism to reuse
business logic and configure it accordingly is needed. Considering the volatility of rules, this
is a vital requirement, as it allows customizing application-independent rules to conform to
a specific integration.

2.8.9 Connecting Rules

A flexible mechanism is needed in order to deal with the volatility inherent of business rules:
existing rules might become obsolete and new rules might need to be considered. In some
application these changes can be done by manually removing or adding the corresponding
rule objects, even if this requires stopping the application. An e-commerce application for
instance can afford manually changing — e.g. at the end of a season, or during sales period
— the rules regulating price discounts. Other more critical or real-time applications might
not be able to afford stopping their execution to do these manual changes and therefore it
must be possible to dynamically deploy and remove rules.

2.9 Summary
State-of-the-art business rules approaches mainly aim at physically separating the rule def-
initions from object-oriented applications. The integration code for a rule however, still

35 2.9 Summary

remains tangled in the core functionality itself which impedes the business rules objectives:
separate, trace, externalise business rules and position them for change [23]. So far we have
seen that rules are applied at different points in the core functionality and that many times
the concrete connection code is identical at all these points. It can also occur that the
connection code is scattered among different places in the core application. In any case,
the connection code is tangled with code addressing other concerns of the core application,
and therefore is crosscutting. Therefore, the developer is forced to adapt the existing code
manually every time the rule connections change.

In this chapter, we identify a set of requirements, which we believe are essential in order to
successfully encapsulate the rule integration code. These requirements are independent of a
specific object-oriented programming language in which the core application functionality
is implemented, and independent of the business rule representation used — even though
rule objects are considered in this thesis.

AOP appears as a promising technique which provides a means to cleanly encapsulate
crosscutting code in separate modules. The next chapter digs into how AOP can be used
to encapsulate rule connection code successfully at the same time as accomplishing the
identified requirements.

Chapter 2. Connecting Decoupled Business Rules with Object-Oriented
Applications 36

Chapter 3

Aspect-Oriented Programming for
Business Rule Connection

So far we have identified and presented the technological requirements that any suitable
technology must support in order to successfully decouple and encapsulate crosscutting rule
connections. Those requirements were described independently of any concrete technology.
In this chapter we focus on demonstrating the suitability of Aspect-Oriented Programming
for realizing those technological requirements. We first introduce the main ideas advocated
by AOP 3.1. In section 3.2 we provide a general overview of different AOP approaches and
classify them according to two main characteristics: symmetry and weaving time. Section
3.3.1 describes the AOP characteristics that we consider are fundamental for achieving the
modularization of rule connection code. We then select two representative approaches that
adhere to the chosen characteristics, AspectJ and JAsCo (section 3.3.2). Concrete examples
in these approaches are presented along the chapter which show how the encapsulation of
crosscutting rule connections can be successfully accomplished.

3.1 Aspect-Oriented Programming

A software application involves many and heterogeneous concerns. By concerns we refer to
properties or areas of interest in the system. Typically concerns can range from high-level
notions like security and quality-of-service to low-level notions such as caching, buffering,
synchronization and transaction management [EFB01]. In order to deal with all these het-
erogeneous concerns in a software application, separation of concerns (SoC) is fundamental.
SoC refers to the ability to identify, encapsulate, and manipulate only those parts of the
software that are relevant to a particular concept, goal or purpose [Dĳ76b; OT01]. SoC
is a crucial property for realizing comprehensible and maintainable software. It aims at
being able to think about the design and implementation of a system in natural units of
concerns rather than in units imposed by specific languages or tools. In other words, the
idea is to adapt the modularity of a system to reflect the way the software engineer thinks
about a problem rather than to adapt the way of thinking to the limitations imposed by
the languages and tools [KHH+01].

Once software systems reach a certain complexity, the modularization constructs provided
by current languages and environments fall short in order to separate all these heterogeneous
— and even sometimes interrelated — complex concerns. Aspect-Oriented Programming
argues that some concerns of a system cannot be cleanly modularized using current software

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 38

engineering techniques, as they generally provide a dominant decomposition mechanism
that is not suitable to capture and represent all kinds of concerns that can be found in a
software application [KLM+97]. This problem is identified in [TOHS99] as the “tyranny
of the dominant decomposition”: the program can be modularized in only one way at a
time, and as a consequence the many concerns that do not align with that modularization
end up scattered across many modules and even tangled with code that addresses other
concerns. Examples of typical decompositions are objects in the object-oriented paradigm,
modules in the imperative paradigm, and rules in the rule-based paradigm. In this thesis
we concentrate on the object-oriented paradigm as a decomposition mechanism.

The tangled and scattered concerns of a system are referred to as ‘system-wide’ concerns
as they do not nicely fit into the chosen modularization of the system. Therefore they
crosscut its main decomposition. Crosscutting concerns are not encapsulated which makes
them very hard to add, edit or remove. Typical examples of well-known crosscutting con-
cerns in object-oriented applications are debugging concerns such as logging and contract
verification, security concerns such as confidentiality, access control and transactions as well
as verification of design or architectural constraints, systemic properties and features.

AOP aims at achieving a better separation of crosscutting concerns in object-oriented
software applications. To this end, AOP introduces a separate module — called aspect —
which is able to encapsulate the implementation of a crosscutting concern. Moreover, AOP
allows describing the relationships that exist between the different concerns of a system and
the mechanisms to weave or compose them together into a coherent program. Originally,
separation of concerns was oriented towards implementation concerns. More recently, we
do not only talk about AOP — aspects at the implementation level — but also about
Aspect-Oriented Software Development (AOSD) as the community recognizes the need for
separation of concerns throughout the whole software development cycle. This is because
crosscutting concerns may arise at any stage of the software development life-cycle, including
requirements specification, analysis, design, implementation, debugging, etc.

Although AOP is a rather recent paradigm, numerous aspect-oriented approaches have
already been proposed for which advanced tool support has been developed. These in-
clude AspectJ [KHH+01], Adaptive Programming [LOO01], Composition Filters [BA01],
JBoss/AOP [FR03], Spring/AOP [J+], AspectWerkz [BV] — which has recently merged
forces with AspectJ — and JAsCo [SVJ03]. Some of these approaches are currently reach-
ing maturity and are being used also in industrial projects, e.g. AspectJ, JBoss/AOP and
Spring/AOP. Another representative approach — radically different to the previous ones
— is Hyper/J [OT01].

In this dissertation the separation of crosscutting rule connections at both the specifi-
cation and implementation levels is of interest. In this chapter the focus is put first on
demonstrating the suitability of AOP at the implementation level as we are concerned with
the problem of decoupling crosscutting rule connection code. Therefore, in the rest of this
chapter we analyze concrete AOP approaches that offer suitable features to accomplish our
goal.

39 3.2 Comparing AOP approaches

3.2 Comparing AOP approaches
Many emergent and some mature aspect-oriented approaches exist today [AOS05], each
of them offering their own particular technique for separating crosscutting concerns. This
means that even though they all are able to encapsulate crosscutting concerns, they can
take radically different approaches for doing so. First of all, approaches can differ in the
way they carry out weaving. Traditionally, weaving takes place at compile time, which
means that the advices are inserted into the target application at the source or byte-code
level, but other approaches allow weaving to occur at load or even run time. In the former
case we talk about static AOP approaches whereas in the latter cases we refer to these
approaches as dynamic. Examples of the static approaches are AspectJ and AspectWerkz
whereas JAsCo, JBoss/AOP and Spring/AOP are examples of dynamic ones.

Another way of classifying AOP languages is according to whether they distinguish be-
tween base code and aspect code or not. In the first case, the approach is called asymmetrical
whereas in the latter, it is referred to as symmetrical. Symmetrical AOP approaches are
based on program composition as they allow elements of both base programs to map onto
each other. In fact, symmetrical approaches consider any concern — crosscutting or not —
as a program that can be composed with other programs in different ways according to a
composition strategy. The best-known symmetrical approach is Multi-Dimensional Separa-
tion of Concerns [OT01; TOHS99] and the concrete tool HyperJ for Java1. The authors of
HyperJ also recognize the suitability of their approach for the decoupling of business rules
and propose a symmetrical solution (discussed in section 9.3.1).

Asymmetrical approaches on the contrary are based on the pointcut/advice model. This
model typically considers an aspect as a module that gathers pointcut and advice definitions.
A pointcut identifies a set of points in the program’s execution where an aspect can be
applied. Each of these points is referred to as joinpoint. Therefore a pointcut specification
is a concise description of a set of joinpoints at which the aspect behavior, i.e. the advice,
should be applied. As such, an advice specifies a concrete behavior to be executed at
certain joinpoints, typically before, after or around the original behavior intercepted by
the joinpoints. In the first two cases, the advice behavior is additional whereas in the last
case the advice behavior can completely replace the interrupted behavior but is still able to
invoke it if necessary, typically by using a special proceed construct. The advice language
typically consists of the base language — such as Java — augmented with a limited number
of special keywords that offer aspectual reflection and control over the execution of the
original joinpoint.

A wide variety of approaches that adhere to the pointcut/advice model is available to-
day. They typically provide a general-purpose aspect language for implementing aspects in
a general purpose object-oriented language, most commonly Java. Moreover, some of these
approaches focus on expressing aspects in other development environments. Examples are
JAsCo [SVJ03] and JAC [PSDF01], AspectWerkz [BV] and JBoss/AOP [FR03], which pro-
vide aspects for component-based development. The last two approaches focus particularly
on the J2EE component model. Other approaches improve the original pointcut/advice
approach in order to obtain reusable aspects and composition of aspects. In AspectJ, the
application context of an aspect is hard-coded in the aspect itself, which severely limits

1HyperJ has recently evolved into a broader technology called the Concern Manipulation Environment
(CME) available at http://www.research.ibm.com/cme/

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 40

reuse of the aspect in other contexts. Aspectual Components is one of the first approaches
to remedy this, by introducing explicit connectors that connect aspects to a specific context
[LLM99]. Newer approaches based on Aspectual Components are Aspectual Collaborations
[LLO03], Caesar [MO03] and JAsCo [SVJ03].

3.3 Selecting Suitable AOP Approaches

One of the most important requirements (identified in 2.8) for achieving a flexible modu-
larization of the rule connection code is to be able to intercept the application at dynamic
points during the core application’s execution at which the rules are to be applied. This
implies the need for an asymmetrical AOP approach based on the pointcut/advice model.

In our approach there is no actual need for considering core concerns — tackled by
the existing core application’s implementation — and rule connection concerns at the same
level. Moreover, a compositional approach would directly map the two parts that need to
be connected — i.e. core application and rules — which is not sufficient to realize a flexible
rule connection. This is because a flexible connection implies the issues identified in 2.8 to
be tackled as part of the rule connection which cannot be realized in a simple mapping. To
this purpose, extra code is needed in between the two connecting parts, i.e. an aspect, and
therefore an asymmetrical approach seems more suitable. Such an approach allows us to
distinguish between the modules of the existing application and the business rules from the
modules of the aspects implementing the rule connections.

Even though asymmetrical approaches are based on a common pointcut/advice model,
they can still differ — sometimes even quite radically — in the actual mechanisms and
features they offer. Still, we are able to distill a list of AOP characteristics that are funda-
mental for achieving our goal. This allows us to generalize our findings, not restricting our
solution to the features of specific AOP approaches. This way, any suitable AOP approach
must adhere to these characteristics in order to be able to modularize rule connections. We
explain these general characteristics in the following section.

3.3.1 Determining Required AOP Characteristics

In this section we list a subset of these AOP characteristics to which any suitable AOP
approach must adhere in order to achieve our goals:

• Dependency inversion: AOP allows reversing the typical dependency relation that
exists in traditional object-oriented languages, that is the explicit reference that a
program must include in order to call a module whenever the functionality encapsu-
lated by that module needs to be executed. Aspects on the contrary do not need to
be explicitly invoked in order to get executed. It is the responsibility of the aspects to
‘observe’ the static structure or dynamic execution of the base program and to ‘react’
accordingly — by executing the additional crosscutting behavior — at the desired
places [NI01]. This way, the base program remains untouched. The AOP mechanism
of ‘observing’ and ‘reacting’ is based on the definition of pointcuts which designate
places in the core application’s execution at which aspects need to be executed. When
the execution of the core application reaches those places, the control is transferred
from the core application to the applicable aspects. Moreover, those aspects are able
to decide whether and under which conditions the intercepted execution must be
resumed.

41 3.3 Selecting Suitable AOP Approaches

• Pointcut context exposure: it refers to the ability to expose, inspect, access and ma-
nipulate the information available in the context of a dynamic point in the execution
of the core application. The first property — dependency inversion — allows us to
actually intercept the application at dynamic points. The context exposure prop-
erty allows us to have control over the available information at those points — e.g.
executing objects and method parameters — and even change their values, possibly
influencing the way the intercepted application is resumed.

• Inter-type declaration: It refers to the ability to express crosscutting concerns affecting
the structure of existing classes. This feature allows declaring additional members —
attributes and methods — on certain core classes without having to anticipate these
extensions in their original implementation. This feature is also known as open classes
or mixins.

• Pointcut composition: AOP provides mechanisms for relating pointcuts together in
order to:

i) Capture more finely grained dynamic events of the core application execution.
This is achieved by defining composite pointcuts which compose individual point-
cuts using certain composition strategies (such as and, or and not).

ii) Enable pointcuts to share the contextual information and make it available to
other pointcuts.

• Aspect interaction: Aspects that are triggered at the same joinpoints might define
conflicting behaviors and therefore their execution must be controlled. AOP provides
mechanisms for controlling the execution of conflicting aspects.

These AOP characteristics are depicted in Figure 3.1. This figure also depicts the gen-
eral set up of our approach where we can distill three layers: the left-hand side shows the
existing core application developed in object-oriented paradigm, the right-hand side shows
the business rules implemented as rule objects, and the middle part shows the aspects im-
plementing the connection of the rules with the core application. The arrow going from
ConnectionAspect1 to the Customer class depicts the inter-type declaration property: the
ConnectionAspect1 extends the definition of the core class Customer. The dotted arrows
going from ConnectionAspect2, 3 and 4 to dynamic points in the execution of the core
application represent pointcuts and thus illustrate the dependency inversion property by
showing that the aspects observe the system’s execution at those points. Also, at any of
those points, the execution context is exposed by the corresponding pointcuts and therefore
it is made available to the aspects, as it is illustrated with the line that borders the acti-
vation frames for the methods checkoutShoppingBasket(sb) and getPrice(). The star in
ConnectionAspect4 illustrates the pointcut composition property (case (i)) as it shows that
pointcuts labeled a and b can be combined in order to specify finer-grained joinpoints. The
stars in ConnectionAspect2 and ConnectionAspect3 and the arrow between them illustrate
that pointcuts can share their contextual information (case (ii) of the same pointcut com-
position property). Finally, the arrow between ConnectionAspect3 and ConnectionAspect4
depicts the fact that the interaction between aspects that apply at the same joinpoints need
to be explicitly controlled.

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 42

addToShoppingCart(product)
logIn()

nam
e

age

Custom
er

addProduct(product, am
ount)

rem
oveProduct(product)

orderedProducts
ShoppingBasket

shopping
Basket custom

er

1

1

checkoutShoppingBasket(shoppingBasket)
increaseStock(product, am

ount)

Shop

*

1

condition()
action()
apply()

Christm
asDiscountBR

condition()
action()
apply()

G
oldCustom

erBR

nam
e: String

price: Float

Product

getPrice()
products

1
*

Connection
Aspect4

Connection
Aspect1

core application
rule connections

rule objects

condition()
action()
apply()

FrequentCustom
er

DiscountBR

Connection
Aspect3

Product

getPrice()
...

Shop

checkoutShoppingBasket(sb)

custom
ers

Connection
Aspect2

a

b

Figure
3.1:

G
eneralarchitecture

ofthe
use

ofA
O

P
for

the
m

odularization
ofrule

connections

43 3.3 Selecting Suitable AOP Approaches

3.3.2 Selecting Representative AOP Approaches

For illustration purposes, we select two representative approaches among the ones based on
the pointcut/advice model: AspectJ and JAsCo.

The first experiments were carried out using AspectJ, one of the most mature approaches
which is considered the “mother” of all pointcut/advice approaches. AspectJ is a general-
purpose extension to Java that provides support for modular implementation of crosscutting
concerns [16]. In addition to containing fields and methods, AspectJ’s aspect declaration
contains pointcut and advice members. AspectJ’s main advantage is the expressiveness
of its joinpoint model. AspectJ has been successfully used for clean modularization of
crosscutting concerns such as tracing, contract enforcement, display updating, synchroni-
sation, consistency checking, protocol management and others [KHH+01]. For an overview
of AspectJ which discusses these constructs thoroughly, we refer the reader to [KHH+01]
and the web site aspectj.org. The results from this first experiment are also reported in
[Cib02; CDJ03; CD03].

The second experiments were carried out using the dynamic AOP approach JAsCo
[SVJ03]. JAsCo provides a pointcut model which is as expressive as AspectJ’s and in
addition it provides features for the explicit specification of aspect combination, precedence
and instantiations — very rudimentary in AspectJ — which are fundamental for achieving
a high flexibility in the connection of the rules (as identified by the requirements listed in
2.8). The JAsCo language is also an aspect-oriented extension for Java and stays as close as
possible to its original syntax and concepts. Moreover, JAsCo aspects are highly-reusable
as they are not tightly coupled to the base implementation. This is achieved by decoupling
the aspect logic and the deployment logic in two different constructs: aspect beans and
connectors.

An aspect bean allows describing crosscutting behavior in an abstract way, independent
of the base application. It is an extended version of a regular Java bean and is specified
independently of concrete component types and APIs, making it highly reusable. An aspect
bean can group the definition of one or more logically related hooks that describe the
crosscutting behavior itself. A hook includes a special constructor that defines — in an
abstract way — when the hook has to be triggered. A constructor receives several abstract
method parameters that are bound to one or more concrete methods at the moment the
aspect is deployed. The constructor body specifies when the hook needs to be triggered.
The advices — before, after and around — of a hook are used to specify the various actions
a hook needs to execute when the hook is triggered. The concrete places where the hook
functionality has to be executed are specified in the connectors. Therefore connectors are
used to deploy aspect beans onto a concrete context. Also connectors can specify explicit
combinations among two or more aspect beans.

Finally, the JAsCo technology excels at providing dynamic integration and removal of
aspects with a minimal performance overhead. For more detailed information about JAsCo,
the interested reader is referred to [SVJ03; VSV+05; VSCF05]. We conducted an elaborate
experiment for connecting rule objects to object-oriented applications using JAsCo, which
is reported in [CDS+03; CDS+05; CSD+04].

These two experiments let us observe that the concrete features of both AOP languages
complement each other for the successful decoupling and modularization of rule connec-
tions. We also review other representative asymmetrical aspect-oriented approaches —

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 44

also based on the pointcut/advice model —, namely JAC [PSDF01], AspectWerkz [BV]
and JBoss/AOP [FR03], and compare their features to the ones of the selected approaches
to evaluate their suitability for the decoupling of rule connections. The investigated ap-
proaches are also general-purpose and are considered quite mature in terms of tool support
and adoption [Ker05]. All the selected asymmetrical AOP approaches adhere — in one way
or another — to the required AOP characteristics and offer mechanisms to reproduce the
architecture shown in Figure 3.1, as it is explained in the following section.

3.4 AOP for Rule Connection

The goal of this section is to illustrate the suitability of AOP for modularizing crosscutting
rule connection code by showing how the chosen representative approaches accomplish the
requirements of section 2.8. Organized per requirement, this section points out which AOP
characteristics are needed to accomplish it — from the list of characteristics identified in
section 3.3.1 — and illustrates this with examples in AspectJ and JAsCo.

In the rest of the chapter examples in the e-commerce application are shown in both
selected languages. We do this by showing code (sometimes simplified to avoid cluttering
the solution with unnecessary details), pseudo-code or diagrams.

The following naming conventions are used in the implementation of the examples:

• names of business rule classes start with BR

• names of event aspects start with E

• names of data exposing and introducing aspects start with Capture and Extend re-
spectively

• names of business rule application aspects start with Apply

3.4.1 Denoting Rule Application Time with Dynamic Events

One of the first requirements identified in section 2.8 is the need for denoting dynamic events
in the execution of the core application at which rules need to be connected. Examples
of events are method invocations and instance variable accesses. As we want to avoid
hardcoding these dynamic events in the implementation of the core application, support
for dependency inversion is fundamental. Pointcut are able to capture dynamic points in
the execution of the core application without having to manually anticipate this in the core
application’s code and therefore are a suitable solution for designating the events at which
rules need to be connected.

3.4.1.1 A Simple Event

As a first example of how AspectJ can be used to specify the rule application time, we
present an implementation of the event event2 introduced in chapter 2 which denotes the
moment after the price of a product is retrieved. A pointcut priceCalculation(Product p)
is defined which captures every call to the method getPrice(). This definition is included
in the aspect EPricePersonalisation shown in code fragment 3.1.

45 3.4 AOP for Rule Connection

aspect EPricePersonalisation{

 pointcut priceCalculation(): execution(float Product.getPrice());

 after priceCalculation():

 { //triggering rule application... }
}

AspectJ

rule application time corresponds to the moment
after the execution of concrete method getPrice()

Code Fragment 3.1: AspectJ’s solution for denoting a simple event capturing the moment after the
invocation of the method Product.getPrice()

In JAsCo, pointcuts can be used in a similar way as in AspectJ to capture dynamic
events. The only difference is that JAsCo pointcuts can only capture method executions
and not property accesses. Therefore the existence of getters and setters for the involved
properties is required, in the case of events that involve property accesses. The upper part
of code fragment 3.2 shows the definition of an abstract pointcut capturing a very generic
rule application time, which corresponds to the invocation of any method with any number
of parameters. This pointcut is defined in the hook BRConnectionHook which is defined in
the aspect bean BRConnection.

JAsCo’s pointcuts are more reusable than AspectJ’s as they do not refer to a concrete
method signature but are defined in an abstract way. This is a very general example but note
that it is also possible to define certain restrictions on the signature of the methods that are
to be bound to the abstract methods calls, such as restriction on the type of the arguments,
the number of arguments, etc. The concrete binding between abstract method calls and
concrete methods — what we call aspect deployment — is done in a separate module, the
connector. The lower part of code fragment 3.2 shows a JAsCo connector deploying the
abstract pointcut connectionMethod(..args) on the concrete method getPrice().

3.4.1.2 A More Sophisticated Event

Moreover, both AspectJ and JAsCo provide more advanced pointcut designators that allow
expressing execution points that depend on more sophisticated dynamic properties of the
application’s execution, such as control flow. These more advanced pointcut designators can
be used to realize more sophisticated dynamic events at which to trigger rules. Consider
the example event3 introduced in section 2.3.1 which denotes the moment in the execution
of the core application after the product’s price is retrieved while the customer is checking
out. A solution in AspectJ for realizing this event consists of defining a second pointcut
priceCalcInCheckout(Product p) that filters the joinpoints captured by the first pointcut
priceCalculation() according to whether they occur in the control flow of execution of
the method checkoutShoppingBasket(ShoppingBasket). This is achieved by using the
AspectJ’s primitive pointcut designator cflow, as it is shown in code fragment 3.3. As a
result the pointcut priceCalcInCheckout(Product p) only picks up those invocations to
the method getPrice() that occur in the control flow of the method checkoutShopping-
Basket(ShoppingBasket).

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 46

class BRConnection {
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 after()
 { //triggering rule application... }
 }
}

static connector BRDiscountConnector {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(float Product.getPrice());
} rule application time is made concrete

JAsCo

rule application time corresponds to the
moment after the execution of a method

Code Fragment 3.2: JAsCo’s solution for denoting a simple event capturing the moment after the
invocation of the method Product.getPrice(): the upper part shows the abstract aspect bean
whereas the lower part shows the concrete deployment

aspect EPricePersonalisation{

 pointcut priceCalculation(Product p): ...

 pointcut priceCalcInCheckout(Product p):
 cflow(execution(Float Shop.checkoutShoppingBasket(ShoppingBasket)))
 && priceCalculation(p);

 after priceCalcInCheckout(Product): {...}
}

AspectJ

rule application time corresponds to the moment
after the execution of the concrete method getPrice()
when this one occurs in the context of the checking out

Code Fragment 3.3: A solution in AspectJ for denoting a more complex event capturing the
moment after the invocation of the method Product.getPrice() in the control flow of the
Shop.checkoutShoppingBasket(ShoppingBasket) method

47 3.4 AOP for Rule Connection

class BRConnection {
 hook BRConnectionHook {
 BRConnectionHook(float connectionMethod(..args),
 contextualMethod(..args1)) {
 execution(connectionMethod) && cflow(contextualMethod) &&
 target(Product);
 }
 after()
 { //triggering rule application... }
 }
}
static connector BRDiscountConnector {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 float Product.getPrice(),
 float Shop.checkoutShoppingBasket(ShoppingBasket));
}

rule application time is made concrete

JAsCo

rule application time corresponds to the
moment after the execution of a method
that occurs within the control flow of
another method

Code Fragment 3.4: A solution in JAsCo for denoting a more complex event capturing the
moment after the invocation of the method Product.getPrice() in the control flow of the
Shop.checkoutShoppingBasket(ShoppingBasket) method

Similarly to AspectJ, JAsCo also supports the cflow pointcut designator which allows
expressing more sophisticated dynamic events. A solution similar to the AspectJ’s one
is shown in code fragment 3.4. The upper part corresponds to the aspect bean. Note
that connectionMethod and contextualMethod are abstract method calls that need to be
deployed on the concrete methods getPrice() and checkoutShoppingBasket(Shopping-
Basket), as shown in the lower part of the code fragment 3.4.

3.4.2 Exposing and Passing Available Contextual Information

Rules often require information which depends on the dynamic context. Therefore, it should
be possible for a rule to access and manipulate the data available in the context of the event
that triggered its execution. All investigated AOP approaches allow to introspect the con-
text of the joinpoint that triggers the execution of the aspect behaviour. This is in fact a
consequence of the dependency inversion property. For instance, for a joinpoint that corre-
sponds to a method execution or call, one can query the name of the method, the supplied
arguments and the target object on which the method is called. In many cases this ex-
pressive power suffices for providing the business rules with the necessary information. As
an example consider varying the BRChristmasDiscount which applies the discount only on
purchases of some product kind, for instance Christmas articles. This can be formulated in
the following rule:

BRChristmasDiscount: If today is Christmas then apply a 5% discount on the purchases
of Christmas articles

Suppose this rule is triggered at the same event2 after the price of a product is retrieved.
This implies the need for checking an extra condition on the product that is being purchased.
Therefore the product has to be obtained and passed to the rule at rule application time.

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 48

Pointcuts can expose the information directly available in the context of the execution point.
In AspectJ the target object can be exposed using the target pointcut designator, as shown
in the upper part of code fragment 3.5. In our example, the product is the target object
and therefore can be directly exposed by the priceCalculation(Product p) pointcut.

aspect EPricePersonalisation {
 pointcut priceCalculation(Product p):
 target(p) && call(float Product.getPrice());
}

exposing target product

AspectJ

aspect ApplyBRChristmasDiscount{
 float around(Product p): EPricePersonalisation.priceCalculation(p){
 float price = proceed(p);
 return new BRChristmasDiscount().apply(price, p);
 }
}

passing target
product to rule

(1)
(2)

Code Fragment 3.5: A solution in AspectJ for exposing (upper part) and passing to the rule (lower
part) information available in the context of the triggering pointcut

This exposed information has to be passed to the rule. In both AOP approaches, the
information exposed by a pointcut can be used in any advice defined on that pointcut.
Therefore, the actual triggering of the rule has to be performed from within an advice defined
on the pointcut capturing the rule application time and exposing the desired information
available in that context. In AspectJ this can be done as shown in the lower part of code
fragment 3.5. Note that now instead of an after advice, an around advice has to be
defined on the pointcut priceCalculation(Product p). This is because the original price
— which is the return value of the interrupted method — has to be manipulated. This price
needs to be obtained by explicitly resuming the original behavior which is done by calling
proceed(p). This is the first action of the advice which is followed by the actual triggering
of the rule. Therefore, the rule is still applied ‘after’ the original behavior, even though an
around advice is employed. The instance of Product which is the target object — exposed
by this pointcut — is passed to the rule to be used in its condition. This around advice can
be defined in the same aspect where the pointcut is defined, i.e. EpricePersonalisation, or
in a separate aspect. The latter solution allows for a better reusability of rule connections,
as a better separation of the different connection parts is achieved. In the lower part of
code fragment 3.5 a separate aspect ApplyBRChristmasDiscount is shown which holds the
definition of this around advice.

In JAsCo exposing information available in the context of the pointcut is done in a similar
way as in AspectJ. The only difference is that both the arguments and the target object of
the interrupted behavior are directly accessible from within any advice by referring to args
and by using the thisJoinPointObject keyword respectively, contrary to AspectJ where
they need to be explicitly captured by the pointcut. The JAsCo solution is shown in code
fragment 3.6. The connector for this aspect bean deploys the aspect behavior in the same
way as it is shown in code fragment 3.2 (therefore it is not shown here).

49 3.4 AOP for Rule Connection

JAsCo
aspect ApplyBRChristmasDiscount extends BRConnection {
 hook BRConnectionHook1 extends BRConnectionHook {
 around() {
 float price = proceed();
 return new ChristmasDiscountBR().apply(price, thisJoinPointObject);
 }
 }
}

(1)
(2)

passing available target product to rule

Code Fragment 3.6: A solution in JAsCo for passing to the rule the information available in the
context of the triggering pointcut

3.4.3 Capturing, Exposing and Passing Unavailable Information

If the data objects required by the rule are outside the scope of the joinpoint that triggers
the rule, other pointcuts can be defined in order to intercept the application at the moment
the needed objects are available. Those pointcuts would then expose the objects available
in their context. Once this is accomplished, the challenge is then to pass those captured
objects to the event that triggers the rule, so that they can be passed to the rule.

Imagine a new variation of the BRChristmasDiscount rule that applies a discount to
the product price which depends on the actual customer that is purchasing the product.
This implies the need for having the customer object at rule instantiation time in order to
obtain the discount percentage. However, this object is not available at the moment the
product price is retrieved, the event at which the rule is instantiated and applied. A solution
is to instantiate the BRChristmasDiscount at the moment the checkoutShoppingBasket-
(Shoppingbasket) method is invoked, since the customer is available at that point. Still
we want to do this non-invasively and therefore dependency inversion is fundamental. A
possible solution in AspectJ consists of the definition of a set of new collaborating aspects,
as follows:

First of all, a new aspect ECheckout defines a new checkout pointcut intercepting the calls
to checkoutshoppingBasket(ShoppingBasket) and exposing the target shopping basket
object (shown in part A of code fragment 3.7).

Secondly, a separate aspect named CaptureCustomer defines an advice on the checkout
pointcut and uses the exposed shopping basket to create a new instance of the BRChristmas-
Discount rule (shown in part B of code fragment 3.7). The separation of these two parts in
different aspects aims at enhancing reusability of the different parts of the rule connections.
Once the extra information is captured, it has to be made available at the event where
the rule is applied. To this end, support for sharing the aspect context information is
needed. In AspectJ however — as well as in other approaches such as AspectWerkz and
JBoss/AOP — sharing information between several aspects is not straightforward. The
CaptureCustomer aspect needs to pick the correct aspect instance of the ApplyBRChristmas-
Discount class to be associated with the correct business rule instance. This is done by
invoking ApplyBRChristmasDiscount.aspectOf() (shown in part B of code fragment 3.7).

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 50

Finally, a new instance of the aspect ApplyBRFrequentDiscount is needed for each join-
point denoted by the pointcut checkout(ShoppingBasket). This is achieved by using the
percflow feature which instantiates an aspect for each join point designated by the pointcut
it takes as parameter (shown in part C of code fragment 3.7). Therefore the two involved
aspects need to collaborate in order for the rule to be successfully applied. In AspectJ the
collaboration between aspects is implicitly represented in the implementation of the involved
aspects themselves. Typically, when aspect needs to communicate with another aspect, the
former has to explicitly grab the desired aspect instance2. This is done by referring to the
aspect class and invoking the method aspectOf() of it (as shown in part B of code fragment
3.7). As a consequence, it is not trivial to understand how aspects collaborate by simply
looking at the aspect code. This is especially the case when complex (and even nested)
control flows are involved, since the developer is forced to have a good understanding of
the order in which the methods — involved in the control flows — are executed, and the
impact this order has on the way aspects are instantiated. As a consequence of the implicit
way aspects are related, it becomes hard to write and understand AspectJ’s aspects. This
AspectJ’s limitation is explained in more detail in section 3.4.8.

aspect CaptureCustomer{
 before(shoppingBasket sb): ECheckout.checkout(sb){
 BRChristmasDiscount br = new BRChristmasDiscount(sb.getCustomer());
 ApplyBRChristmasDiscount.aspectOf().setBusinessRule(br);
 }
}

aspect ECheckout {
 pointcut checkout(ShoppingBasket sb):
 call(float Shop.checkoutShoppingBasket(ShoppingBasket)) && args(sb);
}

capturing the required object

AspectJ

aspect ApplyBRChristmasDiscount
 percflow(ECheckout.checkout(ShoppingBasket)) {

 BRChristmasDiscount businessRule;
 public void setBusinessRule(BRChristmasDiscount br){
 businessRule = br;
 }
 float around(Product p):
 EPricePersonalisation.priceCalculation(p) {//idem as before ...}
}

using the captured object to re-
trieve the needed information

retrieving aspect instance and setting its state

instantiating aspect based on control flow

defining business rule as aspect variable

A

B

C

Code Fragment 3.7: A solution in AspectJ for capturing information available at events other than
the triggering event and making it available to the rule

JAsCo has the advantage of being able to gather collaborating aspects — the hooks — in
an extra module — the aspect bean. Furthermore, an aspect bean can hold the definition of
information — structure and behavior — which is shared among its hooks. This facilitates
sharing information among aspects. In our example, two hooks can be defined, one for

2By default there is only one instance of an aspect; many instance can exist and even co-exist depending
on the strategy used to instantiate the aspects (such as percflow, perobject, etc.).

51 3.4 AOP for Rule Connection

capturing the customer and another one for applying the rule, as part of the same aspect
bean. The businessRule variable is defined in the aspect bean and therefore shared among
the two hooks. This simplifies aspect communication since it avoids having to explicitly
obtain the right aspect instances by querying the aspect classes. Moreover, related hooks
can be instantiated in the same connector which ensures the correspondence between their
instances.

3.4.4 Introducing Unanticipated Information

Some rules require information that is not present in the existing application. To this end,
the introduction of new data and behavior is crucial (third fundamental AOP characteristic,
as listed in 3.3.1). Several AOP approaches support a mechanism to introduce new struc-
ture and behavior. For instance, the open classes feature (previously named introductions)
supported by AspectJ allows the insertion of attributes and methods. It also allows extend-
ing classes from specific superclasses and interfaces from specific superinterfaces. Consider
again the following rule:

BRFrequentCustomer: If a customer has purchased more than 20 products then he or
she is a frequent customer

This rule expects the class Customer to have a boolean attribute frequent and to be
able to set that attribute to a new value. In order to realize this extension, an AspectJ
aspect ExtendCustomer is defined which introduces the unanticipated attribute frequent
to the Customer class and the methods isFrequent() and setFrequent(boolean). This
is shown in the upper part of code fragment 3.8. The introduced structure and behavior
can be used in other classes, in this case in the BRFrequentCustomer class, as shown in the
lower part of code fragment 3.8. An aspect for the application of this rule must trigger the
application of the rule after the event designated by the ECheckout.checkout(Shopping-
Basket) pointcut using the shopping basket object exposed by this pointcut (not shown
here).

Other approaches support introducing new behavior to the context of an aspect by forc-
ing it to implement an interface. This is the case in approaches such as JAC, JBoss/AOP
and JAsCo. A mixin class is provided that handles the implementation of a new interface
and is automatically attached to the concerned classes. The new methods can be invoked
from other aspects. Therefore, this feature is useful for communicating information be-
tween aspects. A solution using JAsCo’s virtual mixins is shown in code fragment 3.9:
an interface defining the methods to be added to the Customer class is defined in part A;
an implementation for this interface is provided by the hook Introduce, shown in part B;
note that the hook defines an attribute frequent which holds a boolean value. Contrary to
AspectJ’s introductions that allow extending a target class with not only behavior but also
structure, JAsCo virtual mixins can only add behavior. The state — the frequent variable
— is kept in the aspect instead of in the target class. In order to actually introduce the two
methods defined in the Introduce hook to all the Customer objects, the Introduce hook
must be instantiated perobject of the class Customer, as it shown in the connector named
IntroduceMixin shown in part C. This instantiation makes sure that a different hook exists
per customer, ensuring that a different frequent variable exists per customer. Finally, the
added behavior can now be invoked from other aspect code as shown in part D.

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 52

aspect ExtendCustomer{
 private boolean Customer.frequent = false;
 public boolean Customer.isFrequent() { return frequent; }
 public void Customer.setFrequent(boolean b) { frequent = b; }
}

AspectJ

public class BRFrequentCustomer
 public boolean condition(Customer c){
 return(c.account.getPurchasedProducts() > 20);
 }
 public void action(Customer c){
 c.setFrequent(true);
 }
 public void apply(Customer c){
 if (condition(c))
 action(c);
 }
}

defining new structure and methods to be introduced

using introduced behavior

Code Fragment 3.8: A solution in AspectJ based on open classes for introducing structure and
behavior

interface ICustomerInfo extends jasco.runtime.mixin.IMixin {
 public boolean isFrequent();
 public boolean setFrequent(boolean b);
}

JAsCo

class IntroduceFrequency {
 hook Introduce implements ICustomerInfo {
 private boolean frequent = false;
 Introduce(void method(..args)) {
 execution(method(args));
 }
 public boolean isFrequent() { return frequent; }
 public boolean setFrequent(boolean b) { frequent = b; }
 }
}

static connector IntroduceMixin {
 perobject IntroduceFrequency.Introduce introHook =
 new IntroduceFrequency.Introduce(* Customer.*(*));
}

...
around returning(double price) {
 // customer is an instance Customer
 ICustomerInfo extendedCustomer = (ICustomerInfo) customer;
 if(extendedCustomer.isFrequent())
 return applyDiscount(price);
 else return price;
}

defining signature of
 added methods

implementing
 introduced methods

defining introduced structure

extending Customer class with introduced information

using introduced behavior

A

B

C

D

Code Fragment 3.9: A solution in JAsCo based on virtual mixins to introduce new behavior to core
classes

53 3.4 AOP for Rule Connection

Although JAsCo mixins allow realizing the extension of classes with new methods, they
have the limitation that added methods can only be invoked from within aspect code. Thus,
in order for the rule to be triggered, the condition and action methods must be invoked
directly from the aspect’s advice (instead of invoking the apply method on the rule).

3.4.5 Incorporating Rule Results

All analyzed AOP approaches can be used in a similar way in order to resume the original
application after the application of rules, using — when needed — the results produced
by the rules. In the case of an around advice, the interrupted execution can be continued
by employing the proceed keyword. In case other aspects are also applicable to the same
joinpoint, the proceed actually triggers the next aspect’s around advice, this way realizing
a chain of around advices which ends at the original replaced method. In some AOP
approaches such as JAsCo, the proceed keyword can take parameters which represent the
target object and parameters that need to be considered when proceeding with the original
interrupted method. Therefore, in order to change the original behavior, the proceed can
be invoked using other objects that result from having applied the rule. In the case a rule is
triggered before or after an event, rules can affect the core application by invoking methods
that change the state of core objects, such as Shop.increaseStock(Product, int). When
the execution of the aspect is finished, the core application is resumed. No special keywords
are needed for doing so — contrary to the case of an around advice.

3.4.6 Configuring and Reusing Rules and Their Connections

As we mentioned before, we pursue maximum configurability by separating each of the parts
that form the connectivity layer in different aspects. This makes it possible to reuse each
part of the rule connection separately. For instance, a new rule might appear that needs to
be connected at the same event at which the BRChristmasDiscount is applied, for instance:

BRPurchasedItemsDiscount: if the customer has bought more than 10 products then he
or she gets a 10% discount on the current purchase.

Assume the existence of a BRPurchasedItemsDiscount class implementing this new rule.
In order to connect this rule at event2, an aspect — named for instance ApplyBRPurchased-
ItemsDiscount — must be defined that triggers the application of the rule at the same
pointcut EPricePersonalisation.priceCalculation(p). The before advice of the Cap-
tureCustomer aspect (part B of code fragment 3.7) has to be extended to also instantiate the
BRPurchasedItemsDiscount using the captured customer. Moreover, the ApplyBRPurcha-
sedItemsDiscount must be instantiated percflow on the ECheckout.checkout(Shopping-
Basket) pointcut. The code implementing these extensions is shown in code fragment 3.10.
This example shows that it is possible to connect different rules at the same event. In the
case the new rule connected at the existing event requires extra information not exposed
by the pointcut implementing that event, the pointcut can be extended to expose the extra
needed information (if it is available in that context); otherwise, the corresponding Capture
aspect can be extended with extra pointcuts exposing the required information, as before.

The other way round is also possible: we might want to connect the same BRChristmas-
Discount at a different event, as for instance at event3. This is simply achieved by triggering
the application at the EPricePersonalisation.priceCalcInCheckout pointcut instead of
the EPricePersonalisation.priceCalculation(p) pointcut. Eventually the kind of the

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 54

aspect CaptureCustomer{
 before(shoppingBasket sb): ECheckout.checkout(sb){

 BRChristmasDiscount br = new BRChristmasDiscount(sb.getCustomer());
 ApplyBRChristmasDiscount.aspectOf().setBusinessRule(br);

 BRPurchasedItemsDiscount br1 =
 new BRPurchasedItemsDiscount(sb.getCustomer());
 ApplyBRPurchasedItemsDiscount.aspectOf().setBusinessRule(br1);
 }
}

AspectJ

aspect ApplyBRPurchasedItemsDiscount
 percflow(ECheckout.checkout(ShoppingBasket)) {

 BRPurchasedItemsDiscount businessRule;
 public void setBusinessRule(BRChristmasDiscount br){ ... }

 float around(Product p):
 EPricePersonalisation.priceCalculation(p) { ... }
}

retrieving aspect
instances and
setting their state

instantiating
aspect based
on control flow

Code Fragment 3.10: A solution in AspectJ for applying the BRChristmasDiscount and the
BRPurchasedItemsDiscount rules at the same event: the upper part shows the extensions to
the CaptureCustomer aspect in order to make the captured customer available to the instance of
ApplyBRPurchasedItemsDiscount; the lower part shows the aspect for applying the BRPurchased-
ItemsDiscount on the EPricePersonalisation.priceCalculation pointcut

55 3.4 AOP for Rule Connection

advice that triggers the rule application might change as well (even though it is not the
case in this example). These changes are done in the corresponding Apply aspect.

Decoupling the different parts of a rule connection in different aspects improves reusability
but at the same time implies the need for adequately composing the several aspects together
in order to achieve the correct behavior. Thus, this might require significant coordination
among aspects. In AspectJ, limited support for expressing the relations between aspects is
provided. To illustrate this it is enough to look at the ApplyBRChristmasDiscount aspect
(lower part of code fragment 3.5). This aspect needs to refer to another aspect — the
ECheckout — in order to specify how it must be instantiated, introducing a dependency
between the two: if the second aspect changes its name, or its pointcut implementation,
the first aspect might become invalid. This is because in AspectJ most relations between
aspects are implicitly specified in the same aspect code (an exception is the precedence
relation available from AspectJ 1.1, which replaces the original dominates feature). As
a consequence, the coordination and synchronization between aspects are also implicitly
specified. The software engineer is responsible for controlling and relating the aspects
manually, typically by hard-coding the references and dependencies in the aspect code
itself.

In JAsCo, applying the BRPurchasedItemsDiscount at the same event as BRChristmas-
Discount would imply defining a new aspect bean extending BRConnection (analogous to
the one for triggering the BRChristmasDiscount shown in code fragment 3.6) and a corre-
sponding connector in order to trigger the application of the BRPurchasedItemsDiscount
at the same event2. It is also required that BRConnection defines a second hook which
captures and stores the customer object as a global variable of the aspect bean (as ex-
plained in section 3.4.3), which is then inherited by the concrete subaspects extending
BRConnection. The captured object is then used in the triggering hooks in order to instan-
tiate both BRChristmasDiscount and BRPurchasedItemsDiscount rules respectively.

Both approaches allow reusing aspect code though inheritance, which helps reusing rule
connections as well. For instance, we observe that the around advice in both AspectJ’s
aspects ApplyBRChristmasDiscount and ApplyBRPurchasedItemsDiscount share common
parts. Therefore, it is possible to pull up those parts in an abstract aspect ApplyBR-
PriceDiscount. This is shown in Figure 3.2. Both concrete aspects ApplyBRChristmas-
Discount and ApplyBRPurchasedItemsDiscount extend this abstract aspect, inheriting this
way the around advice. In JAsCo, inheritance of aspects is achieved in a similar way and
therefore it is omitted here.

3.4.7 Controlling Rule Precedence, Combination and Exclusion

An important part of the rule connection is the specification of how to combine several
rules that are triggered at the same events. This is crucial to avoid rule interference.
This is a well-known issue in AOP which is referred to as feature interaction problem3

[PSC+02; BMV02; DFS02; NBA04; KPRS01]. AOP approaches tackle this problem is
different ways.

3In the last years this problem has received special attention in the community, as demonstrated for
example by the workshop on Aspects, Dependencies, and Interactions organized as part of ECOOP’06

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 56

instantiation:
percflow(ECheckout.checkout(ShoppingBasket))

abstract aspect ApplyBRPriceDiscount {

 BRPriceDiscount businessRule;
 public void setBusinessRule(BRPriceDiscount br){
 businessRule = br;
 }
 Float around(Product p): EPricePersonalisation.priceCalculation(p) {
 Float price = proceed(p);
 return businessRule.apply(price);
 }
}

AppyBRPrice
Discount

ApplyBR
Christmas
Discount

ApplyBR
PurchasedItems

Discount

Figure 3.2: AspectJ’s solution illustrating the inheritance of aspects for the application of rules

57 3.4 AOP for Rule Connection

In AspectJ, an aspect may declare a precedence relationship between concrete aspects
with the declare precedence form:

declare precedence : TypePatternList;

This signifies that if at any join point, advices of the same kind are encountered —
belonging to aspects that are matched by the TypePatternList — then the order in which
those advices are executed is determined by the order in which the aspects are listed in
TypePatternList.

In our previous example, both rules BRChristmasDiscount and BRPurchasedItemsDis-
count are triggered at the same pointcut. The declare feature can be used for instance to
specify a certain order in which discount rules must be applied, as follows:

aspect Ordering {
declare precedence : ApplyBRChristmasDiscount, ApplyBRPurchaseDiscount;

}

This ensures that whenever a joinpoint occurs that triggers the application of both
aspects, the around advice of ApplyBRChristmasDiscount is executed before the one of
ApplyBRPurchaseDiscount. In AspectJ, the precedence clause is the only support for aspect
combination.

A more fine-grained approach to aspect precedence is the one where the precedence is
not defined at the level of the entire aspect but at the level of the advice. This is supported
by AOP approaches such as JAC, JBoss/AOP and AspectWerkz. These approaches allow
specifying explicit sequences of aspect deployments by means of stacks. Whenever a join-
point is encountered, the deployed aspects are executed in the order specified by the stack.
JAsCo enhances this support as it provides a powerful, reusable and extensive system for
specifying the precedence and the combination of aspects. Whenever two or more hooks
interfere, the order in which their behaviour must be executed is derived from the connector.
This is useful to specify the order in which business rules must be triggered.

Being able to specify the sequence in which the various business rules are executed is
in many cases not sufficient. In some cases more advanced techniques to specify the com-
bination of the various business rules that are deployed within the system is required. In
the previous section for instance, an additive discount strategy is employed. However,
the business policy could specify that only one discount is offered for a given product.
For instance we could restrict the application of the frequent customer to the period out-
side Christmas. The JAsCo language provides a solution to be able to specify this kind
of advanced aspect-combinations, by providing a mechanism called combination strate-
gies. A combination strategy acts like a kind of filter that validates the list of appli-
cable hooks, which are obtained at run-time. Each specific combination strategy imple-
ments the CombinationStrategy interface which defines the public HookList validate-
Combinations(HookList aHookList) signature. The interface itself only specifies the vali-
dateCombinations method, which is used to describe the specific logic of a combination
strategy. This mechanism of combination strategies allows maximum flexibility, as user-
defined relationships between the various aspects can be implemented.

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 58

For instance, an exclude combination strategy can be defined which makes sure that a
certain hook, e.g. hookB, is not executed whenever hookA is encountered. Such a com-
bination strategy can be used to specify the relationship between the Christmas and the
frequent customer discount business rules for instance to avoid the application of the latter
whenever the first one is triggered. This is done by instantiating the exclude combination
strategy giving as parameters the hooks in charge of triggering the application of the cor-
responding rules and adding this strategy to the connector. This is shown in the following
lines of code (consider that chDiscount and frDiscount are the names of the hook variables
for the Christmas and frequent rules respectively and that ExcludeCombinationStrategy
is the name of the class implementing the exclude combination strategy):

connector ChristmasFrequentCustomerDiscountDeployment {
...
ExcludeCombinationStrategy strategy =
new ExcludeCombinationStrategy(chDiscount,frDiscount);

addCombinationStrategy(strategy);
}

3.4.8 Controlling Rule Instantiation and Initialization

As the rules themselves are defined as reusable as possible, it is required to customise the
rules towards the specific environment in which they are being applied. This implies the
need for having control and being able to customize the instantiation of rule connection
aspects. Most aspect-oriented technologies however do not allow sophisticated control for
initializing aspects, as the aspect instantiation is done implicitly when the aspect is woven
into the core functionality.

In AspectJ, as well as in AspectWerkz, aspects are not explicitly instantiated with new
expressions. Rather, aspect instances are automatically created and controlled by the as-
pect framework. By default, an aspect is a singleton. However, other ways of instan-
tiating an aspect are possible by using special keywords. An aspect A can be defined
percflow(Pointcut) or percflowbelow(Pointcut), meaning that an object of type A is
created for each flow of control of the join points picked out by Pointcut, either as the flow
of control is entered, or below the flow of control, respectively. The advice defined in A may
run at any join point in or under that control flow. During each such flow of control, the
static method A.aspectOf() will return an object of type A. An instance of the aspect is
created upon entry into each such control flow. The aspect instantiation mechanism based
on pointcuts allows creating instances at very fine-grained points in the execution of the
core application. To illustrate this consider a slight variation of the previous example rule
BRPurchasedItemsDiscount in which we assume that the threshold is not fixed at 10, but
instead it can vary according to the customer’s frequency, as follows: if the customer is fre-
quent, the threshold must be 5 whereas if the customer is not frequent, the discount must
be applied only when at least 10 products have been bought. In order to implement this
change, two concrete subaspects must be defined distinguishing between the application of
the rule for a frequent and non frequent customer, which are shown in Figure 3.3. Two dif-
ferent pointcuts are defined in the CaptureCustomer aspect which capture the invocations to
the method checkoutShoppingBasket(ShoppingBasket) but distinguish between the cases
of shopping baskets belonging to frequent and non-frequent customers respectively. These
pointcuts are used in order to initialize the two different Apply aspects using the percflow

59 3.4 AOP for Rule Connection

feature. This is needed because the aspects trigger rule objects that differ in state, namely
the customer and the threshold.

 percflow(CaptureCustomer.
 checkoutNoFrequentCustomer(ShoppingBasket))

 percflow(CaptureCustomer.
 checkoutFrequentCustomer(ShoppingBasket))

ApplyBRPrice
Discount

ApplyBR
Christmas
Discount

ApplyBR
PurchasedItems

Discount_noFrequent

ApplyBR
PurchasedItems
Discount_frequent

Capture
Customer

aspect Ordering {
 declare precedence: CaptureCustomer, Apply*;
}

Ordering

aspect CaptureCustomer {

 pointcut checkoutFrequentCustomer(ShoppingBasket sb):
//checkout by frequent customer

 before(ShoppingBasket c): checkoutFrequentCustomer(sb) {
 //create instance of BRPurchasedItemsDiscount using
 //sb.getCustomer() and threshold 10
 //assign rule to ApplyBRPurchasedItemsDiscount_frequent.aspectOf()
 }

 pointcut checkoutNoFrequentCustomer(ShoppingBasket sb):
 //checkout by NOT frequent customer

 before(ShoppingBasket c): checkoutNoFrequentCustomer(sb) {
 //create instance of BRPurchasedItemsDiscount using
 //sb.getCustomer() and threshold 5
 //assign rule to ApplyBRPurchasedItemsDiscount_noFrequent.aspectOf()
 }
}

Figure 3.3: A solution in pseudo-AspectJ code for the application of the BRPurchasedItemsDiscount
according to whether a customer is frequent of not

Other AspectJ keywords allow having an instance of the aspect perthis(Pointcut) and
pertarget(Pointcut) that create an instance of the aspect per-executing object or per-
target object respectively.

Likewise to adding and removing aspects, altering properties of aspects at run-time is also
a desired feature when they represent volatile rule integration code. Altering properties is
in most approaches as simple as invoking methods defined in the aspects. However, in
order to be able to invoke methods, the aspects have to be found first. This uncovers a
fundamental AOP feature that is the reference of aspect instances, which is related to the

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 60

aspect interaction characteristic listed in section 3.3.1. In AspectJ, it is only possible to
fetch an aspect instance by name. This is not always a good solution as the name of the
actual aspect class that got instantiated might not be known until run time. AspectWerkz
allows fetching aspects on a per joinpoint basis, but requires obtaining every joinpoint by
name. Fetching all aspects disregarding the concrete joinpoint they are attached to is not
possible.

JAsCo and JBoss/AOP are the only two reviewed approaches that allow to explicitly in-
stantiate and initialize aspects and also allow fetching all aspects in the system. In JAsCo
the instantiation of an aspect with a specific context is described explicitly in the connec-
tor. The connector also allows customising the instantiated aspects and supports the full
expressiveness of the Java language to this end. Also, the execution of the behavior of
the business rules is specified explicitly in the connector, allowing even more finely grained
control. JBoss/AOP introduces the novel concept of aspect factories, allowing fine-grained
control over aspect instantiation. Aspect customisation happens through an XML connector
that describes the deployment details. This XML file allows specifying a set of properties
that are passed as input for aspect initialization. The aspect itself is responsible for pars-
ing the XML tree, which makes it somewhat more cumbersome. In contrast to JAsCo
connectors, no static type checking is possible for these XML property definitions.

3.4.9 Connecting Rules

Rules constantly evolve to cope with changes in the business requirements, other rules
become obsolete and new ones are added. Thus, the aspects that encapsulate their links
should be pluggable at run-time to reflect that volatility. Not all existing AOP technologies
however allow easy and dynamic plugging in and out business rules. Approaches such as
HyperJ only allow to statically plug in and out aspects, i.e. aspects can only be added
at compile-time and it is not possible to plug them in or out at run-time. This is mainly
because an aspect loses its identity when it is woven into the base-application. Approaches
like JAC and JAsCo solve this issue, by also providing a run-time separation between the
aspects and the base implementation of the system. This way, aspects remain first class
entities even at run time and their logic is not weld together with the base functionality of
the application. This is a valuable property in the context of business rules, as this run-time
separation allows dynamic reconfiguration of business rules, without the need to shut down
business-critical applications.

Approaches like AspectJ, AspectWerkz and JBoss/AOP provide support for adding and
removing aspects at load-time and some support for their addition and removal at run-time.
In the last two approaches, an XML “connector” is employed for connecting the aspects to
concrete joinpoints. However, this XML connector cannot be employed any longer during
run time and aspects have to be attached and removed programmatically. Because both
approaches rely on traps at every joinpoint for aspect execution, aspects can only be added
at joinpoints where traps are placed. In AspectWerkz, these traps are only inserted at
joinpoints where aspects are applied at start-up time of the application. As such, only
at those joinpoints, aspects can be attached and removed. In JBoss/AOP, it is possible to
declare joinpoints as advisable in the XML connector. Even though no aspects are applied, a
trap is still installed and aspects can be dynamically attached at those advisable joinpoints.

61 3.5 Discussion

3.5 Discussion

Aspects are meant to encapsulate the implementation of crosscutting concerns and as such
seem suited to modularize the crosscutting rule connections. We observe that all analyzed
approaches offer features that can be used to accomplish the identified requirements and —
even though sometimes the solutions are fundamentally different — we can conclude that
the supported AOP features are very well-suited to accomplish the distilled requirements.
We were able to express suitable solutions in both concrete representative approaches, and
we can point out from them the following main conclusions:

AspectJ allows decoupling the different parts that constitute the rule connection in sep-
arate aspects that can be reused independently. However, this results in a proliferation of
aspects which is hard to manage. Generally aspect relations are expressed in the same as-
pects that are being related (an exception is the explicit precedence relation) which reduces
aspect reusability and composability. On the other hand, reusability of aspect code is pos-
sible through inheritance. Moreover, we observe that AspectJ has some very powerful and
low-level features that are used for solving a wide range of problems, for example percflow.
However, sometimes the same features are used to solve semantically different concerns,
thus impeding program understandability and portability. AspectJ’s pointcuts are fragile
as they directly point to concrete places in the core application’s execution, and therefore
less reusable than JAsCo’s. Additionally, instantiation and initialization is controlled by
the framework itself which can be an advantage — like in situations where the instanti-
ation depends on complex pointcuts — but can also be restrictive when more controlled
instantiation is desired.

We observe that JAsCo is able to improve on AspectJ for connecting business rules on
several essential points. First of all, JAsCo offers higher-level abstractions to express the
composition of aspects which allows specifying more complex interrelations between rules.
JAsCo allows specifying reusable business rules that can be dynamically plugged in and out
to fit the application at hand. Secondly, the connector concept of JAsCo allows controlling in
a more detailed way the instantiation and initialization of the business rules. An additional
advantage of the connector is that it allows specifying and managing more advanced and
fine-grained business rule combinations than in AspectJ. Whereas the introduction of new
structure is not possible in JAsCo, virtual mixins can be used to extend core classes with
additional methods.

We have also analyzed other emergent AOP approaches against the requirements. Other
dynamic AOP approaches, such as AspectWerkz and JBoss/AOP allow adding and remov-
ing rules at run time, which is an essential requirement due to the volatile nature of business
rules. In addition, these approaches make use of a separate connector concept, which allows
separating the identification of an event and the application of rules upon those events. As a
result, rules can be instantiated explicitly, customized towards the context upon which they
are being applied and their mutual interaction can be managed. However, some dynamic
AOP approaches might induce a rather big performance penalty at run-time and their
joinpoint model is at the moment less expressive than the ones provided by their static
counterparts. Although static AOP approaches, such as AspectJ, do not allow the dynamic
pluggability of rule integration code, they provide a more fine-grained description of the
events upon which rules can be applied. In addition, these approaches allow introducing
unanticipated data required by rules quite easily in the application at hand.

Chapter 3. Aspect-Oriented Programming for Business Rule Connection 62

Another way of comparing the different AOP approaches is with respect to how aspects
are treated both at compile and run time. In JAsCo, JAC, AspectWerkz and JBoss/AOP
aspects are implemented as fully independent modules. They are completely independent
and reusable entities. Even at run-time, the aspects remain first-class entities independent
from the core functionality. AspectJ supports load time weaving of aspects. This allows
aspects to be compiled separately as no details about the core application on which the
aspects are to be woven are needed at compilation time. In HyperJ aspects are physically
woven into the core functionality, embedding the advices in the base behaviour. This makes
the aspect again crosscutting at run-time. In this latter case, aspects loose their identity
at run-time and it is in principle impossible to refer to the aspect entity directly. In addi-
tion, when the aspect logic has to be altered, the complete application has to be rewoven;
this gives raise to scalability issues when a multitude of aspects are present in large scale
applications. To conclude, in JAsCo, JAC, AspectWerkz, JBoss/AOP, aspects can change
independently and reflect those changes directly in the core functionality, without the need
to be reintegrated; it suffices to recompile the aspects. In AspectJ, changes in the aspect
logic are reflected by recompiling and reloading the aspects.

3.6 Summary
In this chapter we pointed out which are the fundamental AOP characteristics that are
required in order to successfully decouple and modularize crosscutting rule connections.
Besides being able to encapsulate and declare crosscutting behavior in a localized and
explicit way, AOP features are also suitable to accomplish the extra set of requirements
identified in chapter 2. First of all we show this in a general way by distilling the fundamental
AOP features that are needed to accomplish the identified requirements. Second, a more
concrete contribution is to show how representative AOP approaches — namely JAsCo and
AspectJ — actually achieve this.

We observe while carrying out the experiments that it is difficult to generalize the results
to all aspect-oriented approaches because the concrete features these approaches provide
are sometimes fundamentally different. However, these experiments let us observe that,
independently of the concrete mechanisms and features, an AOP solution for decoupling rule
connections follows a certain structure that can be abstracted in patterns. We distill these
patterns and their variations and present them in the coming chapter. These patterns build
on top of the common AOP characteristics and therefore are applicable to all approaches
that adhere to those characteristics.

We also observe that because of the general purpose nature of all the analyzed AOP
approaches, the offered support is sometimes too low-level for the kinds of problems we
need to address when modularizing rule connections. This motivates the need for having
higher-level abstractions, which is a further topic of this thesis and is presented in chapter
5.

Chapter 4

Aspect Patterns for Business Rule
Connection

In our previous chapter we have demonstrated the suitability of AOP for decoupling business
rules connections and illustrated this with concrete examples in AspectJ and JAsCo, two
representative AOP approaches that succeed in accomplishing the requirements identified
in section 2.8. In this chapter we are concerned with abstracting the commonalities of these
solutions in aspect patterns. We first motivate the need for aspect patterns (section 4.1).
We then observe that an AOP-based solution for the modularization of a rule connection
typically involves a set of recurrent connection issues. Moreover, these issues vary in specific
circumstances. We identify and discuss these issues that we call rule connection elements
(section 4.2). Moreover, we make the distinction between elements that are mandatory —
i.e. need to be part of every rule connection — or optional — i.e. might or might not be
part be of a rule connection. Furthermore, we identify how and under which circumstances
these elements vary and analyze which AOP features are suitable to implement each of these
variations. We also observe that not all the variations of different elements can be always
combined as for instance the choice of a certain variation for one element can restrict the
set of possible variations for another element. As a result, this analysis lets us distill a set
of aspect patterns that can serve as guidelines for the implementation of rule connection
aspects (section 4.3). These patterns rely on AOP characteristics to which all approaches
based on the pointcut-advice model adhere — in one way or another. In this chapter JAsCo
is employed for illustration purposes.

4.1 Towards Aspect Patterns

Domain-specific reuse is gaining more and more attention in the software engineering re-
search. Advancements in the area of domain-specific languages, software features and prod-
uct lines are some examples of the efforts taken in this direction. Also in the AOP field,
domain-specific reuse is starting to be a main research area. It is recognized by the commu-
nity that reusable aspect patterns in general [HUS03] and domain-specific aspect patterns
in particular can boost the adoption of AOP in industry1. Aspect patterns can encapsulate
planned development and expert knowledge, reducing the amount of testing required for
the deployment of aspects in industrial applications. Thus, aspect patterns enable a more

1Interview by Adrian Colyer on Domain Specific Aspects. Available at:
http://www.infoq.com/interviews/Adrian-Colyer

Chapter 4. Aspect Patterns for Business Rule Connection 64

reliable use of AOP, this way facilitating the incorporation of this (rather new) technology
in production phases of the software development process. The aspect patterns presented
in this chapter contribute to this line of research. They document best practices in applying
AOP to a particular problem, the connection of business rules. Other efforts in the field of
aspect patterns can be found in [Völ05], where the author proposes patterns for handling
crosscutting concerns in the context of model-driven software development. This research
is explained in more detail in section 9.4.

4.2 Identifying Rule Connection Elements
A first necessary element that any rule connection aspect has to include is the specification of
when the rule application needs to be triggered. We refer to this element as rule application
time. In the simplest scenario, the application time identifies a dynamic event that occurs
during in the execution of the core application. In a more complex scenario, applying a rule
might also require restricting the rule application to those dynamic events that occur within
a specific context, such as the control flow of execution of another behavior. For instance,
a discount rule — which is typically applied when the product price is retrieved — can be
restricted only to those price retrievals that occur while the customer is checking out, or
within the period of time between the moment the customer logs in and the moment he/she
adds a product to the shopping cart, or not while the customer is browsing the products. We
refer to this extra restriction on the rule applicability as a second connection element that
we call activation time.

Another connection issue that needs to be tackled as part of a rule connection solution
refers to making the required information available to the rule at rule application time.
Different kinds of information might be required by the rules: core application objects that
are reachable at the moment the rules are applied, core application objects that are not
reachable at rule application time — in which case they have to be captured at other points
in the execution where they are still reachable —, global information always available form
any point of the system, and finally unanticipated information which was not foreseen in
the existing core application.

The actual triggering of the rule is of course a mandatory element of any connection
solution. Moreover, once the rule finished executing, the control must be returned to the core
application. In order to achieve this, a mechanism that allows resuming with the interrupted
behavior is needed. The process of resuming the execution of the core application can be
done either implicitly or explicitly, depending on the kind of connection. Moreover, this step
might imply the need for explicitly retrieving rule results from the rule after its application.
When rule results are needed in the process of resuming the core application’s execution,
they have to be retrieved from the rule right after the rule’s execution whereas they can be
retrieved at a later point in time otherwise.

A typical AOP implementation of a rule connection consists of one or more related as-
pects. Every connection aspect is in charge of encapsulating one or more connection ele-
ments. Therefore, when looking at the code of the different aspects implementing a rule
connection, different code fragments can be distilled corresponding to the realization of
different connection elements. However, the code realizing each of the involved elements is
not always well-localized in the aspect’s implementation but tangled with code addressing
other connection elements — in the same connection aspect or in others. This phenomenon

65 4.3 Aspect Patterns for Rule Connection

is referred to as tangled aspect code [Fab05]. We observe that this problem is due to the
existence of dependencies between the connection elements which impede the definition of
a separate and well-modularized AOP implementation for each of them. By dependency we
mean the fact that opting for a variation of a certain element — such as the rule applica-
tion time — restricts the set of possible variations for other elements — such as the kind
of information that can be passed to the rule at that point in time. These dependencies
challenge the implementation of the rule connection aspects.

In the rest of this chapter we propose AOP implementations per element and per variation
of the elements, taking into account the mentioned dependencies that exist between the
elements. These dependences shape the kind of AOP solution that is needed for realizing
the connection of a given rule. The connection elements and their variations are also
discussed in [Cib02; CD06a; CDJ06b] (the first two papers consider rules implemented also
as rule objects whereas the latter considers a rule-based language for the implementation
of the rules). The identified dependences are also discussed in [CD06a].

To summarize, we have identified six elements which are inherent to the connection of
the rules with the core application, namely:

A) determining the rule application time

B) determining the period of time in which the rule is considered active

C) making the required information available to the rule

D) triggering the rule

E) retrieving the rule results

F) proceeding with the interrupted core application’s execution

The coming sections are going to dig into the possible AOP solutions for the realization
of these connection issues and their variations.

4.3 Aspect Patterns for Rule Connection
In order to provide a general overview of how a typical JAsCo solution looks, we first
consider the simple set-up of a rule that needs to be triggered at an event, identifying for
instance the moment a method ReturnType concreteConnectionMethod(Type1, ..., TypeN)
is executed. When no other elements are involved, a simple JAsCo aspect bean is needed
as shown in code fragment 4.1. This basic solution specifies an aspect bean containing the
definition of a hook which defines an abstract pointcut specification (capturing the execution
of any method) and an advice on that pointcut. The kind of advice will be made concrete
depending on the specific variation of elements A and B (this is analyzed in detail in the
coming sections 4.3.1 and 4.3.3). The advice first checks the rule’s condition by invoking the
condition() method on it, and in the case the condition is satisfied, it triggers the rule’s
action by invoking its action() method2. A connector is needed to deploy the abstract

2Note that triggering the rule’s condition in the isApplicable() method of a JAsCo aspect bean is not
equivalent to the solution presented here. This is because the moment the isApplicable() method is triggered
differs from the moment the advices of that aspect are executed. In between these two execution points,
the data upon which the condition is checked can change — as a result of the execution of other aspects —
resulting in invalid rule applications.

Chapter 4. Aspect Patterns for Business Rule Connection 66

pointcut with the signature of the concrete method: returnType concreteMethod(Type1, ...,
TypeN).

static connector BRDeployment {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 ReturnType concreteConnectionMethod(Type1, ..., TypeN));
}

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 <<advice kind>> {
 ...
 if (global.rule.condition())
 global.rule.action();
 ...
 }
 }
}

1

1a

2

1b

2

designate rule
application time
trigger
business rule

Code Fragment 4.1: Overview: JAsCo aspect bean for rule connection

4.3.1 Dynamic rule application time

A rule can conceptually be applied before, after or instead of the behavior captured by a
dynamic event designating its rule application time:

a) before an event, meaning that the rule is applied just before the execution of the
method captured by the event. The interrupted behavior is resumed after the rule
is applied. For example, a rule can be connected before the method Shop.checkout-
ShoppingBasket(ShoppingBasket) is executed.

b) after an event, meaning that the rule is applied just after the execution of the method
captured by the event, for instance after the execution of the Customer.logIn()
method. The interrupted behavior is resumed after the rule is applied.

c) instead of an event, meaning that the rule’s application completely replaces the be-
havior captured by the event. For instance, a payment rule encapsulating a new
payment policy can be connected in replacement of the standard way of processing
payment, implemented in the method Shop.proceedPayment().

Solution

In JAsCo, independently of the connection case — before, after or instead of — an ab-
stract pointcut needs to be defined capturing the execution of a generic method (as shown
in code fragment 4.1). In order to actually distinguish between the cases, a different kind

67 4.3 Aspect Patterns for Rule Connection

of advice on the abstract pointcut has to be defined. A different solution exists per case.
Moreover, for some cases, different solutions are possible which differ in the kind of advice
and the way the advice is actually implemented. The choice between these possible solu-
tions depends on the concrete variation of connection element C and also on how the rule
manipulates the passed information. In what follows, we present solutions for the possible
cases of the rule application time element, and we leave the discussion on which concrete
solution to select for the coming section 4.3.3.

a) Before rule application time
Two solutions are possible:

1) a before advice is defined which triggers the rule (shown in upper part of code
fragment 4.2).

2) an around advice is defined which first triggers the rule and then resumes the
core application’s execution by invoking proceed() (shown in lower part of code
fragment 4.2).

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 before() {
 ...
 if (global.rule.condition())
 global.rule.action();
 ...
 }
 }
}

resume
execution

designate rule
application time1

2

3

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 around() {
 ...
 if (global.rule.condition())
 global.rule.action();
 proceed();
 ...
 }
 }
}

1

2

1

2

3

trigger
business rule

Code Fragment 4.2: Two possible realizations of a ‘before’ connection

Chapter 4. Aspect Patterns for Business Rule Connection 68

b) After rule application time
Two solutions are possible:

1) an after advice is defined which triggers the rule (shown in upper part of code
fragment 4.3).

2) an around advice is defined which first resumes the interrupted behavior and
then triggers the rule (shown in lower part of code fragment 4.3). Note that
two more specific kinds of around advice could be used in this case: around
returning and after returning. An around returning advice is executed after the
joinpoint that triggers the aspect and allows manipulating and changing the
original return value. An after returning advice behaves in a similar way as the
around returning advice with the exception that the original return can only be
used and not modified.

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 after() {
 ...
 if (global.rule.condition())
 global.rule.action();
 ...
 }
 }
}

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 around() {
 ...
 proceed();
 if (global.rule.condition())
 global.rule.action();
 ...
 }
 }
}

1

1a

2

3

1a

3

2

2

resume
execution

designate rule
application time

trigger
business rule

Code Fragment 4.3: Two possible realizations of an ‘after’ connection

A rule applied before or after is typically additive in the sense that the rule’s behavior
is executed in addition to the original interrupted behavior. However note that such a rule
can also modify the way the interrupted behavior is resumed. This can be achieved only in
the case the rules are triggered from within an around advice, and by means of changing

69 4.3 Aspect Patterns for Rule Connection

the parameters of the proceed() invocation. This is explained in more detail in section
4.3.3.1.

c) Instead of rule application time
Only one solution is possible: an around advice is defined which triggers the appli-
cation of the rule (shown in code fragment 4.4). In the case the rule applies (i.e.
its condition is satisfied), the proceed() must not be invoked, this way causing the
interrupted behavior not to be resumed (part 2). If the rule is not applicable, then we
just simply need to resume the interrupted application by invoking proceed() (part
3).

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 around() {
 ...
 if (global.rule.condition())
 global.rule.action();
 else
 proceed();
 ...
 }
 }
}

1

2

31

2

3

resume
execution

designate rule
application time
trigger
business rule

Code Fragment 4.4: Realization of an ‘instead of’ connection

4.3.2 Rule Activation Time

The activation time is defined in terms of one or more dynamic events. Four base cases are
identified (other cases can be obtained by combining these base cases):

a) a rule is considered active while a certain event activationEvent executes, meaning
that the rule is only considered during the period of time while the activationEvent
is being executed

b) a rule is considered active always except during the execution of the activationEvent

c) a rule is considered active while a certain event activationEvent1 executes and while
a second event activationEvent2 is not executed.

d) a rule is considered active in the period of time initiated by the execution of a first
event activationEvent1 and terminated by the execution of a second later event acti-
vationEvent2

The activation time is an optional element in a rule connection. When not explicitly
specified it is assumed that the rule is always active (its application is not restricted to any
context).

Chapter 4. Aspect Patterns for Business Rule Connection 70

Solution

A different AOP solution is proposed per case of activation time, as follows (consider that
activationEvent captures the execution of a concrete method concreteActivationMethod):

a) activation while activationEvent
An extra abstract method parameter activationMethod(..args1) must be added to
the constructor of BRConnectionHook, representing the activation method. A cflow-
(activationMethod) pointcut must be added to the pointcut definition of BRCon-
nectionHook shown in code fragment 4.1. These additions are shown in code fragment
4.5. The abstract activationMethod is deployed on the concrete method concreteAc-
tivationMethod (as done in the modified connector BRDeployment shown in the lower
part of code fragment 4.5). This deployment ensures that the core application is only
interrupted when the concrete methods bound to connectionMethod are executed in
the control flow of the concrete methods bound to activationMethod.

static connector BRDeployment {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 ReturnType concreteConnectionMethod(Type1, ..., TypeN),
 ReturnType' concreteActivationMethod(Type1', ..., TypeN'));
}

1

4

1a-4a

1c
4b

1b

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args0),activationMethod(..args1)){
 execution(connectionMethod) && cflow(activationMethod);
 }
 <<advice kind>> { ... }
 }

designate rule
application time

designate rule
activation time

Code Fragment 4.5: Rule activation considered ‘while’ execution of event

b) activation not while activationEvent
Analogously to the previous case, an extra abstract method parameter activation-
Method(..args1) must be added as an abstract method parameter to the constructor
of BRConnectionHook, representing the activation method. A !cflow(activation-
Method) pointcut is added to the pointcut definition of BRConnectionHook. These
additions are shown in code fragment 4.6. The deployment of this hook on the concrete
methods is identical to the previous case a) (lower part of code fragment 4.5). As a
result, the core application is only interrupted when the concrete methods bound
to connectionMethod are executed except those in the control flow of the concrete
methods bound to activationMethod.

c) activation while activationEvent1 and not while activationEvent2
A solution for this case combines the two solutions presented for the cases a and

71 4.3 Aspect Patterns for Rule Connection

static connector BRDeployment {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 ReturnType concreteConnectionMethod(Type1, ..., TypeN),
 ReturnType' concreteActivationMethod(Type1', ..., TypeN'));
}

4a

4b

1a

1b

1c

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args0),
 activationMethod(..args1)) {
 execution(connectionMethod) && !cflow(activationMethod);
 }
 <<advice kind>> { ... }
 }

1

4

designate rule
application time

designate rule
activation time

Code Fragment 4.6: Rule activation considered ‘not while’ execution of event

b: two abstract method parameters activationMethod1(..args1) and activation-
Method2(..args2) must be added as abstract method parameters to the constructor
of BRConnectionHook. Furthermore, a cflow(activationMethod1) && !cflow(acti-
vationMethod2) pointcut is added to the pointcut definition of BRConnectionHook.
These additions are shown in code fragment 4.7. As a result, the core application
is only interrupted when the concrete methods bound to connectionMethod are ex-
ecuted within the control flow of activationMethod1 and not in the control flow of
activationMethod2.

d) activation between activationEvent1 and activationEvent2
The execution of the core application must be interrupted at two specific moments:
activationEvent1 denoting the start of the activation period and activationEvent2 de-
noting the end of it. A stateful hook [VSCF05] must be added to the aspect bean
which defines two transitions (p1 and p2) capturing the execution of two abstract
method parameters activationMethod and deactivationMethod (which will then be
deployed in the connector on the concrete methods whose executions are denoted by
activationEvent1 and activationEvent2 respectively) (shown in code fragment 4.8). A
before and an after advice are defined on p1 and p2 respectively in charge of setting
and unsetting a flag (which is a local variable defined in the aspect bean) indicat-
ing whether the rule is active or not. Additionally, the isApplicable method of the
connection hook must return the value of this flag. The isApplicable method is a
special JAsCo method that is executed when a joinpoint is encountered and deter-
mines whether the aspect should be applied. As a consequence, in the case the value
is true, the connection advice will be executed and therefore the rule will be triggered.

The presented solution assumes the core application to be single-threaded. When a
multi-threaded application is considered, the connector must precede the instantiation

Chapter 4. Aspect Patterns for Business Rule Connection 72

static connector BRDeployment {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 ReturnType concreteConnectionMethod(TypeX1,...,TypeXn),
 ReturnType1 concreteActivationMethod1(TypeY1,...,TypeYn),
 ReturnType2 concreteActivationMethod2(TypeK1,...,TypeKn));
}

1a
4a
1b
4b

1c

1d

4c

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args0),
 activationMethod1(..args1), activationMethod2(..args2)) {
 execution(connectionMethod) &&
 cflow(activationMethod1) && !cflow(activationMethod2);
 }
 <<advice kind>> { ... }
 }

1

4

designate rule
application time

designate rule
activation time

Code Fragment 4.7: Rule activation considered ‘not while’ execution of event

class BRConnection {
 ...
 boolean active = false;
 ...
 hook ActivationHook {
 ActivationHook(activationMethod(..args0),
 deactivationMethod(..args1)) {
 start > p1;
 p1: execution(activationMethod) > p2;
 p2: execution(deactivationMethod) > p1;
 }
 before p1() { global.active = true; }
 after p2() { global.active = false; }
 }

 hook BRConnectionHook {
 ...
 isApplicable() { return global.active; }
 ...
 }
}

4a

4b

4c

4 designate rule
activation time

Code Fragment 4.8: Rule activation considered ‘between’ the execution of two events

73 4.3 Aspect Patterns for Rule Connection

of the BRConnectionHook with the keyword perthread. Note that the use of stateful
aspects might be overkill for implementing an activation period denoted by two events.
It is also possible to use two stateless hooks that keep track each of them of the start
and end of the activation period by setting to true and false the variable active of
the aspect bean. Although this solution is valid, manually keeping track of the aspect
state might result in complex aspect code [VSCF05]. Thus, a stateful solution as the
one presented here is desired in those cases.

4.3.3 Passing/Retrieving Information to/from the Rule

For the rules to be able to apply, required information needs to be made available to the
rules. Some rules only need global information always available in the system, such as the
current system date. Global system information is directly reachable by the rules. When
non-global information is required, several issues need to be taken into account: first we
need to identify which kind of information is required by the rules. Different cases are
identified:

- the information is reachable at the rule application event or not:

• contextual: it represents core application’s objects reachable from the context in
which rules are triggered

• non-contextual: it represents core application objects that are not reachable in
the context of the event at which rules are executed

- the data structures are present in the core application or not:

• anticipated: it exists in the core application

• unanticipated: it is not present in the current implementation

Note these two cases are orthogonal to each other, and thus different combinations
are possible: contextual-anticipated, contextual-unanticipated, captured-anticipated and
captured-unanticipated information.

A second important issue is deciding when the required information is passed to the rule.
For this issue, it is not important whether the information is anticipated or unanticipated
but we do need to distinguish between the cases of contextual and captured information:
the contextual information needs to be passed right before the rule application is triggered,
whereas the captured information can be passed both at rule application time or it can be
made available to the rule at a different point in time.

Also, contextual and non-contextual information that gets modified by the rule has to be
retrieved from the rule right after its application, because it has to be used when proceeding
with the interrupted behavior.

In the following sections we analyze these issues in detail and present AOP solutions
for each variation. For the first two cases we assume we are dealing with anticipated
information.

Chapter 4. Aspect Patterns for Business Rule Connection 74

4.3.3.1 Contextual Information

In AOP, a pointcut can expose data that is present in the context of a join point at which
the application is interrupted. In JAsCo, contextual data is directly exposed by pointcuts,
without the need for having to explicitly capture it first (this is not the case in other AOP
approaches, such as AspectJ). The possible objects that can be exposed by a pointcut cor-
respond to the target object and the parameters of the interrupted behavior. These objects
are directly accessible from within any advice defined on that pointcut. In JAsCo, the tar-
get object is directly accessible using the thisJoinPointObject construct and the arguments
of the abstract method parameter are reachable by referring to the corresponding variable
(e.g. args in code fragment 4.1). The return value can only be obtained in an around advice
by explicitly invoking proceed(). We can use this pointcut context exposure mechanism of
AOP in order to access data available in the context of the pointcut designating the rule
application time (shown in code fragment 4.1). This exposed data can then be passed to
the rule as parameters of its apply() method from within the advice that triggers the rule
application.

However, the actual solution for passing the required objects to the rule depends on
which kind of information is needed and how it is manipulated by the rule3. Depending on
the case, a different kind of advice is needed. We analyze all the possibilities per connection
case:

- before connection: the available contextual information is the target object and
the parameters. Two cases are possible depending on whether the rule assigns new
values to the passed objects or not (depicted in code fragments 4.9 and 4.10):

1) the rule assigns the passed contextual information: this means that the rule
has determined new values for the original target object or parameters. These
new values need to be explicitly retrieved after the application of the rule and
need to be taken into account when resuming the invocation of the interrupted
behavior. Therefore, an around advice is needed, since it allows interrupting the
application at a certain point, adding some extra business logic and proceeding
with the original execution, eventually considering a different target object and
parameters. In this around advice we first pass the information to the rule,
trigger the rule, retrieve results and finally proceed. This case is depicted in the
upper part of code fragments 4.9 and 4.10 (the former shows the case in which the
target object is passed to the rule and assigned a new value, whereas the latter
shows the same situation for the jth parameter of the interrupted method).

3The different cases that are listed here are mainly driven by the way parameter passing is supported
in Java, since this is the object-oriented language our approach is based upon. In Java parameters are
passed by value. Therefore, anything passed to the rule remains unchanged in the caller’s scope when the
rule returns. However, we are interested in changing the caller’s context with results produced by the rule.
Therefore, whenever the rule assigns a new value to the passed parameters, in order to make these new
values available in the caller’s context, we need to explicitly retrieve them from the rule. This can be done
by invoking methods on the rule. If the parameters are not primitive values but actual objects, the rule can
also assign values to some attributes of those objects — that are obtained through attribute navigation —
in which case there is no need anymore for retrieving results, as the modified objects are the same objects
available in the caller’s scope. When the base object-oriented language supports call-by-reference, the need
for explicitly retrieving rule results from the rules becomes obsolete.

75 4.3 Aspect Patterns for Rule Connection

A) target object assigned in rule

B) target object not assigned in rule

5

1a

1b-5a
5b

2

3a-5c

3b

1a

1b-5a
5b

2

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 around() {
 global.rule.setX(thisJoinPointObject);
 if (global.rule.condition()) {
 global.rule.action();
 return proceed(global.rule.getX(), args);
 }
 else return proceed();
 }
 }
}

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 before() {
 global.rule.setX(thisJoinPointObject);
 if (global.rule.condition())
 global.rule.action();
 }
 }
}

resume
execution

designate rule
application time1

2

3

trigger
business rule

pass and retrieve
required data

Code Fragment 4.9: Before connection: exposing and passing target object to rule

Chapter 4. Aspect Patterns for Business Rule Connection 76

parameter j assigned in rule

parameter j not assigned in rule

1a

1b-5a
5b

5c

3

2

1a

2

1b-5a
5b

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 around() {
 global.rule.setX(args[j]);
 if (global.rule.condition()) {
 global.rule.action();
 args[j] = global.rule.getX());
 }
 return proceed(thisJoinPointObject, args);
 }
 }
}

class BRConnection {
 BRClass rule = newBRClass(...);
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 before() {
 global.rule.setX(args[j]);
 if (global.rule.condition())
 global.rule.action();
 }
 }
}

5

resume
execution

designate rule
application time1

2

3

trigger
business rule

pass and retrieve
required data

Code Fragment 4.10: Before connection: exposing and passing parameter to rule

77 4.3 Aspect Patterns for Rule Connection

2) the rule does not assign the passed contextual information: in this case, a before
advice suffices to trigger the rule’s action, as the original event execution does not
need to be modified. This case is depicted in the lower part of code fragments
4.9 and 4.10 (the former assumes the target object is passed to the rule but
not assigned, whereas the latter assumes the same for the jth parameter of the
interrupted method).

- after connection: the available contextual information is the target object and the
parameters and eventually the original return value. Two cases are possible depending
on whether the rule assigns new values to the passed objects or not:

1) the result of proceeding with the interrupted behavior is passed to the rule: Two
cases are possible: i) in the first case the original value is passed to the rule
where it is not assigned a new value. Then, an after returning advice is needed
which passes the original return value to the rule, triggers the rule and returns
the original result as a result of the advice’s execution (shown in upper part of
code fragment 4.11); ii) in the second case, the original value is passed to the rule
where it is assigned a new value. Then, an around returning advice is needed
which passes the original return value to the rule, triggers the rule and queries
the rule in order to retrieve the new assigned value. This value is then returned
as the result of the advice’s execution (shown in lower part of code fragment
4.11).

return value passed to and not assigned by rule

return value passed to and assigned by rule

1-5a
5b

2

1-5a
5b

2

3a-5c

3b

class BRConnection {
 BRClass rule = ...
 hook BRConnectionHook {
 ...
 after returning(Object result) {
 global.rule.setX(result);
 if (global.rule.condition()){
 global.rule.action();
 }
}

class BRConnection {
 BRClass rule = ...
 hook BRConnectionHook {
 ...
 around returning(Object result) {
 global.rule.setX(result);
 if (global.rule.condition()){
 global.rule.action();
 return global.rule.getX();
 }
 else return result;
}

5

resume
execution

designate rule
application time1

2

3

trigger
business rule

pass and retrieve
required data

Code Fragment 4.11: After connection: exposing and passing return value object to rule

2) the result of proceeding with the interrupted behavior is not passed to the rule:
an after advice suffices to trigger the rule’s action, after the execution of the

Chapter 4. Aspect Patterns for Business Rule Connection 78

connection event. This solution is shown in code fragment 4.12. An after advice
is suitable independently of whether the parameters or the target object are
passed to the rule (in which case they are passed before the actual rule triggering,
as shown in part 5b of Figure 4.12). As we are in the case of an after connection,
the execution of the interrupted behavior is completed before the rule is actually
triggered. Therefore, whether or not the rule assigns new values to the objects
it received — parameters or target object — is irrelevant, as the new values can
no longer be taken into account in the execution of the interrupted behavior.

1-5a

2

5b

class BRConnection {
 BRClass rule = ...
 hook BRConnectionHook {
 ...
 after() {
 ...
 global.rule.setX(thisJoinPointObject);
 global.rule.setY(args[k]);
 ...
 if (global.rule.condition())
 global.rule.action();
 }
 }
}

5

designate rule
application time1

2 trigger
business rule
pass and retrieve
required data

Code Fragment 4.12: After connection: not passing return value to rule

- instead of connection: this means that when the rule’s condition is satisfied, the
interrupted behavior must be dropped and replaced by the behavior specified by the
rule’s action. To this purpose, an around advice is needed which triggers the rule and
does not proceed with the original execution. This is shown in code fragment 4.13.
When the rule’s condition is not satisfied, a simple proceed() must be executed to
resume the interrupted behavior.

4.3.3.2 Non-Contextual Information

In order to capture the required unavailable object, we first need to identify the moment
when it is still reachable. We should then be able to interrupt the execution of the core
application at this moment, which can be any point in the execution of the core applica-
tion after the creation of the pertinent object and before the point in time at which the
rule is triggered. At that point, the object needs to be captured and made available to
the event that triggers the rule. To this purpose a second JAsCo hook — that we call
BRCaptureHook — is added to the same BRConnection aspect bean, as shown in code frag-
ment 4.14. BRCaptureHook defines a pointcut designating the points in time at which the
required objects are reachable and an advice that stores the exposed required objects in
global variables of the aspect bean. Once the required objects are captured and stored in

79 4.3 Aspect Patterns for Rule Connection

The value of rule attribute X is the return value of the advice

1-5

2

3a

3b

class BRConnection {
 BRClass rule = ...
 hook BRConnectionHook {
 ...
 around() {
 if(global.rule.condition()){
 global.rule.action();
 return global.rule.getX();
 }
 else return proceed();
 }
 }
}

5

resume
execution

designate rule
application time1

2

3

trigger
business rule

pass and retrieve
required data

Code Fragment 4.13: Instead of connection: the rule’s attribute X represents the new return value
to be consider when proceeding with core application’s execution

the aspect bean, they can be accessed and used by other hooks defined in the same aspect
bean, as for instance the connection hook from where the rule is actually triggered. It
is in the advice of this last hook that the captured objects are passed to the rule. This
is done in the same way as for the contextual information (thus not shown here). Note
that the presented solution assumes the core application to be single-threaded. When a
multi-threaded application is considered, the connector must precede the instantiation of
the BRConnectionHook and the BRCaptureHook with the keyword perthread.

4.3.3.3 Unanticipated Information

When the information does not exist in the current implementation, a mechanism is needed
so that we are able to extend the core application with the new information. JAsCo’s virtual
mixins allow extending the core application objects with new methods. Code fragment
4.15 shows a possible solution: an interface defining the methods to be added to the class
AClass is defined in part labeled with 7a; an implementation for this interface is provided
by the hook Introduce, shown in part labeled with 7b; this hook can also define attributes
that might be needed in order to implement the added methods. In order to actually
introduce the two methods defined in the Introduce hook to all the instances of the class
that is extended, the Introduce hook must be instantiated perobject of that class, as
it shown in the connector named IntroduceMixin shown in part labeled with 7c. This
instantiation makes sure that a different hook exists per instance of AClass. The added
methods can be invoked from either the advice that triggers the rule application, i.e. from
within BRConnectionHook, or from hooks that capture non-contextual information, e.g.
BRCaptureHook, as shown in the lower part of code fragment 4.15.

Once the required information is added, it can be used the same way as anticipated
information. Therefore, the cases contextual-unanticipated and captured-unanticipated are
analogous to the cases contextual-anticipated and captured-anticipated respectively.

Chapter 4. Aspect Patterns for Business Rule Connection 80

capture non-
contextual data

static connector BRDeployment {
 BRConnection.BRConnectionHook hook0 =
 new BRConnection.BRConnectionHook(
 <<signature concrete connection method>>);
 ...
 BRConnection.BRCaptureHook hook1 =
 new BRConnection.BRCaptureHook(
 <<signature concrete capturing method>>);
}

class BRConnection {
 ...
 Object obj;
 ...
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 <<advice>> {
 ... //use obj to trigger rule
 }
 }
 hook BRCaptureHook {
 BRCaptureHook(captureMethod(..args)) {
 execution(captureMethod);
 }
 <<advice>> {
 ... //store contextual object in variable obj
 }
 }
}

6

1b

1a

6a

6b

6c

designate rule
application time1

Code Fragment 4.14: Capturing non-contextual information

81 4.3 Aspect Patterns for Rule Connection

interface IExtendedObject extends jasco.runtime.mixin.IMixin {
 public Type1 method1(...);
 ...
 public TypeN methodN(...);
}

class IntroduceUnanticipatedInfo {
 hook Introduce implements IExtendedObject {
 TypeX attributeX = valueX;
 Introduce(void method(..args)) {
 execution(method(args));
 }
 public Type1 method1(...) { //concrete implementation 1 }
 public TypeN methodN(...) { //concrete implementation N }
 }
}

static connector IntroduceMixin {
 perobject IntroduceUnanticipatedInfo.Introduce introHook =
 new IntroduceUnanticipatedInfo.Introduce(* ConcreteClass.*(*));
}

add and access
unanticipated data

1a

1b-7a

7b

7a

7c

7b

6

7

class BRConnection {
 hook BRConnectionHook {
 BRConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);
 }
 <<advice>> {
 //obj is contextual object of Type ConcreteClass
 IExtendedObject extendedObj = (IExtendedObject) obj;
 extendedObj.method1(...);
 ...
 extendedObj.methodN(...);
 }
 }
 hook BRCaptureHook {
 BRCaptureHook(captureMethod(..args)) {
 execution(captureMethod);
 }
 <<advice>> {
 //obj is contextual object of Type ConcreteClass
 IExtendedObject extendedObj = (IExtendedObject) obj;
 extendedObj.method1(...);
 ...
 extendedObj.methodN(...);
 }
 }
}

capture non-
contextual data6

designate rule
application time1

Code Fragment 4.15: Extending the core application with unanticipated information

Chapter 4. Aspect Patterns for Business Rule Connection 82

4.4 Summary
In this chapter we have presented aspect patterns for the implementation of crosscutting rule
connections. We have identified and presented several recurrent connection elements that
can be combined in different ways and vary under certain circumstances. These connection
elements are solution-independent. Moreover, we propose solutions to these connection
elements that only rely on the AOP characteristics identified in the previous chapter (section
3.3.1) and therefore are generic. Although JAsCo was used to illustrate these solutions, the
aspect patterns do not rely on the concrete features of this language. Aspect patterns
respect the same structure independently of the concrete AOP approach adopted and thus,
given another AOP approach that adheres to those AOP characteristics, implementing these
aspect patterns could be done in a similar way with minimal effort.

We observe that, although aspects are a good solution to the problem of decoupling
crosscutting rule connection code, they exclude the domain expert. Moreover, writing these
aspects by hand is a complex task, as they need to consider and tackle all the recurrent
issues identified in this chapter. The next chapter provides a solution to the expression of
rule connections at the domain level and removing the need for having to implement these
connection aspects by hand.

Chapter 5

A Domain Model for Domain
Entities, High-Level Business Rules
and High-Level Business Rule
Connections

So far we have presented solutions based on AOP for the decoupling of the crosscutting
rule connection code from core applications. We have also shown that AOP is a suitable
technology for achieving our goal and presented reusable AOP-based patterns as guidelines
for tackling several recurrent connection issues that we identified (chapter 4). In this chapter
we are concerned with one of our ultimate goals, which is the consideration of the domain
expert as an active participant in the process of understanding, defining business rules and
integrating them with the existing application.

In this chapter we propose moving to a higher level of abstraction by building a high-level
domain model which incorporates ideas from Model-Driven Engineering (MDE) to achieve
the integration of high-level and executable business rules in existing applications. First
of all, the ideas behind MDE are presented in section 5.1. Afterwards, the domain model
is presented: we show how domain concepts can be explicitly captured (section 5.2) and
how business rules and their connections to an existing core application can be defined in
terms of those explicit domain concepts (sections 5.3 and 5.4 respectively). We pursue this
domain model to be high-level, meaning that no details are exposed about the concrete
implementation of the core application where the rules are applied. As a consequence,
reusing domain knowledge among different applications on the same domain or among
different versions of an evolving application becomes possible. Also, new domain vocabulary
that appears due to domain evolution can be represented. The translation from high-level
rules and connections to their implementation is achieved automatically and transparently
for the domain experts (section 5.6). High-level rules are transformed into rule-objects
whereas rule connections are transformed into aspects (following the patterns defined in
chapter 4). An important requirement for the implementation of these transformations,
is the existence of a mapping which defines how domain entities — involved in the high-
level definitions — are realized at the level of the implementation. This mapping will be the
subject of our next chapter 6 and thus in the rest of the current chapter we make abstraction
of the way domain entities are defined and mapped, and we concentrate on their use as part
of the definition of the business rules and their connections.

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 84

5.1 Model-Driven Engineering

Model-driven engineering is an approach to software engineering which aims to raise the
level of abstraction, and to develop and evolve complex software systems by means of
manipulating models. Therefore, models are its primary assets. The manipulation of models
is achieved by means of model transformation, which is considered to be the heart and soul
of model-driven engineering [SK03]. A model transformation can encode a refinement step,
an evolution step, and even a code generation step and can take one or multiple source
models and produce one or multiple target models.

The ultimate goal of MDE is to have a software development environment at our disposal
with off-the-shelf models and mapping functions that transform one model into another.
Mellor et al. [MCF03] state that “Model-driven development is simply the notion that we
can construct a model of a system that we can then transform into the real thing”. This
definition remarks the importance of both MDE components, models and transformations:
models are meant to be transformed in order to obtain the expected result. Adopting
this idea in our work, we envision having a model that can raise the level of abstraction
by means of explicitly capturing domain concepts and expressing business rules and their
connections in terms of those domain concepts. The real thing is then having ‘executable’
implementations for the business rules and connections that can be directly integrated in
existing — and even running — applications.

5.1.1 Models

A model describes a certain view of the software system at a certain level of abstraction.
For example in a bank application, different models can be defined to represent customer
management, transaction management and account management. Models can be specified
at different levels of abstraction and sometimes also in different languages. Mellor et al.
[MCF03] define a model as:

A coherent set of formal elements describing something (e.g., a system, bank, phone or
a train) built for some purpose that is amenable to a particular form of analysis, such as:

• communication of ideas between people and machines,

• completeness checking,

• race condition analysis,

• test case generation,

• viability in terms of indicators such as cost and estimation,

• standards,

• transformation into an implementation.

5.1.1.1 Domain Modeling

When building a domain model, a first required step consists of getting acquainted with the
domain of interest. In software engineering the term domain is typically associated with
two broad interpretations: a business domain and an application domain [WPD92]. The

85 5.1 Model-Driven Engineering

first one refers to a domain as a subset of knowledge about some area in the real world
confined to a particular business. For example domain knowledge about the insurance
domain include the concepts of insurance policy, claim, and policy holder. The second
interpretation of domain does not refer to the real-world domain concepts but to knowledge
about software applications in a certain field, for instance in the field of middleware or
distributed applications. Therefore, this interpretation of domain focuses on the solution
space, that is the domain of computing technologies themselves, instead of the problem
space.

Over the past five decades, software researchers and developers have been focusing on
the solution space by means of creating suitable abstractions on top of the underlying com-
puter environment that could help them concentrate on their design intent rather than the
complex low-level details. In [Sch06], Schmidt observes that even though current languages
and platforms have considerably raised the level of abstraction, they still have a “computing-
oriented” focus rather than a “domain-oriented” focus. This means that current languages
and platforms succeed in providing abstractions of the solution space rather than abstractions
of the problem space that express designs in terms of concepts in problem domains, such as
telecom, aerospace, healthcare, insurance, and biology. Therefore, MDE technologies offer
a promising approach to address the inability of third-generation languages to alleviate the
complexity of platforms and express domain concepts effectively.

5.1.1.2 Gathering and Representing Domain Knowledge

The process responsible for creating a domain model is referred to as domain analysis.
Obtaining a comprehensive body of domain knowledge is done in part by applying several
knowledge acquisition techniques. Such techniques are mainly targeted at the elicitation,
the analysis, and the organisation of knowledge coming from different sources. Some of
the most common approaches to identify the core concepts are interviews, observations,
and document analyses. This process has as objective getting used to the common jargon
or domain vocabulary in which experts describe the concepts and rules that govern the
domain of interest. It is outside the scope of this dissertation to give a detailed description
of the different knowledge acquisition techniques. For more information on the process of
engineering knowledge-intensive software systems the interested reader is referred to the
Common KADS methodology [SAA+00].

In order for the domain knowledge to be of use, it has to be encoded in a suitable knowl-
edge representation mechanism. This is not a trivial issue as it has to do with the central
problem of encoding human knowledge in all its various forms. Knowledge Representation
(KR) has long been considered one of the principal elements of Artificial Intelligence, and a
critical part of all problem solving [New82]. One of the most important developments in the
application of KR has been the so-called frame-based KR languages or systems (proposed by
Minsky in 1981 [Min81]). Frame-based systems are knowledge representation systems that
use frames as their primary means to represent domain knowledge. A frame is a structure
for representing a concept or situation. Attached to a frame are several kinds of informa-
tion, for instance, definitional and descriptive information and how to use the frame. While
frame-based KR languages vary from each other in some degrees, they share some common
characteristics: (1) frames are organized in hierarchies; (2) frames are composed out of slots
(attributes) for which fillers (scalar values, references to other frames or procedures) have to
be specified or computed; and (3) properties (fillers, restriction on fillers, etc.) are inherited

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 86

from superframes to subframes in the hierarchy according to some inheritance strategy. It is
important to note that, besides the inheritance relation, frames do not provide the explicit
concept of relations between frames but they use the concept of slot for representing these
relations.

Based on the original proposal, several knowledge representation systems have been built
and the theory of frames has evolved. Important descendants of frame-based representation
formalisms are description logics that capture the declarative part of frames using a logic-
based semantics. Moreover, the object-oriented paradigm has adopted the organizational
principles introduced by frame-based systems.

An important branch in AI that is concerned with KR mechanisms deals with the so-
called ontologies [Gru93]. An ontology is a data model that represents a set of concepts
within a domain and the relationships between those concepts. It is used to reason about the
objects within that domain. Ontologies are typically used to describe domain vocabularies
and are actively used in artificial intelligence, the semantic web, software engineering and
information architecture as a form of knowledge representation about the world or some
part of it. The typical elements described by an ontology are:

• Individuals: the basic or “ground level” objects

• Classes: sets, collections, or types of objects

• Attributes: properties, features, characteristics, or parameters that objects can have
and share

• Relations: ways that objects can be related to one another

Typically attributes are used to represent primitive values whereas relations are used to
relate non-primitive classes. Some common relationships between concepts are classifica-
tion (instance-of, member-of), aggregation (part-of), generalisation (is-a, subclass-of, a.k.a.
subsumption), and partitioning (group, context) of the concepts.

From a software engineering point of view, and more in particular the MDE point of
view, domain modelling is concerned with describing the conceptual view of the problem
domain by means of a modeling language. The most representative general-purpose mod-
eling language is the Unified Modeling Language (UML), which has become the ‘de facto’
modeling language for modeling software systems. The UML can also be used as a basis
for domain-specific extensions — by means of the definition of stereotypes and profiles —
and reuse. Other possible modeling languages can be mentioned, which might be preferred
over UML for specific domains or applications: Object Role Modelling (ORM [Hal01]) and
Entity Relationship Modeling (ER [Che76]).

5.1.1.3 Domain-Specific Languages

An important path in MDE which focuses on addressing the issues of a particular domain
is the one on domain-specific languages (DSLs) [vDKV00]. A DSL is designed to offer ap-
propriate notations and abstractions inherent to a particular domain. It is tailored for a
particular domain and therefore captures precisely the semantics of that domain. A DSL
allows software development to be done quickly and effectively, yielding programs that are
easy to understand, reason about, and maintain [Hud96]. Different DSL approaches can be

87 5.1 Model-Driven Engineering

found, which focus on either problem domains (from the real-world) such as for example the
financial domain [vD97], or application domains such as the domain of software architectures
(e.g. [MR97]), distributed applications [Fuc97] and transaction management [Fab05; FC05].

5.1.2 Transformations

Models are specified at different levels of abstraction and sometimes also in different lan-
guages. Transformation from one or multiple source models to one or multiple target models,
called model transformation is an important issue within MDE. In Kleppe et al. [KWB03]
the following definition of model transformation is provided:

“A transformation is an automatic generation of a target model from a source model,
according to a transformation definition. A transformation definition is a set of transfor-
mation rules that together describe how a model in the source language can be transformed
into a model in the target language. A transformation rule is a description of how one or
more constructs in the source language can be transformed into one or more constructs in
the target language”

In [Sch06], Schmidt remarks the essential role played by transformations in MDE, as
they are able to take models as input and synthesize various types of artifacts as output —
such as source code, simulation inputs, XML deployment descriptions, or alternative model
representations. The ability to synthesize artifacts from models helps ensure the consistency
between application implementations and analysis information associated with functional
and QoS requirements captured by models. This automated transformation process is often
referred to as “correct-by-construction”, as opposed to conventional handcrafted “construct-
by-correction” software development processes that are tedious and error prone.

5.1.2.1 Classifying Transformations

Transformations can be classified according to different characteristics, as presented in
[MCG05]. In this taxonomy, two orthogonal dimensions are defined:

• Horizontal versus vertical:

– Horizontal transformation indicates transformation between different models at
the same level of abstraction. Model refactoring is an example of such a trans-
formation because the source model is restructured and the target models are
at the same level of abstraction. In the next section, we go into more detail on
model refactoring.

– Vertical transformation indicates a transformation where the source and target
models reside at different levels of abstraction. Refinement is an example of such
a transformation. The original model and its refined version are at different levels
of abstraction.

• Rephrasing versus translation:

– Rephrasing indicates a transformation where the models are expressed in the
same modelling language. This kind of transformation is also called an endoge-
nous trans- formation. Examples of rephrasing are optimisation, which aims

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 88

at improving certain operational properties while preserving the semantics of
the software, and refactoring which aims at improving certain software quality
characteristics while preserving the software’s behaviour.

– Translation indicates a transformation where the source and target models are
ex- pressed in different languages. This kind of transformation is also called an
exogenous transformation. Examples of translation are reverse engineering which
extracts a higher-level specification from a lower-level one, and migration which
translates a program written in one language to another, while keeping the same
level of abstrac- tion.

In this dissertation we propose transformations that take as input high-level specifi-
cations — expressed in the proposed high-level rule and rule connection languages — and
produce, as output, concrete Java and JAsCo code respectively. Therefore, as we move from
a higher level of abstraction to a lower one, they fit into the category of vertical transfor-
mations. Moreover, our transformations operate on source specifications that are expressed
in a different language than the target one, and therefore also classify as translations.

5.2 Domain Entities
In our approach, the domain vocabulary of interest can be explicitly captured as domain
entities. Domain entities are the building-blocks used in the definition of the high-level rules
and their connection with the core application. We propose the definition of domain entities
that are based on the modeling elements typically found in data modeling approaches:
domain class, domain property and domain operation. Note that as our domain model
builds on top of an existing object-oriented application, the chosen domain entities have
an object-oriented flavour. In section 5.1.1.2 we have mentioned two approaches for the
explicit representation of domain knowledge: the slot-based approach (from frame-based
systems) and the relation-based approach (from ontologies). Our approach is based on
the former and therefore uses attributes to represent relations. The only explicit relation
between domain classes that is supported by our approach is the inheritance relation.

A domain class defines a set of domain properties and a set of domain operations and can
have many instances. A domain property describes a common property or characteristic
of the instances of a domain class whereas a domain operation represents a behavior that
can be performed by instances of the domain class. They can be either used to extract
domain knowledge present in the implementation of an existing application or to express
new domain vocabulary that needs to be constructed as a result of domain evolution. These
domain entities and their relations are depicted in the upper part of the metamodel depicted
in Figure 5.1.

Figure 5.2 shows a schematic view of domain entities typically found in the e-commerce
domain. Example domain classes are Customer, Product, ShoppingBasket, ShopAccount and
Shop. A Customer typically defines domain properties such as the name, age and account
and defines domain operations to login, logout, add a product to his/her shopping basket
and become frequent. The ShopAccount domain class defines the amountSpent and bought-
Products domain properties, whereas ShoppingBasket defines the applyDiscount(discount)
domain operation and defines a domain property holding a relation to the customer that
owns it. The Product domain class defines the price domain property and finally the Shop
domain class defines operations for the checking out of a shopping basket and another one

89 5.2 Domain Entities

name
DomainClass

name
DomainProperty

name
parameterDescriptions

DomainOperation

*

1

domain
Properties* 1

domain entity
metamodel

name
Event

name

Information
AtEvent

TargetObject
AtEvent

Parameter
AtEvent

ReturnObject
AtEvent

exposedInfo
*

1

domain
Operation

domainOperations

1

*

Figure 5.1: Domain entity metamodel

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 90

for a special kind of checkout called checkout express that allows a customer to proceed
with the checkout without having to enter all the payment details. Note that the graphical
notation used in Figure 5.2 aims at illustrating the slot-based nature of the domain entities.
Note that in our approach, the relations between domain classes are implicit, since they
are determined by the way domain entities are mapped to implementation (described in
chapter 6).

Domain entities in our approach are mapped to implementation entities. This mapping
can be a simple one-to-one link to an existing implementation entity but it can also be
more complex in the case of domain entities that do not nicely map to one well-identified
implementation entity or that are even unanticipated in the existing implementation. For
these more complex mappings, support for specifying them completely at the domain level
is provided, as it will be explained in chapter 6.

price

Product

applyDiscount(discount)

ShoppingBasket

Shop

amountSpent
ShopAccount

checkoutShoppingBasket(basket)
checkoutExpress(customer)

domain operation
domain attribute
domain class

Customer

login()

becomeFrequent()
addProductToShoppingBasket(product)

logout()

boughtProducts

name
age
account

products

customers

customer

Legend

association (implicit)

Figure 5.2: Graphical representation of some typical domain entities in the e-commerce domain

Because rules are connected at well-defined points in the execution of the core applica-
tion, there is the need for modelling at the high level the concept of event. In our approach
this is modelled by a special kind of domain entity that denotes the execution of a domain
operation. This is illustrated in Figure 5.1. Events are defined in terms of existing domain
operations defined in the domain model. Also, they can expose information available in the
execution context of that operation, namely target object, parameters and return value. An
example event is the Checkout event (defined in the fragment below) which captures the
execution of the checkOutShoppingBasket(shoppingBasket) domain operation defined in the
Shop domain class and which exposes the target under the name shop, the first parameter

91 5.3 High-Level Business Rules

as basket and the return value as total.

EVENT Checkout AT Shop.checkOutShoppingBasket(shoppingBasket)
EXPOSING TARGET AS shop

PARAMETER 0 AS basket
RETURN VALUE AS total

5.3 High-Level Business Rules
The idea of defining rule-based knowledge in terms of a high-level rule language is not new
and therefore present in some existing approaches, such us JRules, QuickRules, VisualRules,
JBoss rules and HaleyRules (as explained in detail in chapter 9). Although these approaches
allow specifying rules in terms of domain concepts described in a business model, the high-
level terms are simple aliases for implementation entities and thus a one-to-one mapping
between them is required. These one-to-one mappings are not enough to: i) represent
domain concepts that have a more complex realization at the level of the implementation,
and ii) represent unanticipated domain concepts required in the specification of high-level
rules.

We propose a high-level rule language that is able to talk about domain concepts —
represented as domain entities — that have a more complex mapping to implementation.
A prototype of this language has been implemented (described in chapter 7). The main
contribution of this section is the presentation of the features of our high-level rule language
and the argumentation of their need. The concrete syntax of the implemented prototype of
this language is not a contribution, as it is based on existing languages (e.g. OCL [OMG03]).
Examples expressed in this language are given.

The different elements of a high-level business rule are depicted in the business rule
metamodel shown in Figure 5.3. This figure also shows the relations that exist between
the metamodels: a rule is defined in terms of domain entities and therefore, relations exist
between the business rule metamodel and the domain entity metamodel.

5.3.1 Rule

As proposed by other current high-level rule languages [ILO; YAS; Inn; JBob; Halb], we
define a high-level rule as a statement of the form:

IF < condition > THEN < action >

The action of the rule is only triggered when the condition is met. The following simplified
grammar defines the expressions allowed in the condition and action parts of the rule (the
complete concrete grammar of the prototype implementation of the high-level business rule
language can be found in Appendix A):

< condition > := < singleCondExp > [(AND|OR|XOR) < singleCondExp >]∗

< singleCondExp > := [NOT] < compExp >

< action > := < singleAction > [AND < action >]∗

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 92

name
Rule

domainClass
identifier

RulePropertyCondition

Action

business rule metamodel

domainClass
identifier

Rule
Parameter

matching

0..*

0..1

name
DomainClass

name
DomainProperty

name
parameterDescriptions

DomainOperation
*

1

domain
Properties* 1

is defined
in terms of

domain entity metamodel

connection
Objects

condition

action local
Objects

properties
<<PROPS>>

<<USING>><<WHERE>>

<<IF>>

<<THEN>>

name
Event

value

Information
AtEvent

TargetObject
AtEvent

index

Parameter
AtEvent

ReturnObject
AtEvent

exposedInfo
*

1

domain
Operation

refers to

is defined
in terms of

domainOperations

refers to

domainClass
identifier

Rule
LocalVariable

refers to

1

1

0..*

0..*0..*

1

*

Figure 5.3: Business rule and domain entity metamodels and their relations

93 5.3 High-Level Business Rules

The condition denotes a boolean expression that can involve the invocation of domain
operations, the retrieval of domain properties and the reference to domain objects (instances
of domain classes) specified in the rule. Also these elements can be combined in logical or
comparison expressions as well as in nested combinations. An example condition is:

customer.account.amountSpent() >= 100 OR customer.account.boughtProducts >= 10

where the result of two comparisons are related in an or expression. Each comparison in-
volves the result of navigations over the domain model. Similarly to OCL [OMG03], the dot
notation is used in our language to express navigations. In this condition, customer.account
refers to the domain property account in customer, which is an instance of the Customer
domain class; customer.account.amountSpent refers to the result of retrieving the domain
property amountSpent, defined in the domain class ShopAccount, on the account property
of the customer domain object.

The action part denotes the invocation of domain operations that can involve accessors,
references to domain objects and domain operation invocations. An example action is:

basket.applyDiscount(discount) AND customer.becomeFrequent()

where basket and customer are instances of the domain classes ShoppingBasket and Cus-
tomer respectively and where applyDiscount(discount) and becomeFrequent() are domain
operations defined in those domain classes, respectively.

The localAssignment action is a special kind of rule action that allows assigning a new
value to a localRuleObject. A localRuleObject denotes any domain object available in the
context of the rule — either a rule property, parameter or local variable (explained in the
coming sections 5.3.2, 5.3.3 and 5.3.4 respectively). As an example, suppose a rule receives
as parameter a real value under the name totalAmount. Then, its action part can include
the expression:

totalAmount IS (totalAmount - 10)

This action specifies that the total amount must be reduced by 10. Note that this
specification does not explicitly indicate how this new value should be passed to the context
of the caller which triggers this rule. It is not the responsibility of the rule to specify how
this change should be reflected. This is taken care of in the rule connection, as explained
in the coming section 5.6.

The relation between the condition and action parts of a rule and the involved domain
entities is depicted in Figure 5.3 by the relations labeled with “is defined in terms of” which
relate the Condition and Action metaclasses to the DomainProperty and DomainOperation
metaclasses from the domain entity metamodel.

5.3.2 Rule Properties

A rule condition typically defines a comparison between some domain entity and a hard-
coded value, or similarly, a rule action involves a hard-coded value. In order to avoid the

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 94

repetition of the same logic in many rules that only vary in these hard-coded values, rules
are parameterized with rule properties. In our language rule properties are defined using
the following clause:

PROPS < domainClassName > AS < rulePropertyName >

Defining rule properties enables the definition of rule templates which capture the main
business rule logic and leave out the deployment details, which need to be specified at
rule instantiation time. The definition of rule properties is depicted in the upper part of
Figure 5.3 by the association between the metaclasses Rule and RuleProperty. Note also
the relation labeled “refers to” that exist between the RuleProperty and the DomainClass
metaclasses which link the two metamodels.

5.3.3 Rule Parameters

Rules are parameterized with values from the context in which they are going to be executed.
In our language, this is done by means of the following clause:

USING < domainClassName > AS < ruleParameterName >

This is depicted in the upper part of Figure 5.3 by the association between the metaclasses
Rule and RuleParameter. The details on how these parameters are provided to the rule
at rule connection time are presented in section 5.4. Note also the relation labeled “refers
to" that exist between the RuleParameter and the DomainClass metaclasses which link the
two metamodels.

5.3.4 Rule Variables

Optionally, in order to ease the manipulation of domain objects, a rule can assign a local
name to objects available in its context. For example, a local name can be assigned to
the result of a navigation along the domain model. This is done by means of the following
clause:

WHERE < variableName > IS < navigationInDomainModel >

where a navigationInDomainModel defines a domain model navigation path which has as a
starting point either a ruleParameterName or a rulePropertyName. This enables referring
to the local variable name everywhere in the rule where that navigation is needed. The def-
inition of rule variables is depicted in Figure 5.3 by the association between the metaclasses
Rule and RuleLocalVariable. Note also the relation labeled “refers to" that exist between
the RuleLocalVariable and the DomainClass metaclasses which link the two metamodels.

An example high-level rule, BRDiscount, is shown in Figure 5.4. It applies a discount on
a customer’s shopping basket if the customer has already spent more than a certain amount
of money. This rule involves the identified e-commerce domain entities shown in Figure 5.2.

In this section we have presented the features of the proposed high-level business rule
language. As this language is inspired on existing languages [ILO; YAS; JBob; Halb], the
presented features are similar to the ones provided by those languages. The main difference
is the ability to refer to domain entities that are not just simple aliases of implementation
entities but can have a more complex mapping to implementation. Among the presented

95 5.4 High-Level Business Rule Connections

BR BRDiscount

PROPS Integer AS amount, Real AS discount

USING ShoppingBasket AS basket

WHERE targetCustomer IS basket.customer

IF targetCustomer.account.amountSpent >= amount

THEN basket.applyDiscount(discount)

Figure 5.4: BRDiscount rule expressed in the high-level rule language

features, the main contribution is the possibility of proving the rule with values taken from
the connection context at which the rule application is triggered.

5.4 High-Level Business Rule Connections

So far we have shown how AOP can successfully achieve the decoupling of the crosscutting
rule connection code and presented aspect patterns as guidelines for the implementation
of rule connection aspects (chapter 4). Even though these proposed aspects are a good
solution to the problem of crosscutting connection code, they are entirely expressed at the
programming level, and thus also exclude the domain expert. Moreover, as many different
connection elements need to be taken into account as part of the connection aspects, it is
hard also for application engineers to write these aspects by hand. In order to overcome these
limitations, in this section we propose abstracting the recurrent rule connection elements
as features of a high-level rule connection language. This language allows expressing rule
connections as separate and explicit entities at the domain level. Separating rules from
their connections (also at the domain level) allows reusing both parts independently.

The high-level business rule connections specify the details of the rules’ integration with
the core application and typically denote an event at which the rules need to be applied,
the exact moment when the rule needs to be applied at that event, and the specification of
how the required rule information is made available to the rule.

In chapter 4, six rule connection elements — part of a connection aspect — were identified:

A) determining the rule application time

B) restricting rule application time to a context designated by the rule activation time

C) making required information available to the rule

D) triggering rule

E) retrieving rule results from the rule

F) proceeding with the core application’s execution

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 96

The first three connection elements are the variable parts of any rule connection and
also determine the way the other elements need to be tackled. Thus, the high-level rule
connection language only provides features for those three variable elements and not for the
rest, since the latter are dependent on the former.

The high-level rule connection features are depicted in the rule connection metamodel
shown in Figure 5.5. This figure also shows the relations that exist between the different
metamodels: that rule connection refers to events defined as domain entities and therefore,
relations exist between the two metamodels, i.e. the business rule connection metamodel
and the domain entity metamodel. Similarly, a rule connection needs to comply with what it
is defined in the rule that is being connected, e.g. the number and types of properties passed
to the rule needs to coincide with those defined in the rule, the objects in the connection
context are mapped to the expected objects by name. Thus, relations exists also between
the rule connection metamodel and the rule metamodel.

A prototype of this language has been implemented (described in chapter 7). The main
contribution of this section is the presentation of the features of our high-level rule connec-
tion language and the analysis of how they vary.

5.4.1 Rule Connection

The first feature simply specifies the actual rule that needs to be connected. This is specified
as follows:

CONNECT < brname >

where brname is the name of the rule to be connected. If brname corresponds to a rule
template, then concrete values need to be defined for the rule, as follows:

PROPS < value1 >, ..., < valueN >

Thus, this clause is used to instantiate the rule template to an actual rule using those values.

The relations between the metaclass RuleConnection and the metaclasses Rule and RuleProp-
erty depict these two presented features (Figure 5.5).

5.4.2 Connection Event

A rule is applied at a well-defined point in the execution of the core application. In our
domain model this well-defined point corresponds to the execution of a domain operation
and is expressed by an event. From the point of view of the business analyst, events represent
points in time where it is likely to have business logic applied. In what follows we refer
to the execution of the domain operation captured by the event as event execution. We
identify three ways in which a rule can be connected at an event:

a) before an event, meaning that the rule’s condition is checked just before the execution
of the event, which is then immediately followed by (in case the condition is met)
the execution of the rule’s action. For example, a rule can be connected before a
customer is checking out, meaning the point in time just before the domain operation
checkout(shoppingBasket) defined in the domain class Shop is executed

97 5.4 High-Level Business Rule Connections

 name
Rule

domainClass
identifier

RuleProperty

business rule
metamodel (partial)

domainClass
identifier

Rule
Parameter

matching

0..*

0..1

connection
Objects

<<PROPS>>

<<USING>>

0..*

0..*

domain entity
metamodel (partial)

name
Event

name

Information
AtEvent

TargetObject
AtEvent

index

Parameter
AtEvent

ReturnObject
AtEvent

exposed
Info

1 *

 brname

Rule
Connection

value
RuleProperty

RuleApplication
Time

BEFORE AFTER INSTEAD_OF

connection
Event

1

properties
0..*<<PROPS>>

connectionTime
1

CaturePoint

capturePoints
0..*

capture
Event

1

is instance of

Mapping

exposedInfoAtEvent

mapping
Specifications

0..*

RuleActivation
Time

WHILE

NOT_WHILE WHILE_
NOT_WHILE

BETWEEN_AND

event2

event2

event1

refers to

properties

business rule
connection metamodel

activationTime
1

1 1 1

refers to

Figure 5.5: Business rule connection metamodel and its relations to the domain entity metamodel
and the business rule metamodel

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 98

b) after an event, meaning that the rule’s condition is checked just after the execution
of the event, which is then immediately followed by (in case the condition is met) the
execution of the rule’s action. For example, a rule can be connected after a customer
logs in, which maps to the point in time just after the domain operation logIn() is
executed on a customer.

c) instead of an event, meaning that the core application is interrupted just before the
execution of the event, the rule’s condition is checked and if met, its action is triggered,
completely replacing the original behavior captured by the event. For instance, a
payment rule encapsulating a new payment policy can be connected instead of the
payment process, which means in replacement of the execution of the domain operation
proceedPayment() in Shop.

We provide constructs for these three variations of the rule application time feature, as
follows:

[BEFORE|AFTER|INSTEAD OF] < eventname >

where eventname is the name of the event at which to connect the rule. The event is a
domain entity explicitly captured in the domain model. The rule application time feature
and its variations are depicted by the hierarchy of RuleApplicationTime metaclasses shown
in the rule connection metamodel (Figure 5.5). The relation from the RuleApplicationTime
metaclass to the Event metaclass depicts the fact that a rule application time is defined in
terms of an event.

Note that because in this dissertation a bottom-up approach is taken, these features are
inspired on the different ways a rule can be connected at the implementation level, namely
from a before, after or around advice (as shown in chapter 4). However, it is important to
stress that these high-level connection features are higher-level abstractions for those kinds
of advice and thus a one-to-one mapping does not necessarily exist between them (as it is
explained in section 5.6.2).

5.4.3 Rule Activation Time

The application of a given rule can be restricted to certain contexts. For instance, a dis-
count rule — which would typically be applied when the product price is retrieved — can
be restricted only to those price retrievals that occur while the customer is checking out, or
within the period of time between the moment the customer logs in and the moment he/she
adds a product to the shopping cart, or not while the customer is browsing the products. In
our connection language, the applicability context of a rule is referred to as activation time.
The specification of the activation time is optional and when not specified it is assumed
that the rule is always active. The activation time is defined in terms of one or more events
in one of the four following ways:

1.
ACTIVATE WHILE < event >

meaning that the rule is active during the period of time denoted by the execution of
event.

99 5.4 High-Level Business Rule Connections

2.
ACTIVATE NOT WHILE < event >

meaning that the rule is active not while event is executing.

3.
ACTIVATE WHILE < event1 > AND NOT WHILE < event2 >

meaning that the rule is considered active while event1 is executing but not while
event2 is executing.

4.
ACTIVATE BETWEEN < event1 > AND < event2 >

meaning that the rule is active during the period of time initiated by the execution
of event1 and terminated by the execution of event2.

The hierarchy of RuleActivationTime metaclasses and their relation to the metaclass
Event depict this feature in the rule connection metamodel (Figure 5.5).

5.4.4 Connection-Specific Information

A rule expects to receive the information declared in the USING clause at rule connection
time. At the moment the rule is connected at an event, two situations can occur:

i the required information is available in the context of the connection event and thus
it can be directly passed to the rule. The kind of information that can be passed to
the rule depends on whether the rule is connected before, after or instead of an event:
in case of a connection before or instead of an event, the parameters and the receiver
of the domain operation are exposed by the event and thus can be passed to the rule,
whereas if the rule is connected after an event, the parameters, the receiver and the
result of invoking the domain operation are available.

ii the rule requires information that is not available in the context of the connection
event: in order to capture this unavailable information, capture points are defined as
an extra component of the connection specification, as follows:

CAPTURE AT < event1 >, ..., < eventN >

where event1, ..., eventN are names of events that capture the moment when the
required information is reachable, and expose it.

Independently of whether the information is contextual or captured, it needs to be mapped
to the information required by the rule. This is done by linking the available/required
information in mapping specifications of the form:

MAPPING < event > . < infoExposed > TO < infoRequired >

These features are depicted in the rule connection metamodel (Figure 5.5) by the meta-
classes CapturePoint and Mapping and their relations.

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 100

The example shown in Figure 5.6 specifies the connection of the BRDiscount rule at the
Checkout event (defined in section 5.2). This discount should only be considered in the
period of time starting from the moment the customer becomes frequent — which is de-
noted by the event CustomerBecomesFrequent — and the moment the customer logs out
— denoted by the event CustomerLogsOut. These two events are defined as follows:

EVENT CustomerLogsIn AT Customer.login()

EVENT CustomerLogsOut AT Customer.logout()

CONNECT BRDiscount PROPS 100, 10

BEFORE Checkout

MAPPING Checkout.basket TO basket

ACTIVATE BETWEEN CustomerLogsIn AND CustomerLogsOut

Figure 5.6: High-level connection of BRDiscount rule at Checkout event

In this section we have presented the features of our high-level business rule connection
language. To our knowledge, the idea of expressing the connection of the rules in terms
of domain concepts has not been proposed before. The main contribution of this section
is the analysis of which features need to be provided by this language. These features are
abstractions that build on top of the recurrent connection elements identified in the aspect
patterns presented in chapter 4. Although a prototype implementation of this language is
provided, its concrete syntax is not the main contribution.

5.5 Transforming the High-Level Domain Model
The need for achieving a clear separation of concerns does not only apply to the code
artefacts of a model-driven system but also to the models themselves [KR03]. This is a
crucial requirement towards facilitating traceability, reuse, and evolution. We adhere to
this goal and propose the automatic translation from high-level rules and their connections
to executable implementations in OOP and AOP respectively, as explained in sections 5.6.1
and 5.6.2. SoC is achieved at both levels: at the domain level the rules are separated from
their connections whereas at the implementation level rules are encapsulated in rule objects
and rule connections are cleanly encapsulated in aspects.

When crosscutting domain abstractions are expressed at a higher level of abstraction,
their translation to implementation is not straightforward. We identify and tackle challenges
in the translation process from high-level rules and connections to implementation.

In our approach, MDE is partially applied since automatic code generation is pursued
only for the integration of high-level rules and their connections and not for the generation
of the entire application. The existence of a core implementation which is developed and
maintained using standard software engineering techniques is assumed.

101 5.5 Transforming the High-Level Domain Model

5.5.1 Introduction to Transformation Systems

Transformation systems typically divide the transformation process into a set of transfor-
mation modules or transformations. In its most general form, each transformation takes an
input and produces an output. Depending on the concrete technique used for implementing
the transformation, the input and output can correspond to one or more fragments written
in the corresponding languages. This distinction gives raise to two important characteristics
of the transformation process which have a direct impact on the division into transformation
modules: granularity and scope.

5.5.1.1 Transformation Granularity

One of the ultimate goals of language engineering is the design of well-modularized lan-
guages. Well-modularized means that the actual implementation of the language is well-
modularized. In the ideal case, each specific language feature is implemented by a different
module. Well-modularized language implementations contribute to increasing the expres-
siveness of the languages as it enables the addition of new features or the replacement
of existing ones without having to manually modify the implementation of other existing
features [Cle07].

A possible way of modularizing the implementation of a language is as separate transfor-
mations. Transformations can be categorized into fine-grained and course-grained. Fine-
grained transformations transform only a small part of the source model and produce only a
small part of the target model. On the contrary, course-grained transformations transform
a big part of the source model and produce a big part of the target model. Fine-grained
transformations are well-modularized pieces of transformation logic and therefore are more
reusable than course-grained transformations. Another advantage of fine-grained transfor-
mations with respect to course-grained ones is that the former ones can deal with variability
in a better way: when a new feature is added to the source language, a new transforma-
tion that encapsulates the change can simply be added, requiring a minimum amount of
implementation effort and avoiding having to refactor existing transformations. Because of
these advantages, we can conclude that — in general — fine-grained transformations are
preferred versus course-grained ones.

However, fine-grained transformation also present disadvantages: firstly, the smaller the
input, the less information is available for performing the transformation. When this infor-
mation is not enough, additional steps might be needed for compensating this loss. Secondly,
the smaller the input fragments, the more the transformations will depend on the results
of other transformations. This is because transformations that take small input fragments,
produce small output fragments which often have to be combined with the outputs produced
by other transformations in order to yield a complete fragment at the target side. These
additional dependencies do not appear in a coarse grained transformation modularization.
The larger the input, the larger the output and the bigger the chance that the output is a
complete and independent model.

5.5.1.2 Transformation Scope

The area covered by a single transformation step is called scope [vWV03]. First, scope
should be considered in the source and the target of the transformation. The input scope
denotes the area of the source model which is covered by the transformation. The output

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 102

scope denotes the area of the target model affected or produced by the transformation.
Second, a transformation step can have a local or global scope in both, source and target.
To better understand these notions, the term pivot is introduced [BHW97]: the pivot of a
transformation is the main input element around which the transformation step revolves.
In [vWV03], van Wĳngaarden et al. consider a transformation step to have a:

• local source scope: when it only requires the pivot (or extra information available in
the subtree1 of the pivot) as input.

• global source scope: when input information is located outside the subtree of the pivot.

• local target scope: when the output is localized in a single output node.

• global target scope: when the output is scattered in multiple output nodes.

This classification gives raise to all possible combinations: local-to-local, local-to-global,
global-to-local, global-to-global. For more information about these categories, the interested
reader is referred to [vWV03].

When using contemporary language development techniques, implementing the more
complex local-to-global, global-to-local and global-to-global transformations is not an easy
task. The transformation process is decomposed into a set of implicitly co-operating trans-
formation modules [Cle07]. These implicit dependencies between the transformations com-
plicates the implementation of the transformation process as a whole. Support for better
separation of concerns in the implementation of the transformations is required, as identified
and tackled in [Cle07].

5.6 Transforming High-Level Business Rules and their Con-
nections

In this section we present transformations that take as input specifications in the proposed
high-level rule and connection languages and produce as output rule objects — in Java
— and aspects — in JAsCo. In our approach, we pursue our transformations to be fine-
grained, which allows realizing the advantages discussed earlier (section 5.5.1.1). Moreover,
we pursue a level of granularity that is aligned with the features of our high-level languages:
each transformation is in charge of transforming one high-level feature. Moreover, we ob-
serve that most of the transformations are complex as they correspond to the categories of
local-to-global and global-to-global transformations. We describe and depict each transfor-
mation and its dependences with other transformations. These transformations have been
implemented in a prototype and can be performed completely automatically, as described
in chapter 7.

5.6.1 Transforming High-Level Business Rules

In this section we present transformations from high-level rules to rule objects in Java. A
different fine-grained transformation is proposed per high-level rule feature. Table 5.1 pro-
vides an overview of these transformations and shows to which category they correspond2.

1The term subtree refers to a branch of the abstract syntax tree
2Note that information about the mapping for each of the domain entities involved in the rule is required

as well as an extra input, but it is omitted in the table for simplicity.

103 5.6 Transforming High-Level Business Rules and their Connections

These translations are carried out fully automatically. Every time a domain property, a
domain operation or an instance of a domain class is referred to in a rule, a value, a behav-
ior or an object needs to be provided respectively. This is a mechanism which is based on
traversing the mappings from the domain entities — involved in the definition of the rules
— to implementation entities. These mappings are described exhaustively in the coming
chapter 6. For now we make abstraction of their concrete details and assume the existence of
a function CodeRepresentation in charge of taking a high-level expression, i.e. an expression
only involving domain entities from the domain model, and returning an implementation
expression in Java. This function uses the information specified in the mapping of the do-
main entities involved in the high-level expression in order to produce a code representation
for it.

L-2-G

KIND

L-2-G

L-2-L

L-2-L

L-2-L

G-2-G

- one variable per rule
property

- rule constructor for setting
the values received as
parameters to those
generated variables

name of
business

rule

 PROPS
 <DClass_1> AS <prop_1>,
 ...,
 <DClass_n> AS <prop_n>

none

THEN <action> - body of action methodnone none

none - body of condition methodIF <condition> none

nonenone
WHERE
 <localVar_1> IS <path_1>,
 ...,
 <localVar_j> IS <path_j>

 - one local variable per
definition

- initialization method for
initializing these local
variables with values received
as parameters

none
- one variable per connection
object

- setter and getter per variable

USING
 <DClass_1> AS <conObject_1>,
 ...,
 <DClass_k> AS <conObject_k>

none

none BR

- rule class defining method
signatures for the condition
and action

none

EXTRA
OUTPUTMAIN OUTPUTEXTRA

INPUTPIVOTID

3

4

2

1

5

6

Table 5.1: Transformations from high-level rule constructs to OOP implementations

5.6.1.1 Transforming BR

Following the rule object pattern [Ars01], a high-level rule is transformed into a class which
defines methods implementing its condition and action, with return types boolean and void

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 104

respectively. This is illustrated in Figure 5.7: the arrow depicts the transformation from
the high-level construct to a Java implementation.

public class BRName {

 public boolean condition() {}

 public void action() {}
}

BR BRName

Figure 5.7: Transformation of ‘BR’ clause

5.6.1.2 Transforming PROPS

For each property — defined in the PROPS clause — a local variable is created which is
assigned to a concrete object in the constructor of the class. This is illustrated in Figure
5.8: two outputs are produced represented as independent boxes; the dotted box on top of
the arrow shows the extra information that needs to be obtained during the execution of the
transformation, in this case the mapping of the domain classes referred to in the PROPS
clause.

 <coreClassName_1> <propertyName_1>;
 ...
 <coreClassName_n> <propertyName_n>;

PROPS <domainClassName_1> AS <propertyName_1>,
 ...,
 <domainClassName_n> AS <propertyName_n>

CodeRepresentation(<domainClassName_i>) = <coreClassName_i>

public BRName(<coreClassName_1> <propertyName_1>, ...,
 <coreClassName_n> <propertyName_n>) {
 this.<propertyName_1> = <propertyName_1>;
 ...
 this.<propertyName_n> = <propertyName_n>;
 }

Figure 5.8: Transformation of ‘PROPS’ clause

105 5.6 Transforming High-Level Business Rules and their Connections

5.6.1.3 Transforming USING

For each object expected at connection time — defined in the USING clause — a local
variable and a getter and setter are generated (Figure 5.9). As before, the transformation
needs extra information about the mapping of each of the domain classes referred to in the
USING clause.

USING <connectionDomainClassName_1> AS <connectionObject_1>,
 ...,
 <connectionDomainClassName_n> AS <connectionObject_n>

 <coreClassName_1> <connectionObject_1>;
 ...
 <coreClassName_n> <connectionObject_n>;

CodeRepresentation(<connectionDomainClassName_i>) = <coreClassName_i>

 //for i between 1 and n
 public <coreClassName_i> get<connectionObject_i> {
 return <connectionObject_i>;
 }
 public void set<connectionObject_i>(<coreClassName_i> <connectionObject_i>) {
 this.<connectionObject_i> = <connectionObject_i>;
 }

Figure 5.9: Transformation of ‘USING’ clause

5.6.1.4 Transforming WHERE

For every local variable defined in the WHERE clause, an attribute is added and an
initializeRule method is included which initializes these attributes (Figure 5.10). This
transformation needs to obtain a representation of the implementation of each of the do-
main model navigations involved in the WHERE clause. This is obtained by applying the
CodeRepresentation function. Also, for each domain model navigation, the domain class
that represents the type of the return value needs to be obtained which in turn is translated
to its implementation, by applying the CodeRepresentation function again.

5.6.1.5 Transforming IF and THEN

The bodies of the condition and action methods include the concrete implementations that
result from obtaining the mappings of the domain entities referred to in the IF and THEN
clauses respectively (Figure 5.11). In order these transformations to execute, each of the
conditions and actions needs to be translated to their representation in terms of implemen-
tation entities. This is indicated by applying the CodeRepresentation function onto these
conditions and actions.

A concrete example of the translation from the the BRDiscount high-level rule to a rule
object in Java is shown in Figure 5.12. The individual transformations for each of the parts

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 106

WHERE <localVariable_1> IS <navigationInDomainModel_1>,
 ...,
 <localVariable_n> IS <navigationInDomainModel_n>

CodeRepresentation(<navigationInDomainModel_i>) = <navigationInImplModel_i>

CodeRepresentation(ReturnedDomainClassName(<navigationInDomainModel_i>))) =
CodeRepresentation(<returnedDomainClassName_i>) = <coreReturnedClassName_i>

<coreReturnedClassName_1> <localVariable_1>;
...
<coreReturnedClassName_n> <localVariable_n>;

public void initializeRule() {
 this.<localVariable_1> = <navigationInImplModel_1>;
 ...
 this.<localVariable_n> = <navigationInImplModel_n>;
}

Figure 5.10: Transformation of ‘WHERE’ clause

return [!]<implCondition_1> [(&& | || | ^) ... [!]<implCondition_n>];

IF [NOT]<condition_1> [(AND|OR|XOR) ... [NOT]<condition_n>]
THEN <action_1> [AND ... <action_m>]

CodeRepresentation(<condition_i>) = <implCondition_i>

CodeRepresentation(<action_i>) = <implAction_i>

<implAction_1>;
...
<implAction_m>;

Figure 5.11: Transformation of ‘CONDITION’ and ‘ACTION’ clauses

107 5.6 Transforming High-Level Business Rules and their Connections

described in the high-level specification are followed and their outputs are put together in
order to obtain the resulting rule object. This diagram clearly shows that these translations
are examples of local-to-global transformations, as for a single input construct, many non-
localized outputs are generated. The package ecommerce contains the core implementation
classes, to which domain entities map.

5.6.2 Transforming High-Level Business Rule Connections

In this section we present the automatic transformation from high-level rule connections to
aspects. The main contribution of this section is the transformations themselves and the
analysis of the dependencies that exists between them. The actual output of the transforma-
tions corresponds to different instantiations of the aspect patterns presented before (chapter
4). The use of AOP as a target paradigm in this transformation is completely transparent
for the domain expert, as the AOP peculiarities are not exposed in the high-level rule con-
nection language (as described in Section 5.4). We illustrate these transformations using
JAsCo.

As already hinted in chapter 4, the connection elements are not completely independent
from each other. This is because the way a specific connection element is implemented
influences the way other connection elements need to be implemented. We pursue the
definition of fine-grained transformations where each of them takes as input a high-level rule
connection construct and produces as output an AOP-based implementation. However, we
observe that the finer the transformations, the bigger their scope. This impedes analyzing
the transformations completely in isolation from each other. These dependencies complicate
the transformation process as a whole.

We propose five transformations, one per high-level feature. For three of the high-level
features, a number of variations are identified and therefore more-specific transformations
are proposed to tackle each specific case. Table 5.2 gives an overview of these transforma-
tions from high-level rule connection constructs to AOP-based implementations3.

We observe that some transformations require as input — in addition to the pivot —
extra information about the configuration of other features in order to be able to produce
a concrete output. This is the case with transformation (4), which needs to analyze the
actual rule that is being connected — that is not part of the rule connection specification —
and use the result of that analysis as an extra input for the transformation. Moreover, with
respect to their output, we observe two complex scenarios: i) the outputs of two different
transformations need to be combined to produce one final result (e.g. transformations (3)
and (4)); ii) a transformation produces an incomplete output with ‘gaps’ that need to be
filled in by outputs produced by other transformations (e.g. transformation (1)). In the
rest of this section we explain these situations in more detail.

3Note that information about the mapping for each of the domain entities involved in the rule connection
is required as well as an extra input, but it is omitted in the table for clarification reasons.

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 108

p
u
b
l
i
c

c
l
a
s
s

B
R
D
i
s
c
o
u
n
t

{

/
/
P
R
O
P
S

i
n
t

a
m
o
u
n
t
;

f
l
o
a
t

d
i
s
c
o
u
n
t
;

/
/
U
S
I
N
G

o
b
j
e
c
t
s

e
c
o
m
m
e
r
c
e
.
S
h
o
p
p
i
n
g
B
a
s
k
e
t

b
a
s
k
e
t
;

/
/
W
H
E
R
E

o
b
j
e
c
t
s

e
c
o
m
m
e
r
c
e
.
C
u
s
t
o
m
e
r

t
a
r
g
e
t
c
u
s
t
o
m
e
r
;

/
/
R
U
L
E

C
O
N
S
T
R
U
C
T
O
R

p
u
b
l
i
c

B
R
D
i
s
c
o
u
n
t
(
i
n
t

a
m
o
u
n
t
,

f
l
o
a
t

d
i
s
c
o
u
n
t
)

{

t
h
i
s
.
a
m
o
u
n
t

=

a
m
o
u
n
t
;

t
h
i
s
.
d
i
s
c
o
u
n
t

=

d
i
s
c
o
u
n
t
;

}

/
/
G
E
T
T
E
R
S

A
N
D

S
E
T
T
E
R
S

f
o
r

U
S
I
N
G

o
b
j
e
c
t
s

p
u
b
l
i
c

e
c
o
m
m
e
r
c
e
.
S
h
o
p
p
i
n
g
B
a
s
k
e
t

g
e
t
B
a
s
k
e
t
(
)

{

r
e
t
u
r
n

b
a
s
k
e
t
;

}

p
u
b
l
i
c

v
o
i
d

s
e
t
B
a
s
k
e
t
(
e
c
o
m
m
e
r
c
e
.
S
h
o
p
p
i
n
g
B
a
s
k
e
t

b
a
s
k
e
t
)

{

t
h
i
s
.
b
a
s
k
e
t

=

b
a
s
k
e
t
;

}

/
/
I
N
I
T
I
A
L
I
Z
E

l
o
c
a
l

a
t
t
r
i
b
u
t
e
s

p
u
b
l
i
c

v
o
i
d

i
n
i
t
i
a
l
i
z
e
R
u
l
e
(
)

{

t
h
i
s
.
t
a
r
g
e
t
c
u
s
t
o
m
e
r

=

b
a
s
k
e
t
.
g
e
t
C
u
s
t
o
m
e
r
(
)
;

}

/
/
R
U
L
E

C
O
N
D
I
T
I
O
N

p
u
b
l
i
c

b
o
o
l
e
a
n

c
o
n
d
i
t
i
o
n
(
)

{

r
e
t
u
r
n

t
a
r
g
e
t
C
u
s
t
o
m
e
r
.
g
e
t
S
h
o
p
A
c
c
o
u
n
t
(
)
.
g
e
t
T
o
t
a
l
S
p
e
n
t
(
)

>
=

a
m
o
u
n
t
;

}

/
/
R
U
L
E

A
C
T
I
O
N

p
u
b
l
i
c

v
o
i
d

a
c
t
i
o
n
(
)

{

b
a
s
k
e
t
.
s
e
t
D
i
s
c
o
u
n
t
R
a
t
e
(
t
h
i
s
.
d
i
s
c
o
u
n
t
)
;

}

}

BR BRDiscount

PRO
PS Integer AS am

ount, Real AS discount

USING
 ShoppingBasket AS basket

W
HERE targetCustom

er IS basket.custom
er

IF targetCustom
er.account.am

ountSpent >= am
ount

THEN basket.applyDiscount(discount)

Figure
5.12:

Java
class

generated
from

the
high-level

BRDiscount
rule

109 5.6 Transforming High-Level Business Rules and their Connections

CONNECT rule

PROPS x, y, z, ...

2

1

class BRConnectionAspect {
 BRClass rule = new BRClass(x, y, z, ...);
 hook ConnectionHook {
 <<hook constructor>>

 public refinable boolean mappingRestrictions();

 isApplicable() {
 return mappingRestrictions();
 }

 <<advice kind>>{
 if (global.rule.condition()) {
 global.rule.action();
 }
 }
 }
}
static connector BRConnector {
 BRConnectionAspect.ConnectionHook hook0 =
 new BRConnectionAspect.ConnectionHook
 (<<hook instantiation>>){

 public refinable boolean mappingRestrictions()
 {...}
 }
}

Figure 5.13: Transformations (1) and (2)

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 110

L-2-G

KIND

G-2-G

L-2-G

L-2-G

L-2-G

L-2-L- rule constructor parametersnone PROPS <value1>...<valueN> none

a) ACTIVATE while <event>/
 ACTIVATE not while <event>/
 ACTIVATE
 while <event1> and
 not while <event2>/

b) ACTIVATE between <event1>
 and <event2>

a) - pointcut involving cflow
and/or !cflow pointcut
designators
 - extra deployment logic in
connector

b) - stateful hook in the same
aspect bean in charge of
intercepting the application at
two core events that mark the
start and end of the activation
period
 - extra deployment logic in
connector

none none

none

- hook capturing the required
information

 - aspect bean global variables
keeping the captured
information

- deployment of extra hook in
connector

CAPTURE AT none

- position in the
code of the
connection hook
where those
getters and
setters
invocations need
to be injected

- code for
proceeding with
core application
taking into
account rule
results

information
on whether
the
contextual
data passed
to the rule
gets
assigned

MAPPING

 - invocation of getters and
setters of rule attributes
(declared in USING clause)

- restriction on the kind of
advice that is needed in the
connection hook

none

- connection hook constructor

- connector deploying
connection hook on concrete
core application event

- restriction on the kind of
advice that is needed in
connection hook

BEFORE/AFTER/INSTEAD OF
<event>

none

none CONNECT

- aspect bean, connection
hook and connector templates

- invocation of rule constructor

- advice body in charge of
triggering rule application

none

EXTRA
OUTPUTMAIN OUTPUTEXTRA

INPUTPIVOTID

3

4

2

1

5

6

Table 5.2: Transformations from high-level rule connection constructs to AOP implementations

111 5.6 Transforming High-Level Business Rules and their Connections

5.6.2.1 Transforming CONNECT

Transformation (1) takes as input a CONNECT specification and produces (see Figure
5.13):

1. An aspect bean in charge of creating a new instance of the class implementing the
rule that is being connected. This aspect bean defines a hook for the actual rule
connection which defines an advice in charge of first checking the rule’s condition by
invoking the condition() method on the rule and second — in the case it is satisfied
— triggering the rule’s action if the rule’s condition is satisfied. In addition, the
signature of a refinable method mappingRestrictions is also generated. A refinable
method in JAsCo is a method that has a dynamic body, i.e. the body is not fixed
by the aspect bean but provided by the connector, and therefore fixed at aspect bean
deployment time. Thus, a different body for the same method can be provided by
different connectors. The aim of the mappingRestrictions method is to verify whether
the restrictions imposed by the mapping of the connection event are satisfied or not.
In our transformation process, the actual body of this refinable method is going to
be produced by transformation (3) since it is only then when the information about
the event and its restrictions are available (section 5.6.2.3). This method is invoked
in the isApplicable() method of the generated aspect bean. As a result, only when the
mapping restrictions are satisfied, the aspect bean proceeds with its execution, and
therefore with the actual rule application.

2. The general schema of the connector in charge of deploying the connection hook is
generated. However, note that the concrete details about how the hook constructor
must be defined, which advice kind is needed and on which concrete method the
hook needs to be deployed as well as the body of the mappingRestrictions method
cannot be determined by transformation (1), as information about the rule application
time is needed. As this information is embodied in other high-level features, different
transformations will produce the corresponding outputs that need to be used to fill in
the gaps.

5.6.2.2 Transforming PROPS

In the case the instantiated rule is a rule template, transformation (2) is triggered which
takes the values specified in the PROPS clause and produces rule constructor parameters
as output. This result of this transformation and its combination with the output produced
by transformation (1) is depicted in Figure 5.13. The keyword global is used in JAsCo to
refer to members (i.e. variables or methods) defined globally in the aspect bean.

5.6.2.3 Transforming BEFORE | AFTER | INSTEAD OF

Transformation (3) takes as input a rule application time specification — in the form of
either BEFORE 〈event〉, AFTER 〈event〉 or INSTEAD OF 〈event〉 — and produces:

1. The constructor for the connection hook, which defines a pointcut capturing the exe-
cution of an abstract method parameter.

2. The concrete deployment code that needs to be written in the JAsCo connector in
charge of deploying the connection hook on the corresponding concrete core appli-
cation method that results from obtaining the mapping of the event. This is shown
in Figure 5.14. Note that the output of this transformation does not depend on the
concrete case of BEFORE, AFTER or INSTEAD OF connection.

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 112

An event captures the execution of a domain operation. In order to obtain the
code representation for a given event, we need to analyze the mapping for the domain
operation that defines that event. As it will be explained in detail in the chapter 6, a
domain operation maps to an expression that involves navigations, arithmetical and
logical operators. The code representation for a domain operation is then the signa-
ture of the most external method involved in its mapping expression4. For example,
suppose do(x, y) is the domain operation involved in the connection event. Suppose
do(x, y) maps to an expression of the kind: targetObject.im1(10, x.im2(), y). Then
the code representation for this mapping is the signature of the OO method im1. This
signature is then used to instantiate the connection hook.

In addition, the body of the mappingRestrictions method is generated. This method
checks whether the contextual information available in the context of the joinpoint
coincides with the information specified in the mapping of the connection event. For
instance, in the previous mapping example, the first parameter of im1 is fixed to the
value 10 in the mapping of do(x, y). Thus, the generated body of the mappingRe-
strictions method will look like this:

return thisJoinPoint.getArgumentsArray()[0].equals(10);

As a result, the generated connector ensures that the rule is only triggered when
the method involved in the connection event is invoked with the parameters specified
at mapping time. Note that the details of the mapping from domain entities to
implementation are the subject of the coming chapter 6 and thus omitted here.

3. A filter on which are the possible kinds of advice needed in the connection hook:
depending on the case of a BEFORE, AFTER or INSTEAD OF connection, a dif-
ferent kind of advice has to be generated. Moreover, determining the kind of advice
also depends on whether the contextual information — passed to the rule using the
MAPPING clause — is assigned to a new value in the rule. As explained in section
5.3, besides the invocation of domain operations, a rule action can also assign values
to domain objects available in the local context of the rule by using the IS opera-
tor. When the assigned domain object corresponds to an object from the connection
context (i.e. received as a parameter of the rule), the new assigned value has to be
considered back in the connection context where the rule is triggered. A different kind
of advice is needed depending on which kind of information gets assigned in the rule
(i.e. target object, parameter or return value). This implies the existence of depen-
dencies between transformations (3) and (4) which makes impossible the independent
analyzes of their outputs. We analyze these dependencies per cases in the following
section.

5.6.2.4 Transforming MAPPING

This is a complex transformation because it requires not only the pivot but also extra in-
formation previously generated by other transformations. Also, besides generating multiple
outputs, the places where these outputs need to be inserted as part of the hook connection

4A domain operation can also map to an attribute (as it will be explained in chapter 6), but for the
definition of events only domain operations that map to methods can be used.

113 5.6 Transforming High-Level Business Rules and their Connections

BEFORE |
AFTER |
INSTEAD OF event

 CodeRepresentation(event) = methodM(paramType1,...,paramTypeN)

 MappingRestrictions(event) = {param_i = <v_i>, ..., param_j = <v_j>}
 where 0 < i,j < N
 v_i, ..., v_j are literal values

static connector BRConnector {
 BRConnectionAspect.ConnectionHook hook0 =
 new BRConnectionAspect.ConnectionHook(
 methodM(paramType1,...,paramTypeN)){
 public refinable boolean mappingRestrictions() {
 return thisJoinPoint.getArgumentsArray()[i].equals(<v_i>)
 && ... &&
 return thisJoinPoint.getArgumentsArray()[j].equals(<v_j>);
 }
 }
}

3

Figure 5.14: Partial output of transformation (3)

implementation vary depending on the case. Also, code for proceeding with the core appli-
cation’s execution needs to be generated as well depending on the case. These challenges
are explained in the rest of the section.

• If the rule is connected before the connection event. Two cases are possible
which are illustrated in Figure 5.15 (note that in the coming figures the mappingRe-
strictions and the isApplicable methods are omitted in the aspect bean implementation
for simplicity reasons):

– the information available in the context of the connection event is passed to the
rule where it is assigned to a new value: we need to be able to access the con-
textual domain objects and make them available for the rule, trigger the rule’s
action where the domain objects are assigned to new values, and retrieve the
modified information from the rule to be taken into account in the invocation
of the original behavior captured by the connection event. Thus, an around ad-
vice is created for this purpose, since it allows intercepting the application at a
certain point, adding some extra business logic and proceeding with the original
execution, eventually considering a different target object and parameters. Fig-
ure 5.15 illustrates this situation (case 1.a depicts it for target object whereas
case 2.a for parameters).

– the contextual information is passed to the rule and not assigned by the rule: in
this case, a before advice suffices to trigger the rule’s action, as the original event
execution does not need to be modified. Figure 5.15 illustrates this situation
(case 1.b depicts it for target object whereas case 2.b for parameters).

In the case of an event parameter that is passed to the rule, a corresponding parameter
of the core method that results from obtaining the mapping of that event needs to
be obtained. The following formula is applied (assume Mapping is a function that
returns the implementation counterpart of a given domain element):

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 114

Mapping(param(i, event)) = Mapping(param(i, domainOperation(event))) =

= param(Mapping(i),Mapping(domainOperation(event)) = param(j, coreMethod)

where:

0 < i < # parameters domain operation

0 < j < # parameters core method

Thus, for a given event parameter i, a corresponding core parameter j is obtained,
where i can be different to j. This parameter j is then passed to the rule in the aspect
code.

• If the rule is connected after an event. Two cases are possible (illustrated in
Figure 5.16):

1. the result of invoking the event is passed to the rule: in this case, an around advice
is created which first invokes the original behavior captured by the event and
passes the result of that execution to the rule. Two cases are possible regarding
the return value of the around advice: (1.a) if in the rule the passed value is
assigned a new value, then the around advice returns that new value; (1.b)
otherwise, the original result is returned.

2. no result is passed to the rule: an after advice suffices to trigger the rule’s action,
after the execution of the connection event.

• If a rule is connected instead of the execution of the connection event.
Only one case is possible (illustrated in Figure 5.17):

The original execution has to be replaced by the rule’s action. This is achieved in an
around advice which invokes the rule’s action and does not proceed with the original
execution.

5.6.2.5 Transforming CAPTURE

Every capture point is translated into an additional hook, as illustrated in Figure 5.18.
Depending on the information that needs to be captured, a different advice on that hook
is generated: before for arguments and target object and after returning if return value is
required. This implies dependencies between this transformation and the transformation
of the MAPPING clause (transformation (4)) as the latter has the knowledge of which
kind of information is needed from the capturing event and therefore which kind of advice
is required in the capturing hook. The captured information is stored as variables in the
aspect bean (shared among all the hooks of that aspect bean). This is a local-to-global
transformation as several non-localized results are generated.

115 5.6 Transforming High-Level Business Rules and their Connections

BEFORE event

MAPPING event.targetObject TO X

case 1.a: rule assigns a new value to X

BEFORE event

MAPPING event.targetObject TO X

case 1.b: rule does not assign X

case 1: target object mapped to expected rule attribute X

3

4

4

3

BEFORE event

MAPPING event.param_i TO X

case 2.a: rule assigns a new value to X

BEFORE event

MAPPING event.param_i TO X

case 2.b: rule does not assign X

case 2: parameter i mapped to expected rule attribute X

3

4

4

3

hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 before() {
 global.rule.setX(args[j]);
 if (global.rule.condition())
 global.rule.action();
 }
 }
}

hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 around() {
 global.rule.setX(args[j]);
 if (global.rule.condition()) {
 global.rule.action();
 args[j] = global.rule.getX());
 }
 return proceed(thisJoinPointObject, args);
 }
}

hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 before() {
 global.rule.setX(thisJoinPointObject);
 if (global.rule.condition())
 global.rule.action();
 }
}

hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 around() {
 global.rule.setX(thisJoinPointObject);
 if (global.rule.condition()) {
 global.rule.action();
 return proceed(global.rule.getX(),args);
 }
 else return proceed();
 }
}

Figure 5.15: Transformations (3) and (4): case of a ‘before’ connection

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 116

AFTER event

MAPPING event.returnValue TO X

case 1.b: rule does not assign X
AFTER event

MAPPING event.returnValue TO X

case 1.a: rule assigns a new value to X

AFTER event

 hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 after() {
 if (global.rule.condition()){
 global.rule.action();
 }
 }

 hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 around() {
 Object result = proceed();
 global.rule.setX(result);
 if (global.rule.condition()){
 global.rule.action();
 return global.rule.getX();
 } else return result;
}

 hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 around() {
 Object result = proceed();
 global.rule.setX(result);
 if (global.rule.condition()){
 global.rule.action();
 return result;
 } else return result;
}

case 1: return value mapped to expected rule attribute X

case 2: return value not passed to rule

3

4

3

4

3

Figure 5.16: Transformations (3) and (4): case of an ‘after’ connection

INSTEAD OF event

MAPPING event.returnValue TO X

 hook ConnectionHook {

 ConnectionHook(connectionMethod(..args)) {
 execution(connectionMethod);}

 around() {
 if(global.rule.condition()){
 global.rule.action();
 return global.rule.getX();
 } else return proceed();
}

3

4

Figure 5.17: Transformation (3) and (4): case of an ‘instead of’ connection

117 5.6 Transforming High-Level Business Rules and their Connections

CAPTURE AT event

MAPPING event.returnValue TO X

3

4

CAPTURE AT event

MAPPING event.param_i TO X

3

4

...

CAPTURE AT event

MAPPING event.targetObject TO X

3

4

...

 Object obj;

 hook ConnectionHook {...}

 hook BRCaptureHook {
 BRCaptureHook(captureMethod(..args)) {
 execution(captureMethod);
 }
 around() {
 obj = proceed();
 return obj;
 }
 }

static connector BRConnector {
 ...
 BRConnection.BRCaptureHook hook1 =
 new BRConnection.BRCaptureHook(
 methodM'(paramType1,...,paramTypeN));
}

 Object obj;

 hook ConnectionHook {...}

 hook BRCaptureHook {
 BRCaptureHook(captureMethod(..args)) {
 execution(captureMethod);
 }
 before() {
 obj = args[j];
 }
 }

 Object obj;

 hook ConnectionHook {...}

 hook BRCaptureHook {
 BRCaptureHook(captureMethod(..args)) {
 execution(captureMethod);
 }
 before() {
 obj = thisJoinPointObject;
 }
 }

CodeRepresentation(event) =
= methodM'(paramType1,...,paramTypeN)

Figure 5.18: Transformations (4) and (5)

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 118

5.6.2.6 Transforming ACTIVATION

The activation time is translated to the exact patterns shown in chapter 4: the constructs
ACTIVATE WHILE 〈event1〉, ACTIVATE NOT WHILE 〈event1〉, ACTIVATE WHILE
〈event1〉 NOT WHILE 〈event2〉 and ACTIVATE BETWEEN 〈event1〉 AND 〈event2〉 trans-
late to the code shown in Figures 4.5, 4.6, 4.7 and 4.8 respectively. These translations are
examples of local-to-global transformations.

Figure 5.19 shows the result of translating the connection of the BRDiscount rule (intro-
duced in section 5.4).

5.7 Summary
In this chapter we presented a domain model for expressing domain concepts explicitly
and defining business rules and their connections with the core application in terms of
those explicit domain concepts. The proposed business rule language is simpler than a
fully-fledged programming language and thus facilitates the task of writing the rules. Note
however that rules can be very powerful because they do not simply involve aliases to
implementation entities but also entities that can have a very complex realization at the
level of the implementation. Contrary to current approaches where the rules themselves can
refer to complex OO constructs, in our approach the rules are simple since all the complexity
is taken away from their specification and encapsulated in the mapping of the involved
domain entities (explained in detail in chapter 6). The high-level rule connection language
provides features that are abstracted from the recurrent connection elements distilled in the
aspect patterns presented in chapter 4. We also presented transformations from both high-
level rules and high-level connections to rule objects and connection aspects respectively.
These transformations pose challenges in the transformation process as they correspond
to the categories local-to-global and global-to-global for which extra non-localized inputs
need to be gathered and/or outputs of different transformations need to be combined in a
non-trivial way. The proposed transformations were discussed and illustrated taking into
account the dependencies that exist among them.

119 5.7 Summary

static connector BRDiscountConnector {

 BRDiscountConnection.ConnectionHook hook0 =
 new BRDiscountConnection.ConnectionHook(
 float Customer.checkoutShoppingBasket(ShoppingBasket)) {
 public refinable boolean mappingRestrictions() {
 return true;
 }

 }
 BRDiscountConnection.ActivationHook hook1 =
 new BRDiscountConnection.ActivationHook(
 void Customer.login(), void Customer.logout());
}

class BRDiscountConnection {

 BRDiscount rule = new BRDiscount(100, 10);
 boolean active = false;

 hook ConnectionHook {
 ConnectionHook(connectionMethod(..args0),
 contextMethod(..args1)) {
 execution(connectionMethod);
 }

 public refinable boolean mappingRestrictions();

 isApplicable() {
 return mappingRestrictions() && global.active;
 }

 before() {
 global.rule.setBasket(args0[0]);
 if(global.rule.condition())
 global.rule.action();
 }
 }
 hook ActivationHook {
 ActivationHook(activationMethod(..args0),
 deactivationMethod(..args1)) {
 start > p1;
 p1: execution(activationMethod) > p2;
 p2: execution(deactivationMethod) > p1;
 }

 before p1() { global.active = true; }

 after p2() { global.active = false; }
 }
}

aspect bean

connector

CONNECT BRDiscount PROPS 100, 10

BEFORE Checkout

MAPPING Checkout.basket TO basket

ACTIVATE BETWEEN CustomerLogsIn AND CustomerLogsOut

Figure 5.19: Transformation from the high-level connection of BRDiscount to JAsCo

Chapter 5. A Domain Model for Domain Entities, High-Level Business Rules
and High-Level Business Rule Connections 120

Chapter 6

Mapping Domain Knowledge To
Implementation

In chapter 5 we described how high-level rules are defined in terms of high-level domain
entities of a domain model. In this chapter, the mapping from high-level domain entities
to implementation is made explicit. Although other approaches exist today which advocate
this idea, they only support simple one-to-one mappings. We build on this current support
and enhance it in many directions. In this chapter we first set up the context and motivate
the need for having more complex mappings (section 6.1). We then present the main features
of the proposed and implemented mapping language (section 6.2). Finally we show how the
proposed mapping language can be used to realize five different mapping use cases (sections
6.3 to 6.7).

6.1 Context: Advanced Domain Mappings

An essential step for achieving the automatic generation of executable rules from high-level
specifications is the definition of how the domain entities involved in those specifications
are mapped to the implementation. In this chapter we present an approach for making the
mapping between the domain and the implementation models explicit.

Empirical studies have shown that the explicit description of domain knowledge is the
most essential information needed by software maintainers. Moreover, they also identify the
importance of linking this explicit domain knowledge to the corresponding implementation
entities. This introduces the idea of domain concept location, which refers to the place in
the code where a certain domain concept is implemented. Koskinen et al. [KSP04] observed
that domain concept descriptions and their link to implementation knowledge are among
the three most frequent types of information needed by software maintainers. This link is
most useful for corrective and adaptive maintenance. Bennet et al. [BR00] confirm that it
is crucial for developers to understand how domain concepts relate to the code.

Other business rule approaches exist today which advocate the idea of expressing high-
level rules in terms of domain concepts that map to an implementation. Examples of such
approaches are JRules, QuickRules, VisualRules, JBoss Rules and HaleyRules (explained in
detail in chapter 9). However, in these approaches the domain concepts are simple aliases
for implementation entities and thus a one-to-one mapping between them is assumed. When
domain concepts have more complex realizations at the implementation level, the need for

Chapter 6. Mapping Domain Knowledge To Implementation 122

supporting more complex mappings than the one-to-one mappings arises. We can imagine,
for instance, the need for expressing mappings to expressions that can involve many imple-
mentation entities which need to be obtained through navigations in the implementation.
Theoretically, any OO expression could be written in order to describe the mapping. Thus,
when pursuing the endeavor of defining a more powerful mapping language, the issues to
be faced are: how to create a systematic approach to the definition of complex domain
mappings? Which expressions should be supported by the mapping language? Where to
draw the line of expressiveness? We have analyzed these issues and distinguished relevant
cases for which the need for certain mapping functionalities is observed. As a result of this
analysis, we designed a simple but powerful mapping language, which is explained in the
next section. The subsequent sections present the relevant cases we identified and analyzed,
illustrating how the mapping language is used to support them. In some cases, we show
extensions in the form of syntactic sugar and extra verification mechanisms that make our
basic mapping language features more usable.

The presented mapping language allows expressing mappings in terms of more than one
entity in the implementation. These entities can be combined in complex expressions which
can in turn involve nested navigations and literal values. Moreover, the proposed mapping
language enhances the current domain mapping support found in existing approaches in
three innovative directions:

• domain entities can map to more than one implementation entity: typically this map-
ping links one domain class to many OO classes in the existing implementation. Al-
though this mapping is expressed at the structural level in terms of domain classes,
operations and properties on the one hand and OO classes, methods and attributes
on the other hand, in order for the mapping to be usable, the actual instances of
those classes that are involved in the mapping need to be obtained. This is a real
challenge in the case where the correspondence between the many instances of the
OO classes involved in the mapping cannot be determined statically. For establishing
the instance correspondence in this case, we propose the use of AOP.

• domain entities can explicitly represent derived information: the derivation can be
expressed at two levels, low and high levels. In the former case, the derivation ex-
pression is defined in terms of implementation entities whereas in the latter case, only
domain entities of a domain model are involved. Moreover, at the implementation
level, calculating or obtaining derived information can result in crosscutting code, in
which case the use of AOP is proposed. Defining new domain entities in terms of
other existing domain entities allows for domain evolution.

• domain entities can be completely unanticipated in the existing implementation. The
realization of these domain entities at the implementation level requires the addition
of new implementation entities. We pursue this addition to be done in a non-invasive
way. Thus again, the use of AOP is proposed.

In all these cases, AOP is used in a transparent way for the user of the mapping language.

6.2 The Mapping Language
In this section, the basic capabilities of the proposed mapping language are presented. A
prototype of this language has been implemented, the details of which are described in
chapter 7. The complete grammar of the implemented prototype is in Appendix C.

123 6.2 The Mapping Language

We consider the case where the target application is developed in Java. We restrict the
possible Java entities to the following ones: classes (concrete or abstract), methods (static
or not), attributes (static or not) and interfaces. We consider that OO classes can be related
in hierarchies and that single inheritance is supported. Figure 6.1 depicts these decisions
with respect to what elements and relations are possible in both models, the domain and
the implementation models.

single
inheritance

domain operationsdomain properties
Domain Class X

Domain Class Y

Class1 attributes

methods

Class2

single
inheritance <<Interface3>>

interface

abstract class

concrete class

domain classes

domain level

implementation level

map to

Figure 6.1: Entities and relations considered in both the domain and implementation levels

6.2.1 Basic Mappings

The basic construct in our mapping language has the form:

< LHS >< map − to >< RHS >

The < LHS > defines any of the domain entities supported in the model, i.e. a domain
class, domain property or domain operation. The < map − to > has different flavors. The
basic mapping operator considered here is the operator to map to implementation, called
MAP-TO-IMPL. When this concrete operator is used, the < RHS > is completely defined
in terms of implementation entities. We consider several cases which are described below.
For all these cases, we decided to use the same mapping operator, i.e. MAP-TO-IMPL,
because of the uniformity of this approach. However, depending on how this operator is
used, different semantics are associated to it. This can be regarded as some sort of operator
overloading.

First, when the < LHS > is the name of a domain class, the < RHS > has to be
the name of a Java class or interface. An example definition of a mapping for a domain

Chapter 6. Mapping Domain Knowledge To Implementation 124

class is shown below. In this example and the coming ones the following notation is used:
DomainClass1, ..., DomainClassn are names of domain classes whereas Class1, ..., Classn

are names of Java classes or interfaces.

DomainClass1 MAP-TO-IMPL Class1

In order to define domain operations and properties — referred to as contained domain
entities — for a given domain class, the name of the domain class has to be followed by
braces that enclose the mapping definition for those contained domain entities. Note that
this definition does not necessarily need to come after the mapping definition for the domain
class itself.

DomainClass1 {
...//mapping definition for domain operations and/or domain attributes

}

Second, in the case when the < LHS > is a domain operation or property, the < RHS >
is any expression in the target OO language, Java in our case1 2. The value for the domain
entity in the < LHS > corresponds to the value that results from evaluating the expression.
A relationship exists between the < LHS > and the < RHS > expression, which is that
all the variable names occurring in the < RHS > should also occur in the < LHS >.
Variables on the < LHS > are defined for referring to the target entity, in the case of
a domain operation and property, and parameters, in the case of domain operation. The
simplest case for the mapping of a contained domain entity, is when there is a one-to-one
match between the contained domain entity that is being mapped and the implementation
entity defined at the < RHS >. An example is shown below. For the coming examples
assume the following notation: do1, ..., don and dp1, ..., dpm are names of domain opera-
tions and domain properties respectively whereas im1, ..., imn and ia1, ..., iam are names
of implementation methods and attributes respectively. The target variable name, e in the
example, is interpreted as follows: when included in the < LHS > it is an instance of the
domain class where the mapping is being defined whereas when included in the < RHS >
it is an instance of the type to which the domain class maps (the instance correspondence
relation is explained in detail in section 6.4). Note that in the case where a domain class
maps to a Java interface, the mappings for its contained domain entities define expressions
at the < RHS > that can only use e as a target of a method invocation and not of an
attribute retrieval.

1 DomainClass1{
2 e.dp1 MAP-TO-IMPL e.ia1
3 e.do1(x, y) MAP-TO-IMPL e.im1(int:x, string:y)
4 }

1In Java the distinction is made between statement and expression. Conditional and iteration statements
are not supported in the < RHS > of a mapping definition.

2Note that in this case, the mapping has a more behavioral flavor. On the contrary, the case of a mapping
for a domain class is more structural, as a structural relation exists between an element of the domain and
an element of the implementation. Even in the implementation of the operator, this observation is apparent:
the name of a class is stored for a mapping of a domain class, and not an expression that needs to be
evaluated.

125 6.2 The Mapping Language

Note that in this example mapping definition, besides a difference in names that might
exist between the domain entities in the < LHS > and the corresponding methods and
attributes in the < RHS > of the mappings in lines 2 and 3, a one-to-one match exists
between them: one implementation entity exists which exactly implements that one domain
concept; in addition, in the case of a domain operation (line 3), the parameters perfectly
correspond in terms of number and order. It is clear that in a similar manner more indirect
mappings can be specified, for example:

1 DomainClass1{
2 e.do1(x,y) MAP-TO-IMPL e.im1(string:y, int:x)
3 e.do2(y) MAP-TO-IMPL e.im2(int:10, string:y)
4 }

The definition in line 2 exemplifies that a different order can be specified for the pa-
rameters of the domain operation on the < LHS > and the corresponding method on the
< RHS >, whereas line 3 shows how literals can be used to fix the value of method param-
eters in the < RHS >. Moreover, as mentioned earlier, the variables in the < LHS > can
be used in any place at the < RHS >. For example, the target entity in the < LHS > can
be included either as a target or as a parameter of any method invocation in the < RHS >,
as shown below. In any case, the navigations are defined in accordance to the types of the
involved implementation entities, as specified in the existing application.

1 DomainClass1{
2 e.do1(x) MAP-TO-IMPL e.ia1.im1(string:x)
3 e.do2(x,y) MAP-TO-IMPL e.ia1.im2(y.im3(float:5*x, y.im4() < 10))
4 e.dp1 MAP-TO-IMPL e.im5(int:10, string:"hello")
5 }

This listing illustrates that it is possible to map a domain property to an implementation
method, as shown in line 4. Also, more complex combinations of the basic cases are possible,
such as nested navigations involved in comparisons, arithmetical and logical operations, etc.
as illustrated in line 3 of the same mapping specification.

The invocation to static methods or the retrieval of static attributes is also supported in
the expressions at the < RHS >, as shown below. Note that the class to which the domain
class DomainClass1 maps can be referred to in the < RHS > (as shown in line 2) as well
as any other OO class or interface available in the core application (as shown in line 3).

1 DomainClass1{
2 e.do1(x) MAP-TO-IMPL Class1.im1(string:x)
3 e.do2() MAP-TO-IMPL Class2.ia1
4 }

Note that the < LHS > is not explicitly typed. The mappings determine the types
of the domain model. When the < RHS > is an expression, information about types of
method parameters need to be explicitly specified. An exception to this is the case when
an expression is used as a method parameter, in which case the type for that parameter is
determined at the time the mapping specification is translated into an object representation

Chapter 6. Mapping Domain Knowledge To Implementation 126

for that mapping. This translation process is explained in detail the next chapter 7 (section
7.6).

6.2.2 High-Level Mappings

Our approach supports mappings at different levels of abstraction. The previous mapping
operator MAP-TO-IMPL only targeted implementation elements in the < RHS > and
therefore is used to define low-level mappings. However, once there are some domain enti-
ties defined, the specification of new domain entities in terms of the existing ones is possible.
In this section we introduce another flavor for the < map− to > operator: the “high-level”
mapping operator MAP-TO-DOMAIN which allows the definition of high-level mappings
that are completely specified at the domain level. These high-level mappings require point-
ing to existing domain entities of a domain model. Thus, the initial low-level mappings can
be seen as a bootstrap of the domain model on top of which higher-level abstractions can
be defined.

In a high-level mapping, the < RHS > is defined analogously to the < RHS > of the
MAP-TO-IMPL case, with the difference that the expression now only involves domain
entities. These domain-level expressions are defined in terms of several predefined domain
operators: navigation, arithmetical and logical operators. Furthermore, literals and vari-
ables are allowed in these domain expressions. The use of the operator is illustrated in the
examples shown below. In the case of mappings to domain, the target variable name (e
in the examples) is interpreted at both sides as an instance of the domain class where the
mapping is being defined.

1 DomainClass1 {
2 e.dp1 MAP-TO-IMPL ...
3 e.do1(x, y) MAP-TO-IMPL ...
4

5 e.do2() MAP-TO-DOMAIN e.do1(10, "hello")
6 e.do3(y, x) MAP-TO-DOMAIN e.do1(x, y)
7 e.do4(z) MAP-TO-DOMAIN e.do3(z, e.do2()) + e.dp1
8

9 e.dp2 MAP-TO-DOMAIN e.do1(20, "bye")
10 e.dp3 MAP-TO-DOMAIN e.dp1 < 10
11 }

High-level mappings are added to the domain class definition, between the braces, poten-
tially mixed with definitions in terms of the other operator MAP-TO-IMPL, as illustrated
in lines 2 and 3 of the previous mapping specification.

The domain model also supports single inheritance between domain classes. This is de-
fined as shown below. As a result, all domain operations and properties defined in the super
domain class are inherited by the sub-domain class.

DomainClass1 INHERITS-FROM DomainClass2

127 6.2 The Mapping Language

6.2.3 Special Mapping Operators

We can imagine the situation where defining a mapping for a domain entity implies grabbing
dynamic information that is only available at well-defined points in the execution of the
core application. Moreover, this information cannot be obtained by simply invoking a
method, retrieving an attribute, navigating the implementation model or evaluating a simple
arithmetical or logical expression at the < RHS > of a mapping specification. This is
because this information crosscuts the core application, and therefore grabbing it would
result in tangled and scattered code. In order to grab this dynamic information in a non-
invasive way, we could imagine extending the mapping language to allow writing AOP
expressions in the < RHS > of a mapping specification. However, unleashing the full
power of AOP introduces two fundamental issues. The first issue is again how to constrain
the power that comes with AOP so that it is usable? Secondly, how to express a mapping
that relies on AOP in a mapping language? So far, in the case of for instance a domain
entity mapping to a method, the value for the domain entity is the value returned by the
invocation of that method. However, in the case of mappings based on AOP, the idea of
“calling” or “invoking” some functionality defined in an aspect does not apply. Because
dependency inversion is ensured, aspects are not “called” but triggered at the occurrence
of joinpoints. Thus, it is clear that mappings to AOP need to be treated differently than
the mappings presented so far.

In our approach we consider the case where the well-defined points of interest where to
grab dynamic information correspond to method executions. In this context, two kinds
of information is available. First of all, we can capture the time when the method is
executed. In this context different variations are possible, we can talk about the exact time
at which a method is executed, or a relative time, such as whether a method is executed
before of after another method, the time that elapsed between two method executions, etc.
Secondly, we can capture the values that are involved in that method execution, e.g. values
that are passed as parameters, or the value that is returned by that method execution,
etc. Inspired in this kind of examples, our approach proposes general-purpose mapping
operators that can deal with this kind of dynamic information and which are implemented
using AOP technology. As a result of using these special operators in mapping specifications,
aspects are automatically installed in the system which keep track of the required dynamic
information and make it available when needed. Again, the actual rationale behind these
AOP operators becomes clearer in the subsequent sections where we illustrate their uses
with examples (sections 6.6 and 6.7).

Two kinds of AOP mappings are supported, which correspond to the two well-known
AOP flavors, dynamic and static. The dynamic kind depends on dynamic AOP: aspects,
join points and advices are used for the implementation of these operators. These aspects
are predefined in the domain model infrastructure. Connectors for the deployment of these
aspects are automatically generated by our prototype implementation which use the infor-
mation specified at mapping time. Two example operators in this category are supported,
the timeBetween and previousResult operators, which can be used at the < RHS > of
a mapping definition, as shown below in lines 5 and 6. These operators are generic and
therefore not tight to the particularities of a specific domain.

Chapter 6. Mapping Domain Knowledge To Implementation 128

1 DomainClass1 MAP-TO-IMPL Class1
2 DomainClass1 {
3 e.do1(p1, p2, ..., pn) MAP-TO-...
4 e.do2(t1, t2, ..., tn) MAP-TO-...
5 e.dp MAP-TO-DOMAIN timeBetween(e.do1(p1, p2, ..., pn), e.do2(t1, t2, ..., tn))
6 e.dp1 MAP-TO-DOMAIN previousResult(e.do1(p1, p2, ..., pn))
7 }

The timeBetween operator allows measuring the time elapsed between the invocations
of the two domain operations received as parameters whereas the previousResult operator
allows for keeping track of the value that results from the invocation to a domain operation
to be used at a later point in time. Note that writing e.do1(p1, p2, ..., pn) in the
< RHS > of line 6 is not equivalent, since doing so would imply actually invoking do1
every time the value of dp1 has to be obtained. Instead, the use of the previousResult
operator indicates that the execution of do1 has to be monitored in order for its last result
to be kept, but no invocation is actually carried out as a result of this mapping.

The main difference between the ordinary mappings presented earlier (low or high-level)
and the mappings in terms of AOP-based domain operators is that in the latter, an extra
step is carried out for setting up the aspects in charge of calculating the values to be
associated to the domain entities for which the mapping is being defined. This implies that
the value for the domain entities for which the mapping is defined in terms of these special
operators is only made available when the domain operations involved in those mappings
(more specifically in the deployment of those operators) have been invoked at least once.

Special operators can be involved in more complex expressions (i.e. arithmetical, logical
and navigational). The details of the AOP implementation for these operators can be found
in chapter 7. It is important to note that it is not the aim of this dissertation to provide an
exhaustive categorization of operators but to show how such operators can be implemented
using AOP and how they can be used in mapping expressions. Following the same idea,
other domain operators that were not foreseen in the proposed library could be added.
Moreover, we can envision using the same mechanism presented here for the definition of
domain-specific operators, i.e. operators which are specifically designed for a particular
domain.

Finally, a last mapping operator is defined: MAP-TO-VALUE. This operator can be used
for the definition of domain properties for which their mapping cannot be defined in terms
of an expression, neither at the implementation nor at the domain level. It states that a
domain property holds a value defined by a certain domain class. An initial value can be
assigned to it which might be changed later on by business rules. This becomes clearer in
section 6.7 where we demonstrate the use of this operator in the e-commerce domain. This
operator is used as follows:

1 DomainClass1 MAP-TO-IMPL Class1
2 DomainClass1 {
3 e.dp1 MAP-TO-VALUE DomainClass2:<<initialValue>>
4 }

129 6.3 Use Case 1: Pulling Up a Class

The implementation of this operator is based on static AOP. At mapping translation time,
a new aspect is automatically generated and installed in the system which introduces a new
attribute for the realization of the dp1 domain property and methods for its manipulation.
The attribute and methods are added, in a non-invasive way, to the class Class1. The type
of the introduced attribute is defined by the mapping of the domain class DomainClass2
(referred to in line 3). The initial value <<initialValue>> (specified in line 3) is set to the
introduced attribute. Again, the details of the aspect generation and deployment process
for this operator is included in chapter 7.

6.2.4 Mapping Events

The mapping language also allows defining domain events in terms of domain operations in
the domain model. The syntax for this is:

1 EVENT event1 AT DomainClass1.do1()
2 EXPOSING TARGET AS target
3 RETURN VALUE AS return
4

5 EVENT event2 AT DomainClass1.do2(p0, ..., pn)
6 EXPOSING TARGET AS target
7 RETURN VALUE AS return
8 PARAMETER 0 AS par0
9 ...

10 PARAMETER N AS parN

In line 1 of this mapping specification, an event with name event1 is defined which captures
the execution of the domain operation do1 defined in the domain class DomainClass1. A
second event event2 is defined in an analogous way in line 5. Also, these examples show that
events can expose the available contextual information including target object, parameters
and return value of the involved domain operations. In the case of the event event1, the
contextual target object and the return value are exposed with names target and return
respectively.

6.3 Use Case 1: Pulling Up a Class
This case represents a bottom-up scenario where a complete OO class is to be pulled up at
the domain level3. This can be done by explicitly mapping all the attributes and methods
defined in that OO class one by one. However, this is a tedious task. Thus, a new mapping
operator ALIAS-FOR is provided in our mapping language to be used as a shortcut for the
definition of these mappings, as shown below. Note that additional contained domain enti-
ties can be added to the domain class definition by means of including mapping definitions
for them in between the braces that follow the domain class name.

DomainClass1 ALIAS-FOR Class1
DomainClass1 {
...

}

3This mechanism is also supported in [Der06] where it is referred to as “deification”.

Chapter 6. Mapping Domain Knowledge To Implementation 130

This operator indicates a recursive mapping definition for the class Class1. As a con-
sequence, a domain class as well as contained domain entities for all the implementation
entities contained in the definition of the OO are defined. Moreover, this mechanism recur-
sively propagates to all the OO classes involved in the methods and attributes defined in
the OO class, and so on until domain entities for all OO classes and their attributes and
methods have been created at the domain level.

6.4 Use Case 2: Mapping One-to-Many Classes

We have seen how our mapping language allows mapping a domain class to an existing OO
class. We have also seen that in the definition of the domain entities contained in that
domain class, it is possible to refer to attributes or methods that are not directly defined
in the core class — to which the domain class maps — but that can be reached through
navigations in the implementation. Thus, in the case the domain class defines entities that
map to several classes, the domain class itself is conceptually considered to be mapped to
all those classes as well. However, this mapping to many classes is not made explicit in the
mapping language.

We can imagine the need for explicitly mapping a domain class to many OO classes. This
can be achieved by introducing new grouping operators in our mapping language. Two cases
are identified: 1) a domain class maps to the result of the union of two or more OO classes;
2) a domain class maps to the result of the intersection of two or more OO classes. Two
operators MAP-TO-UNION and MAP-TO-INTERSECTION are respectively introduced
for the realization of these cases. These operators enhance the mapping language in two
directions:

• syntactic sugar : the union and intersection operators can be seen as shortcuts for the
definition of the contained domain entities in the domain class that is being mapped.
In the case of the union for instance, a DomainClass1 MAPS-TO-UNION Class1, Class2
definition would imply carrying out the actual union of Class1 and Class2 and pulling
up the result of that union as domain entities of DomainClass1.

• mapping verification: an explicit definition of a mapping to a union can also enable
compatibility checks between the mappings of the domain class on the one hand and
the mappings of its contained domain entities on the other hand. More concretely,
it becomes possible to verify that the contained domain entities map to OO entities
defined in the classes involved in the union.

An important issue is that although these explicit one-to-many mappings are defined in
terms of classes, the correspondence between the actual instances of those classes needs
to be analyzed, which is not always trivial. As shown earlier in this dissertation (section
5.3), instances of domain classes are manipulated in the high-level specifications of rules
and connections. For example, a high-level rule can define — in its USING clause — that
it expects an instance of the domain class DomainClass. This means that, when this rule
gets translated to code, in place of the expected domain instance, an object needs to be ob-
tained. Thus, the correspondence between domain instances and core instances needs to be
established. In the case of a one-to-one mapping, establishing the correspondence between
an instance of a domain class and an instance of the core class is straightforward: a domain
class instance is mapped to an instance of the core class to which the domain class maps,

131 6.4 Use Case 2: Mapping One-to-Many Classes

DomainClass1

Class1

maps to

DomainClass1

Class1

maps to
ClassN

maps to

domain
instance

oo instance

corresponds to

is instance of

is instance of

domain
instance

oo
instance n

corresponds to

is instance of

is ins-
tance of

oo
instance 1

corresponds to

is instance of

Mapping relation Instance correspondence

ONE-TO-ONE

ONE-TO-MANY

Table 6.1: Instance correspondence relation between a domain class and the core classes to which
the domain class maps

and thus in this case a one-to-one relation also exists at the instance level. However, es-
tablishing this correspondence is more complex in the case of one-to-many mappings, since
more than one core instance might need to be obtained for a given domain instance. Which
and how many objects are needed depends on how the OO classes, to which the domain
class maps, are related to each other in the implementation. The instance correspondence
is depicted in Table 6.1. The grey oval in the case of the one-to-many mappings represents
the instance that needs to be obtained. The oval around the two instances represents that
somehow those instances need to be combined. This is analyzed in more detail in the com-
ing sections.

6.4.1 Mapping to Union

The domain class is the union of many core classes. In other words, the domain class can be
seen as the result of merging and pulling up the core classes. The contained domain entities
— defined in the domain class — map to core entities defined in any of the core classes.
For the coming explanations, consider the example of a domain class DomainClass1 that
maps to the union of two core classes, Class1 and Class2.

Chapter 6. Mapping Domain Knowledge To Implementation 132

Class1

DomainClass1

Class2

instance of
Domain
Class1

instance of
Class1

is instance of

is instance of

corresponds
to

maps to
Legend

corresponds to
is instance of

...

Figure 6.2: Mapping to a union of core classes: Class1 is a (direct or indirect) subclass of Class2

Instance correspondence: in order to determine the instance correspondence, it is needed
to analyze how the attributes and methods defined in Class1 and Class2, which are realiza-
tions of the contained domain entities defined in DomainClass1, are related. We distinguish
between the following cases:

1. The relevant information defined in Class2 is inherited by its subclass Class1;

2. The relevant information to be drawn from Class2 is navigable from Class1; and

3. The relevant information to be drawn from Class2 is neither navigable from Class1
nor inherited by it.

1. The relevant information defined in Class2 is inherited by its subclass Class1
Some domain entities defined in DomainClass1 are realized by the class Class1 whereas
others are realized by its superclass Class2 (Figure 6.2). Consider the case in which both
classes are in the same inheritance chain of a class hierarchy and that Class1 is a subclass
(direct or indirect) of Class2. Due to inheritance, Class1 inherits the core entities defined
in Class2. Therefore, this mapping to many classes is analogous to a mapping to one class,
namely Class1, where all the contained domain entities are realized by core entities defined
in Class1. This implies that only one instance of Class1 is needed for a given instance of
DomainClass1.

2. The relevant information to be drawn from Class2 is navigable from Class1
Class2 is accessible from Class1 through navigation (involving attributes and method in-
vocations). This implies that in order to obtain the implementation entity ie2, defined in
Class2, which realizes the domain entity de2, a navigational expression starting from an
instance of Class1 can be defined, which follows the form: objC1.ie3.....ie2, where objC1 is
an instance of Class1. This is depicted in Figure 6.3. Note that instances of each of the

133 6.4 Use Case 2: Mapping One-to-Many Classes

two core classes are needed to realize a given instance of DomainClass1. However, only
obtaining the instance of Class1 is sufficient since the corresponding instance of Class2 can
be obtained from the former through navigation.

Class1

DomainClass1

Class2

maps to

instance of
Domain
Class1

instance of
Class2

is instance of

is instance of

corresponds
to

instance of
Class1

corresponds
to

is instance of

maps to
Legend

maps to through
 attribute navigation

refers to

corresponds to
is instance of

...

de1

de2

ie1

ie3 ie2

Figure 6.3: Mapping to a union of core classes: Class2 is navigable from Class1

3. The relevant information to be drawn from Class2 is neither navigable from Class1
nor inherited by it: This situation is depicted in Figure 6.4. In this case, classes are not
related with respect to the required information. Note that associations might still exist
between the classes, but those associations do not relate the classes in the desired way.
Therefore, because the relation between the required instances of Class1 and Class2 is not
explicit, navigations to refer to the required entities ie1 and ie2 cannot be expressed starting
from one instance to the other or vice versa. Thus, the mappings for those domain entities
de1 and de2 cannot be expressed as navigational expressions starting from either class.

In this case, a single instance of either class is not enough to draw all the required infor-
mation. Instead, an instance of each of those classes needs to be obtained. The specification
shown below illustrates how to refer to these different instances. The specification of the
class name followed by the brackets enclosing the target variable indicates that the corre-
sponding instance of that class needs to be obtained. The same definition could be expressed
at the domain level in an analogous way.

Chapter 6. Mapping Domain Knowledge To Implementation 134

ie1

de1

ie2

de2

DomainClass1

maps to
Legend

instance of
Domain
Class1

instance of
Class2

is instance of

is instance of

corresponds
to

instance of
Class1

corresponds
to

Class1 Class2

instance of Class2
instance of Class1

Class3

is instance of

refers to

Domain
Model

Implementation
 Model

joinpoint

no exploitable
relation exists

corresponds to
is instance of

Figure 6.4: Mapping to a union of core classes: the relevant instances of Class1 and Class2 involved
in the mapping are not related with respect to the required information.

135 6.4 Use Case 2: Mapping One-to-Many Classes

1 DomainClass1 MAP-TO-UNION Class1, Class2
2 DomainClass1 {
3 e.do1(x, y) MAP-TO-IMPL Class1(e).m(x, y)
4 e.dp1 MAP-TO-IMPL Class2:e.ia1
5 }

We consider the case where the instance correspondence can be determined at run time,
at well-defined points in the execution of the core application. We propose using AOP to
grab and explicitly maintain the relation between instances that are implicitly related. In
our approach, the well-defined points correspond to method executions. Pointcuts are used
to intercept the application’s execution and aspects are used to keep the link between the
relevant instances. For this approach to be usable, AOP needs to be used again in a trans-
parent way, i.e. avoiding cluttering the mapping language with extra technical complexity.
We propose extending the previous definition with a specification that indicates how in-
stances are grabbed from the context of a method execution, as shown below. In line 1,
the R between the square brackets after the class names in the < RHS > specifies that the
instance of that class is the return value, whereas P is used for denoting that what needs to
be grabbed is a parameter of that method invocation. Optionally (though not illustrated
in the listing below) the T option can be specified to indicate that the instance of interest
is the target value.

1 DomainClass1 MAP-TO-UNION Class1[P(0)],Class2[R]: ClassX.method(ParamClass1,...,ParamClassN)
2 DomainClass1 {
3 ...
4 }

Example: consider the scenario in Figure 6.5.

purchase(product)
getShopAccount()
setCategory(category)
login()
logout

name: String
Customer addProduct(product, amount)

removeProduct(product)
getTotalPrice()
getCustomer()

discount
ShoppingBasket

addShopAccount(customer)
requestShoppingBasket(customer)
checkoutShoppingBasket(shoppingBasket)
increaseStock(product,amount)

Shop

baskets

1

1

*
cutomers

*

Figure 6.5: Example design scenario in the e-commerce application

In this design it is not possible to obtain the shopping basket for a given customer with
simple navigations. This relation is dynamically established at the moment a customer re-
quests a new shopping basket to an instance of the Shop class. This is achieved by invoking
the requestShoppingBasket(customer) method on a shop object. It is at that point in time
that the relation between the shopping basket returned by this method and the customer

Chapter 6. Mapping Domain Knowledge To Implementation 136

received as parameter of the method can be established. The specification of the mapping
for the Customer domain class as the union of the Customer and the ShoppingBasket classes
is shown in the listing below.

1 Customer MAP-TO-UNION ecommerce.Customer[P(0)], ecommerce.ShoppingBasket[R]:
2 ecommerce.Shop.requestShoppingBasket(ecommerce.Customer)
3 Customer {
4 ...
5 }

6.4.2 Mapping to Intersection

A domain class that maps to the intersection of many core classes abstracts the common-
alities of those classes. In our mapping language, an intersection is defined as follows:

1 DomainClass1 MAP-TO-INTERSECTION Class1,..., ClassN
2 DomainClass1 {
3 e.de1 MAP-TO-IMPL e.ie1
4 }

This declaration implies that the contained domain entities defined in the DomainClass1
are realized by implementation entities that are common to all the classes Class1, ..., ClassN,
in this example ie1 (used in line 3). This situation is illustrated in Figure 6.6.

Instance correspondence: for a given instance of the domain class, only one instance
of any of the core classes is needed.

Domain
Model

Implementation
 Model

de1

maps to

maps to

ie1 ie1

Class1 Class2

DomainClass1

ie1

ClassN

...

maps to

Figure 6.6: Mapping from a domain class to the intersection of many OO classes

Example: Consider the following mapping specification.

1 Product MAP-TO-INTERSECTION ecommerce.CD, ecommerce.DVD
2 Product {
3 p.productID MAP-TO-IMPL p.productID
4 p.price MAP-TO-IMPL p.price
5 }

137 6.5 Use Case 3: Anticipated Mappings

In line 1, the domain class Product is defined which abstracts the commonalities of the
core classes ecommerce.CD and ecommerce.DVD. In this example, both core classes define
common attributes such as productID and price. The domain class can then define do-
main properties productID and price as domain abstractions of their counterparts at the
implementation level (lines 2 to 5). Note that in the case the classes CD and DVD inherit
from a common superclass, e.g. Product, which abstracts their commonalities, mapping the
domain class Product to the core class Product would not be equivalent, as it would imply
that the domain class Product is also an abstraction for other kinds of products which also
inherit from the Product class (e.g. imagine for instance the existence of a class Book which
also inherits from Product).

6.5 Use Case 3: Anticipated Mappings
We define the term anticipated with respect to an existing implementation. A domain entity
is anticipated when its mapping can be defined in terms of one or many existing implemen-
tation entities. In our mapping language, a mapping for an anticipated domain entity can
be expressed by means of directly or indirectly (via navigations) pointing to the existing
implementation entities involved in its realization. In the following listing, examples of
anticipated mappings in the e-commerce domain are shown.

1 Customer {
2 c.name MAP-TO-IMPL c.nameCustomer
3

4 c.account MAP-TO-IMPL c.getAccount()
5

6 c.amountSpent MAP-TO-IMPL c.getShopAccount().amountSpent
7

8 c.frequent MAP-TO-IMPL c.account.isFrequentCustomer()
9

10 shop.resetCustomerAccount(name) MAP-TO-IMPL
11 shop.setAmountToCustomerAccount(java.lang.Float: 0, java.lang.String: name)
12

13 c.age MAP-TO-IMPL c.getAge()
14

15 c.boughtProducts MAP-TO-IMPL c.getShopAccount().purchasedProducts
16

17 c.addTenBoughtProducts() MAP-TO-IMPL c.getShopAccount().addBoughtProducts(10)
18 }

These example mappings are low-level since they are expressed in terms of implementa-
tion entities. In addition, our approach allows expressing mappings for anticipated domain
entities entirely at the domain level, by using the MAP-TO-DOMAIN operator and refer-
ring to already defined domain entities in the < RHS > of the mapping definition. Consider
the following examples:

1 Customer {
2 ...
3 c.discount MAP-TO-DOMAIN percentage(10, c.amountSpent)
4 c.youngerThan(c1) MAP-TO-DOMAIN c.age < c1.age
5 }

Chapter 6. Mapping Domain Knowledge To Implementation 138

In line 3 a new discount domain property is defined as a percentage of the amount spent
by that customer. The < RHS > of this mapping definition calculates a derived value from
another anticipated domain property of the customer, the amountSpent, and it involves the
use of the percentage domain operator. Note that although the discount domain property
is derived, no explicit means exists for calculating its value in the current implementation.
In line 4 a domain operation youngerThan(c1) is added for which the mapping is defined as
a comparison between the target and the parameter customers’ ages. Again, the < RHS >
involves a calculation in terms of the age, an anticipated domain property of a customer,
and <, a logical domain operator.

When the mapping of anticipated domain entities is defined completely at the domain
level, the main challenge lies in translating the < RHS > of the mapping specification
into an expression that only involves implementation entities. This is because complex
navigations, literal values and nested mappings might need to be taken into account in this
translation.

6.6 Use Case 4: Calculating Values at Execution Points

In the previous use case we have explained how information that is derived from the ex-
isting implementation can be explicitly represented at the domain level. In this section we
analyze the case where the derivation process is not as simple as evaluating a navigational,
arithmetical or logical expression but it implies calculating a value based on information
that is available at multiple points in the execution of the core application. Obtaining this
information results in crosscutting code and thus the use of AOP is proposed. Special oper-
ators are provided as part of the mapping language to deal with this case: timeBetween and
previousResult operators (presented in section 6.2.3). In the rest of this section we present
concrete examples in the e-commerce domain of the use of these operators.

6.6.1 Dealing with Timing Information

Assume it is of interest to measure the time that elapses between the moment a customer
orders a product until the customer checks out and confirms that order. This concept can
be represented as a new domain property timeBetweenOrderAndCheckout which is added
to the specification of the contained domain entities for the domain class Customer. The
mapping for this new domain property is defined completely at the domain level using the
timeBetween domain operator, as shown below.

Customer {
...
c.checkout(sb) MAP-TO-IMPL c.checkoutShoppingBasket(ecommerce.ShoppingBasket:sb)
c.addProductToShoppingBasket(p) MAP-TO-IMPL c.addProduct(ecommerce.Product:p)
c.timeBetweenOrderAndCheckout MAP-TO-DOMAIN

timeBetween(c.addProductToShoppingBasket(p), c.checkout(sb))
}

The connector that gets generated out of this mapping specification deploys the Time-
Between aspect on the OO methods c.addProduct(ecommerce.Product) and c.checkout-
ShoppingBasket(ecommerce.ShoppingBasket).

139 6.7 Use Case 5: Unanticipated Mappings

6.6.2 Dealing with Cached Information

Assume the last amount spent by a customer during checkout wants to be made explicit
at the domain level. This concept can be represented as a new domain property lastA-
mountSpent which is added to the specification of the contained domain entities for the
domain class Customer. Assuming that the domain operation checkout(sb) returns the to-
tal amount spent by the customer in the checking out of the shopping basket received as
parameter, the mapping for this new domain property is defined at the domain level using
the previousResult domain operator, as shown below.

Customer {
...
c.lastAmountSpent MAP-TO-DOMAIN previousResult(c.checkout(sb))

}

The connector that gets generated out of this mapping specification deploys the Previous-
Result aspect (predefined in the domain model framework) on the c.checkoutShopping-
Basket(ecommerce.ShoppingBasket) method.

6.7 Use Case 5: Unanticipated Mappings
The software applications that are considered in this dissertation tackle concerns of a par-

ticular problem domain which is strongly connected to the real-world (e-commerce, finance,
etc.). As these domains are in constant change, the corresponding software systems need
to constantly adapt to those changes. These systems — so-called E-type systems [Leh96]
— are characterized by their impossibility to completely specify the problem of interest.
On the one hand, our approach proposes building a model of domain entities on top of
these volatile systems in order to extract the domain knowledge they encode in their imple-
mentation. On the other hand, our approach enables expanding the initial set of domain
entities by means of incrementally extending the domain model with new domain entities.
This allows for domain evolution. Note that the domain entities that result from extracting
domain knowledge from the existing application only partially represent the corresponding
domains, as only anticipated domain concepts (i.e. foreseen in the existing implementa-
tion) are made explicit. Exposing domain knowledge that is anticipated in the existing
application is enough for expressing business rules that only require anticipated domain
knowledge. However, the high-level — and executable — specification of business rules can
be discrepant from the implementation of the core application functionality and therefore
it might be required to talk about unanticipated domain knowledge (i.e. knowledge that is
not present at all and cannot be derived from the existing implementation).

Thus, when it is not possible to identify explicit implementation entities in the existing
application for the realization of a given domain concept, we say that the domain concept
is unanticipated. Our mapping language deals with the realization of unanticipated domain
concepts by means of the MAP-TO-VALUE operator. Because the implementation of this
operator is based on static AOP, it becomes possible to add new implementation entities
which realize the unanticipated domain knowledge.

Consider for example the situation where we want to introduce the concept of loyalty
categories in the domain model for the e-commerce domain. The possible values for the

Chapter 6. Mapping Domain Knowledge To Implementation 140

loyalty categories can be for example gold, silver and bronze. Consider that there is no
implementation entity realizing the loyalty category concept in the existing core applica-
tion. We propose representing the customer category as a domain property of the Customer
domain class, as follows:

1 Customer {
2 ...
3 c.loyaltyCategory MAP-TO-VALUE String:"silver"
4 }

In this example, the loyaltyCategory domain property defined in line 3 holds a String
value which is initially set to “silver”. As a result of this definition, code is generated: a
Java interface, a JAsCo mixin aspect implementing that interface and a JAsCo connector
deploying the mixin aspect on the Customer class. This code is shown in code fragment 6.1.

public interface ILoyaltyCategory
extends jasco.runtime.mixin.IMixin {

public java.lang.String getLoyaltyCategory();

public void setLoyaltyCategory(java.lang.String t);
}

class IntroduceLoyaltyCategory{

hook IntroduceLoyaltyCategoryHook implements ILoyaltyCategory{

private java.lang.String loyaltyCategory = "silver";

IntroduceLoyaltyCategoryHook(method(..args)) {
execution(method);

}
public void setLoyaltyCategory(java.lang.String t){
loyaltyCategory = t;

}
public java.lang.String getLoyaltyCategory(){
return loyaltyCategory;

}
}

}

static connector IntroduceCategoryToCustomer {
perobject

IntroduceLoyaltyCategory.IntroduceLoyaltyCategoryHook hook1 =
new IntroduceLoyaltyCategory.IntroduceLoyaltyCategoryHook

(* ecommerce.Customer.*(*));
}

Code Fragment 6.1: Code generated for the realization of the loyaltyCategory domain property
added to the Customer domain class

The ILoyaltyCategory interface defines getters and setters for the introduced attribute.
The aspect bean IntroduceLoyaltyCategory defines a hook IntroduceLoyaltyCategory-
Hook. This hook implements the interface ILoyaltyCategory and defines the introduced

141 6.8 Obtaining a Code Representation for the Mapping

attribute loyaltyCategory which is set to the initial value “silver”. This hook also provides
implementations for the methods defined in the ILoyaltyCategory interface. The connector
IntroduceCategoryToCustomer instantiates the hook IntroduceLoyaltyCategoryHook per
customer, as a result creating a new instance of the loyaltyCategory attribute per customer
object.

Because these domain properties are unanticipated in the core application, the latter is
unaware of the existence of the attributes introduced for those domain properties. The only
place where these domain properties are used is in business rules. Business rules can use
the values of domain properties in their conditions and actions and can also calculate and
set (using the IS operator) new values for those domain properties in their actions.

In the same way domain properties are realized by introduced attributes, we can imagine
the need for introducing new methods that realize the implementation of unanticipated
domain operations. Note that unanticipated domain operations are partly supported by
mappings to derived expressions (explained in section 6.2). Full support for unanticipated
domain operations would however imply writing full Java method bodies in mapping specifi-
cations, which is of course not the aim. Making unanticipated domain operations persistent
in the implementation (by means of static AOP) does not make sense, as state does not
need to be kept for the realization of these operations. Note that, on the contrary, the
case of unanticipated domain properties does require persistency. This is because business
rules can set values to domain properties that can in turn be used in other business rules.
Aspects are used then to realize this persistency in a non-invasive way.

6.8 Obtaining a Code Representation for the Mapping
For every domain entity referred to in a high-level specification — either of a rule or rule
connection — an expression in terms of implementation entities needs to be obtained in order
to be included in the generated code for that rule or connection (as described in section
5.6). This process involves inspecting and translating mapping specifications to their code
representations. This is simple in the case of a perfect mapping. However, it becomes more
complex in the case of indirect mappings, mappings to many entities or mappings based on
AOP, as more complex issues such as establishing the instance correspondence or retrieving
concrete aspect instances need to be tackled. In chapter 5 we made abstraction of how
this expression is obtained and assumed the existence of a function CodeRepresentation in
charge of calculating these code representations. More details on this process are included
in chapter 7.

6.9 Summary
In this chapter we made explicit the mapping between high-level domain entities and im-
plementation. We built on current support and enhanced it in many directions, in order
to enable the definition of more complex mappings than the simple one-to-one mappings
provided today. We presented and implemented a mapping language and showed how this
language can be used to realize relevant mapping use cases.

Chapter 6. Mapping Domain Knowledge To Implementation 142

Chapter 7

Implementation

In this chapter we present the prototype implementation developed as a proof of concept
for the ideas presented in this dissertation. This prototype supports the entire domain
model explained in chapters 5 and 6. The core of this implementation is a framework of
OO classes for representing business rules, business rule connections, domain entities and
their mappings to implementation. Moreover, on top of this core framework, three high-
level dedicated languages are implemented: one for the definition of high-level business
rules (as described in 5.3), a second one supporting the definition of high-level business rule
connections (as described in chapter 5.4) and a third one for the definition of domain entities
and their mappings (as described in chapter 6). Parsers for these languages have been
implemented. Semantical checks in charge of validating high-level specifications against the
domain entities defined in the domain model are also supported. High-level specifications
expressed in the dedicated rule and connection languages are automatically translated to
OOP and AOP programs respectively, following the transformations described in 5.5. For
each of the domain entities involved in those specifications, an expression that only involves
implementation entities is obtained. This is achieved by inspecting the mapping of those
domain entities. In the general case, this implementation expression involves OOP whereas
for some more complex mapping cases AOP is used (following the guidelines described in 6).
As a result of translating a high-level mapping specification, domain entities and mappings
are created and used to populate the domain model. Examples taken from the e-commerce
case study application are shown.

7.1 Selected Technologies
The following technologies have been used in the implementation of our prototype:

• Java for the implementation of the core domain model framework;

• JavaCC for the implementation of the parsers;

• JAsCo for the implementation of the aspects; and

• Velocity templates for the code generation of Java rule objects and JAsCo connection
aspects.

Chapter 7. Implementation 144

Dom
ain Entities

Dom
ain Entity

M
appings

Parsing
Translation

Code G
eneration

Velocity
Tem

plates

Business Rule Facilities

Parsing
Translation

Code G
eneration

Velocity
Tem

plates

Business Rule Connection Facilities

Dom
ain Entities Facilities

High-Level
Business Rule

High-Level
Business Rule

Connection

Basic
Dom

ain
O

perators

Crosscutting
Dom

ain
O

perators

Predefined Libraries

Parsing
Translation

JAsCo Facade
Velocity Facade

Interaction with O
ther System

s

Dom
ain M

odel

DO
M

AIN M
O

DEL ARCHITECTURE

GUI

Rule O
bjects

Business
Rule

Connection
Aspects

Aspects For
M

appings

collaborates with

generates code into

delegates to

Legend

package

User

 operator

 aspect

Basic
Dom

ain
O

perators

Basic
Dom

ain
O

perators

Crosscutting
Dom

ain
O

perators

Crosscutting
Dom

ain
O

perators

Infrastructural
Aspects

 tem
plate file

Figure
7.1:

O
verview

ofthe
dom

ain
m

odelinfrastructure

145 7.2 Architecture of the Domain Model Prototype

7.2 Architecture of the Domain Model Prototype
Figure 7.1 depicts the general overview of our prototype implementation. As it can be
observed in the Figure, packages can be grouped according to the core part of the domain
model framework they implement. We can mainly identify seven main core parts:

• Domain Entities Facilities: it denotes the classes for the representation of domain
entities and their mappings as well as classes implementing the parsers and semantical
translators for the high-level mapping language. As a result of parsing and translating
some mapping specifications, aspects are generated which are gathered in a different
package (labeled with Aspects for Mappings in Figure 7.1).

• Business Rule Facilities: it denotes the classes for the representation of high-level
rules. Different rule representations are possible, as it will be explained in section 7.3.
Moreover, this part of the framework includes packages which define classes for the
implementation of the parsers, semantical checkers and code generators for the high-
level business rule language. In addition, velocity templates are predefined as code
templates that capture the structure of a rule object implementation in Java. For the
actual code generation, a Velocity engine is invoked by classes in the Code Generation
package. This invocation receives the deployment details to be taken into account
in the instantiation of the velocity templates. As the result of this instantiation, a
complete Java class is generated — implemented following the Rule Object pattern
— which is compiled and loaded. The generated Java code is placed in a separate
package, as depicted in Figure 7.1 under the name Rule Objects.

• Business Rule Connection Facilities: analogous to the Business Rule Facilities, this
group of packages gathers classes for representing a rule connection from different
perspectives (more details can be found in section 7.3). Moreover, this part of the
framework also includes packages which contain the implementation of parsers, seman-
tical checkers and code generators for the high-level business rule connection language.
Three velocity templates are predefined: for the implementation of a hook, an aspect
bean and a connector. These templates are deployed with the details of a concrete
rule connection specification. The result of the code generation step is a complete
JAsCo aspect bean — implementing the rule connection — and a JAsCo connector
— deploying the generated aspect bean. The generated aspect bean and connector
are compiled and loaded. The generated JAsCo code is placed in a separate package,
labeled with Business Rule Connection Aspect in Figure 7.1.

• Predefined Libraries: as part of the implementation of the domain model, predefined
domain operators are provided to be used in the specification of high-level rules. These
operators include simple arithmetical (e.g. addition, subtraction, multiplication) and
logical operators (e.g. and, or, not as well as comparison operators such as greater
than and equals to, etc.). Moreover, following the ideas described in 6.2.3, examples of
crosscutting operators are supported for which aspect templates are predefined in the
domain model. An example of these operators is the timeBetween operator which takes
two domain operations and calculates the time that passed in between the invocations
of those domain operations. In addition, AOP is used for the implementation of
crosscutting concerns in the framework. An example of such a crosscutting concern is
logging. A logging aspect is implemented which logs all events that occur during the
execution of rules and rule connections and displays relevant information about those
events in the domain model’s GUI.

Chapter 7. Implementation 146

• Interaction with Other Systems: the domain model interacts with other systems,
namely JAsCo and Velocity. In order to support this interaction, facades have been
implemented which encapsulate the invocations to those external systems.

• Domain Model: this package contains the definition of the main class representing
the domain model, namely the DM class. Basically, this class is a container class for
the business rules, business rule connections, domain entities and mappings defined
in the framework (depicted in Figure 7.2). Moreover, a facade class is implemented
which defines a simplified API for the communication with the DM class. Methods
for loading and translating business rules and connections are defined as part of this
facade, as well as methods for the definition of domain entities and mappings. This
facade is invoked from the domain model’s GUI.

DM

DomainClass

BREntity BRConnection

Event
*

1 1

* *

domainClasses

businessRules

1

businessRuleConnections

events
1 *

Figure 7.2: Overview of the DM class

• GUI : a prototype implementation of GUI have been developed which allows com-
municating with the domain model facade in order invoke the different functionality
(shown in Figure 7.3).

7.3 Implementation Goals

The prototype has been implemented having in mind the following properties: modularity,
extensibility and flexibility.

7.3.1 Modularity

Modularity is achieved by dividing the implementation in separate interacting modules that
realize the different parts of the framework:

• core infrastructure classes for the representation of domain entities, mappings, rules
and rule connections;

• domain specific languages for:

1. the definition of domain entities and their mappings to implementation;
2. the definition of high-level rules;

147 7.3 Implementation Goals

3. the definition of high-level rule connections;

• classes implementing the translation process from high-level specifications to imple-
mentation, in OOP and AOP; and

• code templates encoding the transformation logic from high-level specifications to
code.

Figure 7.3: GUI of the domain model prototype

As hinted in section 7.2, domain model elements — i.e. high-level rules and connections
as well as the domain entities and their mappings — have different representations along
the translation process from their high-level specification to code. Each representation is
realized by a set of classes or class hierarchies. In the case of a high-level rule, three are the
possible representations, as described as follows:

• syntactical: corresponds to the representation of a high-level rule from the syntactical
point of view. This representation is realized by a set of classes related in a class hier-
archy (depicted by the classes enclosed by a dotted box in Figure 7.4) that correspond
to the elements of the abstract grammar of the high-level rule language (available in
Appendix A). The main class representing a high-level rule that is successfully parsed
is ASTBR.

Chapter 7. Implementation 148

• semantical: corresponds to the representation of a high-level rule from the semantical
point of view. This representation is realized by a set of classes related in a class
hierarchy (depicted in Figure 7.5) that represent the different elements of a high-
level rule which is successfully parsed and validated against the entities defined in the
domain model (as presented in 5.3). The main class is this hierarchy is BREntity.

• rule object implementation: corresponds to the representation of a rule from the code
generation point of view. In order to obtain this representation, all the entities that
conform a BREntity (i.e. instances of type CodeEntity) need to be translated to
their code representation. In our implementation, the code representation of a given
code entity is realized using formatted strings (the process to obtain these strings is
explained in 7.4.3).

Analogously, different representations are possible for the high-level rule connections:

• syntactical: corresponds to the representation of a high-level rule connection that
adheres to the syntax of the high-level rule connection language. Classes are imple-
mented (depicted in Figure 7.6) which correspond to the elements of the abstract
grammar for the high-level rule connection language (available in Appendix B). The
main class representing a high-level rule connection from a syntactical point of view
is ASTBRC (BRC stands for business rule connection).

• semantical: corresponds to the representation of a high-level rule connection that
complies with what is defined in the domain model, i.e. domain entities and their
types. Classes are implemented (depicted in Figure 7.7) in correspondence to the
different semantical features of a high-level rule connection (as presented in section
5.4). The main class representing a high-level rule connection from a semantical point
of view is BRConnectionEntity.

• rule connection implementation: corresponds to the representation of the variable
parts in the implementation of a rule connection aspect and connector. This is tackled
in a similar way as for the rules, i.e. using formatted strings that represent the
implementation of the different elements that constitute a given BRConnectionEntity
object. These strings are the input for the code template instantiation.

Finally, with respect to domain entities and their mappings, only two representations
are possible: syntactical and semantical. No code representation is needed. This is because,
in the case of these elements, code is not generated as a result of the parsing-translation
process. Instead, the expected result is a set of objects that are used to populate the
domain model. These objects are instances of different classes which represent domain
entities and mappings (depicted in Figure 7.9). More concretely, an entry in a mapping
specification is of the form: 〈domain entity〉 〈mapping operator〉 〈mapping specification〉.
The 〈domain entity〉 part is parsed and translated and as a result an instance of either
DomainClass, DomainOperation or DomainProperty is created and stored in the domain
model. The 〈mapping operator〉 part determines the kind of mapping that is needed for
that domain entity. Again an instance of the corresponding subclass of Mapping is created
and associated with the domain entity. The 〈mapping specification〉 provides the details of
how the mapping instance needs to be configured.

• syntactical: correspond to the syntactical representation of domain entities and their
mappings. The classes that implement this view (depicted in Figure 7.8) correspond

149 7.4 From a High-Level Business Rule to a Java Rule Object

to the different elements of the abstract grammar for the high-level business rule
mapping language (available in Appendix C).

• semantical: correspond to a representation of domain entities and mappings that are
successfully parsed and validated against existing entities in the domain model and
in the core implementation. Classes for this view are depicted in Figure 7.9 and 7.10.
They represent the main kinds of domain entities (as described in chapter 5) and the
different kinds of mappings (as defined by the categories identified and presented in
chapter 6).

It is important to stress that the use of GoF design patterns [GHJV95] was pursued in
the implementation of all the component parts listed before with the objective to achieve
a clean design. In particular the Visitor Pattern is extensibly used in order to traverse
the many class hierarchies implementing the different perspectives of the elements of the
domain model.

7.3.2 Extensibility

Because the rule and connection languages are defined based on a detailed analysis of the
different elements that are distilled in the implementation of a rule and rule connection,
their features are quite stable and not expected to change. Therefore, extensibility in
the implementation of these languages is not a crucial concern. However, extensibility is
a crucial concern for the implementation of the mapping language. This is because the
presented mapping categorization (chapter 6) that forms the basis for the definition of the
features of our high-level mapping language, is partial. This implies that new mapping
categories could be considered which would imply adding new high-level features to our
proposed high-level mapping language. This is why extensibility is especially important in
the implementation of this language. The prototype implementation supports extensibility
by means of two key design decisions:

• a well-modularized class hierarchy of mappings

• the implementation of several visitors which manipulate the mapping hierarchy

7.3.3 Flexibility

It is one of the goals of the prototype implementation to enable the dynamic integration
of business rules in existing core applications. Therefore, the use of a technology that
enables this flexibility is crucial. To this end, we have chosen to base our implementation
on dynamic AOP technology, in particular JAsCo, since this technology allows the runtime
plug-and-play addition and removal of aspects.

7.4 From a High-Level Business Rule to a Java Rule Object

A high-level rule expressed in the dedicated rule language, gets translated to a Java class
implementing its corresponding rule object. Many steps conform this translation process,
which are described in the rest of this section. An overview of the translation process is
depicted in Figure 7.11.

Chapter 7. Implementation 150

7.4.1 Parsing

A javaCC parser for the high-level rule language is generated from the javaCC JJTree gram-
mar of our language. The class implementing this parser is named br.parser.BRParser.
Also, JavaCC automatically generates a class hierarchy for representing the different parts
of a parsed tree. Figure 7.4 depicts the main classes implementing the parsing phase. Given
a rule specification, the parser is in charge of checking whether its syntax complies with the
syntax of the language specified in the grammar of the language. When this is the case, the
parsing process is successful and as a result an object tree is built in memory representing
the parsed tree.

7.4.2 Translating

A parsed tree is then passed to a second component which implements the translation
phase. The main class that implements this translation is br.translator.Translation-
Visitor (depicted in Figure 7.12). This class is in charge of translating the parsed tree
representation of a rule into a well-modularized semantical rule representation. Two steps
are identified in this translation phase: validation and type checking (depicted in Figure
7.12).

• The validation phase verifies the existence and correct use of domain entities. It makes
sure that the domain entities referred to in the rule definition exists in the domain
model with exactly the same names — and number of parameters in the case of a
domain operation — as the ones employed in the rule’s description. To this end,
queries to the domain model need to be performed.

• The type checking phase makes sure that those domain entities are used in the expected
way with respect to their types. This includes checking that the type of a domain
property or the return type of a domain operation correspond to the types expected by
the expression in which they are involved (logical or arithmetical). For instance, when
the condition part of a rule is defined by an invocation to a domain operation, then the
type of that domain operation must be boolean. Moreover, when domain expressions
are used as parameters of a domain operation, their type compliance also has to be
ensured. This applies as well to the case of expressions that involve more complex
and nested navigations throughout the domain model as well as assignments. This
translation step is implemented in the class br.translator.TypeCheckingVisitor.

As the domain model is not typed, the expected types are determined by means of
inspecting the domain entities mapping. For example, consider that basket is an in-
stance of the ShoppingBasket domain class and that the following domain operation
invocation is defined in the rule’s action:

basket.setDiscountRate(0.5)

then it is needed to check whether the type of the first parameter of this domain
operation setDiscountRate is compatible with the value 0.5. The same goes for more
complex expressions, such as:

customer.account.amountSpent IS (customer.account.amountSpent + 10)

151 7.4 From a High-Level Business Rule to a Java Rule Object

where the type that results from the expression customer.account.amountSpent + 10
must be compatible with the type of customer.account.amountSpent.

Once a parsed rule is validated against the domain model, a semantical representation of
the high-level rule is created. For this rule representation, a set of classes have been designed
(partially shown in Figure 7.5), instances of which are created by the TranslatorVisitor
class once the high-level rule has been validated. The actual result of this phase is an
instance of the class BREntity which is stored in the domain model. When the validation
process cannot be accomplished, an exception is thrown.

7.4.3 Generating Rule Code

This phase takes as input an instance of the BREntity class — returned by the translator in
the previous step — and generates the Java code implementing a rule object for the corre-
sponding high-level rule. The class implementing this phase is named br.translator.BRCo-
deGenerationVisitor. As an initial step, this code generator class needs to obtain different
strings representing the implementation of each of the parts that conform a BREntity ob-
ject. Each of these parts (e.g. condition and action parts) can involve other code entities
(such as arithmetical or logical expressions, domain operation invocations or domain prop-
erty retrievals and furthermore any combination of the previous ones). Thus, for every
of these CodeEntity objects involved in a BREntity, a string needs to be obtained which
represents the implementation of that code entity. This is a complex process because —
as mentioned before — one code entity object can be defined in terms of other code entity
objects, and this can even be continued recursively. Thus, for a given code entity, all the
implementation strings for its contained code entities need to be combined in an appropriate
way so that a single string is returned as a result (for example, for a single action involved
in the definition of a BREntity, a single string needs to be obtained which represents a line
of code implementing that action (to be included in the actions method of the generated
rule class). Ultimately, the base code entities encountered during this translation process
correspond to domain operation invocations and domain property retrievals. Translating
these base code entities implies obtaining an implementation representation for the involved
domain entities, which in turns implies inspecting and translating the mappings for those
domain entities. This translation of a domain entity mapping is quite straightforward in
the case of one-to-one mappings to implementation. However, it can become quite complex
in the case of sophisticated mappings (e.g one-to-many mappings, unanticipated mappings,
etc). The more sophisticated the mapping, the more complex the translation becomes.

To realize this translation process, string formatting capabilities provided by jdk 1.5 are
used. The strings that result from this process are passed to and used by the Velocity engine
to instantiate the actual rule code template.

As a simple example, consider the translation depicted in Figure 7.13. Every action is
translated to a separate line of code which is included in the action method of the rule
code generated by the translation process described in 7.4. Every domain entity referred to
in an action is translated to either a method invocation or an attribute retrieval, accord-
ing to how the mapping for that domain entity is defined. In this example, the domain
operation customer.addTenBoughtProducts() for instance maps to the core method cus-
tomer.account.addBoughtProducts(java.lang.Integer), where the parameter is fixed to the
value 10. Thus, the action targetcustomer.addTenBoughtProducts() gets translated to the
method invocation targetcustomer.account.addBoughtProducts(10), which is included

Chapter 7. Implementation 152

in the implementation of the action method. Note that the fixed value 10, specified as part
of the mapping, is used in the translated invocation.

7.5 From a High-Level Business Rule Connection to a JAsCo
Aspect

The translation process for a high-level rule connection is analogous to the one for a high-
level rule. Now, given a specification of a high-level connection, expressed in the dedicated
rule connection language, the implemented prototype performs an automatic translation to
a JAsCo aspect bean and a JAsCo connector. In order to obtain these aspect code units,
the transformations described in 5.6.2 are followed. Many steps conform this translation
process, which are described in the rest of this section. An overview of the translation
process is depicted in Figure 7.14.

7.5.1 Parsing

A parser for the high-level rule connection language is also implemented in JavaCC. Figure
7.6 depicts the main classes in the implementation of the parsing, including the main class
BRCParser which is implements the parser itself and the class hierarchy — automatically
generated by JavaCC — for representing the different parts of the parsed tree. This parser
checks whether the syntax of a given high-level rule connection complies with the grammar of
the high-level connection language. When this is the case, the parsing process is successful
and as a result a parsed tree is built in memory representing the parsed high-level rule
connection.

7.5.2 Translating

A parsed rule is then passed to a second component which implements the translation phase.
The main classes implementing this translation phase are brconnection.translator.Trans-
lationVisitor and brconnection.translator.TypeCheckingVisitor (depicted in Figure
7.15). This class is in charge of translating the parsed tree representation of a rule con-
nection into a well-modularized semantical rule connection representation. Two steps are
identified as well in this translation phase: validation and type checking (depicted in Figure
7.12).

• The validation phase verifies the existence and correct use of domain entities. In
particular, it verifies that the involved events exist in the domain model and that
they expose the referred contextual information items with the names that are used
in the high-level rule connection specification. To this end, queries to the domain
model have to be performed. Also, the information passed to the rule needs to be in
accordance to what it is defined as expected in the rule, e.g. the number of values used
for instantiating the rule and the number of contextual information items passed to
the rule have to respectively coincide with the number of properties and parameters
defined in the rule.

• The type checking phase makes sure that those domain entities are used in the expected
way with respect to their types. This includes checking that the types of the referred
contextual information items — exposed by the events — correspond to the types of
the rule parameters to which they are mapped. Moreover, the types of the property
values used to instantiate a rule need to be compatible with the types of the rules’

153 7.6 Translating Mapping Specifications

properties. Again, for these type validations, the domain model needs to be queried.
The types are determined by the mappings of the domain entities.

Once a parsed rule connection is validated against the domain model, a semantical
representation of the high-level rule connection is created. For this rule connection repre-
sentation, a set of classes have been designed (partially shown in Figure 7.7), instances of
which are created by the brconnection.translator.TranslationVisitor class once the
high-level rule connection has been validated and typed checked. The actual result of this
phase is an instance of the class BRConnectionEntity which is stored in the domain model.
When the validation process cannot be accomplished, an exception is thrown.

7.5.3 Generating Rule Connection Code

This phase takes as input an instance of the BRConnectionEntity class — returned by
the translator in the previous phase — and generates JAsCo aspect bean and connector
code implementing the corresponding high-level rule connection. The class implementing
this phase is brconnection.translator.BRConnectionCodeGenerationVisitor. This class
gathers the necessary deployment information which is used by the Velocity engine at tem-
plate instantiation time.

Analogous to the rule code generation, as part of this process, every domain entity in-
volved in a rule connection (e.g. events) needs to be translated to an expression in terms
of implementation entities. This is achieved by inspecting the domain entity mappings (as
explained in 7.4.3).

7.6 Translating Mapping Specifications
Two steps conform the translation process, which are described in the rest of this section.

An overview of the translation process is depicted in Figure 7.16.

7.6.1 Parsing

The parsing process is analogous to the previously described parsing processes and there-
fore the details are omitted here. The main class implementing the parsing process is
domainmodel.mapping.parser.MappingParser. When the parsing process succeeds, a parsed
tree representation of the mapping is returned. This is illustrated in Figure 7.8.

7.6.2 Translating

In this phase, a parsed mapping declaration is validated against existing elements in:

• the core application, in the case of anticipated mappings in terms of existing core
entities (defined using the operator MAPS-TO-IMPL); and

• the domain model, in the case of unanticipated mappings to domain (defined using
the operator MAPS-TO-DOMAIN).

The class domainmodel.mapping.translator.TranslationVisitor implements this trans-
lation phase. As a result of this phase, a set of objects that are used to populate the domain
model are created, which are instances of the classes representing domain entities and map-
pings (depicted in Figure 7.9). This step also involves type checking the expressions — both,
domain and implementation expressions — which are part of the mapping definitions.

Chapter 7. Implementation 154

7.7 Challenges
During the implementation of the transformations, the following challenges were tackled:

• resolving dependencies between transformations to AOP: the transformation of a high-
level specification that combines many high-level rule connection features is not as
simple as concatenating the outputs of the individual transformations for the involved
features. On the contrary, the different outputs have to be combined in a non-trivial
way in order to obtain a running aspect. This makes the transformation process more
complex as dependences between the individual transformations need to be taken into
account.

• ensuring consistency: at transformation time, the models involved in the high-level
definitions need to be consulted in order to ensure consistency. Dependences between
the models exist as the rule and connection models refer to elements in the domain
entities model. Thus, the domain entities model needs to be consulted to check for
the existence of the domain entities referred to in the rules and connections.

• generating optimized implementations: the generated OOP and AOP code only in-
volve the constructs that are most adequate for each case. This makes the generated
implementations more efficient.

• translating domain entities to implementation: during the transformation process of a
rule and rule connection, the mappings of the involved domain entities are obtained in
order to get an expression only in terms of implementation entities which is included
in the generated code for those rule and connection. In case of one-to-one mappings
— directly pointing to implementation entities — this step is simple, as only existing
implementation entities need to be retrieved. However, this process becomes more
complex as nested mappings need to be explored.

7.8 Summary
In this chapter we presented the prototype implementation developed as a proof of concept
for the ideas presented in this dissertation. This prototype supports the entire domain
model explained in chapters 5 and 6. Parsers and semantical checkers were implemented for
the three high-level dedicated languages in our approach (high-level business rule, high-level
business rule connection and mapping languages). The challenges encountered during the
implementation of this prototype were discussed.

155 7.8 Summary

pu
bl
ic
 B

RR
ea

de
r(
Fi

le
 i

np
ut
fi

le
)

 t
hr
ow

s
Fi

le
No
tF

ou
nd

Ex
ce
pt

io
n

{

Fi
le
In

pu
tS

tr
ea
m

st
re

am
 =

 n

ew
 F
il

eI
np

ut
St
re

am
(i

np
ut
fi
le
);

th
is
.p

ar
se

r
=
ne

w
BR

Pa
rs
er

(s
tr

ea
m)
;

} pu
bl
ic
 S

im
pl

eN
od
e

pa
rs

e(
)

 t
hr
ow

s
BR

Pa
rs
er

Ex
ce

pt
io
n

{

..
.

th
is
.p

ar
se

_t
re
e

=
BR

Pa
rs
er

.B
R(

);

..
.

}

BR
Pa

rs
er

BR
Re
ad
er
(b
rf
il
e)

pa
rs
e(
)

BR
Re

ad
er

1 pa
rs

er

<<
No

de
>>

jj
tA
cc
ep
t(
BR
Pa
rs

er
Vi
si
to
r
vi
si
to
r)

Si
m

pl
eN

od
e

<<
im

pl
em

en
ts

>>

AS
TA

ct
io

nsAS
TB

O
De

cl
ar

at
io

ns

AS
TC

on
di

tio
n

AS
TB

O
Pr

op
er

tie
s

AS
TB

R
AS

TB
RI

de
nt

ifi
er

...

<<
pa

rs
es

>>

Te
xt

ua
l D

oc
um

en
t

pa
rs

e_
tre

e
1

hi
er

ar
ch

y
pa

rs
e

tr
ee

Hi
gh

-le
ve

l
BR

Fi
gu

re
7.

4:
M

ai
n

cl
as

se
s

im
pl

em
en

tin
g

th
e

pa
rs

in
g

ph
as

e
in

th
e

tr
an

sf
or

m
at

io
n

of
a

hi
gh

-le
ve

lb
us

in
es

s
ru

le

Chapter 7. Implementation 156

nam
e

BREntity

BRProperties
properties

BRParam
eters

business
O

bjects

BRLocal
Definitions

accept(BREntityVisitor visitor)

<<CodeEntity>>

addAction(CodeEntity action)

BRActions

condition

actions

V
ecto

r

businessO
bjectsAttributes

BinaryO
peration

target
DM

Reference
Dom

ainEntity

UnaryO
peration

codeEntity1

V
ecto

r

nam
e BRLocal

Definition

*

im
plem

ents

reference

im
plem

ents

codeEntity1

code Entity2

im
plem

ents

im
plem

ents

im
plem

ents

dm
Entity

*
elem

ents *

elem
ents

Figure
7.5:

M
ain

classes
representing

a
parsed

and
translated

high-levelbusiness
rule

157 7.8 Summary

pu
bl

ic
 B

RC
Re

ad
er
(F

il
e

in
pu
tf

il
e)

 t

hr
ow

s
Fi

le
No
tF

ou
nd

Ex
ce
pt

io
n

{

Fi

le
In

pu
tS

tr
ea
m

st
re

am
 =

 n

ew
 F
il

eI
np

ut
St
re

am
(i

np
ut
fi
le
);

th

is
.p

ar
se

r
=
ne

w
BR

CP
ar
se

r(
st

re
am
);

} pu
bl

ic
 S

im
pl

eN
od
e

pa
rs

e(
)

 t

hr
ow

s
BR

CP
ar
se

rE
xc

ep
ti
on

 {

..

.

th

is
.p

ar
se

_t
re
e

=
BR

CP
ar
se

r.
BR

C(
);

..

.
}

BR
CP

ar
se

r

BR
CR
ea
de
r(

in
pu
tf
il

e)
pa

rs
e(
)

BR
CR

ea
de

r

1
pa

rs
er

<<
No

de
>>

jj
tA
cc
ep
t(
BR
CP
ar
se
rV

is
it
or
 v
is
it
or
)

Si
m

pl
eN

od
e

<<
im

pl
em

en
ts

>>

AS
TE

ve
nt

Co
nn

ec
tio

n

AS
TA

ct
iv

at
io

n

AS
TC

ap
tu

re
Po

in
t

ev
en

tN
am

e
in

fo
At

Ev
et

br
Co

nn
ec

tio
nN

am
e

AS
TM

ap
pe

dN
am

e

AS
TB

RC
AS

TB
R

Co
nn

ec
tio

n

...

<<
pa

rs
es

>>

Te
xt

ua
l D

oc
um

en
t

pa
rs

e_
tre

e1

hi
er

ar
ch

y
pa

rs
e

tr
ee

AS
TB

RP
ro

p
Sp

ec
ifi

ca
tio

n

Hi
gh

-le
ve

l B
R

Co
nn

ec
tio

n

Fi
gu

re
7.

6:
M

ai
n

cl
as

se
s

im
pl

em
en

tin
g

th
e

pa
rs

in
g

ph
as

e
in

th
e

tr
an

sf
or

m
at

io
n

of
a

hi
gh

-le
ve

lb
us

in
es

s
ru

le
co

nn
ec

tio
n

Chapter 7. Implementation 158

BRConnectionEntity

Event
connectionEvent

ActivationTim
e

ConnectionKind

nam
e

BREntity

activation
Tim

e

br

add(ExplicitConnection ec)

ExplicitConnections

nam
eInBR

nam
eInEvent

ExplicitConnection

targetEvent

Inform
ationAtEvent

infoAtEvent

Dom
ainClass

associated
Type

connectionKind

explicitConnections

connectionKindFor
captureEvents

O
b

ject

props

1

*

*

1
1 1

1

1

1

1

event: Event
captureEvent:

Event

Figure
7.7:

M
ain

classes
representing

a
parsed

and
translated

high-levelbusiness
rule

connection

159 7.8 Summary

pu
bl

ic
 M
ap
pi

ng
Re
ad
er

(F
il
e
in
pu

tf
il
e)

 t

hr
ow
s
Fi

le
No
tF
ou

nd
Ex
ce
pt
io

n
{

Fi

le
In
pu
tS

tr
ea
m
st

re
am
 =

 n

ew
 F
il
eI

np
ut
St
re
am

(i
np
ut
fi

le
);

th

is
.p
ar
se

r
=
ne
w

Ma
pp
in
gP
ar

se
r(
st
re

am
);

} pu
bl

ic
 S
im
pl

eN
od
e
pa

rs
e(
)

 t

hr
ow
s
Ma

pp
in
gP
ar

se
rE
xc
ep
ti

on
 {

..

.

th

is
.p
ar
se

_t
re
e
=

Ma
pp
in
gP
ar

se
r.
Ma
pp

in
gS
pe
c(
);

..

.
}

M
ap

pi
ng

Pa
rs

er

Ma
pp
in

gR
ea
de
r(

in
pu
tf
il

e)
pa

rs
e(

)M
ap

pi
ng

Re
ad

er

1
pa

rs
er

<<
No

de
>>

jj
tA
cc

ep
t(
Ma

pp
in
gP

ar
se
rV

is
it
or

 v
is
it

or
)

Si
m

pl
eN

od
e

<<
im

pl
em

en
ts

>>

AS
TN

av
ig

at
io

nI
n

Do
m

ai
nM

od
el

AS
TD

om
ai

nP
ro

pe
rty

AS
TN

av
ig

at
io

n
In

Im
pl

M
od

el
AS

TM
ap

pi
ng

Fo
r

Do
m

ai
nC

la
ss

AS
TM

ap
pi

ng
Sp

ec
AS

TD
om

ai
nC

la
ss

...

<<
pa

rs
es

>>

Te
xt

ua
l D

oc
um

en
t

pa
rs

e_
tre

e1

hi
er

ar
ch

y
pa

rs
e

tr
ee

AS
TD

om
ai

nO
pe

ra
tio

n

AS
TM

ap
pi

ng
Fo

r
Do

m
ai

nO
pe

ra
tio

n
AS

TM
ap

pi
ng

Fo
r

Do
m

ai
nP

ro
pe

rty

Do
m

ai
n

En
tit

ie
s

+
M

ap
pi

ng
Sp

ec
ifi

ca
tio

n

Fi
gu

re
7.

8:
M

ai
n

cl
as

se
s

im
pl

em
en

tin
g

th
e

pa
rs

in
g

ph
as

e
of

th
e

tr
an

sf
or

m
at

io
n

pr
oc

es
s

of
a

m
ap

pi
ng

sp
ec

ifi
ca

tio
n

Chapter 7. Implementation 160

M
ap

p
in

g

A
n

ticip
ated

M
ap

p
in

g
T

o
C

lass
M

ap
p

in
g

F
o

rC
o

n
tain

ed
D

o
m

ain
E

n
tity

AnticipatedM
appingTo

AO
P_Aspect

AnticipatedM
appingTo

O
O
P_Class

M
appingToExisting
CoreEntity

UnanticipatedM
apping

ThroughAO
P

UnanticipatedM
apping

ThroughO
O
P

nam
eO
fAddedAttribute

UnanticipatedM
apping

ThroughValue

CoreReferencePath

referencePath

A
O

P
O

p
erato

r

operator

Dom
ainO

peration

dom
ainO

perations

<<INonTerm
inal

Dom
ainExpression>>

dom
ainExpression

Dom
ainClass

type

O
b

ject

initialValue

D
erived

C
lassM

ap
p

in
g

derivedClassM
appings

Dom
ainProperty

ContainedDom
ainEntity

superDom
ainClass

dom
ainProperties

dom
ainO

perations

M
apping class hierarchy

D
om

ain entities class hierarchy

Figure
7.9:

M
ain

classes
representing

a
parsed

and
translated

m
apping

161 7.8 Summary

Co
re
Re
fe
re
nc
eP
at
h

R
ef

er
en

ce
P

at
h

<<
Im
pl
em

en
ta
bl
eO
bj
ec
t>
>

<<
IE
xp
re
ss
io
n>
>

E
xp

re
ss

io
n

im
pl
em
en
ts

im
pl
em
en
ts

im
pl
em
en
ts

im
pl
em
en
ts

im
pl
em
en
ts

<<
IN
on
Te
rm
in
al
Do
m
ai
n

Ex
pr
es
si
on
>>

Do
m
ai
nR
ef
er
en
ce

Pa
th

No
nT
er
m
in
al
Do
m
ai
n

Ex
pr
es
si
on

Si
ng
le

Ex
pr
es
si
on

Co
m
po
un
d

Ex
pr
es
si
on

T
er

m
in

al
D

o
m

ai
n

E
xp

re
ss

io
n

Li
te
ra
l

Ex
pr
es
si
on

Va
ria
bl
e

Ex
pr
es
si
on

im
pl
em
en
ts

<<
IR

ef
er

en
ce

>>

re
fe
rre
dE
nt
itie
s

ta
rg
et
Ex
pr
es
sio
n

R
ef

er
en

ce
im
pl
em
en
ts

<<
IR

ef
er

en
ce

T
o

C
o

re
E

n
ti

ty
>>

<<
IR

ef
er

en
ce

T
o

D
o

m
ai

n
E

n
ti

ty
>>

R
ef

er
en

ce
T

o
A

tt
ri

b
u

te

Re
fe
re
nc
eT
o

Co
re
At
tri
bu
te

Re
fe
re
nc
eT
o

Do
m
ai
nP
ro
pe
rty

R
ef

er
en

ce
T

o
A

tt
ri

b
u

te

Re
fe
re
nc
eT
o

Co
re
M
et
ho
d

Re
fe
re
nc
eT
o

Do
m
ai
nO
pe
ra
tio
n

im
pl
em
en
ts

im
pl
em
en
ts

Fi
gu

re
7.

10
:

M
ai

n
cl

as
se

s
re

pr
es

en
tin

g
th

e
ki

nd
s

of
ex

pr
es

sio
ns

al
lo

w
ed

in
th

e
de

fin
iti

on
of

a
m

ap
pi

ng

Chapter 7. Implementation 162

parsing

parsed tree for
HLBR

BREntity

validation

type checking

Translation

High-level BR
specification

BREntity
to code

velocity
engine

Rule Object
Code Generation

velocity
templatesvelocity

templatesvelocity
templates

condition()
action()

BRClass

Domain Model

domain entities

mappings

Domain Model

domain entities

mappings

input

output

Figure 7.11: Overview of the transformation process of a high-level business rule

163 7.8 Summary

public TranslationVisitor(ASTBR parsetree, DM dm)
 throws BRParserVisitorException {
 this.dm = dm;
 this.visit(parsetree);
 }

TranslatorVisitor(ASTBR parse_tree, DM dm)
getTranslatedBREntity()

Translation
Visitor

visit(SimpleNode node)
visit(ASTBR node)
visit(ASTBRIdentifier node)
visit(ASTBODeclarations node)
visit(ASTCondition node)
visit(ASTActions node)
visit(ASTBOProperties node)
...

<<BRParserVisitor>>

<<implements>>

TypeCheckingVisitor(BREntity br, DM dm)

TypeChecking
Visitor

name
BREntity

br

BRCodeGenerator
Visitor

<<implements>>

<<implements>>

br

typeCheckingVisitor

visit(BREntity entity)
visit(BusinessObjectsAttributes entity)
visit(BRActions entity)
...

<<BREntityVisitor>>

generateCode(String templateFile, VelocityContext context)
<<VelocityCodeGenerator>>

<<implements>>

br

Velocity
Contextcontext

DM

dm

dm dm

org.apache.velocity

brentities

Figure 7.12: Main classes implementing the translation phase in the transformation of a high-level
business rule

Chapter 7. Implementation 164

...THEN targetcustom
er.am

ountspent IS (targetcustom
er.am

ountspent + 10)

 AND targetcustom
er.addTenBoughtProducts()

...
 public void action()
 {
 targetcustomer.getShopAccount().amountspent = (targetcustomer.getShopAccount().amountspent + 10);

 targetcustomer.account.addBoughtProducts(10);
 }
} H
igh-level rule specification

Customer {
 customer.amountspent MAP-TO-IMPL customer.getShopAccount().amountspent

 customer.addTenBoughtProducts() MAP-TO-IMPL customer.account.addBoughtProducts(java.lang.Integer:10)
 ...
} M
apping specification

G
enerated rule's im

plem
entation

using

is translated to

is translated to

using

Figure
7.13:

Exam
ple

ofthe
translation

from
a

concrete
dom

ain
entity,involved

in
the

definition
ofa

high-levelrule,to
its

im
plem

entation

165 7.8 Summary

parsing

parsed tree for
HLBR Connection

BRConnection
Entity

validation

type checking

Translation

High-level BR
connection

specification

BRConnection
Entity to code

velocity
engine

Aspect Code
Generation

Domain Model

events

mappings

aspectbeantemplate.vm

velocity templates

connectortemplate.vm

hooktemplate.vm

domain entities

Domain Model

events

mappings

domain entities

Connection
Aspect

Class1

Class2

Class3

ClassN

condition()
action()

BRClassX

C

Core Application Business Rules

input

output

Figure 7.14: Overview of the transformation process of a high-level business rule connection

Chapter 7. Implementation 166

public TranslationVisitor(ASTBRC parsetree, DM dm)
 throws BRCParserVisitorException {
 this.dm = dm;
 this.visit(parsetree);
 }

TranslatorVisitor(ASTBRC parse_tree, DM dm)
getTranslatedBRConnectionEntity()

Translation
Visitor

visit(SimpleNode node)
visit(ASTBRC node)
visit(ASTBRConnection node)
visit(ASTBRPropSpecifications node)
visit(ASTMappedName node)
visit(ASTCapturePoint node)
visit(ASTActivationWhile node)
...

<<BRCParserVisitor>>

<<implements>>

DM

BRConnection
Entity

brConnection

BRConnectionCode
GeneratorVisitor

<<implements>>

brconnection.connectionEntities
visit(BRConnectionEntity entity)
visit(AfterConnection entity)
visit(BeforeConnection entity)
visit(InsteadOfConnection entity)
visit(ParameterAtEvent entity)
visit(ReceiverAtEvent entity)
visit(ReturnValueAtEvent entity)
visit(ActivationWhile entity)
visit(ActivationBetween entity)
...

<<BRCEntityVisitor>>

generateCode(String templateFile, VelocityContext context)
<<VelocityCodeGenerator>>

<<implements>>

brConnection

dm

Velocity
Context

org.apache.velocity

context

TypeCheckingVisitor(BRCEntity brCon, DM dm)

TypeChecking
Visitor

<<implements>> brConnection

dm

typeCheckingVisitor

dm

Figure 7.15: Main classes implementing the translation phase in the transformation process of a
high-level business rule connection

167 7.8 Summary

parsing

parsed tree for
Mapping

specification

input

output

validation

type checking

Translation

Domain Entities
+ Mapping

specification

Domain Model

mappings

domain entities

Class1

Class2

Class3

ClassN

core application

domain entity objects mapping objects

added to domain model

Figure 7.16: Overview of the transformation process from the mapping specification of a domain
entity

Chapter 7. Implementation 168

Chapter 8

Evaluation

In this chapter an evaluation of our approach is presented which uses a case study in
the domain of Service-Oriented Architectures (SOA), the Web-Services Management Layer
(WSML). Unlike the real-world domains (e.g. financial, medical) typically found in state-of-
the-art business rules systems, the chosen case study is based on a technical and challenging
application domain, which let us show the expressive power of our approach. The same way
as real-world domains, this domain suffers from the problems of the decoupling of business
rules and therefore can benefit from our approach. Many rules need to be taken into
account in order to cope with the inherent volatility of service-oriented applications. We
particularly focus on QoS criteria that guide the selection and client-side management of
Web services. In this chapter, an overview of the case study is presented in section 8.1.
Then the motivation behind the WSML is presented in section 8.2, as well as a description
of its general architecture (section 8.2.1), the way it supports selection, management and
redirection (section 8.2.2) as well as its current limitations with respect to changing and
adding new configuration business rules based on QoS (section 8.2.3). We then present two
scenarios in sections 8.3 and 8.4, evolution and refactoring scenarios where we show, on the
one hand, how our approach can realize the non-invasive addition of unanticipated business
rules to the WSML and, on the other hand, how existing selection policies can be refactored
and expressed at the high-level. We conclude in section 8.5 with a discussion.

8.1 Case Study: Web services Management Layer
In service-oriented computing, applications are often created by integrating third-party Web
services. However, in order for client applications to achieve a high flexibility in this inte-
gration, advanced support for selection and client-side service management is fundamental.
This support is rarely provided in standard state-of-the-art service integration approaches
and tools. Moreover, we observe that the selection, integration and management of Web
services are driven by criteria based on non-functional service properties. For instance, the
service integration can be guided by rules that prefer fast and reliable services or give pri-
ority to services with the least number of failures; other rules govern the way management
should be carried out, e.g. advising the activation of a caching mechanism for services
that are too slow. Many of these business rules depend on dynamic service properties that
are only known at run time. The explicit specification of these business rules is crucial to
achieve a highly flexible integration of services that best fit the client application’s needs.

As a first step towards achieving these goals, the Web service Management Layer (WSML)
was proposed in [CVV+07; VC05; VCJ04; VCV+04; VC04; VCS+04; CVJ03; VCJ03;

Chapter 8. Evaluation 170

CV03]. The WSML is an AOP-based management framework that allows for the dy-
namic selection and integration of services in client-applications and the client-side service
management. To this end, the WSML offers a reusable library of selection, management
and monitoring concerns implemented as aspects that can be customized for different ap-
plications on which this layer is deployed. Although the WSML significantly enhances the
overall service management, some limitations are observed with it.

Many decisions about how the framework needs to be configured and customized are taken
manually either at deployment time, i.e. at the moment the WSML framework is deployed
on a concrete client application, or at run time, i.e. by using the WSML administration
interface. In any case, human interaction is required. Examples of these configuration
decisions are: choosing which selection, management and monitoring concerns to plug in
or out and under which conditions, which parameters to use for the configuration of such
concerns, which concrete Web services to use for a given composition, etc. Because the
WSML is developed having flexibility and adaptability in mind, the WSML implementation
foresees the fact that the selection and the management can be guided by conditions based
on QoS. These conditions are implemented as isApplicable methods in JAsCo aspects that
carry out the corresponding selection and management tasks. For instance, the caching
functionality is performed only when the average speed of the service that is being addressed
falls under a threshold, whereas a certain Web service is approved for redirecting functional
requests to it only when it is not expensive. Although these conditions allow the conditional
execution of selection and management tasks, the added flexibility is limited, as analyzed
and discussed in section 8.2.3. We observe that the presented limitations impede achieving a
highly configurable and flexible adaptation, customization and configuration of the WSML
framework.

This chapter shows how our approach can be used to express and enforce dynamic business
rules that guide the adaptation, customization and configuration of the WSML. First of all,
an evolution scenario is presented in section 8.3, showing that it is possible to extend the
current WSML functionality in order to cope with new unanticipated business rules. This
demonstrates that domain evolution is supported. More concretely, this scenario shows
that:

• those unanticipated rules can be expressed externally and enforced non-invasively in
the existing WSML, without having to change or insert code.

• the WSML becomes more evolvable as its implementation can be extended as a result
of the consideration of new business rules and new service-oriented concepts.

Moreover, a second scenario is presented in section 8.4 that focuses on refactoring.
The goal of this section is to show how the domain approach can be used to refactor the
implementation of the WSML. The existing selection policies that are anticipated in the
WSML can be externalized as high-level business rules. This scenario shows that:

• it becomes possible to change the conditions that guide the selection of services, even
at run time, without having to change or extend the WSML implementation manually.

• it is easier to reason about those selection policies when they are expressed in terms
of the domain.

• the WSML code becomes more understandable and maintainable.

171 8.2 Web-Services Management Layer (WSML)

8.2 Web-Services Management Layer (WSML)

Web services are modular applications that are described, published, localized and invoked
over a network. The aim of the Web service technology is to facilitate the integration of
different business processes regardless of the software and hardware used underneath. It
offers a platform-independent solution to wire distributed applications of different enter-
prises. In the relatively short time that Web services have been around, a wide range of
supporting tools have been developed that enable the creation and deployment of Web ser-
vices and the development of service-oriented applications. Key technologies built around
W3C standards such as the Simple Object Access Protocol (SOAP) [GH+03], Web services
Description Language (WSDL) [CC+03] and Universal Description, Discovery and Inte-
gration (UDDI) [BC+04] make it possible to publish, look up and consume services in a
straightforward manner. Throughout this chapter, the terms service refers to either a single
Web service or a Web service composition. Note that a Web service composition refers to
the combination of many Web services which together are able to satisfy certain functional
requests. Typically a service composition is described using a service composition language
(such as BPEL [ACD+03]).

Although an impressive range of development tools enable the creation, deployment and
management of Web services on the server side, the just-in-time discovery and integration
of Web services on the client side is still an issue. Client applications that integrate services
using current technologies are rather inflexible because they cannot flexibly adapt to changes
in the very volatile service environment (e.g. a service is abandoned or changed, a new
service becomes available on the market or a service fails due to network problems). This
constitutes a first limitation.

A second limitation is that Web services can only be selected based on the functionality
they offer. The Web service documentation provided in WSDL format does not support the
explicit specification of non-functional requirements such as constraints based on Quality
of Service, classes of service, access rights, pricing information, Service-Level Agreements
(SLAs), etc. The explicit specification of these non-functional properties on the server side,
in a precise and unambiguous manner, allows for a more intelligent and customized selection
and integration of services. This way, applications can base their decisions on business
requirements when they integrate the services that best fit their needs. The WSML does
not focus on improving service documentation, but rather on how selection policies based on
these non-functional properties can be enforced in the client application. We also tackle the
monitoring of properties that measure the way Web services behave at runtime. Examples
of such properties are actual uptime, response time and number of failures. These monitored
properties are taken into account by selection policies (as explained in section 8.2.2.1).

A third obstacle is that Web services are typically integrated by hardcoding proxy classes
on the client side. As a consequence of treating Web services as internal software compo-
nents, their specific requirements are completely ignored: Web services are organizationally
fragmented, can be asynchronous and latent, can become unavailable due to unpredictable
network conditions, and thus require more management [Szy05]. To deal with these issues,
additional code has to be included manually in the client application. Even if this code is
encapsulated in a separate reusable module, its execution has to be triggered repeatedly
from the different points in the application where Web service functionality is required. As

Chapter 8. Evaluation 172

a result, management code is duplicated and scattered all over the application, which makes
maintenance more difficult.

To overcome these limitations, a management layer between the application and the Web
services is proposed in [CVV+07; VCJ04; VCV+04]: the Web services Management Layer
(WSML). This intermediate layer allows for the dynamic selection and integration of services
into an application, client-side service management, and support for service criteria based on
the non-functional properties that govern the selection, integration and composition of Web
services. The WSML is implemented using JAsCo since it realizes the dynamic addition and
removal of aspects at run time, which is a crucial requirement in volatile service-oriented
environments.

The benefits introduced by the WSML are:

• The application becomes more flexible, because it can continuously adapt to the chang-
ing business environment and communicate with new Web services that were unknown
or unavailable at deployment time.

• By weakening the link between the application and the Web services, the hot-swapping
of services becomes possible. When a service becomes unreachable due to network
conditions or service-related problems, another equivalent Web service can be used
instead.

• Replacing invocations of specific Web services by a generic way of requesting service
functionality, and extracting all Web service selection and management code from the
client applications, facilitate code maintenance and adaptability.

8.2.1 Architecture of the WSML

Figure 8.1 illustrates the architecture of the WSML. JAsCo aspects are used for implement-
ing the generic functionality of the management layer. JAsCo connectors specify where these
aspects need to be deployed. On the left-hand side of Figure 8.1, an application requesting
Web service functionality is shown. To enable this application to make requests without
referencing concrete services, the concept of service type is introduced. A service type is a
generic description of the service functionality required by a client application. It is com-
pletely independent of concrete Web services and thus contains no references to concrete
services. A service type can be seen as a contract between the application and the services.
It hides the syntactical differences between semantically equivalent services. Concrete Web
services that comply with the same service type can differ in many ways, for instance:

• Web method names;

• synchronous / asynchronous methods;

• parameter types and return types;

• semantics of parameters and return values; and

• method call sequencing.

The concept of service type makes it possible to hide the heterogeneity of the underlying
concrete Web services.

173 8.2 Web-Services Management Layer (WSML)

The right-hand side of Figure 8.1 shows three semantically equivalent services that are
available to fulfill the request for a particular service type, meaning that they offer the
same functionality but possibly differ syntactically in the way they provide it (e.g., services
using different method names or a different number of parameters). A mechanism based
on redirection aspects enables requests to be redirected or services to be hot-swapped.
Additional selection policies can be encapsulated in selection aspects. Finally, management
aspects are used to deal with management concerns such as monitoring, caching and billing.

Web
Service A

Service
TypeClient Web

Service B

Web
Service C

CB

CC

CACACS
CACA

Selection
AspectSelection
Aspect

Service
Selection
Aspect

Administration
Service

CM

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

Service
Repository

CA

WSML
Registry

WebService
Registry

Template
Registry

ServiceType
Registry

OO layer

AOP layer

Selection
AspectSelection
Aspect
Monitoring&
Management

Aspects

Figure 8.1: Architecture of the WSML (adapted from [Ver06])

On top of the aspect layer, a core OO layer is provided which offers the functionality
to manage and configure the concrete aspects that exist in a concrete deployment of the
WSML framework. The two coexisting layers in the WSML are depicted in Figure 8.1. The
WSMLRegistry is the main class in the OO layer. This class maintains two references to the
TemplateRegistry class under the names of selectionModule and managementModule. The
TemplateRegistry class provides methods to add, remove and obtain aspect templates and
concrete instances of those aspect templates as well as it allows for enabling, disabling and
configuring a given aspect instance — represented as an instance of TemplateInstance. All
operations that have an effect on the aspect layer are carried out through this core OO layer.
Also, references to the ServiceTypeRegistry and WebServiceRegistry classes are kept in

Chapter 8. Evaluation 174

WSMLRegistry which are in charge of maintaining the list of available service types defined
in the system and concrete Web services registered with the WSML, as well as defining
methods for their manipulation.

8.2.2 Selection, Management and Redirection in the WSML

In this section, the current WSML support for selection, management and redirection are
described in detail. The current implementation of the WSML allows guiding the selection,
the monitoring and management of services with conditions based on QoS.

8.2.2.1 Web Service Selection

A limitation of the Web services Description Language (WSDL), the standard for the speci-
fication of the functionality of Web services [CC+03] , is that it does not natively support the
specification of non-functional properties. Several WSDL extensions have been proposed to
enable the specification of non-functional properties on Web services (e.g., the Web service
Offering Language [TPE+02]). Selection policies can then be based on these non-functional
service descriptions (e.g. they can pertain to cost). Another category of service properties
includes average response time, number of successful invocations, network bandwidth and
service reliability. These properties depend on the runtime behavior of the service itself and
need to be monitored during the execution of the application. Current Web service integra-
tion approaches, however, provide little or no support for such non-functional properties in
the service selection process.

The WSML improves on current approaches by supporting selection policies based on
non-functional properties of services which are able to select the most appropriate service
for a given functional request. These policies encapsulate business rules that filter and/or
order available Web services according to values of their non-functional properties. They
are triggered after the completion of a functional request invoked on a service type, which is
ultimately delegated on a concrete Web service registered for that service type. As a result
of applying a selection policy, the new ordered or filtered list of available services for that
service type is taken into account in the next functional request performed on that same
service type. Selection policies are made explicit in the WSML layer in the form of aspects.

Two kinds of selection policies based on QoS properties are supported in the WSML:

• imperatives: an imperative is a constraint on a service that must be satisfied. Imper-
atives describe mandatory conditions (e.g., the cost of the service must not exceed a
fixed amount, or the response time of a service must not go beyond a certain thresh-
old). They can also involve interrelationships with other services or the system (e.g. a
service needs to be less expensive than the average cost of all registered services). In
order for a Web service to be approved for selection and integration, it must comply
with all the specified imperative selection policies. When a service does not satisfy an
imperative selection policy, it gets disapproved and no longer considered for selection.
The disapproved service has the chance to get approved again when it changes its
state (e.g. its properties are updated).

• guidelines: from the list of filtered services that satisfy all the imperatives, some have
to be given priority over others. This is where guidelines come into play. For example,
one can give priority to the least expensive service, or the service with the highest

175 8.2 Web-Services Management Layer (WSML)

security level. This implies that services are compared with each other and ranked.
Note that if an approved service does not satisfy a specific guideline (e.g., it is not
the least expensive at a given moment in time), it can still be considered for selection
later on (e.g., if its cost goes down or if less expensive services fail).

Selection policies require the monitoring of non-functional properties to be up and run-
ning. In the WSML, monitoring is implemented in aspects which observe the behavior of
the Web services and keep the results of their observations as service properties — stored in
the core management framework. A schema depicting the use of selection and monitoring
aspects in the WSML is shown in Figure 8.2.

Figure 8.2: Service monitoring and service selection aspects in WSML (taken from [CVV+07])

For instance, if a selection policy specifies that the service with the shortest response
time must be selected, the performance of all involved services needs to be observed by
deploying a monitoring aspect at specific points within the application. The monitoring
aspect supported in the WSML implementation and illustrated in Figure 8.2 can monitor
changes in the property values of a service (step 1). When the value of a service property
changes, the new value is computed and stored (step 2). Whenever this occurs, the imper-
ative selection aspects are triggered to check whether the service that changed still satisfies
the specified constraints (steps 3 and 4). Finally, the guideline selection aspects select the
most appropriate Web service (step 5).

WSML provides a library of reusable and generic selection policy templates that can
be used to approve a set of Web services. For example, the ServicePropertyImperative
selection policy aspect is provided which can be instantiated and initialized with different
parameters at runtime by deploying a new connector. For instance, when Web services are
filtered according to their average response times, the ServicePropertySelection aspect is
initialized in a connector using the following values:

• serviceType = <<the name of the concrete service type>>

• minimum = 0

• maximum = 5000

Chapter 8. Evaluation 176

• property = “Average speed”

Note that changing the values of these selection policy parameters is the only flexibility
supported by the WSML for guiding the service selection.

In addition to imperative selection policies, this library also contains a guideline selection
policy named ServicePropertyGuideline that ranks registered services according to their
property values (e.g., to select the cheapest service first). To actually rank the Web services
for a particular service type, the connectors of their corresponding redirection aspects must
also be reordered. This is achieved using JAsCo connector combination strategies, which are
used to control the execution sequence of connectors. The chaining of the around behaviors
of the redirection aspects can thus be altered in a straightforward and flexible way.

8.2.2.2 Client-Side Web Service Management

The WSML is also able to deal with management concerns that need to be controlled on
the client side of the application. To this end, a library of management aspects is provided
as part of the framework, including support for caching, billing, fallback strategies, etc. In
this section we consider the caching management concern as a representative example of
management concerns supported in the WSML. By implementing caching, the number of
remote Web calls to a service can be reduced and results can be provided to a client even if no
services are currently available for fulfilling a particular request. The caching functionality
works in cooperation with the basic redirection mechanism (explained in section 8.2.2.3).

As introduced in section 8.1, the execution of the management concerns can be controlled
by conditions that are checked right before the actual management task is performed. This
extra support is provided by subaspects that inherit from the aspects implementing the
management functionality itself. In addition add a condition in the firm of an isApplicable
method. This condition is based on non-functional QoS properties of services. For example,
the ConditionalCaching aspect, which inherits from the more generic Caching aspect, first
checks whether the value of a certain property (e.g. the service price) of the service that is
being invoked is smaller than a threshold, in which case an around advice is executed which
first proceeds with the interrupted service invocation and then stores the value returned
by that invocation in a cache. Once the caching functionality is installed, the following
requests performed on the same services for which values exists in the cache are addressed
by directly returning those cached values instead of actually proceeding with the service
invocations. As soon as the value of the QoS property (i.e. price in the example) becomes
greater than the specified threshold, the caching aspect stops storing the results in the
cache, which causes the services to be invoked again.

A predefined library of reusable management aspects is offered by the WSML framework.
Instances of these aspects can be added and removed at run time through the OO manage-
ment layer of the WSML. Management aspects can be configured to operate at different
levels: at the level of service types, operating at the moment a service type is invoked, or
at the level of concrete Web services, operating at the moment a concrete Web service is
addressed and the level of a service composition, i.e. when a functional request is redirected
to a service composition.

177 8.2 Web-Services Management Layer (WSML)

8.2.2.3 Web Service Redirection

When using the WSML as an intermediate layer in between the services and the client
applications, the latter are unaware of the details of specific services by invoking the desired
functionality on generic service types. To translate these generic requests into specific
Web service invocations, the WSML implements a mechanism based on service redirection
aspects. A redirection aspect encapsulates all communication details for a specific Web
service or service composition. A different redirection aspect is associated with each concrete
Web service or service composition integrated in the system. Each service redirection aspect
specifies which behavior to execute, i.e. which concrete methods to invoke on a specific
Web service or service composition when a generic service functionality is requested by
the client application. The details of how the different Web services involved in a service
composition interact with each other in order to satisfy a functional request are encapsulated
in a redirection aspect.

The basic redirection mechanism works as follows (see Figure 8.3). As soon as a client
requests a service type, the first redirection aspect is executed and the corresponding Web
service is invoked. If this invocation fails, an exception is thrown which is caught by a
fallback aspect. Different fallback strategies can be implemented by this aspect. The
default fallback strategy attempts to invoke the next available Web service, and so on
until all available services are tried. If none of these invocations succeed, an exception
is thrown back to the client. This whole process is transparent to the client application.
As JAsCo allows aspects and connectors to be deployed at runtime, new services can be
integrated dynamically. As a result, WSML can easily cope with changes in the Web
service environment. When a new concrete Web service is registered in WSML for a given
service type, a new redirection aspect is generated and added to the system. By creating
a corresponding connector at runtime, the new service can be integrated with the client
application. The current version of WSML supports fully automated connector generation
and tools for creating redirection aspects.

Figure 8.3: Basic redirection mechanism implemented in the WSML (adapted from [CVV+07])

Similarly to the selection and the management, the redirection of functional requests to
concrete Web services is also guided by hardcoded conditions. These conditions are based
on the parameters of the request and thus are checked right before the redirection to a
concrete Web service is performed.

Chapter 8. Evaluation 178

8.2.3 Limitations of the WSML

The main limitation observed in the current WSML is in relation with how selection and
management concerns are plugged in and out in a given application on which the WSML is
deployed: enabling, disabling, configuring and removing monitoring, selection and manage-
ment concerns that are currently supported in the WSML has to be done manually with
human interaction. For example, the indication that a certain concern needs to be enabled
or disabled can either be given in an XML configuration file — i.e. at deployment time —
or via an administration console — i.e. at run time. In both cases, the decision of when
and under which conditions this enabling or disabling action has to be carried out is taken
manually, e.g. the WSML administrator in charge of configuring the layer.

Although some support is provided in the current WSML to achieve a more flexible
pluggability of concerns by means of ‘conditional aspects’ — aspects that are only triggered
when a certain condition is met — the current support is limited:

• selection, management and redirection concerns can only be guided by conditions that
are anticipated in the implementation of the conditional aspects realizing those con-
cerns. These conditions check the values of QoS properties. For instance, current
service selection policies are able to filter or order services only according to whether
the value of a certain QoS monitored property falls into a range of expected val-
ues. Guiding these selection, management and redirection tasks with new conditions
that were not anticipated in the current WSML implementation requires adding new
aspects to the framework.

• not only are those conditions anticipated in the layer but also the information used
in their definition is of course anticipated. Existing conditions in the WSML can only
check an anticipated QoS property that can either be retrieved from the services them-
selves (and therefore are provided in the service documentation or API) or calculated
by the WSML by means of monitoring the behavior of the services (in which case they
are anticipated in the WSML). Selecting services, carrying out a management task or
redirecting to a Web service based on QoS properties which were not anticipated is
currently not possible. To add support for unanticipated QoS properties, the WSML
needs to be extended.

In order to overcome these limitation we could of course extend the implementation
of this management framework manually. For instance, new aspects implementing new
selection policies realizing different filtering and/or ordering strategies (e.g. a round-robin
selection strategy) could be added to the WSML as well as new monitoring aspects can
be added to support unanticipated monitored properties. Because the WSML has been
designed as an AOP framework, it is perfectly possible to plug-in and out new aspects, this
way extending the framework’s functionality. However, following such an approach has the
following disadvantages:

• changing the conditions that guide the service selection and management implies
invasive changes to the implementation of the current aspects or manually writing
and adding new selection or management aspects.

• adding support for unanticipated QoS properties implies manually changing the im-
plementation of the current monitoring aspects provided by the WSML or manually
writing and adding new aspects that monitor service execution at different monitoring
points than the ones that were anticipated.

179 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

Manually changing, writing and adding aspects is hard and error-prone since it involves
getting acquainted with the details of the WSML implementation and requires having tech-
nical skills.

8.3 Evolution Scenario: Supporting Unanticipated Business
Rules

In order to overcome the limitations of the WSML, we propose the use of the domain model
approach presented in this dissertation. The aim is to be able to express high-level business
rules that can automate the customization of this management framework. This way, the
high-level rule and connection languages can be seen as a domain-specific languages for the
customization of the WSML layer.

In this section we focus on showing how the implementation of the WSML can evolve
without having to introduce invasive changes or the implementation of new aspects. In
section 8.3.1 examples of new business rules that we would like to incorporate in the frame-
work are presented. As a first step towards the expression of these rules at the domain level,
the domain vocabulary of interest is made explicit at the high level as domain entities of
a domain model (section 8.3.2). Because these initial domain entities are embodied in the
implementation of the WSML, anticipated mappings for them can be defined. The next
step consists of using those domain entities in the definition of the example business rules
(section 8.3.3).

We also consider the case where new rules might want to be expressed for which new
domain entities need to be added to the initial domain model (section 8.3.4). We show
examples of domain entities that represent vocabulary of interest that is also embodied in
the WSML but that has not been pulled up in the initial domain model (section 8.3.4.1) as
well as domain entities that require capturing values at execution points (section 8.3.4.2).
A second part of the experiment focuses on evolution (section 8.3.4.3): we consider the
case where new rules need to be expressed for which the domain vocabulary of interest is
not embodied in the existing implementation of the WSML. Thus, new domain entities are
added to the initial domain model which are unanticipated in the current implementation.
We then show how the initial domain model can be extended with extra domain entities
representing the vocabulary of interest and how the desired rules can be defined in terms
of those added domain entities.

8.3.1 Identifying Potential Configuration Business Rules

The following customization actions, which are currently supported in the WSML, are
considered:

• enable a monitoring, selection or management concern;

• disable a monitoring, selection or management concern;

• add and configure a monitoring, selection and management concern; and

• remove a monitoring, selection and management concern.

Chapter 8. Evaluation 180

The addition of a concern implies the addition of a new aspect in the system whereas
the enabling of a concern implies the enabling of an aspect already existing in the system.
The automating of these customization actions could be achieved when their execution is
controlled by business rules. The case of conditions based on QoS properties is considered.
Different ways in which those QoS properties are obtained are identified:

• QoS properties which are documented in the services WSDL;

• QoS properties which are retrieved from services and stored in the WSML;

• QoS properties which are monitored by the WSML; and

• QoS properties which are unanticipated in the current WSML implementation:

– need to be monitored at unanticipated points in the execution; and
– need to be calculated from existing QoS properties;

8.3.2 An Initial Domain Model

The process of defining the domain entities and the business rules in terms of them can be
carried out in two different ways. The first one is a per phase style, which consists of defining
first all the domain entities that are needed for expressing all the desired business rules.
The second one is an incremental style, where domain entities are defined incrementally
as business rules need to be added to the domain model. Our approach supports the two
styles. In this section the per phase style is followed, whereas in section 8.3.4 an incremental
style is preferred.

Listings 8.1, 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7 show the definition of domain entities and
their mappings to the existing WSML. Note that because this is not a real-world domain
but a technical Web services domain, the domain expert in charge of defining these domain
entities needs to be knowledgeable of Web services terminology (e.g. Web services, number
of failures, service selection, monitoring and management). As mentioned in section 8.2.1,
two co-existing layers can be found in the WSML implementation: the OO and AO layers,
in which the former allows for the manipulation of the latter. Thus, the mappings of the
initial domain entities are defined in terms of existing implementation entities in the OO
layer of the WSML1.

Different ways to populate the domain model are illustrated. For example, domain enti-
ties can be extracted automatically from a subset of WSML implementation entities that
are relevant from the domain perspective. In this case, one-to-one mappings are created to
link these domain entities to their corresponding implementation entities. This is illustrated
in line 1 of the high-level specification 8.2, which indicates the pulling up of the complete
WSMLProperty class under the name MonitorableServiceProperty — including its attributes
and methods and the types involved in their definitions. Note that the MonitorableServi-
ceProperty domain class adds the definition of two domain operations smallerThan(value)
and greaterThan(value) which have a high-level mapping defined in terms of other existing
domain entities.

1When support for mapping to AOP entities that exists in the implementation is supported, domain
entities could also map to the AO layer of the WSML. This is however outside the scope of this dissertation
and subject of future work (as described in section 10.2).

181 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

Other domain entities only pull up part of an implementation entity. This is the case of
the WSML, MonitorableService, ServiceType, ServiceComposition and WebService domain
classes defined in the high-level specifications 8.3, 8.4, 8.5 and 8.6. For them, the MAP-
TO-IMPL feature is used, which only creates a domain class for those OO classes but does
not pull up their contained entities (attributes and methods). The next step is to define
the needed domain properties and operations in those domain classes one by one. For ex-
ample, the WSML domain class (shown in the high-level specification 8.1) defines domain
operations enableCaching and disableCaching which represent the actions of enabling and
disabling the caching concern. At implementation level, management concerns — and there-
fore the underlying aspects — are enabled and disabled via static methods defined in the
class TemplateRegistry. As an association exists between the WSMLRegistry and the Tem-
plateRegistry classes, the navigation WSMLregistry.getManagementModule() is included as
part of the mapping specification in order to obtain the right instance of TemplateRegistry
on which the methods enableTemplateInstance and disableTemplateInstance need to
be invoked. Moreover, besides the definition of navigations in the implementation, these
mappings involve the specification of literal values and nested arithmetical expressions. The
mappings for the domain operations addMonitoring, removeMonitoring, addGuidelineSelec-
tion defined in the WSML domain class are defined in a similar way.

The MonitorableService domain class, the definition of which is shown in the high-level
specification 8.3 maps to an interface, the wsml.CommonServiceInterface (the high-level
specification 8.3). This domain class represents all services for which their QoS prop-
erties can be monitored (i.e. not only Web services but also service types and service
compositions). It defines properties representing monitored QoS properties and operations
to set the value of those properties. The example of the averageSpeed domain property
is shown in the high-level specification 8.3 which maps to the invocation of the method
getProperty(String) where the parameter represents the name of the property of interest,
which in this case is "Average Speed". All other monitored QoS properties — i.e. number
of invocations, number of failures and speed of last Invocation — can be defined in an
analogous way, and therefore they are not explained here. Note that this domain class also
adds two domain operations slowerThan and fasterThan which map to domain expressions,
defined in terms of the averageSpeed and the smallerThan and greaterThan domain entities
declared in the MonitorableServiceProperty domain class.

Inheritance is illustrated as well in this initial domain model: the domain classes Service-
Type (the high-level specification 8.4), ServiceComposition (the high-level specification 8.5)
and WebService (the high-level specification 8.6) inherit from the domain class Monitorable-
Service. This is indicated by means of the INHERITS-FROM feature. This implies that
all domain entities defined in the MonitorableService domain class are inherited by those
domain classes that inherit from it.

In addition to the monitored properties, Web services define QoS properties that are not
dynamic and that can be obtained by either inspecting the documentation of the Web ser-
vice or requesting the Web service. An example of such properties is the property price, as
shown in the high-level specification 8.6. These properties can also be retrieved by means
invoking the method getProperty passing the name of the property as parameter. The map-
ping for the property price (shown in line 6 of the high-level specification 8.6) is defined by
the method getProperty(String) with the literal “price” as parameter. In a similar way, the
domain operation setPrice(price) (shown in lines 8 to 9 of the same high-level specification)

Chapter 8. Evaluation 182

maps to the OO method setProperty(String, String) where the first parameter is fixed
to the literal value “price” and the second one is linked to the variable price specified at
the LHS of that mapping.

1 WSML MAP-TO-IMPL wsml.WSMLregistry
2

3 WSML {
4 WSML.enableCaching(monitorableServiceName) MAP-TO-IMPL
5 (wsml.WSMLregistry).getManagementModule().enableTemplateInstance(
6 java.lang.String:"Caching" + monitorableServiceName, java.lang.String:"Caching")
7

8 WSML.disableCaching(monitorableServiceName) MAP-TO-IMPL
9 (wsml.WSMLregistry).getManagementModule().disableTemplateInstance(

10 java.lang.String:"Caching" + monitorableServiceName, java.lang.String:"Caching")
11

12 WSML.introduceMonitoringServiceComposition(sc) MAP-TO-IMPL
13 (wsml.WSMLregistry).getManagementModule().addTemplateInstance(
14 java.lang.String:"monitoring" + sc.name, java.lang.String:"InvocationMonitoring",
15 java.lang.String[]:{"SC", sc.serviceTypeName, sc.name, "*"}, java.lang.String[]:null,
16 boolean:false)
17

18 WSML.introduceMonitoringServiceType(st) MAP-TO-IMPL
19 (wsml.WSMLregistry).getManagementModule().addTemplateInstance(
20 java.lang.String:"monitoring" + st.name, java.lang.String:"InvocationMonitoring",
21 java.lang.String[]:{"ST", st.name, "*", "*"}, java.lang.String[]:null,
22 boolean:false)
23

24 WSML.stopMonitoring(service) MAP-TO-IMPL
25 (wsml.WSMLregistry).getManagementModule().removeTemplateInstance(
26 java.lang.String:"monitoring" + service.name, java.lang.String:"InvocationMonitoring")
27 }

High-Level Specification 8.1: Definition of the WSML domain class

1 MonitorableServiceProperty ALIAS-FOR wsml.properties.WSMLproperty
2

3 MonitorableServiceProperty {
4 monitorableServiceProperty.smallerThan(value) MAP-TO-DOMAIN
5 monitorableServiceProperty.getValue().compareTo(value) < 0
6

7 monitorableServiceProperty.greaterThan(value) MAP-TO-DOMAIN
8 monitorableServiceProperty.getValue().compareTo(value) > 0
9 }

High-Level Specification 8.2: Definition of the MonitorableServiceProperty domain class

The domain model allows defining events of interest at which rules might be applied.
These definitions are completely specified at the domain level, in terms of domain entities.
Listing 8.7 shows events that are defined as part of this initial domain model. An example
is the setAverageSpeedToWebServiceEvent event which captures the moment the domain
operation setAverageSpeed(speed) defined in the WebService domain class is executed and
exposes the target Web service as WebService and the first parameter as speed. The other
events are defined analogously.

183 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

1 MonitorableService MAP-TO-IMPL wsml.CommonServiceInterface
2

3 MonitorableService {
4

5 service.name MAP-TO-IMPL service.getName()
6

7 service.averageSpeed MAP-TO-IMPL service.getProperty(java.lang.String:"Average Speed")
8

9 service.setAverageSpeed(speed) MAP-TO-IMPL
10 service.setProperty(java.lang.String:"Average Speed", java.lang.Object:speed)
11

12 service.slowerThan(value) MAP-TO-DOMAIN service.averageSpeed.smallerThan(value)
13

14 service.fasterThan(value) MAP-TO-DOMAIN service.averageSpeed.greaterThan(value)
15

16 service.numberOfFailures MAP-TO-IMPL
17 service.getProperty(java.lang.String:"Invocation Failures")
18

19 service.numberOfInvocations MAP-TO-IMPL
20 service.getProperty(java.lang.String:"Invocations")
21 }

High-Level Specification 8.3: Definition of the MonitorableService domain class

1 ServiceType MAP-TO-IMPL wsml.ServiceType
2

3 ServiceType INHERITS-FROM MonitorableService

High-Level Specification 8.4: Definition of the ServiceType domain class

1 ServiceComposition MAP-TO-IMPL wsml.ServiceComposition
2

3 ServiceComposition INHERITS-FROM MonitorableService
4

5 ServiceComposition {
6 serviceComposition.serviceTypeName MAP-TO-IMPL
7 serviceComposition.getServiceType().getName()
8

9 serviceComposition.price MAP-TO-IMPL
10 serviceComposition.getProperty(java.lang.String:"price")
11

12 serviceComposition.calculatePrice() MAP-TO-IMPL
13 serviceComposition.calculateAutomaticProperty(java.lang.String:"price")
14 }

High-Level Specification 8.5: Definition of the ServiceComposition domain class

Chapter 8. Evaluation 184

1 WebService MAP-TO-IMPL wsml.WebService
2

3 WebService INHERITS-FROM MonitorableService
4

5 WebService {
6 WebService.price MAP-TO-IMPL WebService.getProperty(java.lang.String:"price")
7

8 WebService.setPrice(price) MAP-TO-IMPL
9 WebService.setProperty(java.lang.String:"price", java.lang.String:price)

10

11 WebService.increasePrice(delta) MAP-TO-IMPL
12 WebService.setPrice(Web.Service.price + delta)
13 }

High-Level Specification 8.6: Definition of the WebService domain class

1 EVENT setAverageSpeedToWebServiceEvent AT WebService.setAverageSpeed(speed)
2 EXPOSING TARGET AS WebService
3 PARAMETER 0 AS speed
4

5 EVENT setAverageSpeedToServiceTypeEvent AT ServiceType.setAverageSpeed(speed)
6 EXPOSING TARGET AS serviceType
7 PARAMETER 0 AS speed
8

9 EVENT calculatePriceOfServiceCompositionEvent AT ServiceComposition.calculatePrice()
10 EXPOSING TARGET AS serviceComposition

High-Level Specification 8.7: Definition of events

8.3.3 Business Rules in Terms of Initial Domain Entities

The focus of this section is to show how the high-level business rule and connection languages
can be used to express configuration business rules. Examples involving the conditions and
actions described in section 8.3.1 are given. The high-level rules and connections use domain
entities defined in the initial domain model (Listings 8.1, 8.2, 8.3, 8.4, 8.5, 8.6 and 8.7).

8.3.3.1 Enabling Service Type Caching Based on Average Speed

Consider the following example business rule:

ServiceTypeCachingBR: if a service type is slower than 1000 ms then enable the caching
functionality for that service type

The concepts involved in this business rule are the concepts of service type, whether
a service type is slower than the value 1000 and the concept of enabling the caching for
a service type. Domain entities are present in the initial domain model which represent
these concepts: the domain class ServiceType, the domain operation slowerThan(value)
defined in the domain class MonitorableService and inherited by ServiceType, and the en-
ableCaching(name) domain operation defined in the WSML domain class. Using these
domain entities and the features of the high-level rule language, the ServiceTypeCachingBR
can be expressed as shown in Figure 8.8. Note that this high-level rule is more generic than
the rule expressed in natural language. This is because in order to improve reusability, the
ServiceTypeCachingBR rule is defined as a rule template which defines the threshold speed

185 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

as a rule parameter and not as a hardcoded value. This rule expects to receive a service type
entity st at rule connection time, as it is specified in the USING clause. The WHERE clause
defines a variable serviceName which keeps track of the name of the received service type.
The condition is defined as the invocation of the domain operation slowerThan(speed) on
the service type st. The action invokes the domain operation enableCaching(serviceName)
on the domain class WSML.

BR ServiceTypeCachingBR
PROPS Long AS speed
USING ServiceType AS st
WHERE serviceName IS st.name
IF st.slowerThan(speed)
THEN WSML.enableCaching(serviceName)

High-Level Specification 8.8: The ServiceTypeCachingBR rule

Note that, although omitted here, an analogous rule must be defined in charge of disabling
the caching concern when the service becomes faster than the threshold. In order to connect
the ServiceTypeCachingBR rule to the WSML application, an event capturing the right
application time must exist in the domain model. The decision of whether the caching has
to be enabled is taken after the value of the average speed of that service type is changed,
since it is then when one can determine that a service type is slow or fast. Thus, a suitable
event on which to express this connection is setAverageSpeedToServiceTypeEvent (high-level
specification 8.7). A possible high-level rule connection using this event is shown in Figure
8.9. This is an AFTER connection, as the rule has to be applied after the average speed
of the service type is changed. The setAverageSpeedToServiceTypeEvent exposes the target
service type which is mapped to the one expected by the rule in the MAPPING clause.

CONNECT ServiceTypeCachingBR PROPS 1000
AFTER setAverageSpeedToServiceTypeEvent
MAPPING setAverageSpeedToServiceTypeEvent.serviceType TO st

High-Level Specification 8.9: Connection for the ServiceTypeCachingBR rule

As a result of defining, loading and translating these specifications, Java and JAsCo
code is obtained for the rule and rule connection respectively, which is shown in the code
fragment 8.1 for the rule object and code fragments 8.2 and 8.3 for the aspect and connection
code2.

8.3.3.2 Adding Service Composition Monitoring Based on Price

Consider the following rule:

2Note that for simplification reasons we assume the aspect code shown in fragment 8.2 not to be executed
simultaneously by multiple threads.

Chapter 8. Evaluation 186

package Rules;

public class ServiceTypeCachingBR {

final String name = "ServiceTypeCachingBR";

//Properties
java.lang.Long speed;

//Business Objects
wsml.ServiceType st;

//Business Objects Attributes/Properties
java.lang.String serviceName;

//Constructor
public ServiceTypeCachingBR(java.lang.Long speed)
{
this.speed = speed;

}

public wsml.ServiceType getSt() {
return st;

}

public void setSt(wsml.ServiceType st) {
this.st = st;

}

public String toString() {
String st = this.name;
st += " (";
st += " Parameters: " + this.speed + " ";
st += ";";
st += " Business Objects: " + this.st + " ";
st += ")"; return st;
}

//Fires the BR
public void initializeRule()
{
//initialize bo attributes aliases
this.serviceName = st.getName() ;

}

public boolean condition()
{
return st.getProperty("Average Speed").getValue().compareTo(speed) < 0;

}

public void action()
{
wsml.WSMLregistry.getManagementModule().enableTemplateInstance(

"Caching" + serviceName, "Caching");
}

}

Code Fragment 8.1: Generated rule object for ServiceTypeCachingBR rule

187 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

package Linking;
import Rules.ServiceTypeCachingBR;

class ServiceTypeCachingBRConnection {
//BR Object initialization
ServiceTypeCachingBR rule = new ServiceTypeCachingBR(new java.lang.Long(1000));

//Attributes for Captured information
wsml.ServiceType setAverageSpeedToServiceTypeEvent_serviceType;

public String toString() {
return ("Connection named " + "ServiceTypeCachingBRConnection" + " for rule " + rule);

}

hook Hook0 {
Object[] params;
String methodName;

//Constructor
Hook0(method0(..args0)) { execution(method0) && target(wsml.ServiceType); }

//Advice
public refinable boolean mappingRestrictions();

isApplicable() {
params = thisJoinPoint.getArgumentsArray();
methodName = thisJoinPoint.getName();
return mappingRestrictions();

}

public String toString(){
String st = "rule connection " + "ServiceTypeCachingBRConnection" +

+ " hooked on method " + methodName + "(";
for(int i=0; i<params.length; i++){
st += params[i];

if(i<params.length-1) st += ", ";
}
st += ")";
return st;

}

after() {
//associate local name to required connection info
global.setAverageSpeedToServiceTypeEvent_serviceType = thisJoinPointObject;

global.rule.setst(global.setAverageSpeedToServiceTypeEvent_serviceType);

global.rule.initializeRule();
//Rule conditional
if(global.rule.condition()) {

//Rule Triggering
global.rule.action();

}
}

}
}

Code Fragment 8.2: Generated aspect bean for ServiceTypeCachingBRConnection

Chapter 8. Evaluation 188

static connector ServiceTypeCachingBRAtsetAverageSpeedToServiceTypeEventConnector{

Linking.ServiceTypeCachingBRConnection.Hook0 hook0 =
new Linking.ServiceTypeCachingBRConnection.Hook0(

void wsml.CommonServiceInterface.setProperty+(java.lang.String, java.lang.Object)){
public refinable boolean mappingRestrictions(){

return thisJoinPoint.getArgumentsArray()[0].equals("Average Speed");
}

}
}

Code Fragment 8.3: Generated connector for the deployment of the ServiceTypeCachingBRConnec-
tion aspect

AddMonitoringToServiceCompositionBR: if the price of a service composition is greater
than 100 then add monitoring functionality for that service composition

The concepts involved in this business rule are service composition, price of a service
composition and the concept of adding monitoring for a service composition. Domain en-
tities are present in the initial domain model which represent these concepts: the domain
class ServiceComposition, the domain property price defined in the domain class Service-
Composition, and the domain operations greaterThan(value) — defined in MonitorableSer-
viceProperty — and introduceMonitoringServiceComposition(sc) — defined in the WSML
domain class. Using these domain entities, the AddMonitoringToServiceCompositionBR
can be defined at the high level as shown in the upper part of Figure 8.10. Analogous to
the previous example, the AddMonitoringToServiceCompositionBR rule is defined as a rule
template, defining the threshold X as a rule parameter. A service composition is expected
by the rule, which is referred to as sc and is made available at rule connection time. The
WHERE clause defines a local variable to refer to the price of the service composition re-
ceived as parameter. The condition checks whether the price of the service composition
is greater than X, in which case the action invokes the domain operation introduceMon-
itoringServiceComposition on the WSML domain class, passing as parameters the actual
service composition to be monitored.

BR AddMonitoringToServiceCompositionBR
PROPS Integer AS x
USING ServiceComposition AS sc
WHERE price IS sc.price
IF price.greaterThan(x)
THEN WSML.startMonitoringServiceComposition(sc)

CONNECT AddMonitoringToServiceCompositionBR
PROPS 100
AFTER calculatePriceOfServiceCompositionEvent
MAPPING calculatePriceOfServiceCompositionEvent.serviceComposition TO sc

High-Level Specification 8.10: The AddMonitoringToServiceCompositionBR rule and its high-level
connection

189 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

This rule needs to be connected with the core application after the price of a service
composition changes. The event calculatePriceOfServiceCompositionEvent captures the
moment the domain operation calculatePrice() is invoked on a service composition (high-
level specification 8.7). Using this event, a possible high-level rule connection is defined
which is shown in the lower part of Figure 8.10. Again, an AFTER connection is needed,
as the rule has to be applied after the price of the service composition changes. The
calculatePriceOfServiceCompositionEvent exposes the target service composition which is
mapped to the one expected by the rule in the MAPPING clause.

8.3.4 Adding New Business Rules

The existing domain entities in the initial domain model can be combined in different ways,
giving rise to new business rules. Moreover, other business rules can be defined which require
the initial domain model to be extended with the definition of extra domain entities.

8.3.4.1 Anticipated Domain Entities

In this section we consider the case where these extra domain entities have a counterpart
implementation entity in the existing WSML implementation. Low-level as well as high-
level mappings are illustrated in this section. Consider the following example business rules:

Rule A: if service.isUnreliable() then WSML.enableCaching(service.name)

Rule B: if service.fasterThan(X) then WSML.disableCaching(service.name)

Rule C: if service.numberOfSuccessfulInvocations > X then WSML.stopMonitoring(ser-
vice), where service is a monitorable service.

Rule D: if service.numberOfInvocations < X then WSML.enableCaching(service.name),
where service is a Web service.

Rule E: if service.price < X then WSML.stopMonitoring(service), where service is a ser-
vice composition.

Rule F: if service.numberOfFailures < X then WSML.orderServicesBasedOnInvocation-
Failures(service), where service is a service type.

For some of these rules, events used for the connection of other rules can be reused. For
instance, Rule B can reuse the event at which serviceTypeCachingBR) is connected. Oth-
erwise, new connection events can be defined for these new rules. Note that Rule A uses a
domain operation isUnreliable() which is not defined in the initial domain model. However,
this new entity can simply be added to the definition of the MonitorableService, as follows:

Chapter 8. Evaluation 190

MonitorableService {
...
service.isUnreliable() MAP-TO-DOMAIN service.numberOfFailures.greaterThan(10)

}

The mapping for the isUnreliable() domain operation is anticipated since it involves
existing concepts. However, it is completely defined at the domain level, without having to
point to implementation entities. Note that the value 10 is used in this mapping to show
that literals are allowed in mapping specifications. Of course when needed, this hardcoded
value can be replaced by a variable which must be included as a parameter of the domain
operation in the < LHS > of the mapping specification. In the same way, other anticipated
domain concepts that require mappings that are defined similarly to the ones presented in
this section can be defined. Existing domain entities can be combined in expressions to
define new domain entities which then can be used in new rules. The high-level definition
of the business rules presented in this section clearly suffices to change the behaviour of the
WSML.

Another new concept used in Rule F is the concept of ordering the services associated to
a given service type according to their number of invocation failures. In order to represent
this new concept, a new domain operation is added to the WSML domain class, as follows:

WSML {
...

WSML.orderServicesBasedOnInvocationFailures(st) MAP-TO-IMPL
(wsml.WSMLregistry).getSelectionModule().addTemplateInstance(
java.lang.String:"guideline"+ st.name + "InvocationFailures",
java.lang.String:"ServicePropertyGuideline",
java.lang.String[]:{"st.name", "*", "Invocation Failures", "n/a", "true", "true"},
java.lang.String[]:null,
boolean:false)

}

Rule C refers to a new domain property that defines the number of successful invocations
of a service composition. This concept can be derived from two existing domain properties
defined in the MonitorableService domain class: the numberOfInvocations and numberOf-
Failures. Thus, this new domain attribute can be mapped to an expression that calculates
the substraction between these two existing domain properties, as shown in the fragment
below. The translation of this high-level mapping to a concrete implementation (in terms
of values stored in aspects) is automatic and transparent for the domain expert.

MonitorableService {
...
service.numberOfSuccessfulInvocations MAP-TO-DOMAIN

service.numberOfInvocations - service.numberOfFailures
}

8.3.4.2 Calculating Values at Execution Points

In this section we consider the case where new domain entities are required which imply
capturing values at different points in the execution of the WSML.

191 8.3 Evolution Scenario: Supporting Unanticipated Business Rules

Consider the following example:

if service.downtime > X then WSML.enableCaching(service.name)

This rule uses a downtime domain property which represents the amount of time a ser-
vice is unavailable. This is a dynamic service property since it requires monitoring the time
between the moment a service becomes unavailable and the moment it becomes available
again. However, the current monitoring aspects in the WSML are not able to monitor this
property as it requires different monitoring points and other logic than the ones anticipated
in the implementation of the current monitoring aspect. Although the WSML can be ex-
tended by introducing a new monitoring aspect, this aspect has to be written manually.
Our solution performs the automatic generation of the aspect that realizes this domain
property. The input for this generation is a high-level mapping specification in terms of the
timeBetween domain operator — predefined in the domain model infrastructure — which
states that this dynamic property represents the time that elapsed between the moment the
service becomes unavailable until the moment it becomes available again. This mapping is
defined as follows:

WebService {
...
service.becomeUnavailable() MAP-TO-IMPL service.becomeUnavailable()
service.becomeAvailable() MAP-TO-IMPL service.becomeAvailable()
service.downTime MAP-TO-DOMAIN

timeBetween(WebService.becomeUnavailable(), WebService.becomeAvailable())
}

An aspect is transparently and automatically generated out of this mapping definition.
Similarly to the downtime, one can define the uptime domain property representing the time
between the moment the service becomes available until the moment it becomes unavailable.

This new domain vocabulary can be used in new business rules, for instance:

if service.downtime > service.uptime then enableCaching(service.name)

8.3.4.3 Unanticipated Domain Entities

Consider the WebServiceSpeedCategoryBR rule specified below which classifies services into
categories fast and slow according to their average speed:

WebServiceSpeedCategoryBR: if a Web service is slower than 500 then the Web service
is slow

The condition of this rule can be defined using the slowerThan(value) domain operation
defined in the MonitorableService domain class and inherited by the WebService domain
class. However, the action talks about the concept of speed category which is unanticipated
in the WSML implementation. In order to incorporate this concept in the existing domain
model, a new domain property speedCategory can be added to the MonitorableService do-
main class, for which an unanticipated mapping is required, as shown below:

Chapter 8. Evaluation 192

MonitorableService {
...
service.speedCategory MAP-TO-VALUE String:"normal"

}

Because the logic under which to determine the values of the speedCategory property
is driven by business decisions, the approach in this dissertation advocates encapsulating
that logic in business rules. For example, the high-level rule WebServiceSpeedCategoryBR,
shown in the upper part of Figure 8.11, sets the service category to slow when the average
speed of that service falls under a threshold. The threshold is defined as a rule parameter
in the PROPS clause. This rule can be triggered at the moment the domain operation
setAverageSpeed(speed) is invoked on a Web service, which is captured by the setAverage-
SpeedToWebServiceEvent event defined in the high-level specification 8.7. Note that when
the same domain operation is invoked on other services than Web services — i.e. service
compositions and service types —, those invocations are not captured by the setAverage-
SpeedToWebServiceEvent event, and thus the rule is triggered only for the case of Web
services. The setAverageSpeedToWebServiceEvent event exposes the target Web service as
WebService and maps it to the Web service variable expected by the rule. The high-level
connection for this rule can be defined as shown in the lower part of Figure 8.11. In a
similar way, the rule “if a Web service is faster than 500 then the Web service is fast” can
also be expressed in terms of the domain (omitted here).

BR WebServiceSpeedCategoryBR
PROPS Long AS speedThreshold
USING WebService AS ws
IF ws.slowerThan(speedThreshold)
THEN ws.speedCategory IS "slow"

CONNECT WebServiceSpeedCategoryBR PROPS 500
AFTER setAverageSpeedToWebServiceEvent
MAPPING setAverageSpeedToWebServiceEvent.webService TO ws

High-Level Specification 8.11: WebServiceSpeedCategoryBR business rule and its connection

Note than when the classification under the categories fast and slow needs to be applied
to all monitorable services, the previous rules and connections need to be defined in terms
of the MonitorableService class instead of WebService.

We can imagine other unanticipated Web services properties. For instance, services can
be classified according to their price into expensive or not expensive, or according to their
number of invocations into frequently invoked or not frequently invoked. Again, these new
categories are represented as new domain properties in the domain classes that are being
classified. In this case, new domain properties expensive and frequentlyInvoked are simply
added to, for instance, the WebService domain class, as follows:

193 8.4 Refactoring Scenario: Externalizing Anticipated Selection Policies

MonitorableService {
...
service.expensive MAP-TO-VALUE boolean:false
service.frequentlyInvoked MAP-TO-VALUE boolean:false

}

New business rules can then be written in order to determine under which conditions the
value of these categories must change:

if service.price > X then service IS expensive
if service.price < X then service IS NOT expensive
if service.numberOfInvocations > X then service IS frequentlyInvoked
if service.numberOfInvocations < X then service IS NOT frequentlyInvoked

An alternative solution to defining new domain properties (i.e. the categories in the
examples) and writing business rules for determining their value, is to repeat the same
calculation logic in all places where those domain properties are needed. However, this
solution causes redundancy of the same logic among several business rules that rely on those
same domain properties, which is not desirable. Thus, the definition of domain properties is
a more suitable solution. Also, one might wonder at this point why not to go for a solution
that uses ordinary expressions in domain property mappings to define how the values of
these service categories are calculated. This solution is possible when the way of calculating
the values of these categories is not meant to change often. However, when the calculation
changes frequently or when different ways of calculating these values are possible, a more
suitable solution is to encapsulate the calculation in business rules (as shown above).

Once business rules have been defined to determine the values of these categories, other
rules can be considered to trigger actions based on those values. Figure 8.12 shows some
example rules that check service categories and react accordingly.

8.4 Refactoring Scenario: Externalizing Anticipated Selec-
tion Policies

In this section, a second thought experiment is carried out which consists of using the busi-
ness rule dedicated languages for refactoring the existing WMSL layer implementation. It
is observed that the existing selection policies ServicePropertyGuideline and ServiceProper-
tyImperative are examples of anticipated business rules which respectively order and filter
Web services according to the values of their monitored properties. The evolution scenario
presented in section 8.3 shows how configuration business rules can be defined in order to
guide the configuration of these existing policies, i.e. by specifying conditions that guide
the addition or removal of a policy, by specifying which monitored property needs to be
checked in the ordering or filtering process, or any other configuration decision of that kind.
However, these configuration rules cannot completely override the conditions predefined in
those existing selection policies, since they are hardcoded in the existing selection aspects
which are part of the current WSML infrastructure.

Chapter 8. Evaluation 194

BR WebServiceCategorySlowBR
USING WebService AS ws
WHERE serviceCategory IS ws.speedCategory
IF serviceCategory.equals("slow")
THEN WSML.enableCaching(ws.name)

BR WebServiceCategoryFastBR
USING WebService AS ws
WHERE serviceCategory IS ws.speedCategory
IF serviceCategory.equals("fast")
THEN WSML.disableCaching(ws.name)

BR WebServiceCategoryExpensiveBR
USING WebService AS ws
IF ws.expensive
THEN WSML.enableCaching(ws.name)

BR WebServiceCategoryNotExpensiveBR
USING WebService AS ws
IF NOT ws.expensive
THEN WSML.disableCaching(ws.name)

BR WebServiceCategoryFrequentBR
USING WebService AS ws
IF NOT ws.frequentlyInvoked
THEN WSML.enableCaching(ws.name)

High-Level Specification 8.12: Business rules that trigger actions according to the values of unantic-
ipated Web service categories

195 8.4 Refactoring Scenario: Externalizing Anticipated Selection Policies

In this section the goal is to externalize the selection policies existing in the WSML
and express them at the domain level, i.e. as high-level business rules and connections
expressed in the high-level dedicated languages. The aspects that result from the automatic
translation of these high-level specifications would then replace the predefined selection
aspects existing in the WSML today.

By expressing selection policies at the domain level, it becomes easier to reason about
those selection concerns. Moreover, the WSML code becomes more understandable and
maintainable. Also, besides being able to express the existing selection policies at the high
level, new selection policies can be added by simply specifying new high-level rules that
guide the service selection.

8.4.1 Extending the Initial Domain Model

As a preliminary step in the process of pulling up the existing selection policies, the
domain model presented in section 8.3.2 has to be extended with the definition of new
domain entities representing the concepts involved in service selection. These extensions
are shown in the high-level specifications 8.13 and 8.14. They include domain operations for
approving, disapproving and prioritizing services which are added to the ServiceType domain
class as well as a domain operation for the addition of a service composition to a service
type. These domain operations map to existing OO methods defined in the ServiceType
class. Also, a high-level event is defined on the addService domain operation, which is going
to be used in the expression of high-level connections in the coming sections.

ServiceType MAP-TO-IMPL wsml.ServiceType

ServiceType INHERITS-FROM MonitorableService

ServiceType {
serviceType.prioritizeServicesAccordingToProperty(property)
MAP-TO-IMPL serviceType.prioritize(Collection.sort(serviceType.getServiceCompositions(),
new ServiceCompositionComparator(property, true)))

serviceType.approve(service)
MAP-TO-IMPL serviceType.approve(wsml.ServiceComposition:service)

serviceType.disapprove(service)
MAP-TO-IMPL serviceType.disapprove(wsml.ServiceComposition:service)

serviceType.addServiceComposition(concreteService)
MAP-TO-IMPL serviceType.addServiceComposition(wsml.ServiceComposition:concreteService)

}

High-Level Specification 8.13: Extensions of the ServiceType domain class to express selection
policies a the domain level

EVENT addNewServiceCompositionEvent AT ServiceType.addServiceComposition(sc)
EXPOSING PARAMETER AS newService

High-Level Specification 8.14: New event capturing the executing of the addServiceComposition
domain operation

Chapter 8. Evaluation 196

8.4.2 Expressing Selection Policies and their Connections at the Domain
Level

The next step in this scenario is to provide high-level specifications for the selection policies
and their connections in terms of domain concepts. Figure 8.15 shows the definition of
the BRDisapproveService and BRApproveService rules and their connections in terms of
the domain. These high-level specifications realize the imperative selection policy currently
predefined in the WSML and implemented in the ServicePropertyImperative aspect. As
a consequence of this experiment, the existing WSML implementation is refactored.

BR BRDisapproveService

PROPS Long AS min,
 Long AS max

USING ServiceComposition AS sc

IF sc.slowerThan(min) OR sc.fasterThan(max)

THEN sc.serviceType.disapprove(sc)

BR BRApproveService

PROPS Long AS min,
 Long AS max

USING ServiceComposition AS sc

IF sc.fasterThan(min) AND sc.slowerThan(max)

THEN sc.serviceType.approve(sc)

CONNECT BRDisapproveService
PROPS 100, 500
AFTER setAverageSpeedToServiceCompositionEvent
MAPPING setAverageSpeedToServiceCompositionEvent.serviceComposition TO sc

CONNECT BRDisapproveService
PROPS 100, 500
AFTER addNewConcreteServiceEvent
MAPPING addNewConcreteServiceEvent.newService TO sc

CONNECT BRApproveWebService
PROPS 100, 500
AFTER setAverageSpeedToServiceCompositionEvent
MAPPING setAverageSpeedToServiceCompositionEvent.serviceComposition TO sc

CONNECT BRApproveWebService
PROPS 100, 500
AFTER addNewConcreteServiceEvent
MAPPING addNewConcreteServiceEvent.newService TO sc

High-Level Specification 8.15: Existing WSML selection imperative expressed as a high-level rule

Let us now refactor the guideline selection policy currently implemented in the Service-
PropertyGuideline aspect. Figure 8.16 shows a possible refactoring for this policy. Note
that the action involves triggering the prioritize(property) domain method which in turn
implies the execution of the OO method with the same name, predefined in the ServiceType
class of the WSML, in charge of ranking the existing service compositions of the service
type according the their values of the property received as parameter. The implementation

197 8.4 Refactoring Scenario: Externalizing Anticipated Selection Policies

of this OO method ensures that a ranking of service compositions is made with respect
to the property defined as parameter. The advantage of pulling the guideline logic up to
the domain level in the form of a high-level rule is that other condition can be specified
under which the ranking of services is performed. In the example shown in Figure 8.16, the
guideline logic only triggers when the service type is unreliable. These conditions can be
varied as needed, without having to change the current WSML implementation.

BR BRPrioritizeServicesBasedOnSpeed

PROPS Long AS speedThreshold,

USING ServiceComposition AS sc

IF sc.serviceType.fasterThan(speedThreshold)

THEN sc.serviceType.prioritize("Average speed")

CONNECT BRPrioritizeServicesBasedOnSpeed
PROPS 500
AFTER setAverageSpeedToServiceCompositionEvent
MAPPING setAverageSpeedToServiceCompositionEvent.serviceComposition TO sc

CONNECT BRPrioritizeServicesBasedOnSpeed
PROPS 500
AFTER addNewServiceCompositionEvent
MAPPING addNewServiceCompositionEvent.newService TO sc

BR BRPrioritizeServicesBasedOnFailures

USING ServiceComposition AS sc

IF sc.serviceType.isUnreliable()

THEN sc.serviceType.prioritize("Invocation Failures")

CONNECT BRPrioritizeServicesBasedOnFailures
AFTER setNumberOfFailuresToServiceCompositionEvent
MAPPING setNumberOfFailuresToServiceCompositionEvent.serviceComposition TO sc

CONNECT BRPrioritizeServicesBasedOnFailures
AFTER addNewServiceCompositionEvent
MAPPING addNewServiceCompositionEvent.newService TO sc

High-Level Specification 8.16: Existing WSML selection guideline expressed as a high-level rule

8.4.3 Open Issues

It might be that some services have been added to the system before the actual addition
of the selection rules. As the rules are only triggered on the occurrence of the connection
events, if for those existing services the pertinent events do not occur after the addition of
the rules, the rules are not going to be applied on those services. As a consequence, the
selection will work partially, only for those services for which the events are to occur at
some point in time after the addition of the selection rules.

A possible solution to this problem involves defining “meta rules”, i.e. rules that state
something about the rules. Such a meta rule can be triggered on events that occur not on

Chapter 8. Evaluation 198

the core application but on the high-level domain infrastructure. Such an event would be
for instance the addition or removal of a high-level rule or connection. At those events,
other rules might trigger. In the case of the selection, a meta rule could be defined which
would ensure that the selection rules are applied right after the moment they are added or
removed in the system. This would enable applying the rules for those services that were
already incorporated in the system before the actual rules.

8.5 Discussion
Besides enhancing flexibility and configurability of the WSML framework, the experiments
presented in this chapter illustrated the following advantages of our approach:

1. improved understandability: all business rules and their connections are expressed at
the domain level, this way hiding the technical complexity of the WSML (shown in
sections 8.3.3 and 8.3.4).

2. extension of the domain model: new domain entities that embody domain knowledge
existing in the WSML implementation can be pulled up to the domain level (shown
in sections 8.3.4.1 and 8.3.4.2).

3. support for the unanticipated evolution of the WSML

• the core functionality of the WSML is extended non-invasively with the realiza-
tion of unanticipated domain concepts (shown in section 8.3.4.3).

• new business rules — about both anticipated and unanticipated domain concepts
— can be added at run time (shown in sections 8.3.4).

4. improved variability: the conditions that guide the selection, integration and manage-
ment tasks offered by the WSML can be automatically varied at run time, i.e. without
having to stop the execution of the WSML (shown in section 8.4).

Still our approach requires defining mappings to implementation that rely on having
knowledge about the WSML implementation, which might be tedious (e.g. mappings de-
fined in the high-level specification 8.1). In order to define these low-level mappings, a
domain expert might need to collaborate with a developer. However, one has to incur
the effort of defining these mappings only once. When these mappings are put in place,
high-level mappings can be more easily added (most likely) by only a domain expert.

As several aspects are generated for the high-level rule connections, conflicts might occur
between them. Furthermore, given that aspects exists and are managed by the WSML,
possible interference can occur between those WSML aspects and the aspects generated by
our framework. Extra mechanisms might be needed to tackle these issues, as explained in
section 10.2.3.2.

Other WSML configuration rules of interest can be identified which were not tackled in
this chapter. This is because these rules require mappings that are not currently supported
in the domain model approach. For example, mappings to AOP are needed in order to pull
up management functionality that is currently implemented in the aspects themselves and
not manageable from the OO layer of the WSML. Moreover, the complex nature of this
AOP management framework makes it impossible to replace the way some management

199 8.6 Summary

tasks are carried out. For example, the WSML implements aspects that hook on other
aspects, aspects that share their triggering points, reordering of aspects at run time, etc.
Dealing with these aspect issues requires a perfect synchronization between the different
framework’s components in order for things to work as expected. Thus, expressing these
tasks at the high level is currently not possible.

Contextual rules. We can imagine rules that involve checking certain conditions based
on the information available at the client side, e.g. the client context, information about the
users of the client application, etc. Although these rules are not supported in the WSML,
they could be expressed at the high level. Expressing these rules at the high-level however
requires deploying the WSML layer on a concrete client application. When this deployment
is ensured, domain entities can be defined which map not only to the OO layer of the WSML
but also to the OO entities defined by the client application.

Request/response rules. We can imagine rules that check certain conditions on in-
formation that is available at the moment a functional request is performed on a service.
Whether this condition is validated or not can imply proceeding or not with the actual
service redirection. This mechanism enables selecting the most appropriate service for a
given request on a per-request basis. In order these rules to be expressed at the domain
level our approach should be able to express events that correspond to the execution of
advices in aspects.

Composition rules. The WSML supports reactive service compositions, i.e. composi-
tions in which the roles are represented by service types instead of concrete services. This
allows binding the roles to concrete services at run time. We have seen in this chapter that
business rules can trigger selection on service types. These rules can be used to ensure
that certain conditions are satisfied by the services involved in the reactive composition.
However, more global business rules that check conditions to be satisfied by the overall
composition are not supported, e.g. a rule that ensures that the overall execution time of
the service composition does not exceed a certain threshold.

8.6 Summary
In this chapter we have evaluated the domain model approach presented in this dissertation
by showing how it can enhance the support for business rules in a complex and technical
case study, the WSML. This validation has been done in two scenarios: evolution and
refactoring. In the first scenario, we have built a domain model capturing an initial set
of selection and management concepts that are anticipated in the implementation of the
WSML and shown how those concepts can be used to define new high-level configuration
business rules. Furthermore, we have demonstrated that domain evolution is supported by
means of extending the existing domain model with new domain entities. In this endeavor,
different kinds of mappings introduced in chapter 6 have been illustrated. A second scenario,
the refactoring one, has shown that existing selection policies in the WSML can be refactored
using the domain model approach and expressed as high-level business rules. These high-
level rules are automatically translated to aspects that can replace the existing selection
aspects foreseen in the WSML.

Chapter 8. Evaluation 200

Chapter 9

Related Work

In this chapter we analyze different approaches that relate, in one way or another, to
the work presented in this dissertation. In section 9.1, several commercial business rules
systems are described with respect to their business rule languages, their support for ex-
pressing business rules at the domain model and the rule execution model supported. In
section 9.2, lightweight approaches to business rules are described. Section 9.3 describes
related approaches that use AOP for decoupling business rules. Section 9.4 discusses several
approaches that aim at combining MDE and AOP. In section 9.5, related approaches that
research the mapping between several knowledge representation mechanisms are described.
Section 9.6 enumerates some related approaches that also aim at externalizing business rules
in the domains considered in this dissertation, i.e. the e-commerce and service-oriented do-
mains. Finally, section 9.7 presents some work on business rule methodologies, vocabularies
and rule engine standards.

9.1 Business Rules Systems

In this section we analyze several state-of-the-art approaches, some of them commercial
BRMS systems. They are related to our approach in that they have the same goal, i.e.
the decoupling of business rules from software applications. Moreover, they are relevant
because they propose expressing business rules at different levels of abstraction and even
some of them aim at defining rules in terms of domain concepts which are mapped to
an implementation. The execution model supported by these approaches is different to
ours because it is based on a rule engine that has to be triggered explicitly from the core
application code. Although we situate our work differently with respect to the actual rule
execution, it is still of interest to look at these approaches in detail. The criteria taken into
account for their analysis are:

• Business rules: are rules expressed at the low or high level, or both?

• Domain model: how is the mapping of domain knowledge to implementation specified?

• Rule Integration and Execution: how are rules triggered from core applications?

9.1.1 JRules

ILOG JRules [ILO] is a complete BRMS for the Java environment. It includes tools for
modeling, writing, testing, deploying and maintaining business rules. ILOG JRules al-
lows application developers to combine rule-based and object-oriented programming to add

Chapter 9. Related Work 202

business rule processing capabilities to new and existing applications. It is built on a set of
foundation classes that provide Java application programming interfaces (APIs) that allow
creating, managing and customizing the rule repository, and manage the business rules con-
tained in it. In addition, the APIs provide the classes for deploying the rule engine in any
Java environment. ILOG BRMS provides a repository for organizing and storing business
rules, and a rule engine for executing them [ILO06].

9.1.1.1 Business Rules

In JRules, a business rule defines one or more conditions, which when met, result in one or
more actions. Several business rule languages are provided which allow the expression of
business rules at different levels of abstraction.

The rule language provided at the low level is called Ilog Rule Language (IRL), which is
the language understood by the rule engine. This language is a rule-based programming
language targeted at developers. Rules written in IRL can directly reference any application
object, like a Java object or an object derived from XML data. This language offers full
support for Java operators to be used in expressions as well as support for Java data
structures.

At a higher level of abstraction, a default high-level rule language is provided, the Business
Action Language (BAL). This language includes default concepts and entities needed in any
domain or business, and thus it is quite general-purpose. In order to define a more domain-
specific business rule language, a first possibility is to extend this default BAL language.
A second possibility is to define a complete new custom-made high-level business rules
language from scratch by using the capabilities offered by the Business Rules Language
Definition Framework (BRLDF). This framework enables the definition of new languages
in XML files. For either extending BAL or defining a new language, programming skills are
needed as the translation from the custom language to IRL must be specified using either
eXtensible Stylesheet Language Transformations (XSLT) or Java code. Also, the BRLDF
is built on top of another framework called the Token Model, which specifies the syntax of
a business rule language. In this framework, the different parts of the rule are represented
as tokens — implemented in token classes. In order to instantiate these token classes for
the definition of new domain-specific rule languages, programming skills are again needed.
Our approach improves on this in that the definition of some domain concepts that form
the vocabulary of new domain-specific languages can be specified completely at the domain
level, without the need for programming skills.

Similar to our approach, JRules supports rule templates, which partially define a business
rule and contains placeholders for missing information. In addition, it offers a default
template library containing a set of templates and a basic business vocabulary used in the
templates. This basic predefined vocabulary is comparable to the features of our high-level
rule language. Figure 9.1 depicts how this predefined basic vocabulary can be used in the
definition of JRules’ rules.

9.1.1.2 Domain Model

In order to write high-level rules, besides a business rule language (either BAL or a custom-
made one), a Business Object Model (BOM) is needed. A BOM defines the entities (classes,
attributes and methods) used in the definition of the business rules, and maps the natural

203 9.1 Business Rules Systems

!"#$%&'()*+((%,'-+(% % % % % !"#$%.,'-+(%

%

!
!
!
"#$%&'(&"#$%!)*+$!,*-+.$/!
!
"#$%&'(&"#$%!)*+$!,*-+.$/!0++123!#4$!*3$/!#1!5/$0#$!/*+$3!6/17!#$7%+0#$3!08.!70809$!
#4$7!*3-89!0!3-7%+$!-8#$/605$!#40#!9*-.$3!#4$!*3$/!#4/1*94!#4$!:0/-1*3!3#$%3;!<4$!
31*/5$!51.$!-3!%/1:-.$.!2-#4!=>?@!A)*+$3;!"#$%&'(&"#$%!)*+$!,*-+.$/!-3!2/-##$8!0+713#!
$8#-/$+(!03!A0:0!"$/:$/!B09$3!CA"BD!C$E5$%#!61/!#4$!518#/1++$/!08.!/$31*/5$!70809$/!
3$/:+$#3DF!70G-89!-#!$03(!#1!$E#$8.;!
!
!
01$/!2$'!3%%+-45#-67!
!
H!*3$/!I$'!0%%+-50#-18!-3!0!5*3#17!0%%+-50#-18!#40#!*3$3!I$'!517%18$8#3!%/1:-.$.!-8!
#4$!I$'!)*+$!,*-+.$/!6/07$21/G!#1!%/1:-.$!/*+$!$.-#-89!50%0'-+-#-$3;!<4$!31*/5$!51.$!
16!I$'!)*+$!,*-+.$/!08.!"#$%&'(&"#$%!)*+$!,*-+.$/!0/$!%/1:-.$.!03!08!$E07%+$!1/!03!
0!3#0/#-89!%1-8#!61/!.$:$+1%-89!*3$/!2$'!0%%+-50#-183;!
!
!
2$'!869%67$7#1!
!
<4$!70-8!0:0-+0'+$!I$'!517%18$8#3!0/$J!
!

!! <4$!)$%13-#1/(!KE%+1/$/F!24-54!%/1:-.$3!0!#/$$&:-$2!.-3%+0(!16!#4$!/$%13-#1/(L3!
518#$8#3!-8!3$:$/0+!.-66$/$8#!61/70#3!

!

!! <4$!B/1%$/#(!"4$$#F!24-54!.-3%+0(3!#4$!:0/-1*3!%/1%$/#-$3!16!0!3$+$5#$.!
/$%13-#1/(!$+$7$8#!C"17$!16!#4$3$!%/1%$/#-$3!0/$!$.-#0'+$F!61/!$E07%+$F!#4$!
3$/!508!3$#!#4$!%/-1/-#(!16!0!3$+$5#$.!/+$!#1!0!9-:$8!:0+*$!1/!3$#!#4$!807$!16!0!
/*+$;!

!

!! I$'!)*+$!K.-#1/F!24-54!403!0!%1-8#!08.!5+-5G!-8#$/605$!#40#!508!'$!*3$.!#1!
2/-#$!1/!$.-#!/*+$3!-8!0!'*3-8$33!/*+$!+089*09$;!

!

!

!M!NOOP!=>?@!";H;!H++!/-94#3!/3/:$.;! ! ! !!!!!!!!!!!!!!!!"#$%&'()*+(,-%.)+/'%0,1'2%

!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!"#!

Figure 9.1: Using predefined business vocabulary in the definition of a high-level rule in JRules
(taken from [ILO04])

language-like syntax of the business rule language to them. These entities are based on
business terms an uses an intuitive structured syntax. Figure 9.2 illustrates how a high-
level rule can be simply created by pointing and clicking on elements defined in a BOM.

The BOM is constructed as projection of existing Java object models, XML schemas or
Web services, or from a set of business-oriented classes that do not necessarily map directly
to the underlying Java classes or XML schemas (known as “virtual classes”). Information
derived from Java classes and databases use the ILOG JRules Java binding and database
binding functions respectively, while XML and Web service schemas are converted to Java-
like objects by means of the XML binding function. As a consequence, rules can reference
data mapped to both Java objects and XML objects, and these objects can coexist in
working memory. The BOM is translated into eXecution Object Model (XOM) which
defines the application classes that the rules can act upon. The classes in the XOM can
be bound to different types of data, including a Java object model, XML or Web service
schemas or a combination of the previous ones. The XOM and its bindings to data must
be set up by the developers. Contrary to our approach, derived domain concepts could
be defined but only at the low level, in terms of existing data in different sources. The
definition of derived domain concepts at the high level, in terms of existing domain concepts
in a BOM, is not possible. Moreover the BOM falls short at defining domain vocabulary
that is not present in the existing sources. This is a limitation as domains evolve and new
unanticipated concepts cannot be incorporated to the BOM.

In order to execute high-level business rules, they need to be translated into the ILOG
Rule Language (IRL) execution rules. This translation requires the BOM-XOM binding
specifications to be previously defined.

Chapter 9. Related Work 204!"#$%&'()*+((%,'-+(% % % % % !"#$%.,'-+(%

%

!"#$%&''()*%$+,-*-./$(0$*1+$2&%-.+%%$)&3+$34./&4/+$25$%&''35-./$4$.4*&)43$34./&4/+$
%5.*46$*14*$%-7'3-0-+%$*1+$8)-*-./$(0$2&%-.+%%$)&3+%9$
$

$
!
!
"#$%&'(#!)*+,',*#-!
$
:$2&%-.+%%$)&3+$*+7'34*+$)+')+%+.*%4'4)*-4335$,+0-.+,$2&%-.+%%$)&3+$*14*$;(.*4-.%$
'34;+1(3,+)%$0()$7-%%-./$-.0()74*-(.9$<+7'34*+%$;4.$2+$&%+,$*($;)+4*+$74.5$)&3+%$8-*1$
4$%-7-34)$%*)&;*&)+=$81+)+$(.35$*1+$>43&+$0-33+,$-.$*1+$'34;+1(3,+)%$>4)-+%9$:$*+7'34*+$
;4.$2+$24%+,$(.$4.5$2&%-.+%%$)&3+$34./&4/+=$%&;1$4%$!:?=$<@?$()4;&%*(7$
34./&4/+9$:$*+7'34*+$3-2)4)5$;(.*4-.%4%+*$(0$*+7'34*+%$4.,$4$!"#$*14*$,+0-.+%$*1+$
>(;42&34)5$(0$*1+$*+7'34*+%9$
!
!
.,/0#1(!
$
:$')(A+;*$-%$%*()+,$4%4;(33+;*-(.$(0$)+0+)+.;+%$*14*$4%%+723+%$*('B3+>+3$'4;C4/+%$4.,$
+7'34+$3-2)4)-+%$-.*(4;(.%-%*+.*$+,-*-./$4.,$,+'3(57+.*$&.-*9$:$*+7'34*+$3-2)4)5$()$
('B3+>+3$'4;C4/+$;4.$2+$)+0+)+.;+,25%+>+)43$')(A+;%=$81-;1$433(8%$%14)-./$(0$)&3+%$
4.,$*+7'34*+%$2+*8++.$')(A+;*%9$D)(A+;*%$')(>-,+$4$845$*($%'3-*$*1+$2&%-.+%%$)&3+%$-.$4$
)+'(%-*()5$-.*($,-00+)+.*$8()C$&.-*%$0()$7()+$*14.$(.+$&%+)9$
!
!
!

$

!E$FGGH$I?"J$K9:9$:33$)-/1*%$)+%+)>+,9$ $ $ $$$$$$$$$$$$$$$!"#$%&'()*+(,-%.)+/'%0,1'2%

!!!!!!!!!!!!!!!!!!!!!!!!

!!!!!!!!!!!!!!!!!!!!!!!!!"#$

Figure 9.2: Using domain concepts in the definition of a high-level rule in JRules (taken from
[ILO04])

9.1.1.3 Rule Integration and Execution

IRL rules are managed and executed by a rule engine. Moreover, in order to define how
rules need to be combined, ruleflows can be defined specifying rule ordering strategies (using
dynamic priorities, static priorities, or following an explicit sequence defined by the user),
rule firing strategies (e.g. fire all the eligible rules or fire one rule and exit the task) and an
execution algorithm (either Rete-based or using sequential byte-code generation for optimal
performance). However, the actual connection of the rules with the existing application still
occurs at the implementation level: the rule engine needs to be invoked from the existing
code. Thus, the rule connection is crosscutting in the core application and, moreover,
excludes the domain expert.

9.1.2 Haley Rules

Haley’s approach to business rules [Halb] focuses on bridging the gap between requirements
and design. It focuses on structuring the decision making process by means of the definition
of policies and the analysis of how those policies relate to each other. It also focuses on
the methodology for capturing the minimal set of statements that will execute a business
goal. Ultimately — in accordance with our goal — this approach also aims at integrating
executable business rules in a running application.

The main tool in the Haley suite is HaleyAuthority, a BRMS targeted at managers in order
to gain control of their business processes and to adjust quickly, easily and continually to
their operations, and to key IT systems to adapt to changing business environments. Besides
HaleyAuthority, other tools and APIs are provided: Café Rete [Hala] is a Java class library

205 9.1 Business Rules Systems

that provides an inference engine. Authorete is a graphical and speech-driven interface for
authoring and managing business logic in structured English sentences. Authorete and Café
Rete work together. Sentences written in Authorete are automatically generated for and
dynamically loaded by Café Rete.

9.1.2.1 Business Rules

Haley business rules are high-level. Rules are entered in structured English into the Au-
thorete interface and are automatically translated into a low-level representation which is
internal and not meant to be regarded or edited by users (contrary to JRules, where devel-
opers could directly write IRL rules, if needed). The translation process is done as follows:
HaleyAuthority understands the English statements by comparing the terms and phrases
in a statements to a Business Concept Model, which is basically a semantic model. English
terms and domain concepts defined in the domain model are linked automatically.

HaleyAuthority’s emphasis on the English language facilitates decision-support systems,
which tend to be diagnostic and prescriptive. It allows arranging and grouping policies and
rules in a very flexible way. Thus, how rules relate to each other is one of its main focuses,
whereas it is not the main concern in this dissertation (section future work 10.2).

Haley allows to structure statements in the form of a consequence enabled by any number
of dependent or independent conditions (see figure 9.3).

CONFIDENTIAL

! 2005 Haley Systems, Inc. 5

This mechanism is extremely simple to understand and to use. It allows you to structure statements in

the form of a consequence enabled by any number of dependent or independent conditions. The

following illustration, from a medical triage policy application, shows a deduction (a patient’s vital signs

are outside normal limits) followed by nine conditions that would each, independently, justify that

deduction.

These are “if” conditions, any one of which can justify the same conclusion.

The “only if” conditions must all be true simultaneously in order for a statement to be applicable.

Both of these conditions must be true at the same time in order for the statement to apply.

HaleyAuthority also supports “unless” conditions on a statement.

If any “unless” condition is true, it absolutely disqualifies the statement or module from action.

The three kinds of applicability conditions (if, unless, if-and-only-if) can be combined to control the

behavior of any statement or module in HaleyAuthority. Conditions on a module enable or disable all of

the statements within that module and also control any submodules that may be present.

Figure 9.3: Example of the definition of a Haley business rule: different conditions conclude a single
action (taken from [Hal05])

Another alternative for the definition of a rule is to write the rule in structured English,
as for instance:

“an application should be referred if the applicant is a smoker”.

This is a well-defined rule only if all the concepts used in the rule exist in the domain
model. Given a high-level rule, HaleyAuthority can automatically generate Eclipse code —
the low-level Haley rule language — for that business rule. The generated low-level rule
for the example high-level rule is shown in 9.4. Besides Eclipse code, HaleyAuthority can
also generate business logic that is implemented without a rules engine. HaleyAuthority
can generate Java or C++ code that implements business logic within an object model.

Chapter 9. Related Work 206

HaleyAuthority can also generate SQL code that implements business logic using stored
procedures within a database. However, if there will be many such statements, it is most
efficient to implement them with a rule language whose performance is asymptotically inde-
pendent of the number of rules (i.e., as the number of rules increases runtime performance
becomes constant).

Figure 9.4: Example of low-level Eclipse code representing the translation of a Haley business rule
(taken from [Hal05])

9.1.2.2 Domain Model

The elements referred to in the high-level rules need to be defined in a business model.
A business model captures how words (linguistics), that may be grouped and order with
proper grammar (syntax), relate to each other. With this model, one understands how,
when, and where a term may be used, compared, aggregated, etc. The elements in this
business model are created when new terms are referred to in the natural language expres-
sion of the rules. One can say “a driver is high risk if the driver has more than two tickets
in the last 12 months” and HaleyAuthority will understand the following terms (examples
taken from [Hal05]):

that “the driver” refers to a driver
that “a driver” can be high risk
that “a driver” can have tickets
that “tickets” can have a quantity and it understands the value of the quantity
that “12 months” is a period of time
that “in the last” is a relative period of time

These terms are elements of a business model. With this understanding, along with a
few other terms and actions, HaleyAuthority could then allow other “derived” statements
such as, “Send all high risk drivers notification form F”, or “if the number of tickets for a
driver is 0 for the past 2 years, send notification form A, unless they are under 18 years
old” without constraint of fixed text string menus, tabular forms, and the like. This can be
compared to the high-level derived domain entities supported in our approach. For every
new English term that does not have a counterpart in the domain model, a new domain
entity has to be added manually (through the Authorete interface) to the domain model.
Similarly to our approach, the Haley domain model supports inheritance between domain
concepts.

207 9.1 Business Rules Systems

However, what is not evident in this approach is the link between those domain elements
and the implementation. This link has to be specified manually by the developers who
can map those domain elements to data stored in different mediums such as XML, SQL,
COM, Java and .NET models. Using these mappings, the high-level rules are automatically
generated to Eclipse code which is written to a set of files that will be used by the other
tool Café Rete to affect the behavior of the application.

9.1.2.3 Rule Integration and Execution

The rule integration is based on the explicit invoking the rule engine from the application
code every time one needs to assert or update a fact in the knowledge base, trigger rules,
etc. Thus, the rule integration is low-level and crosscutting. This is a limitation which is
observed and tackled in this dissertation. Similarly to our approach, in the Haley approach
changes in the business logic can be incorporated at run-time. This is done by explicitly
invoking the rule engine, which is able to load any changes that might occur while the
application is running. These changes typically are in relation to deploying new code for
new rules defined in Authorete, which implies writing new or additional Eclipse code files
and informing the runtime application to load these files, as well as to unload old files that
are obsolete.

Although support is provided to accommodate changes at run time, API methods must
still be invoked in order to bridge to the rule engine. These invocations have to be antici-
pated in the code of the application at all places where needed, and are thus crosscutting.
We improve on this approach, by supporting the non-invasive addition and removal of rules
and domain concepts.

9.1.3 VisualRules

Visual Rules [Inn] provides approaches to business rule development. Visual Rule isolates
and modularizes business rules and provides developers and business analysts with a high-
level and abstract business rule language in which to express them.

9.1.3.1 Business Rules

The business rule language provided by Visual Rules is of course visual. It allows the
definition of rule trees, the central element in a Visual Rules project, as graphical models of
logic. Besides rule trees, other elements can be found in a project: parameters, variables,
static variables, constants, actions and data types.

Parameters are the data passed to the rule trees from the context where they are inte-
grated (equivalent to the domain entities specified in the USING clause in our approach).
The variables and static variables folders contain data definitions used within the rules. In
addition to the normal variables which are re-initialized at each new rule tree call, static
variables are supported which retain their value between rule tree calls. Constants define
values that are not modifiable within rule trees.

As shown in the front panel of Figure 9.5, in Visual Rules a rule tree is defined by selecting
and chaining different rule nodes. Visual Rules predefines different kinds of rule nodes,
among them start nodes, decisions (i.e. condition nodes), assignments (used to calculate and
keep partial results), and actions (to execute program code and thus trigger any process).

Chapter 9. Related Work 208

Note that only a few predefined action types are supported by Visual Rules. User-defined
action types can be added through programming. Both configuring predefined action types
and writing new action types is done by manually writing code. The configuration of a
predefined action type is depicted in Figure 9.6. Having to write code for configuring or
adding actions is a drawback of this approach. Our approach improves on this, as it is
possible to add actions in terms of elements of a domain model, without having to write
code.

A rule tree consists of an arrangement of individual rule nodes that together build the logic of the rule

tree. Beginning at the start node () in the top left corner of the rule tree the rule tree is processed

from left to right and from top to bottom.

A decision, represented by a diamond (), makes sure that further processing branches off at specific

places depending on parameters (or other criteria). Actions () are located at the end of the chain of

decisions or assignments (), representing a specific result, such as the "General seating" and "Stu-

dent discount" actions in the example.

A special feature is the subtree call node (). If the current record encounters this rule node during

processing, the rule tree entered here is called. After processing this rule tree processing continues at

the position immediately following the subtree call.

Now click on the () icon in the toolbar to show the code for the rule node.

The description fields to the right of each rule node now no longer display the description, but the rule

code (expressions) defined in the rule node. Clicking again on the () icon toggles the display back

to normal descriptions.

1.7. Pricing rule tree

10 Innovations Softwaretechnologie GmbH

1.8. Executing a Rule Tree

Rule trees can directly be executed. All that is needed for this is test data in the form of an XML file.

The Tutorial_Pricing_Java rule project already contains an XML file with test data.

Open the data folder in Rule Navigator. In it you'll find an Input.vrdata file containing several test re-

cords for the tutorial.

Select Run > Run... from the menu to execute a rule tree.

1.8. Executing a Rule Tree

Innovations Softwaretechnologie GmbH 11

Alias
for

Figure 9.5: Example rule trees in Visual Rules (adapted from [Gmb06])

Code is automatically generated for a rule tree. This rule code consists of programs,
modules or classes in a specific programming language that precisely map the logic in the
rule trees and can be directly integrated into application systems.

9.1.3.2 Domain Model

Each data item has a specific data type associated, either one of the integrated data types
(e.g. Number, String, Boolean, Date, etc.) or a user-defined data type (which can be added
by means of adding programming extensions to the framework). This leads to the first

209 9.1 Business Rules Systems

In the example above the "is today" case for the customer's birthday in the decision must match for the

"send email" action to be set to true. Expressed the other way around this means: If the "send email"

action was executed the "is today" case for the customer's birthday must have matched.

Related concepts.

• Section 2.2.4, “Actions folder” [32]

Related tasks.

• Section 3.2.6, “Creating parameters, (static) variables, constants, actions and data types” [90]

• Section 3.2.8, “Editing actions” [92]

2.4.2.1. Settings for an action node

Different settings for an action node may be necessary, depending on the action type of the action.

When you select an action node in the rule tree, you can view and modify its settings in the Action

settings tab in the Node Properties view. These settings apply only to the selected action node and

are used when the action is fired at this location in the rule tree.

For a "log" action, for example, the priority and the message text are entered at this location.

Important
Actions can have project-wide and/or node-specific settings. Project-wide settings are edited via

the Rule Navigator and node-specific settings are edited via the action nodes in the rule tree.

2.4.3. Assignment nodes

Assignments are symbolized by a blue rectangle (). Any kind of calculations are carried out in an as-

signment node and the results are stored in variables or parameters. Any expressions, in which nu-

merous operations and functions can be used, are allowed in the calculations.

An assignment node can contain multiple assignments, i.e. in one assignment node values can be as-

signed to multiple variables or parameters.

2.4.3. Assignment nodes

42 Innovations Softwaretechnologie GmbH

Figure 9.6: Example of the configuration of a predefined action type in Visual Rules (taken from
[Gmb06])

difference with our approach, as our domain model is not statically typed (the types of the
domain concepts are determined by the mappings from those concepts to implementation).
Another difference is that data types are data structures that exist at the implementation
level. This let us conclude that a domain model does not exist in this approach.

The only support at a higher level this approach provides is the possibility to associate a
higher-level syntax — in the form of an alias — to both conditions and actions in a rule tree.
This support is very limited, since these aliases have a predefined associated meaning. Thus,
a one-to-one mapping exists between, on one hand, the kind of condition (or action) and its
associated alias, and on the other hand, a (predefined) implementation for that condition (or
action). For example, a rule can be written in terms of higher-level aliases which represent
lower-level terms, such as the high-level term “special seating”, which in fact is an alias for
the comparison Seat_No BETWEEN[1, 100], where BETWEEN is a predefined operator in
the framework (depicted in Figure 9.5). All user extensions require programming and thus
cannot be added at the domain level.

9.1.3.3 Rule Integration and Execution

The triggering of rule trees is done from the Visual Rules framework and not from an
existing core application. The input data and output results are dealt with in XML files.
The aim of this approach is not to integrate rules in an existing application but to develop
an application from scratch with business rules in mind. Also note that in Visual Rules it
is possible to control the execution of the rule tree by means of activating and deactivating
specific branches in the rule tree.

9.1.4 JBoss Rules

JBoss Rules [JBob] (aka Drools 3.0) is a Rule Engine implementation based on Charles
Forgy’s Rete algorithm tailored for the Java language. Drools is written in Java, but
is able to run on Java and .Net. JBoss Rules is designed to allow pluggeable language
implementations.

Chapter 9. Related Work 210

9.1.4.1 Business Rules

The language supported by JBoss Rules is called Drools Rule Language (DRL). A DRL
rule has the following structure:

rule "my rule"
attributes

when
LHS

then
RHS

end

where 〈attributes〉 define the information used by the rule, the 〈LHS〉 defines the conditional
part of the rule whereas the 〈RHS〉 defines the rule’s action. How the different parts of a
DRL rule are filled in depends on the level of abstraction in which the rule is expressed.
JBoss Rules supports two levels for the writing of the rules:

• low-level: DRL uses Java to express Field Constraints, Functions and Consequences;
support for other languages is envisioned (such as Groovy and Python). In low-level
rules the 〈LHS〉 and 〈RHS〉 are Java blocks. In addition to the Java syntax, special
keywords can also be used in the RHS for asserting, retracting or modifying facts as
well as any variables bound in the 〈LHS〉. In addition to the DRL rules, JBoss Rules
also allows capturing and managing rules directly expressed in XML, by using the
following tags:

<rule name="my rule">
<rule-attribute name="..." value="..." />

<lhs>
...

</lhs>
<rhs>

...
</rhs>

</rule>

XML rules are low-level. The tags enclose the actual implementation of the rule in
Java. XML rules are kept in JBoss Rules for backwards compatibility reasons (Drools
2.x was entirely based on XML) and therefore its is not one of its main current
contributions.

• high-level: JBoss Rules allows the definition of domain-specific languages. Concepts
which are relevant for a specific domain can be defined to be used in rules. The
mappings from those domain concepts to actual Java entities in the implementation
is kept in files which are used by an “expander mechanism” in charge of extending
the native language with the domain terms. The expander used in each case has to
be explicitly specified with the rule definition. An example of a rule defined in terms
of a DSL is shown in Figure 9.7. Both the standard DRL and natural language-like
extensions are supported by JBoss Rules Workbench. Again, the actual features of the
domain-specific languages supported by JBoss Rules are similar to the features of our

211 9.1 Business Rules Systems

high-level rule language. The actual difference lies on the kinds of domain concepts
that can be expressed as terms of the domain-specific language. This is explained in
the following section.

Figure 9.7: Example of a domain-specific rule in JBoss Rules (taken from [JBoa])

9.1.4.2 Domain Model

A domain model is supported which enables the definition of domain concepts and proper-
ties for those concepts. However, contrary to our approach, drools does not support domain
operations. Mappings for those concepts and properties can be defined manually through
a specialized GUI, as illustrated in Figure 9.8. Domain concepts are defined in a kind of
structured natural language syntax1. The LHS of a mapping definition states a domain
expression with special fields for the variable parts (such as name in the first example def-
inition), whereas the RHS designates the implementation of that domain expression. Only
mappings to implementation (called low-level mappings in our approach) are supported
in JBoss Rules. Contrary to our approach, high-level mappings defined in terms of other
existing domain entities are not supported in JBoss Rules. Also, more advanced mappings
such as mappings from domain concepts to multiple implementation entities, mappings from
properties to complex expressions that might traverse multiple classes in the implementation
model, and mappings that are realized using AOP are not supported either.

9.1.4.3 Rule Integration and Execution

The rule engine supported in JBoss Rules complies with the standard Java Rule Engine API
(known as JSR94 [Jav]). Analogously to the approaches presented so far in this chapter, in
this approach rules are also triggered by means of invoking methods on the rule engine from
Java code. Thus again it suffers from the problems imposed by low-level and crosscutting
rule connections.

1Note that this is new in JBoss Rules (Drools 3). Previous versions of Drools, such as version 2, support
for DSLs was based on XML.

Chapter 9. Related Work 212

Figure 9.8: Example of the definition of domain specific concepts and their mappings in JBoss Rules
(taken from [JBoa])

9.1.5 RuleML

RuleML [Rul] is a XML-based Rule Markup Language that has been proposed by the Rule
Markup Initiative as a canonical language for publishing and sharing rules on the Web.
RuleML is implemented with XML Schema, XSL Transformations (XSLT) and reason-
ing engines. The RuleML Initiative collaborates with several standards bodies including
W3C, OMG and OASIS. Because it is XML-based, RuleML inherits some of its benefits
directly from XML, including platform independence and interoperability. RuleML is also
extensible, a prime example being its combination with OWL to form the Semantic Web
Rule Language (SWRL) [HPSB+04] and its Object-Oriented extension called OO RuleML
[Bol03].

RuleML is also translatable to and from other Semantic Web standards (e.g. RDF, OWL)
via XSLT. Various tools are also available, including OO jDREW [Bal05], Mandarax2 , and
NxBRE43.

RuleML covers the entire rule spectrum, from derivation rules to transformation rules
to reaction rules and to integrity checking. RuleML can thus specify queries and infer-
ences in Web ontologies, mappings between Web ontologies, and dynamic Web behaviors
of workflows, services, and agents.

2Available at http://mandarax.sourceforge.net/.
3Available at http://www.agilepartner.net/oss/nxbre/.

213 9.1 Business Rules Systems

9.1.5.1 Business Rules

The rule language is based on XML and is low-level. As an example, consider the following
rule:

“The discount for a customer buying a product is 5.0 percent if the customer is premium
and the product is regular”

This rule is expressed in RuleML as follows:

<imp>
<_head>

<atom>
<_opr><rel>discount</rel></_opr>
<tup><var>customer</var>

<var>product</var>
<ind>5.0percent</ind></tup>

</atom>
</_head>
<_body>

<and>
<atom>

<_opr><rel>premium</rel></_opr>
<tup><var>customer</var></tup>

</atom>
<atom>

<_opr><rel>regular</rel></_opr>
<tup><var>product</var></tup>

</atom>
</and>

</_body>
</imp>

where the tags <_head> and <_body> represent the action and the condition of the rule
respectively. Because RuleML is XML-based, it is hard to adopt for domain experts. This
seems to have been a critical factor in the success of this language, as recognized in [Hir06].
In this work, the TRANSLATOR [Hir06] initiative is presented which is aimed at raising
the level of abstraction of RuleML. TRANSLATOR is an open source tool which is able
to automatically translate natural language-like sentences written in Attempto Controlled
English [FHK+05] into the RuleML rules. Similarly to this approach, we can imagine adding
a layer on top of our high-level rules to allow expressing them in a natural language-like
format.

9.1.5.2 Domain Model

In RuleML, domain concepts are represented as facts which can be used in rules. By default,
the facts are not linked to a core OO application. However, some RuleML extensions do
support the concept of mappings, such as for example OO RuleML. OO RuleML is a frame-
like knowledge representation with facts and rules. In this approach, a correspondence exists
between the concepts and rules and the OO Programming: facts correspond to instances,
signatures can be viewed as classes, and rules correspond to methods [Bol03]. Analogously
to our approach, this correspondence can be seen as a mapping between the knowledge
expressed in OO RuleML and the OO entities of an OO program. The difference is that in

Chapter 9. Related Work 214

OO RuleML, rules are declarative, and therefore they only query or derive information. In
our approach, rules ultimately trigger some behavior in an OO program, following a more
procedural style, which can affect the execution of the base core application.

The way the mapping from facts and rules to OO is specified varies from concrete imple-
mentations to another. For example, in Mandarax, the mapping is done by splitting domain
expressions into subexpressions until the level of terminal elements is reached. These ter-
minal elements are then manually mapped to Java entities, as shown in Figure 9.9. This
mechanism is called “wrapping” [Die03]. Wrapping is done by programing, more concretely,
by instantiating classes provided by the framework which wrap java entities (i.e. methods
and attributes). For instance, the term indexOf(“abc”,“a”) — where indexOf is a wrapper
for the String.indexOf() method — is translated to the constant term “0” using reflec-
tion. Thus, only low-level mappings are supported, which is a limitation of this approach
compared to ours.

Support for rules expressed in natural language is provided by an extension of Mandarax,
the Oryx tool, which is a graphical front-end that supports verbalization of knowledge
(shown in Figure 9.10). Oryx manages a repository of domain concepts to be used in rules.
A knowledge base is associated with a repository that contains “meta” information about
predicates, functions, data sources, knowledge verbalization, etc.

Figure 9.9: Mapping domain concepts to Java entities in Mandarax (taken from presentation titled
“MANDARAX+ ORYX: An Open-Source Rule Platform”, by J. Dietrich and G. Wagner (2004))

9.1.5.3 Rule Integration and Execution

RuleML’s execution model is based on rule engines. Several rule engines implementations
exists for RuleML. Typically rule engines are controlled from core applications by means
of the invocation of methods provided in well-defined APIs. This means that rules are
triggered and results are retrieved through APIs. Again, the rule connection is low-level
and crosscutting.

215 9.1 Business Rules Systems
The Mandarax 3.0 Manual

Mandarax ECA

Mandarax ECA (Event, Condition, Action) is an extension that can be used to program reactive agents.

The system is event driven: events have registered event listeners (handlers), these listeners query the

knowledge base for the next action that must be performed. Both the event and the action mechanism are

designed for distributed systems. There is a Mandarax ECA portfolio agent example application that uses

POP event sources and an SMTP actions. Java Messaging Service (JMS) would be a suitable infrastructure

for real world applications based on Mandarax ECA. More details on Mandarax ECA can be found on the

mandarax home page.

Appendix A – Required Libraries

31/41

Figure 4 The Oryx Knowledge Base Editor

Figure 5 The Oryx Rule Editor

Figure 9.10: The Oryx natural language front-end for Mandarax (taken from presentation titled
“MANDARAX+ ORYX: An Open-Source Rule Platform”, by J. Dietrich and G. Wagner (2004))

9.1.6 QuickRules

QuickRules [YAS] offers a Business Rules Management Solution (BRMS) for the Java/J2EE
platform. It provides an Eclipse-based graphical user interface targeted at domain experts
and developers which allows for the design, implementation, testing, and deploying of busi-
ness rules

9.1.6.1 Business Rules

Rules are high-level expressed in terms of natural language terms, which are aliases for
implementation entities. QuickRules BRMS enables capturing business policies as a com-
bination of Sequential Rules (FlowRulesets), spreadsheet-like Decision Tables, and plain
IF-THEN rules. An example of a decision table in QuickRules is shown in Figure 9.11.
QuickRules BRMS allows business rules to be associated with a “validity” period. Us-
ing this feature, the client application can execute previous versions of business rules by
querying on the data on which they were valid. Versioning is not provided in our approach.

9.1.6.2 Domain Model

A simple domain model is supported which only allows the definition of aliases that have
a one-to-one mapping to data objects. This feature is called “Aliasing”. More complex
mappings are not supported.

9.1.6.3 Rule Integration and Execution

QuickRules’s rule engine is compliant with JSR-94 Specification [Jav]. Rule sets are executed
by means of invoking the rule engine through the methods supported by the API. The

Chapter 9. Related Work 216

!

! !

!

!

!

!"#$

%&'($)*&')$

+,-'./,0&)$)%1231/3$&3-%-42$567$$

*89:;<=$)<8>>?@A9=@$

!

&<BCD@>EFG@>:$/;B>$3>H>B9DI>?=$-3&$@A9JC?K$LMB9JN$8;B>@$

&<BCD@>EFG@>:$/;B>$3>H>B9DI>?=$-3&$@A9JC?K$3><C@C9?$%GFB>@$

!

Figure 9.11: Example of a decision table defined in QuickRules (taken from [YAS03])

QuickRules BRMS runtime can be deployed as a plain-Java component, in EJB mode, as a
Message-Driven Bean (MDB), or as a WebService. Again, the rule integration is low-level
and crosscutting.

9.1.7 Summary

Some approaches, such as JRules, HaleyRules, RuleML and QuickRules provide a rule-based
language for expressing rules, which is more declarative than for example an object-oriented
programming language. However, rule-based languages are programming languages, requir-
ing the user to have programming skills, as opposed to high-level languages, which can be
used by domain experts. Nevertheless, some approaches provide a high-level, declarative
language for expressing rules in addition to the rule-based programming language. The
former is typically translated into the latter. Examples of systems that support this are
JRules, QuickRules, VisualRules and HaleyRules. The high-level rules are also defined in
terms of domain concepts captured by a business model. This model is the result of either
manually or automatically extracting domain knowledge from an existing object-oriented
implementation or XML schemas. Basically, the business model defines the OO classes and
methods to which the business rules are applied, and maps the natural language-like syntax
of the business rule language to these implementation entities.

Thus, the domain entities are simply aliases for implementation entities, requiring a one-
to-one mapping between them. As a consequence a tight coupling exists between the domain
model and the implementation model by supporting only anticipated one-to-one mappings.
This is a problem since a high-level specification of business rules can be discrepant from the

217 9.2 Lightweight Business Rule Approaches

implementation of the core application as the business rules are not always anticipated in
the original application. Thus, one-to-one mappings are not enough to realize unanticipated
business rules. Moreover, connections are crosscutting in the core application and cannot
be expressed at the high level. Our approach extends this idea in several dimensions: we
consider the case where domain concepts can be derived from other existing domain concepts
— and therefore their mappings can be expressed completely at the domain level—, mapping
to many entities and unanticipated mappings.

Rule-based programming languages (e.g., the ILOG Rule Language (IRL) supported in
JRules) typically allow writing object-oriented code directly in the rules themselves. This
makes the rules more powerful but also more complex, since the whole complexity of the
object-oriented paradigm is added. Rules are not high-level since they directly refer to
implementation entities. In our approach, rules are very simple because only references to
domain attributes and domain method invocations of a domain model are possible. All
the complexity that would otherwise appear in the rules themselves, is encapsulated in a
mapping. This mapping can be very sophisticated, making the rules very powerful.

In some existing approaches, an intermediate language is used during the rule translation.
This is the case of JRules for instance, where high-level rules expressed in terms of a business
model map to low-level executable rules expressed in irl, the language understood by JRule’s
engine. This implies that translated rules can only be reused in JRules-enabled applications.

Moreover, all previous approaches are based on rule engines that are in charge of asserting
and executing the rules. The rule engines need to be triggered explicitly from the appli-
cations that integrate the rules. Also, application objects must be asserted into, retracted
from or updated in the working memory before pattern matching in rules can begin. This
is typically done either by using keywords within rules or through APIs invoked within
application objects themselves. As a consequence, the connection of the rules hampers the
reusability and maintainability of the application code, since every time rules/connection
change, the application has to do so.

9.2 Lightweight Business Rule Approaches

In this section some lightweight approaches to business rules are discussed. Lightweight
approaches are typically adopted by applications for which adding the whole power of a
rule engine and rule-based languages might be overkill. We touch upon some approaches
that model rules in databases (section 9.2.1), others that tackle the decoupling of business
rules in object-oriented applications and others that focus on identifying the variability
points and externalizing business rules from applications (section 9.2.2).

9.2.1 Business Rules and Databases

In [vH01], the distinction between “service-oriented” and “data-change-oriented” business
rule approaches is made.

In “service-oriented” approaches, rules are activated when certain events occur in the
core application functionality. Rules in these approaches can be very complex as they can
embody an entire knowledge-intensive subtask of the application functionality. Typically

Chapter 9. Related Work 218

data or objects are passed to the rules from the application and results are passed back
after the rule execution. This is the kind of rules considered in this dissertation.

On the contrary, in “data-change-oriented” business rule approaches, the design and
implementation of the rules are data-centric. Typically the data or object model is defined
first, on which the rules are later on attached. The rules can refer to or manipulate the
data or objects on which they are attached. Their execution is also data-centric, as they
are activated when the data or objects they refer to are changed by the running application
or by the other rules’ actions. The sequence in which the rules are executed is determined
by the sequence in which the information is processed by the application. Moreover, these
rules have a short life-cycle since it is determined by the life-cycle of the data or objects
they are attached to.

Some approaches in this last category represent business rules in the database layer,
as advocated in Business Rules books such as [Dat00]. When this approach is followed,
business rules are encapsulated as store procedures. These approaches typically trigger
rules at events that occur in the database, which basically correspond to the moment a
value is added, removed or modified in a table. Thus, these events are only a subset of the
possible core application events that are considered in service-oriented approaches.

Other data-centric approaches implement business rules as entries in database tables.
An example is the Adaptive Object-Model (AOM) [YJ02], a reflective architecture alterna-
tive to traditional object-oriented design which represents classes, attributes, relationships,
behavior as well as business rules as metadata. AOM heavily relies on the use of the tra-
ditional design patterns [GHJV95]. AOM advocates that some business rules — structural
constraints such as cardinality of relationships and if a certain attribute is required or not
— can be stored in shared databases that are accessed and manipulated by a core applica-
tion. Changing business rules is simply done by changing database entries, which can be
done dynamically realizing a high flexibility and run-time configurability. However, AOM
recognizes that other rules cannot be implemented as database entries — more functional
or procedural rules — for which it advocates the use of the Rule-Object pattern [Ars01].

9.2.2 Business Rules and Design Patterns

As motivated in this dissertation, having to introduce the extra overhead induced by the
use of a dedicated rule-based technology might be overkill for some applications. Some
approaches deal with this issue and propose taking a lighter approach to business rules. For
instance, some approaches decouple business rules in the standard object-oriented paradigm.
An example is the approach used in this dissertation, the Rule-Object Pattern which suggests
reifying business rules as Rule Objects. Many approaches exist which are based on the use
of this pattern, for instance in architectural approaches such as the Adaptive Object Model
[YJ02] and Web personalization approaches such as [RFCS01].

Following the idea of the Rule-Object pattern, other design patters have ben proposed
for modelling business rules in OO. In particular the Encapsulated Business Rules pattern
proposes encapsulating the implementation of business rules for their incorporation in J2EE
applications [Bel03]. Again, business rules are implemented in classes defining a condition
and an action methods. The Observer pattern [GHJV95] is used to communicate changes
in the problem state, i.e. changes in the information the business rules use. The triggering
of rulesets is done by evaluators which observe and react to changes in the problem state.
A hierarchy of evaluators can be defined to trigger different rulesets.

219 9.3 AOP for Business Rules

The Business Rule Beans (BRBeans) approach4 aims at externalizing business rules from
core applications [RDR+00]. BRBeans is a framework which is part of IBM WebSphere
Enterprise Edition5. It suggests extending business modeling and analysis to include the
identification of tangled business rules and points of variability in core applications. At
each of those points, the rule is externalized and the point of variability is represented
as a trigger point, which is the mechanism to facilitate the dynamic attachment of the
externalized rules. Rules in BRBeans are generic pieces of business logic which are written
by programmers and stored in code libraries for future reuse (e.g. rules can be connected at
different trigger points). A trigger point is a piece of code in a method that interfaces with
the BRBeans runtime to attach and execute business rules dynamically during application
execution. Thus, unlike our approach, rules and trigger points are low level. At runtime,
when a trigger point is encountered the BRBeans produces the exact collection of rules
that need to be fired. The trigger point then fires each rule in the collection and manages
the aggregation of results. A GUI is provided for non-programmers in order to manipulate
externalized business rules without the need for programming skills. However, this support
is limited to deploying existing rule templates in new contexts or with different values (i.e.
parameters), expiring existing rules or scheduling rules to become effective. However it does
not allow defining completely new rules from scratch at the domain level. The BRBeans
framework is capable of handling a collection of common patterns often encountered when
producing rule-enabled applications. These patterns are deployed by means of invocations
on APIs.

9.3 AOP for Business Rules

9.3.1 Decoupling Business Rules at Implementation Time

Business rules are today one of the most well-recognized examples of crosscutting concerns,
as identified in well-know AOP books such as [Lad03]. Moreover, Tarr et al. [OT01] indicate
how business rules can be separated using HyperJ, an AOP approach based on symmetric
AOP. In that approach, business rules are encapsulated in different hyperslices, which are
the HyperJ’s modularization mechanism for crosscutting concerns. Hyperslices are loosely
coupled with the base model, which implies that the business rules they encapsulate are
reusable in different contexts. In this approach it is possible to specify a separate module
(hypermodule) to encapsulate the details of how the business rules are linked to the core
application. However, not much support for hyperslice relations is provided, limiting the
combination of business rules. Moreover, mapping concerns is done statically, by matching
structural units present in different hyperslices. This characteristic does not allow the
connection of business rules to core application events that depend on the dynamics of an
application.

Other related research focuses on the suitability of AOP for integrating object-oriented
and rule-based programming languages [D’H04; DJ04]. In that work, hybrid aspects are
proposed to achieve a very loose coupling between both paradigms at the program and the
language level. This approach allows expressing both the rules and the core application
functionality in their most appropriate paradigms, the rule-based and the object-oriented
paradigms. Also, linguistic symbiosis is ensured between rule-based and object-oriented
languages.

4More information at http://www.research.ibm.com/AEM/brb.html.
5Fully supported since version 4.0.

Chapter 9. Related Work 220

9.3.2 Decoupling Constraints at Design Time

Some existing approaches focus on the separation of crosscutting constraints at the design
level [GBNT01; GBN99; Str00]. Constraints that specify global system properties (such as
latency, precision, timing) crosscut the boundaries of the model hierarchy typically appear
tangled and scattered in the base design [GBNT01; GBN99]. This is because typically
the same constraint is repeatedly applied in many different places of the model with slight
variations. In order to overcome these problems, constraints are described in a modular
manner and woven into base designs using AOP.

When constraints are expressed at the modelling level by means of an OCL-like language,
the responsibility to ensure the checking of those constraints at the implementation level is
left to the programmer. The modular specification of constraints at the design level enables
the automatic checking and enforcement of constraints in object-oriented applications. In
[Str00] an approach for the automatic checking of crosscutting concerns at the implemen-
tation level is proposed. AspectJ code is automatically generated which checks the design
constraints expressed at the design level.

9.4 Combining MDE and AOP

The use of MDE in this dissertation is threefold. MDE is used for generating the rule-objects
implementing high-level rules, the aspects implementing high-level rule connections and the
aspects realizing the implementation of some complex mappings for domain concepts. When
looking at related work that attempts to combine MDE and AOSD, one mainly encounters
approaches that focus on modelling crosscutting concerns explicitly as part of design mod-
els. For example, a possible direction is to extend a general purpose modelling language
(e.g. UML) with explicit support for aspects. Within the MDE - AOSD research area,
we classify approaches into two relevant categories: top-down and bottom-up. Top-down
approaches aim at representing crosscutting concerns at the modelling level independently
of the implementation model whereas bottom-up approaches have AOP as starting point
(i.e. aspects at the implementation level) and aim at representing AOP concepts at the
modelling level.

• top-down: Clarke et. al. extend UML to specify composition patterns [CW01] to
explicitly capture reusable patterns of crosscutting behavior. Composition patterns
are based on a combination of the subject-oriented model for composing separate
and overlapping designs and UML templates. In order to use these patterns in a
concrete application, the different subjects involved in the patterns need to be bound
to concrete implementation entities in that application. This binding step is similar to
our mapping. On the one hand, the binding language supported by the composition
patterns approach is more expressive as it is similar to a pointcut language (e.g.
support for wildcards is allowed for realizing mappings to many elements). On the
other hand, subjects in patterns can only be bound to existing entities, and therefore
support for derived and unanticipated mappings is not provided, whereas it is one of
the contributions of our approach. Although composition patterns are independent
of a concrete implementation model, it closely relates to the principles advocated
by AOP. Thus, the authors show how the translation from composition patterns to
AOP can be performed, in particular for the case of AspectJ as target AOP language.
This is related to our approach in the sense that AOP is used as an implementation

221 9.4 Combining MDE and AOP

technique but its features are transparent at the high-level, i.e. AOP features are not
exposed at the modelling level.

Other work in this category can be found in [SSR+05; SRF+05], where the authors
present an MDD framework that incorporates ideas from AOSD. Separation of con-
cerns is pursued at two levels, horizontal and vertical. At the PIM level, this approach
defines a primary model that addresses the business logic of the application, as well
as a set of generic aspect models, each of them describing a crosscutting feature in
a generic way (horizontal SoC). A set of bindings determines how to compose the
aspectual models with the primary model. An initial step for the weaving of primary
and aspectual models consists of instantiating the aspect model on a concrete applica-
tion domain. To this end, model elements are mapped to elements in the application
domain. This mapping step can be compared to the mapping of domain entities pre-
sented in this dissertation. Moreover, this approach also addresses the transformation
from PIMs to PSMs by means of separating the transformation process into separate
transformations for the primary model and each of the aspect models (vertical SoC).
This approach shows that the use of AOSD techniques can facilitate the separation
of concerns and ease the modeling and model transformation specification tasks.

• bottom-up: the approaches in this category typically start from the aspect-oriented
programming paradigm and attempt to extrapolate the AOP ideas at the modelling
level. In general this is achieved by extending a general-purpose modelling language
such as UML with constructs for representing aspects, pointcuts and advices and other
AOP concepts. In [HJPP02] standard UML stereotypes are used to model aspects
whereas in [PSD+02] extensions of UML are proposed. They both differ from our
approach in that the same AOP constructs that are present at the implementation
level are exposed at the modelling level. Thus, at the modelling level, the use of AOP
is not transparent. In our approach, writting or connecting a rule at the domain level
does not reveal the underlying use of AOP. Another difference is that transformations
in these approaches occur at the model level (i.e. the weaving occurs at the modelling
level and not the code level).

Another approach in this category is the ECL transformation language by Gray et
al. [GLZ06] which can be used to model aspects that quantify the modeling elements
that need to be transformed and apply the desired changes upon them, obtaining a
new model at the same level of abstraction as the input model. Besides the fact that
transformations occur at the modeling level, this approach differs from ours in that the
modeler is in charge of specifying the desired modeling aspects, writing and varying
the set of rules considered by the transformation engine. In our approach the modeler
is unaware of the use of aspects. In addition, the set of transformations is part of
the proposed framework, encapsulating expert knowledge on how rule connections are
translated into aspect code.

The combination of AOSD and MDE has been the focus of several workshops orga-
nized at many international conferences in the last few years, among them the European
Conference on Object-Oriented Programming (ECOOP) and the international conference
on Aspect-Oriented Software Development (AOSD). Also, other work in this area can be
found in [Völ05] where the author proposes several patterns that can be used to handle
crosscutting concerns in the context of model-driven software development environment

Chapter 9. Related Work 222

that range from using code generation templates as a simple means to separate concerns to
using aspect-oriented modeling concepts to separate concerns in the models. The author
also analyzes the relation between these two paradigms, points out their commonalities and
differences and identifies scenarios where their combination can be useful.

9.5 Mapping Domain Knowledge To Implementation

Mapping domain knowledge to implementation has been the focus of many other areas of
knowledge representation. For example, existing approaches focus on linking UML concep-
tual models to data models expressed in XML [RBG02]. These approaches have to deal
with the extra complexity of linking two techniques which are aimed at tackling completely
different problems: software design on the one hand and data modeling on the other hand.
Unlike these approaches, our mappings do not have to deal with different paradigms, as
both the domain and implementation models are developed in an object-oriented style.

All OO analysis and development techniques advocate building models that represent
software systems at different levels of abstraction [FS03]. For example, when following the
RUP process [JBR99], models are defined at the conceptual, specification and implementa-
tion levels. Moreover, OO methodologies are proposed for the refinements of models. For
example, in [HBR00], refinements are defined for the mapping of UML models and Java
code. The more recent MDE research stream aims at automating the mapping between
models by means of model transformations [MB02]. However, this mapping is only made
explicit at transformation time. When traceability is pursued (such as in RTE approaches),
support is needed to make the link between models explicit even after the models have
been transformed. Most existing RTE tools achieve this by including traces in the out-
put models (e.g. in the form of annotations or extra documentation) to indicate which
decisions were taken at transformation time. However, this is not sufficient to support full
RTE [Pae06]. The MDE research community has therefore increased its focus on the ex-
plicit link between models which is currently an active research topic. An example of this
is the ECMDA Traceability Workshops organized as part of the European Conference on
Model-Driven Engineering6.

Other domains where the mapping of domain knowledge is pursued are the Semantic
Web and databases. In the context of the Semantic Web, interoperability among different
ontologies is an essential issue that is gaining more and more attention. In order to achieve
interoperability, mapping and merging of ontologies becomes a core question. Automatic
or at least semi-automatic techniques have to be developed to reduce the burden of manual
creation and maintenance of ontological mappings. These techniques rely on metadata
about semantic similarities and appropriate rules. In [ES04] a methodology for identifying
mappings between two ontologies is presented which is based on the intelligent combination
of manually encoded rules. This approach only considers one-to-one mappings between
single entities of the ontologies.

In [vdSH06], Semantic Web technology is used to support the exchange of user model
data between applications. Assuming the user model schemas to be modeled in OWL, this
approach translates instances of one schema into instances of a second schema. This trans-
lation is driven by mappings which are expressed in SWRL [HPSB+04]. Currently these

6http://modelbased.net/ecmda-traceability/index.php

223 9.6 Business Rules in Specific Application Domains

mappings need to be constructed with human interaction, although the authors envision
the mappings to be done semi-automatically using schema-matching techniques.

In the context of databases, data integration and query mediation among distributed
and heterogeneous sources have always been important issues. Also in this field, Semantic
Web technology seems beneficial. For example, in [CTHB05] OWL is used to cope with
structural and semantical heterogeneity between data sources, offering extra advantages
over traditional relational languages thanks to OWL’s rich semantics.

9.6 Business Rules in Specific Application Domains

In this section approaches that focus on the decoupling of business rules in the domains
considered in this dissertation, e-commerce and SOA, are presented.

9.6.1 Business Rules in e-commerce Applications

One of the first initiatives that introduced the idea of Inference rules for e-commerce ap-
plications is CommonRules [IBM]. Following this initiative, the Rule Markup Initiative
has taken steps towards defining a shared Rule Markup Language (RuleML) (presented
in section 9.1.5). Some approaches have focused on the personalization of complex Web
applications [RFCS01; RSG01a; KRS00; VTH06], focusing on constructing flexible and
adaptable designs that can help coping with the increasing complexity of Web applications
and simplify the process of adding personalization features to them. In [GGBH05] a solu-
tion to the lack of reusability of personalization specifications is provided which consists of
the definition of a high-level rule language, the Personalization Rules Modeling Language
(PRML). This language allows the specification of the personalization at design time which
can then be mapped to different web design approaches. This specification is independent
of functional application concerns and thus reusable.

9.6.2 QoS Business Rules in Service-Oriented Applications

The case study presented in this dissertation lets us combine two lines of research: on the
one hand, research on the design of a high-level business rule language which is independent
of the particularities of a specific domain; on the other hand, research on improving the
flexibility of client-side service management. In SOA, to our knowledge, this combination
has not been explored so far. Related state-of-the-art approaches focus on the design of
either business rule languages to be used in real-world domains (e.g. financial, e-commerce),
as presented earlier on in this chapter, or dedicated languages for expressing QoS constraints
in service-oriented applications, as explored in the rest of this section.

Some existing research proposes dedicated languages to address the explicit specification
of QoS requirements for web services. For instance, the GlueQoS approach is proposed
[WTM+04] which focuses on the dynamic reconciliation of QoS conflicts between interacting
components. They propose a high-level and declarative language, based on WS-Policy
[BIA03], to specify QoS features, preferences and conflicts. These high-level specifications
involve elements specified in an ontology of QoS features. The high-level specifications
are taken into account by a middleware-based mediator mechanism in charge of finding a
compromise between the QoS of the communicating services. This way, QoS considerations
are taken out of application logic and a better separation of concerns is achieved. The

Chapter 9. Related Work 224

disadvantage of this approach is that the existence of a fixed ontology of features with
all possible interactions is assumed. Contrary to our approach, it is not the focus of this
approach to be able to define new domain concepts (e.g. new QoS properties) nor to analyze
how concrete Web services map to those concepts. Thus, unanticipated features cannot be
added at runtime.

Another related approach is AO4BPEL [CM04] which supports selective web service
composition by modularizing business rules as aspects. In this approach, however, the
core service composition description is tangled with the definition of the business rules,
as they are specified as part of the same process description. Moreover, contrary to our
approach, AO4BPEL rules are XML-based and thus low-level, implying the need of having
programming skills.

9.7 Business Rules Methodologies, Vocabularies and Stan-
dards

An important issue in business rules concerns how to keep business rules at the business level
inline with the rules that are implemented at the implementation level. Methodologies have
been proposed which address the problem of incorporating business rules in information
systems from the more general organizational point of view. For example, in [BK05] Bajec
et al. suggest making the mapping between the business rule implementation and the
business element (goal or vision) that represents the source of that business rule explicit.

In the area of business rules vocabularies, several approaches have been proposed. Some
initiatives only focus at the business level and are not concerned with the technical real-
ization of the vocabulary. For example, the Rulespeak [RL01] aims at expressing rules to
improve the communication at the business level. This includes the problem of rule manage-
ment, especially where changes to rules must be traced to and from the business side. The
Semantics of Business Vocabulary and Business Rules (SBVR) [OMG05] is an OMG spec-
ification that defines the vocabulary and rules for documenting the semantics of business
vocabulary, business facts, and business rules, as well as an XMI schema for the interchange
of business vocabularies and business rules among organizations and between software tools.
The SBVR is positioned to be entirely within the business model layer of the OMG’s Model
Driven Architecture (MDA). SBVR is targeted at business people rather than automated
rules processing, and is designed to be used for business purposes, regardless of whether the
rules could be automated in IT systems or not. In our approach this distinction is of course
important as we are concerned with transforming business rules from their specification in
terms of a domain model to their implementation. Note that business rule methodologies
and vocabularies, although important, is outside the scope of this dissertation.

The Java Rule Engine API (JSR 94) [Jav], developed through the Java Community
Process (JCP) program, represents the “least common denominator” in features across rule
engines. JSR 94 defines a simple API to access a rule engine from a Java SE or Java
EE client, including functionality for: registering and unregistering rules, parsing rules,
inspecting rule metadata, executing rules, retrieving results, filtering results. Note that
JSR 94 does not standardize the semantics of rule execution, i.e. the rule engine itself, the
execution flow for rules, the language used to describe the rules, the deployment mechanism
for Java EE technology. Efforts are under way to standardize a common rule language (e.g.

225 9.7 Business Rules Methodologies, Vocabularies and Standards

W3C is working on the Rule Interchange Format (RIF) — a format that allows rules to be
translated between rule languages and thus transferred between rule systems7 — and the
OMG has started to work on a standard based on RuleML8).

7More information can be found at http://www.w3.org/TR/rif-ucr/.
8More information can be found at http://www.ruleml.org/.

Chapter 9. Related Work 226

Chapter 10

Conclusions

This chapter first summarizes the work presented in this dissertation while stressing our
contributions (section 10.1). It continues with a discussion on future work (section 10.2).

10.1 Summary and Contributions
The goal of this dissertation is to achieve a highly flexible connection of high-level and
executable business rules with existing object-oriented applications. To this end, ideas from
AOSD and MDE have been recuperated and combined.

A first dimension of the work presented in this dissertation is motivated by a lack of
support for the separation of concerns observed in current state-of-the-art approaches on
developing object-oriented software applications with rule-based knowledge. Existing ap-
proaches advocate making rules explicit and separate from the object-oriented core func-
tionality [vH01; Ros03; Dat00] in order to trace them to business policies and decisions,
externalize them for a business audience, and evolve them. The need for a separation is
increased by the fact that business rules do not necessarily change at the same pace as the
core application functionality [Ars01]. However, we observe that existing approaches fail at
separating the code that connects business rules with the core application. This connection
code is essentially in charge of denoting the events at which rules are applied, capturing the
required data and making it available for rule manipulation. Moreover, the connection code
crosscuts the core application and is therefore tangled with code tackling other concerns
and scattered among several modules of the core application. This occurs independently of
the concrete approach used to represent the business rules (e.g. object-oriented patterns,
rule-based languages, etc.).

With the aim of tackling the limitation previously described, we set out to decouple the
crosscutting rule connection code. We propose encapsulating it in separate modules, decou-
pled from both the core application’s functionality and the business rules. We consider the
core application to be developed using standard object-oriented programming and the busi-
ness rules to be decoupled and implemented using the Rule-Object Pattern. Our first three
contributions are structured around the steps taken in decoupling business rule connections:

Contribution 1: Identification of technological requirements for achieving a
highly flexible connection of business rules
General requirements are identified, described and motivated that are essential
for any technology to be suitable to cleanly encapsulate the rule connection code

Chapter 10. Conclusions 228

and achieve high flexibility in the integration of the rules. These requirements
are described independently of concrete implementation languages and/or tech-
nologies. Those requirements are also discussed in [CDJ03; CDS+03; CDS+05;
CSD+04]

A second natural step in the process of pursuing the decoupling of business rule con-
nections consists of finding a suitable technology that accomplishes these identified require-
ments. Because AOP appears as a promising technique to cleanly encapsulate crosscutting
code from object-oriented applications, we set out to tackle the decoupling of crosscutting
rule connection code with AOP. This leads us to our second contribution:

Contribution 2: Analysis of the suitability of AOP for accomplishing the tech-
nological requirements identified in Contribution 1
On the one hand, we point out the fundamental AOP characteristics that are
instrumental to successfully decoupling and modularizing crosscutting rule con-
nections while accomplishing the identified technological requirements. We con-
clude that in general AOP is a suitable technology for achieving the decoupling
of rule connections. On the other hand, a more concrete contribution is to show
how the features supported by two representative AOP approaches — namely
AspectJ and JAsCo — can be used to actually achieve the decoupling and
modularization of crosscutting rule connections. The results of these concrete
experiments are also reported in [CDJ03; CDS+03; CDS+05; CSD+04]

These experiments let us observe that both languages succeed in achieving our goal,
although for some of the requirements their solutions differ quite radically. This is because
each approach provides different AOP mechanisms and features. However, we can observe
that, independently of the concrete mechanisms and features, an AOP solution for decou-
pling rule connections follows a certain structure, in which we identify commonalities and
variabilities that we abstract in aspect patterns. This constitutes a third contribution of
this dissertation:

Contribution 3: Identification of aspect patterns and their variabilities in the
implementation of rule connections
We identify several connection elements that recur in the implementation of rule
connection aspects. Moreover, we observe how and under which specific circum-
stances these elements vary. Solutions for each of the connection elements and
their variations are proposed, in particular implemented in JAsCo. Moreover,
we observe that dependencies exist between these connection elements, which
challenge their implementation. Thus, these dependencies need to be taken into
account when combining solutions for each of these connection elements in order
to obtain a complete and valid rule connection aspect. Note that although in
this dissertation we opted for illustrating the proposed transformations using
JAsCo as a target language, their implementation is not bound to the specific
features of this particular technology. The identified patterns build on top of the
common AOP characteristics (identified in Contribution 2) and therefore can be
realized in any AOP approach that adheres to those characteristics. Thus, the
proposed aspect patterns are generic since they do not depend on the concrete
mechanisms and features of a specific approach. The connection elements and
their variations are also discussed in [Cib02; CD06a; CDJ06b]. The identified
dependencies are also presented in [CD06a].

229 10.1 Summary and Contributions

A second dimension of our work is focused on facilitating the task of understanding and
defining business rules by the domain experts. We observe that, when using state-of-the-art
approaches, in order for rules to be executable they ultimately need to be implemented in
a rule-based programming language, or expressed using design patterns or XML, etc. No
matter which technical solution is followed, the need for having technical skills is implied,
which excludes the domain expert. A second problem observed in this dissertation is that
executable rules are expressed in terms of concrete implementation elements from the ex-
isting core application, which makes rules fragile and not reusable among applications of
the same domain. To overcome these two problems, existing approaches propose the idea
of “pulling business rules up” to a higher level of abstraction (as it can be found in JRules,
QuickRules, VisualRules and HaleyRules). Following this idea, we set out to build a layer
of abstraction that we call domain model, which allows expressing business rules in terms
of domain concepts and enhances the current support found in existing approaches. We
realize that in order for high-level rules to be executable and flexibly integrated in exist-
ing applications, their connections also needed to be expressed in terms of the domain. It
is then observed that, whereas aspects are a good solution to the problem of decoupling
rule connection code, they completely reside at the implementation level and therefore also
exclude the domain expert. Several contributions are identified as part of this dimension,
which we summarize as follows (contributions 4, 5, 6 and 7):

First of all, the innovation of the domain model approach presented in this dissertation
in comparison to existing approaches is that not only business rules can be expressed at
a higher level of abstraction but also their connections with the existing core application.
This leads us to the next contribution:

Contribution 4: High-level dedicated languages are designed for expressing
business rules and their connections in terms of domain concepts
The choice of constructs of our high-level languages is the result of extensive pre-
vious work [CDJ03; CDS+03; CDS+05; CSD+04]. The presented high-level rule
language raises the expressive power offered by existing approaches that sup-
port high-level business rules since it allows expressing rules in terms of domain
entities that can in turn have very complex realizations at the implementation
level. The idea of pulling the business rule connections up to the domain level
has not been proposed before. The features of the high-level rule connection lan-
guage presented in this dissertation are abstractions of the recurrent connection
elements that conform the aspect patterns identified in Contribution 3.

Moving to a higher level of abstraction improves understandability as it becomes possible
to express the rule and connection concerns in terms of the domain. Moreover, it becomes
possible for the domain expert to add, modify and remove rules and rule connections.

We pursue high-level rules to be executable meaning that they can be directly integrated
with the existing application. To this end, executable implementations are automatically
obtained from the high-level specifications of rules and connections. Automatically gener-
ating these implementations allows the domain experts to remain oblivious to the low-level
details. This is achieved by incorporating ideas from MDE, leading to the next contribution:

Contribution 5: Automatic and transparent transformations from the high-
level specifications — of rules and connections — to implementation
Rules and rule connections expressed in the dedicated languages are transformed

Chapter 10. Conclusions 230

into OOP programs (rule objects) and AOP programs (rule connection aspects).
A detailed conceptual analysis of the challenges posed by these transformations
is provided. These transformations are carried out automatically in the proto-
type implementation.

The use of AOP as target of the transformations allows us to keep the implementation
of the rules and their connections well modularized and localized, without invasively chang-
ing the existing core application. Moreover, as the mapping from high-level specifications
to their implementation is made explicit, rule and rule connection traceability becomes
possible.

During this dissertation we were concerned with providing a flexible mechanism to deal
with the inherent volatility of business rules. Because the underlying dynamic AOP lan-
guage adopted is dynamic, the variability of existing rule connections, the definition of new
connections for existing rules, the addition or removal of rules and connections can all oc-
cur at run time. Thus, it becomes possible to dynamically adapt the behavior of the core
application by simply plugging in different sets of business rules, this way creating different
versions of the same application.

It is also important to stress that, besides the clear advantages that these automatic
transformations pose for domain experts, our approach also facilitates the task of the appli-
cation engineer in charge of writing rule connection aspects. As mentioned before, manually
implementing a rule connection aspect is tedious as several recurrent issues and dependen-
cies need to be taken into account. Obtaining the rule connection code automatically from
the high-level description of a rule connection removes the need for having to reason about
these issues and dependencies every time such an aspect needs to be written from scratch.

As mentioned before, the idea of expressing rules in terms of domain concepts is already
supported by existing state-of-the-art approaches. However, these approaches only sup-
port the definition of domain concepts that are simple aliases for implementation entities,
which requires the existence of a one-to-one mapping between them. We observe that these
one-to-one mappings are not enough to: i) represent domain concepts that have a more
complex realization in terms of existing implementation entities, and ii) represent domain
concepts that are not present whatsoever in the existing implementation. Thus, in order to
tackle this limitation, we improve on the existing support for linking domain concepts to
implementation by means of allowing the definition of more complex mappings. This lead
us to our next three contributions:

Contribution 6: A dedicated language for the definition of domain entities and
their mappings
This language allows defining mappings to complex navigational, arithmetical
and logical expressions in terms of many implementation entities. Moreover,
mappings can be completely defined at the domain level, in terms of existing
domain entities of a domain model. High-level mappings can be defined by
domain experts, as they do not require knowledge about the existing imple-
mentation. Moreover, special domain operators are provided as part of this
mapping language which allow capturing crosscutting domain knowledge or in-
troduce new knowledge that is unanticipated in the existing application. The
implementation of these operators is based on AOP: aspects and/or connectors

231 10.1 Summary and Contributions

are automatically generated as a result of using these operators in mapping
specifications. The use of AOP is transparent to the domain experts. The auto-
matic translation from mapping specifications to their internal representations
in the domain model infrastructure is also supported. These internal mapping
representations are consulted during the process of transforming the high-level
rules and connections to code.

Our approach allows defining expressions as mappings for domain properties or oper-
ations. Moreover, it also allows writing those expressions directly in the conditions and
actions of rules. This last option is advisable when those expressions are needed only in few
rules. As a consequence, the domain model is not polluted with the definition of domain
entities that are hardly used.

Contribution 7: Identification of several use cases that show the power of the
proposed mapping language
Five use cases are presented which illustrate how the mapping language can
be successfully used to realize the expression of domain knowledge. We show
how a complete OO class can be pulled up to the domain level, how a single
domain class can map to many OO classes following two different semantics,
i.e. union and intersection, how the mapping for anticipated as well as unantic-
ipated knowledge can be realized and how derived knowledge can be captured
at different execution points.

A framework supporting the entire domain model presented in this dissertation has been
implemented. Moreover, this framework has been validated in a non-trivial case study
application, the Web Services Management Layer. We observe that, although the WSML
enhances the overall service management, its customization is still inflexible since only
anticipated and hardcoded business rules are considered and programming skills are still
needed to add unanticipated business rules. We then show how our approach can enhance
the customization of the WSML by focusing on two validation scenarios:

i We evolve the existing WSML by adding new configuration business rules at the high
level.

ii We refactor existing selection policies from the core WSML implementation and ex-
press them and their connections at the high level.

We then conclude that both scenarios can be supported using the approach presented in
this dissertation. Existing rules can be externalized and new rules can be added, enhancing
the adaptability of service-oriented applications.

To conclude, we list these two last contributions of our dissertation:

Contribution 8: The implementation of a prototype supporting the entire do-
main model infrastructure

Contribution 9: The evaluation of the presented domain model infrastructure
in a non-trivial case study: the WSML

Chapter 10. Conclusions 232

10.2 Trade-offs and Future Work

In this section we present a discussion on trade-offs of our approach and possible directions
of future work.

10.2.1 Modularity

A first issue in our approach is the importance of maintained modularity in the generated
code and, related to that, the overhead of using AO technology in order to achieve this
modularity. One could argue that in MDE, the generated code does not have to be mod-
ular since it is typically not regarded by humans. However, in our particular context, the
generated code is integrated with existing code, which is most likely regarded by developers.
Therefore, it is of utmost importance that the generated code that pertains to rules and
their connections does not affect the existing source code in numerous places. The more
mature AO approaches provide excellent tool support for showing the impact of aspects in
a base application.

10.2.2 Scalability

One of the concerns with respect to scalability is the size of a particular domain model with
respect to the number of domain entities. We have found that a set of business rules typically
considers the same domain classes, even if the reference to some properties or operations
on these classes may vary between the rules. Therefore, an initial effort is required for
building the domain model, whereas a much smaller effort is required for adapting the
domain model as new rules are added. In chapter 6 we discussed how mappings for domain
entities can be defined. Our approach supports pulling up implementation entities to the
domain level automatically. However, this can only be achieved in the case of perfect one-
to-one mappings. In the case of more complex mappings, adaptations might be required
for which input from someone knowledgeable about the implementation is needed. In these
complex cases, the complete mapping automation is not possible. In any case, the mapping
language presented in chapter 6 facilitates the task of defining the initial domain model and
extending it accordingly.

A second important issue is the scalability of our approach with respect to the number
of business rules. The domain model infrastructure allows adding new business rules and
connections with no extra penalty. Of course, the more business rules the more overhead
that is incurred in the system. This overhead is in relation to the number of aspects that
are generated and need to be put in place for the application of the rules (section 10.2.3).

A last important issue that appears with numerous business rules is rule interference.
This is a well-known problem in the field of rule-based knowledge and therefore it is an
issue in all lightweight approaches to business rules and even in AI expert systems. The
latter systems are more advanced than the former ones as they typically build on heuristics
(e.g. recency, positioning) that determine the order of rule applicability. However, these
systems are still fragile since adding a new rule can completely break consistency. Therefore
these systems are not very scalable as in the worst case, adding a rule requires checking
the relation between that new rule and the existing ones. Because our solution builds on
AOP, we could recuperate ideas from the feature interaction research carried out in the
AOP community and attempt to pull these ideas up to the domain level. In previous work
we investigated current AO approaches and their support for combining rule connection

233 10.2 Trade-offs and Future Work

aspects at the implementation level [CDS+03; CDJ03; CDS+05; CSD+04]. For example,
JAsCo combination and precedence strategies appear useful to control the order and the
way rule objects need to be invoked. We can envision extending the high-level languages
with explicit constructs for specifying rule precedence and combination strategies and so
on. However, with large amounts of rules, manually detecting and resolving dependencies
is not scalable and thus alternative techniques might be required. This is subject of future
work.

10.2.3 Aspect Issues

10.2.3.1 Overhead

In our approach, a different aspect and connector exist per high-level business rule con-
nection. Moreover, extra aspects and connectors are also generated for the realization of
unanticipated domain entities that result crosscutting. Thus, the number of aspects grows
proportionally to the number of rules and the number of unanticipated domain entities
that are defined in the domain model. Of course managing these aspects implies an extra
overhead. Dealing with this overhead largely depends on the efficiency of the underlying
aspect technology. Most mature AO approaches have an acceptable performance overhead,
especially if one knows which are the costly features to avoid.

10.2.3.2 Interference

Another issue in relation to the use of aspects in our approach is aspect interference. As-
pect interference can occur between different connection aspects generated by our approach.
For instance, the execution of one connection aspect can undesirably prevent another con-
nection aspect from triggering. This is difficult to tackle and control at the high-level as it
involves having perfect understanding of the execution flow and dealing with other low-level
issues. Moreover, when considering the existence of aspects in the core application, aspect
interference can occur between those aspects and the connection aspects that are generated
for high-level rule connections. Aspect interference is a well-known issue referred to as fea-
ture interaction problem [PSC+02; BMV02; NBA04; DFS02; KPRS01] which attracts the
attention of the whole AOP community.

10.2.4 Transformations

Another direction of work which is in relation to the implementation of the transforma-
tions is the use of a dedicated state-of-the-art transformation language. By expressing our
transformations in dedicated languages, a more modular implementation of those transfor-
mations could be obtained, and eventually, formal verification could also be an added value
depending on the chosen transformation language. However, when using contemporary lan-
guage development techniques, implementing complex transformations (such as the ones we
encounter in this dissertation which are of the kind local-to-global, global-to-local and global-
to-global transformations) is not a straightforward task. This is identified and tackled in
the PhD work of Cleenewerck [Cle07]. In that work, the author observes that the transfor-
mation process is typically decomposed into a set of implicitly co-operating transformation
modules which are hard to manage. These implicit dependencies between the transfor-
mations complicates the implementation of the transformation process as a whole. Thus,
support for better separation of concerns in the implementation of the transformations is
required.

Chapter 10. Conclusions 234

10.2.5 Expressivity of High-level Languages

The choice of constructs of our high-level languages is the result of extensive work which has
been published and presented in several conferences and articles [Cib02; CDJ03; CDS+03;
CDS+05; CSD+04]. As such we are able to express the business rules that we find in the
applications of our industrial partners as well as the ones presented in books on business rules
[vH01; Ros03]. Still, improvements can be envisioned in order to enhance the expressivity
of the high-level languages. In this section, possible directions of work in this area are
discussed.

10.2.5.1 Temporal Rules

Temporal business rules, rules that have time-dependent conditions, cannot be expressed
in the current high-level languages. However, initial research on temporal business rules
has been carried out. Stateful aspects in JAsCo [VSCF05] have been investigated as an
implementation solution, as they appear to be useful to capture the time dependencies
between the different events referred to by the rules. In that work, temporal rules that
capture behavioral patterns have been implemented as stateful aspects. In [CV05], a first
categorization of temporal business rules is presented, focusing in particular on the domain
of web service compositions, as well as proposing solutions in JAsCo. Furthermore, some
research was conducted in order to sketch a classification of temporal business rules and
temporal events and an analysis of the required technological features which are inspired
in temporal logics was carried out. A possible continuation of this initial work consists
of refining this categorization and incorporating these findings in the dedicated high-level
languages. This would allow the expression of temporal business rules at the domain level. A
required step in this direction implies identifying new aspect patterns for temporal rules and
writing new transformations that would translate a high-level temporal rule specification
into a stateful aspect.

10.2.5.2 Collections

We envision extending the high-level business rule language with support for collections.
Similarly to the way collections are supported in OCL, we can imagine extending the high-
level rule language with special operators that would enable, for instance, checking whether
a given entity is included in a collection, iterating through the elements of a collection,
invoking a domain operation on all the elements of a collection, etc.

10.2.5.3 Events

The current mapping language allows defining events by means of pointing to specific do-
main operations. However, having to explicitly refer to domain operations can be tedious
in some cases. For instance, imagine a different event needs to be defined for each of the
domain operations of a given domain class. With the current support, a different event
definition is needed per domain operation in the domain class. To facilitate these defini-
tions, a shortcut mechanism can be envisioned that would take a domain class as input and
automatically define a different event per domain operation encountered in the domain class
definition. Moreover, a pattern language can be envisioned — for instance, similar to the
one supported by pointcut languages of existing AOP approaches [AOS05] — which would
allow a more declarative way of specifying the set of domain operations on which events
need to be defined. For example, we can envision support for wildcards or the specification
patterns that need to be checked on the name or parameters of the domain operation, etc.

235 10.2 Trade-offs and Future Work

10.2.5.4 Rule-Based Languages

Some applications have knowledge-intensive subtasks, such as (semi-)automatic scheduling,
intelligent help desks and advanced support for configuring products and services, which
require not only the specification of rule-based knowledge in an if...then... format, but also
a rule engine that supports ordering and chaining of rules. This category of rule-based
knowledge is considered in [D’H04], but not at the domain level. Following the idea of
building a domain model on top of rules expressed in a rule-based language, a first initial
analysis has been carried out in [CDJ06b] where we adapt the aspect patterns for the case of
rules expressed in a rule-based language, in particular the Jess language [FH03]. Although
the general set-up of the patterns is the same as the one presented here (for instance, with
respect to the recurrent connection elements), other cases need to be considered which are
inherent of the way rules are executed in a rule engine. Moreover, most likely the proposed
transformations to aspect patterns would need to be adapted accordingly.

10.2.5.5 Predefined Operators

As shown in chapter 6, aspects are generated for certain mappings that require capturing
values at several points in the execution of the core application or adding new implementa-
tion. These mappings are expressed at the domain level, using special operators predefined
in the domain model infrastructure. One could wonder at this stage whether these special
operators could also be used in expressions that are directly included in the specification of
a high-level rule. Using special operators directly in the rules would require having some
kind of preprocessor in place which can iterate over all the rules defined in the system and
deploy the necessary aspects for the realization of the operators used in the rules. This pre-
processing step would ensure having all the necessary aspect infrastructure set up in order
to make the needed information available at rule application time. This kind of support
would contribute to avoid the pollution of the domain model with domain entities that are
only needed in a few rules.

Another direction of work with respect to the special operators based on AOP is to extend
the predefined library by means of adding operators for specific domains.

10.2.6 Raising the Level of Abstraction of AOP

The experiments carried out using AOP for the implementation of rule connection aspects
(contribution 3) let us observe that the general purpose nature of the features supported by
all analyzed AOP approaches are sometimes too low-level for the specific kinds of problems
we need to address. This motivates the need for having higher-level abstractions on top
of these general purpose AOP features. In particular, the proposed high-level connection
language can be seen as a first attempt to raise the level of abstraction of common AOP
constructs while keeping domain experts oblivious to the use of AOP. This idea could be
extended in order to express other kinds of aspects at the higher level.

10.2.7 Mapping

Two directions of future work are identified and described with respect to the mappings for
domain entities.

Chapter 10. Conclusions 236

10.2.7.1 MDE for Mapping Specification

While some mappings are defined completely at the domain level — in terms of other
existing domain entities — some mappings still require knowledge about the concrete im-
plementation, which complicates their definition. Although tool support has been provided
as part of this dissertation with the aim of facilitating these mapping definitions, this sup-
port can still be improved. For example, a possible direction of future work can involve
applying MDE ideas to the definition of the mapping. More concretely, the use of models
could be investigated to simplify the creation of domain entities and their mappings. One
possible way is to manipulate UML-style models defined at different levels of abstraction.
Imagine a more conceptual model is defined which represents the application domain from
the point of view of the domain expert, and a more detailed one reflecting a more con-
crete design of the existing implementation. Depending on the modelling formalism used,
it might become possible to express the mappings completely at the modelling level. This
way, mappings could then be described as model transformations.

10.2.7.2 Mapping to AOP

In this dissertation we consider a core application implemented in OOP and therefore, the
mappings presented in chapter 6 consider the case in which a domain entity is realized by
one or more OO entities — i.e. a class, attribute, method, expression or interface. We
can imagine the situation in which the core application is implemented using AOP. In this
case, the domain knowledge can also be realized by aspects. A possible continuation of the
work presented in this dissertation is to extend the analysis of the anticipated mappings by
considering AOP entities that are existing in the core application. A first analysis has been
carried out which is presented in [CDJ05; CDJ06a]. Moreover, the mapping language can
be extended to support the new anticipated mappings to AOP.

A new issue appears when considering mappings to AOP (besides the issues described
in section 10.2.3) which is in relation to the manipulation of aspect instances. The way
aspect instances are manipulated in AOP is different to the way objects are manipulated
in OOP. This difference has an impact on the interaction between a high-level rule and
its corresponding high-level rule connection. In the current approach, a rule can define
expected domain entities — specified in the USING clause — that are meant to be provided
at rule connection time. This implies that, at rule connection time, the required entities
are obtained from the context of the high-level events — involved in the rule connection
definition — and made available to the rule. When domain entities that are realized by
aspect entities are considered, the process of making the required information available
to the rules might require retrieving and manipulating aspect instances. Because aspect
instances are created and manipulated differently than objects, the current mechanism to
obtain and pass the required objects to the rules needs to be adapted.

10.2.8 Quantification

In the current rule connection language, a rule connection specification involves one connec-
tion event only, at which the rule is actually triggered, and one or more capturing events, at
which the extra information required for the application of the rule is obtained. We could
imagine the case in which a rule needs to be applied at more than one connection event.
In the current approach, different connection specifications are needed for each connection
event. An improvement of the current connection language would consist of adding support

237 10.2 Trade-offs and Future Work

for referring to more than one connection event in the same connection specification and
modify the translation process accordingly. This extension would realize quantification in
the true AOP sense. Supporting this extension however is not straightforward, as new issues
need to be taken into account:

• expressivity of the rule connection language: if more than one connection event can be
specified in the same connection specification, for each of those events, a specification
of how the available information maps to the required information is needed which
hampers the understandability of the connection specification as a whole. Imagine
the situation in which the same rule is applied before the occurrence of N different
heterogeneous events, as follows:

CONNECT BR1
BEFORE event1, event2
MAPPING event1.available_entity1 TO required_entity1

event2.available_entity2 TO required_entity1
...
eventN.available_entityN TO required_entity1

AFTER ...
INSTEAD OF ...

The problem with this specification is that the mapping clause gets cluttered with
the specification of how the required rule information has to be mapped to the available
information for each of the events involved in the respective BEFORE/AFTER or
INSTEAD OF connection.
A possible solution that would improve understandability consists of splitting the def-
inition of connection events as follows:

CONNECT BR1

BEFORE event1
MAPPING event1.available_entity1 TO required_entity1

BEFORE event2
MAPPING event2.available_entity2 TO required_entity1
....
BEFORE eventN
MAPPING eventN.available_entityN TO required_entity1
...
AFTER ...
INSTEAD OF ...

These enhancements to the rule connection language are subject of future work.

• translations to rule connection aspects: in the previous example, consider the case
where the available_entity1 corresponds to event1’s target object whereas avai-
lable_entity2 corresponds to event2’s parameter (assuming there is one). The dif-
ferent ways in which the required information needs to be obtained from the context
of the events makes it impossible to generate aspect advice code that is valid for all the
connections of the same kind (i.e. before, after or instead of). Thus, for each before

Chapter 10. Conclusions 238

connection for instance, a different hook and advice needs to be generated; the same
for the cases of after and instead of connections. We can however envision improving
this translation process by performing local optimizations, e.g. if more than one before
connection involves entities that need to be obtained in the same way, then a single
advice and therefore a single hook can be generated for them. This is a possible future
work direction.

An evaluation of the approach presented in this dissertation and the implemented tool
support is currently undertaken using an industrial application from inno.com, one of our
industrial partners, where numerous business rules need to be integrated in a Customer
Information Tracking System of the Belgian Post. This system is mainly involved with pro-
cessing customer requests to open accounts in the Bank of the Post. These requests need
to follow a complex workflow of tasks. AOP is already used in this system to tackle cross-
cutting concerns like audit logging, performance logging, security (Spring/AOP). However,
rule integration is carried out in a very naive way. The idea is to use our domain model
infrastructure for expressing the connection of the business rules that are inherent to this
workflow. Some example rules are for instance: task priority rules, rules that act on histor-
ical information about the customers and statistical rules based on logged information that
might even be unanticipated in the current system.

Appendix A

High-Level Business Rule
Language

A.1 Non-Terminals

< BR > ::= < BRIdentifier >

[< Properties >]
[< BODeclarations >

[< BOProperties >]]
< Condition >

< Actions >

< BRIdentifier > ::= < BR >< Name >

< Properties > ::= < PROPS >< AliasList >

< BODeclarations > ::= < USING >< FilteredAliasList >

< BOProperties > ::= < WHERE >< PropDefList >

< Condition > ::= < IF >< ORCondition >

< Actions > ::= < THEN >< ActionBlock >

< AliasList > ::= < Alias > (< COMMA > Alias >)∗

< FilteredAliasList > ::= < FilteredAlias > (< COMMA >< FilteredAlias >)∗

< PropDefList > ::= < PropertyDefinition > (< COMMA >

< PropertyDefinition >)∗

< ORCondition > ::= < ANDCondition > (< OR >< ANDCondition >)∗

< ActionBlock > ::= < ActionStatement > (< AND >< ActionStatement >)∗

< ActionStatement > ::= (< Invocation > | < Assignment >)
< Assignment > ::= (< Reference > | < Name >) < IS >< V alue >

< FilteredAlias > ::= < Reference >< AS >< Name > [< Filter >]
< Filter > ::= < MATCHING >< Name >

< Alias > ::= < Reference >< AS >< Name >

Chapter A. High-Level Business Rule Language 240

< PropertyDefinition > ::= < Name >< IS > (< Invocation > | < Reference >)
< ANDCondition > ::= < XORCondition > (< AND >< XORCondition >)∗

< Invocation > ::= < Reference >< LPAR > [< ParList >] < RPAR >

< Reference > ::= < Name > (< DOT >< Name >)∗

< XORCondition > ::= < NOTCondition >

| < RelationalExpression >

(< XOR >< XORCondition >)∗

< ParList > ::= < Expression > (< COMMA >< Expression >)∗

< Expression > ::= < ORCondition >

< RelationalExpression > ::= < Comparand >

(< COMPARATOR >< Comparand >) ∗
< NOTCondition > ::= < NOT >< ORCondition >

< Comparand > ::= < Term > ((< PLUS > | < MINUS >) < Term >)∗

< Term > ::= < Factor > (< MULTIPLIER >< Term >)∗

< Factor > ::= < V alue > (< POWER >< V alue >)∗

< V alue > ::= < LPAR >< ORCondition >< RPAR >

| < Invocation >

| < Reference >

| < Boolean >

| < Name >

| < Integer >

| < Real >

| < Literal >

< Boolean > ::= (< TRUE > | < FALSE >)
< Name > ::= < NAME >

< Integer > ::= (< INTEGER > | < MINUS >< INTEGER >)
< Real > ::= (< REAL > | < MINUS >< REAL >)

< Literal > ::= < LITERAL >

241 A.2 Terminals

A.2 Terminals

< BR > ::= “BR”
< PROPS > ::= “PROPS”
< USING > ::= “USING”

< WHERE > ::= “WHERE”
< AS ::= “AS”

< MATCHING > ::= “MATCHING”
< IS > ::= “IS”

< COMMA > ::= “, ”
< QUOTE > ::= “””

< LPAR > ::= “(”
< RPAR > ::= “)”

< DOT > ::= “.”
< IF > ::= “IF”

< THEN > ::= “THEN”
< COMPARATOR > ::= “ = ”|“ < ”|“ <= ”|“ > ”|“ >= ”

< PLUS > ::= “ + ”
< MINUS > ::= “ − ”

< MULTIPLIER > ::= “ ∗ ”|“/”
< POWER > ::= “”

< NOT > ::= “NOT”
< AND > ::= “AND”

< OR > ::= “OR”
< XOR > ::= “XOR”

< TRUE > ::= “true”
< FALSE > ::= “false”

< INTEGER > := [“1” − “9”](< DIGIT >)∗

< REAL > ::= (< DIGIT >) ∗ “.”(< DIGIT >)∗

< NAME > ::= < LETTER > (< LETTER > | < DIGIT >)∗

< LITERAL > ::= < QUOTE > (< LETTER > | < DIGIT > |“”)∗

< QUOTE >

< LETTER > ::= [“”, “a” − “z”, “A” − “Z”]
< DIGIT > ::= [“0” − “9”]

Chapter A. High-Level Business Rule Language 242

Appendix B

High-Level Business Rule
Connection Language

B.1 Non-Terminals

< BRL > ::= < BRConnection >

[< CapturePoints >]
[< Mappings >]
[< Activation >]

< BRConnection > ::= < CONNECT >< NAME >

[< PropSpecifications >]
< ConnectionSpecification >

< PropSpecifications > ::= < PROPS >< PropSpecification >

(< COMMA >< PropSpecification >)∗

< PropSpecification > ::= < Boolean >

| < Literal >

| < Integer >

| < Real >

< Boolean > ::= (< TRUE > | < FALSE >)
< Literal > ::= < LITERAL >

< Integer > ::= (< INTEGER > | < MINUS >< INTEGER >)
< Real > ::= (< REAL > | < MINUS >< REAL >)

< ConnectionSpecification > ::= < Before >

| < After >

| < InsteadOf >

< Before > ::= < BEFORE >< NAME >

< After > ::= < AFTER >< NAME >

< InsteadOf > ::= < INSTEADOF >< NAME >

Chapter B. High-Level Business Rule Connection Language 244

< CapturePoints > ::= < CAPTURE >< AT >< CapturePoint >

(< COMMA >< CapturePoint >)∗

< CapturePoint > ::= < NAME >

< Mappings > ::= < MAPPING >< MappedName >

(< COMMA >< MappedName >) ∗
< MappedName > ::= < NAME >< DOT >< NAME >

< TO >< NAME >

< Activation > ::= < ActivateWhile >

| < ActivateNotWhile >

| < ActivateBetween >

< ActivateWhile > ::= < ACTIV ATE >< WHILE >< NAME >

< ActivateNotWhile > ::= < ACTIV ATE >< NOT >< WHILE >< NAME >

< ActivateBetween > ::= < ACTIV ATE >< BETWEEN >< NAME >

< AND >< NAME >

245 B.2 Terminals

B.2 Terminals

< CONNECT > ::= “CONNECT”
< BEFORE > ::= “BEFORE”

< AFTER > ::= “AFTER”
< INSTEADOF > ::= “INSTEADOF”

< IS > ::= “IS”
< CAPTURE > ::= “CAPTURE”

< AT > ::= “AT”
< MAPPING > ::= “MAPPING”

< TO > ::= “TO”
< ACTIV ATE > ::= “ACTIV ATE”

< WHILE > ::= “WHILE”
< NOT > ::= “NOT”

< BETWEEN > ::= “BETWEEN”
< COMMA > ::= “, ”
< QUOTE > ::= “””

< LPAR > ::= “(”
< RPAR > ::= “)”

< DOT > ::= “.”
< IF > ::= “IF”

< THEN > ::= “THEN”
< COMPARATOR > ::= “ = ”|“ < ”|“ <= ”|“ > ”|“ >= ”

< PLUS > ::= “ + ”
< MINUS > ::= “ − ”

< MULTIPLIER > ::= “ ∗ ”|“/”
< POWER > ::= “”

< NOT > ::= “NOT”
< AND > ::= “AND”

< OR > ::= “OR”
< XOR > ::= “XOR”

< TRUE > ::= “true”
< FALSE > ::= “false”

< INTEGER > := [“1” − “9”](< DIGIT >)∗

< REAL > ::= (< DIGIT >) ∗ “.”(< DIGIT >)∗

< NAME > ::= < LETTER > (< LETTER > | < DIGIT >)∗

< LITERAL > ::= < QUOTE > (< LETTER > | < DIGIT > |“”)∗

< QUOTE >

< LETTER > ::= [“”, “a” − “z”, “A” − “Z”]
< DIGIT > ::= [“0” − “9”]

Chapter B. High-Level Business Rule Connection Language 246

Appendix C

High-Level Mapping Language

C.1 Non-terminals

< MapSpec > ::= (< MapForContainedDomainEntity >

| < DCInheritanceSpecification >

| < MapForDC >

| < EventDefinition >)∗

< MapForContainedDomainEntity > ::= < DC >< LBRACE >

(< MapForContainedDM >

| < MapForContainedDP >)∗

< RBRACE >

< MapForContainedDM > ::= < DM >< MapForDM >

< MapForContainedDP > ::= < DP >< MapForDP >

< DCInheritanceSpecification > ::= < DC >< INHERITS >< DC >

< MapForDC > ::= (< MapForDCNOTAlias >

| < MapForDCAlias >)
< MapForDCNOTAlias > ::= < DC >< MAPTOIMPL >

< MapFromDCToImpl >

< MapForDCAlias > ::= < DC >< ALIASFOR >

< MapFromDCToImpl >

< Reference > ::= < Name > (< DOT >< Name >)∗

< Name > ::= < NAME >

< Literal > ::= < LITERAL >

< DC > ::= < Name >

< DM > ::= < Name > (< DOT >< Name >) < LPAR >

(< DMParamDeclaration >

[< COMMA >< DMParamDeclaration >)∗]
< RPAR >

Chapter C. High-Level Mapping Language 248

< DP > ::= < Name > (< DOT >< Name >)
< DMParamDeclaration > ::= < Name >

< MapForDM > ::= (< MAPTOIMPL >< MapFromDMToImpl >

| < MAPTODOMAIN >< MapFromDMToDomain >)
< MapForDP > ::= (< MAPTOIMPL >< MapFromDPToImpl >

| < MAPTODOMAIN >< MapFromDPToDomain >

| < MAPTOV ALUE >< MapFromDPToV alue >)
< MapFromDMToImpl > ::= < NavigationInImplModel >

< NavigationInImplModel > ::= (< Name > | < LPAR >< Reference >< RPAR >)
< DOT >< TailReferencePathToImpl >

< NavigationInDomainModel > ::= < Name >

< DOT >

< TailReferencePathToDomain >

< TailReferencePathToImpl > ::= (< ReferenceToIM >

| < ReferenceToAttribute >)
(< DOT >

(< ReferenceToIM >

| < ReferenceToAttribute >))∗

< TailReferencePathToDomain > ::= (< ReferenceToDM >

| < ReferenceToAttribute >)
(< DOT >

(< ReferenceToDM >

| < ReferenceToAttribute >))∗

< ReferenceToIM > ::= < Name >< LPAR >

[< IMParamList >] < RPAR >

< ReferenceToDM > ::= < Name >< LPAR >

[< DMParamList >] < RPAR >

< ReferenceToAttribute > ::= < Name >

< IMParamList > ::= < IMParam >

(< COMMA >< IMParam >)∗

< DMParamList > ::= < DMParam > (< COMMA >< DMParam >)∗

< IMParam > ::= < ParamType >< COLON >< ImplExpr >

< ParamType > ::= < Reference > [< LBRACKET >< RBRACKET >]
< DMParam > ::= < DomainExpr >

< ImplExpr > ::= < SimpleIMParamMap >

[< Operator >< ImplExpr >]
< DomainExpr > ::= < SimpleDMParamMap >

[< Operator >< DomainExpr >]

249 C.1 Non-terminals

< SimpleIMParamMap > ::= (< NavigationInImplModel >

| < V ariable >

| < FixedV alue >

| < CompoundIMParamMap >)
< SimpleDMParamMap > ::= (< NavigationInDomainModel >

| < V ariable >

| < FixedV alue >

| < CompoundDMParamMap >)
< V ariable > ::= < Name >

< FixedV alue > ::= (< Literal > | < Integer > | < Boolean >)
< CompoundDMParamMap > ::= < LBRACE >< SimpleDMParamMap >

(< COMMA >< SimpleDMParamMap >)∗

< RBRACE >

< CompoundIMParamMap > ::= < LBRACE >< SimpleIMParamMap >

(< COMMA >< SimpleIMParamMap >)∗

< RBRACE >

< NonTerminalDomainExpr > ::= (< DomainExpr >

| < NavigationInDomainModel >)
< Boolean > ::= (< TRUE > | < FALSE >)

< Operator > ::= (< PLUS > | < COMPARATOR >)
< Integer > ::= (< INTEGER > | < MINUS >< INTEGER >)

< MapFromDCToImpl > ::= < Reference >

< MapFromDMToDomain > ::= < NonTerminalDomainExpr >

< MapFromDPToImpl > ::= < NavigationInImplModel >

< MapFromDPToDomain > ::= < NonTerminalDomainExpr >

< MapFromDPToV alue > ::= < DC >< COLON >< V alue >

< V alue > ::= (< Literal > | < Integer > | < Boolean >)
< EventDefinition > ::= < EV ENT >< Name >< AT >< DMForEvent >

< EXPOSING >

(< Parameter > | < Target > | < ReturnV alue >)∗

< Parameter > ::= < PARAMETER >< ParamNumber >

< AS >< Name >

< Target > ::= < TARGET >< AS >< Name >

< ReturnV alue > ::= < RETURNV ALUE >< AS >< Name >

< DMForEvent > ::= < Name > (< DOT >< Name >)
< LPAR > [< DMParamDeclaration >

(< COMMA >< DMParamDeclaration >)∗]
< RPAR >

< ParamNumber > ::= < Integer >

Chapter C. High-Level Mapping Language 250

251 C.2 Terminals

C.2 Terminals

< MAPTOIMPL ::= “MAP − TO − IMPL”
< MAPTODOMAIN ::= “MAP − TO − DOMAIN”

< MAPTOV ALUE ::= “MAP − TO − V ALUE”
< EV ENT ::= “EV ENT”

< AS ::= “AS”
< AT ::= “AT”

< EXPOSING ::= “EXPOSING”
< PARAMETER ::= “PARAMETER”

< TARGET ::= “TARGET”
< RETURNV ALUE ::= “RETURNV ALUE”

< SEPARATOR ::= “ >> ”
< ARROW ::= “ => ”

< INHERITS ::= “INHERITS − FROM”
< ALIASFOR > ::= “ALIAS − FOR”

< AS ::= “AS”
< COMMA > ::= “, ”
< QUOTE > ::= “””

< LPAR > ::= “(”
< RPAR > ::= “)”

< DOT > ::= “.”
< IF > ::= “IF”

< THEN > ::= “THEN”
< COMPARATOR > ::= “ = ”|“ < ”|“ <= ”|“ > ”|“ >= ”

< PLUS > ::= “ + ”
< MINUS > ::= “ − ”

< MULTIPLIER > ::= “ ∗ ”|“/”
< POWER > ::= “”

< NOT > ::= “NOT”
< AND > ::= “AND”

< OR > ::= “OR”
< XOR > ::= “XOR”

< TRUE > ::= “true”
< FALSE > ::= “false”

< INTEGER > := [“1” − “9”](< DIGIT >)∗

< REAL > ::= (< DIGIT >) ∗ “.”(< DIGIT >)∗

< NAME > ::= < LETTER > (< LETTER > | < DIGIT >)∗

< LITERAL > ::= < QUOTE > (< LETTER > | < DIGIT > |“”)∗

< QUOTE >

< LETTER > ::= [“”, “a” − “z”, “A” − “Z”]
< DIGIT > ::= [“0” − “9”]

Chapter C. High-Level Mapping Language 252

Bibliography

[AA01] A. Arsanjani and J. Alpigini. Using grammar-oriented object design to seam-
lessly map business models to component-based software architectures. In Pro-
ceedings of the International Symposium of Modelling and Simulation, pages
186–191, 2001. 24

[ACD+03] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, et al. Business Process
Execution Language for Web Services (BPEL4WS), version 1.1. IBM, BEA
Systems, Microsoft, SAP AG, Siebel Systems, 2003. Available at: http://www-
128.ibm.com/developerworks/library/specification/ws-bpel/. 171

[AOS05] AOSD-europe: European Network of Excellence on Aspect-Oriented Software
Development. Survey of Aspect-oriented Languages and Execution Models,
2005. Available at: http://www.aosd-europe.net/. 39, 234

[Ars01] A. Arsanjani. Rule pattern language 2001: A pattern language for adaptive
manners and scalable business rule design and construction. In Proceedings
of the 39th International Conference and Exhibition on Technology of Object-
Oriented Languages and Systems (TOOLS ’01), page 370, Washington, DC,
USA, 2001. IEEE Computer Society. 2, 7, 26, 103, 218, 227

[BA01] L. Bergmans and M. Aksit. Composing crosscutting concerns using composition
filters. Communications of the ACM, 44(10):51–57, 2001. 9, 38

[Bal05] M. Ball. OO jDREW: Design and Implementation of a Reasoning Engine for
the Semantic Web, 2005. Honours Thesis Project Report. 212

[BC+04] T. Bellwood, S. Capell., et al. Universal Discovery, Discovery, and Integration
(UDDI), 2004. Specification version 3.02. 171

[Bel03] C. Belderrain. Message-driven beans and encapsulated busi-
ness rules. Article at The Server Side, Available at:
http://www.theserverside.com/tt/articles/article.tss?l=RuleBasedMDB,
2003. 218

[BHW97] J. M. Boyle, T. J. Harmer, and V. L. Winter. The TAMPR program trans-
formation system: simplifying the development of numerical software. pages
353–372, 1997. 102

[BIA03] BEA, IBM, and Microsoft S. AG. Web Services policy framework, 2003. 223

[BK05] M. Bajec and M. Krisper. A methodology and tool support for managing
business rules in organisations. Information Systems, 30(6):423–443, 2005. 224

BIBLIOGRAPHY 254

[BMV02] J. Brichau, K. Mens, and K. De Volder. Building composable aspect-specific
languages with logic metaprogramming. In Proceedings of the 1st ACM SIG-
PLAN/SIGSOFT conference on Generative Programming and Component En-
gineering (GPCE ’02), pages 110–127, London, UK, 2002. Springer-Verlag. 55,
233

[Bol03] H. Boley. Object-Oriented RuleML: User-level roles, URI-grounded clauses,
and order-sorted terms. In Second International Workshop on Rules and Rule
Markup Languages for the Semantic Web (RuleML’03), pages 1–16, 2003. 212,
213

[BR00] K. H. Bennett and V. T. Rajlich. Software maintenance and evolution: a
roadmap. In Proceedings of the Conference on The Future of Software Engi-
neering (ICSE’00), pages 73–87, New York, NY, USA, 2000. ACM Press. 121

[BRG01] Defining Business Rules: What Are They Really?, 2001. Business Rule Group,
http://www.businessrulesgroup.org/. 1, 22

[BV] J. Bonér and A. Vasseur. AspectWerkz: a dynamic, lightweight
and high-performant AOP/AOSD framework for Java. Available at:
http://aspectwerkz.codehaus.org. 9, 38, 39, 44

[cac02] The Adaptive Web (special issue). Communications of the ACM, 45(5), 2002.
23

[CC+03] E. Christensen, F. Curbera, et al. Web Services Description Language (WSDL).
W3C Web Services Activity, 2003. Specification version 1.2., W3C Technical
Document. 171, 174

[CD03] M. A. Cibrán and M. D’Hondt. Composable and reusable business rules us-
ing AspectJ. In Workshop on Software engineering Properties of Languages
for Aspect Technologies (SPLAT) at the International Conference on Aspect-
Oriented Software Development (AOSD’03), Boston, Massachusetts, United
States, March 2003. 43

[CD05] M. A. Cibrán and M. D’Hondt. Towards automatic integration of high-level
business rules using aspect-oriented programming. In Workshop on Models and
Aspects - Handling Crosscutting Concerns in MDSD at the European Confer-
ence on Object-Oriented Programming (ECOOP’05), Glasgow, United King-
dom, July 2005. 12

[CD06a] M. A. Cibrán and M. D’Hondt. A Slice of MDE with AOP: Transforming
High-Level Business Rules to Aspects. In International Conference on Model
Driven Engineering Languages and Systems (MODELS’06), Genoa, Italy, Oc-
tober 2006. LNCS Springer. 11, 12, 16, 65, 228

[CD06b] M. A. Cibrán and M. D’Hondt. Explicit high-level rules for the customization
of web services management. In International Conference on Objects, Aspects,
Services, the Web (NODe’06), Erfurt, Germany, September 2006. 18

[CD06c] M. A. Cibrán and M. D’Hondt. High-level specification of business rules
and their crosscutting connections. In 8th International Workshop on Aspect-
Oriented Modeling at the 5th International Conference on Aspect-Oriented Pro-
gramming (AOSD’06), Bonn, Germany, 2006. 12, 16

255 BIBLIOGRAPHY

[CDJ03] M. A. Cibrán, M. D’Hondt, and V. Jonckers. Aspect-oriented programming for
connecting business rules. In Proceedings of the 6th International Conference
on Business Information Systems (BIS’03), 2003. 7, 9, 10, 11, 29, 43, 228, 229,
233, 234

[CDJ05] M. A. Cibrán, M. D’Hondt, and V. Jonckers. Mapping high-level business rules
to and through aspects. In 2ème Journée Francophone sur le Développement
de Logiciels Par Aspects (JFDLPA 2005), Lille, France, September 2005. 12,
15, 16, 18, 236

[CDJ06a] M. A. Cibrán, M. D’Hondt, and V. Jonckers. Mapping high-level business rules
to and through aspects. L’Objet, 12(2-3), 2006. 12, 15, 16, 18, 236

[CDJ06b] M. A. Cibrán, M. D’Hondt, and Viviane Jonckers. Design of the hybrid aspect
languages model for integrating concerns implemented in languages of different
paradigms. Technical Report Project IWT 040116, Workpackage 1 - Deliverable
1.3b, System and Software Engineering Lab, May 2006. 65, 228, 235

[CDS+03] M. A. Cibrán, M. D’Hondt, D. Suvée, W. Vanderperren, and V. Jonckers.
JAsCo for linking business rules to object-oriented software. In Proceedings of
International Conference on Computer Science, Software Engineering, Infor-
mation Technology, e-Business, and Applications (CSITeA’03), 2003. 7, 9, 10,
11, 29, 43, 228, 229, 233, 234

[CDS+05] M. A. Cibrán, M. D’Hondt, D. Suvée, W. Vanderperren, and V. Jonckers. Link-
ing business rules to object-oriented software using JAsCo. Journal of Compu-
tational Methods in Sciences and Engineering (JCMSE), 5(1):13–27, 2005. 7,
9, 10, 11, 29, 43, 228, 229, 233, 234

[Che76] P. Pin-Shan Chen. The entity-relationship model - toward a unified view of
data. ACM Transactions on Database Systems (TODS), 1(1):9–36, 1976. 86

[Cib02] M. A. Cibrán. Using aspect-oriented programming for connecting and config-
uring decoupled business rules in object-oriented applications. Master’s thesis,
Vrĳe Universiteit Brussel, Belgium, 2002. 7, 9, 10, 11, 29, 43, 65, 228, 234

[Cle07] T. Cleenewerck. Modularizing Language Constructs: A Reflective Approach.
PhD thesis, Vrĳe Universiteit Brussel, Belgium, 2007. 101, 102, 233

[CM04] A. Charfi and M. Mezini. Hybrid web service composition: business processes
meet business rules. In Proceedings of the 2nd international conference on
Service oriented computing (ICSOC’04), pages 30–38. ACM Press, November
2004. 224

[CSD+04] M. A. Cibrán, D. Suvée, M. D’Hondt, W. Vanderperren, and V. Jonckers.
Integrating Rules with Object-Oriented Software Applications using Aspect-
Oriented Programming. In Proceedings of the Argentine Conference on Com-
puter Science and Operational Research (ASSE’04), Córdoba, Argentina, 2004.
7, 9, 10, 43, 228, 229, 233, 234

[CTHB05] P-A. Champin, P. Thiran, G-J. Houben, and J. Broekstra. Exposing relational
data on the semantic web with CROSS. Technical Report RR-LIRIS-2005-
016, LIRIS UMR 5205 CNRS/INSA de Lyon/Université Claude Bernard Lyon
1/Université Lumière Lyon 2, Ecole Centrale de Lyon, December 2005. 223

BIBLIOGRAPHY 256

[CV03] M. A. Cibrán and B. Verheecke. Modularizing web services management with
AOP. In 1st European Workshop on Object-Orientation and Web Services at the
European Conference on Object-Oriented Programming (ECOOP’03), Darm-
stadt, Germany, July 2003. 170

[CV05] M. A. Cibrán and B. Verheecke. Dynamic business rules for web service compo-
sition. In Proceedings of Workshop on Dynamic Aspects at the 4rd International
Conference on Aspect-Oriented Software Development (AOSD’05), Chicago,
United States, March 2005. 234

[CVJ03] M. A. Cibrán, B. Verheecke, and V. Jonckers. Modularizing client-side web
service management aspects. In Proceedings of Second Conference on Web Ser-
vices, volume 8, pages 1–12, Växjo, Sweden, November 2003. Växjo University
Press, Series: Mathematical Modelling in Physics, Engineering and Cognitive
Sciences. 169

[CVV+07] M. A. Cibrán, B. Verheecke, W. Vanderperren, D. Suvée, and V. Jonckers.
Aspect-oriented programming for dynamic web service selection, configuration
and management. World Wide Web Journal (WWWJ), 9, 2007. viii, 17, 169,
172, 175, 177

[CW01] S. Clarke and R. J. Walker. Composition patterns: An approach to design-
ing reusable aspects. In International Conference on Software Engineering
(ICSE’01), pages 5–14, 2001. 220

[Dat00] C. Date. What not How: The Business Rules Approach to Application Devel-
opment. Addison-Wesley, 2000. 2, 218, 227

[DC02] M. D’Hondt and M. Cibrán. Domain knowledge as an aspect in object-oriented
software applications. In Workshop on Knowledge-Based Object-Oriented Soft-
ware Engineering (KBOOSE) at the European Conference on Object-Oriented
Programming (ECOOP’02), 2002. 4

[Der06] D. Deridder. A Concept-Centric Environment for Software Evolution in an
Agile Context. PhD thesis, Vrĳe Universiteit Brussel, Belgium, 2006. 129

[DFS02] R. Douence, P. Fradet, and M. Sudholt. A framework for the detection and res-
olution of aspect interactions. In Proceedings of the 1st ACM SIGPLAN/SIG-
SOFT conference on Generative Programming and Component Engineering
(GPCE’02), pages 173–188, London, UK, 2002. Springer-Verlag. 55, 233

[D’H04] M. D’Hondt. Hybrid Aspects for Integrating Rule-Based Knowledge and Object-
Oriented Functionality. PhD thesis, Vrĳe Universiteit Brussel, Belgium, 2004.
1, 3, 219, 235

[Die03] J. Dietrich. The Mandarax Manual, 2003. Available at:
http://mandarax.sourceforge.net/. 214

[Dĳ76a] E. W. Dĳkstra. A Discipline of Programming. Prentice-Hall, 1976. 2

[Dĳ76b] E. W. Dĳkstra. A Discipline of Programming. Prentice-Hall, 1976. 8, 37

257 BIBLIOGRAPHY

[DJ04] M. D’Hondt and V. Jonckers. Hybrid aspects for weaving object-oriented func-
tionality and rule-based knowledge. In Proceedings of the 3rd International
Conference on Aspect-Oriented Software Development (AOSD’04), Lancaster,
UK, 2004. 219

[DMW99] M. D’Hondt, W. De Meuter, and R. Wuyts. Using reflective logic programming
to describe domain knowledge as an aspect. In First Symposium on Generative
and Component-Based Software Engineering, 1999. 4

[EFB01] T. Elrad, R. E. Filman, and A. Bader. Aspect-Oriented Programming: Intro-
duction. Communications of the ACM, 44(10):29–32, 2001. 7, 37

[ES04] M. Ehrig and Y. Sure. Ontology mapping - an integrated approach. In Pro-
ceedings of the First European Semantic Web Symposium, volume 3053 of Lec-
ture Notes in Computer Science, pages 76–91, Heraklion, Greece, May 2004.
Springer Verlag. 222

[Fab05] J. Fabry. Modularizing Advanced Transaction Management. PhD thesis, Vrĳe
Universiteit Brussel, Belgium, 2005. 65, 87

[FC05] J. Fabry and T. Cleenewerck. Aspect-oriented domain specific languages for
advanced transaction management. In International Conference on Enterprise
Information Systems (ICEIS’05), pages 428–432, 2005. 87

[FH03] E. J. Friedman-Hill. Jess 6.1, The Rule Engine for the Java Platform. Sandia
National Laboratories, 2003. User Guide. 2, 235

[FHK+05] N. E. Fuchs, S. Höfler, K. Kaljurand, F. Rinaldi, and G. Schneider. Attempto
controlled english: A knowledge representation language readable by humans
and machines. In Reasoning Web, pages 213–250, 2005. 213

[FR03] M. Fleury and F. Reverbel. The JBoss extensible server. In Markus Endler and
Douglas Schmidt, editors, Middleware 2003 — ACM/IFIP/USENIX Interna-
tional Middleware Conference, volume 2672 of LNCS, pages 344–373. Springer-
Verlag, 2003. 9, 38, 39, 44

[FS03] M. Fowler and K. Scott. UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley, 2003. 222

[Fuc97] M. Fuchs. Domain specific languages for ad hoc distributed applications. In
Proceedings USENIX Conference on Domain-Specific Languages, pages 27–36,
1997. 87

[GBN99] J. Gray, T. Bapty, and S. Neema. Aspectifying constraints in model integrated
computing. In Proceedings of the 14th Conference on Object-Oriented Program-
ming, Systems, Languages and Applications (OOPSLA’99), Denver, Colorado,
USA, 1999. 220

[GBNT01] J. Gray, T. Bapty, S. Neema, and J. Tuck. Handling crosscutting constraints in
domain-specific modeling. Communications of the ACM, 44(10):87–93, 2001.
220

BIBLIOGRAPHY 258

[GGBH05] I. Garrigos, J. Gomez, P. Barna, and G-J. Houben. A reusable personalization
model in Web application design. In International Workshop on Web Infor-
mation Systems Modeling (WISM’05) at the International Conference on Web
Engineering, 2005. 223

[GH+03] M. Gudgin, M. Hadley, et al. SOAP Version 1.2 Part 1: Messaging Framework,
2003. W3C Recommendation. 171

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns, Elements
of Reusable Object-Oriented Software. Addison-Wesley, 1995. 26, 29, 149, 218

[GLC99] B. N. Grosof, Y. Labrou, and H. Y. Chan. A declarative approach to business
rules in contracts: courteous logic programs in xml. In ACM Conference on
Electronic Commerce, pages 68–77, 1999. 24

[GLZ06] J. Gray, Y. Lin, and J. Zhang. Automating change evolution in Model-Driven
Engineering. Computer, 39(2):51, 2006. 221

[Gmb06] Innovations Softwaretechnologie GmbH. VisualRules 3.5.1. Manual, 2006.
Available at: http://www.visual-rules.de/en/pdf_en/vr_handbuch_en.pdf.
viii, ix, 208, 209

[Gru93] T. R. Gruber. A translation approach to portable ontology specifications.
Knowledge Acquisition, 5(2):199–220, 1993. 86

[Hala] The Haley Enterprise Inc. Café Rete. Available at: http://www.haley.com. 204

[Halb] The Haley Enterprise Inc. Haleyrules. http://www.haley.com/products/Haley-
Rules.html. 2, 15, 91, 94, 204

[Hal01] T. Halpin. Information modeling and relational databases: from conceptual
analysis to logical design. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 2001. 86

[Hal05] The Haley Enterprise Inc. Methods for Managing Business Rules with HaleyAu-
thority, 2005. Technical White Paper. viii, 205, 206

[HBR00] W. Harrison, C. Barton, and M. Raghavachari. Mapping UML designs to
Java. In Proceedings of the 15th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications (OOPSLA’00), pages 178–
187, New York, NY, USA, 2000. ACM Press. 222

[Hir06] D. Hirtle. TRANSLATOR: A TRANSlator from LAnguage TO Rules. In
Proceedings of the Canadian Symposium on Text Analysis (CaSTA’06), New
Brunswick, Canada, 2006. 213

[HJPP02] W. Ho, J. Jézéquel, F. Pennaneac’h, and N. Plouzeau. A toolkit for weaving
aspect oriented UML designs. In Proceedings of the 1st International Confer-
ence on Aspect-Oriented Software Development (AOSD’02), pages 99–105, New
York, NY, USA, 2002. ACM Press. 221

[HL95] W. L. Hürsch and C. Lopes. Separation of concerns. Technical report, North
Eastern University, 1995. 2

259 BIBLIOGRAPHY

[HPSB+04] I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A semantic web rule language combining OWL and RuleML. W3c
member submission, World Wide Web Consortium, 2004. 212, 222

[Hud96] P. Hudak. Building domain-specific embedded languages. ACM Computing
Surveys, 28(4es):196, 1996. 86

[HUS03] S. Hanenberg, R. Unland, and A. Schmidmeier. AspectJ idioms for aspect-
oriented software construction. In Proceedings of 8th European Conference on
Pattern Languages of Programs (EuroPLoP’03), 2003. 63

[IBM] IBM. CommonRules. Web Site of IBM Research,
http://www.research.ibm.com/rules/commonrules-overview.html. 21, 223

[ILO] ILOG. JRules. http://www.ilog.com/products/jrules/. 2, 14, 15, 91, 94, 201

[ILO04] ILOG. JRules 4.6. Technical White Paper, 2004. viii, 203, 204

[ILO06] ILOG. JRules 6: Deploying rule applications. Technical White Paper, 2006.
Available at: http://www.ilog.com/products/jrules/. 202

[Inn] Innovations Softwaretechnologie GmbH. Visual rules. http://www.visual-
rules.de. 15, 91, 207

[J+] R. Johnson et al. Spring/AOP. The Spring Frame-
work - Reference Documentation (chapter 6). Available at:
http://www.springframework.org/docs/reference/aop.html. 9, 38

[Jav] Java Community Process. JSR 94: JavaTM Rule Engine API. Specification
available at: http://jcp.org/en/jsr/detail?id=94. 211, 215, 224

[JBoa] JBoss. Drools 3.0.6 Documentation. Available at:
http://labs.jboss.com/portal/jbossrules/docs. ix, 211, 212

[JBob] JBoss. JBoss Rules. http://www.jboss.com/products/rules. 2, 15, 91, 94, 209

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The unified software development
process. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1999. 222

[Ker05] M. Kersten. AOP@Work: AOP tools comparison. developerWorks, 2005. Avail-
able at: http://www-128.ibm.com/developerworks/library/j-aopwork1/. 44

[KHH+01] G. Kiczales, E. Hilsdale, JJ. Hugunin, M. Kersten, J. Palm, and W. Griswold.
An overview of AspectJ. In Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP ‘01), 2001. 8, 9, 10, 37, 38, 43

[KLM+97] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J. Loingtier,
and J. Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, Proceedings of the 15th European Conference on Object-
Oriented Programming (ECOOP’01), pages 220–242. Springer-Verlag, 1997. 4,
8, 30, 38

BIBLIOGRAPHY 260

[KPRS01] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck. Aspect composition
applying the design by contract principle. In Proceedings of the 2nd Interna-
tional Symposium on Generative and Component-Based Software Engineering
(GCSE ’00), pages 57–69. Springer-Verlag, 2001. 55, 233

[KR03] V. Kulkarni and S. Reddy. Separation of concerns in Model-Driven Develop-
ment. IEEE Software, 20(5):64–69, 2003. 100

[KRS00] G. Kappel, W. Retschitzegger, and W. Schwinger. Modeling customizable Web
applications. In Proceedings of the Kyoto International Conference on Digital
Libraries, page 387, 2000. 21, 24, 223

[KSP04] J. Koskinen, A. Salminen, and J. Paakki. Hypertext support for the information
needs of software maintainers. Journal of Software Maintenance and Evolution,
16(3):187–215, 2004. 121

[Lad03] R. Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications Co., Greenwich, CT, USA, 2003. 219

[Leh96] M. M. Lehman. Laws of software evolution revisited. In European Workshop
on Software Process Technology, pages 108–124, 1996. 139

[LLM99] K. Lieberherr, D. Lorenz, and M. Mezini. Programming with aspectual
components. Technical report, Northeastern University, 1999. NU-CCS-99-
01 Available at: http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html. 40

[LLO03] K. Lieberherr, D. Lorenz, and J. Ovlinger. Aspectual collaborations: Combin-
ing modules and aspects. British Computer Society Journal (Special issue on
AOP), 45(5):542–565, 2003. 40

[LOO01] K. Lieberherr, D. Orleans, and J. Ovlinger. Aspect-oriented programming with
adaptive methods. Communications of the ACM, 44(10):39–41, 2001. 9, 38

[MB02] S. J. Mellor and M. Balcer. Executable UML: A Foundation for Model-Driven
Architectures. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002. Foreword By-Ivar Jacoboson. 222

[MCF03] S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: Model-
Driven Development. IEEE Software, 20(5):14–18, 2003. 5, 13, 84

[MCG05] T. Mens, K. Czarnecki, and P. Van Gorp. A taxonomy of model trans-
formations. In Language Engineering for Model-Driven Software Devel-
opment, Dagstuhl Seminar Proceedings. Internationales Begegnungs- und
Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany, 2005.
13, 87

[Min81] M. Minsky. A framework for representing knowledge. In J. Haugeland, editor,
Mind Design: Philosophy, Psychology, Artificial Intelligence, pages 95–128.
MIT Press, Cambridge, MA, 1981. 85

[MO03] M. Mezini and K. Ostermann. Conquering aspects with Caesar. In Proceed-
ings of 2nd International Conference on Aspect-Oriented Software Development
(AOSD’03). ACM Press, 2003. 40

261 BIBLIOGRAPHY

[MR97] N. Medvidovic and D. S. Rosenblum. Domains of concern in software archi-
tectures and architecture description languages. In Proceedings of the 1997
USENIX Conference on Domain-Specific Languages, 1997. 87

[NBA04] I. Nagy, L. Bergmans, and M. Aksit. Declarative aspect composition. In 2nd
Software-Engineering Properties of Languages and Aspect Technologies Work-
shop (SPLAT) at the International Conference on Aspect-Oriented Software
Development (AOSD’04), 2004. 55, 233

[Nei84] J. M. Neighbors. The Draco approach to constructing software from reusable
components. IEEE Transactions on Software Engineering, 10(5):564–574, 1984.
11

[New82] A. Newell. The knowledge level. Artificial Intelligence, 18:87–127, 1982. 85

[NI01] M. E. Nordberg III. Aspect-oriented dependency inversion. In Workshop on Ad-
vanced Separation of Concerns, Conference on Object-Oriented Programming,
Systems, Languages and Applications, 2001. 40

[OMG03] OMG. UML 2.0 OCL specification, 2003. Available at: www.omg.org. 91, 93

[OMG05] OMG. Semantics of business vocabulary and business rules (SBVR). Adopted
specification, 2005. Available at http://www.omg.org/docs/dtc/06-08-05.pdf.
224

[OT01] H. Ossher and P. Tarr. Using multidimensional separation of concerns to
(re)shape evolving software. Communications of the ACM, 44(10):43–50, Oc-
tober 2001. 8, 9, 37, 38, 39, 219

[Pae06] E. Van Paesschen. Advanced Round-Trip Engineering: An Agile Analysis-driven
Approach for Dynamic Languages. PhD thesis, Vrĳe Universiteit Brussel, Bel-
gium, 2006. 222

[Par72] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972. 2

[PE00] M. Perkowitz and O. Etzioni. Towards adaptive Web sites: conceptual frame-
work and case study. Artificial Intelligence, 118(1-2):245–275, 2000. 24

[PG03] M. P. Papazoglou and D. Georgakopoulos. Introduction. Communications of
the ACM, 46(10):24–28, 2003. 1

[PSC+02] E. Pulvermueller, A. Speck, J. Coplien, M. D’Hondt, and W. De Meuter. Fea-
ture interaction in composed systems. In Proceedings of the Workshops on
Object-Oriented Technology (ECOOP’01), pages 86–97, London, UK, 2002.
Springer-Verlag. 55, 233

[PSD+02] R. Pawlak, L. Seinturier, L. Duchien, G. Florin, L. Martelli, and F. Legond-
Aubry. A UML notation for aspect-oriented software design. 1st AOSD Work-
shop on Aspect-Oriented Modelling with UML at the 1st International Confer-
ence on Aspect-Oriented Software Development (AOSD’02), April 2002. 221

BIBLIOGRAPHY 262

[PSDF01] R. Pawlak, L. Seinturier, L. Duchien, and G. Florin. JAC: A flexible solution for
aspect-oriented programming in Java. In Proceedings of the 3rd International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns
(REFLECTION’01), pages 1–24. Springer-Verlag, 2001. 39, 44

[RBG02] N. Routledge, L. Bird, and A. Goodchild. UML and XML schema. In ADC
’02: Proceedings of the 13th Australasian database conference, pages 157–166,
Darlinghurst, Australia, Australia, 2002. Australian Computer Society, Inc. 222

[RDR+00] I. Rouvellou, L. Degenaro, K. Rasmus, D. Ehnebuske, and B. McKee. Extend-
ing business objects with business rules. In Proceedings of the 33rd International
Conference on Technology of Object-Oriented Languages and Systems (TOOLS
Europe’00), pages 238–249. IEEE Computer Society, 2000. 2, 21, 219

[RFCS01] G. Rossi, A. Fortier, J. Cappi, and D. Schwabe. Seamless personalization of
e-commerce applications. In Proceedings of the 2nd International Workshop on
Conceptual Modeling Approaches for e-Business at the 20th International Con-
ference on Conceptual Modeling (ER’01), Yokohama, Japan, 2001. Springer-
Verlag. 21, 29, 218, 223

[RGI75] D. T. Ross, J. B. Goodenough, and C. A. Irvine. Software engineering: Process,
principles, and goals. Computer, May 1975. 12

[RL01] R. G. Ross and G. S. W. Lam. RuleSpeak sentence templates - developing rule
statements using sentence patterns. Technical report, version 1.0, Business Rule
Solutions, LLC, 2001. 224

[Ros03] R. G. Ross. Principles of the Business Rule Approach. Addison-Wesley, 2003.
2, 7, 227, 234

[RSG01a] G. Rossi, D. Schwabe, and R. Guimaraes. Designing personalized Web appli-
cations. In World Wide Web, pages 275–284, 2001. 21, 29, 223

[RSG01b] G. Rossi, D. Schwabe, and R. Guimaraes. Designing personalized web applica-
tions. In Proceedings of the 10th international conference on World Wide Web
(WWW ’01), pages 275–284, New York, NY, USA, 2001. ACM Press. 24

[Rul] The Rule Markup Initiative. RuleML. http://www.ruleml.org/. 212

[SAA+00] A. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shadbolt,
W. Van de Velde, and B. J. Wielinga. Knowledge Engineering and Management:
The CommonKADS Methodology. MIT Press, 2000. 1, 6, 85

[Sch06] D. C. Schmidt. Guest editors’ introduction: Model-driven engineering. IEEE
Computer, 39(2), February 2006. 85, 87

[SK03] S. Sendall and W. Kozaczynski. Model transformation: The heart and soul of
model-driven software development. IEEE Software, 20(5):42–45, 2003. 13, 84

[SKR99] J. B. Schafer, J. A. Konstan, and J. Riedi. Recommender systems in e-
commerce. In ACM Conference on Electronic Commerce, pages 158–166, 1999.
24

263 BIBLIOGRAPHY

[SRF+05] D. Simmonds, R. Reddy, R. B. France, S. Ghosh, and A. Solberg. An aspect
oriented model driven framework. In EDOC, pages 119–130. IEEE Computer
Society, 2005. 221

[SSR+05] A. Solberg, D. Simmonds, R. Reddy, S. Ghosh, and R. B. France. Using aspect
oriented techniques to support separation of concerns in model driven devel-
opment. In COMPSAC (1), pages 121–126. IEEE Computer Society, 2005.
221

[Str00] R. Van Der Straeten. Using and enforcing constraints in object-oriented appli-
cation development, 2000. 220

[SVJ03] D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an aspect-oriented ap-
proach tailored for component based software development. In Proceedings of
2nd International Conference on Aspect-Oriented Software Development. ACM
Press, 2003. 9, 10, 38, 39, 40, 43

[Szy05] C. Szyperski. Components and Web Services, 2005. Software Development,
Beyond Objects column, Vol 9, Issue 8. 171

[TOHS99] P. Tarr, H. Ossher, W. Harrison, and S. M. Sutton. N degrees of separation:
Multi-dimensional separation of concerns. In Proceedings of the 1999 Interna-
tional Conference on Software Engineering (ICSE’99), pages 107–119. IEEE
Computer Society Press / ACM Press, 1999. 8, 38, 39

[TPE+02] V. Tosic, B. Pagurek, B. Esfandiari, K. Patel, and W. Ma. WSOL - Web Service
Offerings Language, pages 57–67. Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 2002. 174

[VC04] B. Verheecke and M. A. Cibrán. Dynamic aspects for web service manage-
ment. In Dynamic Aspect Workshop (DAW) at the 3rd International Confer-
ence on Aspect Oriented Software Development (AOSD’04), Lancaster, UK,
March 2004. 169

[VC05] B. Verheecke and M. A. Cibrán. Dynamic aspects in large scale distributed ap-
plications: An experience report. In Workshop on Software engineering Prop-
erties of Languages for Aspect Technologies (SPLAT) at the International Con-
ference on Aspect-Oriented Software Development (AOSD’05), Chicago, United
States, March 2005. 169

[VCJ03] B. Verheecke, M. A. Cibrán, and V. Jonckers. AOP for dynamic configuration
and management of web services in client-applications. In Proceedings of the
International Conference on Web Services - Europe (ICWS’03-Europe), Erfurt,
Germany, September 2003. Springer-Verlag. 169

[VCJ04] B. Verheecke, M. A. Cibrán, and V. Jonckers. Aspect-oriented programming
for dynamic web service monitoring and selection. In European Conference on
Web Services 2004 (ECOWS’04), Erfurt, Germany, September 2004. 17, 169,
172

[VCS+04] B. Verheecke, M. A. Cibrán, D. Suvée, W. Vanderperren, and V. Jonckers.
Automatic service discovery and integration using semantic descriptions in the
web services management layer. In Proceedings of 3rd Nordic Conference on

BIBLIOGRAPHY 264

Web Services, volume 11, pages 79–89, Växjo, Sweden, November 2004. Växjo
University Press, Series: Mathematical Modelling in Physics, Engineering and
Cognitive Sciences. 169

[VCV+04] B. Verheecke, M. A. Cibrán, W. Vanderperren, D. Suvée, and V. Jonckers.
AOP for dynamic configuration and management of web services in client-
applications. International Journal on Web Services Research (JWSR), 1(3),
2004. 17, 169, 172

[vD97] A. van Deursen. Domain-specific languages versus object-oriented frameworks:
A financial engineering case study. In Proceedings of Smalltalk and Java in In-
dustry and Academia, STJA’97, pages 35–39, Erfurt, September 1997. Ilmenau
Technical University., 1997. 87

[vDKV00] A. van Deursen, P. Klint, and J. Visser. Domain-specific languages: an anno-
tated bibliography. SIGPLAN Not., 35(6):26–36, 2000. 86

[vdSH06] K. van der Sluĳs and G-J. Houben. A generic component for exchanging user
models between Web-based systems. International Journal of Continuing En-
gineering Education and Life-Long Learning (ĲCEELL’06), 16, 2006. 222

[Ver06] B. Verheecke. Dynamic Integration, Composition, Selection and Management
of Web Services in Service-Oriented Applications: An Approach using Aspect-
Oriented Programming. PhD thesis, Vrĳe Universiteit Brussel, Belgium, 2006.
viii, 173

[vH01] B. von Halle. Business Rules Applied. Wiley, 2001. 2, 7, 22, 217, 227, 234

[Völ05] M. Völter. Patterns for handling cross-cutting concerns in model-driven soft-
ware development. Version 2.3, 2005. Version 2.3, Dec 26, 2005. Available at
http://www.voelter.de/data/pub/ModelsAndAspects.pdf. 64, 221

[VSCF05] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine. Stateful Aspects
in JAsCo. In workshop on Software Composition (SC 2005), co-located with
ETAPS 2005, LNCS ISSN: 0302-9743, Edinburgh, Scotland, April 2005. 43,
71, 73, 234

[VSV+05] W. Vanderperren, D. Suvée, B. Verheecke, M. A. Cibrán, and V. Jonckers.
Adaptive programming in jasco. In Proceedings of the 4th International Con-
ference on Aspect-Oriented Software Development (AOSD ’05), pages 75–86,
New York, NY, USA, 2005. ACM Press. 43

[VTH06] R. De Virgilio, R. Torlone, and G-J. Houben. A rule-based approach to content
delivery adaptation in Web information systems. In Proceedings of the 7th
International Conference on Mobile Data Management (MDM’06), page 21,
Washington, DC, USA, 2006. IEEE Computer Society. 223

[vWV03] J. van Wĳngaarden and E. Visser. Program Transformation Mechanics. Tech-
nical Report UU-CS-2003-048, Universiteit Utrecht, 2003. 101, 102

[WPD92] S. Wartik and R. Prieto-Diaz. Criteria for comparing reuse-oriented domain
analysis approaches. International Journal of Software Engineering and Knowl-
edge Engineering, 2(3):403–432, 1992. 84

265 BIBLIOGRAPHY

[WTM+04] E. Wohlstadter, S. Tai, T. Mikalsen, I. Rouvellou, and P. Devanbu. GlueQoS:
Middleware to sweeten quality-of-service policy interactions. In Proceedings of
the 26th International Conference on Software Engineering (ICSE’04), pages
189–199, Washington, DC, USA, 2004. IEEE Computer Society. 223

[YAS] YASU Technologies Inc. QuickRules BRMS. http://www.yasutech.com/. 2,
14, 15, 91, 94, 215

[YAS03] YASU Technologies Inc. QuickRules: Application developer manual (version
2.5), 2003. ix, 216

[YJ02] J. Yoder and R. Johnson. The adaptive object-model architectural style. In
Working IEEE/IFIP Conference on Software Architecture (WICSA’02), 2002.
218

	Table of Contents
	List of Figures
	List of Tables
	List of Code Fragments
	List of High-Level Specifications
	Introduction
	Problem Statement
	Research Goals and Approach
	Integrating Business Rules with Object-Oriented Applications using Aspect-Oriented Programming
	Aspect-Oriented Programming
	Requirements
	AOP for Decoupling Business Rule Connections
	Distilling Aspect Patterns

	Expressing Executable Business Rules at the Domain Level using Model-Driven Engineering
	Model-Driven Engineering
	Requirements
	Domain Entities
	High-Level Business Rules and Connections
	Automatic Transformations

	Business Rules in Service-Oriented Applications
	Web Services Management Layer (WSML)
	High-level Business Rules in the WSML

	Chapter Summaries

	Connecting Decoupled Business Rules with Object-Oriented Applications
	Running Example: e-commerce
	Basic functionality

	Business Rules
	Business Rules for Personalization in the e-commerce Domain
	Discount Business Rules
	Categorization Business Rules

	Applying Personalization Business Rules
	Rule Object Pattern
	Simple Rule Object

	Implementing Rule Objects
	Integrating Rule Objects
	Towards a Flexible Rule Connection
	Denoting Rule Application Time with Dynamic Events
	Exposing and Passing Available Contextual Information
	Capturing, Exposing and Passing Unavailable Information
	Introducing Unanticipated Information
	Incorporating Rule Results
	Configuring and Reusing Rules and Their Connections
	Controlling Rule Precedence, Combination and Exclusion
	Controlling Rule Instantiation and Initialization
	Connecting Rules

	Summary

	Aspect-Oriented Programming for Business Rule Connection
	Aspect-Oriented Programming
	Comparing AOP approaches
	Selecting Suitable AOP Approaches
	Determining Required AOP Characteristics
	Selecting Representative AOP Approaches

	AOP for Rule Connection
	Denoting Rule Application Time with Dynamic Events
	A Simple Event
	A More Sophisticated Event

	Exposing and Passing Available Contextual Information
	Capturing, Exposing and Passing Unavailable Information
	Introducing Unanticipated Information
	Incorporating Rule Results
	Configuring and Reusing Rules and Their Connections
	Controlling Rule Precedence, Combination and Exclusion
	Controlling Rule Instantiation and Initialization
	Connecting Rules

	Discussion
	Summary

	Aspect Patterns for Business Rule Connection
	Towards Aspect Patterns
	Identifying Rule Connection Elements
	Aspect Patterns for Rule Connection
	Dynamic rule application time
	Rule Activation Time
	Passing/Retrieving Information to/from the Rule
	Contextual Information
	Non-Contextual Information
	Unanticipated Information

	Summary

	A Domain Model for Domain Entities, High-Level Business Rules and High-Level Business Rule Connections
	Model-Driven Engineering
	Models
	Domain Modeling
	Gathering and Representing Domain Knowledge
	Domain-Specific Languages

	Transformations
	Classifying Transformations

	Domain Entities
	High-Level Business Rules
	Rule
	Rule Properties
	Rule Parameters
	Rule Variables

	High-Level Business Rule Connections
	Rule Connection
	Connection Event
	Rule Activation Time
	Connection-Specific Information

	Transforming the High-Level Domain Model
	Introduction to Transformation Systems
	Transformation Granularity
	Transformation Scope

	Transforming High-Level Business Rules and their Connections
	Transforming High-Level Business Rules
	Transforming BR
	Transforming PROPS
	Transforming USING
	Transforming WHERE
	Transforming IF and THEN

	Transforming High-Level Business Rule Connections
	Transforming CONNECT
	Transforming PROPS
	Transforming BEFORE | AFTER | INSTEAD OF
	Transforming MAPPING
	Transforming CAPTURE
	Transforming ACTIVATION

	Summary

	Mapping Domain Knowledge To Implementation
	Context: Advanced Domain Mappings
	The Mapping Language
	Basic Mappings
	High-Level Mappings
	Special Mapping Operators
	Mapping Events

	Use Case 1: Pulling Up a Class
	Use Case 2: Mapping One-to-Many Classes
	Mapping to Union
	Mapping to Intersection

	Use Case 3: Anticipated Mappings
	Use Case 4: Calculating Values at Execution Points
	Dealing with Timing Information
	Dealing with Cached Information

	Use Case 5: Unanticipated Mappings
	Obtaining a Code Representation for the Mapping
	Summary

	Implementation
	Selected Technologies
	Architecture of the Domain Model Prototype
	Implementation Goals
	Modularity
	Extensibility
	Flexibility

	From a High-Level Business Rule to a Java Rule Object
	Parsing
	Translating
	Generating Rule Code

	From a High-Level Business Rule Connection to a JAsCo Aspect
	Parsing
	Translating
	Generating Rule Connection Code

	Translating Mapping Specifications
	Parsing
	Translating

	Challenges
	Summary

	Evaluation
	Case Study: Web services Management Layer
	Web-Services Management Layer (WSML)
	Architecture of the WSML
	Selection, Management and Redirection in the WSML
	Web Service Selection
	Client-Side Web Service Management
	Web Service Redirection

	Limitations of the WSML

	Evolution Scenario: Supporting Unanticipated Business Rules
	Identifying Potential Configuration Business Rules
	An Initial Domain Model
	Business Rules in Terms of Initial Domain Entities
	Enabling Service Type Caching Based on Average Speed
	Adding Service Composition Monitoring Based on Price

	Adding New Business Rules
	Anticipated Domain Entities
	Calculating Values at Execution Points
	Unanticipated Domain Entities

	Refactoring Scenario: Externalizing Anticipated Selection Policies
	Extending the Initial Domain Model
	Expressing Selection Policies and their Connections at the Domain Level
	Open Issues

	Discussion
	Summary

	Related Work
	Business Rules Systems
	JRules
	Business Rules
	Domain Model
	Rule Integration and Execution

	Haley Rules
	Business Rules
	Domain Model
	Rule Integration and Execution

	VisualRules
	Business Rules
	Domain Model
	Rule Integration and Execution

	JBoss Rules
	Business Rules
	Domain Model
	Rule Integration and Execution

	RuleML
	Business Rules
	Domain Model
	Rule Integration and Execution

	QuickRules
	Business Rules
	Domain Model
	Rule Integration and Execution

	Summary

	Lightweight Business Rule Approaches
	Business Rules and Databases
	Business Rules and Design Patterns

	AOP for Business Rules
	Decoupling Business Rules at Implementation Time
	Decoupling Constraints at Design Time

	Combining MDE and AOP
	Mapping Domain Knowledge To Implementation
	Business Rules in Specific Application Domains
	Business Rules in e-commerce Applications
	QoS Business Rules in Service-Oriented Applications

	Business Rules Methodologies, Vocabularies and Standards

	Conclusions
	Summary and Contributions
	Trade-offs and Future Work
	Modularity
	Scalability
	Aspect Issues
	Overhead
	Interference

	Transformations
	Expressivity of High-level Languages
	Temporal Rules
	Collections
	Events
	Rule-Based Languages
	Predefined Operators

	Raising the Level of Abstraction of AOP
	Mapping
	MDE for Mapping Specification
	Mapping to AOP

	Quantification

	High-Level Business Rule Language
	Non-Terminals
	Terminals

	High-Level Business Rule Connection Language
	Non-Terminals
	Terminals

	High-Level Mapping Language
	Non-terminals
	Terminals

	Bibliography

