
Research Descriptions
2007-2008

Labs
&Programming 

Technology

System and
Software 
Engineering

Prof. Dr.  Theo D'Hondt
Prof. Dr.  Viviane Jonckers
Prof. Dr.  Wolfgang De Meuter



AOP and the Co-Evolution Between Source Code and Build System

Bram Adams

Build system, AOP for C, reverse engineering,
logic/temporal pointcut languages

Bram.Adams@ugent.be

My PhD work investigates how co-evolution between build system and source code
causes many practical problems for people trying to integrate aspects into their development
environment (in its widest sense).

Build systems need to evolve whenever the source code changes, otherwise source code is
just plain text. On the other hand, rigid build systems obstruct source code evolution. Because
of the radical difference between crosscutting relations and traditional module composition,
aspects invalidate many proven workarounds to cope with this co-evolution. For source code
configuration e.g., aspects can be assigned to individual source files or at the other extreme
to the whole system, but flexibility is restricted by the lack of explicit dependencies between
aspects. Incremental compilation on the other hand can be supported in the weaver itself or
e.g. by carefully arranging the order of weaving, but again unforeseen side-effects can occur.
No best practices have been established yet for five crucial responsibilities of the build system,
although these issues are crucial for adoption of AOP.

To experiment with various techniques, we have developed a re(verse)-engineering frame-
work for build systems (MAKAO) and an aspect language for C (Aspicere2). MAKAO exposes
the build dependency graph for visualization, querying, filtering, verification and re-engineering.
Aspicere2 is built on a logic pointcut language, generic advice and a link-time weaver. Re-
cently, it has been extended with temporal pointcuts (cHALO), based on Charlotte Herzeel’s
HALO.

Modularizing Language Constructs: A Reflective Approach

Dr. Thomas Cleenewerck

Language engineering, domain-specific languages,
transformation systems, reuse, separation of concerns

tcleenew@vub.ac.be

Programming languages are continuously growing with new constructs so that pro-
grammers can express the problems within the language they are using. In order to grow
language implementations more easily, we preserve the decomposition of language implemen-
tations into its language constructs by modularizing the syntax and semantics of language
constructs in separate modules. The challenge is to preserve the modularization of constructs
despite the fact that constructs closely interact with one another. In the linglet transforma-
tion system (LTS) the interactions are established by interaction strategies. The strategies
capture a specific interaction pattern and are defined as extensions of a specifically tailored
meta-object protocol (MOP). As such they can reflect upon the behavior of the different
linglets and preserve the modularization of the language constructs.

We continue to explore the advantages modularization by studying language growth. An
interesting domain of language research with respect to language growth are domain-specific
languages and aspect languages. These languages are challenging to modularize because their
constructs have complex invasive behavior. Furthermore, language growth is also inherent
in graphical domain-specific languages: model-driven development techniques have made lan-
guages a part of the everyday development process. There is a mutual beneficial relationship
between the modularization model advocated by LTS and the model-driven community that
we are about to explore.
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Context-Oriented Programming

Dr. Pascal Costanza

Dynamic layer activation, dynamic scoping, dynamic
software evolution, software composition,

meta-programming, reflection

Pascal.Costanza@vub.ac.be

Context-dependent behavior is becoming increasingly important for a wide
range of application domains, from pervasive computing to common business appli-
cations. Unfortunately, mainstream programming languages do not provide sufficient
mechanisms that enable software entities to adapt their behavior dynamically to the
current execution context. This leads developers to adopt convoluted designs to
achieve the necessary runtime flexibility. Context-oriented Programming addresses
this problem by treating context explicitly and providing mechanisms to dynamically
adapt behavior in reaction to changes in context, even after system deployment. Such
behavioral variations may crosscut the entire system. Together with various researchers
and users, we have developed the essential building blocks for Context-oriented Pro-
gramming in recent years, as described for example in an overview article in Journal of
Object Technology (March/April 2008). The research on Context-oriented Program-
ming covers the range from the design and implementation of programming language
extensions up to tool support for developing non-trivial context-aware applications.

Behavioral Program Queries Using Logic Source Code Templates

Coen De Roover

Logic meta-programming, fuzzy/temporal logic,
abstract interpretation, points-to analysis, code

templates

cderoove@vub.ac.be

The use of executable logics to query a program’s implementation has gained signif-
icant momentum among researchers across software disciplines as diverse as quality assurance,
program comprehension and refactoring. The efficacious identification of implementation parts
causing faulty, well-known or suboptimal behavior is key to the success of logic meta program-
ming in these disciplines. As similar behavior can be implemented by heterogeneous code,
querying a behavioral rather than a syntactic program representation is a seemingly obvious
strategy to improve identification efficacy. In reality, the arrival of behavioral program queries
to an application programmer’s toolbox is still a long way off.

First of all, it is unclear which generic behavioral representation suffices to answer a rich
set of user-defined queries. As these representations approximate run-time behavior, special
care must be taken in answering queries. Furthermore, the representations’ intricate com-
plexity hinders straightforward query definition. The efficacious resolution and straightforward
definition of behavioral queries hence requires a specifically tailored executable logic. To ensure
straightforward definition, our research introduces source code templates in logic queries to
capture the prototypical implementation of the behavior that needs to be identified. Logics of
qualified truth are available to demarcate specific execution contexts. To ensure identification
efficacy, we resolve templates against behavioral representations. The resolution strategy relies
on logics of quantified truth to handle approximations and to quantify the similarity between
a template and its matches.
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Aspect-Orientation and LMP for Revitalizing Legacy Software

Dr. Kris De Schutter

Aspect orientation, logic meta-programming, legacy
software, maintenance, evolution

Kris.De.Schutter@vub.ac.be

We propose the use of Logic Meta-programming (LMP) and Aspect-oriented Pro-
gramming (AOP) as a set of tools to tackle the ills of legacy business applications. The
dynamics for such applications are characterized by a need for restructuring and integration
at a much larger scale than was previously the case. This requires a non-trivial amount of
human insight and experience, something which is hampered by a general lack of good docu-
mentation of these applications. Putting this software aside is simply not a reasonable option
to its stakeholders. We therefore have to make modification of existing applications easier.
This includes support for helping with the modification itself, but also to make up for missing
knowledge about the system, which is crucial for proper evolution.

By embedding Aspect-oriented Programming in existing business environments we can
empower software developers with a flexible toolchain while avoiding a steep learning curve.
In using this toolchain, there is no requirement to move away from the existing development
techniques; there is only the incentive to work with something that augments them. This
can make for a faster turn-around based on available expertise. In addition, Logic Meta-
programming can be used for expressing business concepts and architectural descriptions of
business applications in a declarative way. This makes it possible to work with applications at
a higher level of abstraction, which will allow better architectural descriptions to emerge. By
making these descriptions available for practical use we can actively encourage development
and understanding thereof.

Languages for Ubiquitous Computing and Ambient Intelligence

Dr. Jessie Dedecker

Ambient intelligence, ubiquitous computing
jededeck@vub.ac.be

Ambient-oriented programming is a programming paradigm whose proper-
ties are derived from the characteristics of hardware platforms for mobile computing.
Mobile hardware devices are often provided with wireless networks facilities, allowing
them to engage in collaboration with their environment. However, the autonomous
nature of these devices as well as the volatile connections over their wireless infrastruc-
ture has its repercussions on the software that employs them. The most fundamental
assumption of the Ambient-Oriented Programming paradigm is that languages should
incorporate possible network failures at the heart of their programming model.

AmbientTalk is a distributed programming language that supports this paradigm
and is designed as a language laboratory. The language offers a meta-object protocol
that enables language designers to experiment with novel programming abstractions.
The goal of these abstractions is to contribute to the rapid application development
of Ubiquitous Computing and Ambient Intelligent applications.
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Change-Oriented Advanced Round-Trip Engineering

Peter Ebraert

Software evolution, dynamic adaptation, round-trip
engineering

pebraert@vub.ac.be

Agile Software Development (AgSD) stresses a highly iterative and incremental
development cycle and rapid prototyping in order to anticipate “change” during the different
phases of software engineering. There exist however a large number of unaddressed challenges
in the tool support for AgSD. We focus on three related issues. First, because certain software
systems, such as critical systems, can not be stopped, changes need to be performed directly
on running systems. Second, testing plays a centrol role in AgSD. Unit tests are automated
pieces of code that invoke a different method and then check assumptions on the behavior of
the element currently being tested. It has to be possible to easily write the tests and quickly
run them, repeatedly and automatically. Finally, automated testing gives rise to refactoring,
which are continuously applied in Agile methods such as XP in order to facilitate adding new
functionality or to improve the design quality after a change took place.

Current tool support for AgSD does not sufficiently support runtime change propaga-
tion, automated testing or refactorings. Representing changes as first-class objects allows a
change management system for alleviating those difficulties. We extend an existing approach
called Advanced Round-Trip Engineering (ARTE) — which already provides limited support
for runtime change propagation — with such a change management system. Change-Oriented
Advanced Round-Trip Engineering is an ARTE approach in which changes can be specified,
applied, undone and reasoned about on each of the three ARTE levels.

DEUCE — Declarative User Interface Concerns Extrication

Sofie Goderis

Separation of concerns, declarative meta programming,
software evolution

Sofie.Goderis@vub.ac.be

In order to survive in today’s highly dynamic marketplace, companies must show a
continuous and ever-increasing ability to adapt. This reflects on the adaptability requirements
for the supporting software systems. Evolving a software system not only affects the source
code responsible for the core application, but also the user interface. A problem with main-
taining user interface (UI) logic is that it is entangled with the underlying application logic.
The fact that the UI logic is scattered throughout the application logic makes adapting the
UI logic and evolving the application logic cumbersome for the programmer.

In our approach we aid a programmer to cope with the complexity of UI development.
To do so the UI and application code should be separated as much as possible. This idea has
been applied to many software engineering areas. With respect to user interfaces, it has been
applied, amongst others, by the Model-View-Controller metaphor and 3-tiered systems. Both
approaches however, when put to practice, still result in entangled and scattered code and
don’t help the developer to cope with several UI concerns separately.

We are currently implementing a framework to support our approach, called DEUCE.
The concerns are described declaratively by means of facts and rules. A reasoning mechanism
puts the concerns together.
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Distributed Memory Management in Mobile Ad Hoc Networks

Elisa Gonzalez Boix

Ambient intelligence, distributed memory management,
ambient-oriented programming, language abstractions

egonzale@vub.ac.be

In mobile ad hoc networks, distributed programming is substantially complicated
by the intermittent connectivity of the devices in the network and the lack of any central-
ized coordination facility. Within this context, my research focuses on the repercussions of
such hardware phenomena on distributed memory management. Due to the frequent discon-
nections in mobile networks, references to remote objects that do tolerate network failures
are much more suitable as they remain valid during a disconnection. However, because it is
impossible to distinguish a transient network failure from a permanent (network or machine)
failure, the lifetime of the remote object reference should be limited such that the remote
object can eventually be reclaimed if the network failure persists. Memory management based
on leasing provides a robust mechanism to manage reclamation of remote objects in mobile
ad hoc networks. Rather than providing a general leasing framework, we explore a language
approach such that low-level memory management concerns can be abstracted away as much
as possible. I have designed dedicated language support that integrates leasing directly into
the remote object reference abstraction, leading to the concept of a leased object reference.
However, applying the leasing semantics on each remote object reference still places a consid-
erable burden on developers. I am currently investigating software engineering techniques to
implement dedicated language support for leasing based on the usage analysis of our language
constructs for leasing in mobile ad hoc applications.

Aspect-Oriented Programming with a SOUL

Kris Gybels

Aspect-oriented software development, logic
meta-programming, linguistic symbiosis

Kris.Gybels@vub.ac.be

My research interests are the foundations of Logic Meta Programming (LMP) and
its applications to Aspect-Oriented Software Development. Logic meta programming is the use
of a programming language based on the logic paradigm (such as SOUL) for writing programs
about programs, such as design recovery tools, code refactoring browsers or “pointcuts” in
Aspect-Oriented Programs (AOP). While the use of a logic language for meta programs that
are not necessarily written in a logic language has advantages due to the declarative nature of
logic programs, it also raises a number of research questions such as how to properly represent
programs as data in the logic language, and how to integrate the logic and non-logic language
to create a linguistic symbiosis. Ideally, such a symbiosis is transparent, allowing interaction
between the two languages while not making it obvious that a boundary between languages
is crossed. I have applied this to business rule integration, where it allows the object-oriented
parts of the software to be freely replaced by logic rules and vice-versa. My application of
LMP to AOP revolves around the design of pointcut languages, which are used in AOP to
describe which runtime events to intercept in a program. I have created an advanced pointcut
language, CARMA, which, by using sophisticated features of LMP, helps decrease the coupling
of these descriptions to the rest of the program. I am doing further research on the design of
this language, and the question of whether techniques such as Inductive Logic Programming
can be used to automatically mine programs for pointcuts.
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Reflective Foundations

Charlotte Herzeel

Reflection, Lisp
caherzee@vub.ac.be

In the past, I have developed a logic-based aspect language called HALO that
incorporates temporal reasoning. It eases writing pointcuts that capture part of the execution
history of a program, and expands on the theme of related approaches such as tracematches
and state-based aspects. HALO is especially powerful due to its support for language symbiosis
and reflective features which allow the aspect language to invoke methods of the base language,
and vice versa.

My subsequent investigations on applying HALO to event-based systems, parallel pro-
gramming models and transactional systems revealed that a better understanding of compu-
tational reflection as a foundation for my work is necessary. Unfortunately, computational
reflection is still a poorly understood concept: It is perceived as hard to implement, under-
stand and use. The earliest, but still most complete attempt to come up with a conceptual
framework for computational reflection is 3-Lisp, and I am currently working on framing ideas
from 3-Lisp and its successors in a modern setting. Though seemingly forgotten, pragmatic
subsets of reflective programming systems are actually in wide use and we believe that a better
understanding of the 3-Lisp model and its successors is a key to better understand program-
ming techniques such as meta-object protocols, open implementation and aspect-oriented
programming in general.

BEHAVE — Verifying and Documenting Design Invariants in Software

Dr. Isabel Michiels

Crosscutting concerns, declarative meta-programming,
dynamic analysis, lightweight verification

Isabel.Michiels@vub.ac.be

Today’s software systems have to evolve rapidly, especially because of the
quickly evolving business requirements. Supporting this process of change has up until
now mainly resulted in tool support for modularizing systems better and localizing those
parts sensitive to change.

But what about those parts of a software system that are not allowed to change
when software evolves? In our approach, we offer support for documenting and verifying
design invariants of a system. Design invariants represent the laws of your software
system that must continue to hold through every evolution cycle. They are difficult to
capture as they cross-cut an entire system. As an example of an invariant, consider a
banking application: it should always be the case that, if a transaction error occurs,
the outcome is in favor of the customer.

BEHAVE offers a platform to specify and verify a high-level behavioral model
representing such a design invariant. The main contribution of our approach is that
the behavioral models are specified using a declarative formalism which renders the
models machine-verifiable but also understandable to developers. More specifically,
BEHAVE lets you specify a behavioral model of the invariant in terms of selective
high-level run-time events using temporal logic programming.
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Fault-Tolerance Abstractions in Ambient-Oriented Programming

Stijn Mostinckx

Ambient-oriented programming, exception handling,
asynchronous communication

smostinc@vub.ac.be

The far-reaching introduction of small, mobile and often dedicated computer
hardware in our everyday life has a significant impact on the development of distributed
systems. As these devices are becoming an integral part of our everyday environment,
it becomes ever more interesting to develop software that leverages the network formed
by these devices.

One of the key issues when developing such “ambient-oriented” software, is the
ability for it to cope with the inevitable failures encountered as devices go in and out
of communication range. Dealing with such failures requires a family of dedicated
abstractions offering transactional guarantees in a fleeting environment.

The Ambient-Oriented Exception Handling Model provides a basis from which
such advanced abstractions can be constructed.

Software Engineering Techniques for Data Sharing in a Mobile Network

Christophe Scholliers

Ambient computing, data replication, language design,
CRIME

cfscholl@vub.ac.be

Current-day applications for mobile phones and PDAs are often limited to
miniature versions of standard desktop applications such as browsers, calendar and word
processing applications. Only a fraction of the available applications allows the mobile
devices to interact directly with their environment. One of the reasons for this is that
even for the simplest interactions between mobile devices, the implementation needs
to deal with a lot of problems that are inherent to a pervasive computing environment
(e.g. frequent disconnections, dynamic discovery, etc.).

Last year, I have been involved in the development of (a concrete implementation
of) the Fact Space Model, an extension to the tuple space model which provides fine-
grained control over the effects of disconnections. Using a declarative language, every
device can specify how it will adjust its behavior in response to dynamic changes in
its environment. Currently, I am working on an extension of this model that allows
applications to work on shared and replicated data. The use of weak data replication
in a mobile environment ensures that there is no need to stop an ongoing application
when certain data cannot be synchronized.
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Modular Virtual Machines for Ambient Intelligence

Stijn Timbermont

Ambient intelligence, virtual machines, language
engineering

Stijn.Timbermont@vub.ac.be

In an Ambient Intelligent setting, various kinds of hardware are involved, each
with its own characteristics. To allow abstraction over the different devices, a standard
virtual machine approach is not feasible because it is not possible to abstract over all
the devices at the same time. Instead, each device will require an individually adapted
virtual machine.

This research proposes a new way to develop virtual machines for Ambient Intel-
ligence. Instead of manually modifying the virtual machine for of a particular device,
the virtual machine can be generated by composing reusable modules. The first step
is to determine the set of modules that can be used to build a virtual machine. The
next step is to find implementation and composition techniques that guarantee the
correctness and efficiency of the generated virtual machine.

Distributed Context-Dependent Adaptations

Jorge Vallejos

Context-oriented programming, ambient-oriented
programming, actors, layers, roles, symbiosis

jvallejo@vub.ac.be

Within the domain of Ambient Intelligence (AmI), my research focuses on
the capacity of software applications to adapt to their dynamically reconfigurable envi-
ronments. The main idea is to identify the properties of context-dependent adaptations
and establish a set of specific requirements of distribution for such adaptations, de-
rived from concrete AmI scenarios. In my research, I claim that context-dependent
adaptations occur dynamically and within a delimited scope of action. In addition,
these adaptations should be consistently combined with the default behaviour of the
application, and clearly modularised to avoid the entanglement between the adapta-
tions and the application behaviour. To also cope with the effects of distribution,
behavioural adaptations should take into account the context of all the applications
involved in an interaction, have an unambiguous scope of action even in the presence
of concurrent interactions, and finally protect the privacy of the interacting applica-
tions. Currently I investigate amongst others: - Context-dependent adaptations using
role-based models. - Rule-based systems for context reasoning and role selection. -
Role-based communications. - Combinations of actor and role models for the devel-
opment of context-dependent applications.
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Ambient References: Object Designation in Mobile Ad Hoc Networks

Tom Van Cutsem

Coordination abstractions, events, actors, concurrent
and distributed languages, AmbientTalk

tvcutsem@vub.ac.be

My research is part of the “ambient-oriented programming” research domain of the
Programming Technology Lab. In the context of my PhD research, I co-designed and devel-
oped the “ambient-oriented” programming language AmbientTalk/2. It is an object-oriented,
concurrent and distributed language designed specifically for writing applications for so-called
mobile ad hoc networks (MANETs). A MANET is a network composed of mobile devices that
communicate through wireless communication links. In such networks, where there is only in-
termittent connectivity between nodes and infrastructure is very scarce, traditional distributed
programming language abstractions do not scale. The goal of our research is to develop novel
distributed coordination abstractions that raise the level of abstraction for the programmer.

In particular, I am investigating how the classic abstraction of a remote object reference
(well-known in distributed object systems such as e.g. Java RMI) can be extended to be scal-
able in a MANET. We do this by reusing techniques developed for loosely-coupled event-driven
systems and by casting them in an object-oriented form. The concrete language abstractions
developed for my doctoral thesis are termed “ambient references”. They are an object-oriented
anonymous and asynchronous communication channel for many-to-many interactions between
objects in a wireless, mobile network.

Aside from ambient-oriented programming, my research interests include programming
language design in general, with a particular emphasis on computational reflection and object
composition abstractions.

Aspect-Oriented Workflow Patterns for Web Service Composition

Mathieu Braem

Aspect-oriented programming, workflow languages,
web service composition

mbraem@vub.ac.be

In current composition languages for web services, there is insufficient sup-
port to explicitly separate crosscutting concerns, which leads to compositions that are
hard to maintain or evolve. A similar problem in object-oriented languages is being
tackled by aspect-oriented programming, and some work has been started to apply
these techniques to web service composition languages as well. We identified some
key problems with these approaches and formulated some improvements on the current
work. We started implementing these features in Padus, an aspect-oriented language
to instrument WS-BPEL, the most well known language for web service composition.

In future work we plan to further investigate aspect-oriented programming in a
workflow context and aim to define an extension to generic workflow patterns, that can
in the end be mapped back to concrete languages, such as e.g. YAWL and WS-BPEL.
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Improving Language Facilities for the Deployment of Reusable Aspects

Bruno De Fraine

Aspect-oriented programming, language engineering,
software reuse, generic typing

Bruno.De.Fraine@vub.ac.be

In the AOSD community, there is an increasing interest in the development of
reusable implementations of typical crosscutting concerns, such as security, synchronization,
profiling, etc. To employ a reusable aspect in a concrete application, deployment logic has to
be written that specifies where and how to apply the new behavior, and how the interaction
with the base application and the other aspects in the system is organized. Although the
deployment logic might specify a crucial part of the application functionality, current AOP
approaches provide only inferior means for its specification. We identify a number of issues
regarding the reuse of deployments, their dynamic invocation and their integration with the
rest of the system.

The Eco AOP model addresses these shortcomings by organizing deployment logic as
procedures that employ different reusable building blocks of aspectual behavior as first-class
values. More concretely, this means that pointcuts, advices and combinations strategies are
passable and returnable as parameters to and from pieces of deployment logic, and that the
deployment logic can be dynamically invoked with these entities as runtime values. EcoSys
realizes the Eco model as Java AOP framework, and allows the development of deployment
logic as standard Java code. Contrary to other AOP frameworks, EcoSys exploits the Java 5
Generics feature to provide static type checking of deployments, similar to language-based AOP
approaches. As a byproduct of this research, a novel type system for the AOP pointcut/advice
mechanism is being developed.

Concept-Centric Coding

Dr. Dirk Deridder

Software evolution, domain modeling, flexible
architectures, meta-programming, software variability,

co-evolution

Dirk.Deridder@vub.ac.be

Concept-Centric Coding (C3) aims at providing programmer support to cope with
software evolution in an agile context. It prescribes to complement an application’s source code
with explicit knowledge about the application and its problem domain. This domain knowledge
is described in a concept graph, which is more than a mere ontology. In addition to the domain
concepts, it contains the source code entities of the application itself, thereby connecting the
application’s domain knowledge with its implementation, and keeping this link up to date when
the application evolves. Moreover the domain knowledge actively contributes to the runtime
functionality of the application. Hence it becomes possible to adapt an applications’ behavior
by modifying the corresponding domain concepts.

The ‘Concept to Code Browser’ (CoBro), is the core tool suite supporting the C3 ap-
proach. It is closely integrated with Smalltalk and the VisualWorks development environment.
Moreover it is implemented in symbiosis with Smalltalk allowing a programmer to transpar-
ently invoke and manipulate concepts as if they were plain Smalltalk objects. This enables
a non-obtrusive synergy between the concept level and the code level. Part of the power of
CoBro is realized by its (partial) metacircular implementation. In particular, CoBro itself is
implemented in terms of domain concepts using the C3 approach. Consequently, it can be
adapted, even at runtime, by changing its concepts, thus leading to a highly extensible and
flexible tool-base.
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High-Level Business Processes Monitoring, Measurement and Control

Oscar González

Business process management, domain-specific
languages, aspect-oriented programming, monitoring,

measurement, control

ogonzale@vub.ac.be

Aiming to improve their flexibility, companies organize themselves around (partially
automated) business processes, which facilitate the integration of human and technological
resources and manage the flow and control between them. In order to improve processes and
assure quality, it is important to install a monitoring activity. Even though several monitor-
ing solutions are already available, these approaches are typically implemented with low-level
mechanisms, which require specific knowledge about the process implementation that busi-
ness experts do not necessarily have. Furthermore, even for users with technical skills the
implementation of monitoring requirements remains a tedious and complex task because the
monitoring statements crosscut the executable specifications and involve information that is
not necessarily available in one specific location.

The main goal of this research is the definition of a high-level domain-specific language
for expressing monitoring, measurement and control specifications on business processes. The
language is targeted at experts that need to assess the quality of a business process. Therefore
we provide specialized abstractions at the domain level instead of at the code level. Among
others it contains constructs for gathering basic real time and historic process measurements,
for creating new high-quality concepts, and for applying control actions over the process
domain and monitoring domain. Eventually the goal is to support domain experts in the
creation of monitoring requirements without having to know the specifics of the underlying
implementation.

Workflows for Client/Server Based Computer Aided Engineering

Niels Joncheere

Aspect-oriented programming, computer aided
engineering, modularization, web services, workflow

njonchee@vub.ac.be

Computer aided engineering (CAE) deals with optimizing products through analysis
and simulation. For example, CAE is used for determining properties of physical objects based
on their design parameters (such as determining the maximum stress level of a bridge based
on the thickness of its beams). In CAE, engineers specify simulations by describing workflows
whose activities correspond to the application of certain algorithms on certain data sets. Each
workflow is typically executed a number of times with varying parameters in order to determine
which parameter values yield an optimal result. Although there are already languages available
for specifying such CAE workflows, they lack a number of important features, which mostly boil
down to a lack of separation of concerns: each workflow is a single monolithic specification,
with no support for modularizing sub-workflows or crosscutting concerns. They also lack
support for client/server scenarios in which algorithms are available to workflows as (web)
services.

The goal of our research is to design and implement a service based workflow system that
better addresses the requirements of the CAE community by providing a simple but powerful
modularization mechanism, which allows subdividing workflows in sub-workflows. These sub-
workflows can then be called from other workflows using block tasks, or can be attached
to workflows in an aspect-oriented way. Furthermore, we have identified which control flow,
resource and data patterns are of interest in the CAE context, and will design a language that
natively supports these patterns.
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Verification and Co-Evolution of Structural Regularities

Dr. Andy Kellens

Co-evolution, structural regularities, aspect-oriented
programming, tool support

Andy.Kellens@vub.ac.be

The topic of this research is the documentation, verification and co-evolution of
structural regularities in the source code of software. We put forward the model of Intensional
Views as a generic approach to document different kinds of structural regularities as well as
the interactions between such regularities. By checking conformance of these constraints with
respect to the source code, we can detect evolution conflicts and provide support for co-
evolving the documentation of the structural regularities and the source code of the system.
To provide support for this model of intensional views, we implemented IntensiVE, a tool suite
that extends the IDE of VisualWorks Smalltalk.

In order to illustrate the broad applicability of our approach, we documented a variety
of different types of structural regularities and assessed to which extent they are supported
by our model and tool suite. More specifically, our approach supports naming conventions,
coding conventions, programming idioms, design patterns, anti-patterns and framework doc-
umentation. Our work is also applicable in the context of aspect-oriented programming. We
showed that the fragile pointcut problem, an open evolution problem in the AOSD community,
is caused by the tight coupling of aspect-oriented programs with the structural regularities that
are prevalent in an application. To address this problem, we integrated our approach with an
aspect-language and demonstrated how this approach can alleviate the fragility of pointcuts.

Orchestration of Mobile Devices

Eline Philips

Ambient computing, service oriented architectures,
workflows

ephilips@vub.ac.be

My research has its roots in the field of ambient computing and more spe-
cific the coordination of ambient devices in a pervasive environment. The recent and
ongoing miniaturization of computational devices and the standardization of bluetooth
and wifi have caused a revolution in every day life of the western society. These co-
operating ambient devices, have characteristics which are significantly different from
conventional devices. For instance the connections in a MANET can not be assumed
stable and furthermore is the use of a centralized server practically impossible.

In the past, I was one of the developers of a logic coordination language CRIME,
which gives the user fine-grained control over the effects of disconnection. This lan-
guage has incorporated a set of primitives in the core of its design in order ease the
implementation of context aware applications. My current research investigates the
extension of the CRIME programming model in order to specify the orchestration be-
tween several mobile devices and is inspired by workflow languages.
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Executable Models for Constructing Extensible Workflow Applications

Mario Sánchez

Workflow languages, coordination models, separation
of concerns

marsanch@ssel.vub.ac.be

Workflow languages and applications are currently used in a lot of contexts where
there is a need to coordinate the work performed by humans or the execution of several
applications. The problem with current languages to describe workflows, is that each one has
certain limitations in its expressiveness and in its capacity to evolve. This creates problems
especially to maintain and introduce new requirements into some applications. Our work
is then directed towards the development of new models and tools to build very extensible
workflow-based applications.

Our proposal is based on three main ideas. The first one is that in workflows it is
possible to identify and separate concerns, in a similar way to what is done in aspect-oriented
programming; some sample concerns are Control, Time, Data and Resources. The second idea
is that these concerns can be implemented using extensible, executable models, which should
run in a synchronized way. The third idea is that the executable models can be implemented
using a coordination model based on synchronized state machines. The base element of this
coordination model is called an ‘open object’: it offers a synchronization mechanism based on
event passing and method calls, as well as several advantages towards extensibility. Following
these ideas, we are currently working on the detailed specification of the open objects’ structure
and behavior, and the definition of dedicated models to represent some of the more common
concerns

Inconsistency Management in Model-Driven Engineering

Dr. Ragnhild Van Der Straeten

Inconsistency management, model-driven engineering,
logic-based languages, software evolution

rvdstrae@vub.ac.be

One of the important challenges in current-day MDE is the ability to manage model
inconsistencies. When designing models in a collaborative and distributed setting, it is very
likely that inconsistencies in and between the models will arise because: (i) different models
may be developed in parallel by different persons; (ii) the interdependencies between models
may be poorly understood; (iii) the requirements may be unclear or ambiguous at an early
design stage; (iv) the models can be incomplete because some essential information is still
unknown. In a model evolution context the ability to deal with inconsistent models becomes
even more crucial as models are continuously subject to changes.

The global objective of this research is to develop an inconsistency management frame-
work for the definition, detection and handling of inconsistencies in the context of object-
oriented models with special focus on UML models. The precise definition and detection of
inconsistencies is enabled using declarative formalisms. Description Logics and graph trans-
formations have been investigated. Currently the focus of our research is on inconsistency
resolution. Different relations can exist between inconsistency resolutions. The nature of
these relations and the kind of application under construction can lead to different resolution
strategies. As a proof of concept we implement our framework called RACOoN (originally
implemented in the UML case-tool Poseidon) as an Eclipse plug-in.
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Platform Ontologies for the Model Driven Architecture

Dennis Wagelaar

Model-driven engineering/architecture, software
product lines, platform modeling, ambient intelligence

Dennis.Wagelaar@vub.ac.be

The Model-Driven Architecture (MDA) allows for the deployment of software ap-
plications on a variety of different platforms. The MDA models software in a platform-
independent model (PIM) that is transformed to a platform-specific model (PSM), given
a platform model (PM). Currently, models are transformed directly from PIM to PSM, with-
out using a platform model. The model transformations implicitly assume a platform model.
This makes it much easier to write model transformations, since one only has to deal with
the limited scope of targeting a single, assumed platform. It is unclear, however, whether a
model transformation can be used for other platforms. The only safe assumption is that each
targeted platform requires its own corresponding set of model transformations.

We propose a separate platform model, which can be used to automatically select and
configure a number of reusable model transformations for a given platform. This platform
model is expressed in OWL-DL. Platform constraints can be defined for each model trans-
formation. This way, the model transformations can be reused over a well-defined class of
platforms. Concrete platforms are modelled separately and refer to the same platform vocab-
ulary model. An automatic DL reasoner can be used to verify whether a concrete platform
satisfies the platform constraints of a model transformation. In addition, it can determine
which platform constraint is most platform-specific.

Multi-Step Concern Refinement

Andrés Yie

Model-driven engineering, software product lines,
aspect-oriented software development

ayiegarz@ssel.vub.ac.be

A Model-Driven Software Product Line (MD-SPL) uses metamodels, mod-
els, and transformations to create a family of products. These products are generated
from a high-level model (or business model), which is refined using a sequence of
model-to-model transformations. The sequence of transformations is a Model Refine-
ment Line (MRL). However, an MD-SPL must evolve to introduce new crosscutting
concerns, such as security or logging, in the generated applications. Since the MRL
transformations are fragile and complex, the original MRL must be preserved or reused
when the new concerns are added to the MD-SPL.

We propose an approach to add new crosscutting concerns to the applications
produced, while keeping the original MRL as unchanged as possible. This approach
adds a new MRL that refines a high-level model of the new concern. This concern
model is related with the application business model in the original MRL with a set
of pointcuts expressing the relationships among them. Afterwards, the concern model
refinement is performed in parallel with the original MRL. In every refinement step, the
application model, the concern model, and the pointcuts are refined. Finally, the low-
level application and concern models are composed, and the application is generated.
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