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Abstract

Software systems not only continue to grow more complex, but they are often
required to run on multiple platforms as well. Common personal computer
platforms are Microsoft Windows, Linux and Apple Mac OS X on a PowerPC
or x86 hardware architecture. Hand-held devices present another range of
platforms, such as Microsoft Windows Mobile, Qtopia/Embedix and Symbian
running on an ARM or RISC hardware architecture. Each of these platforms
look different from a software developer’s point of view and requires the devel-
opment of different software versions for each platform. This platform diversity
makes it increasingly difficult to maintain software that is portable to multi-
ple platforms. Software developers not only have to develop multiple software
versions, but they also have to keep these versions synchronised and consistent
in their common functionality.

In addition to this, platform technologies tend to evolve. When developing
software for an evolving platform, software developers have to take into account
that the users may use older versions of the platform. Developers may be
confronted with the fact that their software is no longer compatible with an
older version of the platform, because they do all their development and testing
on the latest version of the platform.

If the current range of platforms can already be considered diverse, the vi-
sion of Ambient Intelligence only amplifies this diversity. Ambient Intelligence
aims for a user-driven, service-based computing environment that includes per-
sonal devices as well as special-purpose embedded devices in the environment.
The hardware and software combinations in such devices can vary widely.

The Object Management Group has acknowledged the problem of platform
diversity by introducing the Model Driven Architecture (MDA). The MDA
is centred around the use of software models. The software models provide
a means to create partial, platform-independent software specifications that
make use of platform abstractions. These abstractions are refined to platform-
specific software models in a later stage of the development life cycle, using
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ii Abstract

model transformations. Currently, these model transformations implicitly as-
sume a target platform for the platform-specific models. If other platforms
must be targeted, new model transformations have to be created. This intro-
duces a considerable maintenance burden for each additional platform we want
to support.

It is possible to split up a model transformation into multiple refinement
transformation steps, each of which introduces some partial platform depen-
dencies into the software model. This makes it possible to reuse a refinement
transformation for other platforms. It is not clear when we can reuse a refine-
ment transformation, however, since the platform dependencies it introduces
are still implicit.

When combining multiple refinement transformations for a target platform,
most of the effort goes into checking that (1) the refinement transformations
work together and that (2) they are executed in the right order. It is an extra
burden to also (3) consider the platform dependencies that each refinement
transformation introduces. One approach is to test the generated software on
the target platform to tell if the software works on that platform. Testing
on each platform is a time-consuming activity, however, and may even leave
certain incompatibilities undetected until after deployment. Another approach
is to use an automated configuration process that enforces the satisfaction of
constraints, including platform dependency constraints. Such a configuration
process does not exist for the MDA today.

We propose to use an explicit platform model, which serves as a vocabu-
lary for describing platforms. This vocabulary is used as a basis to express
platform instances as well as platform dependencies. By explicitly specifying
the platform dependencies for each reusable refinement transformation, each
transformation can be guaranteed as valid for a well-defined class of platforms.
Because platform instances use the same platform model as a vocabulary, the
platform model enables us to determine which platforms satisfy which plat-
form dependencies. The platform model is expressed in the Web Ontology
Language (OWL), which is an extensible language for describing ontologies.
Ontologies are commonly used to represent domain knowledge and to provide
a community of users with a controlled vocabulary. We use the OWL DL
variant, which corresponds to description logic (DL) and allows us to apply
automatic reasoning.

We also propose a configuration process for the MDA that is based on
Software Product Lines (SPLs). Within the field of software engineering,
most research on configuration has been conducted by the SPL community.
SPLs integrate a number of software-intensive products that share a signifi-
cant amount of functionality. As such, any software that is developed using
the MDA approach can be considered as an SPL, since each platform-specific
software product shares significant functionality with other platform-specific
versions of that software product.



Samenvatting

Software systemen worden niet alleen steeds complexer, maar worden ook vaak
vereist om op meerdere platformen te werken. Veel voorkomende personal
computer platformen zijn Microsoft Windows, Linux en Apple Mac OS X op
een PowerPC of x86 hardware architectuur. Draagbare apparaten vormen een
bijkomend scala aan platformen, zoals Microsoft Windows Mobile, Qtopie/Em-
bedix en Symbian draaiende op een ARM of RISC architectuur. Elk van deze
platformen ziet er anders uit voor een software-ontwikkelaar en vereist de on-
twikkeling van verschillende software-versies voor ieder platform. Deze diver-
siteit in platformen maakt het steeds moeilijker om software te onderhouden
die overdraagbaar is naar meerdere platformen. Software-ontwikkelaars dienen
niet alleen meerdere software-versies te ontwikkelen, maar zij moeten deze ver-
sies ook gesynchroniseerd en consistent houden wat hun gemeenschappelijke
functionaliteit betreft.

Daarbij komt nog dat platform-technologieën vaak evolueren. Wanneer
software-ontwikkelaars software schrijven voor een evoluerend platform, moe-
ten zij er rekening mee houden dat de gebruikers weleens oudere versies van
dat platform kunnen gebruiken. De ontwikkelaars kunnen hierbij geconfron-
teerd worden met het feit dat hun software niet langer compatibel is met een
oudere versie van het platform, omdat het ontwikkelen en testen plaatsvindt
op de nieuwste versie van het platform.

Als we het huidige scala aan platformen al divers vinden, dan wordt deze di-
versiteit alleen maar versterkt door de visie van Ambient Intelligence. Ambient
Intelligence doelt op een door de gebruiker gedreven en op diensten gebaseerde
computeromgeving, welke zowel persoonlijke apparaten als gespecialiseerde in-
gebouwde apparaten omvat. De hardware- en softwarecombinaties in zulke
apparaten kunnen sterk variëren.

De Object Management Group heeft het probleem van platform-diversiteit
onderkend door de introductie van de Model Driven Architecture (MDA). De
MDA is opgebouwd rond het gebruik van softwaremodellen. De softwaremod-
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iv Samenvatting

ellen bieden een middel om partiële, platform-onafhankelijke software specifi-
caties te maken die gebruik maken van platform-abstracties. Deze abstracties
worden verfijnd naar platform-specifieke softwaremodellen in een later stadium
van de software-ontwikkelingscyclus met behulp van model transformaties. Op
dit moment gaan deze transformaties impliciet uit van een doelplatform voor
de platform-specifieke modellen. Als er andere platformen ondersteund dienen
te worden, moeten er nieuwe modeltransformaties gemaakt worden. Dit in-
troduceert een aanzienlijke onderhoudslast voor ieder extra platform dat we
willen ondersteunen.

Het is mogelijk om een modeltransformatie op te splitsen in meerdere stap-
pen van verfijningstransformaties, waarbij elke stap enkele partiële platform-
afhankelijkheden in het softwaremodel introduceert. Dit maakt het mogelijk
om een verfijningstransformatie te hergebruiken voor andere platformen. Het
is echter niet duidelijk wanneer we een verfijningstransformatie kunnen herge-
bruiken, omdat de platform-afhankelijkheden die zij introduceert nog steeds
impliciet zijn.

Wanneer er meerdere verfijningstransformaties gecombineerd worden voor
een doelplatform, gaat de meeste inspanning naar het controleren dat (1) de
verfijningstransformaties samenwerken en dat (2) zij in de juiste volgorde wor-
den uitgevoerd. Het is een extra last om ook (3) de platform-afhankelijkheden
te beschouwen die elke verfijningstransformatie introduceert. Een mogelijke
benadering is om de gegenereerde software te testen op het doelplatform om
erachter te komen of de software werkt op dat platform. Het testen op elk
platform is echter een tijdrovende bezigheid en laat mogelijk zelfs bepaalde
incompatibiliteiten onopgemerkt tot na de installatie. Een andere benadering
is om een geautomatiseerd configuratieproces te gebruiken dat het voldoen aan
bepaalde beperkingen afdwingt, inclusief platform-afhankelijkheidsbeperkingen.
Een dergelijk configuratieproces bestaat vandaag de dag nog niet voor de MDA.

Wij stellen voor om een expliciet platform-model te gebruiken, welke dient
als vocabulaire voor het beschrijven van platformen. Dit vocabulaire wordt
gebruikt als een basis voor het beschrijven van zowel platform-instanties als
platform-afhankelijkheden. Door het expliciet beschrijven van de platform-
afhankelijkheden voor elke herbruikbare verfijningstransformatie kan elke trans-
formatie als geldig worden gegarandeerd voor een welgedefiniëerde klasse van
platformen. Omdat platform-instanties hetzelfde platform-model gebruiken als
vocabulaire, stelt het platform-model ons in staat om te bepalen welke plat-
formen aan welke platform-afhankelijkheden voldoen. Het platform-model is
uitgedrukt in de Web Ontology Language (OWL), wat een uitbreidbare taal
is voor het beschrijven van ontologieën. Wij gebruiken de OWL DL variant,
welke overeenkomt met description logic (DL) en ons toestaat om automatische
redenering toe te passen.

Wij stellen ook een configuratieproces voor de MDA voor dat gebaseerd is
op Software Product Lines (SPLs). Binnen het veld van software engineering is
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het meeste onderzoek naar configuratie uitgevoerd door de SPL-gemeenschap.
SPLs integreren een aantal software-intensieve producten die een aanzienlijke
hoeveelheid aan functionaliteit gemeen hebben. Als zodanig kan alle software
die ontwikkeld is met behulp van de MDA beschouwd worden als een SPL,
omdat elk platform-specifiek softwareproduct een aanzienlijke hoeveelheid aan
functionaliteit gemeen heeft met andere platform-specifieke versies van dat
softwareproduct.
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gehouden hebben nadat ik naar België verhuisd ben. Zelfs na elkaar gedurende
lange tijd niet gezien te hebben, ben ik nog niet vergeten. Ik zou graag Joost
in het bijzonder bedanken voor het feit dat hij zelfs de tijd heeft gevonden om
mijn proefschrift na te lezen.
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7.11 Import an ontology from a repository . . . . . . . . . . . . . . . 129
7.12 Add a new ontology repository . . . . . . . . . . . . . . . . . . . 130
7.13 Select repository type . . . . . . . . . . . . . . . . . . . . . . . . 131
7.14 Create new repository . . . . . . . . . . . . . . . . . . . . . . . 132
7.15 Select ontology to import . . . . . . . . . . . . . . . . . . . . . . 133
7.16 Review the added ontology prefixes . . . . . . . . . . . . . . . . 133
7.17 Adding a restriction to a JRE . . . . . . . . . . . . . . . . . . . 134
7.18 Description of BasicJRE . . . . . . . . . . . . . . . . . . . . . . 135
7.19 Description of InstantMessengerPlatform . . . . . . . . . . . . . 136
7.20 Compatibility report . . . . . . . . . . . . . . . . . . . . . . . . 137
7.21 Adding a product line meta-model . . . . . . . . . . . . . . . . 138
7.22 Selecting product line meta-models . . . . . . . . . . . . . . . . 139
7.23 Classify taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 140
7.24 Extra URI mappings for EMF plugins . . . . . . . . . . . . . . 141
7.25 New child options for instant messenger configuration . . . . . . 142
7.26 Profile against concrete platform . . . . . . . . . . . . . . . . . . 143
7.27 Select a platform specification to profile against . . . . . . . . . 144
7.28 Profiled new child options for instant messenger configuration . 145
7.29 Validation result of an instant messenger configuration . . . . . 146
7.30 Adding a product configuration model . . . . . . . . . . . . . . 147
7.31 Selecting product line configuration models . . . . . . . . . . . . 148
7.32 The ordered Platformkit Model for instant messenger deployment148
7.33 Classify taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 149
7.34 Select a platform specification to validate against . . . . . . . . 150
7.35 Validate result . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
7.36 Deployment folder for the instant messenger product line . . . . 151





List of Tables

2.1 Available model transformations . . . . . . . . . . . . . . . . . . 45

6.1 Configuration language meta-model annotations . . . . . . . . . 106

xxi





Chapter 1

Introduction

1.1 Problem Statement

Today’s software systems not only continue to grow more complex, but they
are often required to run on multiple platforms as well. By platform, we re-
fer to the hardware and software combination on top of which our software
runs. Common personal computer platforms are Microsoft Windows, Linux
and Apple Mac OS X on a PowerPC or x86 hardware architecture. Hand-held
devices present another range of platforms, such as Microsoft Windows Mobile,
Qtopia/Embedix and Symbian running on an ARM or RISC hardware archi-
tecture. Each of these platforms looks different from a software developer’s
point of view and requires the development of different software versions for
each platform.

In the face of this platform diversity, it becomes increasingly difficult to
maintain software that is portable to multiple platforms. Software developers
not only have to develop multiple software versions, but they also have to keep
these versions synchronised and consistent in their common functionality. Let’s
take Skype as an example, where the software developers have failed at keeping
the functionality of their Windows, Mac and Linux versions in sync. The
Windows version has all the latest features and, whereas the Mac version at
least supports webcam, the Linux version has really fallen behind in the amount
of provided features. Skype for Linux comes without webcam support and the
developers are still working on a stable audio subsystem. The way that audio
is accessed on Windows, Mac and Linux platforms is already so different, that
there is no time left to address the differences in webcam access. The Skype
developers are still far braver than others, since most software developers take
the easy way out: they develop for one platform only. The problem is then
simply passed on to the users who have to choose between platform X or Y,
after which they are effectively locked into that platform.

Even if we look at a technology like Java, which was meant to overcome

1



2 Chapter 1. Introduction

platform differences (“Write Once, Run Anywhere”), we find that multiple
Java versions exist today. Each of these Java versions are tailored towards
specific usage scenarios and computing devices. To name a few: J2SE is the
standard edition that is meant for desktop and laptop computers, J2EE is the
enterprise edition that is meant for running server-side applications and J2ME
is the mobile edition that is meant for resource-constrained and mobile devices.
J2ME in turn is split up in separate versions for mobile phones, called Mobile
Information Device Profile (MIDP)1, and for PDAs, called Personal Profile
(PP)2.

The main difference between these Java versions lies in the libraries that
make up the application programming interface (API). The API of J2ME
MIDP for mobile phones is typically a stripped down version of the standard
J2SE API. Functionality that is resource intensive and functionality that is not
provided by the underlying platform is taken out of the API. New API elements
are also added to J2ME MIDP to support functionality that is only relevant
for mobile devices. Java reflection and the TCP/IP networking layer, for ex-
ample, have been stripped from J2ME MIDP; Java reflection is too resource
intensive and the TCP/IP networking layer is not (completely) available in the
underlying operating system. In return, a special J2ME networking layer that
can deal with limited TCP/IP networking has been added.

In addition to this, platform technologies tend to evolve. This evolution
may involve just extending the API, but it can also involve an update of the
programming language itself. In the case of Java, the language specification
has been extended in J2SE 1.4 with assertions [GJJB00] and in J2SE 5 with
generics and annotations [GJJB05]. When developing software for an evolving
platform, software developers have to take into account that the users may use
older versions of the platform. Developers may be confronted with the fact that
their software is no longer compatible with an older version of the platform,
because they do all their development and testing on the latest version of the
platform.

If the current range of platforms can already be considered diverse, the
vision of Ambient Intelligence, put forward by the Information Society Tech-
nologies Advisory Group (ISTAG) [DBS+01], only amplifies this diversity. Am-
bient Intelligence, or AmI , aims for a user-driven, service-based computing en-
vironment that includes personal devices as well as special-purpose embedded
devices in the environment. The hardware and software combinations in such
devices can vary widely3. It is also in such personal devices that another limi-
tation of Java becomes apparent: the scope of Java as a platform abstraction
layer is no longer complete. Deployment methods not only vary between dif-

1http://java.sun.com/products/midp/
2http://java.sun.com/products/personalprofile/
3http://www.comp.nus.edu.sg/∼damithch/df/device-fragmentation.htm

http://java.sun.com/products/midp/
http://java.sun.com/products/personalprofile/
http://www.comp.nus.edu.sg/~damithch/df/device-fragmentation.htm
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ferent PDAs and mobile phones, but also between different network operators
for the same mobile phone.

We have discussed how the Java technology often falls short in solving the
platform diversity problem. Java is an example of a platform abstraction layer
based on a virtual machine, where the software that runs on top of Java doesn’t
know about the details of the underlying platform. Other kinds of platform
abstraction layers are script interpreters, standard libraries and frameworks.
Regardless of the kind of abstraction layer, an abstraction layer solution to
platform diversity will always be limited in the way that we have described
for the Java technology. The causes of these limitations can be summarised as
follows:

• Unreconcilable differences in underlying platform.

• Evolution of the platform abstraction layer.

• Scope of the platform abstraction layer.

In contrast to platform abstraction layers, which form an adapter between
the software and the underlying platform, are solutions that adapt the soft-
ware itself to the target platform. These solutions range from generative ap-
proaches that transform the software beforehand to reflective approaches that
will react to platform differences at run-time. Each of these approaches have
strengths and weaknesses. Generative approaches typically can’t deal with
post-deployment changes in the platform. Reflective approaches inevitably
have some overhead in doing run-time platform checks and providing code
that may never be executed on the target platform. In this dissertation, we
will focus on a generative approach. We will discuss in chapter 8 how our
thesis relates to reflective approaches.

The Object Management Group has acknowledged the problem of platform
diversity by introducing the Model Driven Architecture (MDA). The MDA
allows for “separating the specification of the operation of a system from the
details of the way that system uses the capabilities of its platform.” [MM03]
and is centred around the use of software models. The software models provide
a means to create partial, platform-independent software specifications that
make use of platform abstractions. These abstractions are refined to platform-
specific specifications in a later stage of the development lifecycle. The next
subsection discusses the MDA in more detail.

1.1.1 Model Driven Architecture

The Model Driven Architecture is based on a pattern in which a Platform
Independent Model (PIM) is transformed to a Platform Specific Model (PSM)
(see also Fig. 1.1). The software is initially modelled in a PIM, which only



4 Chapter 1. Introduction

contains elements that are common to all targeted platforms. A PIM often
uses high-level abstractions that are later refined to an implementation in the
PSM. This PIM-to-PSM refinement takes the form of model transformation in
the MDA. This transformation step can take additional input. Fig. 1.1 shows
this extra input as a question mark to emphasise that no special requirements
exist for this extra input. The MDA suggests that this extra input can be in
the form of a Platform Model (PM). In the MDA, there can be multiple PIM-
to-PSM transformation steps, as each PSM can serve as a PIM at a lower level
of abstraction. The chain of PIM-to-PSM transformations usually terminates
with a transformation to executable code.

PIM ?

PSM

Transformation

Figure 1.1: MDA pattern

Model transformations use meta-models as an additional input, as shown
in Fig. 1.2. A meta-model describes the types of elements that can occur
in a model through meta-classes . “Class”, “Operation” and “UseCase”, for
example, are UML meta-classes. Instances of those meta-classes can occur in
UML models. Meta-classes are similar to normal, object-oriented classes in
that they can inherit from each other and they can have properties. A model
conforms to a meta-model if it correctly uses the meta-classes described by
that meta-model. The input meta-model in Fig. 1.2 provides a hierarchy of
meta-classes that tells the model transformation when to trigger on a source
element. The output meta-model provides the model transformation with the
rules that the output model should follow.

In current MDA practise, most PIMs are transformed directly to PSMs,
without using any extra input such as a platform model (see also Fig. 1.3).
Tools like AndroMDA4 and ArcStyler5, for example, use the notion of car-
tridges to represent a particular PIM-to-PSM transformation. The model
transformations implicitly assume a platform. This makes it much easier to
write model transformations, since one only has to deal with the limited scope

4http://www.andromda.org/
5http://www.arcstyler.com/

http://www.andromda.org/
http://www.arcstyler.com/
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Model
Transformation

Input Model

Input Meta-Model

Output Model

Output Meta-Model

conforms to conforms to

Figure 1.2: Model transformation pattern

of targeting a single, assumed platform. It is unclear, however, whether a model
transformation can be used for other platforms than the one for which it was
written. The only safe assumption is that each targeted platform requires its
own dedicated set of model transformations.

PIM ?

PSM
1

Transformation
1

Transformation
2

Transformation
3

PSM
2

PSM
3

Figure 1.3: MDA practise

Another approach to MDA that applied often is shown in Fig. 1.4. In this
approach, the PIM is absent and one PSM serves as the input for transforma-
tions that generate other PSMs. This PSM-to-PSM approach occurs mostly
in situations where one has to translate from one language/technology to an-
other, such as translating from Rational Rose to UML2 Tools and from UML
to OWL6, but also to translate from one Java API to another [CDZ04].

In reality, this means that only a relatively small number of “general”
platforms can be targeted, such as Java. As has been explained before, Java
is actually a family of platforms, ranging from J2ME to J2EE. On top of this
generalisation, specific platform assumptions are often made. In the case of the

6http://www.eclipse.org/m2m/atl/usecases/

http://www.eclipse.org/m2m/atl/usecases/
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PSM
1

Transformation
2

Transformation
3

PSM
2

PSM
3

Figure 1.4: Alternative MDA practise

Java platform family, there is not enough commonality between the different
Java versions to come up with a complete platform to build on. For example,
the API for graphical user interfaces (GUIs) is radically different on the mobile
phone J2ME MIDP than it is on the standard J2SE; there is no common
Java API for GUIs. For the purpose of targeting a “complete” platform, an
assumption for a specific GUI library is made, thereby reducing the number
of supported Java platforms. This way of “streamlining” the PIM-to-PSM
transformations to a single, assumed Java platform is used a lot to escape the
problem of maintaining model transformations for multiple platforms.

When we look at the nature of PIM-to-PSM transformations directly, it
becomes clear that the single Java platform approach is a very bad solution
indeed. Most of these transformations consist of several smaller refinement
steps that, when considered individually, are reusable over multiple platforms.
It is only the combination of refinement steps that limits their applicability to
one specific platform. For example, one refinement step could target all Java
2 platforms by transforming the types of UML Properties [OMG05c] with a
multiplicity greater than one to the Java 2 Collections framework. The Java 2
Collections framework is included in several Java platforms, including J2ME
Personal Profile and J2SE. If this refinement step is applied in combination
with a refinement step that targets the Java Swing graphical user interface
framework, the target platform is already limited to J2SE. In order to reuse
individual refinement steps that occur in a transformation, each refinement
step must be modularised in its own model transformation. One can then reuse
those refinement transformations in different transformation configurations, as
is done in Stepwise Refinement [BSR04].

If the PIM-to-PSM transformations are split up in multiple, step-wise re-
finement transformations, then the bulk of the maintenance problem moves
to the transformation configuration. Software developers must keep track of
which refinement transformations must be applied to target a specific plat-
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form, and in which order they must be applied. An increasing number of
MDA practitioners apply workflow scripts to specify which PIM-to-PSM re-
finement transformations they want to apply and in which order78. Such a
workflow script can take the form of an Ant build script9, which is a Makefile
equivalent for Java.

The MDA picture then changes to what is shown in Fig. 1.5. Each con-
figuration of refinement transformations is represented by a separate build
script. The execution of the build scripts results in a separate PSM for each of
those build scripts. Refinement transformations can now be reused in multiple
configurations, targeting multiple platforms. While these separate refinement
transformations lay the basis for lifting the platform maintenance burden, they
do not solve our initial problem. It is still unclear whether a refinement trans-
formation can be used for other platforms than the one for which it was written,
since all platform dependencies are still implicit.

PIM

PSM
1

UML2Accessors
UML2Observer

UML2Applet
...

TransformationsRefinement
Transformations

executes
selection of

Build script
1

___________
   _________
   _________
___________

PSM
2

PSM
3

Figure 1.5: MDA improved

As the software developer puts the build script together that executes the
refinement transformations, most of the effort goes into checking that (1) the
refinement transformations work together and that (2) they are executed in the
right order [MTR05]. It is an extra burden to also (3) consider the platform
dependencies that each refinement transformation introduces. One approach
is to test the generated software on the target platform to tell if the software
works on that platform. Testing on each platform is a time-consuming activity,
however, and may even leave certain incompatibilities undetected until after

7http://www.openarchitectureware.org/
8http://wiki.eclipse.org/Modeling Workflow Engine (MWE)
9http://wiki.eclipse.org/index.php/AM3 Ant Tasks

http://www.openarchitectureware.org/
http://wiki.eclipse.org/Modeling_Workflow_Engine_(MWE)
http://wiki.eclipse.org/index.php/AM3_Ant_Tasks
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deployment. Another approach is to use an automated configuration process
that enforces the satisfaction of constraints, including platform dependency
constraints. Such a configuration process does not exist for the MDA today.

1.2 Research Objective

The problem of platform diversity is a very broad one. Solutions to the problem
range from standard libraries that offer a unified API, such as the C standard
library10, to virtual machines that offer a unified binary format, such as the
Java virtual machine. As we have previously illustrated, these abstraction
layer solutions often fall short of solving the platform diversity problem.

The MDA offers solutions for dealing with platform diversity. It achieves
this by abstracting from specific platforms in the PIM, followed by – alternative
– transformations that refine the PIM into a PSM. The MDA suggests that
multiple, step-wise refinement transformations are used to generate a PSM.
These refinement transformations are often reusable over multiple platforms.

We don’t know, however, when we can – and when we cannot – reuse a
PIM-to-PSM refinement transformation for another platform than the one for
which it was written. Each refinement transformation typically introduces
certain platform dependencies in the PSM, but these platform dependencies
remain implicit to this day (see Fig. 1.6). It is our objective to make these
platform dependencies explicit, so that we may reason about them. We plan
to achieve this objective in several stages:

PIM

PSM
1

UML2Accessors
UML2Observer

UML2Applet
...

TransformationsRefinement
Transformations

executes
selection of

Build script
1

___________
   _________
   _________
___________

PSM
2

PSM
3

Configures?

Platform
dependencies?

Figure 1.6: Integrating platform dependencies

10http://en.wikipedia.org/wiki/C standard library

http://en.wikipedia.org/wiki/C_standard_library
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• Build a body of explicit domain knowledge that describes what a platform
is and extend this domain knowledge for the family of Java platforms.

• Develop a method to describe platform instances based on this platform
domain knowledge.

• Develop a method to describe platform dependencies based on this plat-
form domain knowledge. Descriptions of platform dependencies must
remain valid even if the targeted platforms evolve.

• Develop a method to check whether platform dependencies are satisfied
by platform instances.

Explicit platform dependencies are only useful if they can be enforced dur-
ing the configuration of PIM-to-PSM refinement transformations, as shown
in Fig. 1.6. As the MDA offers no process for the configuration of step-wise
PIM-to-PSM refinement transformations, our second objective is to introduce
a configuration process with automated support for platform dependencies.
This must result in a framework for managing platform dependencies for the
MDA that:

• improves the maintainability of a PIM-to-PSM transformation configu-
ration by enabling safe reuse of individual refinement transformations in
such a configuration,

• assists in finding the most appropriate PIM-to-PSM transformation for
a specific platform from a number of alternatives,

• integrates with existing software development technologies, in particular
the software development technologies that target Java platforms.

The thesis statement of this dissertation can be summarised as:

In order to deal with platform diversity, we believe that (1) plat-
form domain knowledge must be made explicit. By making
this knowledge explicit, we can (2) reason about the extent of
platform dependencies with regard to platform instances as
well as (3) compare appropriateness of alternative refinement
transformations and (4) enforce a safe configuration of re-
finement transformations via their introduced platform de-
pendencies.



10 Chapter 1. Introduction

1.3 Approach

1.3.1 Explicit Platform Models

We propose to use an explicit platform model, which serves as an ontology for
describing platforms. This ontology is used as a basis to express platform in-
stances as well as platform dependencies. By explicitly specifying the platform
dependencies for each reusable model transformation, each transformation can
be guaranteed as valid for a well-defined class of platforms. Because platform
instances use the same platform model as an ontology, the platform model
enables us to determine which platforms satisfy which platform dependencies.
It is expressed in the Web Ontology Language (OWL) [SWM04], which is an
extensible language for describing ontologies. Ontologies are commonly used
to represent domain knowledge and to provide a community of users with a
controlled vocabulary. We use the OWL DL variant, which corresponds to
description logic (DL) [BCM+03] and allows us to apply automatic reasoning.
We represent platform dependencies in OWL as classes. The representation of
a platform dependency is called a platform dependency constraint . Consider,
for example, the “JavaAWTPlatform” platform dependency constraint shown
in Fig. 1.7.

Platform

JavaAWTPlatform

isa = necessary

≡ ∃ providesSoftware JavaAWTLibrary = necessary-and-sufficient

Figure 1.7: Example platform dependency

“JavaAWTPlatform” is represented as an OWL class with a necessary con-
straint as well as a necessary-and-sufficient constraint. Whereas it is necessary
that each “JavaAWTPlatform” is a “Platform”, being a “Platform” is not suffi-
cient for also being a “JavaAWTPlatform”. Providing the “JavaAWTLibrary”
software, however, is necessary-and-sufficient for being a “JavaAWTPlatform”.
The “JavaAWTPlatform” constraint can be checked against OWL instances
that represent platform instances. Each OWL instance – or individual – that
satisfies the conditions of the “JavaAWTPlatform” class can be considered as
an instance of that class. Each platform instance representation that is an in-
stance of a platform dependency constraint, satisfies that platform dependency
constraint.

Our platform model is not monolithic, but is divided into a hierarchy of
modules. Fig. 1.8 shows how the platform model is organised. The central
part of the platform model is made up of several “vocabulary ontologies”,
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where the word “vocabulary” refers to the fact that the domain concepts are
all introduced in these ontologies. The main Platform vocabulary ontology
describes the general concept of Platform and its parts. The Java vocabulary
ontology extends the Platform ontology for the domain of Java platforms. The
Java platform ontology is in turn extended by several vocabulary ontologies
that describe concrete Java variants: JDK 1.1, J2SE 1.2, J2ME PP 1.0, etc.
Platform dependency constraints are expressed in terms of these vocabulary
ontologies, while they are stored in a separate OWL ontology. This separate
OWL ontology is not considered to be a vocabulary, since it expresses only
platform dependency constraints rather than platform domain concepts.

Platform
vocabulary
ontology

Java
vocabulary
ontology

JDK 1.1
vocabulary
ontology

J2SE 1.2
vocabulary
ontology

J2ME PP 1.0
vocabulary
ontology

Platform
constraint
ontology

Platform
instance
ontology

Figure 1.8: Platform model overview

Platform instances are also modelled as a separate OWL ontology and refer
to the same platform vocabulary ontologies as the platform dependency con-
straints. An automatic DL reasoner, such as Racer [MH03], can be used to ver-
ify whether a platform instance satisfies the platform dependency constraints
of a model transformation. In addition, it can determine which platform de-
pendency constraint is most specific and hence forms the closest match to a
platform instance. This allows for optimisation towards a platform instance
by automatically selecting the optimal transformations for a given platform.

The explicit platform dependency constraints for each model transforma-
tion also make it possible to automatically derive the overall platform con-
straints for a configuration of transformations. This allows us to verify which
build script (see Fig. 1.5) is most-specific and valid for a given platform. What
is left is the integration of our platform model with a configuration approach
for the MDA. That way, we can leverage the platform dependency information
during the configuration process.
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1.3.2 Platform-Driven Configuration

Configuration is a complex topic that has already been widely researched.
Within the field of software engineering, most research on configuration has
been conducted by the Software Product Line (SPL) [CN01] community. SPLs
are concerned with leveraging the commonalities between related software
products. They integrate a number of software-intensive products that share
a significant amount of functionality. As such, any software that is developed
using the MDA approach can be considered as an SPL, since each platform-
specific software product shares significant functionality with other platform-
specific versions of that software product. This shared functionality is typically
specified in the PIM. In [Bos06], Bosch also argues that SPLs have been espe-
cially successful in the area of mobile and embedded devices, in which platform
diversity is the rule rather than the exception. This relationship between the
MDA and SPLs allows us to build on the configuration technology used in SPLs
for the configuration of our PIM-to-PSM refinement transformations. When-
ever the MDA and SPL technology are used in combination, we will speak of
MDA-based SPLs .

In contemporary SPL practise, the principles of SPLs have been extrapo-
lated to shift the bulk of the engineering effort to the product line’s reusable
assets [Kru06]. The effort for deriving software products from these assets is
reduced to creating a Product Model that contains all configuration informa-
tion for that product. The product line’s infrastructure includes a generator
(“SPL Configurator”) that generates the product’s implementation from the
Product Model, as shown in Fig. 1.9a. In Generative Programming [CE00],
Product Models are often expressed in terms of a Domain-Specific Language
(DSL) – or a Domain-Specific Modelling Language (DSML) [LBM+01][TR03].
DSMLs are a specific kind of DSL that use meta-models as a language defi-
nition formalism. We have explained previously how PIMs and PSMs in the
MDA also have meta-models, which are used by the PIM-to-PSM refinement
transformations.

SPL  
Configurator  

Variation Points

Core Asset 
N

Variation Points

Core Asset 
N

Variation Points

Core Asset 
N

Product Models

Product A

Product B

Product M

MDA  
Configurator  

Refinement
Transformations

Configuration Models

Build script A

Build script B

Build script M

Figure 1.9: (a) Software product line configurator and (b) MDA configurator
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In the MDA world, the DSML for Product Models can take the form of
a configuration language that can express configurations of PIM-to-PSM re-
finement transformations. The “SPL Configurator” part of the SPL’s infras-
tructure (see Fig. 1.9a) is normally used to generate the SPL’s products, but
it can also be used to generate the build script that was shown in Fig. 1.6.
The SPL pattern then changes to what is shown in Fig. 1.9b. A number of
refinement transformations are selected in a configuration model. The “MDA
Configurator” then takes these configuration models as input and generates
build scripts that invoke the selected refinement transformations.

The “MDA Configurator” itself can be implemented as a model transfor-
mation, as shown in Fig. 1.10, provided that we have a meta-model for our
configuration language as well as our build script language. We can even use
the same model transformation technology for PIM-to-PSM refinement trans-
formations and the “configuration-to-build-script” transformation.

Model
Transformation

Configuration Model

Configuration Language
Meta-Model

Script Language
Meta-Model

conforms to

conforms to

Build script
___________
   _________
   _________
___________

Figure 1.10: Software product line generator transformation

In order to integrate our platform models into a software development pro-
cess based on MDA and SPL, we propose to represent all product configuration
rules – including alternative model transformations – inside a configuration lan-
guage meta-model. Several meta-classes in this meta-model are then annotated
with references to platform dependency constraints. The annotated configura-
tion language meta-model can be used to determine the platform dependency
constraints of each configuration model.



14 Chapter 1. Introduction

1.4 Contributions

• A common platform domain model
We present how OWL-DL can be used to define a general plat-
form model that serves as a common ontology for specific plat-
form sub-domains. This work has been presented in [PVW+04],
[Wag05] and [WJ05]. We also present how the general plat-
form model can be extended for the platform sub-domain of Java
Runtime Environments (JREs). This work has been presented
in [Wag05], [WJ05] and [WV07].

• A method for describing platform dependencies and
platform instances
We present how platform dependency constraints and platform
instances can be described, based on the common platform model
and extensions. The platform dependencies can be compared
against platform instances to check if they are satisfied. In
addition, we can determine which platform dependencies are
more specific than other platform dependencies and form a closer
match to the targeted platform. This work has been presented
in [Wag05], [WJ05] and [WV07].

• A framework for platform dependency management
We present how the platform model can be integrated in a soft-
ware development process based on the MDA and SPLs. The
relationship between the MDA and SPLs is explored as part of
this work and a common configuration approach based on DSMLs
is used. This work has been presented in [WV06] and [WV07].

• A framework for platform-driven optimisation
We present how platform dependencies can be used as the basis
for selecting optimal model transformations (or SPL features).
In addition, we present how this can be extrapolated for the
selection of optimal configurations. This work has been described
in [Wag05], [WJ05] and [WV07].
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• A case study that applies the explicit platform model in
an MDA/SPL setting
We have developed a non-trivial case study of a cross-platform
Instant Messaging client that demonstrates the merits and lim-
itations of our approach. The case study is available at http:

//ssel.vub.ac.be/ssel/research:mdd:casestudies and is used
in [Wag05], [WJ05] and [WV07].

• Tool support
We have developed a tool, named PlatformKit , that implements
platform dependency management and platform-driven optimisa-
tion based on the Eclipse Modeling Framework (EMF) [BSM+03].
The PlatformKit tool is available at http://ssel.vub.ac.be/

ssel/research:mdd:platformkit and is described in [WV07]. In
addition, we have developed the Jar2UML tool that reverse en-
gineers Java class libaries to UML models. Those UML models
are used by PlatformKit to determine compatibility between dif-
ferent Java platforms. Jar2UML is available at http://ssel.

vub.ac.be/ssel/research:mdd:jar2uml. Finally, we have added
several improvements to the ATLAS Transformation Language
tool for the purpose of our case study. Those improvements have
been integrated back into the main ATL code, which is available
at http://www.eclipse.org/m2m/atl. One of the ATL improve-
ments, module superimposition, is described in [Wag08].

1.5 Dissertation structure

Fig. 1.11 shows an overview of the structure of this dissertation. Following this
chapter, a background chapter on the Model-Driven Architecture and a back-
ground chapter on ontologies provide the basis for our approach to platform
modelling. The next chapter discusses our platform modelling approach itself.
This is followed by a background chapter on Software Product Lines that pro-
vides the basis for our MDA configuration approach. Our MDA configuration
approach itself is discussed in the subsequent chapter. The next chapter dis-
cusses our tool support and the final chapter discusses the conclusions of this
dissertation. We will now give a detailed description of each chapter.

Chapter 2: Model-Driven Architecture This chapter gives an in-depth
explanation of the MDA. The main concepts of the MDA, such as model,

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:platformkit
http://ssel.vub.ac.be/ssel/research:mdd:platformkit
http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
http://www.eclipse.org/m2m/atl
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Figure 1.11: Dissertation structure overview

meta-model and model transformation, are discussed in detail. The dif-
ferent roles that models play within the MDA framework are discussed:
Computation Independent Model (CIM), Platform Independent Model
(PIM), Platform Specific Model (PSM) and Platform Model (PM). Meta-
models are discussed as a technical grounding for the definition of mod-
elling languages. The Meta Object Facility (MOF), which is a standard
meta-modelling language, is discussed in particular. In addition, the
Eclipse Modeling Framework is discussed, which is a meta-modelling
framework that is derived from MOF. The special position of UML
stereotypes within the MDA is also discussed, as they are partly situated
at the meta-model level. Finally, model transformations are discussed.
The standard MOF Query/View/Transformation (QVT) language is dis-
cussed, as well as the ATLAS Transformation Language (ATL), which is
a QVT predecessor. Examples are given of PIM-to-PSM transformations
written in ATL.

Chapter 3: Ontologies In this chapter, we explain what ontologies are. The
OWL ontology language is discussed in detail, as it forms the technical
basis for our platform model. Each relevant OWL language construct is
explained in detail. The consequences of using a particular OWL con-
struct for logic inference are discussed. Throughout the chapter, several
pitfalls of using OWL are identified and their theoretical basis is given.
Together with the previous chapter, this chapter forms the background
for the first half of this dissertation.

Chapter 4: Platform modelling The previous two chapters have discussed
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sufficient background information to explain the workings and use of our
platform model. This chapter starts with a motivation of the need for
explicit platform models. Platform ontologies are presented as a so-
lution for safe PIM-to-PSM transformation reuse as well as a solution
for decoupling platform dependency constraints from platform instance
descriptions. A common vocabulary for describing platforms is then in-
troduced, as well as an extension of this common vocabulary for the
domain of Java platforms. As the domain of Java platforms must be
described in a rather large and detailed ontology to be of any practical
use, an approach is presented for automatic generation of such ontolo-
gies. The automatic generation of ontologies ensures that the platform
vocabulary can be kept up to date with new Java platforms. The chap-
ter then goes on to discuss platform instance specifications as well as
platform dependency constraints. The platform dependency constraints
can be classified in a hierarchy and constraint satisfaction can be checked
against platform instances. Finally, the limitations of our platform mod-
elling approach are discussed. This chapter also concludes the first half
of this dissertation.

Chapter 5: Software Product Lines The second half of this dissertation
starts with an in-depth explanation of SPLs – a mode of software develop-
ment that includes the MDA. The different stages in SPL development
are discussed: Commonality and Variability Analysis (CVA), Feature
Modelling (FM) and Configuration. As SPL Configuration is the most
interesting part for our purposes, this topic is discussed in most detail.
A configuration approach using Domain-Specific Modelling Languages
(DSMLs) is presented in particular, as it connects best to MDA-based
product lines.

Chapter 6: Configuration of MDA-based product lines The previous
chapter lays the groundwork for this chapter, in which an integrated
configuration approach for MDA-based SPLs is presented. This chap-
ter starts with a discussion of interaction problems between PIM-to-
PSM transformations. The similarity with feature interactions in SPLs
is shown and justifies the application of SPL solutions to the MDA. The
difference between interaction constraints and platform dependency con-
straints is also discussed, showing the need to integrate platform depen-
dency constraints. An integration of platform constraints with domain-
specific configuration languages is presented. We then show how this
integration can be done in a loosely coupled way by using an intermedi-
ate “shadow” model. This “shadow” model can be used in two different
scenarios and allows the processes of these scenarios to remain very sim-
ilar (reuse of sub-processes). Finally, the limitations of our configuration
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approach are discussed.

Chapter 7: Tool support This chapter adds practise to our theory by pro-
viding an in-depth discussion of our PlatformKit tool and how it can be
used to support several platform modelling and configuration scenarios.
First, the architecture of PlatformKit is explained. All components on
top of which PlatformKit is built are discussed here. Following that, a
number of tasks that are supported by PlatformKit are discussed. These
tasks range from setting up an MDA-based SPL to platform-driven de-
ployment of software products. Finally, the limitations and future direc-
tions of PlatformKit are discussed.

Chapter 8: Conclusion This chapter concludes this dissertation with an
evaluation of the approach we have presented. An overview of our con-
tributions is given and future research directions are explored.
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Model-Driven Architecture

2.1 Introduction

The Model-Driven Architecture (MDA) was introduced by the Object Man-
agement Group (OMG) as an approach to use models in software development.
Its goals are portability, interoperability and reusability through architectural
separation of concerns. MDA intends to provide an approach for:

• “specifying a system independently of the platform that supports it,

• specifying platforms,

• choosing a particular platform for the system, and

• transforming the system specification into one for a particular plat-
form.” [MM03]

The terms platform and platform independence are used extensively in
MDA. The MDA Guide defines a platform as follows:

“A platform is a set of subsystems and technologies that provide a
coherent set of functionality through interfaces and specified usage
patterns, which any application supported by that platform can use
without concern for the details of how the functionality provided by
the platform is implemented.” [MM03]

This definition introduces the notion of interfaces and usage patterns. It
also positions a platform as an abstraction layer that can be used without
knowing how platform functionality is provided. We have previously defined

19



20 Chapter 2. Model-Driven Architecture

a platform as the hardware and software combination on top of which our
software runs, which is a broader definition of platform.

Platform independence refers to the quality of being independent of the fea-
tures of a platform and is a matter of degree. A common technique for achiev-
ing platform independence is to target a technology-neutral virtual machine. A
virtual machine can also be considered a platform. Any model targeting that
virtual machine is considered specific to that platform, but independent of any
underlying platform. When specifying a system in a platform-independent way,
one already needs to have an idea of which platforms are targeted [TBA04].
The system’s specification is independent of all these platforms if it only de-
pends on features that are common for all platforms – or can be mapped to all
platforms.

MDA contains the word architecture, which is an overloaded term in soft-
ware engineering. The MDA guide uses the following definition to relate the
term architecture to its meaning in MDA:

“The architecture of a system is a specification of the parts and con-
nectors of the system and the rules for the interactions of the parts
using the connectors. The Model-Driven Architecture prescribes cer-
tain kinds of models to be used, how those models may be prepared
and the relationships of the different kinds of models.” [MM03]

The Model-Driven Architecture refers to the architecture of the software
development process, summarised by the MDA pattern. In Chapter 1, we
have already introduced the basic MDA pattern: to use Model Transformation
to map a Platform-Independent Model (PIM) to a Platform-Specific Model
(PSM). Fig. 2.1 shows the envisioned impact of this pattern: the left side
shows the traditional lifecycle of iterative development. In theory, the feedback
loop should go all the way up to the requirements level, keeping all software
artifacts synchronised.

In practise, the fact that process stage transitions are only automated from
the code level downward makes that it is not feasible to feed changes back to
the top level. The feedback effort is normally rewarded by an updated system
that incorporates the feedback. That updated system is our real goal, not
feeding back changes to higher abstraction levels.

If we provide feedback to the top level, this will not result in an updated
system. In fact, we have to manually translate the feedback to the lower
levels of abstraction until we reach code level. Only at code level, automation
picks up and the feedback loop is closed. That’s why currently feedback is
mostly provided directly at code level and all software artifacts at a higher
level gradually become outdated.
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Figure 2.1: Impact of MDA on the development process (source: [KWB03]).

The right side of Fig. 2.1 shows how the MDA intends to mitigate this
problem. The analysis and design artifacts are made part of the automation
pipeline. It then becomes easier to lift the feedback loop of iterative devel-
opment up to the analysis level, where automation picks up and closes the
feedback loop.

The core concepts in any MDA-based process are:

• Models

• Meta-models

• Model Transformation

The following sections discuss these core concepts, as well as the relation-
ship of MDA to existing research.

2.2 Models

MDA is centred around models and how those models may be used together
to create the resulting software system. The MDA guide defines a model as
follows:

“A model of a system is a description or specification of that system and
its environment for some certain purpose. A model is often presented
as a combination of drawings and text. The text may be in a modeling
language or in a natural language.” [MM03]
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This is a very broad definition of a model, which unfortunately mixes up
the structure of a model with its presentation. The structure of a model is
defined by the abstract syntax of the language that a model is written in. The
presentation of a model is defined by the concrete syntax of the modelling lan-
guage. Even though the definition covers the presentation of models, the focus
lies on the structure of a model in the MDA, as is made clear in section 2.3.
Models can play a number of particular roles in an MDA-based process. Four
kinds of models with a particular role are distinguished in the MDA:

• Computation Independent Model (CIM)

• Platform Independent Model (PIM)

• Platform Specific Model (PSM)

• Platform Model (PM)

The standard language for expressing these models is the Unified Modeling
Language (UML) [OMG05c]. The following sections discuss each of the listed
models.

2.2.1 Computation Independent Models

The Computation Independent Model focuses on the requirements for the sys-
tem and the environment of the system. It is sometimes called a domain model
and serves as a vocabulary that is familiar to the practitioners of the system’s
domain. A CIM is more than a domain model, however, since it also expresses
the system requirements using the domain concepts as a vocabulary. A CIM
does not show details of the structure or processing of the system. The CIM
is intended to help bridge the gap between domain experts and system design
experts.

It is difficult to say exactly when a model is still “computation indepen-
dent”. It may show the structure of the domain, but not the details of that
structure. It also may show the behaviour of the domain, but not any process-
ing details specific to the system we aim to specify. Let’s consider an example
system of an instant messaging client that shows a list of people who are on-
line and that can send messages to those people. Fig. 2.2 shows what such an
instant messaging client can look like.

A CIM of such an instant messaging client describes the domain concepts
for instant messaging, such as “contact”, “contact list” and “message”. For
each of these concepts, a number of behavioural and structural features (op-
erations and attributes) can be described. The CIM does not describe what
steps the system must perform to achieve a certain behaviour. Fig. 2.3 shows
a UML Class diagram of the instant messaging client domain concepts. Note
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Figure 2.2: A screenshot of an instant messaging client running on a PC.

that the example CIM is not a “pure” CIM: it contains “computation depen-
dent” stereotype applications, such as Observer and Observable. The cause
of this is that a CIM is typically refined manually into a model that includes
computation details. The original CIM no longer exists in the end and is actu-
ally a part of the Platform Independent Model. Since the CIM typically models
the domain concepts up to the extent that the intended system requires, it is
often not directly applicable outside the boundaries of the intended system.

2.2.2 Platform Independent Models

A Platform Independent Model exhibits a specified degree of platform indepen-
dence, such that it is suitable for a number of similar platforms. This implies
that the targeted platforms must be known beforehand to a certain degree. It
also implies that a PIM is still specific to the chosen group of platforms.

In the case of our instant messaging client example, the PIM is meant to
target Java-based client platforms. It is independent of any specific Java client
platform, such as J2SE 1.4 or J2ME Personal Profile 1.0, but still depends
on Java in general (language, object model, execution model, common API,
etc.). Fig. 2.4 shows a UML Class diagram of the global instant messaging
client architecture. While the CIM is only concerned with instant messag-
ing client domain concepts, the PIM also includes computational information,
such as the fact that an InstantMessagingClient is an <<Applet>> that sub-
scribes to all available Networks as an <<Observer>>. This PIM also intro-
duces Java-specific elements: InstantMessagingClient implements the Excep-
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Figure 2.3: A UML Class diagram of the instant messaging client CIM.

tionReporter interface, which includes a reference to java.lang.Exception.
Since java.lang.Exception exists in all our targeted Java platforms, it is
considered platform-independent for our purpose.

2.2.3 Platform Specific Models

A Platform Specific Model combines the specifications in the PIM with the
details that specify how the system uses a particular (kind of) platform. This
means that it introduces platform dependencies. The term PSM is relative
and only means something when compared to a PIM. There can be multiple
levels of PSMs. Consider a PSM that is specific to a (narrowed down) group
of platforms. This PSM can be considered a PIM when compared to a PSM
that is specific to one concrete platform out of that group.

Fig. 2.5 shows the fully refined platform-specific version of the PIM Class
diagram shown in Fig. 2.4. Fully refined means that this is the lowest level
PSM, just before Java code is generated:

• UML properties that have a multiplicity higher than 1 have been trans-
formed to use Java collection types: InstantMessagingClient::network has
become a java.util.List, while InstantMessagingClient::conversation
has become a java.util.Set.

• Accessor operations have also been generated for each public property
(get. . . , set. . . , add. . . , etc.), while those public properties have been
made private.
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Figure 2.4: A UML Class diagram showing part of the instant messaging client
PIM.

• The observer pattern has been implemented using the java.util.Ob-

server interface and the java.util.Observable class.

• All <<Applet>> classes have been implemented as java.applet.Applet
subclasses.

• All <<Singleton>> classes now include the singleton infrastructure (a
static ‘instance’ property and ‘getInstance()’ operation).

2.2.4 Platform Models

A Platform Model provides the technical concepts that represent the parts
that make up a platform. It also provides concepts for specifying the use of
a platform by a software system, which can be used in a PSM. As an exam-
ple, the CORBA Component Model (CCM) [OMG06a] provides concepts as
EntityComponent, SessionComponent, ProcessComponent, Facet, Receptacle,
EventSource, etc. A software system can use these concepts to specify how it
uses the CCM.

A Platform Model also specifies requirements on how a software system
is connected to the platform. As an example, the UML profile for CORBA
[OMG02] provides a language to use when modelling CORBA systems. The
rules of this language represent the requirements of the connection to the
platform.
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Figure 2.5: A UML Class diagram showing part of the instant messaging client
PSM.

This notion of Platform Model is mostly useful to model abstract plat-
forms [ADvSP04], which represent a common interface to all targeted plat-
forms. In the instant messaging client example, this Platform Model consists
of a simplified representation of some of the Java API that is common to all
targeted Java platforms (e.g. java.lang.Exception) and several UML pro-
files (Applet, Singleton, Observer, . . . ) that abstract from the way a specific
Java platforms implements certain functionality. A Platform Model can also
consist of the API for a specific Java platform, such as J2SE 1.4. The PSM
typically refers to such a Platform Model. Note that the model transforma-
tions that map a PIM to a PSM introduce the references to such a Platform
Model.

Our notion of Platform Model goes further than that: a Platform Model is
meant to drive the mapping from PIM to (lowest level) PSM. This may include
selecting all the appropriate model transformations for a complete mapping to
the targeted platform. This notion of Platform Model is discussed later in this
dissertation.
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2.3 Meta-models

While the MDA leaves open the specific technical grounding for the definition
of models, the standard way to define the language of the models, or abstract
syntax to be more precise, is by using a meta-model . Standard practise is
therefore that each model has a meta-model. The term meta is used to say
something about something else. Hence, a meta-model can be defined as a
model of a model. Since the term meta is a relative term, the OMG has
introduced a standard, 4-level meta-modelling framework that disambiguates
the term meta. This framework is shown in Fig. 2.6.

M3 Meta-meta-models

MOF
Meta-model

M2 Meta-models

M1 Models

M0 Information

UML
Meta-model

UML
Model
UML

Model
UML

Model

object1 : Objectobject1 : Objectobject1 : Object

Conforms to

Conforms to

Conforms to

Conforms to

Figure 2.6: The 4-level OMG meta-modelling framework.

The OMG standard for the definition of meta-models is the Meta Object
Facility (MOF) [OMG06b]. A framework that aims to follow the MOF stan-
dard is the Eclipse Modeling Framework (EMF) [BSM+03]. Both MOF and
EMF are explained in the following subsections.

2.3.1 Meta Object Facility

The Meta Object Facility provides a framework for describing meta-data,
which is defined as “data about data” [OMG06b]. At the heart of MOF lies
the MOF Model, which serves as the standard meta-modelling language for
the MDA. The MOF Model comes packaged in two versions:
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• Essential MOF (EMOF)
A subset of the MOF Model that forms a kernel meta-modelling
language. EMOF supports basic meta-class entities, such as
Class, Property, Operation, Package, DataType, PrimitiveType
and Enumeration.

• Complete MOF (CMOF)
Represents the entire MOF Model, which includes EMOF.
CMOF does not introduce any new meta-classes, but extends
existing meta-classes instead.

This section focuses on the EMOF subset of the MOF Model. Fig. 2.7
shows the part of the EMOF meta-model that models MOF Classes. Note
that this meta-model is situated on level M3 (see Fig. 2.6). MOF Classes are
used to represent the meta-classes in a meta-model (M2).

MOF Core Specification, v2.0        33

Figure 12.2 - EMOF Classes
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Figure 2.7: EMOF meta-model part for MOF Classes (source: [OMG06b]).

The UML meta-model, for instance, is expressed in this way. Fig. 2.8
shows the root diagram of the UML meta-model. The meta-classes shown in
this diagram are all instances of MOF Class and their properties are instances
of MOF Property. This particular diagram describes the properties that all
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UML Elements have in common: Elements can own Elements and they can be
annotated by Comments.

In addition to the standard semantics of classes, properties and associa-
tions, the UML meta-model also makes extensive use of the property subsets
and union construct. The ends of the association between Element and Com-
ment, for example, subsets the ends of the association between Element and
Element; “owningElement” subsets “owner” and “ownedComment” subsets
“ownedElement”. This means that all values of “owningElement” are also
contained in “owner” and all values of “ownedComment” are also contained in
“ownedElement”. The union construct specifies that the values of a property
are contained in at least one of the properties that it is the union of. This
construct is often used in combination with the subsets construct: one prop-
erty contains the union of a number of other properties that in turn contain
subsets of the first property. If the subsets or union construct does not specify
what it is the subset or union of, then its complementing construct is required
to specify this. The “ownedElement” property is an unspecified union and the
complementing subsets construct at “ownedComment” (partly) specifies what
it is the union of.

Another construct that is used a lot is that of derived properties, which are
marked with a ‘/’ (slash token). The properties “owner” and “ownedElement”
are both marked derived. This means that their values are calculated from
the values of other properties and no values are stored directly in a derived
property itself. Derived properties are read-only.

Figure 2.8: Root diagram of the UML Kernel package (source: [OMG05c]).

The MOF Model itself is expressed using MOF constructs: MOF Class and
MOF Property are also instances of MOF Class. Hence, the MOF Model is its
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own meta-model as well. The fact that the UML meta-model is expressed using
constructs of the MOF Model, makes that the UML meta-model conforms
to the MOF meta-model (see Fig. 2.6). Since the MOF meta-model is also
expressed using constructs of the MOF Model, the MOF meta-model conforms
to itself.

Note that while models expressed in MOF use associations to relate prop-
erties of classes to each other, there is no Association meta-class in the MOF
Model. Associated properties are related toeach otherr using the “opposite”
property. This means that only binary associations are allowed in MOF. Also
note that MOF allows for operations to be defined on meta-classes. While
MOF itself cannot express the behaviour of such operations, a framework that
implements MOF can do this. MOF operations are mainly useful within model
transformations, as will be made clear in the next section.

2.3.2 Eclipse Modeling Framework

The Eclipse Modeling Framework (EMF) [BSM+03] aims to comply with
EMOF. Historically, EMF was intended as a proving ground for MOF 2.0.
Hence, its meta-modelling language Ecore differs slightly from EMOF. Fig. 2.9
shows a simplified subset of the Ecore meta-model.16 CHAPTER 2 • Introducing EMF

Figure 2.3 A simplified subset of the Ecore model.

As you can see, there are four Ecore classes needed to represent our model:

1. EClass is used to represent a modeled class. It has a name, zero or more 
attributes, and zero or more references.

2. EAttribute is used to represent a modeled attribute. Attributes have a 
name and a type.

3. EReference is used to represent one end of an association between 
classes. It has a name, a boolean flag to indicate if it represents contain-
ment, and a reference (target) type, which is another class.

4. EDataType is used to represent the type of an attribute. A data 
type can be a primitive type like int or float or an object type like 
java.util.Date.

Notice that the names of the classes correspond most closely to the UML
terms. This is not surprising since UML stands for Unified Modeling Lan-
guage. In fact, you might be wondering why UML isn’t “the” EMF model.
Why does EMF need its own model? Well, the answer is quite simply that
Ecore is a small and simplified subset of full UML. Full UML supports much
more ambitious modeling than the core support in EMF. UML, for example,
allows you to model the behavior of an application, as well as its class struc-
ture. We’ll talk more about the relationship of EMF to UML and other stan-
dards in Section 2.6.

We can now use instances of the classes defined in Ecore to describe the
class structure of our application models. For example, we describe the pur-
chase order class as an instance of EClass named “PurchaseOrder”. It con-
tains two attributes (instances of EAttribute that are accessed via eAttributes)
named “shipTo” and “billTo”, and one reference (an instance of EReference
that is accessed via eReferences) named “items”, for which eReferenceType
(its target type) is equal to another EClass instance named “Item”. These
instances are shown in Figure 2.4.
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EMF.book  Page 16  Tuesday, July 15, 2003  3:51 PM

Figure 2.9: A simplified subset of the Ecore meta-model (source: [BSM+03]).

Note that Ecore prefixes an ‘E’ before all its meta-classes. This makes it
easier to distinguish between Ecore classes and UML classes, for example. It
also makes a distinction between EAttributes and EReferences, while EMOF
always uses Property. The difference between EAttribute and EReference is
that the type of an EAttribute is always a primitive type, such as string,
boolean or integer, while the type of an EReference is always an EClass.

Ecore also supports “opposite” EReferences and EOperations, which are
analogous to MOF “opposite” Properties and MOF Operations. They are not
shown in Fig. 2.9, however. As an implementing framework, EMF allows the
behaviour of EOperations to be specified in Java. EMF models are typically
serialised in XMI [OMG05b].

In addition to the Ecore meta-modelling language, EMF provides a code
generator framework that can generate Java code from Ecore models. This
Java code represents EClasses, EAttributes, EOperations etc. through Java
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classes, fields and methods. It is also through the generated Java code that
the behaviour of EOperations can be defined: one simply fills in the body of
the generated methods. The code generation of EMF goes further in that it
can also generate a graphical editor for the generated model. A screenshot of
the generated editor for the Ecore model itself (meta-level M3) is shown in
Fig. 2.10.

Figure 2.10: A screenshot of the Ecore editor.

2.3.3 The role of UML in the MDA

The Unified Modeling Language (UML) [OMG05c] is the standard modelling
language for object-oriented design. It is called unified because it emerged from
several other object-oriented modelling languages. It is not a universal mod-
elling language in that it is suitable for modelling any (object-oriented) soft-
ware system. UML is therefore presented as the standard modeling language
for the MDA, while the MDA also allows the use of other modelling languages.
The UML Profile mechanism in particular is used heavily in the MDA to intro-
duce platform-specific annotations as well as to define platform-independent
language constructs. We will therefore focus on the Profile mechanism.

The Profile mechanism provides a lightweight extension mechanism for
UML that allows for refining the UML semantics. This means that each Profile
has to respect the general UML semantics, but may introduce specific seman-
tics that narrow down existing UML semantics. It uses Stereotypes to assign
special meaning to designated model elements. Whenever a Stereotype is ap-
plied to a model element, this is shown by either an icon or the Stereotype
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name between guillemets. Fig. 2.11 shows an example of a Stereotype applica-
tion: the <<Applet>> Stereotype is applied to the InstantMessagingClient

Class. The meaning of <<Applet>> is that InstantMessagingClient will be
implemented as an applet that can be embedded in a web page or run on a
mobile phone. Note that the general semantics for a UML class still apply;
InstantMessagingClient is still a class, but with the additional, narrowed
down semantics of an applet. The <<Applet>> Stereotype also provides the
Tagged Value appletInfo of type String, which is set to “ c© 2007, Dennis
Wagelaar” in this case.

«Applet»
InstantMessagingClient

{appletInfo = “© 2007, Dennis Wagelaar”}

Figure 2.11: Applet Stereotype applied to a UML Class.

The structure of the Profile mechanism is shown in Fig. 2.12, which depicts
the part of the UML meta-model that describes Profiles. It shows that Profile
is a special kind of Package that can contain Stereotypes. A Stereotype is a
special kind of Class that can function as an Extension to a meta-class, where
an Extension is a special kind of Association.

UML Superstructure Specification, v2.0        635

• Add semantics that does not exist in the metamodel (such as defining a timer, clock, or continuous time).

• Add constraints that restrict the way you may use the metamodel and its constructs (such as disallowing actions from 
being able to execute in parallel within a single transition).

• Add information that can be used when transforming a model to another model or code (such as defining mapping rules 
between a model and Java code).

Profiles and Metamodels
There is no simple answer for when you should create a new metamodel and when you instead should create a new 
profile. 

18.2 Abstract syntax

Package structure

The classes of the Profiles package are depicted in Figure 18.2, and subsequently specified textually. 

Figure 18.1 - Dependencies between packages described in this chapter

 

Figure 18.2 - The elements defined in the Profiles package
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Figure 2.12: UML meta-model part for Profiles (source: [OMG05c]).

Fig. 2.13 shows the Applet Profile as used in the last example. The Pro-
file itself is depicted as a tabbed box containing the other elements. The
<<Applet>> Stereotype is depicted as a class with a <<stereotype>> tag,
indicating that it is a special kind of class. <<Applet>> extends the UML
meta-class Class. This Extension is depicted as an arrow. The meta-class
Class is depicted as a class with a <<metaclass>> tag.
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«stereotype»
Applet

+appletInfo : String

«profile»
Applet

«metaclass»
Class

(from UML)

Figure 2.13: The Applet Profile.

Note that the part of the UML meta-model shown in Fig. 2.12 does not
explicitly specify the structure of a Stereotype application. This is because
Stereotype applications are represented as instances of the modelled Stereo-
type. Since instances of model elements (M1) only exist at the instance level
(M0), the Profile must have a representation at the meta-model level (M2).
That way, Stereotype instances can exist at the model level (M1).

Unfortunately, the semantics of Stereotypes and Stereotype applications
are still under discussion in the research community [HSGP06] and cannot be
considered well-defined. Stereotype applications as they are implemented in
EMF are well-defined, however. That’s why we choose to explain the EMF
version of Stereotype applications later in this section.

2.3.4 Stereotype applications in EMF

There exists an EMF-based implementation of the UML meta-model, called
Eclipse UML2. Historically, Eclipse UML2 was intended to test the UML
2.0 specification. The most notable difference between Eclipse UML2 and the
UML specification is that Eclipse UML2 uses EMF’s Ecore language to describe
its meta-model. Eclipse UML2 and Ecore also do not share a common notion
of meta-class in the way that the UML superstructure and MOF share the
UML infrastructure notion of meta-class [OMG06d]. Eclipse UML2 and Ecore
do share the meta-class EAnnotation. Fig. 2.14 shows how UML2’s Element,
which is the root meta-class of the UML2 meta-model, inherits from Ecore’s
EModelElement. Since each EModelElement can have EAnnotations, each
Element can also have EAnnotations.

In order to achieve this sharing, the Eclipse UML2 meta-model imports the
Ecore meta-model. This is possible because both meta-models exist at the M2
level (even though Ecore’s meta-model also exists at the M3 level).

Now that we know how the Eclipse UML2 meta-model is built up, we can
consider how Eclipse UML2 deals with profiles and stereotypes. The modelling
of profiles and stereotypes follows the UML specification. Their solution for
stereotype applications is different, however. After modelling an Eclipse UML2
profile, the Eclipse UML2 editor allows the developer to “define” the profile.
This means that the editor creates an Ecore representation of the profile: the



34 Chapter 2. Model-Driven Architecture
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Figure 2.14: Eclipse UML2 and Ecore share the common notion of EAnnota-
tions.

Eclipse UML2 representation of stereotypes at the M1 level is lifted up to an
Ecore representation as EClasses at the M2 level. This approach is in line
with the theory of spanning objects by Welty [WF94], where an element is
modelled as both an instance and a class. Depending on the intended use, one
refers to either the instance representation or the class representation of the
element. In the case of Eclipse UML2, each Stereotype instance is mapped to
an EClass instance. An EClass instance is a class, so we now have an instance
representation and a class representation of the same element. Fig. 2.15 shows
what the Applet profile looks like after the Eclipse UML2 editor has created
an Ecore representation of the profile.

Note that Eclipse UML2 uses the common EAnnotation meta-class to em-
bed an Ecore model inside a Eclipse UML2 model. The Applet profile contains
an EAnnotation named “UML”, indicated by a paperclip icon. EAnnotations
can contain EObjects. Since EObject is the root EClass of the Ecore meta-
model, EAnnotations can contain any Ecore element.

Since stereotypes are lifted from M1 to M2 level as EClasses, stereotype
applications can now exist at the M1 level as instances of those EClasses. Any
Eclipse UML2 model also exists at the M1 level, so it may include stereotype
applications. Consider the UML Class diagram from Fig. 2.11. The Applet
stereotype is applied to the InstantMessagingClient class. Fig. 2.16 shows an
Object diagram of this situation. Black diamonds have been added to the links
that represent containment: the “InstantMessengerModel” model contains the
“im” package, which contains the “InstantMessagingClient” class. Note that
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Figure 2.15: A screenshot of the Eclipse UML2 editor after the Applet profile
was “defined”.

the Applet stereotype application “app” is not contained anywhere, but is
linked as a peer to the “InstantMessagingClient” class.

InstantMessagingClient : Class

appletInfo = “© 2007, Dennis Wagelaar”

InstantMessengerModel : Model

im : Package

p : packagedElement

c : packagedElement

app : Applet

c : base_Classifier

Figure 2.16: Object diagram of the Applet stereotype applied to the Instant-
MessagingClient class.

2.4 Model transformation

The key enabler of the MDA vision is model transformation. Model trans-
formation itself depends heavily on meta-models. A meta-model defines the
structure of a model and is used in model transformation to navigate models.
Since the MDA focuses on MOF as the language of preference for defining meta-
models, we will focus on model transformation languages that are built around
MOF-compatible meta-modelling languages. We will discuss two MOF-based
transformation languages:
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• MOF Query/View/Transformation (QVT)
The standard transformation language specification for MOF-
based modelling languages.

• ATLAS Transformation Language (ATL)
A QVT-like transformation language implemented in Java that
can work with EMF models.

QVT exists as a specification without a reference implementation at the
time of this writing1. ATL is one of the predecessors of QVT, has tool support
and can work with EMF-based models. We have used ATL for the imple-
mentation of our case study. Both QVT and ATL use the Object Constraint
Language (OCL) [Obj05] to express complex values.

The MDA advocates the use of multiple, successive refinement steps to
transform a PIM into a PSM, which reduces the complexity of each transfor-
mation step (divide-and-conquer). We will demonstrate how successive PIM-
to-PSM transformations can be expressed and employed through our instant
messenger case study.

2.4.1 MOF Query/View/Transformation

Query/View/Transformation (QVT) [OMG05a] is the standard transformation
language for MOF-based modelling languages, and is hence considered as a
part of MOF. Fig. 2.17 shows an overview of the different parts of the QVT
language and how they relate to each other.

MOF2 Query/View/Transformation (QVT) Adopted Specification        9

6 QVT Overview

The QVT specification has a hybrid declarative/imperative nature, with the declarative part being split into a two-level 
architecture. We start by explaining the two-level architecture of the declarative part, as it forms the framework for the 
execution semantics of the imperative part.

6.1 Two Level Declarative Architecture

The declarative parts of this specification are structured into a two-layer architecture. 

The layers are:

• A user-friendly Relations metamodel and language which supports complex object pattern matching and object tem-
plate creation. Traces between model elements involved in a transformation are created implicitly.

• A Core metamodel and language defined using minimal extensions to EMOF and OCL. All trace classes are explicitly 
defined as MOF models, and trace instance creation and deletion is defined in the same way as the creation and deletion 
of any other object. 

Figure 6.1 - Relationships between QVT metamodels

6.1.1 Relations 

A declarative specification of the relationships between MOF models. The Relations language supports complex object 
pattern matching, and implicitly creates trace classes and their instances to record what occurred during a transformation 
execution. Relations can assert that other relations also hold between particular model elements matched by their patterns. 
The semantics of Relations are defined in a combination of English and first order predicate logic in Section 9.10, as well 
as by a standard transformation for any Relations model to trace models and a Core model with equivalent semantics. 
This transformation can be found in Chapter 10. It can be used purely as a formal semantics for Relations, or as a way of 
translating a Relations model to a Core model for execution on an engine implementing the Core semantics.

6.1.2 Core

This is a small model/language which only supports pattern matching over a flat set of variables by evaluating conditions 
over those variables against a set of models. It treats all of the model elements of source, target and trace models 
symmetrically. It is equally powerful to the Relations language, and because of its relative simplicity, its semantics can be 
defined more simply, although transformation descriptions described using the Core are therefore more verbose. In 
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RelationsToCore
TransformationOperational 

Mappings
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Figure 2.17: Relationships between QVT meta-models (source: [OMG05a]).

The Relations part is the declarative part of the QVT language. It declara-
tively expresses the relationship between the elements in its input models. The

1An EMF-based implementation of QVT is being developed within the Eclipse project.
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Relations part maps to the Core part using the RelationsToCore transforma-
tion. The Core part is a small pattern-matching language and is mainly meant
for use by transformation engines, while the Relations part is a human-usable
language. Furthermore, QVT supports an imperative Operational Mappings
part and a Black Box part for externally defined transformations. Operational
Mappings can be used to implement one or more Relations from a Relations
specification that are difficult to express in the Relations language. Black
Box transformations serve as a “plug-in” implementation of a MOF operation.
Black Box transformation code must be written in a programming language
with MOF bindings, such that it is accessible from other QVT transforma-
tions. We will focus on the Relations part to explain the general philosophy
behind QVT.

In the Relations language, a transformation between models is specified as
a set of relations that must hold for the transformation to be successful. Each
model in the transformation conforms to a model type, which is a specification
of the kind of model elements that can occur in a conforming model. A model
type is typically represented by a meta-model. The models in a transformation
are named and are bound to a specific model type. An example Relations
specification is:
transformation umlRdbms (uml : SimpleUML , rdbms : SimpleRDBMS) { ... }

In this declaration named “umlRdbms,” there are two typed models: “uml”
and “rdbms”. The model named “uml” declares SimpleUML as its model type,
and the “rdbms” model declares SimpleRDBMS as its model type.

A transformation can be invoked either to check two models for consistency
or to modify one model to enforce consistency. A transformation invoked for
enforcement is executed in a particular direction by selecting one of the models
as the target. The target model may be empty, or may contain existing model
elements to be related by the transformation. The execution of the transfor-
mation proceeds by first checking whether the relations hold. For relations
for which the check fails, it attempts to make the relations hold by creating,
deleting or modifying elements in the target model only, thus enforcing the
relationship.

The relations in a transformation declare constraints that must be satisfied
by the model elements. An example relation is:
relation PackageToSchema /* map each package to a schema */

{

domain uml p:Package {name=pn}

domain rdbms s:Schema {name=pn}

}

In the example below, two domains are declared which will match elements
in the “uml” and “rdbms” models. Domains represent the subject of the
relation. Each domain specifies a simple pattern: a package with a name and
a schema with a name. As a constraint, both “name” properties are bound to
the same variable “pn”, implying that they should have the same value.
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The following example shows how when and where clauses can be used
to refer to other relations:

relation ClassToTable /* map each persistent class to a table */

{

domain uml c:Class {

namespace = p:Package {},

kind=’Persistent ’,

name=cn

}

domain rdbms t:Table {

schema = s:Schema {},

name=cn ,

column = cl:Column {

name=cn+’_tid ’,

type=’NUMBER ’},

primaryKey = k:PrimaryKey {

name=cn+’_pk ’,

column=cl}

}

when {

PackageToSchema(p, s);

}

where {

AttributeToColumn(c, t);

}

}

The when clause specifies the conditions under which the relation needs
to hold, so the relation “ClassToTable” needs to hold only when the “Package-
ToSchema” relation holds between the package containing the class and the
schema containing the table. The where clause specifies the condition that
must be satisfied by all model elements participating in the relation, and it
may constrain any of the variables in the relation and its domains. Hence,
whenever the “ClassToTable” relation holds, the relation “AttributeToCol-
umn” must also hold.

A transformation contains top-level relations and non-top-level relations.
The execution of a transformation requires that all its top-level relations hold,
whereas non-top-level relations are required to hold only when they are invoked
directly or transitively from the where clause of another relation:

transformation umlRdbms (uml : SimpleUML , rdbms : SimpleRDBMS) {

top relation PackageToSchema {...}

top relation ClassToTable {...}

relation AttributeToColumn {...}

}

“PackageToSchema” and “ClassToTable” are top level relations, whereas
“AttributeToColumn” is a non-top-level relation.

2.4.2 ATLAS Transformation Language

The ATLAS Transformation Language (ATL) [JK06] historically served as a
submission to the QVT Request For Proposals [OMG04b]. As a consequence,
ATL is similar to QVT Relations, save some limitations: ATL transformations
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are unidirectional. Output models are write-only and always start off as empty
models. All navigation in ATL is done on read-only input models. QVT check-
ing transformations are typically implemented as ATL queries, while enforcing
transformations are represented in ATL as modules.

ATL modules

An ATL transformation module has a number of input models and typically
one output model. It contains a number of rules that define the mapping from
source elements to target elements. ATL has two kinds of rules: matched rules
and called rules. These compare to QVT top-level relations and non-top-level
relations in that matched rules are automatically triggered, while called rules
must be invoked from a matched rule. The following example ATL module
copies a UML Model element to another UML Model element:

module UML2Copy;

create OUT : UML2 from IN : UML2;

rule Model {

from s : UML2!uml:: Model

to t : UML2!uml:: Model (

name <- s.name ,

visibility <- s.visibility ,

viewpoint <- s.viewpoint)

}

The UML2Copy module has one output model named “OUT” of model
type “UML2” and one input model “IN”, which is also of model type “UML2”.
The model type “UML2” corresponds to the Eclipse UML2 meta-model in this
case, which is normally specified in the Eclipse “Run...” dialogue window.
The transformation module has one matched rule named “Model”. Since ATL
transformations are unidirectional, ATL rules don’t have a domain construct
like QVT relations. Instead, ATL rules have a from part and a to part. The
from part specifies which model elements from the input model(s) trigger the
matched rule. The to part creates one or more model elements in the output
model. In the example, any instance of the meta-class “uml::Model” from the
“UML2” meta-model triggers the rule, where the “uml::” prefix specifies that
the “Model” meta-class is inside the “uml” package. ATL uses ‘<-’ to specify
assignment: the Model copy has the same name, visibility and viewpoint values
as the original Model instance. The following example shows how multiple
matched rules interact and how called rules work:

module UML2ExtendedCopy;

create OUT : UML2 from IN : UML2;

rule Model {

from s : UML2!uml:: Model

to t : UML2!uml:: Model mapsTo s (

name <- s.name ,

visibility <- s.visibility ,
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viewpoint <- s.viewpoint ,

packagedElement <- s.packagedElement)

}

rule Package {

from s : UML2!uml:: Package (

s.oclIsTypeOf(UML2!uml:: Package ))

to t : UML2!uml:: Package mapsTo s (

name <- s.name ,

visibility <- s.visibility ,

packagedElement <- s.packagedElement

->including(thisModule.AddClass(s))),

}

rule AddClass(p : UML2!uml:: Package) {

to t : UML2!uml:: Class (

name <- p.name + ’Info ’)

do {

t;

}

}

The “Model” rule now includes an assignment of the “packagedElement”
property. The “packagedElement” property refers to a collection of packaged
model elements in the source model. Each of those model elements may sepa-
rately match against a rule in the transformation module. Normally, the target
element of the “Model” rule is supposed to contain the target “packagedEle-
ment” elements, just like the source “Model” element contains the source
“packagedElement” elements. ATL automatically translates assignments of
source elements to their target element counterparts whenever those source
elements trigger a matched rule in the transformation module.

This kind of source-element-to-target-element resolution is made explicit
by the mapsTo statement. The mapsTo statement specifies which target
element maps back to which source element and is used to translate an as-
signment of source values to an assignment of target values: the target “pack-
agedElement” collection in the “Model” rule will not contain the values of
“s.packagedElement”, but rather the collection of target elements that map to
the values of “s.packagedElement”.

The “Package” rule copies all instances of “uml::Package” that satisfy
the additional condition “s.oclIsTypeOf(UML2!uml::Package)”. This ad-
ditional condition is necessary to prevent the rule from triggering against sub-
classes of “uml::Package”, such as “uml::Model”.

For each “uml::Package”, a “uml::Class” is added by the “AddClass” called
rule. This rule is triggered by the assignment of “packagedElement” in the
“Package” rule: each “packagedElement” is a copy of the source “packagedEle-
ment” augmented with the additional class that is returned by the “AddClass”
rule.

Since called rules are always explicitly invoked, they have no from part.
All input elements are passed as operation-style parameters instead. The
“AddClass” rule takes a “uml::Package” as a parameter. It creates a new
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“uml::Class” with its name set to the name of the input “uml::Package” aug-
mented with the string ‘Info’.

In ATL, each rule can also have an imperative do part that consists of
a number of assignment or OCL statements. The do part is also used to
specify a return value for a called rule. “AddClass” returns the value of the
“uml::Class” it generates. This return value is used in the “Package” rule to
add the generated “uml::Class” to the “packagedElements”.

Helpers

ATL transformations can use helpers to encapsulate complex OCL expressions.
Helper methods are used to encapsulate an OCL expression, possibly applied
to a number of parameters. Helper attributes are used to store the value of an
OCL expression and cannot take parameters. Below is an example of both a
helper attribute and a helper method:

helper def : inElements : Set(UML2!ecore :: EObject) =

UML2!ecore :: EObject.allInstancesFrom(’IN ’);

helper context UML2!ecore :: EObject def : isPackage () : Boolean =

self.oclIsTypeOf(UML2!uml:: Package );

The “inElements” helper attribute holds a set of “ecore::EObject” in-
stances. As was already stated in the previous subsection, the UML2 meta-
model import the Ecore meta-model. As a result, the UML2 meta-model
consists of the “ecore” package and the “uml” package. The “inElements”
helper attribute uses the “allInstancesFrom” method to retrieve all instances
of the “ecore::EObject” meta-class from the “IN” model.

The “isPackage” helper method can be invoked on all “ecore::EObject”
instances (its context), takes no additional parameters and returns a boolean
value. Instead of writing “p.oclIsTypeOf(UML2!uml::Package)” for a given
ecore::EObject p, one can now write “p.isPackage()”.

ATL queries

The main difference between ATL queries and modules is that queries don’t
have an output model. They also don’t have transformation rules, as is shown
in the following example query:

query UML2toJava = UML2!uml:: Classifier.allInstances()->collect(e |

i f e.ignore () then true

else e.toFileString (). writeTo(e.pathName ())

endif );

Queries can take a number of specified input meta-models and a number of
implicit input models. The “UML2toJava” query has “UML2” as its specified
input meta-model and can take one or more input models that conform to
“UML2”. There is no explicit reference to the input model(s): instead, model
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elements are found via their meta-class, which is “uml::Classifier” in the ex-
ample. The query collects specific values for all classifier instances. It uses
a number of helper methods, which are not specified here, to calculate these
values. Since queries are not typed, any value is allowed. In fact, the end
result value of a query is never used: ATL includes a number of special helpers
that perform actions as printing text or writing to file. The example query is
meant to generate code for each classifier, which is then written to the correct
path.

ATL libraries

Both ATL modules and queries can make use of ATL libraries. A library
can contain helper methods that are reusable over multiple modules and/or
queries. A module can import a library with the uses statement, which comes
right after the create clause:

module UML2LibraryTransformation;

create OUT : UML2 from IN : UML2;

uses UML2;

For queries, the uses statement comes right after the query statement:

query UML2toJava = UML2!uml:: Classifier.allInstances()->collect(e |

i f e.ignore () then true

else e.toFileString (). writeTo(e.pathName ())

endif );

uses UML2;

The “UML2” library itself looks like this:

l ibrary UML2;

uses Strings;

helper context String def : type() : UML2!uml::Type =

UML2!uml::Type.allInstances()->select(c|c.umlQualifiedName ()= self)->first ();

helper context UML2!uml:: NamedElement def : umlQualifiedName () : String =

self.qualifiedName (’::’);

helper context UML2!uml:: NamedElement

def : qualifiedName(separator : String) : String =

i f self.owner.oclIsTypeOf(UML2!uml:: Package) then
self.owner.qualifiedName(separator) + separator + self.name

else
self.name

endif;

Note that libraries themselves can also import other libraries, such as
“Strings” in this case. The can also refer to specific meta-models, such as
“UML2” in this case.
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ATL superimposition

While ATL transformation modules and queries are normally run one at a
time, it is also possible to superimpose several transformation modules on
top of each other. The end result is a transformation module that contains
the union of all transformation rules and all helpers, where it is possible for a
transformation module to override rules and helpers from other transformation
modules. Fig. 2.18 shows an example of a typical use case for superimposition:
the transformation rules of the UML2Copy module are reused and overridden
where necessary by the UML2Profiles module.

module UML2Copy;

rule Model { ... }
rule Package { ... }
rule Class { ... }
rule Interface { ... }
rule DataType { ... }
rule PrimitiveType { ... }
rule Property { ... }
rule Operation { ... }
rule Parameter { ... }
rule OpaqueBehavior { ... }
...

module UML2Profiles;

rule Model { ... }
rule ModelProfile { ... }

Superimposed on

Figure 2.18: ATL superimposition example.

The UML2Copy transformation module includes a transformation rule for
every meta-class instance it must copy. This amounts to approximately 200
rules for the entire UML2 meta-model2. The UML2Profiles transformation
module applies a profile to the “uml::Model” instance, provided it was not yet
applied. All other elements should just be copied. Instead of copying-and-
pasting the 200 rules from UML2Copy, the UML2Profiles module is superim-
posed on the UML2Copy module. It overrides the “Model” rule, which copies
each “uml::Model” instance, by a version that checks that the profile we want
to apply has already been applied. It also introduces a new rule “ModelPro-
file”, which checks that the profile we want to apply has not been applied and
then applies the profile. The resulting transformation is shown in Fig. 2.18.

Note that superimposition is a load-time construct: there is no real trans-
formation module that represents the result of superimposing several modules
on top of each other. Instead, several modules are simply loaded on top ofeach
otherr, overriding existing rules and adding new rules. Since superimposition

2The UML2Copy transformation is generated from the UML2 meta-model by a higher-
order transformation: a transformation that generates another transformation.
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does not require re-compilation of the involved modules, it can be used to scale
up the ATL compiler to much bigger transformation modules. Superimposition
allows developers to partially compile their transformations by splitting them
up in multiple modules. For the developer, this partial compilation speeds up
the development process as it requires less resources.

Superimposition is a relatively new feature that we’ve contributed to ATL.
It is described in more detail in [Wag08].

2.4.3 PIM-to-PSM refinements

The MDA uses model transformation to transform PIMs into PSMs. This can
be done in one transformation, but often you will want to tackle one transfor-
mation problem at a time, such as generating accessor methods or implement-
ing an observer pattern. That’s why MDA advocates the use of successive
refinement steps instead of one single transformation. We will demonstrate
how successive PIM-to-PSM refinement transformations are implemented in
our instant messenger case study.

Our case study employs a number of successive refinement transformations
to achieve a PSM like the one shown in Fig. 2.5. Each refinement trans-
formation adds some elements to the model for each model element that it
triggers on. The model transformation that introduces accessor methods (get-
ters and setters) triggers on all public properties, for example. We also use
a number of alternative refinement transformations, such that we can tar-
get different platforms. Table 2.1 shows the available refinement transforma-
tions, where each row may contain several alternative transformations, sepa-
rated by a ‘|’. The transformations are presented in order of execution, in
that one transformation from each row must be executed after a transforma-
tion from the previous row. The transformations are written in ATL and
their complete source code can be found at http://ssel.vub.ac.be/viewvc/

UML2CaseStudies/uml2cs-transformations/.
Below is a description of each model transformation:

UML2Profiles: The UML2Profiles transformation applies all UML profiles
that are necessary to express our PSM. This currently comprises only
the “Accessors” profile, which allows to specify “accessor” relationships
between properties and their accessor methods. The “accessor” relation-
ship is modelled as a UML Dependency relationship that is stereotyped
as “accessor”.

UML2Accessors: The UML2Accessors transformation introduces accessor
methods for each public, navigable property. It uses the “Accessors”
profile to track which accessors have been introduced for which property
and it also takes into account property multiplicity, uniqueness and or-
dering. The UML2Accessors transformation uses an ATL library for the

http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/
http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/


2.4 Model transformation 45

UML2Profiles

UML2Accessors + Java1 | UML2Accessors + Java2

UML2Observer + Java1 | UML2Observer + Java2 |

UML2JavaObserver + Java1 | UML2JavaObserver + Java2

UML2AbstractFactory

UML2Singleton

UML2Applet | UML2MIDlet

UML2AsyncMethods

UML2DataTypes + Java1 | UML2DataTypes + Java2

Table 2.1: Available model transformations

Java language mappings; either the combination of the “JavaMappings”
and “Java1” library are used, or the combination of “JavaMappings”
and “Java2”. “Java1” is responsible for mapping collection data types
to java.util.Vector, which is available in all Java platforms. “Java2”
maps collections to Java.util.List and java.util.Set, which are only
available in the Java platforms that support the Java 2 Collections frame-
work.

UML2Observer: The UML2Observer transformation introduces an imple-
mentation of the observer design pattern. It uses the “Observer” profile
to find out which elements play which role in the observer pattern. The
“Observer” profile must be applied by the software engineer and offers the
the stereotypes “Observer”, “Observable” and “subscribes”. The “Ob-
server” stereotype applies to classes whose instances can observe other
objects. The “Observable” stereotype applies to classes whose instances
can be observed by other objects. The “subscribes” stereotype applies to
associations via which “Observer” objects can subscribe to “Observable”
objects. The UML2Observer transformation introduces all the event
triggering infrastructure and adapts the setter methods. Event handling
operations must be introduced by the software engineer and are named
according to the property one wants to observe: if the “name” property
of an observable class must be observed, an “onNameChange” operation
must be defined in the observer class. The model transformation makes
sure that this handler operation is triggered. UML2Observer needs to
work with the accessor operations created by and the data types used
by the UML2Accessors transformation, which means it also requires ei-
ther the “JavaMappings” + “Java1” or the “JavaMappings” + “Java2”
library combination.
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UML2JavaObserver: The UML2JavaObserver transformation introduces
similar functionality as the UML2Observer transformation, but uses the
existing java.util.Observer API to implement it. It also uses Java
reflection to find observer handler methods, which allows the software
engineer to add new handlers after the transformation has been exe-
cuted. Neither java.util.Observer nor Java reflection are available in
J2ME MIDP, for example, so the result of this transformation will not
work on all Java platforms.

UML2AbstractFactory: The UML2AbstractFactory transformation intro-
duces an implementation of the abstract factory design pattern. It uses
the “AbstractFactory” profile to find out which elements play which
role in the abstract factory pattern. Same as the “Observer” profile”,
the “AbstractFactory” profile must be applied by the software engi-
neer. Available stereotypes are “AbstractFactory”, “ConcreteFactory”
and “product”. The “AbstractFactory” stereotype applies to classifiers
that represent that abstract factory interface for the design pattern. The
“product” stereotype is applied to dependency relationships that point
to the abstract product classes or interfaces. The “ConcreteFactory”
stereotype applies to classes that represent a factory implementation.
The “product” dependency relationships are also used here, but this time
to mark the concrete products that are created by the factory implemen-
tation. The model transformation introduces the “create” operations,
based on the abstract product names (e.g. “createContactListView” for
an abstract product interface named “ContactListView”). It also gener-
ates the implementation for these operations for each concrete factory.

UML2Singleton: The UML2Singleton transformation introduces an imple-
mentation of the singleton design pattern. It uses the “Singleton” profile
to do this, which simply offers the “Singleton” stereotype to mark sin-
gleton classes. The model transformation introduces a “getInstance”
operation for each singleton class. It does not hide the constructor op-
eration, since this creates problem in particular cases, such as live GUI
editors and Java applets.

UML2Applet: The UML2Applet transformation introduces an implementa-
tion for classes that are stereotyped as “Applet”. The implementation
is based on the java.applet.Applet class. It uses the “Applet” profile,
which must be applied by the software engineer.

UML2MIDlet: The UML2MIDlet transformation also introduces similar
functionality as the UML2Applet transformation, except that its imple-
mentation is based on the javax.microedition.midlet.MIDlet class.
In addition, a special adapter class is introduced, such that “Applet”
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classes can use the special operations for standard Java applets (“start”,
“stop”, etc.) instead of the special MIDlet operations.

UML2AsyncMethods: The UML2AsyncMethods transformation wraps the
implementation of all operations stereotyped as “asynchronous” inside a
java.util.Thread, such that each invocation of that operation becomes
asynchronous. It uses the “Async” profile to to do this, which must be
applied by the software engineer.

UML2DataTypes: The UML2DataTypes transformation replaces all OCL
data types into Java classes, interfaces and primitive types. It also deals
with multiplicity, uniqueness and ordering constraints by translating to
the correct Java collection type. That’s why this transformation also
requires either the “JavaMappings” + “Java1” or the “JavaMappings”
+ “Java2” library combination. The OCL data types are provided in a
separate UML model, that can be imported by the software engineer.

Most of these refinement transformations add relatively small platform de-
pendencies to the model, generally in the form of required Java API (e.g.
java.applet.Applet or java.util.List). Considered alone, these separate
platform dependencies allow for more possible target platforms than when they
are considered together. For example, java.applet.Applet is available on all
Java platforms that support the AWT GUI toolkit, which includes everything
from Personal Java to Java 6 SE. Likewise, java.util.List is available on
all Java platforms that support the Java 2 Collections framework. When com-
bined, these platform dependencies narrow down the target platform to all
Java platform that support both AWT and the Java 2 Collections framework.

This example may seem a bit contrived, as all platforms that support the
Java 2 Collections framework also support AWT, but it illustrates the point
that a single refinement transformation introduces only small, local platform
dependencies for each element it transforms. Also note that in reality, there
are different versions of AWT and the Java 2 Collections framework, such that
satisfying even these two platform dependencies is not trivial.

Even though Table 2.1 shows the possibility for many combinations, care
must be taken that a meaningful combination is chosen. There are combina-
tions of refinement transformations with platform dependencies that no cur-
rently existing platform can satisfy. For example, none of the currently exist-
ing Java platforms supports both javax.microedition.midlet.MIDlet and
java.util.Observer. Also the choice for the “Java1” or “Java2” mapping
library must be consistent: the same choice must be made for all relevant
transformations, such that these transformations assume the same collection
types.
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2.5 Summary

In this chapter we have explained the Model Driven Architecture (MDA). We
have positioned the MDA as an approach to software development that aims
to lift the feedback in the development lifecycle up from code level to analysis
and design level. It does this by means of automated transformations from
abstract, platform-independent software descriptions to concrete, platform-
specific software descriptions. In the MDA, software descriptions take the form
of models. We have explained the roles of the various kinds of models used
by the MDA. We have also explained how the MDA uses meta-modelling and
model transformation technologies to achieve the transitions between levels
of abstraction. We have explained the Eclipse Modeling Framework (EMF)
and the ATLAS Transformation Language (ATL) in particular, since our case
study builds on these technologies. Finally, we have demonstrated how PIM-
to-PSM refinement transformations can be implemented and how platform
dependencies are introduced.

The next chapter discusses ontologies and the OWL language [SWM04]
in particular. The OWL ontology language forms the basis for our platform
models.
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Ontologies

3.1 Introduction

The term “ontology” has many interpretations. We base ourselves on Gruber’s
interpretation, which is the one that is generally used for ontologies in the
context of software systems:

“An ontology is an explicit specification of a conceptualization. The
term is borrowed from philosophy, where an ontology is a systematic
account of Existence. For knowledge-based systems, what “exists” is
exactly that which can be represented.” [Gru93]

Ontologies are typically used to share knowledge among software systems
and serve as a common, controlled vocabulary in which shared knowledge is
– often formally – represented. Hence, ontologies are very useful for domain
modelling, in which a conceptualisation of a particular domain is given.

In the past, many formalisms were used to represent an ontology. Currently,
a standard language for expressing ontologies has emerged and current research
on ontologies is carried out in the scope of this language: the Web Ontology
Language (OWL) [SWM04]. The remainder of this chapter explains how OWL
is used to express ontologies.

OWL has been developed mainly to support the vision of the Semantic
Web1, in which the information that is accessible via the Web is related to
each other via ontologies. OWL has been designed with automatic reasoning
in mind. Automatic reasoning enables separate parts of the Semantic Web to
be automatically related toeach otherr.

1http://www.w3.org/2001/sw/
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OWL serves as a general ontology language as well, since it supports all
the necessary concepts, such as classes, properties, individuals and relationships
between these individuals. OWL is built on top of the Resource Description
Framework (RDF) language [BG04] and provides three increasingly expressive
sublanguages (from [SWM04]):

• OWL Lite supports those users primarily needing a classification hierar-
chy and simple constraint features. For example, while OWL Lite sup-
ports cardinality constraints, it only permits cardinality values of 0 or 1.
It should be simpler to provide tool support for OWL Lite than its more
expressive relatives. OWL Lite should also provide a quick migration
path for thesauri and other taxonomies.

• OWL DL supports those users who want the maximum expressiveness
without losing computational completeness (all entailments are guaran-
teed to be computed) and decidability (all computations will finish in
finite time) of reasoning systems. OWL DL includes all OWL language
constructs with restrictions such as type separation (a class can not also
be an individual or property, a property can not also be an individual or
class). OWL DL is so named due to its correspondence with description
logics [BCM+03]. OWL DL was designed to support the existing Descrip-
tion Logic business segment and has desirable computational properties
for reasoning systems.

• OWL Full is meant for users who want maximum expressiveness and the
syntactic freedom of RDF with no computational guarantees. For exam-
ple, in OWL Full a class can be treated simultaneously as a collection
of individuals and as an individual in its own right. OWL Full allows
an ontology to augment the meaning of the pre-defined (RDF or OWL)
vocabulary. It is unlikely that any reasoning software will be able to
support every feature of OWL Full.

We will focus on OWL DL where the different OWL versions deviate from
each other, since it is the most expressive version of OWL that still allows for
automatic reasoning. The remainder of this section discusses the OWL DL
language constructs.

3.2 Simple named classes

Domain concepts are generally represented as simple named classes , which can
have subclasses like in object-oriented programming. The subclass relationship
is also called subsumption in OWL. Every individual – or class instance – in
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OWL is an instance of the predefined class “owl:Thing”2. Each user-defined
class is implicitly a subclass of “owl:Thing”: all instances of each user-defined
class are also instances of “owl::Thing”. Domain-specific root classes are de-
fined by simply declaring a named class. OWL also predefines the empty class,
“owl:Nothing”.

Let’s consider the example of the domain of wines from [SWM04]. Fig. 3.1
shows a basic classification for this domain.

Region ConsumableThingWinery

PotableLiquid

isa

Wine

isa

Grape

WineGrape

isa

Figure 3.1: An example classification of wine-related concepts in OWL.

This simple wines ontology introduces three root classes, “Winery”,
“Grape”, “Region” and “ConsumableThing”, all of which are implicitly a sub-
class of “owl:Thing”. In addition, “Grape” has a subclass “WineGrape” and
“ConsumableThing” has a subclass “PotableLiquid”, which in turn has a sub-
class “Wine”. Subclassing is denoted via a directed arrow with the label “isa”.

3.3 Individuals

Now that we can describe classes, we can also describe their members. These
class members – or instances – are called individuals in OWL. Individuals are
generally declared as being a member of a specific class, as shown in Fig. 3.2.

Region ConsumableThingWinery

PotableLiquid

isa

Wine

isa

Grape

WineGrape

isa io

CentralCoastRegion

CabernetSauvignonGrape

io

Figure 3.2: Some example OWL individuals in the wine domain.

2“owl:” refers to the XML namespace of the OWL language, which is in the form of an
XML schema
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The extended wine ontology adds two individuals, “CentralCoastRegion”
and “CabernetSauvignonGrape”, which are instances of “Region” and “Wine-
Grape”, respectively. The instance of relationship is denoted by a directed,
dashed arrow with the label “io”. We have decided that “CentralCoastRegion”
(a specific area) is member of “Region”, the class containing all geographical
regions. We have also decided that “CabernetSauvignonGrape” is an individ-
ual because it denotes a single grape varietal.

The choice of representing something as a class or an instance is an impor-
tant one and is often difficult to make. The OWL guide has the following to
say about this:

“There are important issues regarding the distinction between a class
and an individual in OWL. A class is simply a name and collection
of properties that describe a set of individuals. Individuals are the
members of those sets. Thus classes should correspond to naturally
occurring sets of things in a domain of discourse, and individuals should
correspond to actual entities that can be grouped into these classes.
In building ontologies, this distinction is frequently blurred in two ways:

• Levels of representation: In certain contexts something that is
obviously a class can itself be considered an instance of something
else. For example, in the wine ontology we have the notion of a
“Grape”, which is intended to denote the set of all grape varietals.
“CabernetSauvingonGrape” is an example instance of this class,
as it denotes the actual grape varietal called Cabernet Sauvignon.
However, “CabernetSauvignonGrape” could itself be considered
a class, the set of all actual Cabernet Sauvignon grapes.

• Subclass vs. instance: It is very easy to confuse the instance-of
relationship with the subclass relationship. For example, it may
seem arbitrary to choose to make “CabernetSauvignonGrape” an
individual that is an instance of “Grape”, as opposed to a sub-
class of “Grape”. This is not an arbitrary decision. The “Grape”
class denotes the set of all grape varietals, and therefore any sub-
class of “Grape” should denote a subset of these varietals. Thus,
“CabernetSauvignonGrape” should be considered an instance of
“Grape”, and not a subclass. It does not describe a subset of
grape varietals, it is a grape varietal.” [SWM04]

The choice between classes and individuals is also discussed in detail by
Welty and Ferrucci in [WF99]. How an ontology should be built with regard
to classes and individuals depends on the intended usage. The issues regarding
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the choice for classes or individuals also bring up one major difference between
OWL Full and OWL DL. OWL Full allows the use of classes as instances and
OWL DL does not.

3.4 Simple properties

Properties allow us to assert general facts about the members of classes and
specific facts about individuals. A property is a binary relation. Two types of
properties are distinguished:

• Datatype properties: relations between instances of classes and primitive
data types (e.g. integer or string).

• Object properties: relations between instances of two classes.

Each property has a domain and a range. Subproperties can be defined for
a property, which restrict the domain and/or range. Fig. 3.3 shows an example
object property and how it applies to individuals.

Region ConsumableThingWinery

PotableLiquid

isa

Wine

isa

Grape

WineGrape

isa

*madeFromGrape

ChardonnayGrape

io

LindemansBin65Chardonnay

madeFromGrape

Figure 3.3: An example OWL property in the wine domain.

The property “madeFromGrape” has a domain of “Wine” and a range of
“WineGrape”, which means it relates instances of the class “Wine” to instances
of the class “WineGrape”. We’ve used a ‘*’ in Fig. 3.3 to indicate that “made-
FromGrape” can relate “Wine” instances to multiple “WineGrape” instances.
This is the default behaviour in OWL. It is possible to restrict a property to
relate an individual to only one other individual through a functional property,
as is discussed later.

The use of range and domain information in OWL is different from type
information in a programming language. Types are used to check consistency
in a programming language, whereas in OWL, a range may also be used to
infer a type. Consider the “LindemansBin65Chardonnay” from Fig. 3.3. We
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can infer that “LindemansBin65Chardonnay” is an instance of “Wine” because
the domain of “madeFromGrape” is “Wine”.

Properties can be arranged in a hierarchy, just like classes. Fig. 3.4 shows
an example of a subproperty as well as a transitive property.

Wine
isa

WineDescriptor

WineColour

isa

*hasWineDescriptor

*hasColour

Region :owl Thing* ( )locatedIn transitive

Figure 3.4: An example of an OWL subproperty and a transitive property.

The “WineDescriptor” class refers to a wine’s colour and components of
taste, including sweetness, body, and flavour. A “Wine” is related to “Wine-
Descriptor” via the “hasWineDescriptor” property. “hasColour” is a subprop-
erty of the “hasWineDescriptor” property, as shown by the “isa” relationship.
While its range is further restricted to “WineColour”, no domain has been
specified for “hasColour”: the domain is inherited from “hasWineDescriptor”.
The subproperty relationship means that every “hasColour” property value of
a “Wine” individual also counts as a “hasWineDescriptor” property value.

The “locatedIn” property from Fig. 3.4 describes in which “Region” some-
thing is located. It’s domain is “owl:Thing”, which means that any individual
can have a “locatedIn” property value, including instances of “Region”. The
“locatedIn” property is transitive: if an individual “Brussels” is located in
“Belgium” and “Belgium” is located in “Europe”, then “Brussels” is also lo-
cated in “Europe”.

Properties can have several other characteristics, such as being symmetric,
functional or an inverse of another property. Fig. 3.5 shows several examples.

VintageVintageYear hasVintageYear

Region * ( )adjacentRegion symmetric

WineWinery *producesWine

[ ..*]vintageOf 1
hasMaker

Figure 3.5: Example of symmetric, functional and inverse properties.

The “adjacentRegion” property is symmetric, which means that if a re-
gion “Flanders” is adjacent to a region “Wallonia”, then “Wallonia” is adja-
cent to “Flanders” as well. The “hasVintageYear” property is a functional
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property, which means that any domain value maps to a single range value:
each “Vintage” can only have one “VintageYear”. The “producesWine” and
“hasMaker” properties are inverse properties, which means that if and only
if a winery “ChateauMigraine” produces the “GrandCervigenic” wine, then
“GrandCervigenic” has “ChateauMigraine” as its maker. The “Vintage” and
“Wine” classes are related to each other through the “vintageOf” property.
“vintageOf” has a cardinality constraint applied to it: a “Vintage” instance is
a “vintageOf” at least one “Wine”. This is depicted by the “[1..*]” label.

Relating “Vintage” to “Wine” through a property is not an obvious
choice: we could have modelled “Vintage” as a subclass of “Wine” with
the thought that only some wines classify as a vintage. This is wrong,
however, since the “Wine” class denotes the set of all varieties of wine,
as has been discussed before. A “Vintage” is not a variety, but refers
to a particular year of that variety. This issue of subclass vs. property
is different from the subclass vs. instance issue, since here the dis-
tinction is not subset versus identity, but whether the classes involved
are disjoint. OWL allows for explicit specification of disjoint classes
to help detect this issue. This issue and other issues are discussed in
detail by Rector et al. in [RDH+04].

3.5 Property restrictions

It is possible to further constrain the range of a property with property restric-
tions . Property restrictions always apply to a specific property and they come
in several types: “allValuesFrom”, “someValuesFrom”, “cardinality” and “has-
Value”. A property restriction can be treated as an anonymous OWL class,
which means that it is possible to define another OWL class as a subclass of
a property restriction. Property restrictions must only hold in the context of
their subclasses, which may only be a small part of the entire property domain.
Fig. 3.6 shows an example of an “allValuesFrom” and a “someValuesFrom”
property restriction, which are depicted using the ‘∀’ and the ‘∃’ symbols. We
will follow the notation used in the Protégé ontology editor3 where possible,
which is one of the most popular ontology editors.

The “Winery” class is defined as a subclass of the “∀ locatedIn WineRe-
gion” property restriction, which is indicated by the ‘v’ symbol in front of the
restriction. This means that the “locatedIn” property has been restricted for
the “Winery” domain: all wineries must be located in wine regions. Note that

3http://protege.stanford.edu/

http://protege.stanford.edu/
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Winery

Region :owl Thing
* ( )locatedIn transitive

⊑∀ locatedIn WineRegion

WineRegion

isaisa
*locationOf

⊑∃ locationOf Winery

Figure 3.6: Example of “allValuesFrom” and “someValuesFrom” property re-
strictions.

this restriction does not require a winery to be located in a wine region: only
if a winery has locations, those locations are wine regions.

The “WineRegion” class restricts the “locationOf” property as “∃ loca-
tionOf Winery”: a wine region is the location of at least one winery. This
restriction does not require all things located in a wine region to be wineries,
but it does require at least one thing to be a winery.

This example exhibits a peculiar side-effect, since “locatedIn” and “lo-
cationOf” are inverse properties. If we enforce the “∃ locationOf Win-
ery” restriction for the “WineRegion” class, then this has consequences
for the “locatedIn” property as well. If we require all wine regions to
be the location of at least one winery, then the inverse must hold as
well: for all regions that are the location of a thing, that thing is lo-
cated in that region. So, for all wine regions that are the location of
a thing, that thing is located in that wine region and at least one of
those things is a winery!
This is consistent with the “∀ locatedIn WineRegion” restriction for
the “Winery” class, since it allows a winery to be located in a wine
region (in fact, wineries must always be located in a wine region). If
we change the “Winery” restriction to “∀ locatedIn ¬WineRegion”,
the ontology would be inconsistent : wine region requires at least one
winery to be located in it, while no wineries may be located in wine
regions! This demonstrates that the definition of property restrictions
requires extra care in the presence of inverse properties.

We have already seen cardinality constraints in Fig. 3.5: “vintageOf” had a
minimum cardinality of ‘1’. It is also possible to specify a maximum cardinality,
as well as an exact cardinality. Cardinality expressions with a value of 0 or
1 are allowed in OWL Lite, whereas OWL DL supports any positive integer
value.

The “hasValue” property restriction allows us to specify classes based on
the existence of particular property values. An individual will be a member
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of such a class if at least one of its property values is equal to the specified
property value. Fig. 3.7 shows an example of a “hasValue” property restriction,
which is depicted using the ‘3’ symbol.

Burgundy

Sugar Wine
hasSugar

⊑∋ hasSugar Dry

isaio

Dry

Figure 3.7: Example of a “hasValue” property restriction.

The property restriction “3 hasSugar Dry” declares that all “Burgundy”
wines are dry. That is, their “hasSugar” property must have at least one value
that is equal to “Dry”.

3.6 Ontology mapping

Ontologies are expected to be defined by many different people and/or organ-
isations. Hence, these different ontologies may present different views of the
same domain, which can result in some overlap. OWL provides two constructs
to declare such overlap: equivalence for classes and properties and identity for
individuals.

Consider the two equivalence examples in Fig. 3.8, which are depicted using
the ‘≡’ symbol and a different colour for the affected class.

:food Wine
Wine

≡≣ :food Wine

Region :owl Thing
* ( )locatedIn transitive

TexasThing

≡≣∃ locatedIn TexasRegion

isa

TexasRegion

isa

Figure 3.8: Example of equivalence.

The “Wine” class has been declared equivalent to the “food:Wine” class
from the food ontology, which means that all instances of “Wine” are to be
considered instances of “food:wine” as well and vice versa. We use a different
colour for a class that has an equivalence declaration to indicate that the
equivalence relationship often has significant consequences for the classification
of other classes and individuals. The class hierarchy changes in that all sub-
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and superclasses of “food:Wine” become sub- and superclasses of “Wine” as
well and vice versa. The changes in class hierarchy then propagate to the
individuals.

Equivalence declarations can also be used on property restrictions (since
they are in effect anonymous classes). “TexasThing” has been declared equiv-
alent to the property restriction “∃ locatedIn TexasRegion”. This means that
each individual that has a “TexasRegion” value in its “locatedIn” property
(i.e. each individual that is located in Texas) is equivalent with “TexasThing”.
This may again have consequences for classification: all individuals that are
declared instances of “owl:Thing” and are located in “TexasRegion” are now
considered to be instances of “TexasThing” as well.

The equivalence relationship should be used with care, as its use may
easily result in inconsistent ontologies or unexpected class hierarchies.
Such unexpected class hierarchies are the consequence of OWL’s open
world assumption: all classes can be equivalent unless declared other-
wise. Whereas inconsistencies are relatively easy to detect, the cause
of an unexpected class hierarchy is more difficult to root out. It is
recommendable to declare classes to be disjoint whenever possible.

Whereas classes can be declared equivalent, individuals can be declared
identical. Consider the identity example in Fig. 3.9, which is depicted using
the ‘=’ symbol.

WineWinery
hasMaker

io

StGenevieveTexasWhite

= StGenevieveTexasWhite

MikesFavoriteWine

Bancroft Beringer

BancroftChardonnay

hasMaker

Figure 3.9: Example of identity.

“MikesFavoriteWine” is declared to be the same as “StGenevieveTexas-
White”, which means that Mike likes an inexpensive local wine. Note that
OWL does not have a unique name assumption. Just because two names are
different does not mean they refer to different individuals. Consider the “Ban-
croftChardonnay” wine, which has “Bancroft” and “Beringer” as its maker.
Given that “hasMaker” is functional, this example is not necessarily a conflict.
Unless this conflicts with other information in our ontology, it simply means
that “Bancroft” = “Beringer”.
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Similar to disjointness for classes, it is possible to declare individuals to
be different from another individual. This construct can be used to prevent
unexpected inferences, such as the “Bancroft” winery to be the same as the
“Beringer” winery.

3.7 Complex classes

In addition to simple named classes, OWL provides a number of constructs to
define complex classes that are built out of one or more other classes. These
constructs are “unionOf”, “intersectionOf” and “complementOf”.

Consider the example of “intersectionOf” in Fig. 3.10, which is depicted
using the ‘u’ symbol.

WineWineColour
*hasColour

WhiteWine

≡≣ Wine ⊓ (∋ )hasColour White
White

io

Figure 3.10: Example of “intersectionOf”.

The “WhiteWine” class is defined equivalent to the intersection of the
class “Wine” and the set of things that are white in colour. The members
of the “WhiteWine” class are completely specified by the “intersectionOf” set
operation. This means that if something is white and a “Wine”, then it is an
instance of “WhiteWine”. Without such a definition we can only specify that
white wines are wines and white, but not vice-versa.

To complement ”intersectionOf”, there is the “unionOf” construct. Fig.
3.11 shows an example of “unionOf”, which is depicted using the ‘t’ symbol.

NonSweetFruitSweetFruit

Fruit

≡≣ SweetFruit ⊔ NonSweetFruit

Figure 3.11: Example of “unionOf”.

The “Fruit” class is defined equivalent to exactly the union of the class
“SweetFruit” and “NonSweetFruit”. This states that all fruits are sweet fruits
or non-sweet fruits. It does not state that a “Fruit” instance cannot be an in-
stance of both “SweetFruit” and “NonSweetFruit”: that requires “SweetFruit”
and “NonSweetFruit” to be declared disjoint.
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In subsection 3.5, we have already given an example of “complementOf”
in the property restriction “∀ locatedIn ¬WineRegion”. The symbol used
for “complementOf” is ‘¬’. The individuals defined by “¬WineRegion” are
all individuals that are not wine regions. The intersection of “WineRegion”
and “¬WineRegion” is typically “owl:Nothing” (empty set) and the union
“owl:Thing” (everything).

Finally, OWL provides a construct a complex class built out of instances,
called an enumerated class. Enumerated classes have a “oneOf” relationship
with a closed set of individuals. This means that there can be no other in-
stances of the enumerated class than the given individuals.

3.8 Summary

This chapter has explained what an ontology is in the context of software
systems. The concrete example of the OWL ontology language has been used to
illustrate what can be modelled in an ontology. We have focused on the OWL
DL variant of OWL, which corresponds to description logics and can hence be
supported by automated reasoning systems. For each OWL construct, we have
discussed the uses and abuses, as well as the effect it has for logic inference.

The next chapter discusses how we can model platforms using OWL on-
tologies as well as the inferences that can be drawn from such platform models.
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Platform modelling

4.1 Introduction

The previous chapters discussed the background information on the Model-
Driven Architecture and ontologies. The first topic represents a solution for
dealing with platform diversity. The second topic provides the necessary back-
ground information to understand our approach to platform modelling. This
chapter discusses how we use platform modelling as a means to deal with
platform diversity.

Section 4.2 motivates the need for our platform modelling approach. It first
looks at current MDA technology and shows how far it brings us in dealing
with diverse platforms. Remaining issues are discussed and the need for ex-
plicit platform modelling is explained. Section 4.3 explains how the platform
ontology, which forms the basis for our approach to platform modelling, is built
up. Section 4.4 discusses how the platform ontology is extended for specific
technical platform domains. Section 4.5 explains how platform instances, such
as the Zaurus SL-C1000 PDA, are modelled. Section 4.6 discusses the defini-
tion of platform dependency constraints and how they are used. Section 4.7
discusses the limitations of our approach. Section 4.8 discusses related work
and section 4.9 concludes this chapter.

4.2 Dealing with platform diversity

As has become apparent in the previous chapters, the MDA approach offers
support for platform diversity up to a certain extent. The MDA aims to
deal with platform diversity through automatic transformation of platform-
independent software representations (PIMs) into multiple platform-specific
software representations (PSMs). The use of platform-independent abstrac-
tions in our PIMs make it possible to use such PIMs across multiple platforms.

61
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The MDA suggests to apply multiple, successive refinement transformations
to the PIM in order to obtain the final PSM. This allows for reducing the com-
plexity of each separate transformation (divide-and-conquer). Each of these
transformations can introduce a number of platform dependencies. These plat-
form dependencies are implicit and hardcoded in the transformations. This
works fine as long as you only use such refinement transformations for the
platform they were designed for. In chapter 2 we have demonstrated, however,
that PIM-to-PSM refinement transformations can be made reusable over mul-
tiple platforms. The platform dependencies introduced by a single refinement
transformation are minimal; it is only the chosen combination of refinement
transformations that is limited to one platform – or very few platforms. It is
not safe, however, to reuse a refinement transformation for another platform
without knowing whether that platform satisfies the platform dependencies
that the refinement transformation introduces.

That’s why we propose to make platform domain knowledge explicit, as has
been briefly discussed in chapter 1. This platform domain knowledge serves
as a basis for the representation of platform dependencies. The representation
of a platform dependency is called a platform dependency constraint . The ex-
plicit platform domain knowledge allows us to reason about the extent of plat-
form dependency constraints with regard to target platform instances. If new
platforms evolve, they can be added to the domain knowledge and compared
against the existing platform dependency constraints. Platform dependency
constraints of alternative refinement transformations can also be compared
against each other, such that the most appropriate alternative may be chosen
for a particular platform.

As a knowledge representation format, we have chosen OWL DL ontolo-
gies. Ontologies can serve as a common, controlled vocabulary for a domain, as
has been discussed in the previous chapter. The relationships (subsumption,
equivalence) between the ontology elements (classes, properties, individuals)
can be used to reason about elements based on that ontology, even if those
elements aren’t related directly. A platform ontology allows one to base ex-
pressions about a platform on the vocabulary expressed by that ontology. By
using a common model of platforms, we can reason about the relationship be-
tween a platform instance description and a platform dependency constraint,
even if the two do not have a direct relationship. An example platform de-
pendency constraint is that the Java 2 Collections framework1 needs to be
present. An example of a platform instance description is a Sharp Zaurus
hand-held computer. Since both the platform dependency constraint and the
platform instance description refer to the platform ontology to explain what
the Java 2 Collections framework and the Zaurus hand-held computer are, one
can derive whether the Zaurus hand-held computer platform satisfies the Java

1http://java.sun.com/j2se/1.4.2/docs/guide/collections/reference.html

http://java.sun.com/j2se/1.4.2/docs/guide/collections/reference.html
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2 Collections framework constraint.
OWL DL is supported by a number of automatic DL reasoners, such as

Racer [MH03], Pellet [SPG+07] or Fact++ [TH06]. These automatic reasoners
can be used to infer useful knowledge, such as whether a platform instance sat-
isfies a platform dependency constraint or even whether a platform dependency
constraint is more specific than another platform dependency constraint. More
specific means that a platform dependency constraint forms a closer match to
the platform and refers to the position of a platform dependency constraint in
an OWL class hierarchy, as will be explained in detail later. The automatic
inference results allow us to do automated platform dependency constraint
satisfaction checks and (semi-)automated selection of model transformations,
based on a platform instance description.

4.3 A platform vocabulary ontology

Before modelling any specific platform properties, a basic structure needs to be
defined, into which platform extensions can be fitted. We have called this struc-
ture a platform “vocabulary ontology” in chapter 1. The word “vocabulary”
refers to the fact that the domain concepts are introduced in this ontology,
such that platform dependency constraints and platform instances can refer
to them. Our platform vocabulary ontology is based on a context ontology
for Ambient Intelligence that we have contributed to [PVW+04]. This con-
text ontology includes the concept of platform. The platform is the context in
which the software must run, as opposed to the context of the user. Part of
the ontology that models platforms is shown in Fig. 4.12.

The ontology describes the following concepts:

Platform: The “Platform” class in this ontology can provide “Features”,
which can take the form of “Software” or “Hardware”. This is denoted
by the “providesFeature” property.

Feature: Features can require other features, e.g. the need for a particular
“VirtualMachine” or a user interface “RenderingEngine” that supports
voice communication as a “Modality”. This is denoted by the “requires-
Feature” property, which represents the transitive closure of required
features.

Software: The “Software” class represents all kinds of software that can be
present on a “Platform”. It has several (disjoint) subclasses, which are
intended for expressing the direct platform dependency constraints. Di-
rect platform dependency constraints refer to platform elements that

2The full ontologies used can be found at http://ssel.vub.ac.be/ssel/research:
mdd:platformkit:ontologies

http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
http://ssel.vub.ac.be/ssel/research:mdd:platformkit:ontologies
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Platform
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Operating
System
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Rendering
Engine

Input
Device

Output
Device

Resource
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CPU
Resource
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Resource
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Resource
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*requiresFeature
( )transitive
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Middleware
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Device
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*supportsModality

*providesFeature

Library PackageManager

Feature

Figure 4.1: Partial view of the base platform ontology

the platform-specific software we want to deploy connects to in a di-
rect way. They typically correspond to the “functional” requirements of
the platform-specific software, such as required interfaces and expected
behaviour. “Software” is disjoint from the “Hardware” class.

Hardware: The “Hardware” class represents the kinds of physical parts out
of which a “Platform” is built. “Hardware” can take the form of either
a “Resource” or an “IODevice” (disjoint) and is intended for expressing
indirect platform dependency constraints. Indirect platform dependency
constraints refer to the platform elements that form boundary conditions
for the platform-specific software that we want to deploy to function
in. They typically correspond to the “nonfunctional” requirements of
the platform-specific software, such as memory and performance require-
ments.

RenderingEngine: The “RenderingEngine” class refers to user interface ren-
dering software, such as Java AWT for graphical user interfaces. Ren-
dering engines can have one or more “Modalities”.

Modality: The “Modality” class refers to the various communication channels
that a user interface can use, such as visual, audial or haptic.

OperatingSystem: The “OperatingSystem” class refers to the lowest-level
software on a platform, that interfaces directly with the hardware. Op-
erating systems form the first layer of abstraction on top of the hardware.
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Platform-specific software is at least built on top of an operating system,
if not on top of a higher-level abstraction layer.

VirtualMachine: The “VirtualMachine” class refers to a more rigorous ab-
straction layer than the operating system: virtual machines abstract from
the hardware architecture and allow the platform-specific software to be
represented in a portable binary format.

Middleware: The “Middleware” class refers to software that provides infras-
tructural services, such as communication and distribution. Some mid-
dleware examples are CORBA [OMG04a], DCOM [MS96] and Enterprise
Java Beans [MKDS03].

Library: The “Library” class refers to any software libraries that implement
interfaces on which the platform-specific software we want to deploy may
depend. Subclasses of “Library” are typically not disjoint, since their
classification is based on which interfaces they implement: any combina-
tion of interfaces may be implemented by a library, possibly overlapping
or subsuming the functionality of other libraries.

PackageManager: The “PackageManager” class refers to the software that
can install and uninstall software packages. Package managers are a vital
passageway for software deployment: the platform-specific software we
want to deploy must be packaged in a way that the platform understands
and is able to install properly. Package managers are often bundled with
the operating system, but sometimes reside in a different abstraction
layer. That’s why they are modelled separately.

Resource: The “Resource” class refers to the hardware that can be used by
the software in a quantified manner. The platform-specific software we
want to deploy may require a minimal amount of “Memory”, for example.
“Resource” is broken down into several (disjoint) subclasses, which reflect
the typical kinds of resources in current hardware architectures.

PowerResource: The “PowerResource” class refers to the kind of power
source that feeds the platform, such as mains (from wall sockets) or
battery, and its capacity, if applicable.

MemoryResource: The “MemoryResource” class refers to the volatile work-
ing memory that the software can use, such as RAM.

CPUResource: The “CPUResource” class refers to the central processing
unit that executes the software. In addition to its architecture (e.g. x86
or PowerPC), a CPU also has a typical performance.
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StorageResource: The “StorageResource” class refers to the non-volatile
storage memory that the software can use, such as a harddisk or flash
memory.

NetworkResource: The “NetworkResource” class refers to any networking
capacities that the software can use in terms of bandwidth and reliability.
Networking resources are deliberately not modelled as I/O devices, even
though network interfaces are exactly that in the technical sense: the
quantifiable aspect of a network interface is more important than which
exact interface is used to reach the other end.

IODevice: The “IODevice” class refers to input/output (I/O) devices that
the software can use to communicate with external entities. These ex-
ternal entities are generally humans: the focus of an “IODevice” lies on
the specific (kind of) interface that is used to communicate, rather than
quantifiable aspects, such as bandwidth. I/O devices can still have quan-
tified properties, such as screen resolution, but such properties cannot
be used proportionally by the software: while software may run twice as
fast on a CPU that is twice as fast, the graphical user interface does not
become “twice as friendly” on a screen that is twice the size.

InputDevice: The “InputDevice” class refers to all I/O devices that can be
used for data input, such as a keyboard, microphone or mouse. It is not
disjoint from “OutputDevice”, as some I/O devices have both input and
output capabilities (e.g. a touchscreen).

OutputDevice: The “OutputDevice” class refers to all I/O devices that can
be used for data output, such as a screen or loudspeaker.

The parts that have been changed from the original context ontology are
the following:

• The platform-related elements have been factored out into a separate
ontology.

• The “Software” and “Hardware” classes have been generalised into the
“Feature” class.

• The “PackageManager” class has been added.

4.4 Extending the platform ontology

The base platform ontology described in the previous section is not detailed
enough for realistic platform dependencies and platform instances, which typ-
ically refer to specific kinds of software libraries or which kinds of platforms



4.4 Extending the platform ontology 67

provide these libraries. For this purpose, the base platform ontology can be
extended for particular sub-domains of platform, such as Java runtime envi-
ronments (JREs). Fig. 4.2 shows part of such an ontology.

:platform VirtualMachine

isa

JavaVM

isa

:platform Library

isa

JRE

JavaBytecodeFormat

:platform Software

JavaLibrary
providesBuiltinJavaLibrary

providesJavaVM

*supportsBytecodeFormat

:platform PackageManager

isa

JavaPackageManager
*providesJavaPackageManager

JavaWebApplet JavaWebStart JavaMIDlet

isa

Figure 4.2: Partial view of an ontology for describing Java runtime environ-
ments

The Java ontology describes the following concepts:

JRE: The “JRE” class refers to a Java runtime environment, such as the Java
Standard Edition 1.5 or J2ME Personal Profile 1.0. “JRE” is a subclass
of “Software”. “Software” is prefixed by “platform:” to indicate it refers
to the “Software” class from the main platform ontology (see Fig. 4.1)3. A
“JRE” consists of a virtual machine, a built-in class library and may pro-
vide a number of package managers, denoted by the “providesJavaVM”,
“providesBuiltinJavaLibrary” and “providesJavaPackageManager” prop-
erties.

JavaLibrary: The “JavaLibrary” class refers to a library that implements a
(part of a) Java Application Programming Interface (API). It can be
subclassed by libraries that implement a specific (part of a) Java API,
as will be shown later.

3The “platform:” prefix refers to the XML namespace “platform”, where the ‘:’ serves
as a namespace delimiter.
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JavaVM: The “JavaVM” class refers to a Java virtual machine. A “JavaVM”
can support one or more of the various existing bytecode formats (“sup-
portsBytecodeFormat”).

JavaBytecodeFormat: The “JavaBytecodeFormat” class refers to Java vir-
tual machine bytecode formats. “JavaBytecodeFormat” has a number
of instances ranging from “java1.1BytecodeFormat” up to “java1.4Byte-
codeFormat”, “java5BytecodeFormat”, “java6BytecodeFormat”, “java-
1.1Preverified1.0BytecodeFormat” and “java1.1Preverified1.1Bytecode-
Format”. The last two bytecode formats refer to specialised formats
for J2ME MIDP (mobile phones), whereas the other bytecode formats
represent the evolutionary steps of the standard Java bytecode format.

JavaPackageManager: The “JavaPackageManager” class refers to specific
parts of the Java Runtime Environment that function as a package man-
ager: they are used to deploy and/or install Java software, such that the
JRE can run it. “JavaPackageManager” currently has three subclasses:
“JavaWebApplet”, “JavaWebStart” and “JavaMIDlet”.

JavaWebApplet: The “JavaWebApplet” class refers to the standard Java
applet viewer component with web browser plugin. The applet viewer
has always been part of the standard Java editions, which come with
various web browser plugins. The web browser plugins allow Java applets
to be run directly from the web: they are automatically “installed”.

JavaWebStart: The “JavaWebStart” class refers to the Java Web Start tech-
nology that is shipped with J2SE 1.4 or up. It allows you to open a Java
application descriptor file directly from the web with the JRE. The JRE
then downloads all necessary components and starts the application. You
can later restart the same Java application by opening the downloaded
application descriptor file again. Java Web Start is meant for heavier
Java applications instead of simple applets.

JavaMIDlet: The “JavaMIDlet” class refers to the Java MIDlet technology
that is shipped with J2ME MIDP for mobile phones. A MIDlet is a
simplified version of a standard Java applet. MIDlets come with a de-
ployment descriptor that allows a mobile phone to download and install
a MIDlet on the phone. The MIDlet can then be run from the mobile
phone’s menu. The “JavaMIDlet” package manager comes closest to the
traditional notion of package managers, since it strongly separates the
software installation from running that software.

Since the most important difference between the various JREs lies in the
built-in class library from the point of view of a software engineer, we focus on
the Java class library APIs. Each particular JRE complies with a particular
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Java specification, such as JDK 1.1, J2SE 1.5, J2ME PP 1.0, etc. Each of
these specifications have their own class library API. The differences between
these APIs are significant enough to justify a separate ontology for each JRE
specification. As an example, Fig. 4.3 shows part of the ontology for the J2ME
Personal Profile (PP) version 1.0 specification.

isa

JavaAwtLibrary

isa

:java JavaLibrary

isa
- -J2me pp 1_0JRE

- -J2me pp 1_0ClassLibrary

:java JRE

JavaUtilLibrary

…JavaxMicroeditionIoLibrary

:midp JavaUtilLibrary
isa

:midp JavaxMicroeditionIoLibrary

isa

⊑∃ :java providesBuiltinJavaLibrary
- -J2me pp 1_0ClassLibrary

Figure 4.3: Partial view of an ontology for describing the J2ME Personal
Profile 1.0 specification

The J2ME PP 1.0 ontology provides specific classes for the J2ME PP
1.0 version of the JRE and class library: “J2me-pp-1 0JRE” and “J2me-pp-
1 0ClassLibrary”. The “providesBuiltinJavaLibrary” property from the Java
ontology is restricted such that instances of “J2me-pp-1 0JRE” must provide
an instance of “J2me-pp-1 0ClassLibrary” as built-in class library. Since “pro-
videsBuiltinJavaLibrary” is a functional property, this means that there is only
one built-in class library for each J2ME PP 1.0 JRE, which must be a J2ME
PP 1.0 class library. All Java packages that are part of the built-in class library
are represented as separate classes. The “JavaAwtLibrary” class, for example,
represents the class of all Java libraries that implement the java.awt package
of the J2ME PP 1.0 API. Since “J2me-pp-1 0ClassLibrary” represents the set
of all Java libraries that implement the full J2ME PP 1.0 API, it subsumes all
package library classes.

The reason that all API packages are represented as separate classes is to
be able to specify overlap in the APIs of different JRE specifications. A simpli-
fied version of the “JavaxMicroeditionIoLibrary”, for example, is also part of
the J2ME Mobile Information Device Profile (MIDP) 1.0 API. The J2ME PP
1.0 version of “JavaxMicroeditionIoLibrary” is modelled as a subclass of “Ja-
vaxMicroeditionIoLibrary” in the J2ME MIDP 1.0 ontology, which is prefixed
by “midp:”. The same situation applies for “JavaUtilLibrary”. Where Java
API packages of different JRE versions are the same, their ontology classes are
modelled as equivalent.
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4.4.1 Automatic generation of Java platform ontologies

Since it is quite an error-prone and labour-intensive effort to manually de-
termine compatibility and equivalence between different versions of Java API
packages, it is better to automate this process. We chose to use model transfor-
mation to transform UML models of Java API into Java platform ontologies.
For all JREs to be considered, the API, which is contained in a jar file bundled
with the JRE, is reverse engineered as a UML model. It is important to ac-
curately reverse engineer not only the standard UML class diagram elements,
but also detailed UML attributes such as “visibility”, “isAbstract”, “isFinal”,
“isReadOnly” and “isLeaf”, since they are necessary to properly determine
compatibility. To guarantee that all required functionality is present, we use
our own Jar2UML tool4. The Jar2UML tool is also discussed in chapter 7.

The result of this automated approach is a complete and consistent ontol-
ogy representation of all Java API packages in all considered JRE versions.
Any mistakes in reverse engineering, ontological modelling or the definition of
compatibility and equivalence can be solved at the model transformation level.
Updated ontology versions can simply be re-generated. If the updated ontology
versions need to be compatible with their previous versions, for example when
other ontologies depend on them, then the updated ontologies must contain at
least the same classes as their previous versions (the generated ontologies con-
tain only classes). To ensure this condition, the following technical measures
must be taken:

• The reverse engineering step must generate UML models that contain at
least the same packages as a previous version of the UML model.

• The model transformation step must generate at least the same ontology
classes as the previous version.

That still allows us to safely vary at least the following factors:

• Contents of packages may change in the reverse engineering step.

• Packages may be added in the reverse engineering step.

• Compatibility and equivalence may be redefined in the model transfor-
mation step.

• Comparisons against other JREs may be varied in the model transfor-
mation step.

The model transformation approach used to transform the Java API UML
models to platform ontologies is described in detail in appendix A.

4http://ssel.vub.ac.be/ssel/research:mdd:jar2uml

http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
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4.5 Platform instance specifications

Given the base platform ontology and the extensions for the relevant domains,
we can model platform instances as OWL individuals. The Sharp Zaurus PDA,
for example, has a J2ME Personal Profile 1.0 JRE. The ontology that describes
this is shown in Fig. 4.4.

- - : - -j2me pp 1_0 J2me pp 1_0JRE

io

-zaurusSL C1000

zaurusJRE

:platform Platform

io

:platform providesFeature

- - : - -j2me pp 1_0 J2me pp 1_0ClassLibrary

zaurusClassLibrary

io

:java providesBuiltinJavaLibrary

- - : - -j2me pp 1_0 J2me pp 1_0ClassLibrary

zaurusClassLibrary

io

Figure 4.4: Partial platform description for the Sharp Zaurus SL-C1000 PDA

The classes “Platform”, “J2me-pp-1 0JRE” and “J2me-pp-1 0ClassLibrar-
y” are taken from the platform and J2ME PP 1.0 ontologies. The individuals,
“zaurusSL-C1000”, “zaurusJRE” and “zaurusClassLibrary”, are instances of
the “Platform”, “J2me-pp-1 0JRE” and “J2me-pp-1 0ClassLibrary” classes.
The “zaurusSL-C1000” platform has a “providesFeature” relationship with the
“zaurusJRE” Java runtime environment. Finally, “zaurusJRE” has a “pro-
videsBuiltinJavaLibrary” relationship with “zaurusClassLibrary” to indicate
that “zaurusClassLibrary” is part of the “zaurusJRE”.

4.6 Platform dependency constraints

Platform dependencies can be modelled by defining new, completely specified
classes. Such classes have necessary-and-sufficient constraints in addition to
any necessary constraints. A necessary constraint is depicted by the isa rela-
tionship: whereas it is necessary that each instance of “J2me-pp-1 0JRE” is
also an instance of “JRE”, being a “JRE” instance is not sufficient for also
being a “J2me-pp-1 0JRE” instance (see Fig. 4.3). A constraint that requires
a platform with either a J2ME PP 1.0 “JavaAwtLibrary” or a Personal Java
1.1 “JavaAwtLibrary” can be defined as follows:
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JavaAwtP latform v platform : Platform

≡ ∃ platform : providesFeature . JavaAwtJRE

JavaAwtJRE v java : JRE

≡ (∃ java : providesBuiltinJavaLibrary . pp : JavaAwtLibrary) t
(∃ java : providesBuiltinJavaLibrary . pj : JavaAwtLibrary)

The “JavaAwtPlatform” class is defined as each platform that provides a
“JavaAwtJRE”. The “JavaAwtJRE” class, in turn, is defined as each JRE
that provides as a built-in library either “JavaAwtLibrary” from J2ME PP 1.0
(“pp”) or “JavaAwtLibrary” from Personal Java 1.1 (“pj”). The two “Java-
AwtLibrary” classes represents the classes of all Java libraries that implement
the java.awt package as specified by J2ME PP 1.0 and Personal Java 1.1.

Whenever a “JRE” instance satisfies the condition of providing a “Java-
AwtLibrary”, it can be classified as an instance of “JavaAwtJRE”. Similarly,
whenever a “Platform” instance satisfies the condition of providing a “Ja-
vaAwtJRE”, it can be classified as an instance of “JavaAwtPlatform”. This
classification can be performed by automatic DL reasoners. This way, platform
instances can be matched against a completely specified platform dependency
constraint class. If an OWL individual classifies as an instance of the platform
dependency constraint class, then the constraint holds for that individual. For
example, the “zaurusSL-C1000” platform from Fig. 4.4 classifies as an instance
of “JavaAwtPlatform”, since “zaurusClassLibrary” is an instance of “J2me-pp-
1 0ClassLibrary”, which is a subclass of “JavaAwtLibrary” (see Fig. 4.3) and
“zaurusJRE” classifies as an instance of “JavaAwtJRE”.

4.6.1 Classification of platform dependency constraints

Since platform dependency constraints are represented as OWL classes, they
can be classified in a subsumption hierarchy. The OWL classes at the root of
the hierarchy are least specific and the classes at the leaves are most specific.
In the case of platform dependency constraints, least specific and most specific
refer to platform-specificness. A least-specific platform dependency constraint
is the weakest constraint with regard to the platform and will satisfy the same
or more platforms than the platform dependency constraints that are more
specific. Conversely, a most-specific platform dependency constraint will satisfy
the same or less platforms than the platform dependency constraints that are
less specific and also forms a closer match to those platforms in terms of using
as many of the provided features as possible.

The platform dependency constraints themselves are defined independently
of each other and typically use necessary-and-sufficient conditions. Consider
the following platform dependency constraints:
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UtilPm v platform : Platform

≡ ∃ platform : providesFeature . UtilJRE

J2UtilPm v platform : Platform

≡ ∃ platform : providesFeature . J2UtilJRE

UtilJRE v java : JRE

≡ ∃ java : providesBuiltinClassLibrary . midp : JavaUtilLibrary

J2UtilJRE v java : JRE

≡ ∃ java : providesBuiltinClassLibrary . pp : JavaUtilLibrary

Even though these platform dependency constraints are defined indepen-
dently of each other, they are strongly related. Both are subclasses of “plat-
form:Platform” and where “UtilPm” requires “UtilJRE”, “J2UtilPm” requires
“J2UtilJRE”. “UtilJRE” and “J2UtilJRE” are in turn both subclasses of
“java:JRE” and where “UtilJRE” requires “midp:JavaUtilLibrary”, “J2Util-
JRE” requires ”pp:JavaUtilLibrary”, which is a subclass of “midp:JavaUtil-
Library” (see Fig. 4.3). Each instance of the “pp:JavaUtilLibrary” class is also
an instance of the “midp:JavaUtilLibrary” class. Hence, each instance of the
“J2UtilJRE” class is also an instance of the “UtilJRE” class and each instance
of “J2UtilPm” is also an instance of “UtilPm”. Therefore, “J2UtilPm” can be
classified as a subclass of “UtilPm”. Since “J2UtilPm” is a subclass of “Util-
Pm”, it is more specific than “UtilPm”. All platform dependency constraints
at the leaves of the OWL class hierarchy are considered most specific, while all
platform dependency constraints at the root of this hierarchy are considered
least specific.

An automatic reasoner for OWL-DL can automatically infer these subclass
relationships. Since this can be an expensive computing task, the classification
of platform dependency constraints is done only once in advance. The platform
dependency constraints only need to be re-classified when they change. The
platform dependency constraints change only when the models (PIMs) and/or
model transformations to which they pertain have changed.

In a configuration of multiple refinement model transformations, several
platform dependency constraints apply. When comparing different configura-
tions to find out which is most specific or least specific, groups of OWL classes
have to be compared, instead of single OWL classes. This can be done by defin-
ing an intersection class for each group of platform dependency constraints.
An intersection class represents the intersection of the sets of instances defined
by the platform dependency constraints. Hence, an instance that classifies as
an instance of each of the platform dependency constraints in a group, classi-
fies as an instance of the intersection class. The intersection classes for each
group can be classified in a hierarchy in the same way that platform depen-
dency constraints are classified. The most specific and least specific group of
platform dependency constraints can now be determined.
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The class hierarchy inferences made by the automatic reasoner are fed back
as assertions: all new subsumption and equivalence relationships are added and
subsumption relationships that have become superfluous are removed (sub-
sumption is transitive). The OWL class hierarchy can now be used offline (i.e.
without an automatic reasoner) to create a sorted list of platform dependency
constraint groups. This sorted list can be most-specific-first or least-specific-
first.

Since the OWL class hierarchy constitutes a partial ordering, it is possible
that no subclass relationship between platform dependency constraints – or in-
tersections of platform dependency constraints – can be inferred. In that case,
it cannot be determined which (group of) platform dependency constraint(s)
is more or less specific. Consider for example the “JavaAwtPlatform” and the
“UtilPm” we have introduced earlier. Since the “midp:JavaUtilLibrary”, the
“pp:JavaAwtLibrary” and the “pj:JavaAwtLibrary” are siblings in the OWL
class hierarchy, none of them is more specific than the other.

This situation is handled by providing the (groups of) platform dependency
constraints as a manually sorted list, ordered by user preference. Using the
inferred class hierarchy, we can now sort the list most-specific-first or least-
specific-first and attempt to leave the order unchanged where no subclass re-
lationship can be inferred. The sorting algorithm that we use for this can be
found in appendix B. This process can be repeated until a satisfying order
has been achieved. As the sorting process does not require the automatic DL
reasoner, it can be kept fairly light-weight.

4.6.2 Satisfaction of platform dependency constraints

As soon as a platform instance description is available – usually at the time of
deployment – the platform dependency constraints can be checked against this
platform instance. Consider the platform instance described in Fig 4.4. The
“zaurusSL-C1000” instance classifies as an instance of the “J2UtilPm” plat-
form dependency constraint that is mentioned before: “zaurusSL-C1000” is
a “platform:Platform” that provides the “zaurusClassLibrary” feature, which
is an instance of “j2me-pp-1 0:J2me-pp-1 0ClassLibrary”, subclass of “j2me-
pp-1 0:JavaUtilLibrary”. If an instance of a platform dependency constraint
is found in the platform instance description, that platform dependency con-
straint is considered satisfied.

In the previous subsection we have used intersection classes for the purpose
of classifying a hierarchy of groups of platform dependency constraints. Note
that those intersection classes cannot be used for checking whether a group
of platform dependency constraints is satisfied. The “platform dependency
constraint” represented by an intersection class has a different meaning than
“all constraints are satisfied”: it defines a new platform dependency constraint,
which requires that all platform dependency constraints in a group are satisfied
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by a single instance. Therefore, a different approach is taken that considers all
platform dependency constraints separately. A group of platform dependency
constraints is considered satisfied if and only if each platform dependency con-
straint in that group is satisfied by an instance.

Consider the following two platform dependency constraints:

NetworkPm v platform : Platform

≡ ∃ platform : providesFeature . platform : NetworkResource

StoragePm v platform : Platform

≡ ∃ platform : providesFeature . platform : StorageResource

The “NetworkPm” and “StoragePm” are both subclasses of “platform:Plat-
form”. As such, they can be satisfied by the same platform instance. If
we target two platforms for our software, of which one is networked and an-
other provides the disk storage, then both platform dependency constraints
are meant to be satisfied by different platform instances. Distributed systems
typically target more than one platform.

The procedure for checking platform dependency constraint satisfaction
uses the sorted list that results from the classification of platform dependency
constraints. Each list entry corresponds to a configuration of model trans-
formations, each of which have platform dependency constraints. The list
entries that have at least one unsatisfied platform dependency constraint are
removed from that list, such that the resulting list contains only entries with
all platform dependency constraints satisfied. A configuration of model trans-
formations can now be automatically chosen by picking the first entry from the
pruned list. Depending on how the list was sorted, this entry is most specific
or least specific.

4.7 Limitations

Our platform modelling approach currently has some known limitations. This
section discusses these limitations and suggest how these limitations can be
mitigated.

4.7.1 Constraint interaction

Platform dependency constraints may have an influence on each other. Con-
sider the “JavaAwtPlatform” and “UtilPm” platform dependency constraints
given earlier in this section: one requires a JRE that provides the java.awt li-
brary and the other requires a JRE that provides the java.util library. There
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happen to be platforms that provide multiple JREs, however. The “zaurus-
SL-C1000” PDA, for example, can have any combination of J2ME Personal
Profile 1.0, Personal Java 1.1 and J2SE 1.3 installed on it. JREs cannot useeach
other’ss class libraries, however: these class libraries are integrated monolithic
components that also contain integrated native code.

If the platform dependency constraints mentioned before refer to a simple
Java applet, then that applet is meant to run within a single JRE. An addi-
tional (meta-)constraint that applies here, is that both platform dependency
constraints must be satisfied by the same JRE. If the platform dependency
constraints refer to a distributed Java application, then it may be just fine
that the constraints are satisfied by different JREs or even different platforms.
It is currently not possible to express such “derived” platform dependency con-
straints. A platform dependency constraint that requires all applicable JRE
constraints to be satisfied must first know which JRE constraints are in fact
applicable.

This problem is mitigated by the fact that platform instance descriptions
can be limited to a single platform/JRE. It is also mitigated by the fact that a
limited amount of model transformation configurations are used: (1) there will
be no configurations that don’t run on any platform and (2) there will be no
configurations that are sub-optimal for all platforms (e.g. through the use of
a primitive java.util library in combination with the javax.swing library,
where all JREs that support javax.swing include an advanced version of
java.util).

4.7.2 Performance of determining constraint satisfac-
tion

While the class hierarchy of platform dependency constraints can be deter-
mined beforehand and is done only once for a given set of model transfor-
mations, constraint satisfaction must be determined each time a platform in-
stance description becomes available. In other words: each time the software
is deployed on a platform instance, the platform dependency constraints of
each configuration must be checked. Since constraint satisfaction checking
requires the use of an automatic DL reasoner, we are bound by the computa-
tional complexity of the reasoning process. OWL DL can be translated to the
SHOIN (D) description logic in polynomial time [HPS04], but determining
SHOIN (D) satisfiability has a complexity of NExpTime [Tob01].

Our use of OWL DL in the platform ontologies so far has remained mostly
limited to OWL Lite, however: OWL Lite can be translated to the SHIF(D)
description logic, which lacks the “hasValue” property restriction and enumer-
ated classes (O), and is limited to functional properties (F) instead of cardi-
nality constraints with arbitrary numbers (N ). The complexity of determining
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SHIF(D) satisfiability still has a complexity of ExpTime, however [Tob01].
Our platform ontologies are mostly limited to OWL Lite, because OWL Lite
places further restrictions on the OWL language, which go beyond what is nec-
essary for SHIF(D): class disjointness, intersection, union and complement
are not allowed in OWL Lite. Our usage of OWL DL is further limited, in
that we also have not used any inverse properties in our platform ontologies
(I), reducing our DL usage to SHF(D).

This translates to real-world values of up to 15 seconds response time when
determining constraint satisfaction for six different configurations of our instant
messenger case study against a description of a standard JDK 1.6 PC. This
performance is achieved on a dual Intel Core2 Quad Xeon CPU at 2.33 GHz
with 8 GB of RAM5. The entire knowledge base of ontologies that is used in our
case study contains approximately 1000 concepts, of which half is completely
defined using an equivalence relationship. Since our case study still represents a
fairly simple situation, performance is expected to degrade for real-world cases.
It should be noted, however, that the bulk of ontology data will always be
made up of the platform vocabulary ontologies, not the platform dependency
constraints or the platform instance descriptions (there are only 21 completely
defined platform dependency constraint concepts for the instant messenger
case study and 6 individuals in the JDK 1.6 PC platform description).

If we want to achieve PSpace complexity, however, we certainly need to
remove transitive properties, as ALCtrans already has a complexity order of
ExpTime [BCM+03]. Our platform ontologies currently use exactly one tran-
sitive property, “requiresFeature”, which is not used for platform dependency
constraints. In addition, the platform ontologies use role hierarchy at two
occasions: “requiresFeature” has a subproperty named “directlyRequiresFea-
ture”, which represents the non-transitive variant of “requiresFeature”, and
“providesFeature” has two subproperties named “providesSoftware” and “pro-
videsHardware”, which only exist for historical reasons (both properties have
been refactored into one and the subproperty relationship provides backward
compatibility). If we choose to eliminate those, our usage of OWL is reduced
to ALCF(D). A superset of ALCF , ALCQ, has already been proven to have
PSpace complexity [Tob01].

A practical consideration to keep in mind, however, is that currently avail-
able DL reasoners use an algorithm that is designed for use with a standard
description logic, such as SHIQ, SHIF or SHOIN , which is limited to the
accompanying complexity order. On top of that, different DL reasoners have
different levels of optimisation (within the complexity order limits): Racer-
Pro is a commercial reasoner that typically performs better than Pellet and
Fact++, both of which are similar in performance. It is not clear how these
reasoners perform on a strictly limited DL, like ALCF , versus sporadic usage

5Current DL reasoners do not take advantage of multiple CPUs, however.
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of transitive roles and role hierarchies in a standard SHIF DL.

Finally, the whole tool chain plays a role in the performance of determining
platform dependency constraint satisfaction: the ontology storage layer (for
reading and updating ontologies), the reasoner interface (native or via DIG6)
and the reasoner itself.

4.8 Related work

The lack of explicit platform models is also discussed in [ADvSP04]. They
introduce abstract platforms , which describe a set of elements to model a PIM
against. This set of elements includes design artefacts that are available in a
target platform (classes, interfaces) and design constructs that can be mapped
to that platform (stereotypes, profiles), e.g. with model transformations. The
goal of abstract platforms is to ease platform-independent modelling. Our
platform models can be used to define explicit platform dependencies for each
abstract platform.

In [TBA04], platform selection rules are discussed, which allow for pre-
selecting a number of target platforms. In that way, less platforms need to be
supported. In our case, platform selection rules can be used to narrow down
the amount of platform domain concepts (e.g. Java virtual machines) that
need to be modelled to support the pre-selected target platforms.

We use OWL ontologies to represent our platform models. In [MRZ+06], an
ontology-based software comprehension framework is presented. Our platform
ontologies can contribute to this framework and to the knowledge management
of software development in general. Our use of ontologies to support the MDA
is also in line with a trend where model-driven approaches increasingly converge
with ontology-based approaches [RB06][KKK+06].

In [BDD+05], an infrastructure for combining UML/MOF models and on-
tologies is introduced. Such an infrastructure can be useful for a better inte-
gration of platform dependency constraints into configuration languages that
are based on MOF.

In [OMG06c], the OMG proposes a standardised meta-model for ontologies.
We have in fact used an EMF-based version of this meta-model7 to transform
UML models of the API of specific Java platforms, such as J2ME PP 1.0 and
J2ME MIDP 1.0, to ontologies of these platforms using the ATLAS transfor-
mation language. The UML models of the API are in turn generated using
the Jar2UML tool8.

6http://dl.kr.org/dig/interface.html
7http://www.alphaworks.ibm.com/tech/semanticstk
8http://ssel.vub.ac.be/ssel/research:mdd:jar2uml

http://dl.kr.org/dig/interface.html
http://www.alphaworks.ibm.com/tech/semanticstk
http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
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4.9 Summary

This chapter has explained the shortcomings of MDA in dealing with plat-
form dependencies. While the technical infrastructure for multiple, alternative
model refinement transformations exists, there is no method to safely and ef-
ficiently manage the application of model transformations. That’s why model
transformations are currently only used for a single, tested platform. If we can
reason about the platform dependencies that each model transformation intro-
duces, then we can find out the exact set of platforms for which a particular
model transformation is valid.

We have stated that we need to make platform domain knowledge explicit
in order to reason about platform dependencies of model refinement transfor-
mations – and software artifacts in general. Our platform models are expressed
as OWL DL ontologies, as ontologies are well-aligned for expressing domain
knowledge. We have demonstrated that our OWL DL platform ontologies
are loosely coupled: platform dependency constraints and platform instance
descriptions do not refer directly to each other. Instead, both platform depen-
dencies and platform instances are described in terms of a common vocabulary
ontology. We have also demonstrated the extensibility of the platform vocab-
ulary ontology for the domain of Java Runtime Environments (JREs). Model
transformation, which is a central technology in MDA, has proven useful for
the automatic generation of the JRE platform ontologies.

OWL DL is supported by a number of tools, amongst which are automated
DL reasoners. These reasoners can be used to determine platform depen-
dency constraint satisfactions as well as to classify a hierarchy of platform
dependencies. Such a hierarchy can be used to determine the most-specific
or least-specific platform dependency constraint. Platform dependency con-
straints are linked to software artifacts, so we can use the hierarchy informa-
tion to (semi-)automatically select the most appropriate software artifact for
a given platform.

Both platform dependency constraint satisfaction checks and platform de-
pendency constraint hierarchy classification can be done for individual platform
dependency constraints as well as groups of platform dependency constraints.
This allows us to support software artifacts with multiple platform dependency
constraints, as well as configurations of multiple software artifacts, as typically
occurs in the case of model transformations.

Two known limitations of our platform modelling approach have been dis-
cussed: platform dependency constraint interaction and automated reasoner
performance for constraint satisfaction checks. Finally, this chapter has shown
where our work is situated with respect to related work in the area of MDA
and ontologies.

The following chapter introduces Software Product Lines (SPLs). SPLs
provide a number of technologies to deal with configuration, a missing link in
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the MDA. SPLs can contribute in this way and a number of other ways to the
MDA, as has been explained in chapter 1.



Chapter 5

Software Product Lines

5.1 Introduction

A Software Product Line (SPL) [CN01] refers to a set of software (or software-
intensive) systems that share a number of common features and have a similar
purpose. The term was coined by the Software Engineering Institute (SEI),
which has acted as a guardian group to track and promote all SPL-related
research and technology. The SEI provides the following definition for a SPL:

“A software product line is a set of software-intensive systems sharing
a common, managed set of features that satisfy the specific needs of a
particular market segment or mission and that are developed from a
common set of core assets in a prescribed way.” [CN01]

According to this definition, any software that is developed using the MDA
approach can be considered as an SPL, since each platform-specific software
product shares its features with other platform-specific versions of that soft-
ware product. This shared functionality is typically specified in the PIM.
Whenever the MDA and SPL technology are used in combination, we will
speak of MDA-based SPLs.

The words core asset and feature are named as building blocks for a SPL.
Core assets and features are defined as follows:

81
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“Core assets are those assets that form the basis for the software prod-
uct line. Core assets often include, but are not limited to, the archi-
tecture, reusable software components, domain models, requirements
statements, documentation and specifications, performance models,
schedules, budgets, test plans, test cases, work plans, and process de-
scriptions. The architecture is key among the collection of core as-
sets.” [CN01]

“A feature is a system property that is relevant to some stakeholder
and is used to capture commonalities or discriminate between sys-
tems.” [CHE04]

The development of a new SPL generally starts off with the analysis of
common parts and varying parts in the software variants: the so-called Com-
monality/Variability Analysis (CVA) of software features [CHW98]. The re-
sult of such an analysis can then be recorded in a feature model [CHE04]
describing whether features are mandatory, optional or alternatives. The fea-
ture model provides the basis for the configuration rules of a software vari-
ant in this way. Configuration can be done using a domain-specific language
(DSL) [DK02][CHE05b] that is derived from the feature model.

The remainder of this chapter discusses the practises of Commonality and
Variability Analysis, Feature modelling and Configuration in more detail.

5.2 Commonality and Variability Analysis

Commonality and Variability Analysis (CVA), or Scope, Commonality and
Variability (SCV) analysis, provides a framework for software engineers to
think about the software product line they are developing. When software
engineers know that a number of software artefacts will have many similarities
and is likely to evolve as a group as well, they can set the initial scope for a
SPL. Then, through systematic analysis of commonalities and variabilities of
software features within this group, this scope can be justified and/or adapted.

In the Family-Oriented Abstraction, Specification and Translation (FAST)
approach, commonality and variability are formally defined in terms of sets:



5.2 Commonality and Variability Analysis 83

“A commonality is an assumption held uniformly across a given set of
objects (S). Frequently, such assumptions are attributes with the same
values for all elements of S. Conversely, a variability is an assumption
true of only some elements of S, or an attribute with different values
for at least two elements of S.” [CHW98]

Consider an SPL set “InstantMessagingClient”, consisting of the member
elements “JabberClient”, “ICQClient” and “SMSClient”. An example com-
monality is that all “InstantMessagingClient” members can send and receive
messages. An example variability is that only “JabberClient” and “ICQCli-
ent” can store contacts on the messaging server. “SMSClient” has to keep its
own local contact list.

CVA can be applied hierarchically: any subsets formed by the discovery of
a variability can be further divided into subsets. For example, the variability of
storing contacts on the server splits the set “InstantMessagingClient” into the
subsets “JabberICQClient” and “SMSClient”. A variability that distinguishes
“JabberClient” from “ICQClient” is the communication protocol: “JabberCli-
ent” uses a protocol named “XMPP”, whereas “ICQClient” uses the “Oscar”
protocol.

FAST uses five main steps for CVA:

1. Establish the scope: the collection of objects under consideration.

2. Identify the commonalities and variabilities.

3. Bound the variabilities by placing specific limits on each variability.

4. Exploit the commonalities.

5. Accommodate the variabilities.

Once the commonalities and variabilities are identified, the variabilities
must be limited in order to have a clear scope for the software product line.
Our example variability of communication protocol is limited to the values
“XMPP”, “Oscar” and “SMS”. Other instant messaging protocols, such as
“MSN” or “GoogleTalk” are not considered within the current (initial) scope
of the product line. Of course, future expansion of the product line scope may
well add extra communication protocols to support user needs.

When the scope of the product line has been lined out, core assets should
be developed for each commonality. One of the most important core assets of
a software product line is its architecture. The definition of architecture given
in the previous chapter holds for SPLs as well: an SPL architecture specifies
parts and connectors and sets the rules for the interaction of the parts via the
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connectors. The CIM and the PIM in an MDA-based SPL form the product
line’s architecture. All products in the product line – PSMs in the case of
MDA – have to follow that architecture.

A very important aspect of the product line architecture design is that it
must accommodate the variabilities of the product line. If we consider the
PIM of the instant messenger product line (see Fig. 2.4, chapter 2), it contains
an abstract “Network” class with a static “discoverNetworks” operation. This
design choice accommodates the variability of having multiple network pro-
tocols: new network protocols can be defined by subclassing the “Network”
class and implementing its abstract operations. Since we placed a limit on the
multiple network protocol variability, it is possible to define a simple behaviour
for the “discoverNetworks” operation, since it only has to look for the presence
of a predefined set of network protocols. An increase of the product line scope
requires an update of its architecture in this case.

Variabilities are generally implemented using optional features, which may
or may not be included in a particular product in the product line. Fig. 5.1
shows the optional “Jabber” feature of the instant messenger product line.

The “Jabber” feature builds on top of the JabberWookie component, which
is a third party open source library. The “Jabber” class connects to the Jab-
ber network server via the “Client2Server” class provided by JabberWookie.
In addition, the “Jabber” class implements several predefined JabberWookie
interfaces, such that it can receive special network messages. The “Jabber”
class includes three nested classes – indicated by the “From Jabber” comment
– to keep track of its connection state and adapt its behaviour accordingly.
Any information sent to the network must be sent asynchronously, since net-
work activity is not meant to block the main application logic. Finally, the
“Jabber” class is an abstract class, having an abstract “connect” operation.
This is because the “Jabber” feature is designed to work on an abstract input
and output stream instead of an actual network socket. The Java implemen-
tation of sockets is unfortunately not common for all Java platforms, so we’ve
identified an additional variability within the “Jabber” feature. There are two
alternative Jabber network transport subfeatures that either use the J2ME
MIDP networking interface or the default java.net.Socket interface: “ME-
JabberTransport” and “DefaultJabberTransport”.

The latter example shows that CVA is an iterative activity: during the
accommodation of the “Jabber” feature, it became apparent that different
implementations of the network transport layer were necessary. Hence, another
variability was identified.
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Figure 5.1: A UML Class diagram showing part of the instant messenger model
for the Jabber feature.

5.3 Feature modelling

Commonalities and variabilities of a software product line can be recorded
in a feature model . Feature models specify these commonalities and vari-
abilities in terms of – common and variable – features. Feature models were
introduced by Kang et al. as part of the Feature Oriented Domain Analysis
(FODA) method [KCH+90]. They were later adopted and enhanced for use
in Generative Programming [CE00]. Several enhancements of feature models
have been proposed over time and have been consolidated by Czarnecki et
al. in [CHE05b]. A formalisation of feature models is described in [CHE05a].
Fig. 5.2 shows the feature model for the instant messenger product line exam-
ple.

The root element of the feature model is called the concept . The concept
represents the software product line for which we want to describe the features.
Our example feature model describes the concept “InstantMessenger”. All
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InstantMessenger

JabberNetworkLocalNetwork

JabberTransport

DefaultJabberTransport MEJabberTransport

UserInterface Packaging

AWTUserInterface SwingUserInterface

LCDUIUserInterface

<1-*>

WebAppletPackaging IpkgAppletPackaging

MIDletPackaging

Network

Figure 5.2: The feature model of the instant messenger product line.

other elements (“Network”, “UserInterface”, etc.) represent the features and
are directly or indirectly connected with lines to the root concept. An open
circle at the end of a line designates an optional feature, whereas a closed circle
represents a mandatory feature. “JabberNetwork” and “LocalNetwork” are
optional features, whereas “Network”, “UserInterface” and “JabberTransport”
and “Packaging” are mandatory features.

Each feature can have subfeatures : when including a feature, one also has to
consider its subfeatures. If we choose to include the “JabberNetwork” feature,
we also have to include its mandatory “JabberTransport” subfeature. “Jab-
berTransport” has two alternative subfeatures: “DefaultJabberTransport” and
“MEJabberTransport”. Exactly one of these features must be included. It is
also possible to specify cardinality constraints for a set of alternative features:
we must include at least one of the features “AWTUserInterface”, “SwingUser-
Interface” and “LCDUIUserInterface”, for example, which is indicated by the
〈1− ∗〉 group cardinality constraint. Note that the * notation is not officially
supported by Czarnecki’s feature diagram notation:

“A feature group expresses a choice over the grouped features in the
group. This choice is restricted by the group cardinality 〈n−n′〉, which
specifies that one has to select at least n and at most n′ distinct grouped
features in the group. Given that k > 0 is the number of grouped
features, we assume that the following invariant on group cardinalities
holds: 0 ≤ n ≤ n ≤ k.” [CHE05b]

According to this definition, we should use 〈1 − 3〉 as a group cardinality
instead, as there are three grouped features to choose from. Doing this, how-
ever, creates problems when adding new features to the group: the cardinality
constraint must be reviewed and/or updated accordingly. But what was the
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reason for the cardinality constraint’s upper bound again? Was it set to 3,
because there should never be more than three user interfaces in any product?
Or was it set to 3, simply because there were only three user interface features
available at that time? Introducing the ∗ notation to group cardinality con-
straints takes away this ambiguity and properly models our original “at least
one” intention.

In addition to cardinality constraints on groups of alternative features, it
is also possible to set explicit cardinality constraints on features themselves.
The open circle and closed circle notation to represent optional and mandatory
features, for example, can also be expressed via the [0−1] and [1−1] cardinality
constraints. Normally, each feature is a singleton: a feature is either included
or not, and is instantiated only once. For some features, however, it makes
sense to include them more than once. A car can include 3 or 4 wheels, for
example, where the wheels are all the same (i.e., there are no subfeatures of the
“wheel” feature). This situation is modelled by writing a [3 − 4] cardinality
constraint next to the “wheel” feature. Note that the 〈〉 and [] characters
have nothing to do with mathematical intervals: they serve only to distinguish
between group cardinalities and feature cardinalities.

Features can also share subfeatures. This is useful when two or more fea-
ture have an identical tree of subfeatures. Consider another subfeature of “Net-
work” in Fig. 5.3, called “GabberNetwork”, which is compatible with “Jabber-
Network”. Both “GabberNetwork” and “JabberNetwork” have a mandatory
“JabberTransport” subfeature, including all subfeatures of “JabberTransport”.
It is not necessary to model the “JabberTransport” feature for each of its su-
perfeatures. Instead, a curved, dashed line connects the “JabberTransport”
feature to the closed circles that indicate that “JabberTransport” is manda-
tory for both “JabberNetwork” and “GabberNetwork”.

InstantMessenger

JabberNetwork

LocalNetwork

JabberTransport

DefaultJabberTransport MEJabberTransport

UserInterface Packaging

AWTUserInterface SwingUserInterface

LCDUIUserInterface

<1-*>

WebAppletPackaging IpkgAppletPackaging

MIDletPackaging

Network

GabberNetwork

Figure 5.3: The feature model of the instant messenger product line.

When selecting features, the choice of subfeatures is always localised to its
super-feature. This means that for shared subfeatures, feature selection is done
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separately for each time that subfeature is referenced. In our example, it is pos-
sible to select “DefaultJabberTransport” as a subfeature of “GabberNetwork”
and select “MEJabberTransport” as a subfeature of “JabberNetwork”.

5.3.1 Automated analysis

There are some specific cases in which the standard feature modelling approach
is not sufficient to describe the composition rules for the features. These cases
are typically caused by feature interaction constraints [RMR05]. Standard
feature models can deal with feature interaction constraints as long those con-
straints follow the hierarchy of the feature model. As soon as feature interac-
tion constraints cut across this hierarchy, feature models can no longer express
those constraints.

Assume that the “IpkgAppletPackaging” feature requires that the overall
size of the installable package can be at most 1 MB. This means that only a
limited number of all features that take up space can be chosen. Apart from
the extra information required to determine whether the constraint is satisfied
– we need to know the amount of packaging space each feature takes up –
we must be able to describe the feature limit regardless of where the features
are in the feature model hierarchy. In addition, this size limit constraint only
applies if the “IpkAppletPackaging” feature is chosen.

Another problem is the consistency of feature interaction constraints. As-
sume for example that the “WebAppletPackaging” feature requires the “Swing-
UserInterface” feature. If another constraint states that the “SwingUserIn-
terface” excludes the “WebAppletPackaging” feature, then we cannot select
the “WebAppletPackaging” feature without violating either one of these con-
straints: the constraints are considered to be inconsistent.

There exists various research on the automated analysis of feature mod-
els, which typically describe the feature model in a formal language domain
[BBRC06]. The formal language domain that is used typically improves the
expressiveness of feature interaction constraints. Automated analysis becomes
a must when the number and complexity of feature interaction constraints goes
up. Amongst other things, automated analysis can verify consistency of fea-
ture interaction constraints as well as the satisfaction of all feature interaction
constraints for a particular configuration of features (see also next section).
Benavides et al. have made a survey of automated analysis approaches and
their usage scenarios in [BRCTS06]. The surveyed approaches are based on
the following language domains:

Propositional logic: Several approaches propose to translate basic feature
models into propositional formulas, which allows for the use of existing
solvers [Man02][ZZM04][SZW05].



5.4 Configuration 89

Description logic: There is one approach listed that translates feature mod-
els to OWL DL, which corresponds with description logic [WLS+07].
It should be noted that there is at least one other approach to feature
modelling that uses description logic [VB01].

Constraint programming: The author of the survey proposes to translate
feature models to a Constraint Satisfaction Problem (CSP), which can
be solved by automatic constraint solvers[BTRC05].

Ad-hoc: The survey lists a number of automated approaches that do not
use formal language underpinnings. As such, the survey assumes their
expressiveness to be the same as basic feature models.

5.4 Configuration

There are several methods for configuring a product in a software product
line, such as staged configuration of feature models [CHE05b], Stepwise Re-
finement [BSR04] as well as via Domain-Specific Languages (DSLs) [DK02].
Each of these methods can be supported by automated analysis (see previous
section). Van Deursen and Klint have studied the relationship between feature
modelling and domain-specific languages in [DK02]. They defined a grammar
for their Feature Description Language (FDL) to give rigorous structure to a
feature model. It is later noted that the grammar for this language lies very
close to the grammar of the grammar definition language itself, making it pos-
sible to define the features themselves as first-class language elements. Finally,
they present a UML class diagram to illustrate how a feature model can be
implemented. UML class diagrams are in turn very close to MOF models,
which are commonly used in MDA to describe meta-models. One can now
extrapolate and see how it is possible to translate the feature model to a MOF
meta-model. Such a meta-model effectively describes a Domain-Specific Mod-
elling Language (DSML) [LBM+01][TR03]. Any model written in this DSML
represents the configuration of a software variant.

Models play an increasingly important role in SPL frameworks, where prod-
ucts are generated from core assets with the help of Product Models [Kru06].
These Product Models can be feature models or they can be written in a
DSML. Whereas the definition of a textual DSL is typically based on a gram-
mar, the definition of a DSML uses a meta-model to describe its (abstract)
syntax.

While all of the listed configuration methods are capable of SPL config-
uration, only feature models and DSMLs provide sufficient mechanisms for
bounded combinatorics [Kru06]. Bounded combinatorics is a methodology for
constraining, eliminating or avoiding combinatoric complexity in SPLs. It is
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based on the premise that only a small subset of all correct product configu-
rations is actually useful and deals with the problem that only a limited set
of product configurations can be maintained. The configuration method needs
to provide two mechanisms to support bounded combinatorics:

• Modularity and encapsulation

• Composition and hierarchy

For feature models, modularity and encapsulation refer to the partitioning
of a feature model. That partition can then be used across multiple (parts
of) a product line and can be imported in more specialised feature models.
DSML meta-models can be partitioned in a similar way. Composition and
hierarchy, in the context of feature models, refer to the subfeature mechanism,
where subfeatures only become relevant when their superfeature is selected.
Composition and hierarchy in DSMLs are implemented through containment
relationships between meta-classes.

DSMLs currently have better tool support than feature models and can
be used on a larger scale because of their (optimised) tool support. DSMLs
also align well with the concepts and tools from MDA and do not create any
technology overhead for SPLs that already use the MDA. Hence, we will focus
on configuring product lines using DSMLs from here on. The following subsec-
tions discuss the various aspects of product line configuration with a DSML:
a configuration language meta-model, product configuration models and con-
figuration model transformations that translate a product configuration to an
executable specification.

5.4.1 Configuration language meta-model

The meta-model for the DSML can be derived from a feature model in the same
way that Van Deursen and Klint derive a UML class diagram in [DK02]. Since
the purpose of a feature model is different from the purpose of a configuration
DSML, the feature model is not simply translated into a meta-model. A fea-
ture model primarily serves to communicate the results of the CVA, whereas
the DSML is only meant to describe individual configurations in a product
line. The features from the feature model that are not relevant for configura-
tion purposes, such as the mandatory features, are therefore omitted from the
DSML meta-model. This is a form of staged configuration [CHE05b]. Fig. 5.4
shows the meta-model for the configuration of the instant messenger product
line example.

A feature hierarchy in a feature model is translated to meta-classes with
containment relationships. The root concept “InstantMessenger” (see Fig. 5.2)
is translated to an “InstantMessengerConfiguration” meta-class with several
outgoing containment relationships. The mandatory “Network” feature is not
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Figure 5.4: The meta-model of the instant messenger configuration language.

modelled, since it is always included in a configuration. Its optional subfeatures
“LocalNetwork” and “JabberNetwork” are modelled, since they are optional
and represent a configuration choice. In the case of alternative features, an ad-
ditional, abstract meta-class is used to represent the group of alternatives. In
our example feature model, all groups of alternative features are already repre-
sented by a mandatory superfeature: “JabberTransport”, “UserInterface” and
“Packaging”. Each of the alternatives is modelled as a subclass of the group
meta-class. “JabberTransport”, for example, has two alternatives: “Default-
JabberTransport” and “MEJabberTransport”. The containment relationship
between “JabberNetwork” and “JabberTransport” now guarantees that ex-
actly one of the alternative subclasses of “JabberTransport” must be chosen.
In the case of alternatives with a cardinality constraint other than 〈1 − 1〉, a
multiplicity is defined on the corresponding containment relationship in the
meta-model. The 〈1− 3〉 cardinality constraint of the “UserInterface” subfea-
tures, for example, is translated to a “1..*” multiplicity on the containment
relationship between “InstantMessengerConfiguration” and “UserInterface”.

There is a small mismatch between feature models and meta-models: all
features in a feature model are singletons unless an explicit cardinality con-
straint on that feature specifies otherwise. Meta-models cannot express car-
dinality constraints on meta-classes and meta-classes can be instantiated any
number of times. This mismatch is demonstrated by the subclasses of the “Us-
erInterface” meta-class: it is possible to include multiple instances of “AWT-
UserInterface” in an ”InstantMessengerConfiguration”. This mismatch can be
solved by the addition of an OCL invariant:

context InstantMessengerConfiguration inv:
userInterface ->select(oclIsKindOf(AWTUserInterface ))->size() = 1 and
userInterface ->select(oclIsKindOf(SwingUserInterface ))->size() = 1 and
userInterface ->select(oclIsKindOf(LCDUI2UserInterface ))->size() = 1

OCL support exists for some meta-modelling frameworks. EMF, for exam-
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ple, provides the EMF Validation component1. EMF has been explained in
chapter 2.

The results of the automated analysis techniques for feature models can be
applied to the configuration language. Since meta-classes in the meta-model
correspond to feature selections in the original feature model, a translation
can be made to the formal language domain of a particular analysis technique.
Complex feature interaction constraints used in the automated feature model
analysis may be translated to OCL constraints on the configuration language
meta-model.

5.4.2 Configuration models

A product configuration model conforms to the configuration language meta-
model for the product line. Fig. 5.5 shows an example configuration model
for the instant messenger product line, displayed inside the EMF-based (see
chapter 2) configuration model editor.

Figure 5.5: An example instant messenger configuration model as displayed
by the EMF model editor.

The configuration model is displayed as a tree, where the root node rep-
resents the configuration model itself. Each sub-node represents an instance
of a meta-class. In addition to the text labels on each node, icons are used to
indicate which meta-class each node instantiates.

The EMF-based editor includes validation functionality that checks the
conformance of each model to its meta-model. Hence, each model validated
by this editor is guaranteed to follow the rules that are set by its meta-model.
This validation functionality also includes a check of any OCL invariants that
have been defined for the meta-model.

5.4.3 Configuration transformation

DSMLs use one or more model transformations to describe its semantics in
terms of another language domain. That other language domain typically con-

1http://www.eclipse.org/modeling/emf/?project=validation

http://www.eclipse.org/modeling/emf/?project=validation
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cerns an executable language. Product configurations are expressed through
configuration models that conform to the configuration language meta-model
for the SPL. A model transformation for the configuration language can trans-
form a configuration model into an executable program that performs the
specified configuration.

In the case of our example instant messenger product line, this model trans-
formation is written in ATL (see chapter 2, subsection 2.4.2) and generates an
Ant “build.xml” script from a configuration model. Ant scripts are the Make-
file equivalent for Java-based software development: they execute the different
steps required for building and/or packaging the software. When this Ant
script is executed, it will generate the code for the instant messenger prod-
uct according to the configuration model. Below is an excerpt of this model
transformation:
helper def : ModelPath : String = ’/uml2cs -instantmessenger -model/models ’;

rule ConfigRoot {

from s : CFG!" instantmessenger :: InstantMessengerConfiguration"

-- <project name ="s. buildPath" default =" all">

to root : XML!"XML::Root" mapsTo s (

name <- thisModule.ConfigHeader(s)),

default : XML!"XML:: Attribute" (

parent <- root ,

name <- ’default ’,

value <- ’all ’),

-- <target name = ’all ’ depends = ’...’>

allTarget : XML!"XML:: Element" (

name <- ’target ’,

children <- thisModule.AllTarget(s),

parent <- root),

-- <target name = ’InstantMessengerModel ’ depends = ’allBase ’>

imTarget : XML!"XML:: Element" (

name <- ’target ’,

children <- thisModule.ModelTarget(

’InstantMessengerModel ’,

’inModel ’,

’im ’,

thisModule.ModelPath + ’/InstantMessengerModel.uml ’),

parent <- root)

}

The “ConfigRoot” rule matches against the root element of each configura-
tion model, which is always an instance of “InstantMessengerConfiguration”.
This rule triggers several other called rules, including a rule that generates a
boilerplate Ant script header (“ConfigHeader”), a rule that defines the “all”
target that performs a complete build (“AllTarget”) and a rule that generates
an “InstantMessengerModel” target (“ModelTarget”) for building the main
“InstantMessenger” feature (see Fig. 5.2). The “ConfigHeader” rule is defined
as follows:
rule ConfigHeader(s : CFG!" transformations :: TransformationConfig ") {

-- <project name ="s. buildPath">

to name : XML!"XML:: Attribute" (

parent <- s,

name <- ’name ’,

value <- s.buildPath),
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-- <import file =" common.xml"/>

import : XML!"XML:: Element" (

parent <- s,

name <- ’import ’),

importfile : XML!"XML:: Attribute" (

parent <- import ,

name <- ’file ’,

value <- ’common.xml ’),

-- <property name =" current.path" value ="/${ant.project.name }"/>

currentpath : XML!"XML:: Element" (

parent <- s,

name <- ’property ’,

children <- thisModule.Property(’current.path ’, ’/${ant.project.name}’)),

-- <property name =" saveNoModels | saveModels | saveLastModel " value =" true "/>

save : XML!"XML:: Element" (

parent <- s,

name <- ’property ’,

children <- thisModule.Property(

i f s.saveModels = #none then ’saveNoModels ’ else
i f s.saveModels = #all then ’saveModels ’ else
’saveLastModel ’ endif endif ,
’true ’))

do {

’project ’;

}

}

This rule generates the Ant script header. An example of a generated Ant
script header is given below:

<project name = ’uml2cs-instantmessenger-default/build’ default = ’all’>

<import file = ’common.xml’/>

<property name = ’current.path’ value = ’/${ant.project.name}’/>

<property name = ’saveLastModel’ value = ’true’/>

Note that an “import” tag is generated, which imports the Ant code from
“common.xml”. The “common.xml” file contains all static Ant code that does
not need to be generated by a model transformation2. If one compares the gen-
erated Ant code to the transformation rule that generates it, one can see that
the generated code is a number of times smaller than the transformation rule.
It is therefore interesting to not generate more code than strictly necessary.

The “ConfigHeader” rule uses another rule named “Property”, which is
defined as follows:

rule Property(name : String , value : String) {

-- Sequence{name =" name" value =" value "}

to propertyname : XML!"XML:: Attribute" (

name <- ’name ’,

value <- name),

propertyvalue : XML!"XML:: Attribute" (

name <- ’value ’,

value <- value)

do {

Sequence{propertyname , propertyvalue };

}

}

2The “common.xml” file can be found at http://ssel.vub.ac.be/viewvc/
UML2CaseStudies/uml2cs-transformations/common.xml?revision=7297&view=markup

http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/common.xml?revision=7297&view=markup
http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/common.xml?revision=7297&view=markup
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The “ModelTarget” rule generates an Ant target that builds a specific
feature, such as our main “InstantMessenger” feature. It is defined as follows:

rule ModelTarget(name : String , inModel : String , prefix : String ,

path : String) {

-- Sequence{name = ’name ’ depends = ’allBase ’}

to targetName : XML!"XML:: Attribute "(

name <- ’name ’,

value <- name),

targetDepends : XML!"XML:: Attribute "(

name <- ’depends ’,

value <- ’allBase ’),

-- <am3.loadModel modelHandler = ’EMF ’ name = ’inModel ’

-- metamodel = ’UML2 ’ path = ’path ’/>

loadModel : XML!"XML:: Element" (

name <- ’am3.loadModel ’),

modelHandler : XML!"XML:: Attribute" (

name <- ’modelHandler ’,

value <- ’EMF ’,

parent <- loadModel),

modelName : XML!"XML:: Attribute" (

name <- ’name ’,

value <- inModel ,

parent <- loadModel),

metamodel : XML!"XML:: Attribute" (

name <- ’metamodel ’,

value <- ’UML2 ’,

parent <- loadModel),

modelPath : XML!"XML:: Attribute" (

name <- ’path ’,

value <- path ,

parent <- loadModel),

-- <antcall target =" generate" inheritRefs =" true">

antcall : XML!"XML:: Element" (

name <- ’antcall ’),

antcalltarget : XML!"XML:: Attribute" (

name <- ’target ’,

value <- ’generate ’,

parent <- antcall),

inheritRefs : XML!"XML:: Attribute" (

name <- ’inheritRefs ’,

value <- ’true ’,

parent <- antcall),

-- <param name ="in" value =" inModel "/>

paramin : XML!"XML:: Element" (

name <- ’param ’,

children <- thisModule.Property(’ in ’, inModel),

parent <- antcall),

-- <param name =" prefix" value =" prefix "/>

paramprefix : XML!"XML:: Element" (

name <- ’param ’,

children <- thisModule.Property(’prefix ’, prefix),

parent <- antcall)

do {

Sequence{targetName , targetDepends , loadModel , antcall };

}

}

This rule generates an Ant target. An example of a generated Ant target
for our main “InstantMessenger” feature is given below:

<target name = ’InstantMessengerModel’ depends = ’allBase’>

<am3.loadModel modelHandler = ’EMF’ name = ’inModel’ metamodel = ’UML2’

path = ’/uml2cs-instantmessenger-model/models/InstantMessengerModel.uml’/>
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<antcall target = ’generate’ inheritRefs = ’true’>

<param name = ’in’ value = ’inModel’/>

<param name = ’prefix’ value = ’im’/>

</antcall>

</target>

The Ant target depends on “allBase”, which is defined in “common.xml”.
It then loads the input model and calls the “generate” target with the loaded
model as a parameter. The “generate” target is also defined in “common.xml”
and will generate the code for the given model.

The transformation also includes a (matched) transformation rule for each
feature meta-class in the meta-model. The transformation rule for the “Local-
Network” feature, for example, looks like this:

rule LocalNetwork {

from s : CFG!" instantmessenger :: LocalNetwork"

-- <target name = ’LocalNetwork ’ depends = ’allBase ’>

to target : XML!"XML:: Element" mapsTo s (

name <- ’target ’,

children <- thisModule.ModelTarget(

’LocalNetwork ’,

’Local ’,

’local ’,

thisModule.ModelPath + ’/InstantMessengerLocal.uml ’),

parent <- s.config)

}

If triggered, the rule generates the following Ant code:

<target name = ’LocalNetwork’ depends = ’allBase’>

<am3.loadModel modelHandler = ’EMF’ name = ’Local’ metamodel = ’UML2’

path = ’/uml2cs-instantmessenger-model/models/InstantMessengerLocal.uml’/>

<antcall target = ’generate’ inheritRefs = ’true’>

<param name = ’in’ value = ’Local’/>

<param name = ’prefix’ value = ’local’/>

</antcall>

</target>

Note how the generated Ant target looks very much like the Ant target for
the main “InstantMessenger” feature. The “generate” target is again invoked,
but this time the input model is different. The input model actually contains
the “LocalNetwork” feature.

The “AllTarget” rule finally generates the Ant target that performs the
complete build. It is defined as follows:

rule AllTarget(c : CFG!" instantmessenger :: InstantMessengerConfiguration ") {

-- Sequence{name =" all" depends ="..."}

to targetName : XML!"XML:: Attribute "(

name <- ’name ’,

value <- ’all ’),

targetDepends : XML!"XML:: Attribute "(

name <- ’depends ’,

value <- Sequence{’InstantMessengerModel ’}

->union(c.localNetworkDepends ())

->union(c.jabberNetworkDepends ())

->union(c.userInterfaceDepends ())

->iterate(e; acc : String = ’’ | acc +

i f acc = ’’ then e
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else ’, ’ + e endif ). debug(’All ’)),
-- <eclipse. refreshLocal resource ="${ant.project.name }"/>

refresh : XML!"XML:: Element" (

name <- ’eclipse.refreshLocal ’),

refreshResource : XML!"XML:: Attribute" (

name <- ’resource ’,

value <- ’${ant.project.name}’,

parent <- refresh)

do {

Sequence{targetName , targetDepends , refresh };

}

}

Depending on the features that were selected through the configuration
model, the “AllTarget” rule generates the following Ant code:

<target name = ’all’ depends = ’InstantMessengerModel, LocalNetwork, JabberNetwork,

DefaultJabberTransport, AWTUserInterface’>

<eclipse.refreshLocal resource = ’${ant.project.name}’/>

</target>

The generated “all” target makes sure that the targets for all selected fea-
tures are executed. It does this by adding all relevant targets to its “depends”
attribute. The “AllTarget” rule uses a number of helper methods to determine
which targets are indeed relevant:

helper context CFG!" instantmessenger :: InstantMessengerConfiguration"

def : localNetworkDepends () : Sequence(String) =

i f self.localNetwork.oclIsUndefined () then
Sequence {}

else
Sequence{’LocalNetwork ’}

endif;

helper context CFG!" instantmessenger :: InstantMessengerConfiguration"

def : jabberNetworkDepends () : Sequence(String) =

i f self.jabberNetwork.oclIsUndefined () then
Sequence {}

else
i f self.jabberNetwork.jabberTransport.oclIsKindOf(

CFG!" instantmessenger :: MEJabberTransport ") then
Sequence{’JabberNetwork ’, ’MEJabberTransport ’}

else
Sequence{’JabberNetwork ’, ’DefaultJabberTransport ’}

endif
endif;

helper context CFG!" instantmessenger :: InstantMessengerConfiguration"

def : userInterfaceDepends () : Sequence(String) =

i f self.userInterface ->select(u|u.oclIsKindOf(

CFG!" instantmessenger :: AWTUserInterface "))-> notEmpty () then
Sequence{’AWTUserInterface ’}

else
Sequence {}

endif
->union(

i f self.userInterface ->select(u|u.oclIsKindOf(

CFG!" instantmessenger :: SwingUserInterface "))-> notEmpty () then
Sequence{’SwingUserInterface ’}

else
Sequence {}

endif)
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->union(

i f self.userInterface ->select(u|u.oclIsKindOf(

CFG!" instantmessenger :: LCDUIUserInterface "))-> notEmpty () then
Sequence{’LCDUIUserInterface ’}

else
Sequence {}

endif );

The complete Ant script now contains a default “all” task that generates
code for the entire product configuration. Note that not every step in the
product building process needs to be automated. Packaging, testing and de-
ployment, for example, is often done manually.

5.5 Summary

In this chapter, we have explained what a Software Product Line (SPL) is and
how it can be organised. Three main SPL activities have been discussed, as
well as their resulting artifacts: Commonality and Variability Analysis (CVA),
Feature Modelling and Configuration. The example of the MDA-based instant
messenger is used to illustrate these three activities. Finally, we showed how
model-driven techniques can be used for product configuration.

The next chapter discusses how the configuration of MDA-based SPLs can
be done.



Chapter 6

Configuration of MDA-based product
lines

6.1 Introduction

In chapter 4, we have discussed how MDA can be improved by using explicit
platform models that allow us to reason about platform dependencies intro-
duced by model transformations and other software artifacts. While we have
shown that our platform models can be used to support the configuration of
MDA model transformations, we have not discussed how this configuration
is done. In fact, MDA itself does not cover the topic of configuration, even
though this is necessary to manage the variability caused by platform diversity.

Software Product Lines (SPLs), on the other hand, have a long history
of dealing with commonality and variability, where platform diversity can be
seen as yet another variability. SPLs typically integrate a number of software-
intensive products that share a significant amount of functionality. As such,
any software that is developed using the MDA approach can be considered
as an SPL, since each platform-specific software product shares significant
functionality with other platform-specific versions of that software product.
This shared functionality typically resides in the PIM and/or CIM. We refer
to any software that is developed (partly) using the MDA as MDA-based SPLs .

This chapter discusses how the configuration of MDA-based software prod-
uct lines is organised. Section 6.2 motivates the need for an integrated config-
uration approach for MDA and SPLs. It first looks at current SPL technology
and shows how far this technology brings us in dealing with diverse platforms.
Remaining issues are discussed and the need for integration of MDA and SPL
technology is explained. Section 6.3 explains how models can be used to ex-
press and enforce configuration rules. Section 6.4 discusses how configuration
models can be integrated with our platform ontologies. Section 6.6 discusses
related work and section 6.7 concludes this chapter.

99
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6.2 Managing MDA configurations

Even though variability is always present in the MDA in the form of various
platforms, the topic of configuration is not covered by the MDA itself. As
has been discussed in the previous chapter, model transformations are cur-
rently used for one platform only, which reduces the configuration task to
simply selecting a platform. As the reuse of model transformations for mul-
tiple platforms has been made possible by our platform modelling approach,
more elaborate configurations of model transformations are now possible. In
addition to having platform dependency constraints, model transformations
can also have mutual constraints. In [MTR05], Mens et al. explain the kind
of conflicts that can arise between model transformations. They also propose
a solution based on critical pair analysis of graph transformations.

The problem of conflicting configuration choices is also known in SPLs as
the feature interaction problem [RMR05]. The fact that the SPL community
has come up with several solutions to the feature interaction problem and other
issues related to configuration, indicates that the MDA can really benefit from
the knowledge built up by the SPL community.

The elements of the MDA map well to SPLs: in chapter 5, we have used the
instant messenger example to demonstrate that models can represent features
of a product line. In the MDA, the features are not only introduced by models
that represent specific functionality (e.g. a Jabber protocol plug-in for an
instant messaging client), but also by model transformations that integrate
platform-specific information into PSMs. We therefore choose to also describe
the MDA model transformations as features for the purpose of configuration.

We propose to use feature models to record the analysis of scope, com-
monality and variability of MDA-based SPLs, as it is a proven method for
communicating such information. For the configuration, we propose to use
Domain-Specific Modelling Languages (DSMLs), as it is a well-known and
proven configuration approach for SPLs with mature and extensible tool sup-
port. The overlap between DSML and MDA technology means that they
benefit from each other’s advances and it reduces the required technological
scope of our approach.

DSMLs use meta-models to express the rules of the configuration language.
The scope of these rules is always limited to the language vocabulary. The
language vocabulary typically consists of the elements that must be configured
(represented as meta-classes). This means that the configuration language
rules can only express which elements can be combined (feature interaction).
External factors, such as platform elements, are not part of the meta-model
and are hence beyond the scope of the configuration rules.

That’s why we propose to extend the meta-models of configuration lan-
guages with platform dependency constraint annotations. This allows us to
link configuration language elements, which correspond to configuration
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choices, to platform dependency constraints, which are stored in a separate
OWL ontology. In addition, an intermediate “shadow” model is used to
record ordering information about configuration elements with platform de-
pendency constraints. This ordering information must be recorded to sup-
port the manual part of our most-specific-first and least-specific-first optimi-
sation process discussed in the previous chapter. Using a “shadow” model
instead of adding more annotations to the configuration language meta-model
makes it easier to translate our approach to other configuration solutions than
DSMLs (e.g. feature models, grammar-based DSLs or automated logic-based
approaches [BBRC06]). Only the minimal extension of mapping configuration
language meta-classes to platform dependency constraints needs to be trans-
lated to the new solution domain.

6.3 Using models for configuration manage-

ment

Models are playing an increasingly important role in SPLs. Feature models
are used to record the scope, commonality and variability analysis result and
Product Models are used to automatically generate products from the SPL’s
core assets. Especially the Product Models are becoming richer as more of the
product derivation process becomes automatic [Kru06]. We will first discuss
how to model MDA-based software artefacts as features. After that, we discuss
how to derive a configuration DSML that can be used to model products.

6.3.1 Feature modelling for the MDA

In chapter 5, we have discussed an example SPL of an instant messenger.
Fig. 5.2 shows the feature model for this example. We now extend the example
feature model to include the PIM-to-PSM model transformations as features.
The extended feature model is shown in Fig. 6.1.

The extended feature model adds an extra “TransformationConfig” feature,
which represents the configuration of PIM-to-PSM model transformations that
is required for a specific product in the instant messenger product line. “Trans-
formationConfig” is actually a placeholder feature for all its subfeatures, since
it contains too many subfeatures to display within the same diagram. There-
fore, the subfeatures are shown in Fig. 6.2. This has the additional advantage
of making the “TransformationConfig” feature tree reusable for other SPLs
than the instant messenger SPL.

The subfeatures of “TransformationConfig” represent the various model
transformations that are required, as well as two sets of alternative model
transformations (“Observer” and “Applet”). Almost all of these model trans-
formations require a “Mapping” to be selected. The “Mapping” feature is
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Figure 6.1: The extended feature model of the instant messenger product line.

modelled as a shared subfeature of these model transformations. The shared
“Mapping” subfeature is mandatory in all cases.

There is an extra constraint on the configuration of the “Mapping” feature
in that each model transformation must use the same mapping to achieve a
consistent transformation result. If one transformation uses Java language
mappings, then all transformations must use Java language mappings. If one
transformation uses “Java1DataTypes”, all transformations must use those
data types to guarantee type consistency. Unfortunately, there is no easy way
to express this constraint in the feature diagram itself. It must be recorded
separately as an annotation to the feature diagram, which can take the form
of a logic statement or natural language. Since our feature model is only used
to derive the configuration language meta-model, this shortcoming is of minor
importance for us.

It is now clear that a separate feature model for the model transformations
is desired here, because the model transformations are applicable for any class
of software that runs as an applet (or MIDlet). The feature model for the
model transformations may therefore be reused for other applet-style software
than instant messengers.

6.3.2 Configuration DSMLs

As has been explained in chapter 5, the meta-model for the DSML can be
derived from the feature model. The features from the feature model that are
not relevant for configuration purposes, such as the mandatory features, are
omitted from the DSML meta-model. We also split the model transformation
configuration and the specific instant messenger configuration in two separate
meta-models.

This follows the structure of the feature model and reflects the difference
of scope between model transformation configuration and instant messenger
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Figure 6.2: The feature model of the TransformationConfig feature.

configuration. Fig. 6.3 shows the meta-model for the configuration of the
instant messenger product line example.

The separate meta-models for model transformation configuration and in-
stant messenger configuration are shown as separate packages: “transforma-
tions” and “instantmessenger”. “InstantMessengerConfiguration” is modelled
as a special case of a “TransformationConfig”. None of the mandatory features
(“UML2Profiles”, “UML2Accessors”, . . . ) are modelled, since they are always
configured to be included. In the case of alternative features, such as “UML2-
Observer” / “UML2JavaObserver” and “DefaultJabberTransport” / “MEJab-
berTransport”, the different alternatives can be modelled through subclassing
of a general meta-class. “DefaultJabberTransport” and “MEJabberTransport”
are subclasses of the abstract “JabberTransport” meta-class. The association
between “JabberNetwork” and “JabberTransport” enforces that exactly one
of the “JabberTransport” subclasses must be chosen. In the case of “UML2-
Observer” and “UML2JavaObserver”, a shortcut is taken: “UML2Observer”
is used to represent the general case and “UML2JavaObserver” is a subclass of
“UML2Observer”. This approach yields the same effect, since exactly one in-
stance of “UML2Observer” or “UML2JavaObserver” must be chosen to satisfy
the association between “TransformationConfig” and “UML2Observer”.

In the “TransformationConfig” feature model (Fig. 6.2), many features in-
clude the mandatory “Mapping” subfeature. We have indicated that there
is an extra constraint on the configuration of the “Mapping” feature in that
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Figure 6.3: The meta-model of the instant messenger configuration language.

each model transformation must use the same mapping to achieve a consistent
transformation result. If one transformation uses Java language mappings,
then all transformations must use Java language mappings. If one transfor-
mation uses “Java1DataTypes”, all transformations must use those data types
to guarantee type consistency. While this was difficult to incorporate in the
feature model, it is very much possible to include this constraint in the con-
figuration language meta-model. The configuration choices for the “Mapping”
feature are really made only once. That is why the meta-model of the trans-
formation configuration language enforces this choice to be made exactly once
through the association between “TransformationConfig” and “Mapping”.

Note that our style of deriving a meta-model from a feature model results
in a language that requires minimal user input to achieve a complete config-
uration. Contrast this to the way in which most of the automated analysis
approaches work (see chapter 5, subsection 5.3.1): they focus on expressive-
ness of feature interaction constraints. Complex feature interaction constraints
should be limited to a minimum in a configuration language meta-model, how-
ever. If not, the act of configuration becomes a guessing game where the
software engineer has to find out which complex combinations are allowed by
the meta-model. Instead, the meta-model should be tuned towards deriving
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a configuration using as little information as possible, much like the way an
expert system works. This is why the meta-classes correspond to configura-
tion choices rather than features. Any remaining complex interactions between
configuration choices can be expressed using OCL, as is explained in chapter 5.

6.4 Platform-aware configuration

In order to leverage the platform model in the configuration process, a link
has to be made from the configuration language to the platform model. When
looking at the configuration language meta-model shown in Fig. 6.3, it be-
comes apparent that each concrete meta-class can impose certain platform
dependency constraints. Whenever a particular feature is included at least
once in a configuration model, the platform dependency constraints of that
type of feature – or meta-class – apply. Hence, a link to the platform model is
made for each meta-class. It then becomes possible to trace back the platform
dependency constraints for each configuration model through the meta-model
of the configuration language.

In the Eclipse Modeling Framework (EMF), it is possible to create anno-
tations for each model element. Annotations are grouped by name and can
contain multiple key-value pairs. In our configuration meta-models, a “Plat-
formKit” annotation1 has been added to each meta-class that introduces a
platform dependency constraint. The platform dependency constraint itself
is added to the annotation as a “PlatformConstraint” value. In addition,
the meta-model itself contains a “PlatformKit” annotation, which contains
an “Ontology” value that points to the platform ontology model. Table 6.1
shows the “PlatformConstraint” annotation values for each meta-class that
has a platform dependency constraint. The values represent XML-style refer-
ences to OWL concepts in the ontology that contains the platform dependency
constraints.

The platform dependency constraint information is also recorded in an in-
termediate “shadow” model, called a “PlatformKit” model. The PlatformKit
model keeps track of the ordering information that is used to support the man-
ual part of our most-specific-first and least-specific-first optimisation process.
PlatformKit models conform to the Ecore meta-model shown in Fig. 6.4.

The PlatformKit meta-model contains the following elements:

ConstraintSpace: Each PlatformKit model has a root “ConstraintSpace” el-
ement that can contain an ordered set of “ConstraintSet” elements. The
root “ConstraintSpace” element has an “ontology” attribute that con-
tains the relative location (URI) of the platform ontologies containing

1The name “PlatformKit” comes from the name of our tool; EMF annotations are usually
named after the tool that uses them.



106 Chapter 6. Configuration of MDA-based product lines

Meta-class PlatformConstraint value

JavaMapping #JavaMappingPlatform
Java1DataTypes #Java1Platform
Java2DataTypes #Java2Platform
UML2Observer #Java1Platform

UML2JavaObserver #JavaObserverPlatform
UML2Applet #AppletPlatform
UML2MIDlet #MIDletPlatform

Table 6.1: Configuration language meta-model annotations

the platform dependency constraints. The “ConstraintSpace” meta-class
also defines a number of operations that are implemented by the Plat-
formKit tool. The “getIntersectionSet” operation returns a new “Con-
straintSet” that contains references to the OWL intersection classes of
each “ConstraintSet”. The “getMostSpecific” and “getLeastSpecific” op-
erations return all the “ConstraintSet” elements in most-specific-first and
least-specific-first order, respectively. These operations take a boolean ar-
gument: when “true” is passed, only valid “ConstraintSet” elements are
returned. The “getValid” and “getInvalid” operations return the valid
and invalid “ConstraintSet” elements, respectively. A “ConstraintSet” is
considered valid if all its platform dependency constraints are satisfied.

ConstraintSet: Each “ConstraintSet” in turn can consist of a number of
“Constraint” elements. It is identified by the “name” attribute, which
corresponds to a configuration language meta-class name if the Plat-
formKit model is used as a “shadow” model2. Just like “Constraint-
Space”, this meta-class also defines a number of operations. The “is-
Valid” operation returns whether all “Constraint” elements are valid
(i.e. satisfied). The “getMostSpecific” and “getLeastSpecific” operations
return the most-specific and least-specific “Constraint” element, respec-
tively. The “getIntersection” operation returns the “Constraint” that
corresponds to the OWL intersection class of all contained “Constraint”
elements.

Constraint: Each “Constraint” corresponds to exactly one OWL class that
represents a platform dependency constraint. The “ontClassURI” at-
tribute contains the reference to this OWL class. The OWL class must
be contained in one of the ontology files referenced by the root “Con-
straintSpace” element. The “isValid” operation returns whether the cor-

2PlatformKit models can also be used for deployment, as will be explained later.
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Figure 6.4: The meta-model for PlatformKit models.

responding platform dependency constraint is valid (i.e. satisfied).

We will now discuss two usage scenarios for platform dependency con-
straints in configuration models. First, we explain how a PlatformKit model
is used to profile a configuration language meta-model against a platform in-
stance specification. This guarantees that only those configuration elements
that are valid for the given platform specification are used during the configu-
ration activity. Second, we explain how a PlatformKit model is used to use the
platform dependency constraints as a driving factor during deployment. By
using a PlatformKit model that contains all available configurations, the most-
specific or least-specific configuration that is still valid can be automatically
selected.

6.4.1 Profiling against platform instances

One usage scenario for PlatformKit models and an annotated configuration
language meta-model is to profile the meta-model against a platform instance
description. In this scenario, the software engineer is able to model product
configurations that are guaranteed to work on the platform that is profiled
against. This scenario is described by the process flowchart depicted in Fig. 6.5.

The different automated actions are depicted as boxes, where nested boxes
represent sub-actions. First, the platform dependency constraints are ex-
tracted from the configuration language meta-model and grouped per meta-
class in a PlatformKit model. When using a PlatformKit model for meta-
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Figure 6.5: Flowchart of the platform profiling scenario

model profiling, each “ConstraintSet” in the PlatformKit model corresponds
to a meta-class from the configuration language meta-model. Fig. 6.6 shows
an example of a “shadow” PlatformKit model for the instant messenger con-
figuration language. The notation used is the default notation for generated
EMF editors. Each model element label starts with the name of its meta-
class. The “ontology” attribute of the root “ConstraintSpace” element is not
shown. Each “ConstraintSet” element displays its name in the label, which
corresponds to a meta-class name from the meta-model shown in Fig. 6.3.

Together with the platform vocabulary ontologies and the platform depen-
dency constraint ontology, the PlatformKit model provides enough information
to infer the OWL class hierarchy. This action requires that the intersection
classes for each “ConstraintSet” element are generated first. The resulting
inferred ontology contains all relevant parts of the platform vocabulary on-
tologies as well as all platform dependency constraints and “ConstraintSet”
intersection classes.

The PlatformKit model and inferred platform ontology are then matched
– or profiled – against a platform instance description in OWL. The validity of
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Figure 6.6: The PlatformKit model for the instant messenger configuration
language.

each “ConstraintSet” within the platform specification that is profiled against
can be checked. All valid and invalid “ConstraintSet” elements can be traced
back to the corresponding meta-class via their names. As a result, the configu-
ration language editor can be instructed to only allow valid meta-classes to be
instantiated. Existing configuration model elements for which the meta-class
is invalid can be marked. The software engineer can use this information to
correct the configuration model.

Besides the ability to check which “ConstraintSet” elements – and their cor-
responding meta-classes – are valid, we can also sort the list of “ConstraintSet”
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elements. This is done by taking the intersection class for each “ConstraintSet”
and classify the hierarchy of these intersection classes. This hierarchy consti-
tutes a partial ordering in which the leaves are considered as most-specific and
the roots as least-specific. The list can be sorted most-specific-first or least-
specific-first according to the process described in subsection 4.6.1 of chapter 4.

6.4.2 Platform-driven deployment

Another usage scenario for PlatformKit models and an annotated configuration
language meta-model is to use the platform dependency constraint information
to drive the deployment of a selected configuration. In this scenario, all relevant
product configurations are checked against a platform specification and the
most-specific or least-specific product configuration can be deployed. This
scenario is described by the process flowchart depicted in Fig. 6.7.
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Figure 6.7: Flowchart of the deployment scenario

This scenario looks very similar to the previous one, which demonstrates
the use of a “shadow” PlatformKit model. Instead of extracting all platform
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dependency constraints in the configuration language meta-model, the meta-
classes used in each configuration model are now retrieved and the platform
dependency constraints that apply to those meta-classes are extracted. The
platform dependency constraints are then grouped in the PlatformKit model
as one “ConstraintSet” element per configuration model. Fig. 6.8 shows an ex-
ample of a PlatformKit model for the deployment of several instant messenger
configurations. Each “ConstraintSet” element displays its name in the label,
which corresponds to the value of the attribute marked as “ID” from the root
element in the configuration model. For the instant messenger configuration
language, the root element is always an “InstantMessengerConfiguration” and
the “ID” attribute is the “deploymentTarget” attribute (see in Fig. 6.3).

Inferring the OWL class hierarchy works exactly the same as in the previ-
ous scenario, except that “ConstraintSet” elements now correspond to config-
uration models instead of configuration language meta-classes. The validity of
each “ConstraintSet” within the targeted deployment platform can be checked.
All valid and invalid “ConstraintSet” elements can be traced back to the cor-
responding configurations via their names. The inferred OWL class hierarchy
can again be used to create a sorted list of configurations that can be de-
ployed. For the purpose of automatically selecting a product configuration for
deployment, the first valid “ConstraintSet” from the list is selected and the
corresponding configuration is deployed.

6.5 Limitations

Our configuration approach has certain known limitations. This section dis-
cusses these limitations and suggest how these limitations can be mitigated.

6.5.1 Model transformations are not features

Modelling transformations as features is a shortcut that works for configura-
tion purposes, but is not valid in general. For example, a model transformation
may be applied without triggering on some of the model elements or any model
element. As a result, only part – or none – of the feature has been introduced.
Also, less platform dependencies or no platform dependencies at all have been
introduced. Selecting a model transformation does not necessarily introduce
any new features in the product. Therefore, considering a model transforma-
tion equivalent to a feature in general is misleading.

To mitigate this problem, PIM-to-PSM model refinement transformations
need to be considered in the scope of the PIM to which they are applied.
Irrelevant transformations should not be used, as they claim extra platform
dependencies that are not present in the generated PSM. As it is too much
effort to develop a configuration framework for model transformations for each
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Figure 6.8: The PlatformKit model for the instant messenger product config-
urations.

PIM that they are applied to, it is best to have a number of model transfor-
mation frameworks – including configuration support – that can be applied
within a certain scope. Our model transformations, for example, are tailored
to the scope of Java applets and MIDlets. A number of those transforma-
tions could be reused and augmented with other transformations to create a
transformation framework for Java web applications.
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6.5.2 Scalability

The fact that we have chosen DSMLs for configuration has consequences for
scalability. As the amount of features – including model transformations –
rises, not only the DSML meta-model needs to be extended, but also the
model transformations that generate the configuration implementation must
be updated. Since those transformations can quickly grow more complex, this
limits the amount of features that can still be reasonably maintained.

This problem can be mitigated by focusing the model transformation that
generates the configuration implementation to only do translation of configura-
tion choices instead of generating the actual implementation. Let’s assume our
configuration is implemented by an Ant build script that executes the different
PIM-to-PSM refinement transformations on the selected PIMs (see chapter 5).
Since most of the build workflow is fixed, this can be encoded in a static Ant
script that uses parameters to decide between alternative workflows. Those
parameters can then be provided in a small generated Ant script that invokes
the static Ant script. This considerably reduces the size and complexity of the
build script generator model transformation.

Another problem that arises when the number of features increases is that
the rules for combining the different features may grow out of hand and become
inconsistent. This problem applies not only to our chosen DSML approach,
but also feature models themselves. There are currently a number of formal
configuration approaches that can detect inconsistencies in the configuration
rules that result in so-called dead features : features that can never be included
in any configuration without breaking configuration rules. These approaches
are based on propositional logic and constraint programming and are described
by Benavides et al. in [BRCTS06].

6.6 Related work

We chose to use domain-specific modelling as our configuration management
approach. In [CHE05b], it is demonstrated that feature models can also be
used for configuration purposes. In this context, a configuration consists of
the features that were selected according to the variability constraints defined
by the feature model. The relationship between feature modelling and domain
specific languages is explored in [DK02]. An important conclusion is that
feature models can be translated into a DSL grammar (or meta-model). This
is illustrated by their Feature Description Language (FDL), which follows the
same structure as a BNF grammar. The meta-models we use for describing our
features can hence be considered equivalent to feature models. The fact that
both DSMLs and the MDA itself can share the same model-driven technology
also greatly simplifies matters.
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In [AC06], Antkiewicz and Czarnecki introduce Framework-Specific Mod-
elling Languages (FSMLs). FSMLs are used to generate framework extension
code from a domain-specific model. It is comparable to a project creation wiz-
ard in the Eclipse framework, but more powerful with respect to changing your
parameters and re-generating the framework extension code. FSMLs support
round-trip engineering and propagate changes to the model down to the code
as well as propagate changes to the code back to the model (where applicable).
FSMLs are based on DSMLs and are related to the way we use DSMLs in the
sense that we both use models to “configure” a code generator. This means
that for both approaches a lot of domain knowledge is part of the code gen-
erator. For FSMLs, the code generator knows how to extend the framework.
For our configuration languages, the code generator knows how and in which
order to apply PIM-to-PSM refinement transformations.

There also exist specific approaches for the configuration of model transfor-
mations in the MDA. In [Old05], Oldevik describes a framework for modelling
compositions of model transformations, which is based on UML. The approach
focuses on workflow descriptions, which essentially describe the execution order
of transformations. It does not describe alternative transformation workflows,
but it seems possible to extend the framework for this. Oldevik’s composi-
tion model may add to the traditional “configuration-model-to-build-script”
generative approach described in chapter 5 by adding a higher-level workflow
description of how the model transformations should be executed. Instead of
generating low-level build script code, we can generate a more concise workflow
description model. The composition framework then executes that workflow.

In the field of Software Product Lines, various research exists on the au-
tomated analysis of feature models [BBRC06]. This research focuses on the
analysis of feature interaction constraints [RMR05] however, whereas our fo-
cus lies on platform dependency constraints that refer to the context of the
features rather than the features themselves. This means that our approach
forms an addition to these automated analysis methods for feature models.
Especially the approach described by Wang et al. in [WLS+07] fits well with
our approach, since it also use OWL DL to describe feature interaction con-
straints and we can reuse the knowledge of OWL that is necessary to use our
approach. The approach described by Benavides et al. in [BTRC05], which
is based on constraint programming, promises more powerful analysis results,
however [BRCTS06]. We use OCL to express complex constraints on the meta-
model of our configuration language, which offers sufficient expressiveness for
our purposes. The expressiveness of OCL hasn’t been pinpointed precisely,
however. In [MC99], Mandel and Cengarle claim that OCL cannot be consid-
ered equivalent to either relational calculus or Turing machines. It is also not
(yet) possible to detect inconsistencies between OCL constraints, which is a
powerful analysis tool for feature modelling.

In [WSWN07], White et al. describe a method for automatically selec-
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tion SPL variants for mobile devices. Their configuration approach is identical
to ours, where a DSML serves as a configuration language. They acknowl-
edge that, in addition to feature interaction constraints, target device con-
straints must be taken into account as well. These target device constraints
have the same purpose as our platform dependency constraints. White’s tar-
get device constraints focus mostly on hardware resources, however, where
we have focused on software resources. An example target device constraint
is “JVMVersion > 1.2” or “WifiCapable = true”. In comparison, our plat-
form dependency constraints are much more detailed than “JVMVersion >

1.2”. The method White et al. use for SPL variant selection is based on a
Prolog constraint solver and is actually based on Benavides’ work [BTRC05].
Optimisation is based on a developer-supplied cost function that is applied to
all remaining valid variants. Compare this to our approach, where optimisation
is based on constraint classification, is done offline and before determining con-
straint satisfaction. Performance of both White’s approach and our approach
is comparable with our current use of DLs and associated reasoners (SHF(D)
on a SHOIN (D) reasoner – see chapter 4).

6.7 Summary

This chapter has indicated that the topic of configuration is hardly covered by
the MDA, since with the traditional monolithic PIM-to-PSM transformations
configuration is limited to selecting a target platform. As one starts using
multiple successive PIM-to-PSM refinement transformations, with alternative
transformations depending on the targeted platform, managing the transfor-
mation configuration becomes important.

The field of Software Product Lines, in contrast, have long dealt with soft-
ware variability, whether caused by platform diversity or other factors. Feature
models describe the common and variable parts of an SPL. We have shown
that PIM-to-PSM refinement transformations can be considered as features too
in the context of a feature model. Whereas feature models are very suitable
for analysis purposes, we have chosen to use Domain-Specific Modelling Lan-
guages as a configuration tool. DSMLs form a proven and flexible method to
describe SPL configurations. MDA technology for meta-modelling and model
transformation can be reused for the development of a DSML. The fact that
a configuration language can focus on configuration only, without having to
describe an analysis of the available features, makes that the language can
remain simpler.

We proposed to extend the DSML configuration approach by annotating
the meta-model of a configuration language with platform dependency con-
straints. Since each meta-class in the meta-model corresponds to a configura-
tion choice, we add an annotation to each meta-class representing a choice that
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introduces platform dependencies. These annotations refer to the platform on-
tology that describes the platform dependency constraints in OWL DL. The
meta-model annotations allow us to extract a platform dependency constraint
analysis model (PlatformKit Model) from either the meta-model directly or
any configuration model (which conforms to the configuration language meta-
model). Using a separate analysis language/model allows us to apply our
approach to other configuration methods than DSMLs with minimal work.

We have illustrated two usage scenarios for PlatformKit Models. In the
first scenario, PlatformKit Models are used to profile the configuration lan-
guage meta-model against a platform instance specification. By marking the
meta-classes as valid or invalid for the given platform, configuration models can
be analysed on their usage of valid and invalid meta-classes. The second sce-
nario deals with the deployment of a single configuration that is automatically
selected from a group of supported configurations. In this scenario, configura-
tions are checked against a platform instance specification as a whole. Con-
figurations can be sorted most-specific-first or least-specific-first, then checked
for validity for the given platform.

Two known limitations of our chosen configuration approach have been dis-
cussed: the mismatch between model transformations and features and scala-
bility with regard to the number and complexity of features supported. Finally,
this chapter has shown where our work is situated with respect to related work
in the area of configuration for the MDA and SPLs.

The following chapter introduces our PlatformKit tool. PlatformKit pro-
vides support for reasoning about platform models and configuration based on
platform dependency constraints.



Chapter 7

Tool support

7.1 Introduction

A proof-of-concept tool, called PlatformKit1, has been developed that imple-
ments platform dependency constraint checking as well as platform-based op-
timisation. PlatformKit provides an Eclipse2 plug-in that provides developers
with platform dependency constraint management support. It uses EMF for
all meta-modelling and ATL for its transformations. It uses Jena 3 for OWL-
DL manipulation. The tool uses a DL reasoner, such as Pellet [SPG+07],
Fact++ [TH06] or Racer [MH03], for the classification of the constraint tax-
onomy as well as constraint validation. Modelling platform dependency con-
straint ontologies is done using the Protégé tool4, using our platform vocabu-
lary as a basis.

PlatformKit also provides a web interface (Java servlet) to support plat-
form-based deployment of the various configurations. The servlet receives a
platform instance specification from a client, against which the available con-
figurations are validated. It can either return the most-specific (default) or
least-specific option that is still valid, based on the client’s preferences. It then
redirects the client to the URL that contains the corresponding configuration.

Apart from PlatformKit, work has been done on other tool support. The
Jar2UML5 tool was developed to reverse engineer detailed UML models of
Java API and Java dependencies. For our instant messenger case study, we’ve
made several changes to the ATLAS Transformation Language tool support.
These changes include support for modularised meta-models, such as Eclipse
UML2, and superimposition.

1http://ssel.vub.ac.be/ssel/research:mdd:platformkit
2http://www.eclipse.org/
3http://jena.sourceforge.net/
4http://protege.stanford.edu/
5http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
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The remainder of this chapter is structured as follows: section 7.2 describes
the architecture of the PlatformKit components. Section 7.3 explains all the
tasks that can be performed by the tool. Section 7.5 discusses the limitations
of PlatformKit and provides directions for future work. Finally, section 7.6
concludes this chapter.

7.2 Architecture

PlatformKit consists of two components, each of which make use of several
third-party components. Fig. 7.1 gives an overview of those components and
how they depend on eachother.

Figure 7.1: PlatformKit architectural overview

The PlatformKit Eclipse plug-in adds functionality to the Eclipse Inte-
grated Development Environment for the management of platform dependency
constraints. It uses the Jena framework for the manipulation of platform on-
tologies. The Pellet DL reasoner is used as the built-in component for all rea-
soning tasks. PlatformKit also allows the use of an external DIG-compliant6

6http://dl.kr.org/dig/interface.html

http://dl.kr.org/dig/interface.html
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reasoner. EMF is used as a basis for the Platformkit Model language (see
chapter 6) that tells PlatformKit what it must reason about. EMF is also
used as the basis for configuration editors: PlatformKit can instrument any
EMF-based model editor to validate against platform dependency constraints.
ATL is used to run queries against UML models of the various Java APIs.
This specific functionality is used to measure the platform dependencies of
third party Java components or libraries.

The PlatformKit servlet implements web-based deployment based on plat-
form dependency constraints. It also uses EMF to read the Platformkit Models
and it uses Jena and Pellet to reason about platform dependency constraints.
In addition, the PlatformKit servlet uses MySQL7 to store a table of known
standard platforms. The PlatformKit servlet itself is deployed on a Jetty ap-
plication server8.

The two PlatformKit components implement the scenarios that are ex-
plained in section 6.4 of chapter 6. Both components use a generated Java
implementation of the PlatformKit model (see Fig. 6.4) that has been refined
to implement the functionality of the specified operations (getIntersectionSet,
getMostSpecific, etc.). The implementation of PlatformKit can be found at
http://ssel.vub.ac.be/viewvc/PlatformKit/.

7.2.1 Jar2UML

PlatformKit also makes use of the UML models that are generated by our
Jar2UML reverse engineering tool. Existing reverse engineering tools, such as
Netbeans9, MaintainJ10 and Altova11, were not suitable to retrieve the neces-
sary information from Java binaries, such as a Java class library. They were
typically intended for reuse or understanding of existing Java source code or
byte code. The focus of Jar2UML is on providing a tailored UML model for
PlatformKit that provides exactly those details that are necessary to determine
(binary) compatibility between APIs.

The Java platform ontologies are generated from UML models (see chap-
ter 4). In addition, UML models of jar dependencies can be compared against
built-in UML models of standard Java APIs (see also subsection 7.3.2). Fig. 7.2
gives an overview of jar2uml and the components that it uses.

Jar2UML uses the Apache Bytecode Engineering Library (BCEL)12 to read
Java class files inside a jar archive. It then creates a UML model from the
bytecode, including any dependencies that can be inferred from the bytecode

7http://www.mysql.org/
8http://www.mortbay.org/
9http://www.netbeans.org/kb/55/uml-re.html

10http://www.maintainj.com/
11http://www.altova.com/features reverse engineer.html
12http://www.apache.org/bcel/

http://ssel.vub.ac.be/viewvc/PlatformKit/
http://www.mysql.org/
http://www.mortbay.org/
http://www.netbeans.org/kb/55/uml-re.html
http://www.maintainj.com/
http://www.altova.com/features_reverse_engineer.html
http://www.apache.org/bcel/
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Figure 7.2: Jar2UML architectural overview

(referenced types, invoked methods, etc.). Jar2UML is part of the Eclipse
MoDisco reverse engineering tool box13. The implementation of Jar2UML can
be found at http://ssel.vub.ac.be/viewvc/JarToUML/.

7.3 Tasks

PlatformKit can be used to support several tasks. These tasks are also de-
scribed in the PlatformKit manual14. This section describes the tasks from
a usage point of view; installation instructions, technical requirements, etc.
of both the PlatformKit Eclipse plug-in and the PlatformKit Servlet can be
found in the current version of the online manual. Where applicable, the tasks
are illustrated using the instant messenger case study15.

7.3.1 Setting up a Model-Driven Software Product Line

We provide a number of guidelines on the way that your MDA-based software
product line is set up. These guidelines ensure that you can make full use of
the functionality of the PlatformKit Eclipse plug-in. We’ll assume that you use
ATL for your model transformations and Java as an implementation language
for your software products.

The core assets for the Instant Messenger product line are stored in an
Eclipse ATL project. These core assets include at least the PIM of the common
architecture for all software products as well as the PIMs of each optional
feature. Any third-party components that must be built from source can be
stored in a separate Eclipse Java project.

Each software product is stored in a separate Eclipse Java project. That
way, project-specific settings for compilation can be used to cater for each

13http://www.eclipse.org/gmt/modisco/toolBox/
14http://ssel.vub.ac.be/ssel/research:mdd:platformkit
15http://ssel.vub.ac.be/ssel/research:mdd:casestudies

http://ssel.vub.ac.be/viewvc/JarToUML/
http://www.eclipse.org/gmt/modisco/toolBox/
http://ssel.vub.ac.be/ssel/research:mdd:platformkit
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
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targeted platform (e.g. J2SE 1.5, J2ME MIDP 1.0, etc.). We can now select
and apply model transformations to the common PIM and the selected optional
PIMs using a build.xml Ant script. The resulting generated code can be stored
in the Eclipse Java project for the relevant product configuration.

Later on we will explain how to create a configuration language for the
software product line, which allows you to automatically generate a product-
specific build.xml script with a model transformation. This automatic product
generator is not necessary for the purpose of PlatformKit, however.

Now that the source code for the instant messenger product is available, any
additional resources (e.g. icons and sound clips) can be added and packaging
scripts can be written. Any reusable packaging scripts can be refactored into
the main product line Eclipse project. Templates can be added to the main
product line Eclipse project for product-specific building and packaging scripts.

7.3.2 Extracting Platform Dependencies of Third-party
Components

Finding out the platform dependencies for your own software models and/or
source code is relatively straightforward, compared to finding out the platform
dependencies of third-party binaries. PlatformKit can help you to extract the
platform dependencies for third-party Java jar files. It uses the UML models
generated by the Jar2UML tool16 for this.

First, we need a UML model that includes all the API dependencies of the
third-party component’s jar file(s):

• Select “File → Import”.

• Select “Jar2UML Import→ Import Jar File Dependencies to UML Mod-
els” and click “Next” (see Fig. 7.3).

• Select the component’s jar file(s) by clicking “Browse”. Fig. 7.4 shows
how to import the MicroJabberWookie.jar file, which can be found in
“uml2cs-microjabberwookie/jar/” if you installed the instant messenger
case study.

• Select a target folder for your UML model.

• Click “Finish”.

PlatformKit can now compare the extracted UML model against built-in
UML models of various Java APIs:

16http://ssel.vub.ac.be/ssel/research:mdd:jar2uml

http://ssel.vub.ac.be/ssel/research:mdd:jar2uml
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Figure 7.3: Jar2UML Dependency Import

• Right-click the “.uml” file and select “PlatformKit → Determine com-
patibility with X”, where X is the Java API you want to compare against
(see Fig. 7.5).

• An ATL query is run against the models and checks whether the selected
Java API is compatible with the API dependencies we’ve extracted.

• The result compatible or not is displayed in a dialogue window, while
the detailed comparison results can be viewed in the ATL console (see
Fig. 7.6).

By finding out which Java APIs are compatible, you can derive which ver-
sions of particular Java API packages to use when modelling platform depen-
dencies (see subsection 7.3.3). “MicroJabberWookie”, for example, requires
java.lang, java.io and java.util and turned out to be compatible with all Java
APIs.
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Figure 7.4: Importing the MicroJabberWookie.jar file

7.3.3 Modelling Platform Dependencies

Platform dependencies are modelled for the common base architecture of the
SPL as well as for the optional features. Platform dependencies are described
in OWL-DL. We use the Protégé ontology editor to model these ontologies.

Before modelling the platform dependencies, it is a good idea to prepare
the platform vocabulary ontologies such that the Protégé ontology editor can
access them. These ontologies are bundled with the PlatformKit Eclipse Plu-
gin. Open a terminal window or command prompt and issue the following
commands (excluding the ‘$’):

$ jar xvf /Applications/eclipse/plugins/be.ac.vub.platformkit_1.1.6.jar ontology

created: ontology/

created: ontology/codamos_2005_01/

created: ontology/codamos_2006_01/

created: ontology/codamos_2007_01/

created: ontology/davy_2006_01/

inflated: ontology/codamos_2005_01/Units.owl

inflated: ontology/codamos_2006_01/Context.owl
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Figure 7.5: Determine compatibility

inflated: ontology/codamos_2006_01/Corba.owl

inflated: ontology/codamos_2006_01/Environment.owl

inflated: ontology/codamos_2006_01/Java.owl

inflated: ontology/codamos_2006_01/OperatingSystems.owl

inflated: ontology/codamos_2006_01/Platform.owl

inflated: ontology/codamos_2006_01/Service.owl

inflated: ontology/codamos_2006_01/User.owl

inflated: ontology/codamos_2007_01/Java.owl

inflated: ontology/codamos_2007_01/PackageManagers.owl

inflated: ontology/codamos_2007_01/Platform.owl

inflated: ontology/davy_2006_01/Component.owl

inflated: ontology/davy_2006_01/Draco.owl

$ jar xvf /Applications/eclipse/plugins/be.ac.vub.platformkit.java_1.1.1.jar ontology

created: ontology/

created: ontology/codamos_2007_01/
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Figure 7.6: Compatibility report

inflated: ontology/codamos_2007_01/JavaAPI.owl

inflated: ontology/codamos_2007_01/j2me-midp-1_0-api.owl

inflated: ontology/codamos_2007_01/j2me-midp-2_0-api.owl

inflated: ontology/codamos_2007_01/j2me-pp-1_0-api.owl

inflated: ontology/codamos_2007_01/j2me-pp-1_1-api.owl

inflated: ontology/codamos_2007_01/j2se-1_2-api.owl

inflated: ontology/codamos_2007_01/j2se-1_3-api.owl

inflated: ontology/codamos_2007_01/j2se-1_4-api.owl

inflated: ontology/codamos_2007_01/j2se-1_5-api.owl

inflated: ontology/codamos_2007_01/j2se-1_6-api.owl

inflated: ontology/codamos_2007_01/jdk-1_1-api.owl

inflated: ontology/codamos_2007_01/personaljava-1_1-api.owl

The expected output is also listed after the commands (without preceding
‘$’). We assume here that Eclipse is installed in /Applications/eclipse

and that you use version 1.1.6 of the be.ac.vub.platformkit plugin and
version 1.1.1 of the be.ac.vub.platformkit.java plugin. Adjust the above
commands to reflect your particular Eclipse installation location and plugin
versions.

You should now have a folder named “ontology” inside the folder from
where you executed the above commands (usually your home directory).

Start up your Protégé editor and do the following:
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• Click “New project”.

• Select an “OWL / RDF Files” project and click “Next” (see Fig. 7.7).

• Enter an ontology URI starting with http://local/ (for example: http:

//local/InstantMessenger.owl) and click “Next” (see Fig. 7.8).

• Select the “OWL DL” language profile and click “Finish” (see Fig. 7.9).

Figure 7.7: New Protégé project kind

You should now see an empty ontology in the main screen of the Protégé
editor. In order to build our platform dependency ontology on top of the
vocabulary that we prepared earlier, we need to import this vocabulary:

• In the main Protégé screen, click the “Import ontology” button as marked
by a red circle in Fig. 7.10.

• Select “Import an ontology contained in one of the available repositories”
and click “Next” (see Fig. 7.11).

• Now click “Add repository” as marked by a red oval in Fig. 7.12.

• Select “Local folder” as repository type and click “Next” (see Fig. 7.13).

• Enter the folder name of the vocabulary that we prepared earlier, select
“Include sub-folders” and click “Finish” (see Fig. 7.14).

http://local/
http://local/InstantMessenger.owl
http://local/InstantMessenger.owl
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Figure 7.8: New Protégé project URI

Figure 7.9: New Protégé project language profile

• Now select the http://ssel.vub.ac.be/codamos/2007/01/JavaAPI.owl

ontology from the list and click “Next” (see Fig. 7.15).

• In the next screen, click “Finish”.

• Review the prefixes of the imported ontologies (see Fig. 7.16). You may

http://ssel.vub.ac.be/codamos/2007/01/JavaAPI.owl
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want to change the prefix of the http://ssel.vub.ac.be/codamos/2007/

01/JavaAPI.owl ontology to java-api. Click “Close” when you’re done.

Figure 7.10: Importing an ontology into Protégé

Now that the empty ontology is set up, we can add platform dependen-
cies. It is highly recommendable to use a DIG reasoner while modelling your
platform dependencies. The DIG reasoner URL can be set in Protégé via the
“OWL → Preferences” menu. As a DIG reasoner, you can use Racer, Pellet
or Fact. You can use the DIG reasoner to classify the taxonomy based on the
ontology facts. This is done via “OWL → Classify taxonomy”.

Now we can add platform dependency classes to the ontology. We assume
that you can find your way around Protégé a bit, such that you can do basic
ontology editing. Please save your ontology often during the following steps,
as we may reach the memory limits of Protégé. This is the guideline procedure
for adding platform dependencies:

• A platform dependency is always a subclass of platform:Platform.
Start by adding a new subclass to platform:Platform. Name this class
InstantMessengerPlatform. This class will represent the platform de-
pendency constraint for the common instant messenger architecture.

• Depending on the platform features we want to require, we need to define
extra platform:Feature subclasses. InstantMessengerPlatform will re-
quire a specific kind of java:JRE. Add a subclass to java:JRE and name
it BasicJRE.

A java:JRE typically provides a built-in java:JavaLibrary. Use the DIG
reasoner taxonomy classification result to find out which java:JavaLibrary

http://ssel.vub.ac.be/codamos/2007/01/JavaAPI.owl
http://ssel.vub.ac.be/codamos/2007/01/JavaAPI.owl
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Figure 7.11: Import an ontology from a repository

subclasses we require. For BasicJRE we require a basic version of java.lang
and java.util. The Java class library that provides the java.lang package
and the java.util package are represented by (several versions of) the classes
JavaLangLibrary and JavaUtilLibrary, respectively. j2me-midp-1 0:Java-

LangLibrary is sufficient for our requirements and is subclassed by most other
versions of JavaLangLibrary, i.e. most other versions of JavaLangLibrary are
compatible with j2me-midp-1 0:JavaLangLibrary. personaljava-1 1:Ja-

vaLangLibrary is not compatible with j2me-midp-1 0:JavaLangLibrary, but
is still sufficient for our requirements.

• Add a necessary & sufficient restriction on the java:providesBuilt-

inJavaLibrary property to the BasicJRE class. As a “Filler”, enter the
union of all JavaLangLibrary classes that are sufficient for our require-
ments. Any JavaLangLibrary classes that are compatible with one of
the other classes in the union may be omitted (see Fig. 7.17).

• Add another necessary & sufficient restriction on the java:provides-

BuiltinJavaLibrary property to the BasicJRE class. As a “Filler”,
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Figure 7.12: Add a new ontology repository

enter the union of j2me-midp-1 0:JavaUtilLibrary and personalja-

va-1 1:JavaUtilLibrary. The resulting BasicJRE description should
look like Fig. 7.18.

• Now add a necessary & sufficient restriction on the platform:pro-

videsFeature property to the InstantMessengerPlatform class. As
a “Filler”, enter the BasicJRE class (see Fig. 7.19).

We now have a basic platform dependency class for any instant messen-
ger product. You can add more platform dependency classes for each of
the optional instant messenger features, such as “JabberNetwork”, “Default-
JabberTransport”, “AWTUserInterface”, etc. It is also possible to require
a particular package manager: see the platform:PackageManager class, the
java:JavaPackageManager class and the java:providesJavaPackageManag-
er property.
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Figure 7.13: Select repository type

After you’ve added all platform dependency classes, you can get an
idea of which is the most specific platform dependency by choosing
“OWL → Classify taxonomy” again. The leaf classes in the hierarchy
are the most-specific platform requirements. Note that this step will
also be performed by PlatformKit itself.

7.3.4 Setting up a Platform-Aware Configuration Lan-
guage

We have set up the core assets of our SPL and we have modelled their platform
dependencies in an ontology. Now we define a domain-specific modelling lan-
guage for the configuration of our SPL, in which the platform dependencies and
the core assets are brought together. The meta-model of this configuration lan-
guage is annotated with the names of our platform dependency classes, such
that PlatformKit can extract them for each meta-class in the configuration
language. The goal is to enable PlatformKit to profile configuration models
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Figure 7.14: Create new repository

against a platform instance description and see whether a particular configu-
ration works for a given platform. A flowchart of the entire procedure is shown
in Fig. 6.5 in chapter 6, subsection 6.4.1. Note that the task of PlatformKit
profiling itself is discussed in subsection 7.3.5.

The first step in creating our configuration language is to define an EMF
meta-model. We assume basic experience with EMF meta-modelling and refer
to the EMF documentation17 for instructions. As an example, we will use the
configuration language meta-model of the Instant Messenger case study, as
shown in Fig. 6.3 in chapter 6, subsection 6.3.2.

We now describe the steps to add the platform dependencies to this meta-
model. You can use the EMF Ecore editor to do this:

• Add an EAnnotation to the main EPackage (“instantmessenger” for our
example) and set its “Source” property to “PlatformKit”.

• Add a Details Entry to the “PlatformKit” EAnnotation.

17http://www.eclipse.org/modeling/emf/docs/

http://www.eclipse.org/modeling/emf/docs/
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Figure 7.15: Select ontology to import

Figure 7.16: Review the added ontology prefixes
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Figure 7.17: Adding a restriction to a JRE

• Set the “Key” property of the Details Entry to “Ontology” and the
“Value” property to “InstantMessenger.owl” (or the name you chose for
your platform dependency ontology).

• For each meta-class that corresponds to a platform dependency, add an
EAnnotation and set its “Source” property to “PlatformKit”.

• Add a Details Entry to this EAnnotation with its “Key” property set
to “PlatformConstraint” and its “Value” property set to the URL of
its platform dependency class. This URL takes the form <ontology

URL>#<class name>. The “InstantMessengerConfiguration” meta-class,
for example, has its “PlatformConstraint” value set to “http://local/
InstantMessenger.owl#InstantMessengerPlatform”.

The resulting meta-model should look like Fig. 7.20 in the EMF Ecore
editor.

Once the meta-model has been defined and annotated, a Platformkit Model
must be created:

• Choose “File → New → Other”.

• Select “PlatformKit → Platformkit Model” and click “Next”.

http://local/InstantMessenger.owl#InstantMessengerPlatform
http://local/InstantMessenger.owl#InstantMessengerPlatform
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Figure 7.18: Description of BasicJRE

• Select the folder that contains the Ecore meta-model as parent folder and
use the same base name as file name. For example, use “InstantMes-
senger.platformkit” if your meta-model is saved as “InstantMessenger
.ecore”.

• Click “Finish”.

You now have an empty PlatformKit Model with a root “ConstraintSpace”
element:

• Right-click the “ConstraintSpace” element and select “Add Product Line
Meta-model” as shown in Fig. 7.21.

• Select the Ecore meta-model of the configuration language, including
all referenced meta-models, then click “OK”. For example, “Instant-
Messenger.ecore” references “Transformations.ecore”, which means both
have to be included as shown in Fig. 7.22.

Your Platformkit Model now has several “ConstraintSet” elements in its
“ConstraintSpace”. We will now pre-sort the Platformkit Model most-specific-
first :
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Figure 7.19: Description of InstantMessengerPlatform

• Right-click the “ConstraintSpace” element and select “Classify Taxon-
omy” as shown in Fig. 7.23. The classification procedure may take several
minutes.

• As a result, you should have a “.inferred.owl” file with the same base
name as the Platformkit Model, which is also stored in the same folder.
For example, you should have an “InstantMessenger.inferred.owl” file for
the “InstantMessenger.platformkit” model.

• Right-click the “ConstraintSpace” element again and select “Sort Most
Specific First”.

• As a result, the PlatformKit Model will be re-sorted with the most-
specific “ConstraintSet” element at the top.

• Save the resulting Platformkit Model.
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Figure 7.20: Compatibility report

Normally, the built-in Pellet OWL DL reasoner is used to perform the
above steps. It is also possible to use an external OWL DL reasoner
via the DIG interface. This is done by selecting “Window → Prefer-
ences” from the menu and changing the settings in the “PlatformKit”
category.

In case you wish to package the configuration language as an EMF plugin,
you need to bundle the Platformkit Model and the ontologies:

• Include all “.platformkit”, “.owl” and “.inferred.owl” files in your “build
.properties” and make sure they are in the same folder as the “.ecore”
file.

• Create extra URI mappings for all included “.platformkit”, “.owl” and
“.inferred.owl” files. Fig. 7.24 shows the extra URI mappings for the
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Figure 7.21: Adding a product line meta-model

instant messenger configuration language plugin.

7.3.5 Platform-Driven Configuration

Each configuration model that is expressed in a platform-aware configuration
language can be checked by PlatformKit to see for which platforms it is valid.

When editing a product configuration model in the tree-based EMF editor,
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Figure 7.22: Selecting product line meta-models

one can add new child elements to the model. For the instant messenger con-
figuration language, the options are listed in Fig. 7.25. EMF already takes care
of multiplicity constraints given in the meta-model by greying out the invalid
options. PlatformKit can further limit the available options by removing the
options that are invalid for a chosen platform:

• Right-click the root element of the configuration model and select “Plat-
formKit → Profile Against Concrete Platform”, as shown in Fig. 7.26.

• Select a platform instance description from the list of built-in platforms
and click “OK”, as shown in Fig. 7.27. Alternatively, select “Plat-
form specification from file” after which you can provide a platform in-
stance specification “.owl” file from the workspace. Example platform
instance specifications can be found at http://ssel.vub.ac.be/viewvc/

PlatformKit/platformkit-examples/codamos 2007 01/.

http://ssel.vub.ac.be/viewvc/PlatformKit/platformkit-examples/codamos_2007_01/
http://ssel.vub.ac.be/viewvc/PlatformKit/platformkit-examples/codamos_2007_01/


140 Chapter 7. Tool support

Figure 7.23: Classify taxonomy

Normally, the built-in Pellet OWL DL reasoner is used to perform the
above steps. It is also possible to use an external OWL DL reasoner
via the DIG interface. This is done by selecting “Window → Prefer-
ences” from the menu and changing the settings in the “PlatformKit”
category.
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Figure 7.24: Extra URI mappings for EMF plugins

As a result, the amount of configuration options has been reduced to valid
options only. Fig. 7.28 shows the valid options for configuring an instant
messenger for a JDK 1.1 PC platform. Any existing configuration choices can
be validated against the chosen platform instance:

• Right-click the root element of the configuration model and select “Val-
idate”.

If there are any invalid elements in the configuration model, they will be
reported, as shown in Fig. 7.29.

7.3.6 Platform-Driven Deployment

Each configuration model that is expressed in a platform-aware configura-
tion language can be checked by PlatformKit to see for which platforms it
is valid. In addition, all product configuration models in a product line can
be compared against eachother to see which product configurations are more
platform-specific than others. The PlatformKit Servlet can eventually deploy
the product configuration of choice. A flowchart of setting up platform-driven
deployment is shown in Fig. 6.7 in chapter 6, subsection 6.4.2.
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Figure 7.25: New child options for instant messenger configuration

In the previous task, we have created a Platformkit Model for the platform-
aware configuration language. Platformkit Models can also be used to support
deployment. Instead of a product line’s meta-classes, it will contain repre-
sentations of the product configurations. First, we create a new Platformkit
Model:

• Choose “File → New → Other”.

• Select “PlatformKit → Platformkit Model” and click “Next”.

• Select a folder. This folder is meant to be deployed on a website later.

• Click “Finish”.

You now have an empty PlatformKit Model with a root “ConstraintSpace”
element:



7.3 Tasks 143

Figure 7.26: Profile against concrete platform

• Right-click the “ConstraintSpace” element and select “Add Product Con-
figuration Model” as shown in Fig. 7.30.

• Select the configuration models of all configurations that you want to
include in deployment, then click “OK”. For the instant messenger ex-
ample, this is shown in Fig. 7.31.

Your Platformkit Model now has several “ConstraintSet” elements in its
“ConstraintSpace”. Note that the names of each “ConstraintSet” will be used
later by the PlatformKit Servlet as a relative URL to which clients are redi-
rected for deployment. The name of each “ConstraintSet” must therefore point
to a download location of the corresponding product configuration. For the
instant messenger product line, the “ConstraintSet” names point either to
downloadable software packages or to a web page that will display an applet
(see Fig. 7.32).

We will now pre-sort the Platformkit Model most-specific-first :

• Right-click the “ConstraintSpace” element and select “Classify Taxon-
omy” as shown in Fig. 7.33. The classification procedure may take several
minutes.
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Figure 7.27: Select a platform specification to profile against

• As a result, you should have a “.inferred.owl” file with the same base
name as the Platformkit Model, which is also stored in the same folder.
For example, you should have an “InstantMessengerDeployment.inferred
.owl” file for the “InstantMessengerDeployment.platformkit” model.

• Right-click the “ConstraintSpace” element again and select “Sort Most
Specific First”.

• As a result, the PlatformKit Model will be re-sorted with the most-
specific “ConstraintSet” element at the top.

• Save the resulting Platformkit Model.

Your PlatformKit Model should look like the one shown in Fig. 7.32. The
Platformkit Model of all product configurations can be validated against plat-
form instance specifications, similar to Platform-Driven Configuration, where
a single product configuration is validated against a platform instance. This
way, you can test whether you get the expected result of valid and invalid
configurations for each platform instance you validate against. Validation of
the Platformkit Model is done as follows:

• Right-click the “ConstraintSpace” element and select “Validate Against
Concrete Platform” (see also Fig. 7.33).
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Figure 7.28: Profiled new child options for instant messenger configuration

• Select a platform instance description from the list of built-in platforms
and click “OK”, as shown in Fig. 7.34. Alternatively, select “Plat-
form specification from file” after which you can provide a platform in-
stance specification “.owl” file from the workspace. Example platform
instance specifications can be found at http://ssel.vub.ac.be/viewvc/

PlatformKit/platformkit-examples/codamos 2007 01/.

As a result, a dialogue will be shown on the screen with the valid Constraint
Sets, as shown in Fig. 7.35. In addition, a “.valid.txt” file will be written next
to the Platformkit Model, using the same base name (e.g. “InstantMessenger-
Configuration.valid.txt”).

Now that the Platformkit Model and its inferred ontology have been pre-
pared, you need to make sure that the deployable products are put in the right
place:

• For each “ConstraintSet” element in the Platformkit Model, make sure
that there exists a file or folder that corresponds to the name of the

http://ssel.vub.ac.be/viewvc/PlatformKit/platformkit-examples/codamos_2007_01/
http://ssel.vub.ac.be/viewvc/PlatformKit/platformkit-examples/codamos_2007_01/
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Figure 7.29: Validation result of an instant messenger configuration

“ConstraintSet” element. For example, if the name of a “ConstraintSet”
element is “default/applet/”, then there must be a path with that name
relative to the “.platformkit” file.

• Create a “none” folder next to the “.platformkit” file. If the Platform-
Kit Servlet finds no suitable product configuration to deploy, clients are
redirected here. If you want, you can create an index page inside this
folder. An example index page can be found in appendix C.

For the instant messenger product line, the deployment folder is shown in
Fig. 7.36. Note that the instant messenger example also employs a special
index page in the root of the deployment folder to make invocation of the
PlatformKit Servlet easier. Once your deployment folder is complete:
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Figure 7.30: Adding a product configuration model

• Upload the folder containing the “.platformkit” and “.inferred.owl” files
to a web site, including all its subfolders that contain the deployable
product configurations. For the instant messenger example, the contents
of the “data” folder are uploaded to a website.

This is it! Now you can use the PlatformKit Servlet to select a product
configuration based on a platform description.
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Figure 7.31: Selecting product line configuration models

Figure 7.32: The ordered Platformkit Model for instant messenger deployment
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Figure 7.33: Classify taxonomy

7.4 ATL

The ATLAS Transformation Language (ATL) tool has been extended for the
purpose of our instant messenger case study. Apart from necessary bugfixes,
a number of features have been added to ATL. These features are discussed in
the following subsections.

7.4.1 Superimposition

ATL superimposition of transformation modules has been described in chap-
ter 2. It allows the developer to separate the rules of a transformation into
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Figure 7.34: Select a platform specification to validate against

Figure 7.35: Validate result

multiple modules. These modules can then be loaded on top of each other,
after which they are executed as one transformation module. Superimposition
has been implemented as an ATL byte code transformation that is applied
at load time. Normally, every transformation module has a main() opera-
tion. With superimposition, multiple transformation modules are loaded in
sequence, after which the initial main() operation is adapted such that the
newly loaded rules are invoked and additional helper attributes are initialised.
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Figure 7.36: Deployment folder for the instant messenger product line

The main() operation of each superimposed module is then discarded. The
result is one main() operation that ensures all rules are invoked (and helpers
initialised) in their load time order (i.e. superimposition order).

Superimposition is implemented in a single Java class18. An instance of
that class is used in the ATL launcher code. Superimposition uses the inter-
nal object representation of the ATL byte code (as used by the ATL virtual
machine) for its transformations.

7.4.2 Modularised meta-models

ATL is based on some simple assumptions of what models and meta-models
are. Two of these assumptions are:

1. A model is contained in a single file and has a single meta-model.

2. A meta-model is a model of the models that conform to it.

18https://bugs.eclipse.org/bugs/show bug.cgi?id=156095

https://bugs.eclipse.org/bugs/show_bug.cgi?id=156095
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As a consequence of these assumptions, meta-models are also assumed to
be contained in single files. This is often not the case for EMF-based meta-
models, such as the Eclipse UML2 meta-model. In EMF, model elements are
allowed to reference elements inside other models, which reside in other files.
The Eclipse UML2 meta-model references the Ecore meta-model and defines
its meta-classes on top of it.

ATL bases itself on the single file meta-model assumption to globally ac-
cess all meta-classes inside a meta-model. If a meta-class cannot be directly
retrieved from the meta-model file, it does not exist for ATL. In Eclipse UML2
models, instances of other meta-classes than those in the specified meta-model
file can occur, such as Ecore EAnnotations or specific stereotype applications
(see also subsection 7.4.3). These instances cannot be directly retrieved – or
created – in an ATL transformation module.

We have tackled this mismatch between ATL and EMF19 by doing an
exhaustive and deep traversal over all meta-classes of the specified meta-model
file. Since EMF automatically resolves and loads additional models as soon as
they are accessed, we only need to record which files have been loaded by EMF.
From now on, ATL retrieves a meta-class either from the specified meta-model
file or from any of the referenced meta-model files. For ATL/EMF, a meta-
model is now effectively defined by the transitive closure of references made
from the meta-classes in the initially specified meta-model file. The resulting
meta-model is contained in a set of files that contain all the initial meta-classes
as well as all referenced meta-classes.

7.4.3 Stereotypes as meta-classes

As has been explained in chapter 2, Eclipse UML2 stereotypes have a dual rep-
resentation. Each stereotype exists as a UML2 Stereotype instance as well as an
Ecore EClass instance. In EMF, all meta-classes are instances of EClass. That
means that each stereotype has a meta-class representation. This meta-class
representation is used to create stereotype applications, which are effectively
instances of the meta-class.

ATL does not support stereotype applications directly. Instead, ATL must
use the Java API of Eclipse UML2 to apply stereotypes. This is because
stereotype applications are “strange” model elements for ATL, of which the
meta-class is not part of the meta-model. The meta-class representation of
stereotypes are actually embedded in the UML profiles.

We have adapted ATL20 to be able to read an Eclipse UML2 profile as an
EMF meta-model and retrieve the contained meta-classes. In combination with
modularised meta-models, as described in subsection 7.4.2, it is now possible

19https://bugs.eclipse.org/bugs/show bug.cgi?id=140546
20https://bugs.eclipse.org/bugs/show bug.cgi?id=156093

https://bugs.eclipse.org/bugs/show_bug.cgi?id=140546
https://bugs.eclipse.org/bugs/show_bug.cgi?id=156093
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to define a “placeholder” meta-model that references the Eclipse UML2 meta-
model as well as all applicable UML profiles. In this way, ATL has access to
all UML meta-classes as well as all stereotype meta-classes.

7.4.4 Debugging support for multiple transformation mod-
ules/libraries

The Eclipse visual debugger for ATL only has support for a single ATL trans-
formation module as far as source code lookup is concerned. This means that
one cannot step through library code when doing source-level debugging. This
is mainly a granularity problem, where only top-level code from the transfor-
mation module was accessible through the debugger.

Ever since ATL supports module superimposition, however, the problem is
more than just a granularity problem. All source code that resides in super-
imposed transformation modules is not accessible through the debugger. We
have adapted the ATL debugger21 to support explicit lookup of the actual ATL
source code file that contains the code that is currently stepped through. As
a result, the ATL debugger supports stepping through code of superimposed
modules as well as libraries.

7.5 Limitations and future work

Even though several tools have been discussed in this chapter, the PlatformKit
tool is central and implements the ideas presented in this dissertation. We will
therefore focus on the PlatformKit tool. This section discusses its limitations
and suggests how these limitations can be mitigated. Directions for future
work will also be discussed.

7.5.1 Performance and memory usage

PlatformKit uses the Jena framework for loading, saving and manipulating
ontologies. While it is a very powerful framework with support for RDF,
RDFS, OWL, local ontology caching/aliasing and ontology reasoning, it is not
the fastest and most efficient framework available. Whereas DL reasoning is
the most complex task in theory, looking up OWL classes and saving OWL
ontologies in Jena is the most time-consuming task in practise. Memory usage
currently lies around 500 MB of RAM. The OWLAPI22 framework promises
more efficiency at the cost of some features. At the time of this writing,
OWLAPI does not support the DIG reasoner interface.

21https://bugs.eclipse.org/bugs/show bug.cgi?id=192445
22http://owlapi.sourceforge.net/

https://bugs.eclipse.org/bugs/show_bug.cgi?id=192445
http://owlapi.sourceforge.net/
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PlatformKit currently uses a package-level OWL representation of the vari-
ous Java APIs. Experiments with class-level OWL representations have shown
that the current tool setup (Jena/Pellet) doesn’t scale up to this level of gran-
ularity. No results have been obtained within a time limit of 2 hours and a
memory limit of 2 GB RAM on current Intel Core2 Duo hardware @ 2 GHz
(our design-time setup for creating ontologies). ATL model transformations
have been used to translate a finest-level granularity representation (attributes,
operations, parameters, etc.) of the Java APIs in UML to OWL. These model
transformations create subsumption and equivalence relationships in the pro-
cess, indicating that they can be used as an alternative to OWL class hierarchy
inference. The fact that ATL can still deal with the finest-level granularity and
Jena/Pellet already give up at class-level granularity, demonstrates that ATL
model transformations scale better. That said, OWL is more declarative than
an ATL model transformation. We also have not tested with a commercial DL
reasoner, such as RacerPro23.

7.5.2 Automatic platform discovery

PlatformKit currently requires a user to provide an explicit platform descrip-
tion ontology. This is not a realistic requirement for the platform-driven de-
ployment scenario in which an appropriate software configuration is automati-
cally chosen and deployed. While PlatformKit already recognises a number of
standard platforms, for which it can retrieve a platform description from its
database, many platforms are too dynamic to capture in this way. A regular
desktop PC with a certain web browser, for example, doesn’t say anything
about whether or not Java is installed and if so, which version of Java.

Most dynamic web sites solve this problem by including a script that can
detect the presence of required web browser plug-ins. Depending on what kind
of software we want to automatically deploy, we can provide platform discov-
ery software that can either be run directly from the browser or downloaded
and run on the target platform. While such discovery software has its own
platform dependencies, the range of platforms we need to support typically
leans towards the higher end. Constrained platforms, such as mobile phones,
offer a very limited platform, but that platform is also much more static. A
static platform means that it is guaranteed to contain certain features, such
as a specific Java version and a specific web browser version. For such con-
strained platforms, we can fall back on the existing PlatformKit functionality
that recognises standard platforms by their web browser identification. For
the scope of high-end Java platforms, there is enough common functionality
to implement a single platform discovery agent that runs on all high-end Java
versions.

23http://www.racer-systems.com/

http://www.racer-systems.com/


7.6 Summary 155

7.6 Summary

In this chapter, we have described the architecture of PlatformKit and how it
can be used to perform various tasks. PlatformKit consists of two main com-
ponents: an Eclipse plug-in that is used during design-time and a web servlet
that is used during deployment. The tasks cover the different steps in set-
ting up a model-driven software product line, such that platform dependency
constraints are taken into account. The final step then allows to automati-
cally deploy a specific software product configuration based on its platform
dependency constraints.

As a limitation, high CPU and memory usage have been discussed. The
reason for this limitation turned out to be not so much the DL reasoner, but
rather the ontology manipulation framework Jena. To keep CPU and memory
usage within acceptable limits, the platform vocabulary ontologies are kept at
a certain level of granularity. The Java API ontologies are at package-level
granularity, for example. A direction for future work is automatic platform
discovery, where a client-side platform discovery agent is used to provide a
platform description ontology for the more dynamic high-end platforms.





Chapter 8

Conclusion

8.1 Summary

Today’s software systems are more and more often required to run on multiple
platforms. This puts an extra burden on the software developer, who now
has to build and maintain a separate version of the software for each target
platform. Even when looking at a technology like Java, which was meant
to overcome platform differences, we find that multiple versions of the Java
platform exist. The family of Java platforms ranges from J2ME for mobile
devices to J2EE for server-side enterprise applications.

Tomorrow’s software systems are described in the vision of Ambient Intelli-
gence, which aims for a user-driven, service-based computing environment that
includes personal devices as well as special-purpose embedded devices in the
environment. This vision only amplifies the current platform diversity, as the
hardware and software combinations in personal and special-purpose devices
vary greatly.

The Model Driven Architecture (MDA) proposes a solution to this prob-
lem. Software is modelled in high-level Platform-Independent Models (PIMs).
Model transformations are used to refine the PIM into a Platform-Specific
Model (PSM). PIM-to-PSM transformations can be performed in multiple re-
finement steps. Each of these PIM-to-PSM refinement transformations intro-
duces certain platform dependencies into an intermediate PSM. The final PSM
often takes the form of generated code.

The MDA suggests the use of a Platform Model (PM) to drive the PIM-to-
PSM transformation. In practise, no PM is used: the platform dependencies
introduced by PIM-to-PSM transformations remain implicit. As a result, it is
not safe to reuse a PIM-to-PSM transformation for other platforms than the
one for which it was written. The only safe assumption is that each targeted
platform requires its own dedicated PIM-to-PSM transformation. This causes
a large maintenance burden for each supported platform.

157
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A PIM-to-PSM transformation can be split up in multiple, step-wise refine-
ment transformations. These transformations can be organised in a workflow
or build script that executes each refinement transformation. Individual refine-
ment transformations can be reused for other platforms. While these separate
refinement transformations lay the basis for lifting the platform maintenance
burden, they do not solve our initial problem. It is still unclear whether a
refinement transformation can be used for other platforms than the one for
which it was written, since all platform dependencies are still implicit.

As the software developer composes the build script that executes the
refinement transformations, the platform dependencies that each refinement
transformation introduces must be considered as well. One approach is to test
the generated software on the target platform to tell if the software works on
that platform. Testing on each platform is a time-consuming activity, however,
and may even leave certain incompatibilities undetected until after deployment.
Another approach is to use an automated configuration process that enforces
the satisfaction of platform dependency constraints. Such a configuration pro-
cess does not exist for the MDA today.

This dissertation has proposed to solve these problems by using an ex-
plicit platform model that is used in an automated configuration process. This
platform model captures platform domain knowledge that allows a software
developer to express platform dependency constraints as well as platform in-
stances. It is expressed in the Web Ontology Language (OWL), which is an
extensible language for describing ontologies. Ontologies are commonly used
to represent domain knowledge and to provide a community of users with a
controlled vocabulary. We use the OWL DL variant, which allows us to apply
automatic reasoning.

An automated configuration process based on Software Product Lines
(SPLs) is proposed. SPLs integrate a number of software-intensive products
that share a significant amount of functionality. As such, any software that
is developed using the MDA approach can be considered as an SPL, since
each platform-specific software product shares significant functionality with
other platform-specific versions of that software product. In contemporary
SPL practise, Product Models are used to automatically generate the software
products. These Product Models can be expressed using a Domain-Specific
Modelling Language (DSML). In the MDA, the Product Model translates to
a Configuration Model that states which PIM-to-PSM refinement transforma-
tions must be applied. Instead of generating a software product, the build
script that executes the refinement transformations is generated. The gener-
ator itself is implemented as a model transformation, which allows for using
the same model transformation technology as was used for the PIM-to-PSM
refinement transformations.
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8.2 Thesis statement

The discussed propositions follow the thesis statement of this dissertation:

In order to deal with platform diversity, we believe that (1) plat-
form domain knowledge must be made explicit. By making
this knowledge explicit, we can (2) reason about the extent of
platform dependencies with regard to platform instances as
well as (3) compare appropriateness of alternative refinement
transformations and (4) enforce a safe configuration of re-
finement transformations via their introduced platform de-
pendencies.

Our solution to the discussed problems is centred around an explicit plat-
form model (1). Our choice of OWL DL as a representation language for this
platform model provides us with reasoning capabilities. We have chosen a spe-
cific OWL representation for platform dependencies and platform instances,
such that a DL reasoner can tell us whether a platform dependency is satisfied
by a platform instance (2). In addition, our representation of platform depen-
dencies allows us a DL reasoner to organise them in a hierarchy that represents
appropriateness with regard to a targeted platform (3). Our integration of the
platform model with an automated configuration process enables us to enforce
that a configuration has all its platform dependencies satisfied (4).

The following section discusses each of the contributions of this dissertation
in detail.

8.3 Contributions

8.3.1 A common platform domain model

We have presented how OWL-DL can be used to define a general plat-
form model that serves as a common ontology for specific platform
sub-domains [PVW+04], [Wag05], [WJ05].

In current MDA practise, the platform model that is meant to drive PIM-
to-PSM transformations remains implicit. We proposed to make that platform
model explicit, such that we can reason about platforms and platform depen-
dency constraints. We chose the Web Ontology Language (OWL) to repre-
sent our platform model. We use the OWL DL variant, which corresponds
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to description logic (DL) and allows us to apply automatic reasoning. Our
usage of OWL DL is currently limited to SHF(D) instead of the standard
SHOIN (D). This allows for a slightly better reasoning performance than is
possible with standard OWL DL, depending on the reasoner implementation.

We have also presented how the common platform model can be ex-
tended for the platform sub-domain of Java Runtime Environments
(JREs) [Wag05], [WJ05], [WV07].

We have sub-divided our platform model into a hierarchy of ontologies,
with a general platform vocabulary at the root. The general platform ontology
provides the concept of “Platform”, its various properties and related concepts.
On top of this ontology, we have built a top-level ontology for Java platforms.
This Java ontology introduces the concept of a Java Runtime Environment and
related concepts and properties. In order to reason about specific versions of
Java, we have introduced an extra ontology for each version of Java we want to
reason about, such as a J2SE 1.3 ontology and a J2ME MIDP 1.0 ontology. The
ontologies for the specific versions of Java have been automatically generated
from the class libraries that are enclosed with each Java version.

8.3.2 A method for describing platform dependencies
and platform instances

We have presented how platform dependency constraints and platform
instances can be described, based on the common platform model and
extensions. The platform dependencies can be compared against plat-
form instances to check if they are satisfied. In addition, we can deter-
mine which platform dependencies are more specific than other plat-
form dependencies and form a closer match to the targeted platform
[Wag05], [WJ05], [WV07].

The explicit platform model we have proposed allows us to describe explicit
platform dependency constraints and platform instances. The platform depen-
dency constraints are represented as OWL classes. Those OWL classes can be
automatically organised into a subsumption hierarchy, where the root classes
in the hierarchy are least-specific to a platform and the leaf classes are most-
specific. This allows us to optimise with regard to platform specificness when
a choice has to be made from a number of alternatives. Platform instances are
represented as OWL individuals. A platform dependency constraint is consid-
ered satisfied if there is at least one OWL individual that can be classified as
an instance of it.
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8.3.3 A framework for platform dependency manage-
ment

We have presented how the platform model can be integrated in a
software development process based on the MDA and SPLs. The re-
lationship between the MDA and SPLs has been explored as part of
this work and a common configuration approach based on DSMLs has
been used [WV06], [WV07].

Explicit platform dependency constraints are only useful if they can be
enforced during the configuration of PIM-to-PSM refinement transformations.
As the MDA offers no process for the configuration of step-wise PIM-to-PSM
refinement transformations, we have introduced a configuration process with
automated support for platform dependency constraints. This has resulted in
a framework for managing platform dependencies for the MDA that:

• improves the maintainability of a PIM-to-PSM transformation configu-
ration by enabling safe reuse of individual refinement transformations in
such a configuration,

• integrates with existing software development technologies, in particular
the software development technologies that target Java platforms.

The first property is achieved by annotating the meta-classes in a configura-
tion DSML meta-model with the appropriate platform dependency constraints.
Each (concrete) meta-class refers to a configuration choice. A meta-class that
is annotated with a platform dependency constraint refers to a configuration
choice that introduces platform dependencies. This approach allows us to “pro-
file” the configuration language meta-model against a platform instance, such
that only the meta-classes that are valid for that platform can be instantiated.
The result is a PIM-to-PSM transformation configuration that is validated
to work for a given target platform. In addition, we can check pre-existing
configuration models against a platform instance and check if all instantiated
meta-classes are valid for that platform. The result is a set of configuration
models that is validated for a given target platform. This scenario is particu-
larly useful when one has to choose from a number of alternative, pre-generated
configurations during the deployment phase.
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8.3.4 A framework for platform-driven optimisation

We have presented how platform dependencies can be used as the basis
for selecting optimal model transformations (or SPL features). In addi-
tion, we have presented how this can be extrapolated for the selection
of optimal configurations [Wag05], [WJ05], [WV07].

Our approach for describing platform dependency constraints in OWL has
laid the basis for platform-driven optimisation. We can determine the class
hierarchy for a number of platform dependency constraints and derive which
platform dependency constraints are most-specific and least-specific with re-
gard to the platform. We have integrated this optimisation strategy in our
configuration framework, such that it:

• assists in finding the most appropriate PIM-to-PSM transformation for
a specific platform from a number of alternatives.

We have introduced an intermediate “shadow” model for this purpose,
called a PlatformKit model. The PlatformKit model allows us to semi-au-
tomatically sort a list of platform dependency constraints most-specific-first
or least-specific-first. It can also do this for groups of platform dependency
constraints. This is useful for comparing entire configuration models against
each other, where each configuration model can have multiple platform depen-
dency constraints. The sorting process is semi-automatic, since it is not always
possible to determine a more-specific / less-specific relationship between two
platform dependency constraints. The sorting process therefore uses a man-
ually pre-sorted list as its input and makes a minimal amount of changes to
that list.

This optimisation strategy can be used in the two scenarios described in
the previous subsection: when “profiling” a configuration language against a
platform instance, the configuration language editor can be adapted such that
the list of configuration choices is sorted most-specific-first. During the deploy-
ment scenario, one has to choose from a number of alternative, pre-generated
configurations. The resulting set of validated configuration models can now be
sorted most-specific-first for the purpose of deploying the configuration that
lies closest to the target platform.
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8.3.5 A case study that applies the explicit platform
model in an MDA/SPL setting

We have developed a non-trivial case study of a cross-platform Instant
Messaging client that demonstrates the merits and limitations of our
approach [Wag05], [WJ05], [WV07].

Throughout this dissertation, we have used the example of an Instant Mes-
saging client that runs on various Java platforms. This example has been
worked out in detail as a case study and can be found at http://ssel.vub.ac.
be/ssel/research:mdd:casestudies. The case study is situated within an Am-
bient Intelligence context, where people with heterogeneous personal devices
can download and use the Instant Messaging client. The case study applies
several alternative PIM-to-PSM transformations, each of which are tailored
towards a specific aspect of the Java platform family. The case study also
employs several optional and/or alternative SPL-style features in the form of
additional models that build on top of the main PIM. In our case study, these
models are semi-platform-dependent, as the modelled feature is only relevant
to a subset of all targeted platforms. Finally, a configuration language has been
developed for the Instant Messenger SPL. This configuration language demon-
strates the use of platform dependency constraints during the configuration
and deployment of the Instant Messaging client.

8.3.6 Tool support

We have developed a tool, named PlatformKit, that implements plat-
form dependency management and platform-driven optimisation based
on the Eclipse Modeling Framework [WV07]. In addition, we have de-
veloped the Jar2UML tool that reverse engineers Java class libaries to
UML models. Finally, we have added several improvements to the
ATLAS Transformation Language tool for the purpose of our case
study [Wag08].

All our experiments have been carried out on the Eclipse platform. The
Eclipse IDE already provides a number of plug-ins for modelling (EMF), model
transformation (ATL) and Java development (JDT). As Eclipse is built on top
of Java, we were able to use additional Java frameworks for the manipulation
of OWL ontologies (Jena) and automatic DL reasoning (Pellet). We have built
on top of these technologies for the implementation of our PlatformKit Eclipse
plug-in. For the PlatformKit deployment servlet, we have used MySQL and

http://ssel.vub.ac.be/ssel/research:mdd:casestudies
http://ssel.vub.ac.be/ssel/research:mdd:casestudies
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Jetty in addition. PlatformKit implements the configuration and deployment
scenarios described earlier. The platform instances that are required for these
scenarios can be obtained in several ways:

• built-in platform descriptions,

• manually provided platform descriptions,

• database of known platform descriptions.

The first two of these can be used with the PlatformKit Eclipse plug-in
during configuration. During deployment with the PlatformKit servlet, only
the last two options are available. The database of known platforms uses web
browser agent IDs to look up the corresponding platform description. This
works particularly well for small portable devices, where the software platform
is often fixed (e.g. mobile phones).

The Jar2UML tool is used to reverse engineer tailored UML models from
Java class libraries, such that platform ontologies can be generated from them.
In addition to UML models of Java class libraries, Jar2UML can also extract
all dependencies from a jar file as a UML model. PlatformKit can use these
UML models to determine compatibility of the jar file with a particular Java
class library. Jar2UML is part of the Eclipse MoDisco reverse engineering tool
box1.

Several improvements have been made to the ATL tool for the purpose
of our instant messenger case study. These improvements have also proven
useful beyond the case study, as they are integrated back into the main ATL
source code. Because of the impact and number of improvements, we have
received committer access to the ATL source code such that future improve-
ments can be propagated more efficiently. One of the improvements, module
superimposition, is described in detail in [Wag08].

8.4 Reflection

8.4.1 Generative vs. reflective adaptation

In chapter 1 we have introduced two approaches for adapting software to a
target platform. The generative approach transforms the software beforehand
to fit a target platform. The reflective approach reacts to platform differ-
ences at run-time. Each of these approaches have strengths and weaknesses.
Generative approaches typically can’t deal with post-deployment changes in
the platform. Reflective approaches inevitably have some overhead in doing
run-time platform checks and providing code that may never be executed on

1http://www.eclipse.org/gmt/modisco/toolBox/

http://www.eclipse.org/gmt/modisco/toolBox/
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the target platform. We have chosen to follow the generative approach in the
form of the MDA in this dissertation. This choice has given us more room
to work with heavy-weight reasoning and configuration approaches that are
not always feasible at run-time. At run-time, the platform is intended for the
actual applications and any platform dependency reasoning and configuration
is overhead.

That does not rule out the use of our approach for reflective adaptation,
however. In reflective adaptation, the platform dependencies are also known
beforehand, as they are explicitly checked for in the code. Our platform vo-
cabulary ontologies can provide a language-independent separation between
discovering the platform through reflection and matching that to a platform
dependency. In addition, our platform dependency reasoning mechanism can
help determine the optimal adaptation to the target platform through deter-
mining the most-specific platform dependency. This can be done beforehand,
since the platform instance information is not necessary for this step.

To see if our configuration approach can also be used for reflective adap-
tation, it is best to look at an example SPL that does reflective adaptation.
The Eclipse platform is essentially an SPL that allows for configuration and
adaptation at run-time. This is done via the service discovery functionality
provided by Eclipse’s OSGi implementation2. The configuration language of
the Eclipse platform is defined by extension points3. Extension points provide
a typed configuration interface that will take only specific extensions. Exten-
sions to the platform are typically provided by Eclipse features that contain
plug-ins. Plug-ins can in turn define new extension points. When installing
a new Eclipse feature, the Eclipse platform checks if the dependencies of that
feature are satisfied by the running Eclipse configuration. Often, multiple ver-
sions of a feature are available, such as a “run-time” version and an “SDK”
version. The user currently has to decide which version is best for his/her
situation. Eclipse only checks if the chosen version fits in the current Eclipse
configuration.

Our platform models can help to provide an Eclipse user with feedback
on which is the most-specific version of an Eclipse feature that still works for
his/her Eclipse configuration. This automated assistance in turn also opens
the door to providing more variants of an Eclipse feature, because users will
be supported in their selection process anyway. As an example, we’ll con-
sider the Hibernate Tools for Eclipse and Ant4. These tools are available as
an Eclipse feature and include a wide array of tools, ranging from Ant tasks
for Java code formatting to integration with Eclipse’s Web Tools Platform
(WTP). Unfortunately, this wide array also brings with it a host of dependen-

2http://www.eclipse.org/equinox/
3http://www.eclipse.org/resources/?category=Extension%20points
4http://tools.hibernate.org/

http://www.eclipse.org/equinox/
http://www.eclipse.org/resources/?category=Extension%20points
http://tools.hibernate.org/
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cies: Eclipse Ant Tools, Java Development Tools, Web Tools Platform, etc. A
user that only requires the Ant tasks for Java code formatting is still forced to
satisfy all the dependencies of the Hibernate Tools for Eclipse. With our plat-
form models, it becomes feasible to create multiple variants of the Hibernate
Tools to better match the requirements of different users. The platform de-
pendency constraints for each variant can be used to pre-sort a list of variants
in most-specific-first order. All variants with unsatisfied platform dependency
constraints can then be marked as unsatisfied5. The user can now decide to
choose the variant that fits his/her current Eclipse configuration best. Alter-
natively, the user can choose to find a variant that lies close to the optimal
variant, but has less platform dependency constraints or adds some extra (un-
satisfied) platform dependency constraints.

Deployment of an Eclipse feature on a running Eclipse platform is an ex-
ample that stays close to our current configuration approach. Another Eclipse
example illustrates more typical reflective adaptation: the Subclipse6 feature
for Subversion repository access from Eclipse includes two ways of accessing a
Subversion repository. One way is through a pre-installed, native binding to
the “svn” program (“JavaHL”). Another way is by using “SVNKit”, which is
a Subversion library that is completely written in Java. Our platform model
can be used here to determine the most-specific-first order in which to try the
alternatives. Checking platform dependency satisfaction is not useful here,
since we can simple “try” one approach and “catch” up when it turns out
not to work: exception handling allows us to adapt our behaviour and switch
to our next option. In cases where the platform dependency constraints refer
to required CPU power and memory, such a trial-and-error approach cannot
be used. Recovery from resource starvation, if possible, can take very long
and affects other running software. Explicit dependency satisfaction checking
is useful here, especially when a platform vocabulary ontology is available that
translates, e.g. specific CPU models to required performance figures.

8.4.2 Platform modelling language

We have chosen to use OWL DL to model platforms, platform dependencies
and platform instances. The part of our platform models that provide a general
description of the platform domain is an ontology by its very nature, and we
have called that part the “platform vocabulary ontology.” It is therefore nat-
ural to express that part in an ontology language. Platform dependency con-
straints and platform instances are most easily expressed in the same language
as the platform vocabulary ontology on which they are based. Other formats
are available to express our platform knowledge, however. Examples are RDF,

5Eclipse offers functionality to find and include necessary dependencies, so unsatisfied
variants must still be available for selection.

6http://subclipse.tigris.org/

http://subclipse.tigris.org/
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Prolog and Constraint Satisfaction Problems (CSPs), as already discussed in
the related work section of chapter 6. OWL is actually based on the RDF
language, where RDF is limited to individuals with property values, called
“triples”. An example RDF triple is (“Eric” “hasMailBox” “em@w3.org”).
One can apply simple, value-based reasoning to RDF statements. Prolog of-
fers a light-weight method for expressing platform dependency constraints and
platform instances (provided that we don’t build an entire DL reasoner on top
of Prolog). CSPs are more heavy-weight and intended for solving NP-hard
combinatoric problems.

None of these approaches provide us with both guaranteed complete rea-
soning results and a classification of platform dependency constraints in a
most-specific/least-specific hierarchy. In contrast to feature interaction con-
straints, we don’t need to solve combinatoric constraint satisfaction problems:
an area in which CSPs are the tool of choice. Instead, our platform depen-
dency constraints typically point to external facts that are unaffected by our
configuration choices. In chapter 4, we have shown that the DL constructs
we require justify using OWL DL as a language. We currently require the
SHF(D) DL, which is most closely matched by the standard OWL DL lan-
guage (SHOIN (D)). We have also shown that we can reduce our usage of
DL constructs to ALCF(D), if we choose to deviate from standard DLs and
the reasoning systems that implement them. This allows us to classify our
platform dependency constraints and determine their satisfaction in PSpace
complexity [Tob01], and shows that any scalability problems with our approach
can be solved. However, the platform ontologies used in our instant messenger
case study have already proven to scale sufficiently to be usable.

The extra expressiveness of the SHF(D) DL we currently use provides
us with some benefits. We can use property hierarchies to evolve new prop-
erties from existing ones without changing property instances, for example.
Transitive properties are in turn useful to determine the transitive closure of
required features for any given feature. Coupled with the availability of highly
optimised reasoners for the standard SHOIN (D) DL, this provides a good
compromise between expressiveness and performance.

8.4.3 Scope and reusability of our approach

Our approach is composed of several parts with varying scopes and reusabil-
ity. The reasoning mechanism discussed in chapter 4 can be applied to any
platform, as long as we have a platform ontology for it. The configuration
mechanism discussed in chapter 6 can be applied to any SPL, either or not
based on the MDA, as long as we use a configuration modelling language. With
minimal change, we can also support configuration that is not based on a con-
figuration modelling language, such as feature models or textual configuration
languages. It is the platform vocabulary ontology that limits the scope and
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reusability of our approach.
While we have started from a very general platform ontology that de-

scribes concepts such as “Platform”, “Feature”, “Software” and “Hardware”,
we quickly went into detail after that. The other platform vocabulary ontolo-
gies we have created refer to specific Java runtime environments. We have
also illustrated through our examples that the most specific platform vocab-
ulary ontologies provide the most expressiveness, such as the “jdk-1 1:Java-
UtilLibrary” concept that represents the libraries that implement the JDK 1.1
version of the java.util package specification.

If we want to express platform instances and platform dependency con-
straints for another domain than the Java runtime environments that we have
covered, we must provide additional platform vocabulary ontologies. In sec-
tion 8.5, we name a few possible candidates for additional platform vocab-
ulary ontologies. In this light, our reasoning and configuration mechanisms
and accompanying tool support can be considered as a commodity. They are
therefore available as open source software. The real value lies in the in-depth
platform domain knowledge that is encoded in the platform vocabulary on-
tologies. Our contribution is to show how platform vocabulary ontologies can
be constructed. The specific knowledge of particular platform domains serves
only particular market segments, such as the Java embedded market segment,
the Eclipse plug-in market segment or the Enterprise Java market segment.
The scope of a platform vocabulary ontology should be derived from the scope
a such a market segment: only the platforms that are covered by the targeted
market segment must be modelled.

Another aspect of platform vocabulary ontology scope is the level of detail
we have modelled within a single platform domain. In our platform ontologies
of Java runtime environments, we have modelled the API up to the package
level, but not below (classes, methods, etc.). This is a trade-off between the
detail of dependencies and the performance of dependency satisfaction check-
ing. We follow the same approach as, for example, OSGi uses for expressing
dependencies of so-called Java bundles7.

8.5 Future work

8.5.1 Automatic platform discovery

The way in which platform descriptions are currently provided to PlatformKit
is not unobtrusive and can even be daunting. Especially during deployment,
it is important that a platform description can be easily provided, preferably
without the user knowing. The current methods for providing platform de-
scriptions are limited to:

7http://www.eclipsezone.com/eclipse/forums/t90544.html

http://www.eclipsezone.com/eclipse/forums/t90544.html
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Built-in platform descriptions: The PlatformKit tool comes packaged with
a number of pre-defined “prototype” platform descriptions. These in-
clude standard PCs, PDAs and mobile phones with standard Java envi-
ronments. These prototype platform descriptions only provide a minimal
amount of data, such that the description fits a lot of “real” platforms.
Built-in prototype platform descriptions are typically used during devel-
opment to make sure that the developed software stays within specific
platform boundaries.

Manually provided platform descriptions: It is possible to hand-craft a
platform description in OWL and submit it to PlatformKit. This pos-
sibility provides a maximum amount of freedom, since one can submit
any OWL document as a platform description. This method requires
in-depth knowledge of our platform vocabulary and how it can be used.
Normal developers are not expected to use this method, but this method
is interesting for software architects that want precise control over the
exact range of platforms they want to support.

Known standard platform descriptions: PlatformKit supports a database
of platform descriptions. These platform descriptions are indexed by the
“user-agent” identifier string of the platform’s web browser. This method
is especially interesting for “fixed” platforms where one particular web
browser version uniquely identifies the entire platform. This is typically
not the case for standard desktop computers, but it is almost always
the case for mobile phones. In fact, almost any device that operates
from a “firmware” (i.e. a monolithic software platform) can follow this
approach.

Only the known standard platforms can cover a wide range of platforms,
whereas the built-in platform descriptions and manually provided platform
descriptions cover a narrow range only. In addition, most platforms consist
of a dynamic, user-selected mix of hardware and software components. The
known standard platforms approach cannot be applied for those platforms.

It would therefore be useful to automatically discover the particulars of a
target platform without user intervention. A small, cross-platform bootstrap
program could be used, for example, to perform this platform discovery task.
In the domain of Java platforms, Java applets can run on any Java client
platform except J2ME MIDP (mobile phones). That sufficiently covers the
range of platforms with a dynamic mix of hardware and software.

8.5.2 Setting up additional platform ontologies

Our platform ontologies currently only cover a small portion of all relevant
platforms. Detailed ontologies only exist for Java platforms – a subset of all
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Java platforms at that. The main Java client platforms, such as J2SE, J2ME
and their variants, are modelled in detail. There exist several extensions to
these Java platforms that are interesting in an Ambient Intelligence environ-
ment, such as the Java Media Framework, the J2ME Messaging API, Remote
Method Invocation for J2ME, Java3D and others. Often, there exist vendor-
specific versions of these Java extensions as well, such as the Siemens 3D API
for their J2ME implementation. Most mobile phones have some API or an-
other for 3D graphics under Java via such an extension. Developers tend to
stay away from such extensions, however, because of having to support all
the different alternatives and the maintenance problems that come with it.
Platform ontologies of the different alternative APIs can help alleviate these
problems in the same way that the main Java client platform ontologies al-
leviate platform dependency maintenance problems. Detailed Java platform
ontologies can pinpoint the exact class of platforms for which a particular Java
extension is valid. They allow for a finer-grained platform support than what
the current Java platform ontologies can achieve.

Whereas the case of Java platform extensions illustrates the need for in-
depth elaboration of the platform ontologies, there is also a need to widen
the scope of our platform ontologies. Enterprise Java platforms are typical
targets for the MDA and also often have vendor-specific extensions. The rea-
son that the MDA is so popular in the enterprise domain is that the soft-
ware under development must typically survive a number of platform evolution
steps. That brings an extra dimension of platform diversity. Finally, there are
other relevant platform technologies than the family of Java platforms. Mi-
crosoft’s .NET platform family offers similar functionality to Java, and there
are plenty of other, often smaller, platforms that offer cross-platform function-
ality (Squeak/SmallTalk, Python, Ruby, etc.). There are even certain C/C++
libraries that are worth modelling in a platform ontology. Those libraries typ-
ically try to be cross-platform – where possible. An example of such a library
is the Simple Direct Media (SDL) layer, which attempts to provide a cross-
platform interface to all sorts of multimedia hardware (graphics, sound, . . . ).
Modelling the subtle differences in the use of SDL on different platforms in a
platform ontology alleviates some of the maintenance problems of developing
a cross-platform computer game, for example.

8.5.3 In-depth analysis of ATL improvements

Whereas we have made several improvements to ATL, we have only done our
first analysis of module superimposition in [Wag08]. Our improvements to
ATL, as described in chapter 7, and uses of ATL as applied to our instant
messenger case study and the PlatformKit tool deserve more in-depth analysis
and comparison to other approaches.

Whereas ATL module superimposition has already been described and com-
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pared to other composition approaches, only two application areas of module
superimposition have been charted. We use module superimposition mainly
to define refinement transformations (e.g. UML2Profiles) on top of a copying
transformation (e.g. UML2Copy) in our instant messenger case study. In ad-
dition, we use module superimposition to refine a general transformation into
a specific one by overriding and adding rules (e.g. UML2ToAPIOntology and
UML2ToPackageAPIOntology in appendix A). Another use of superimposi-
tion we want to look into is leverage tracing information [CH06]. ATL is one
of the transformation languages that keep internal tracing information, which
means that ATL keeps an automatic record of which source model elements are
transformed to which target model elements. This tracing information is only
available during the execution of the model transformation and cannot be ac-
cessed later by other model transformations. Superimposition provides a way
to run multiple model transformations together, where all tracing information
is available to all model transformations being executed.

The capability of ATL to use EMF meta-models spread over multiple files
allows for a powerful abstraction to be made. Meta-models are no longer tied
down to files, but instead just have a starting “address” (URI) from where
ATL starts collecting the meta-model. Such an abstraction may be useful
to other transformation approaches, such as graph transformation [MG06].
Graph transformation is an in-place transformation approach that operates on
a single model. If we can apply the multi-file abstraction to that single model
notion, we may enable graph transformations to access multiple models (in
multiple files) as if they were a single model.

The capability of ATL to access meta-class representations of stereotypes
allows direct manipulation of stereotype applications. In the current situation,
however, UML profiles must be explicitly mentioned by a “placeholder” meta-
model, which is inconvenient and difficult to understand for most users. Eclipse
UML2 profiles also have a certain versioning system that allows the existence of
multiple versions of the same meta-classes. This versioning system is meant to
mitigate the transition problem of models that refer to (the old version of) the
UML profile. The concept of multiple meta-class versions is not understood by
ATL, however. We have to analyse what it means to have complete support for
UML profiles. Any such complete UML profile support in ATL should also be
done in a general way, without ATL having any UML-specific knowledge. As
a contrast, the current complete UML profile support for ATL is implemented
as a specific modelling framework driver8. This is an obvious mismatch, as
UML is not a modelling framework itself, but is instead built on top of the
EMF modelling framework.

Finally, we have used a higher-order transformation (EModelCopyGenera-

8http://wiki.eclipse.org/ATL Model Handlers

http://wiki.eclipse.org/ATL_Model_Handlers
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tor9) to generate a copying transformation (UML2Copy) for UML models from
the UML meta-model. This approach was taken such that our case study could
deal with PIM-to-PSM refinement transformations where more than one model
is involved (e.g. UML libraries and profiles). ATL already offers a special “re-
fining mode” for situations that involve only one source model. Higher-order
transformations can often be used to achieve the same effect as a built-in ATL
features, such as refining mode or module superimposition. They deserve more
in-depth investigation as to what effects can be achieved and how they can be
used to provide an executable and well-defined specification of new ATL lan-
guage features.

8.5.4 Application in other domains

We have applied our platform ontologies to a fairly traditional software devel-
opment domain: that of Java client applications. The focus of the platform
ontologies themselves was mostly on API, where the remaining ontology infor-
mation served mainly to situate APIs within the domain of platforms. There
are other interesting application domains for platform ontologies than APIs.
One example of such a domain is web service orchestration, where a work-
flow model is used to tell an orchestration engine which web services must be
invoked and how their results must be combined.

Web-services orchestration engines may support different workflow features.
A platform ontology of different orchestration platforms can support the use
of advanced and optimised orchestration workflows that make full use of the
targeted orchestration engine. Platform dependency constraints can enforce
the validity of orchestration workflows for a target orchestration engine. Since
the workflows are typically expressed as models, most of our framework can be
applied directly to this domain. Standard workflow modelling languages, such
as BPEL, can be extended for a specific orchestration platform. Model trans-
formation can be used to refine platform independent workflows to platform-
specific workflows.

In order to leverage platform-specific workflow features, the domain of or-
chestration engines must be researched and modelled in a platform ontology.
First, a general vocabulary ontology of orchestration engines must be devel-
oped. This ontology must be extended for a number of real orchestration
engines, such as ActiveBPEL, Twister, JBoss jBPM, bexee or MOBE. The
most leverage is typically achieved when modelling orchestration engines with
a significant overlap in functionality, such as engines that all claim to support
BPEL, but only up to a certain extent. Based on these platform ontology ex-
tensions, we can define a number of prototype orchestration platform descrip-

9http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/
EModelCopyGenerator.atl?view=markup

http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/EModelCopyGenerator.atl?view=markup
http://ssel.vub.ac.be/viewvc/UML2CaseStudies/uml2cs-transformations/EModelCopyGenerator.atl?view=markup
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tions, such that we can develop for a specific class of orchestration platforms.





Appendix A

Ontology transformations

This Appendix describes how ontologies of different versions of Java API pack-
ages are automatically generated. We chose to use model transformation to
transform UML models of Java API into Java platform ontologies. For all
JREs to be considered, the API, which is contained in a jar file bundled with
the JRE, is reverse engineered as a UML model.

Each UML model that is reverse engineered in this way is transformed into
a Java platform ontology. The following sections contain the ATL model trans-
formations that we use. The “UML2Comparison.atl” library (see section A.3)
is the most interesting part here, since it describes the meaning of compati-
bility and equivalence for models, packages and classifiers in OCL. In order to
create an OWL ontology with a model transformation, a meta-model of OWL
ontologies is needed. OMG has defined the Ontology Definition Metamodel
(ODM) [OMG06c] exactly for this purpose. We use an EMF-based implemen-
tation of ODM1.

Since we want to relate each Java API to other Java APIs, we need to
add the ontologies of related APIs as input to the model transformation such
that links between ontologies can be made. This requires a two-pass model
transformation approach, in which the first version of each API ontology con-
tains no relationships to other API ontologies. The second version of each API
ontology can then use the first version of other API ontologies to describe its
relationships. An Ant “build.xml” script2 that implements this approach is
provided in section A.5.

The latest version of the transformations and the build script can al-
ways be found at http://ssel.vub.ac.be/viewcvs/viewcvs.py/PlatformKit/

platformkit-java/transformations/.

1http://www.alphaworks.ibm.com/tech/semanticstk
2Ant scripts are the Makefile equivalent for Java-based software development: they exe-

cute the different steps required for building and/or packaging software – or models is this
case.
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http://ssel.vub.ac.be/viewcvs/viewcvs.py/PlatformKit/platformkit-java/transformations/
http://ssel.vub.ac.be/viewcvs/viewcvs.py/PlatformKit/platformkit-java/transformations/
http://www.alphaworks.ibm.com/tech/semanticstk
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A.1 UML2ToPackageAPIOntology.atl

-- @atlcompiler atl2006

-- $Id: UML2ToPackageAPIOntology .atl 7062 2007 -06 -30 11:16:05Z dwagelaa $

-- Transforms a UML2 model to an API OWL ontology containing all the packages

module UML2ToPackageAPIOntology; --extends UML2ToAPIOntology

create OUT : OWL from IN : UML2 , PLATFORM : OWL , JAVA : OWL;

uses UML2ToAPIOntology;

-- ======================================================================

-- helper attributes begin

-- ======================================================================

helper def : UML2ToPackageAPIOntologyVersionString : String =

’$Id: UML2ToPackageAPIOntology.atl 7062 2007 -06 -30 11:16:05Z dwagelaa $’;

-- ======================================================================

-- helper attributes end

-- ======================================================================

-- ======================================================================

-- transformation rules begin

-- ======================================================================

rule Model {

from s : UML2!uml:: Model (thisModule.inElements ->includes(s))

using {

prevNotEmpty : Boolean = thisModule.prevModels

->select(m|m.packagedElement ->notEmpty ())-> notEmpty ();

superClasses : Sequence(OWL!owl:: OWLClass) = s.compatibleClasses

->select(c|s.equivalentClasses ->excludes(c));

}

to n : OWL!rdfs:: Namespace mapsTo s (

URI <- ’http :// ssel.vub.ac.be/platformkit/’ + s.name + ’#’,

name <- s.name),

xsd : OWL!rdfs:: Namespace (

URI <- ’http :// www.w3.org /2001/ XMLSchema#’,

name <- ’xsd ’),

units : OWL!rdfs:: Namespace (

URI <- ’http :// localhost /~ dennis/Units.owl#’,

name <- ’units ’),

platform : OWL!rdfs:: Namespace (

URI <- ’http :// localhost /~ dennis/Platform.owl#’,

name <- ’platform ’),

java : OWL!rdfs:: Namespace (

URI <- ’http :// localhost /~ dennis/Java.owl#’,

name <- ’java ’),

ont : OWL!owl:: OWLOntology (

localName <- ’’,

namespace <- n,

RDFSLabel <- Sequence{label},

RDFSComment <- Sequence{comment},

ownedNamespace <- Set{n, xsd , units , platform , java}->union(

i f prevNotEmpty then thisModule.importedOntologies

->collect(o|thisModule.PrevNamespace(o))

else Set{} endif),
-- !!! OWLImports generates bogus namespace !!!

OWLImports <- thisModule.platformOntology ->union(

thisModule.javaOntology)->union(

i f prevNotEmpty then thisModule.importedOntologies

else Set{} endif),
contains <- Sequence{apiClass , jreClass}->union(
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thisModule.includedPackages )),

label : OWL!rdfs:: PlainLiteral (

language <- ’en’,

lexicalForm <- s.name),

comment : OWL!rdfs:: PlainLiteral (

language <- ’en’,

lexicalForm <- ’Generated by ’ +

thisModule.UML2ToPackageAPIOntologyVersionString + ’ and ’ +

thisModule.UML2ToAPIOntologyVersionString + ’ and ’ +

thisModule.UML2ComparisonVersionString),

apiClass : OWL!owl:: OWLClass (

localName <- s.name.firstToUpper () + ’ClassLibrary ’,

RDFSSubClassOf <- thisModule.includedPackages ->union(superClasses),

OWLEquivalentClass <- i f s.equivalentClasses ->isEmpty ()

then Sequence {} else s.equivalentClasses endif ,
RDFSComment <- Sequence{apiComment},

namespace <- s),

apiComment : OWL!rdfs:: PlainLiteral (

language <- ’en’,

lexicalForm <- ’JavaLibrary implementing the entire API for ’ + s.name),

jreClass : OWL!owl:: OWLClass (

localName <- s.name.firstToUpper (),

RDFSSubClassOf <- Sequence{

thisModule.javaJRE , builtinJavaLibraryRestriction},

RDFSComment <- Sequence{jreComment},

namespace <- s),

jreComment : OWL!rdfs:: PlainLiteral (

language <- ’en’,

lexicalForm <- s.name + ’ Java Runtime Environment ’),

builtinJavaLibraryRestriction : OWL!owl:: SomeValuesFromRestriction (

OWLOnProperty <- thisModule.jreProvidesBuiltinJavaLibrary ,

OWLSomeValuesFrom <- apiClass ,

namespace <- s)

}

rule Package {

from s : UML2!uml:: Package (thisModule.includedPackages ->includes(s))

using {

superClasses : Sequence(OWL!owl:: OWLClass) = s.compatibleClasses

->select(c|s.equivalentClasses ->excludes(c));

}

to t : OWL!owl:: OWLClass mapsTo s (

localName <- (s.ontClassName + ’Library ’)

.debug(thisModule.modelName.prefix + ’Package ’),

RDFSSubClassOf <- i f superClasses ->isEmpty ()

then thisModule.javaLibrary else superClasses endif ,
OWLEquivalentClass <- s.equivalentClasses ,

RDFSComment <- Sequence{comment},

RDFSSeeAlso <- s.references ,

namespace <- s.getModel ()),

comment : OWL!rdfs:: PlainLiteral (

language <- ’en’,

lexicalForm <- ’JavaLibrary implementing the ’ + s.javaQualifiedName +

’ package for ’ + thisModule.modelName)

}

-- ======================================================================

-- transformation rules end

-- ======================================================================

A.2 UML2ToAPIOntology.atl

-- @atlcompiler atl2006
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-- $Id: UML2ToAPIOntology .atl 7062 2007 -06 -30 11:16:05Z dwagelaa $

-- Base module for transforming a UML2 model to an API OWL ontology

module UML2ToAPIOntology; --abstract

create OUT : OWL from IN : UML2 , PLATFORM : OWL , JAVA : OWL;

--, PREVOUT : OWL , PREVIN : UML2;

uses UML2Comparison;

-- ======================================================================

-- helper attributes begin

-- ======================================================================

helper def : UML2ToAPIOntologyVersionString : String =

’$Id: UML2ToAPIOntology.atl 7062 2007 -06 -30 11:16:05Z dwagelaa $’;

helper def : inElements : Set(UML2!ecore :: EObject) =

UML2!ecore :: EObject.allInstancesFrom(’IN ’);

helper def : includedPackages : Set(UML2!uml:: Package) =

UML2!uml:: Package.allInstancesFrom(’IN ’)

->select(p|p.oclIsTypeOf(UML2!uml:: Package) and p.packagedElement

->select(c|c.oclIsKindOf(UML2!uml:: Class) or
c.oclIsKindOf(UML2!uml:: Interface))->notEmpty ());

helper def : platformPlatform : Set(OWL!owl:: OWLClass) =

OWL!owl:: OWLClass.allInstancesFrom(’PLATFORM ’)

->select(o|o.localName = ’Platform ’);

helper def : javaLibrary : Set(OWL!owl:: OWLClass) =

OWL!owl:: OWLClass.allInstancesFrom(’JAVA ’)

->select(o|o.localName = ’JavaLibrary ’);

helper def : javaJRE : Set(OWL!owl:: OWLClass) =

OWL!owl:: OWLClass.allInstancesFrom(’JAVA ’)

->select(o|o.localName = ’JRE ’);

helper def : platformProvidesFeature : OWL!owl:: OWLObjectProperty =

OWL!owl:: OWLObjectProperty.allInstancesFrom(’PLATFORM ’)

->select(p|p.localName = ’providesFeature ’)->first ();

helper def : jreProvidesBuiltinJavaLibrary : OWL!owl:: OWLObjectProperty =

OWL!owl:: OWLObjectProperty.allInstancesFrom(’JAVA ’)

->select(p|p.localName = ’providesBuiltinJavaLibrary ’)->first ();

helper def : platformOntology : Set(OWL!owl:: OWLOntology) =

OWL!owl:: OWLOntology.allInstancesFrom(’PLATFORM ’);

helper def : javaOntology : Set(OWL!owl:: OWLOntology) =

OWL!owl:: OWLOntology.allInstancesFrom(’JAVA ’);

helper def : importedOntologies : Set(OWL!owl:: OWLOntology) =

OWL!owl:: OWLOntology.allInstances()->select(o|

OWL!owl:: OWLOntology.allInstancesFrom(’PLATFORM ’)->excludes(o) and
OWL!owl:: OWLOntology.allInstancesFrom(’JAVA ’)->excludes(o));

-- ======================================================================

-- general context helper attributes begin

-- ======================================================================

helper context UML2!uml:: NamedElement def : javaQualifiedName : String =

i f self.owner.oclIsTypeOf(UML2!uml:: Package)

or self.owner.oclIsKindOf(UML2!uml:: Classifier) then
self.owner.javaQualifiedName + ’.’ + self.name

else
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self.name

endif;

helper context UML2!uml:: NamedElement def : ontClassName : String =

i f self.owner.oclIsTypeOf(UML2!uml:: Package) then
self.owner.ontClassName

else ’’ endif
+ self.name.firstToUpper ();

-- ======================================================================

-- helper attributes for finding references

-- ======================================================================

helper context UML2!uml:: Package def : references : Set(UML2!uml:: Package) =

self.allOwnedClassifiers

->collect(c|c.references)->flatten()->asSet ()

->collect(r|r.referencesOtherPackageThan(self))->flatten()->asSet()

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ referenced packages ’);

-- Non - transitive references

helper context UML2!uml:: Classifier def : references :

Set(UML2!uml:: Classifier) =

self.general ->union(

self.suppliers ->select(s|s.oclIsKindOf(UML2!uml:: Classifier )))->union(

self.feature ->collect(f|f.referencesOtherThan(self )))

->flatten()->asSet ();

-- ======================================================================

-- helper attributes for determining compatibility

-- ======================================================================

helper context UML2!uml:: NamedElement def : owlClassesInPrev :

Sequence(OWL!owl:: OWLClass) =

OWL!owl:: OWLClass.allInstances ()

->select(c|c.localName = self.ontClassName + ’Library ’)

->select(o|o.namespace.name = self.getModel (). name);

helper context UML2!uml:: Package def : compatibleClasses :

Sequence(OWL!owl:: OWLClass) =

self.compatibleInPrev ->collect(p|p.owlClassesInPrev)->flatten ();

helper context UML2!uml:: Package def : equivalentClasses :

Sequence(OWL!owl:: OWLClass) =

self.equivalentInPrev ->collect(p|p.owlClassesInPrev)->flatten ();

-- ======================================================================

-- helper attributes end

-- ======================================================================

-- ======================================================================

-- general helper methods

-- ======================================================================

helper context String def: firstToUpper () : String =

self.substring (1, 1). toUpper () + self.substring (2, self.size ());

-- ======================================================================

-- helper methods for finding references

-- ======================================================================

helper context UML2!uml:: PackageableElement def : referencesOtherPackageThan

(p : UML2!uml:: Package) : Set(UML2!uml:: Package) =

let np : UML2!uml:: Package = self.getNearestPackage () in
i f np <> p then Set{np} else Set{} endif;
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helper context UML2!uml:: BehavioralFeature def : referencesOtherThan

(c : UML2!uml:: Classifier) : Sequence(UML2!uml:: Classifier) =

self.ownedParameter ->collect(p|p.referencesOtherThan(c))->flatten ();

helper context UML2!uml:: TypedElement def : referencesOtherThan

(c : UML2!uml:: Classifier) : Sequence(UML2!uml:: Classifier) =

i f self.type.oclIsKindOf(UML2!uml:: Class)

or self.type.oclIsKindOf(UML2!uml:: Interface) then
i f self.type.getModel () = c.getModel () and self.type <> c

then Sequence{self.type}

else Sequence {} endif
else Sequence {} endif;

-- ======================================================================

-- helper methods end

-- ======================================================================

-- ======================================================================

-- transformation rules begin

-- ======================================================================

rule PrevNamespace(o : OWL!owl:: OWLOntology) {

to n : OWL!rdfs:: Namespace (

URI <- o.namespace.URI ,

name <- o.namespace.name)

do {

n;

}

}

-- ======================================================================

-- transformation rules end

-- ======================================================================

A.3 UML2Comparison.atl

-- @atlcompiler atl2006

-- $Id: UML2Comparison .atl 7084 2007 -07 -10 13:19:05Z dwagelaa $

-- Library for comparing a UML2 model to other versions of the UML2 model

l ibrary UML2Comparison;

-- ======================================================================

-- helper attributes begin

-- ======================================================================

helper def : UML2ComparisonVersionString : String =

’$Id:UML2Comparison.atl 7084 2007 -07 -10 13:19:05Z dwagelaa $’;

helper def : prevModels : Set(UML2!uml::Model) =

UML2!uml:: Model.allInstances()->select(m|

UML2!uml:: Model.allInstancesFrom(’IN ’)->excludes(m));

helper def : prevPackages : Set(UML2!uml:: Package) =

UML2!uml:: Package.allInstances()->select(p|

UML2!uml:: Package.allInstancesFrom(’IN ’)->excludes(p));

helper def : modelName : String =

UML2!uml:: Model.allInstancesFrom(’IN ’)->asSequence()->first (). name;

-- ======================================================================

-- general context helper attributes begin

-- ======================================================================
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helper context String def : prefix : String =

’[’ + self + ’] ’;

helper context UML2!uml:: NamedElement def : umlQualifiedName : String =

i f self.oclIsKindOf(UML2!uml:: Feature) then
self.name

else
i f self.owner.oclIsTypeOf(UML2!uml:: Package)

or self.owner.oclIsKindOf(UML2!uml:: Classifier) then
self.owner.umlQualifiedName + ’::’ + self.name

else
self.name

endif
endif;

helper context UML2!uml:: Model def : allOwnedPackages :

Sequence(UML2!uml:: Package) =

self.allOwnedElements ()

->select(o|o.oclIsKindOf(UML2!uml:: Package ));

helper context UML2!uml:: Package def : allOwnedClassifiers :

Sequence(UML2!uml:: Classifier) =

self.allOwnedElements ()

->select(o|o.oclIsKindOf(UML2!uml:: Classifier ))

->select(c|c.getNearestPackage () = self and not c.name.endsWith (’[]’));

helper context UML2!uml:: Model def : allOwnedPackages :

Sequence(UML2!uml:: Package) =

self.allOwnedElements ()

->select(o|o.oclIsKindOf(UML2!uml:: Package ));

helper context UML2!uml:: Package def : allOwnedClassifiers :

Sequence(UML2!uml:: Classifier) =

self.allOwnedElements ()

->select(o|o.oclIsKindOf(UML2!uml:: Classifier ))

->select(c|c.getNearestPackage () = self and not c.name.endsWith (’[]’));

helper context UML2!uml:: Element def : myOclType : OclType =

let type : OclType = self.oclType ()

in i f type = UML2!uml:: DataType

then UML2!uml:: Classifier

else type endif;

-- ======================================================================

-- helper attributes for determining compatibility

-- ======================================================================

helper context UML2!uml:: Interface def : suppliers :

Set(UML2!uml:: NamedElement) =

self.clientDependency ->collect(d|d.supplier

->select(n|not n.name.oclIsUndefined ())

)->flatten()->asSet()

->union(self.general );

helper context UML2!uml:: NamedElement def : suppliers :

Set(UML2!uml:: NamedElement) =

self.clientDependency ->collect(d|d.supplier

->select(n|not n.name.oclIsUndefined ())

)->flatten()->asSet ();

helper context UML2!uml:: NamedElement def : allSuppliers :

Set(UML2!uml:: NamedElement) =

self.suppliers ->union(

self.suppliers ->collect(s|s.allSuppliers)->flatten ())->asSet ();
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helper context UML2!uml:: NamedElement def : owlClassesInPrev :

Sequence(OWL!owl:: OWLClass) =

OWL!owl:: OWLClass.allInstances ()

->select(c|c.localName = self.ontClassName + ’Library ’)

->select(o|o.namespace.name = self.getModel (). name);

helper context UML2!uml:: Model def : compatibleInPrev :

Sequence(UML2!uml:: Model) =

thisModule.prevModels

->select(m|self.hasAllPackagesCompatibleWith(m))

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ compatible models ’);

helper context UML2!uml:: Model def : equivalentInPrev :

Sequence(UML2!uml:: Model) =

thisModule.prevModels

->select(m|self.hasAllPackagesEquivalentWith(m))

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ equivalent models ’);

helper context UML2!uml:: Package def : compatibleInPrev :

Sequence(UML2!uml:: Package) =

thisModule.prevPackages

->select(p|self.isCompatibleWith(p))

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ compatible packages ’);

helper context UML2!uml:: Package def : equivalentInPrev :

Sequence(UML2!uml:: Package) =

self.compatibleInPrev ->select(p|p.isCompatibleWith(self))

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ equivalent packages ’);

helper context UML2!uml:: Classifier def : compatibleInPrev :

Sequence(UML2!uml:: Classifier) =

let packageName : String = self.getNearestPackage (). umlQualifiedName in
thisModule.prevPackages

->select(p|p.umlQualifiedName = packageName)

->collect(p1|p1.allOwnedClassifiers)->flatten ()

->select(c|self.isCompatibleWith(c));

helper context UML2!uml:: Classifier def : equivalentInPrev :

Sequence(UML2!uml:: Classifier) =

self.compatibleInPrev ->select(c|c.isCompatibleWith(self ));

helper context UML2!uml:: Classifier def : allFeatures :

Set(UML2!uml:: Feature) =

self.feature

->union(self.general

->collect(c|c.allFeatures)->flatten()->asSet ())

->union(self.suppliers

->select(s|s.oclIsKindOf(UML2!uml:: Classifier ))

->collect(c|c.allFeatures)->flatten()->asSet ());

-- ======================================================================

-- helper attributes end

-- ======================================================================

-- ======================================================================

-- helper methods for determining compatibility

-- ======================================================================

helper context UML2!uml:: Model def : hasAllPackagesCompatibleWith

(m : UML2!uml:: Model) : Boolean =
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let compPackages : Sequence(UML2!uml:: Package) = m.allOwnedPackages

->select(p|not self.hasPackageCompatibleWith(p))

in i f compPackages ->isEmpty () then true

else compPackages.debug(thisModule.modelName.prefix +

self.qualifiedName + ’ misses packages compatible with ’)->isEmpty ()

endif;

helper context UML2!uml:: Model def : hasPackageCompatibleWith

(p : UML2!uml:: Package) : Boolean =

self.allOwnedPackages

->select(sp|sp.compatibleInPrev ->includes(p))->notEmpty ();

helper context UML2!uml:: Model def : hasAllPackagesEquivalentWith

(m : UML2!uml:: Model) : Boolean =

let equivPackages : Sequence(UML2!uml:: Package) = m.allOwnedPackages

->select(p|not self.hasPackageEquivalentWith(p))

in i f equivPackages ->isEmpty () then true

else equivPackages.debug(thisModule.modelName.prefix +

self.qualifiedName + ’ misses packages equivalent with ’)->isEmpty ()

endif;

helper context UML2!uml:: Model def : hasPackageEquivalentWith

(p : UML2!uml:: Package) : Boolean =

self.allOwnedPackages

->select(sp|sp.equivalentInPrev ->includes(p))->notEmpty ();

helper context UML2!uml:: Package def : isCompatibleWith

(p : UML2!uml:: Package) : Boolean =

i f self.namedElementIsCompatibleWith(p) then
let compClassifiers : Sequence(UML2!uml:: Classifier) =

p.allOwnedClassifiers ->select(c|

not self.hasOwnedClassifierCompatibleWith(c))

in i f compClassifiers ->isEmpty () then true

else compClassifiers

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ misses classifiers compatible with ’)

->isEmpty () endif
else false endif;

helper context UML2!uml:: Package def : hasOwnedClassifierCompatibleWith

(c : UML2!uml:: Classifier) : Boolean =

self.allOwnedClassifiers ->select(o|o.isCompatibleWith(c))->notEmpty ();

helper context UML2!uml:: Classifier def : isCompatibleWith

(c : UML2!uml:: Classifier) : Boolean =

i f self.namedElementIsCompatibleWith(c) then
i f ( i f self.isAbstract then c.isAbstract else true endif) then

i f ( let compGenerals : Sequence(UML2!uml:: Classifier) =

c.general ->select(g|not self.hasGeneralCompatibleWith(g))

in i f compGenerals ->isEmpty () then true

else compGenerals

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ misses generals compatible with ’)

->isEmpty () endif)
then ( let compFeatures : Sequence(UML2!uml:: Feature) =

c.allFeatures ->select(f|not self.hasFeatureCompatibleWith(f))

in i f compFeatures ->isEmpty () then true

else compFeatures

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ misses features compatible with ’)

->isEmpty () endif)
else false endif

else false endif
else false endif;



184 Chapter A. Ontology transformations

helper context UML2!uml:: Classifier def : hasFeatureCompatibleWith

(f : UML2!uml:: Feature) : Boolean =

self.allFeatures ->select(o|o.isCompatibleWith(f))->notEmpty ();

helper context UML2!uml:: StructuralFeature def : isCompatibleWith

(f : UML2!uml:: StructuralFeature) : Boolean =

i f self.typedElementIsCompatibleWith(f)

then (self.isStatic = f.isStatic) and
(self.isReadOnly implies f.isReadOnly) and
(self.isLeaf implies f.isLeaf)

else false endif;

helper context UML2!uml:: BehavioralFeature def : isCompatibleWith

(f : UML2!uml:: BehavioralFeature) : Boolean =

i f self.namedElementIsCompatibleWith(f)

then i f (self.isStatic = f.isStatic)

and (self.ownedParameter ->size() = f.ownedParameter ->size ())

and (self.isAbstract implies f.isAbstract)

and (self.isLeaf implies f.isLeaf)

then thisModule.compatibleParameters(self.ownedParameter ,

f.ownedParameter)

else false endif
else false endif;

helper def : compatibleParameters(selfpars : Sequence(UML2!uml:: Parameter),

otherpars : Sequence(UML2!uml:: Parameter )) : Boolean =

let selfpar : UML2!uml:: Parameter = selfpars ->first () in
let otherpar : UML2!uml:: Parameter = otherpars ->first () in
i f selfpar.oclIsUndefined () then otherpar.oclIsUndefined ()

else
i f selfpar.isCompatibleWith(otherpar) then

thisModule.compatibleParameters(

selfpars ->excluding(selfpar),

otherpars ->excluding(otherpar ))

else false endif
endif;

helper context UML2!uml:: Parameter def : isCompatibleWith

(p : UML2!uml:: Parameter) : Boolean =

i f p.oclIsUndefined () then false

else
i f self.typedElementIsCompatibleWith(p)

then (self.direction = p.direction)

else false endif
endif;

helper context UML2!uml:: TypedElement def : isCompatibleWith

(t : UML2!uml:: TypedElement) : Boolean =

self.typedElementIsCompatibleWith(t);

helper context UML2!uml:: NamedElement def : isCompatibleWith

(e : UML2!uml:: NamedElement) : Boolean =

self.namedElementIsCompatibleWith(e);

helper context UML2!uml:: NamedElement def : visibilityIsCompatibleWith

(e : UML2!uml:: NamedElement) : Boolean =

i f (self.visibility = #public) then true

else
i f (self.visibility = #protected)

then (e.visibility = #protected) or (e.visibility = #private)

else
i f (self.visibility = #package)

then (e.visibility = #package) or (e.visibility = #private)

else (self.visibility = e.visibility) endif
endif



A.4 UML2CompatibilityComparison.atl 185

endif;

helper context UML2!uml:: TypedElement def : typedElementIsCompatibleWith

(t : UML2!uml:: TypedElement) : Boolean =

i f self.namedElementIsCompatibleWith(t) then
i f self.type.oclIsUndefined () then

t.type.oclIsUndefined ()

else
i f t.type.oclIsUndefined () then false

else (self.type.umlQualifiedName = t.type.umlQualifiedName) endif
endif

else false endif;

helper context UML2!uml:: NamedElement def : namedElementIsCompatibleWith

(e : UML2!uml:: NamedElement) : Boolean =

i f (self.umlQualifiedName = e.umlQualifiedName) then
i f (self.myOclType.conformsTo(e.myOclType ))

and (self.visibilityIsCompatibleWith(e)) then
let compSuppliers : Sequence(UML2!uml:: NamedElement) =

e.suppliers ->select(d|not self.hasSupplierCompatibleWith(d))

in i f compSuppliers ->isEmpty () then true

else compSuppliers

.debug(thisModule.modelName.prefix + self.qualifiedName +

’ misses dependency suppliers compatible with ’)

->isEmpty () endif
else false endif

else false endif;

helper context UML2!uml:: Classifier def : hasGeneralCompatibleWith

(c : UML2!uml:: Classifier) : Boolean =

self.general ->select(g|

i f (g.umlQualifiedName = c.umlQualifiedName) then true

else g.hasGeneralCompatibleWith(c) endif)->notEmpty ();

helper context UML2!uml:: Classifier def : hasSupplierCompatibleWith

(e : UML2!uml:: NamedElement) : Boolean =

i f self.namedElementHasSupplierCompatibleWith(e) then true

else self.general ->select(g|g.hasSupplierCompatibleWith(e))->notEmpty ()

endif;

helper context UML2!uml:: NamedElement def : hasSupplierCompatibleWith

(e : UML2!uml:: NamedElement) : Boolean =

self.namedElementHasSupplierCompatibleWith(e);

helper context UML2!uml:: NamedElement def :

namedElementHasSupplierCompatibleWith(e : UML2!uml:: NamedElement) : Boolean =

self.allSuppliers

->select(s|s.umlQualifiedName = e.umlQualifiedName)->notEmpty ();

-- ======================================================================

-- helper methods end

-- ======================================================================

A.4 UML2CompatibilityComparison.atl

-- @atlcompiler atl2006

-- $Id: UML2CompatibilityComparison .atl 7084 2007 -07 -10 13:19:05Z dwagelaa $

-- Query for determining the compatibility of a UML2 model to other

-- versions of the UML2 model

query UML2CompatibilityComparison = UML2!uml:: Model.allInstancesFrom(’IN ’)

->collect(m|m.compatibleInPrev)->flatten()->notEmpty ()

.debug(’Model is compatible with previous model ’);
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uses UML2Comparison;

A.5 Parallel build script
<project name="platformkit-java/transformations" basedir="." default="transform">

<macrodef name="preUML2ToAPIOntology">

<attribute name="in" default="MODEL.IN" />

<attribute name="out" default="MODEL.OUT" />

<attribute name="path" default="MODEL.OUT.PATH" />

<sequential>

<am3.atl path="/${ant.project.name}/UML2ToAPIOntology.atl"

allowInterModelReferences="true">

<inmodel name="UML2" model="UML2"/>

<inmodel name="OWL" model="OWL"/>

<inmodel name="IN" model="@{in}"/>

<inmodel name="PLATFORM" model="Platform"/>

<inmodel name="JAVA" model="Java"/>

<outmodel name="OUT" model="@{out}" metamodel="OWL" path="@{path}"/>

<superimpose path="/${ant.project.name}/UML2ToPackageAPIOntology.asm"/>

<library name="UML2Comparison" path="/${ant.project.name}/UML2Comparison.asm"/>

</am3.atl>

</sequential>

</macrodef>

<macrodef name="UML2ToAPIOntology">

<attribute name="in" default="MODEL.IN" />

<attribute name="out" default="MODEL.OUT" />

<attribute name="path" default="MODEL.OUT.PATH" />

<sequential>

<am3.atl path="/${ant.project.name}/UML2ToAPIOntology.atl"

allowInterModelReferences="true">

<inmodel name="UML2" model="UML2"/>

<inmodel name="OWL" model="OWL"/>

<inmodel name="IN" model="@{in}"/>

<inmodel name="PLATFORM" model="Platform"/>

<inmodel name="JAVA" model="Java"/>

<outmodel name="OUT" model="@{out}" metamodel="OWL" path="@{path}"/>

<superimpose path="/${ant.project.name}/UML2ToPackageAPIOntology.asm"/>

<library name="UML2Comparison" path="/${ant.project.name}/UML2Comparison.asm"/>

</am3.atl>

<am3.saveModel model="@{out}" path="@{path}"/>

</sequential>

</macrodef>

<macrodef name="UML2ToAPIOntology1">

<attribute name="in" default="MODEL.IN" />

<attribute name="prevout" default="MODEL.PREV.OUT" />

<attribute name="previn" default="MODEL.PREV.IN" />

<attribute name="out" default="MODEL.OUT" />

<attribute name="path" default="MODEL.OUT.PATH" />

<sequential>

<am3.atl path="/${ant.project.name}/UML2ToAPIOntology.atl"

allowInterModelReferences="true">

<inmodel name="UML2" model="UML2"/>

<inmodel name="OWL" model="OWL"/>

<inmodel name="IN" model="@{in}"/>

<inmodel name="PLATFORM" model="Platform"/>

<inmodel name="JAVA" model="Java"/>

<inmodel name="PREVOUT" model="@{prevout}"/>

<inmodel name="PREVIN" model="@{previn}"/>

<outmodel name="OUT" model="@{out}" metamodel="OWL" path="@{path}"/>

<superimpose path="/${ant.project.name}/UML2ToPackageAPIOntology.asm"/>

<library name="UML2Comparison" path="/${ant.project.name}/UML2Comparison.asm"/>
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</am3.atl>

<am3.saveModel model="@{out}" path="@{path}"/>

</sequential>

</macrodef>

<macrodef name="UML2ToAPIOntology2">

<attribute name="in" default="MODEL.IN" />

<attribute name="prevout" default="MODEL.PREV.OUT" />

<attribute name="previn" default="MODEL.PREV.IN" />

<attribute name="prevout2" default="MODEL.PREV.OUT2" />

<attribute name="previn2" default="MODEL.PREV.IN2" />

<attribute name="out" default="MODEL.OUT" />

<attribute name="path" default="MODEL.OUT.PATH" />

<sequential>

<am3.atl path="/${ant.project.name}/UML2ToAPIOntology.atl"

allowInterModelReferences="true">

<inmodel name="UML2" model="UML2"/>

<inmodel name="OWL" model="OWL"/>

<inmodel name="IN" model="@{in}"/>

<inmodel name="PLATFORM" model="Platform"/>

<inmodel name="JAVA" model="Java"/>

<inmodel name="PREVOUT" model="@{prevout}"/>

<inmodel name="PREVIN" model="@{previn}"/>

<inmodel name="PREVOUT2" model="@{prevout2}"/>

<inmodel name="PREVIN2" model="@{previn2}"/>

<outmodel name="OUT" model="@{out}" metamodel="OWL" path="@{path}"/>

<superimpose path="/${ant.project.name}/UML2ToPackageAPIOntology.asm"/>

<library name="UML2Comparison" path="/${ant.project.name}/UML2Comparison.asm"/>

</am3.atl>

<am3.saveModel model="@{out}" path="@{path}"/>

</sequential>

</macrodef>

<macrodef name="UML2ToAPIOntology3">

<attribute name="in" default="MODEL.IN" />

<attribute name="prevout" default="MODEL.PREV.OUT" />

<attribute name="previn" default="MODEL.PREV.IN" />

<attribute name="prevout2" default="MODEL.PREV.OUT2" />

<attribute name="previn2" default="MODEL.PREV.IN2" />

<attribute name="prevout3" default="MODEL.PREV.OUT3" />

<attribute name="previn3" default="MODEL.PREV.IN3" />

<attribute name="out" default="MODEL.OUT" />

<attribute name="path" default="MODEL.OUT.PATH" />

<sequential>

<am3.atl path="/${ant.project.name}/UML2ToAPIOntology.atl"

allowInterModelReferences="true">

<inmodel name="UML2" model="UML2"/>

<inmodel name="OWL" model="OWL"/>

<inmodel name="IN" model="@{in}"/>

<inmodel name="PLATFORM" model="Platform"/>

<inmodel name="JAVA" model="Java"/>

<inmodel name="PREVOUT" model="@{prevout}"/>

<inmodel name="PREVIN" model="@{previn}"/>

<inmodel name="PREVOUT2" model="@{prevout2}"/>

<inmodel name="PREVIN2" model="@{previn2}"/>

<inmodel name="PREVOUT3" model="@{prevout3}"/>

<inmodel name="PREVIN3" model="@{previn3}"/>

<outmodel name="OUT" model="@{out}" metamodel="OWL" path="@{path}"/>

<superimpose path="/${ant.project.name}/UML2ToPackageAPIOntology.asm"/>

<library name="UML2Comparison" path="/${ant.project.name}/UML2Comparison.asm"/>

</am3.atl>

<am3.saveModel model="@{out}" path="@{path}"/>

</sequential>

</macrodef>
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<target name="loadModels">

<am3.loadModel modelHandler="EMF" name="OWL"

metamodel="MOF" nsuri="http:///org/eclipse/owl.ecore"/>

<am3.loadModel modelHandler="EMF" name="Platform"

metamodel="OWL" path="/platformkit-java/Platform.owl"/>

<am3.loadModel modelHandler="EMF" name="Java"

metamodel="OWL" path="/platformkit-java/Java.owl"/>

<am3.loadModel modelHandler="EMF" name="EmptyOWL"

metamodel="OWL" path="/platformkit-java/empty.owl"/>

<am3.loadModel modelHandler="EMF" name="UML2"

metamodel="MOF" nsuri="http://www.eclipse.org/uml2/2.0.0/UML"/>

<am3.loadModel modelHandler="EMF" name="EmptyUML"

metamodel="UML2" path="/platformkit-java/empty.uml"/>

<am3.loadModel modelHandler="EMF" name="J2ME-MIDP-1_0"

metamodel="UML2" path="/platformkit-java/j2me-midp-1_0-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2ME-MIDP-2_0"

metamodel="UML2" path="/platformkit-java/j2me-midp-2_0-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2ME-PP-1_0"

metamodel="UML2" path="/platformkit-java/j2me-pp-1_0-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2ME-PP-1_1"

metamodel="UML2" path="/platformkit-java/j2me-pp-1_1-api.uml"/>

<am3.loadModel modelHandler="EMF" name="PJ-1_1"

metamodel="UML2" path="/platformkit-java/personaljava-1_1-api.uml"/>

<am3.loadModel modelHandler="EMF" name="JDK-1_1"

metamodel="UML2" path="/platformkit-java/jdk-1_1-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2SE-1_2"

metamodel="UML2" path="/platformkit-java/j2se-1_2-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2SE-1_3"

metamodel="UML2" path="/platformkit-java/j2se-1_3-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2SE-1_4"

metamodel="UML2" path="/platformkit-java/j2se-1_4-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2SE-1_5"

metamodel="UML2" path="/platformkit-java/j2se-1_5-api.uml"/>

<am3.loadModel modelHandler="EMF" name="J2SE-1_6"

metamodel="UML2" path="/platformkit-java/j2se-1_6-api.uml"/>

</target>

<target name="pre-transform" depends="loadModels">

<nice currentpriority="curpri" newpriority="1"/>

<parallel threadCount="8"><!-- start heaviest task first -->

<preUML2ToAPIOntology in="J2SE-1_5" out="preJ2SE-1_5_OWL"

path="/platformkit-java/j2se-1_5-api.owl"/>

<preUML2ToAPIOntology in="J2SE-1_4" out="preJ2SE-1_4_OWL"

path="/platformkit-java/j2se-1_4-api.owl"/>

<preUML2ToAPIOntology in="J2SE-1_3" out="preJ2SE-1_3_OWL"

path="/platformkit-java/j2se-1_3-api.owl"/>

<preUML2ToAPIOntology in="J2SE-1_2" out="preJ2SE-1_2_OWL"

path="/platformkit-java/j2se-1_2-api.owl"/>

<preUML2ToAPIOntology in="JDK-1_1" out="preJDK-1_1_OWL"

path="/platformkit-java/jdk-1_1-api.owl"/>

<preUML2ToAPIOntology in="PJ-1_1" out="prePJ-1_1_OWL"

path="/platformkit-java/personaljava-1_1-api.owl"/>

<preUML2ToAPIOntology in="J2ME-PP-1_1" out="preJ2ME-PP-1_1_OWL"

path="/platformkit-java/j2me-pp-1_1-api.owl"/>

<preUML2ToAPIOntology in="J2ME-PP-1_0" out="preJ2ME-PP-1_0_OWL"

path="/platformkit-java/j2me-pp-1_0-api.owl"/>

<preUML2ToAPIOntology in="J2ME-MIDP-2_0" out="preJ2ME-MIDP-2_0_OWL"

path="/platformkit-java/j2me-midp-2_0-api.owl"/>

<UML2ToAPIOntology in="J2ME-MIDP-1_0" out="J2ME-MIDP-1_0_OWL"

path="/platformkit-java/j2me-midp-1_0-api.owl"/>

</parallel>

<nice newpriority="${curpri}"/>

</target>

<target name="transform" depends="pre-transform">
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<nice currentpriority="curpri" newpriority="1"/>

<parallel threadCount="8"><!-- start heaviest task first -->

<UML2ToAPIOntology1 in="J2SE-1_6" out="J2SE-1_6_OWL"

prevout="preJ2SE-1_5_OWL" previn="J2SE-1_5"

path="/platformkit-java/j2se-1_6-api.owl"/>

<UML2ToAPIOntology1 in="J2SE-1_5" out="J2SE-1_5_OWL"

prevout="preJ2SE-1_4_OWL" previn="J2SE-1_4"

path="/platformkit-java/j2se-1_5-api.owl"/>

<UML2ToAPIOntology2 in="J2SE-1_4" out="J2SE-1_4_OWL"

prevout="preJ2SE-1_3_OWL" previn="J2SE-1_3"

prevout2="preJ2ME-PP-1_1_OWL" previn2="J2ME-PP-1_1"

path="/platformkit-java/j2se-1_4-api.owl"/>

<UML2ToAPIOntology2 in="J2SE-1_3" out="J2SE-1_3_OWL"

prevout="preJ2SE-1_2_OWL" previn="J2SE-1_2"

prevout2="preJ2ME-PP-1_0_OWL" previn2="J2ME-PP-1_0"

path="/platformkit-java/j2se-1_3-api.owl"/>

<UML2ToAPIOntology3 in="J2SE-1_2" out="J2SE-1_2_OWL"

prevout="preJDK-1_1_OWL" previn="JDK-1_1"

prevout2="prePJ-1_1_OWL" previn2="PJ-1_1"

prevout3="preJ2ME-MIDP-2_0_OWL" previn3="J2ME-MIDP-2_0"

path="/platformkit-java/j2se-1_2-api.owl"/>

<UML2ToAPIOntology1 in="JDK-1_1" out="JDK-1_1_OWL"

prevout="prePJ-1_1_OWL" previn="PJ-1_1"

path="/platformkit-java/jdk-1_1-api.owl"/>

<UML2ToAPIOntology1 in="PJ-1_1" out="PJ-1_1_OWL"

prevout="preJ2ME-MIDP-2_0_OWL" previn="J2ME-MIDP-2_0"

path="/platformkit-java/personaljava-1_1-api.owl"/>

<UML2ToAPIOntology2 in="J2ME-PP-1_1" out="J2ME-PP-1_1_OWL"

prevout="preJ2SE-1_3_OWL" previn="J2SE-1_3"

prevout2="preJ2ME-PP-1_0_OWL" previn2="J2ME-PP-1_0"

path="/platformkit-java/j2me-pp-1_1-api.owl"/>

<UML2ToAPIOntology3 in="J2ME-PP-1_0" out="J2ME-PP-1_0_OWL"

prevout="preJ2SE-1_2_OWL" previn="J2SE-1_2"

prevout2="J2ME-MIDP-1_0_OWL" previn2="J2ME-MIDP-1_0"

prevout3="preJ2ME-MIDP-2_0_OWL" previn3="J2ME-MIDP-2_0"

path="/platformkit-java/j2me-pp-1_0-api.owl"/>

<UML2ToAPIOntology1 in="J2ME-MIDP-2_0" out="J2ME-MIDP-2_0_OWL"

prevout="J2ME-MIDP-1_0_OWL" previn="J2ME-MIDP-1_0"

path="/platformkit-java/j2me-midp-2_0-api.owl"/>

</parallel>

<nice newpriority="${curpri}"/>

</target>

</project>
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ConstraintSet sorting algorithm

This appendix lists the Java implementation of the sorting algorithm applied
to a list of “ConstraintSet” elements in a PlatformKit model. “Constraint-
Set” elements represent intersections of platform constraints for the purpose
of sorting. The sorting algorithm is based on an OWL class hierarchy rep-
resentation of the “ConstraintSet” elements and a pre-sorted list of the same
“ConstraintSet” elements. The leaves in the class hierarchy are considered as
most-specific and the roots as least-specific. This forms the basis for sorting
most-specific-first or least-specific-first. The class hierarchy constitutes a par-
tial ordering where each pair of “ConstraintSet” elements with a child-ancestor
relationship is ordered and each pair without such a relationship (i.e. siblings)
are not ordered. The algorithm attempts to preserve as much of the order of
the pre-sorted list as possible, while enforcing the partial ordering given by the
OWL class hierarchy.

The algorithm is implemented by two Java classes: TreeSorter and Hierar-
chyComparator. The TreeSorter class takes a pre-sorted list as input and uses
a HierarchyComparator instance to determine the partial ordering. TreeSorter
outputs an updated list that conforms to the partial order prescribed by the
HierarchyComparator.

B.1 TreeSorter.java

package be.ac.vub.platformkit.util;

import java.util.ArrayList;

import java.util.Comparator;

import java.util.Iterator;

import java.util.List;

import java.util.logging.Logger;

import junit.framework.Assert;

import be.ac.vub.platformkit.kb.Ontologies;
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/**

* Sorts the list by repeatedly removing the first smallest element

* (" root" element ). Can deal with incomparable elements (partially

* ordered lists), since it only looks for elements that are guaranteed

* smaller than the current element when comparing.

* Preserves existing list order where possible.

*

* In Java , the Arrays.sort () methods use mergesort or a tuned

* quicksort depending on the datatypes and for implementation

* efficiency switch to insertion sort when fewer than seven array

* elements are being sorted. These algorithms are only

* applicable to totally ordered lists , however.

*

* @author dennis

*/

public class TreeSorter {

private Logger logger = Logger.getLogger(Ontologies.LOGGER );

private Comparator comp;

/**

* Creates a TreeSorter .

* @param comp

* @throws IllegalArgumentException if comp is null

*/

public TreeSorter(Comparator comp)

throws IllegalArgumentException {

i f (comp == null) {

throw new IllegalArgumentException("Null comparator");

}

this .comp = comp;

}

/**

* Sorts the list by repeatedly removing the smallest elements

* (" root" elements ).

* @param list

*/

public void sort(List list) {

List sorted = new ArrayList ();

while (!list.isEmpty ()) {

Object removed = removeRootElement(list);

Assert.assertNotNull(

"Remove at least one element == false",

removed );

sorted.add(removed );

}

list.addAll(sorted );

}

/**

* Removes the root (i.e. smallest) element from the list.

* @param list

* @return the root element.

*/

private Object removeRootElement(List list) {

for (Iterator ls = list.iterator (); ls.hasNext ();) {

Object element = ls.next ();

i f (isRootElement(element , list)) {

ls.remove ();

logger.info("Root element removed: " + element );

return element;

}

}

return null;
}
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/**

* @param obj

* @param list

* @return True if obj is a "root" element in list.

*/

private boolean isRootElement(Object obj , List list) {

for (Iterator ls = list.iterator (); ls.hasNext ();) {

Object element = ls.next ();

try {

i f (comp.compare(obj , element) > 0) {

logger.fine(obj + " not root; greater than " + element );

return fa l se ;
}

} catch (ClassCastException e) {

logger.fine(obj + " and " + element + " not comparable");

}

}

return true;
}

}

B.2 HierarchyComparator.java

package be.ac.vub.platformkit.util;

import java.util.Comparator;

import java.util.logging.Logger;

import junit.framework.Assert;

import be.ac.vub.platformkit.Constraint;

import be.ac.vub.platformkit.kb.Ontologies;

import com.hp.hpl.jena.ontology.OntClass;

/**

* Compares {@link Constraint } objects , such that the more specific (subclass)

* constraint is considered smaller ( MOST_SPECIFIC_FIRST ) or greater

* ( LEAST_SPECIFIC_FIRST ) than the less specific ( superclass ) constraint .

* If both constraints are equivalent , they are considered equally specific.

* If no subclass relationship can be determined ,

* an exception is thrown.

* @author dennis

*/

public class HierarchyComparator implements Comparator {

public stat ic f ina l int MOST_SPECIFIC_FIRST = -1;

public stat ic f ina l int LEAST_SPECIFIC_FIRST = 1;

private Logger logger = Logger.getLogger(Ontologies.LOGGER );

private int mode;

/**

* Creates a HierarchyComparator .

* @param mode MOST_SPECIFIC_FIRST or LEAST_SPECIFIC_FIRST .

* @throws IllegalArgumentException if illegal mode is given.

*/

public HierarchyComparator( int mode)

throws IllegalArgumentException {

super();
i f (Math.abs(mode) != 1) {

throw new IllegalArgumentException("Invalid mode: " + mode);

}
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this .mode = mode;

}

/**

* @see Comparator #compare(T, T)

* @throws ClassCastException if something else than Constraint objects

* are compared or if no order can be determined .

*/

public int compare(Object arg0 , Object arg1)

throws ClassCastException {

OntClass c0 = (( Constraint) arg0). getOntClass ();

OntClass c1 = (( Constraint) arg1). getOntClass ();

Assert.assertNotNull(c0);

Assert.assertNotNull(c1);

i f (c0.equals(c1) || c0.hasEquivalentClass(c1)) {

logger.fine(c0 + " equivalent to " + c1);

return 0;

}

i f (c0.hasSuperClass(c1)) {

logger.fine(c0 + " subclass of " + c1);

return 1 * mode;

}

i f (c0.hasSubClass(c1)) {

logger.fine(c0 + " superclass of " + c1);

return -1 * mode;

}

logger.fine(c0 + " orthogonal to " + c1);

throw new ClassCastException(

"Cannot determine order for " + c0 + " and " + c1);

}

/**

* @see Comparator #equals(java.lang.Object)

*/

public boolean equals(Object obj) {

i f (obj instanceof HierarchyComparator) {

return (( HierarchyComparator) obj).mode == mode;

} else {

return fa l se ;
}

}

}



Appendix C

Example index page for PlatformKit
deployment

This appendix lists an example index page for the deployment website of the
instant messenger case study. The purpose of this index page is to invoke the
PlatformKit Servlet with the correct parameters. The index page needs to be
adapted with the correct URL of the PlatformKit Servlet and the correct URL
of the “.platformkit” deployment model.

C.1 index.html

<!DOCTYPEHTML PUBLIC " -//W3C//DTD HTML 4.01 Transitional //EN">

<html>
<head>

< t i t l e >PlatformKit - Instant Messenger </ t i t l e >

</head>
<body>

<h1>Instant Messaging Client Configuration </h1>
< script language="JavaScript">

<!-- //

document.write(

"<form name=\"config\" method =\"post\" action =\"http ://" +

location.hostname + ":8080/ platformkitservlet /servlet/options\" " +

"enctype =\"multipart /form-data\" onSubmit =\"startCounter ();\">");

document.write(

"<input name=\"baseurl\" type=\"hidden\" value=\"" + location +

" InstantMessengerDeployment . platformkit \"/>");

// -->

</ script >
<input name="result" type="hidden" value="mostspecific" />

<input name="noValidate" type="hidden" value="false" />

<table border="0" cellpadding="2" cellspacing ="0">

<tr >
<td>Platform ontology: </td>

<td>

<input name="context" type="file"
alt ="Specify your OWL platform description here" />

</td>

</ tr >
<tr >
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<td></td>

<td>

<input type="submit" alt ="Send your request to the reasoner" />

<input name="counter" type="text" s ize ="3" value="0" />

</td>

</ tr >
</table >
</form>

< script language="JavaScript">

<!-- //

document.write(

"<p><a href=\"http ://" + location.hostname +

":8080/ platformkitservlet /servlet/options?baseurl=" + location +

" InstantMessengerDeployment . platformkit" +

"&result= mostspecific & noValidate =false\">");

document.write(

"Let the server auto -detect your platform </a>.</p>");

// -->

</ script >

<h2>Example platform descriptions </h2>
<ul>

< l i ><a href="example/Generic/JDK1.1PC.owl">
Generic PC with JDK 1.1</a></ l i >

< l i ><a href="example/Generic/JDK1.2PC.owl">
Generic PC with JDK 1.2</a></ l i >

< l i ><a href="example/Generic/JDK1.3PC.owl">
Generic PC with JDK 1.3</a></ l i >

< l i ><a href="example/Generic/JDK1.4PC.owl">
Generic PC with JDK 1.4</a></ l i >

< l i ><a href="example/Generic/JDK1.5PC.owl">
Generic PC with JDK 1.5</a></ l i >

< l i ><a href="example/Generic/JDK1.6PC.owl">
Generic PC with JDK 1.6</a></ l i >

< l i ><a href="example/Generic/PersonalJava1 .1 PocketPC.owl">
Microsoft PocketPC with Personal Java 1.1</a></ l i >

< l i ><a href="example/Generic/J2MEPP1 .0 PocketPC.owl">
Microsoft PocketPC with J2ME PP 1.0</a></ l i >

< l i ><a href="example/Generic/J2MEPP1 .1 PocketPC.owl">
Microsoft PocketPC with J2ME PP 1.1</a></ l i >

< l i ><a href="example/Generic/J2MEMIDP1 .0Phone.owl">
Mobile phone with J2ME MIDP 1.0</a></ l i >

< l i ><a href="example/Generic/J2MEMIDP2 .0Phone.owl">
Mobile phone with J2ME MIDP 2.0</a></ l i >

< l i ><a href="example/Sharp/ZaurusSL -C1000PP.owl">
Sharp Zaurus SL-C1000 PDA with J2ME PP</a></ l i >

< l i ><a href="example/Sharp/ZaurusSL -C1000Jeode.owl">
Sharp Zaurus SL-C1000 PDA with Jeode Personal Java</a></ l i >

< l i ><a href="example/Siemens/CX70v.owl">
Siemens CX70v mobile phone with MIDP 2.0</a></ l i >

</ul>
</body>
< script language="JavaScript">

<!-- //

function startCounter () {

document.config.counter.type = "text";

setTimeout ("doCount (0)", 1000);

}

function doCount(count) {

count ++;

document.config.counter.value = count;

setTimeout ("doCount(" + count + ")", 1000);

}
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document.config.counter.type = "hidden";

// -->

</ script >
</html>
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[MH03] Ralf Möller and Volker Haarslev. Description logics for the seman-
tic web: Racer as a basis for building agent systems. Künstliche
Intelligenz, 17(3):10–15, July 2003. 1.3.1, 4.2, 7.1

[MKDS03] Vlada Matena, Sanjeev Krishnan, Linda DeMichiel, and Beth
Stearns. Applying Enterprise JavaBeans. Addison Wesley Pro-
fessional, May 2003. 4.3

[MM03] Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Manage-
ment Group, Inc., June 2003. Version 1.0.1, omg/03-06-01. 1.1,
2.1, 2.2

[MoD06] Proceedings of the ACM/IEEE 9th International Conference on
Model Driven Engineering Languages and Systems (MoDELS
2006), Genova, Italy, volume 4199 of Lecture Notes in Computer
Science. Springer-Verlag, October 2006. C.1

[MRZ+06] Wen Jun Meng, Jürgen Rilling, Yonggang Zhang, René Witte,
and Philippe Charland. An ontological software comprehension
process model. In Proceedings of the 3rd International Workshop
on Metamodels, Schemas, Grammars, and Ontologies for Reverse
Engineering (ATEM 2006), Genoa, Italy, October 2006. 4.8

[MS96] Microsoft Corporation. DCOM Technical Overview, November
1996. [Online] http://msdn2.microsoft.com/en-us/library/
ms809340.aspx. 4.3

[MTR05] Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting struc-
tural refactoring conflicts using critical pair analysis. Electr. Notes
Theor. Comput. Sci., 127(3):113–128, April 2005. 1.1.1, 6.2

[Obj05] Object Management Group, Inc. OCL 2.0 Specification, June
2005. Version 2.0, ptc/2005-06-06. 2.4

[Old05] Jon Oldevik. Transformation composition modelling framework.
In Lea Kutvonen and Nancy Alonistioti, editors, Proceedings of
the 5th IFIP International Conference on Distributed Applica-
tions and Interoperable Systems (DAIS 2005), Athens, Greece,
volume 3543 of Lecture Notes in Computer Science, pages 108–
114. Springer-Verlag, May 2005. 6.6

http://msdn2.microsoft.com/en-us/library/ms809340.aspx
http://msdn2.microsoft.com/en-us/library/ms809340.aspx


204 BIBLIOGRAPHY

[OMG02] Object Management Group, Inc. UML Profile for CORBA Spec-
ification, April 2002. Version 1.0, formal/02-04-01. 2.2.4

[OMG04a] Object Management Group, Inc. Common Object Request Bro-
ker Architecture: Core Specification, March 2004. Version 3.0.3,
formal/04-03-12. 4.3

[OMG04b] Object Management Group, Inc. Request for Proposal: MOF 2.0
Query / Views / Transformations RFP, April 2004. ad/2002-04-
10. 2.4.2

[OMG05a] Object Management Group, Inc. Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification, November 2005. Final
Adopted Specification, ptc/05-11-01. (document), 2.4.1, 2.17

[OMG05b] Object Management Group, Inc. MOF 2.0/XMI Mapping Speci-
fication, September 2005. Version 2.1, formal/05-09-01. 2.3.2

[OMG05c] Object Management Group, Inc. Unified Modeling Language: Su-
perstructure, August 2005. Version 2.0, formal/05-07-04. (docu-
ment), 1.1.1, 2.2, 2.8, 2.3.3, 2.12

[OMG06a] Object Management Group, Inc. CORBA Component Model Spec-
ification, April 2006. Version 4.0, formal/06-04-01. 2.2.4

[OMG06b] Object Management Group, Inc. Meta Object Facility (MOF) 2.0
Core Specification, January 2006. Version 2.0, OMG Available
Specification, formal/06-01-01. (document), 2.3, 2.3.1, 2.7

[OMG06c] Object Management Group, Inc. Ontology Definition Metamodel,
2006. Sixth Revised Submission to OMG/ RFP ad/2003-03-40,
ad/2006-05-01. 4.8, A

[OMG06d] Object Management Group, Inc. Unified Modeling Language: In-
frastructure, March 2006. Version 2.0, formal/05-07-05. 2.3.4

[PVW+04] Davy Preuveneers, Jan Van den Bergh, Dennis Wagelaar, Andy
Georges, Peter Rigole, Tim Clerckx, Yolande Berbers, Karin Con-
inx, Viviane Jonckers, and Koen De Bosschere. Towards an
extensible context ontology for ambient intelligence. In Panos
Markopoulos, Berry Eggen, Emile H. L. Aarts, and James L.
Crowley, editors, Proceedings of the Second European Symposium
on Ambient Intelligence (EUSAI 2004), Eindhoven, The Nether-
lands, volume 3295 of Lecture Notes in Computer Science, pages
148–159. Springer-Verlag, November 2004. 1.4, 4.3, 8.3.1



BIBLIOGRAPHY 205

[RB06] Stephan Roser and Bernhard Bauer. An approach to automati-
cally generated model transformation using ontology engineering
space. In Proceedings of the 2nd Workshop on Semantic Web En-
abled Software Engineering, Athens, GA, USA, November 2006.
4.8

[RDH+04] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy
Rogers, Holger Knublauch, Robert Stevens, Hai Wang, and Chris
Wroe. OWL pizzas: Practical experience of teaching OWL-DL:
Common errors & common patterns. In Enrico Motta, Nigel
Shadbolt, Arthur Stutt, and Nick Gibbins, editors, Proceedings
of the European Conference on Knowledge Acquistion, Northamp-
ton, England, volume 3257 of Lecture Notes in Computer Science,
pages 63–81. Springer-Verlag, September 2004. 3.4

[RMR05] S. Reiff-Marganiec and M. D. Ryan, editors. Proceeding of the
8th International Conference on Feature Interactions in Telecom-
munications and Software Systems (ICFI’05), Leicester, UK. IOS
Press, June 2005. 5.3.1, 6.2, 6.6

[SPG+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyan-
pur, and Yarden Katz. Pellet: A practical OWL-DL reasoner.
Journal of Web Semantics, 5(2):51–53, June 2007. 4.2, 7.1

[SWM04] Michael K. Smith, Chris Welty, and Deborah L. McGuinness.
OWL Web Ontology Language Guide. World Wide Web Consor-
tium, February 2004. W3C Recommendation 10 February 2004,
[Online] http://www.w3.org/TR/owl-guide/. 1.3.1, 2.5, 3.1, 3.2,
3.3

[SZW05] Jing Sun, Hongyu Zhang, and Hai Wang. Formal semantics and
verification for feature modeling. In Proceedings of the 10th IEEE
International Conference on Engineering of Complex Computer
Systems (ICECCS ’05), Shanghai, China, pages 303–312. IEEE
Computer Society, June 2005. 5.3.1
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