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AAbbssttrraacctt  

In the real-time and telecom business, SDL is pre-eminently the language for design and 
implementation. For many good reasons, UML is put forward as the front-end language for 
analysis and system design of SDL based systems. UML and SDL are compatible as they share a 
static definition of structure with a behavioral definition of active entities with state diagrams. Still, 
each of them provides enough advantages over the other to make it worthwhile to combine them 
in a single methodology. 

To make the combination of UML and SDL successful, it is essential to have round-trip support 
that synchronizes the information common to the UML model and SDL specification. The UML 
model and SDL specification provide a distinct view on a different abstraction level on the same 
system. Changes on either level must be applied to the other level if the change concerns common 
information. However, the mapping between UML and SDL concepts of structural and behavioral 
information is not one-on-one. We propose a complex mapping that overcomes the existing 
incompatibilities and takes into account the role of UML and SDL in the methodology. This 
complex mapping makes building a translator hard and makes applying existing round-trip 
approaches very difficult.  

In this thesis, we present a set of translation rules that define how changes in a UML model are 
translated into changes in the linked SDL specification and the other way-around. For example, a 
new UML class with stereotype «block» is translated by creating a new SDL block; or renaming 
an SDL variable is translated by renaming the corresponding UML attribute. Each rule detects a 
specific change and translates it by making the appropriate change on the other side. 
Corresponding entities in UML and SDL are linked with each other such that changes may be 
applied at the right place. A continuous thread throughout all translation rules is to preserve as 
many manual changes as possible. For example, if the stereotype of a class changes from 
«process» to «block», the original SDL process is preserved and is placed in the new SDL block. 
Similarly, renaming an UML entity will result in renaming the linked SDL entity, without altering 
its contents. 

Based on the incremental translation rules, we provide the full process for forward iteration and 
reverse iteration. Together they provide full UML-SDL round-trip engineering. The first step in 
the forward iteration process is building the internal information model of the new and the old 
UML model and of the SDL specification. The information models are streamlined toward the 
translation and are extended with UML-SDL link information. Next, both UML models are 
preprocessed for comparison and translation. Some important features of the preprocessor are 
calculating the inherited association, flattening nested state diagrams and assigning default 
stereotypes to classes and operations. Then the two UML models are compared to find new, 
deleted and matching entities. Finally, each change is translated by executing the corresponding set 
of translation rules. The attributes of matching entities are further compared as part of the 
translation rules. 





 

 

AAcckknnoowwlleeddggeemmeennttss  

I am most grateful to my supervisor Viviane Jonckers for all the years of support, feedback and 
invaluable discussions. From the very beginning, she gave me the possibility to perform research 
in the best possible environment. I am grateful for the opportunity she gave to me to perform 
research, to travel to conferences and foreign project partners and to finish this PhD. 

Special thanks to Bart Wydaeghe for being a fine colleague and a best friend at the same time. 
Our discussions were ever enlightening and inspiring and definitely contributed to the results in this 
work. Our non-academic conversations made work more enjoyable and over the years, I have 
taken over his positive way of thinking. 

I wish to thank all my colleagues and former colleagues at the System and Software Engineering 
Lab for provinding a great and motivating work environment. In particular, I thank Luc Goossens 
for all the interesting discussions and for answering many questions on various topics. Many 
thanks to Ludo Cuypers for leading me and Bart Wydaeghe into the INSYDE project and 
providing us with a fruitful start such that we could succesfully continue the project. I also thank 
Wim Vanderperren for his talented work during his internship. 

Of particular help from Telelogic were Anders Ek, Niklas Landin and David Prather. I want to 
thank Anders for guiding me into Telelogic and for our initial work on the UML to SDL mapping. 
Thanks to Niklas for the nice cooperation and fine-tuning the translation. Thanks to David for his 
continuous technical support. 

It is the encourgements from many people that convinced me to start, continue and finish this 
PhD. I am grateful to my father, who triggered me for doing research and helped me through the 
sparse moments of doubts. Thank you Serge Demeyer for persistently pushing me toward a 
concrete PhD and for the early review and helpful hints on improving the text. Last but not least, 
thanks to my spouse Pascale for all the support and encouragement and for granting me the most 
wonderful gift in life, our son Jeroen. 



 

4  Kurt Verschaeve 
  

 

 

 
 

 

 

 

 

 

 

 

 

“Every large system that works started as a small system that 
worked.” 

Anonymous 

 

 



 

Contents   5 
  

TTaabbllee  ooff  CCoonntteennttss  

 

I. THE THESIS 11 

I. 1 CONTRIBUTION 12 
I 1.1 Problem Statement 12 
I 1.2 Contribution 13 
I 1.3 Relevance 14 
I 1.4 Novelty 15 
I 1.5 Importance 15 
I 1.6 Larger Research Context 16 

I. 2 MOTIVATION 17 
I 2.1 Why Methodology? 17 
I 2.2 Why UML? 18 
I 2.3 Why SDL? 19 
I 2.4 Why UML and SDL? 19 
I 2.5 Why Round-Trip Engineering? 21 
I 2.6 Criteria for Evaluation 22 

I. 3 OVERVIEW OF THE DISSERTATION 23 

IIII.. SSOOFFTTWWAARREE  EENNGGIINNEEEERRIINNGG  CCOONNTTEEXXTT 25 

II. 1 SOFTWARE ENGINEERING 26 
II. 2 LIFE-CYCLES 27 
II. 3 INSYDE METHODOLOGY 31 
II. 4 OBJECT ORIENTED ANALYSIS & DESIGN 33 
II. 5 SDL AS A FORMAL SPECIFICATION LANGUAGE 35 

II 5.1 Benefits of a Specification Language 35 
II 5.2 Mini Tutorial 36 

III. UML-SDL ROUND-TRIP ENGINEERING METHODOLOGY 41 

III. 1 INTRODUCTION 42 
III. 2 MAPPING OF UML AND SDL CONCEPTS 43 

III 2.1 Mapping of Static Structure 43 
III 2.2 Mapping of Declarations 45 
III 2.3 Mapping of State charts 45 

III. 3 INCREMENTAL ROUND-TRIP ENGINEERING 48 
III. 4 THREE SCENARIO’S FOR COMBINING UML AND SDL’96 50 

III 4.1 Forward Engineering 50 
III 4.2 Reverse Engineering 51 
III 4.3 Round-trip Engineering 52 

IV. EXAMPLE 55 

IV. 1 INTRODUCTION 56 
IV. 2 SYSTEM DESIGN 57 

IV 2.1 Class Diagram 57 
IV 2.2 State Diagrams 58 
IV 2.3 Investigate Generated SDL 59 



 

6  Kurt Verschaeve 
  

 

IV 2.4 Class Diagram Revisited 60 
IV. 3 TRANSLATING UML TO SDL 62 

IV 3.1 UML Preprocessing 62 
IV 3.2 Hierarchical Structure 62 
IV 3.3 Declarations and Communication 63 
IV 3.4 Finite State Machine 64 
IV 3.5 Linking UML and SDL models 65 

IV. 4 DETAILED DESIGN 67 
IV 4.1 Structures 67 
IV 4.2 Communication and Declarations 68 
IV 4.3 Dynamic Behavior 68 
IV 4.4 Reverse Iteration 69 

IV. 5 SYSTEM DESIGN II 71 
IV 5.1 Class Diagram 71 
IV 5.2 State Diagram 71 
IV 5.3 Forward Iteration 72 

IV. 6 DETAILED DESIGN II 75 

V. REALIZING THE UML-SDL ROUND-TRIP ENGINEERING 77 

V. 1 INTRODUCTION 78 
V 1.1 Overview of the Round-Trip Process 78 
V 1.2 How to read rule definitions 80 

V. 2 UML INFORMATION MODEL 81 
V 2.1 Information Model 81 
V 2.2 Translation and Preprocessing Options 85 
V 2.3 Preprocessing 86 

V. 3 SDL INFORMATION MODEL 97 
V 3.1 Entity Inheritance Hierarchy 97 
V 3.2 Static Structure 98 
V 3.3 Communication 100 
V 3.4 Declarations 101 
V 3.5 State Machine 102 

V. 4 LINK UML AND SDL 103 
V 4.1 Hierarchical Links 103 
V 4.2 UML link extension 103 
V 4.3 SDL ADT extension 106 

V. 5 COMPARE & TRANSLATE 108 
V. 6 UML TO SDL 110 

V 6.1 Introduction 110 
V 6.2 New Model 110 
V 6.3 Compare Model 110 
V 6.4 Delete Model 111 
V 6.5 New Package 111 
V 6.6 Delete Package 113 
V 6.7 Compare Package 113 
V 6.8 New Class 115 
V 6.9 Delete Class 120 
V 6.10 Compare Class 120 
V 6.11 New Aggregation 124 
V 6.12 Delete Aggregation 126 
V 6.13 Compare Aggregation 126 



 

Contents   7 
  

V 6.14 New Attribute 128 
V 6.15 Delete Attribute 128 
V 6.16 Compare Attribute 129 
V 6.17 New Operation 130 
V 6.18 Delete Operation 132 
V 6.19 Compare Operation 133 
V 6.20 Definitions for Associations 135 
V 6.21 New Association 139 
V 6.22 Delete Association 150 
V 6.23 Compare Association 151 
V 6.24 New State Diagram 152 
V 6.25 Delete State Diagram 153 
V 6.26 Compare State Diagram 153 
V 6.27 New State 153 
V 6.28 Delete State 153 
V 6.29 Compare State 154 
V 6.30 New Transition 154 
V 6.31 Delete Transition 156 
V 6.32 Compare Transition 157 
V 6.33 New Action 157 

V. 7 SDL POST PROCESSING 159 
V 7.1 Structure 159 
V 7.2 Communication 160 
V 7.3 Declarations 161 

V. 8 SDL TO UML 162 
V 8.1 Reverse Iteration 162 
V 8.2 UML Model versus Diagrams 162 
V 8.3 Specification & Packages 162 
V 8.4 New Block 163 
V 8.5 Delete Block 164 
V 8.6 Compare Block 165 
V 8.7 New Process 167 
V 8.8 Delete Process 168 
V 8.9 Compare Process 169 
V 8.10 New/Delete/Compare Specialization 171 
V 8.11 New Procedure 171 
V 8.12 Delete Procedure 172 
V 8.13 Compare Procedure 172 
V 8.14 Communication 173 
V 8.15 New Communication 173 
V 8.16 Delete Communication 173 
V 8.17 Compare Communication 174 
V 8.18 New newtype 175 
V 8.19 Delete newtype 176 
V 8.20 Compare newtype 176 
V 8.21 New Variable 177 
V 8.22 Delete Variable 178 
V 8.23 Compare Variable 178 
V 8.24 New State 178 
V 8.25 Delete State 179 
V 8.26 Change State 179 



 

8  Kurt Verschaeve 
  

 

V 8.27 New Transition 179 
V 8.28 Delete Transition 180 
V 8.29 Compare Transition 180 
V 8.30 New Action 181 

V. 9 UML POST PROCESSING 183 
V 9.1 Pass changes on to full UML model 183 
V 9.2 Create and Update Diagrams 183 

V. 10 USER INTERACTION 185 
V 10.1 Interactive Comparison 185 
V 10.2 Interactive Rule Activation 185 
V 10.3 Managing Links 186 
V 10.4 Protect Areas 186 
V 10.5 Maintenance Phase 186 
V 10.6 Change Report 187 

VI. CONCLUSIONS 189 

VI. 1 MAIN CONTRIBUTIONS 190 
VI. 2 FUTURE WORK 192 
VI. 3 RELATED RESEARCH 193 

VI 3.1 SDL-2000 193 
VI 3.2 UML for Real-Time 194 
VI 3.3 Version Management 195 
VI 3.4 Round-Trip Engineering Solutions 195 

 



 

Contents   9 
  

LLiisstt  ooff  FFiigguurreess  

 
Figure I-1. Comparison of Features of UML and SDL 20 
Figure II-1. The waterfall software development life-cycle model 27 
Figure II-3. SDL structures and structure types 37 
Figure II-4. Process Definition 37 
Figure II-5. Example FSM and the equivalent in SDL 38 
Figure II-6. Transition showing the basic behavioral features 38 
Figure II-7. Text symbols with signals declarations 39 
Figure II-8. Connecting Channel and Signal Routes 39 
Figure II-9. Newtype and Variable Declaration 40 
Figure III-1. Example of Structural Mapping 44 
Figure III-2. Translation of Communication 45 
Figure III-3. Flattening a State Diagram with Entry & Exit actions 46 
Figure III-4. Successive Iterations 48 
Figure III-5. Forward Engineering Scenario 50 
Figure III-6. Reverse Engineering for Documentation 52 
Figure III-7. Information flow during Round-Trip Engineering 53 
Figure IV-1: Typical use of Toffee Vendor. 56 
Figure IV-2. Initial Class Diagram of Toffee Vendor 57 
Figure IV-3. State Diagram of the Control Class 58 
Figure IV-4. State Diagram of the Ware Manager and Coins 59 
Figure IV-5. Structural overview of the generated SDL System 59 
Figure IV-6. Declarations in the ToffeeVendor System 60 
Figure IV-7. Improved Class Diagram of Toffee Vendor 61 
Figure IV-8. Hierarchy View of the Generated System 63 
Figure IV-9. Signal and Type Declarations in the Generated System 63 
Figure IV-10. Block and Processing Interaction 64 
Figure IV-11. Process Interaction in Dialogue Block Type 64 
Figure IV-12. Generated FSM for Control_Process 65 
Figure IV-13. Hierarchical Links between UML and SDL 66 
Figure IV-14. System structure after Detailed Design 67 
Figure IV-15. Detailed design of newtypes 68 
Figure IV-16. Control Process after Detailed Design 69 
Figure IV-17. New System Design Model 71 
Figure IV-18. New State Diagram of Control 72 
Figure IV-19. Static Structure of Dialogue block after Forward Iteration 73 
Figure IV-20. Control Process after forward iteration 74 
Figure IV-21. Control Process after Forward Iteration 75 
Figure IV-22. State Diagram of Control after Second Iteration 76 
Figure V-1. Overview of the Forward Incremental Process 78 
Figure V-2. Overview of the Reverse Incremental Process 79 
Figure V-3. UML information model 81 
Figure V-4. Aggregate Structure to Find Common Aggregate 89 
Figure V-5. Example of association before resolving inheritance 91 
Figure V-6. Example after Conservative Association Inheritance 92 



 

10  Kurt Verschaeve 
  

 

Figure V-7. Example after Full Connect Inheritance of Association 93 
Figure V-8. Example of Nested State Diagram 95 
Figure V-9. Inheritance Structure of SDL Entities 98 
Figure V-10: Hierarchical Links between UML and SDL 103 
Figure V-11. Hierarchy and Order of Model Comparison 109 
Figure V-12. Aggregation Paths Example 136 
Figure V-13. Illustration to explain Aggregation Paths 138 
Figure V-14. Illustration for using Class Signal Lists in Conservative Approach 140 
Figure V-15. Example of generated gates 142 
Figure V-16. Illustration of “one-end” translation approach 144 
Figure V-17. Communication with External Actor 145 
Figure V-18. Illustration of cases for associations to «process» classes 146 
Figure V-19. Example of Channel Generation in Full Connect 150 
 
 



 

 

III...   TTTHHHEEE   TTTHHHEEESSSIIISSS   

“You must have long term goals to keep you from being frustrated 
by short term failures.” 

- Charles C. Noble- 



 

12  Kurt Verschaeve 
  

 

I. 1 Contribution 

I 1.1 Problem Statement 

The Specification and Description Language (SDL) [ITU94] is an important real-time software 
engineering language with a wide range of applications such as telecommunications, aerospace and 
automotive. SDL has a rich grammar to describe behavior and the semantics are formally defined. 
As a result, SDL tools can simulate systems specified in SDL and allows detections of errors in 
the specification at a very early stage. However, SDL is less suited for the first stages in the 
development life-cycle because of its lack of generic concepts and modeling freedom. Many real-
time developers are turning to object-oriented analysis for the first stages in their development life-
cycle.  

Object oriented analysis techniques provide a good medium for visualizing, constructing, 
describing, and documenting the artifacts of software systems. The different diagrams available in 
object oriented modeling languages (OOMLs) each cover another aspect of the system and the 
underlying model can be presented in different ways to clarify specific relations. This is also a way 
to handle complexity, as complex diagrams can be divided into smaller ones. Finally, because 
OOMLs in general give little constraints during modeling, is gives the system architect more 
flexibility to explore solutions. However, the same characteristic that make these modeling 
languages good for analysis, makes them poor for excact specification of a system’s dynamic 
structure and behaviour. 

The solution is to use a OOML for analysis and the first stages of design and to use formal design 
techniques for design and implementation. A number of projects, methodologies and tools realized 
by important players in this field confirm the trend towards this combination. The following 
projects all combine OMT and SDL in their methodology: INSYDE [HWW96], SISU I & II 
[Bræ96] & [MS97], SCREEN [SCR98] and TOSCA [TOS98]. The Integrated Method (TIMe) 
uses the unified modeling language (UML) for object nodels in early phases, SDL for design of 
structure and behaviour and message sequence charts (MSC) for describing interaction. The tool 
Telelogic Tau offers extensive support for both UML and SDL. 

A recurring problem when combining different models on different abstraction levels is the 
synchronization of overlapping information. After the initial translation step, the development 
continues by adding more details to the generated design. When turning back to the higher 
abstraction level, e.g. to make structural changes, simply rerunning the translation results in 
overwriting the previous changes. Relevant changes on one level of abstraction should 
automatically be reflected on the other abstraction level while preserving as much of the detailed 
design as possible. Without the necessary tools support for round-trip engineering, the higher level 
design models will not get updated and loose their effectivness or will not be created in the first 
place. 

In short, we need a round-trip engineering process that integrates UML for system design and 
SDL for detailed design and synchronizes the common aspect of the UML model and SDL 
specification in such a way that previous detailed handwork is not overwritten. 
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I 1.2 Contribution 

The major contributions of this thesis are to bring the UML and SDL languages closer to each 
other and to enable round-trip engineering based on the complex mapping between those 
languages. 

In this thesis, we present a validated mapping between UML and SDL concepts. In short, the 
UML class diagrams map on the SDL static structure and the UML state diagrams map on SDL 
state charts. The mapping is complex because entities do not map one-on-one. For example, a 
UML association is mapped on a combination of channels, signal routes and/or gates and a class 
can be mapped on a block and/or process. Moreover, some incompatibilities need to be resolved, 
e.g. nested state diagrams must be flattened before they can be translated. 

Based on the complex mapping, we provide support for round-trip engineering between a UML 
model and a SDL specification. The typical one-shot translation is replaced by a set of incremental 
translation rules that translate changes rather than complete models. The model and the 
specification are stored internally in an information model for UML and SDL that is specialized 
toward the translation. The UML model is preprocessed to fill-in missing information, to check 
consistency and to overcome two incompatibilities with SDL. More specifically, inherited 
associations to subclasses and nested state diagrams are flattened. 

The incremental translation algorithm is based on finding the changes made since the previous 
iteration and translating only those changes. To find these changes, the model is compared with its 
previous version based on the entities’ unique identifier. The result is a set of new entities, deleted 
entities and matched entities. Matched entities are entities that are present in both the old and the 
new model and their attributes are further compared as part of the translation. This comparison is 
executed in a hierarchical fashion. 

We developed a large set of translation rules that translate any possible change in UML (e.g. new 
class, rename association, delete attribute) to local changes in SDL and the other way around in 
complience with the mapping. Each translation rule consists of a combination of preconditions, 
context, translation actions and variable definitions. Moreover, the translation is always done in 
such a way that as much of the detailed design work in SDL is retained. For example, if a class 
with stereotype «block» becomes “typed”, the corresponding block is converted to a block type, 
takeing over the complete contents of the block. This approach of updating the model instead of 
regenerating it also makes sure that the graphical layout information of SDL entities is retained. 

In order to determin the correct location to apply the translated changes, we extended the UML 
and SDL information model with explicit links between UML entity and SDL entities. When 
translating a “new” UML entity, it is linked with the generated SDL entities and some additional 
links needed to translate other change. A «block» class, for example, is linked with the generated 
block (sdldefinition), the management process (sdlprocess), the structure containing the signals 
(declarationStruct) and the signal list (sdlsignallist). The reverse version of these links are added 
to the SDL information model, e.g. process.sdlprocess-1 returns the class that is linked to the 
process though the sdlprocess link. 

In short, we introduce the technique of incremental translation of changes to synchronize the 
UML model and the SDL specification, while they present different abstraction levels of the 
system. The rest of this section motivates why this contribution is relevant, novel and important to 
the telecom community.  
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I 1.3 Relevance 

There is an increasing demand for an integration of object-oriented analysis with formal design 
techniques for the development of real-time and embedded systems. Many real-time developers 
are turning to object-oriented analysis for the first stages in their development life-cycle. It is a 
natural demand to integrate this into the rest of the development life-cycle. This is reflected in a 
number of projects, methodologies and tools realized by important players in this field.  

The INSYDE methodology [HWW96] integrates the object-oriented method OMT with two 
domain-specific design techniques, namely SDL [ITU94] and VHDL. This research was 
performed by three academic and three industrial partners. Baseline for the process model is 
OMT, which offers a common platform for the analysis of software and hardware. The software 
parts are translated to SDL and the hardware parts are translated to VHDL. Detailed design 
continues in the specific target language. This combination of complementary notations offers a 
number of advantages. 

Octopus is a systematic and effective method for developing object-oriented software particularly 
for embedded real-time systems. It has been developed at Nokia Research Center since 1993. The 
Octopus method is based on the popular OMT and Fusion methods, but also embodies common 
practice found in real-time system development. 

The methodologies developed by the SCREEN [SCR98] and TOSCA [TOS98] projects are based 
on components being developed by combining UML (or OMT) and SDL. These components are 
then incorporated into a framework. COSEC and TOSCA have in common that they provide a 
rapid service provisioning based on the specialization of a framework with a nearly ready service 
set of software components. The framework can be used to build a large number of standard and 
customized services. More details about the alignment of the TOSCA and SCREEN approaches 
can be found in [LKH99]. 

Another notable example is TIMe, The Integrated Method, which is a systems development 
methodology from SINTEF Telecom and Informatics. TIMe is based on over 2 decades of 
experience from research and industrial projects. It uses the unified modeling language (UML) for 
object nodels in early phases, SDL for design of structure and behaviour and message sequence 
charts (MSC) for describing interaction. 

Within the SDL community, UML has gotten a lot of attention the last few years. The latest 
version, SDL 2000, has a build-in graphical notation for the UML class diagram. Both major SDL 
tool builders, Telelogic and Verilog, are building tools to integrate UML and SDL. Telelogic Tau 
3.6, now covers all the phases of the development process and covers them with languages 
optimized for each phase: UML, SDL and TTCN. We actively contributed to implementing the 
translation of UML to SDL. 

Even in an integrated tool/language, there will still be the need to maintain two levels of 
abstractions. The system design view, is used for documentation and overview and on this level, 
important design and architectural decisions are taken. On the implementation level, all the details 
are accessible. In this scenario, support for round-trip engineering is still necessary to synchronize 
the different abstraction levels. 
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I 1.4 Novelty 

At the time we first developed translation rules from OMT to SDL’88 [VWCJ95], this was a 
brand new idea. The gap between the two languages was very wide and the OMT semantics had 
to be bent a lot to make the translation to SDL. Especially the integration of OMT’s static model 
and the dynamic model in the SDL code generator was novel. The transition to UML and SDL’92 
imposed new possibilities and challenges. A continuous process of improvements [Ver97], 
partially in cooperation with Telelogic [VE99], brought the quality of the translation good enough 
for commercial exploitation. 

The integration of the class diagram and the state diagram of UML for round-trip engineering is 
new. UML tools that support round-trip engineering only translate the class diagram [Tog00], 
[Rat00]. Methods that translates both the class diagram and the state diagram [Har97], [Mel99] 
are a one-shot translations and require to write a lot of code in the state diagram. 

Round-trip engineering with complex underlying translation rules is new. The translation of UML 
to SDL is complex; there is no simple one-to-one mapping between an entity in UML and an 
entity in SDL. For example, an association maps on a set of channels and signal routes, spread 
over several structures. If the association is modified, this may have implications on all SDL 
entities generated from the association. As long as there is no one-to-one mapping between UML 
and SDL, an incremental translation of changes is a good option to synchronize these abstraction 
levels. Tools like TogetherJ [Tog00] that do UML-Java round-trip engineering, are based on an 
exact one-to-one mapping. 

I 1.5 Importance 

For developers that already use UML and SDL, it is of course very important that their process is 
supported by the right tools and methods. Moreover, tool support for UML–SDL round-trip 
engineering can really boost object-oriented design, with all its advantages, into the whole SDL 
community. Automatic synchronization encourages people to maintain and exploit the system 
design model of the system. This is already important in a waterfall-like process, but is crucial in 
an iterative software development process. 

Within the SDL community, UML has gotten a lot of attention the last few years. The latest 
version, SDL 2000, has a build-in graphical notation for the UML class diagram. Both major SDL 
tool builders, Telelogic and Verilog, are building tools to integrate UML and SDL. Telelogic Tau 
3.6, now covers all the phases of the development process and covers them with languages 
optimized for each phase: UML, SDL and TTCN. We actively contributed to implementing the 
translation of UML to SDL. 

Even in an integrated UML/SDL tool/language, there will still be the need to maintain two levels 
of abstractions. The system design view, is used for documentation and overview and on this 
level, important design and architectural decisions are taken. On the implementation level, all the 
details are accessible. In this scenario, support for round-trip engineering is still necessary to 
synchronize the different abstraction levels. 

This research is also reusable outside the UML-SDL scenario. Providing round-trip support by 
incrementally applying translation rules can be applied to synchronize any two models on different 
abstraction levels that contain parallel information. The only prerequisite is a set of translation 
rules that is able to translate the abstract model into the concrete model in an entity per entity 
fashion. These translation rules are slightly modified to translate new items added after an 
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iteration. To translate other changes, the set of translation rules must then be extended with rules 
that translate any individual change in the model.  

I 1.6 Larger Research Context 

The research done for this dissertation has been part of several broader research efforts. During 
the INSYDE project [INS94], OMT was used as an analysis and design front-end to SDL and 
VHDL. The common front-end enabled developers to co-design hardware and software in one 
method. In the ITA-2 [ITA98] AIA project [AIA98], we do research on a methodology for 
component oriented service creation [VWW00]. One specific feature of the methodology is that it 
targets different kind of users, ranging from developers who demand high-flexibility to end-users 
who like ease-of-use. In this research, the UML-SDL round-trip engineering is used to build an 
SDL component framework with an easy-to-use UML front-end. 

The results of our research should be applied in a larger context. In this dissertation, we provide 
only a part of a software development process. In order to use the UML-SDL round-trip 
engineering in a real project, it should be fit into a global iterative process. Because such a process 
is (and should be) different for each company or even for each project [Hig00], we do not put 
forward a preferred process in this dissertation.  

The core of our research, automatic synchronization of models expressed in different paradigms, 
can be applied to other languages. In cases that there is a direct one-to-one mapping (e.g. UML-
C++), there is no need for complex algorithms like ours. However, for two models written in a 
different language with a complicated mapping and translation, our approach can be applied to 
synchronization the two models. The extra advantage is that our approach allows the models to be 
on different abstraction levels, contain more or less details and still provide support for 
synchronization. 
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I. 2 Motivation 

I 2.1 Why Methodology? 

A methodology is a definition of a set of work products and a set of notations, activities and tools 
structured into a lifecycle process to produce and modify those work products [SPC94]. Each 
company or even each project group has its own implicit or explicit methodology. The 
methodology provides the people involved with guidelines when and how to perform certain 
activities and how different team members should work together. Different methodologies differ a 
lot in what part of the lifecycle they cover. Each methodology may have elements that are useful 
to a portion of the development life cycle. The life cycles phases are defined as follows [TOA95]:  

• Domain Analysis addresses researching an application domain and identifying, documenting, 
constructing, testing, and demonstrating reusable components useful in the domain. 

• Analysis is that portion of the life-cycle that describes the outwardly observable characteristics 
of the system, e.g., functionality, performance, and capacity. Normally this description 
includes models that depict the logical construction of the systems, and its placement within a 
system environment.  

• Design is that portion of the life-cycle that prepares definitions as to how the system will 
accomplish its requirements. The models prepared in analysis are either refined, or 
transformed, into design models that depict the real structure of the software product.  

• Implementation is that portion of the life-cycle that converts the developed design models into 
software executable within the system environment. This either involves the hand coding of 
program units, the automated generation of such code, or the assembly of already built and 
tested reusable code components from an in-house reusability library.  

• Testing focuses on ensuring that each deliverable from each phase conforms to, and addresses 
the, stated user requirements.  

A complete methodology is far more than a notation, a process, and some tools. There are 
organizations that attempt to create fully elaborated methodologies. For instance, Ernst and 
Young's Navigator method and Andersen Consulting's Foundation method [AC99] consists of 
thousands of pages bound in a number of binders, provides a number of CD-ROMs, and are 
coordinated with extensive training. Even “extreme programming” [Beck99], a lightweight 
methodology that relies on programming in pairs and unit testing during coding, can be considered 
a full methodology as it provides many organizational and management aspects. In addition to a 
“notation, process, and tools,” these “complete methodologies” provide [TOA95]:  

• Cost Estimating Guidelines,  
• Project Management Tasks and Deliverables,  
• Measures and Metrics,  
• Defined Forms and Deliverable Construction Directions,  
• Software Quality Assurance Policies and Procedures,  
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• Detailed Role Descriptions and Training Programs,  
• Completely Worked Examples,  
• Training Exercises,  
• Techniques for Tailoring the Method, and  
• Defined Techniques.  

Setting the comments made above aside, this dissertation uses the term "methodology" as 
consisting of a notation and a process. In this perspective, we provide a methodology that explains 
the role of UML and SDL during analysis, design and implementation. Testing and domain 
analysis are only covered partially.  A considerable part of our methodology is about notation. 
UML and SDL require the creation of abstract descriptions and graphical models, of the system 
under analysis and/or design. These models are constructed using some form of notation. Our 
methodology specifies which notation should be used for a particular model. The core of our 
methodology covers the tool support needed for smooth integration of UML and SDL. The 
different activities in the methodology are brought together in a number of scenarios that describe 
the process. 

The methodology described in this dissertation is not a complete methodology and therefore 
cannot be used directly into real projects. Either our methodology is integrated into an existing 
methodology or our methodology is extended with those aspects in the list above that are relevant 
for the project at hand. 

I 2.2 Why UML? 

It is not difficult to explain why we chose the Unified Modeling Language (UML) [BR95] over 
other object oriented modeling languages. The UML is the proper successor to the object 
modeling languages of three previously leading object-oriented methods (Booch, OMT, and 
OOSE). The UML is the union of these modeling languages and more, since it includes additional 
expressiveness to handle modeling problems that these methods did not fully address. UML meets 
the following requirements [OMG99]: 

• Formal definition of a common object analysis and design (OA&D) metamodel to represent 
the semantics of OA&D models, which include static models, behavioral models, usage 
models, and architectural models. 

• IDL specifications for mechanisms for model interchange between OA&D tools. The 
specification includes a set of IDL interfaces that support dynamic construction and traversal 
of a user model.  

• A human-readable notation for representing OA&D models. The UML notation is an elegant 
graphic syntax for consistently expressing the UML’s rich semantics. Notation is an essential 
part of OA&D modeling and the UML. 

Object oriented modeling languages in general are very useful in our context. They provide a good 
medium to for specifying, visualizing, constructing, and documenting the artifacts of software 
systems. The different diagrams each cover another aspect of the system and a set of class 
diagrams may present the same underlying model in different ways to clarify specific relations. 
This is also a way to handle complexity, as complex diagrams can be divided into smaller ones. 
Finally, because OOML in general give little constraints during modeling, is gives the system 
architect more flexibility to explore solutions. 
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I 2.3 Why SDL? 

Of all existing formal specification languages, SDL [EHS97] is unique in that it combines many 
qualities: SDL is formally defined by the ITU, it has a graphical notation with one-on-one mapping 
on the textual notation, SDL specifications are easy to read and understand, SDL’s state charts 
have a high expressive power and a SDL specification can be simulated or transformed to an 
executable. Because of these qualities, SDL became well accepted by the industry and high-
quality professional tools are available [Tele], [Cin]. Section II. 5 gives more details on SDL and 
provides a mini-tutorial.  

Using SDL in a methodology has the great advantage that design, implementation and testing can 
be performed in the same language. SDL combines powerful structural concepts and expressive 
state charts and allows object orientation on both levels. Its integration with CCITT [ITU04] and 
MSC [ITU94-2] allows advanced simulation and testing.  

In this dissertation, we limit ourselves to systems that can be specified in SDL. SDL is widely 
used in the telecommunications field, but it is also now being applied to a diverse number of other 
areas ranging over aircraft, train control, medical and packaging systems. Some examples for 
which SDL is not suited are database applications and mathematical libraries. Considering the 
exponential growth of the telecommunication industry and the circulation of SDL, the constraint 
of sticking to SDL does not seem to be too restrictive.  

The latest version of SDL is SDL-2000, while the research presented in this dissertation is based 
on SDL’96. The only reason for not using SDL-2000 is that this dissertation reflects the research 
done before the definition of SDL-2000. However, it was already apparent that SDL-2000 had a 
strong focus on UML. In fact, many ideas presented in our work, such as linking UML entities to 
its mapped SDL entity and using the UML extensibility mechanisms, are now standardized in 
SDL-2000. Furthermore, some complex mappings in our current work are simplified by new 
features in the language. For example, the composite states of SDL-2000 make it unnecessary to 
flattening of the UML state diagram before translation. We may conclude that SDL-2000 affirms 
the idea of UML-SDL round-trip engineering and confirms many ideas presented in this 
dissertation. More details on the impact of SDL-2000 on our approach are discussed in section VI 
3.1 on related work. 

I 2.4 Why UML and SDL? 

We selected UML as the best object oriented analysis language and SDL as the best formal 
specification language, but why do we need both? Is UML or SDL in itself not enough? Only 
UML is definitely not enough. None of the UML diagrams is able to specify all details about the 
behavior of a class necessary to generate executable code. Even if UML could be stretched to 
make it work [Har97], it is not very practical to write many pieces of Java or SDL into a state 
diagram. Using only SDL is feasible for smaller projects. SDL could be used as a wide spectrum 
language from requirements to implementation. But for larger projects, SDL is not flexible enough 
for analysis and system design. Before one can start specifying in SDL, he or she needs a clear 
view on the design of the system.  

This view of combining UML and SDL is supported by the methodological supplement of the 
Z.100 recommendation [ITU00]. This supplement recommends the use of OMT for the initial 
phases of analysis and design and then to pass to SDL. The next version of this methodology 
guide, which is not yet published, will be updated towards UML, as it is the proper successor to 
OMT. In addition, SDL-2000 incorporates the most useful UML constructs that were not yet 
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available in SDL-96 and the traditional graphical representation of UML classes, and Z.109 
[ITU99] allows a coherent combination of UML and SDL within the same project. 

The main question we answer here is: in which way can UML improve the development or 
maintenance of a system and how can it be combined with SDL in the best possible way? A good 
introduction of how UML is used to model real-time systems can be found in [Dou98]. Previous 
research has been done for combining OMT and SDL in [HWW96]. 

Our goal is to get the maximum profit of the advantages of both UML and SDL. UML and SDL 
share a number of qualities, like having a graphical notation, good readability and good tool 
support. They also incorporate object orientation and state machines, which make UML and SDL 
suitable to work together. Nevertheless, each of them also has enough advantages to make it 
worthwhile to combine them both in one methodology. Below we list the most important 
advantages. 

Main advantages of UML over SDL: 
• Generic Concepts 
• Smooth transition from Use Cases, Conceptual Model and Sequence Diagrams to Class 

Diagrams and State Charts 
• Multiple Views on the same information, i.e. a class can be viewed in several diagrams. 
• Little constraints during modeling, more flexibility 

Main advantages of SDL over UML: 
• Specialized Concepts 
• Formal definition and semantics 
• Simulatable and executable 
• Both graphical and textual syntax 

UML

Collaboration
Diagram

Use Cases

SDL

Static Structure
Block
Process
Channel
...

Subsystem
Class

Association
...

Type
Specification

Simulation

Transition
Implementation

Behaviour
Finate
State
Machine

State
Diagram

MSCSequence
Diagram

 
Figure I-1. Comparison of Features of UML and SDL 

Comparing the diagrams available in UML and SDL, we come to the same conclusion that UML 
and SDL is a good alliance. Figure I-1 shows the diagrams or information available in UML and 
SDL. They share the specification for the static structure, behavior and scenarios. Unique for 
UML are the use cases and the collaboration diagrams. In SDL the type specifications and the 
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transitions can be implemented in full detail. Note that UML Sequence Diagrams and MSC’s both 
are used to specify scenarios, but are not dealt with in our round-trip engineering. 

I 2.5 Why Round-Trip Engineering? 

Knowing that UML and SDL will be used together, one will want tool support for the translation 
and synchronization of the corresponding information. Without specific support, the UML model 
is nothing more than a document that can be used as a basis to implement the system in SDL. The 
developer may put less effort in completing the details of the UML model, as the effort needs to 
be done a second time anyway. Furthermore, there is no consistency check between the two 
models and most likely, the UML will not be updated once the development in SDL has started.  

The first step in supporting the cooperation between UML and SDL is the one-step translation. 
The system design phase in UML can be stretched, in order to make a design model that is as 
complete and detailed as possible. The class diagram and the state diagram of the UML model are 
then translated completely into SDL. The translator makes extensive use of the UML stereotypes 
and has a specific interpretation for associations, aggregation and generalization. Technically the 
translator can translate any UML model, but unless the UML is prepared for the translation, the 
generated SDL will not be as expected. This preparation is part of the system design phase. The 
advantages of the translation are apparent. The effort to make a detailed system design model in 
UML can be reused completely before starting detailed design in SDL. The transition from 
analysis to design is smoother and many labor-intensive aspects of creating the initial SDL 
structure and declarations are automated. Still, after the translation, the UML model and the SDL 
specification are two separate documents. Changes to design should be applied to both UML and 
SDL. In practice, however, the UML model is likely to become outdated. 

The one-step translation can be extended with forward iteration. This means that changes to the 
UML model are applied to the SDL specification, even if the initial generated SDL specification 
has already been modified by hand. From a methodological point of view, this is similar to the 
one-shot translation, but the developer is encouraged to maintain the UML model as it helps him 
to make design level changes to the system. Provided that all design level changes are applied in 
UML, forward iteration ensures consistent UML and SDL models. Technically, there are many 
ways to put forward iteration into practice. Either the updated UML model is translated and then 
tries to reuse parts of the modified version of the SDL specification. Alternatively, the modified 
version of the SDL specification is taken as the basis and the changes made in UML are applied to 
the SDL specification. The first approach is better suited for large changes in the UML model. 
The second approach is better suited for incremental updates to the UML model. In this thesis, 
we take the second approach and we extend it with reverse iteration. 

The next step toward full round-trip engineering is two-way iteration. Changes in UML are 
translated to SDL and the other way around. This kind of iteration is applied in discrete steps. 
Either model is modified and saved, then the iterative translator check for modifications or missing 
information. It is this kind of support that we present in this dissertation. It allows design decisions 
to be taken at the best possible side or simple at the side the developer is currently working at. 

The ultimate support is the real-time round-trip engineering. It does not matter where or when the 
design or implementation is done, the other model is always updated automatically in real-time. 
Tools as TogetherJ [Tog00] show the UML class diagram alongside of the generated Java code in 
the same window. These tools are based on the one-on-one mapping between UML and Java 
entities. 
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I 2.6 Criteria for Evaluation 

In this dissertation, we present one possible solution to realize round-trip engineering between 
UML and SDL. This solution was build with a certain vision of the perfect tool. Here, we present 
a list of criteria that allows the evaluation of a certain solution in our context. An approach that 
matches all criteria would be the perfect round-trip solution. Note that our approach is not perfect. 

Criteria for the evaluation of a certain UML-SDL round-trip solution: 

• To boot strap the iteration, the tool should able to translate a complete UML model to SDL or 
a complete SDL specification to UML.  

• The tool should translate and synchronize as much information as possible concerning the 
static structure of the system, the behavior of individual classes and the scenarios for 
collaborations. 

• The tool should never overwrite or delete manual changes on either side, unless a change in 
the other side explicitly overwrites it. In particular, the tool should preserve: comments, 
graphical layout information and analysis or implementation properties of an entity. 

• After an iteration, neither model should contain information or constraints that are inconsistent 
with the linked model, unless the developer explicitly chooses for it. This implies that a 
developer should have the possibility to indicate that some entity does not take part in the 
synchronization. 

• The tool should allow changes in UML and SDL at the same time. 
• In the case of conflicting changes, the tool should let the developer choose interactively 

between several possibilities. 
• The kind of changes that the developer may apply should not be limited to adding code in 

some predefined area.  
• The generated SDL should be readable and easy to change by a human. 
• The synchronization should keep working after many iterations, even if the model has 

completely been changed since the first translation. 
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I. 3 Overview of the Dissertation 

This dissertation in organized in two main parts. Chapters II, II and IV gives the necessary 
background and overview to understand the technical core presented in Chapter V. 

Chapter II positions our research in context of software engineering and provides some 
background information on object oriented analysis techniques and SDL. The mini SDL tutorial 
provides the readers that do not know the language with a quick introduction to better understand 
the rest of the dissertation. Chapter II also gives a summary of the initial research efforts to 
combine object oriented analysis techniques and formal description languages. 

Chapter III gives a comprehensible overview of the mapping of UML and SDL concepts and of 
the round-trip process. This chapter is particularly interesting, as it gives the reader the necessary 
background to read and understand the core of this dissertation in chapter V. We also present 
three scenarios on how the round-trip engineering could be integrated in larger process. 

Chapter IV uses an example to illustrates the successive steps in the UML-SDL round-trip 
engineering. The toffee vendor serves as the example. Starting in UML and an initial translation to 
SDL, we continue with two iterations through system design in UML and detailed in SDL. 

Chapter V contains the technical core of this dissertation: the complete definition of the translation 
of changes in an UML model to SDL and the other way around. As preparatory work, the 
information models for UML and SDL are defined, together with the hierarchical links between 
both models. We define a set of preprocessing rules that prepare a UML model for translation and 
define how two UML models or two SDL specifications are compared with each other. Sections 6 
and 8 of this chapter define the translation of each possible change in respectively UML and SDL. 
The definition is presented as a large set of translation rules, where each rule has a precondition 
that states when the rule is applicable or not. 

Chapter VI concludes this dissertation by describing the main contributions and discussing related 
and future research. Noteworthy, we discuss the impact of SDL 2000 on our results. 





 

 

IIII..  SSooffttwwaarree  EEnnggiinneeeerriinngg  CCoonntteexxtt  

“Always design a thing by considering it in its next larger context -
- a chair in a room, a room in a house, a house in an environment, 
an environment in a city plan.”  

-Eliel Saarinen- 

 

“If you don't know where you're going, any road will get you 
there.” 

-Chinese Proverb- 
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II. 1 Software Engineering 

According to the IEEE's definition [IEEE83], software engineering is the systematic approach to 
the development, operation and maintenance of software in a cost effective way. In our context, 
we define software engineering as the research for software development methodologies or 
software processes that allows a systematic approach for the activities above. A software 
development methodology or software process itself is defined as 

• a process for performing particular work tasks throughout the systems development life-cycle 
and the measures to know they are being done properly;  

• a set of tools, methods and notations and a description when and how to use them throughout 
the life-cycle; and 

• the total set of policies, standards, and procedures related to performing software development 
work tasks. 

The aspects covered by a specific methodology can range from only one aspect (e.g. the life-cycle 
in waterfall model) to a full coverage of all possible aspects (e.g. Andersen Consulting's 
Foundation method [AC99]). Some additional aspects can be considered from a management 
perspective; the software development methodology may deal with financial, strategic, commercial 
and human aspects. We do not cover this perspective in this dissertation.  

Having a software development methodology is necessary to cope with the complexity of a 
software system. To better understand the problems with software engineering, it is interesting to 
explain how it is different from other engineering disciplines for a number of reasons. 

• The process of proving the correctness of software is extremely difficult if not impossible even 
for small software projects. 

• Software engineering deals with abstractions with no physical form (the software).  Thus, it is 
not constrained by materials governed by physical laws or by manufacturing processes as in 
other engineering disciplines.  It is not tangible. 

• The software is usually large and complex, thus requires a team or teams of engineers. 
• Unlike other engineering products, software usually evolves and requires a great deal of 

maintenance. 

Throughout the short history of software engineering, many methodologies were developed to 
overcome these difficulties. Most of them improved existing methodologies, but some of them 
also take radical new approaches. It is clear now that there is no one best methodology for all 
problems. Instead, a methodology must be selected and tailored for each company or even for 
each project. 

In this chapter, we present some context on each of the three ingredients of a methodology: the 
life cycle, tools and notation. 
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II. 2 Life-cycles 

In [IEEE83], a software life cycle is defined as “The period of time that starts when a software 
product is conceived and ends when the product is no longer available for use. The software life-
cycle typically includes a requirements phase, design phase, implementation phase, test phase, 
installation and check-out phase, operation and maintenance phase, and sometimes, retirement 
phase.” This definition concerns the software life-cycle of an actual system. Below, we define a 
software life-cycle as the abstract description of how an actual life-cycle should take place. We 
discuss a number of state of art software processes and their suitability for integrating the UML-
SDL round-trip engineering. 

One of the first and successful approaches in software engineering is probably the conventional 
“waterfall” software development life-cycle model as outlined in [Boe76]. This article was based 
on the original version that appeared in [Roy70]. The model in its pure form received a lot of 
critique over the years. Most critique stress particular limitations and propose an extension to the 
original version. Almost every more elaborated software development model has a connection 
with the principles of the waterfall model somewhere. Just because of this, it is worth mentioning 
it. Figure II-1 gives an idea of the model. The full model is explained in [Boe81]. 

 System 
Requirements 

Validation 

Software 
Requirements 

Validation 

Preliminary 
Design 

Validation 

Detailed 
Design 

Validation 

Code and  
Debug 

Development test

Test and  
Preoperations 

Validation test 

Operations and 
maintenance 

Revalidation  
Figure II-1. The waterfall software development life-cycle model 

The original waterfall software development life-cycle has seven stages, as shown in Figure II-1. 
Each of these steps has some build-in validation procedures. These validation procedures are to be 
fulfilled before the transition to the next step can be done. Failing for the validation procedure can 
cause a revision of the current step as well as restart at one of the former steps. The validation 
principle provides feedback to previous steps. After the last step, a global evaluation can be done 
which results in new system requirements. This can be the starting point for a new project. 
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Since the publication of the waterfall model, many new paradigms were proposed. Not all of them 
take the same seven steps. However, the basic principles behind the life-cycle model seem to 
appear in every methodology.  They all have at least the three following steps in the same order: 
requirements specification, design and coding.  

A restricted list of current state of the art software processes include (in alphabetical ordering) 
Catalysis, Dynamic System Development Method (DSDM), OO software process (OOSP), 
Object-oriented Process, Environment and Notation (OPEN) and Rational Unified Process 
(RUP). For each of these processes, we give a short synopsis and discuss their suitability to 
integrate the UML-SDL round-trip engineering. An in-depth overview of software processes and 
how to tailor them can be found in [Hig00]. 

Catalysis [DW98] is a next generation approach for the systematic business-driven development 
of component-based systems, based on the industry standard Unified Modeling Language (UML). 
Catalysis provides a systematic process for the construction of precise models starting from 
requirements, for maintaining those models, for re-factoring them and extracting patterns, and for 
reverse-engineering from detailed description to abstract models. The ultimate goal is to support 
the modeling and construction of open distributed systems, i.e. systems whose form and function 
evolves over time, as components and services are added and removed from it. All work done in 
Catalysis can be based on composition of existing components, at the level of code, design 
patterns and architectures, and even requirements specification. 

The UML-SDL round-trip engineering fits very well in the Catalysis process. The requirements, 
analysis and design are based on UML, while the coding language is open. SDL is suitable to 
specify the kind of systems targeted with Catalysis. Moreover, the process is model oriented and 
holds in itself forward and reverse engineering steps, making the UML-SDL support very 
effective. On the down side, SDL is not very component friendly and the round-trip engineering 
does not give explicit support for building components. We partially solved this issue by defining a 
component framework for SDL [VWW01]. 

The Dynamic Systems Development Method (DSDM) [Sta97] is a framework of controls for the 
development of IT systems to tight timescales. DSDM provides a generic process that must be 
tailored for use in a particular organization dependent on the business and technical constraints. It 
is independent of any particular set of tools and techniques and can be used with object-oriented 
and structured analysis and design approaches. The lifecycle that DSDM uses is iterative and 
incremental. DSDM is particularly well-suited to business applications, where the functionality 
contains user interfaces (screens, reports, etc.) so the prototyping can be used to maximum 
benefit.  

As DSDM is a generic iterative process, it could be tailored with the UML-SDL round-trip 
engineering. However, this process targets the wrong kind of systems and requires the 
involvement of the end-user. Therefore, DSDM is not a suitable process to development of SDL 
based systems. 

The object-oriented software process (OOSP) is a collection of process patterns that target 
medium to large-size organizations that need to develop software that support their main line of 
business. Similar to design patterns, process patterns describe strategies that software 
professionals employ to solve problems that recur across organizations. A process pattern 
describes a collection of general techniques, actions, and/or tasks for developing object-oriented 
software. The OOSP provides a framework that addresses issues such as how to successfully 
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deliver large applications using object technology and how to develop applications that are easy to 
maintain and enhance. 

Most of the OOSP process patterns are also applicable when using SDL as a programming 
language. Still, some additional process patterns for UML-SDL round-trip engineering specific 
issues should be developed for a full integration with OOSP. The details of using UML during 
analysis and design should be taken from another methodology, e.g. RUP. 

Object-oriented Process, Environment, and Notation (OPEN) [GHY97] is a full lifecycle, 
process-focussed, methodological approach that was designed for the development of software 
intensive applications, particularly object-oriented and component-based developments. OPEN is 
defined as a process framework, known as the OPF (OPEN Process Framework). This is a 
process metamodel from which can be generated an organizationally-specific process (instance). 
Each of these process instances is created by choosing specific activities, tasks and techniques and 
specific configurations thereof. OPEN provides strong support for the full lifecycle of a software 
application. 

The OPEN process forms a good framework to fit in the UML-SDL round-trip engineering. 
Besides the original OML notation, OPEN also supports the UML notation. The management and 
human relations issues of this process forms a good complement to our models only methodology. 
Moreover, the OPEN process can be tailored to suit individual domains or projects.  

The Rational Unified Process (RUP) [JBR99], [Kru99] is a Software Engineering Process built 
around UML. It provides a disciplined approach to assigning tasks and responsibilities within a 
development organization. RUP recognizes that no single process is suitable for all software 
development by making the process configurable. The Unified Process is founded on a simple and 

clear process architecture that provides commonality across a family of processes. Yet, it can be 
varied to accommodate different situations. The life-cycle model of RUP is structured along two 
axes. The time axis shows the dynamic aspect of the process and it is expressed in terms of 
cycles, phases, iterations, and milestones. The content axis represents the static aspect of the 
process: how it is described in terms of activities, artifacts, workers and workflows. Because RUP 
is the best fit for our purpose, we included an overview of the content activities and phases in 
Figure II-2. 

 
Figure II-2. The Iterative Model of RUP is structured along two dimensions 
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The Rational Unified Process is especially well suited for an integration with UML-SDL round-
trip engineering. Most importantly, RUP has a strong focus on UML, giving many guidelines for 
modeling requirements and analysis in UML. Furthermore, the process is fully iterative, making 
the round-trip support very valuable. RUP appeals to model software visually and to control 
changes in the software. SDL is a graphical implementation language and our round-trip 
engineering solution is based on detecting changes. All this makes RUP a good partner for our 
research. 
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II. 3 INSYDE Methodology 

The INSYDE project [INS94] took place from 1994 until 1996 and laid the foundation to 
combine object oriented analysis techniques with formal specifications. It was an EU ESPRIT-III 
funded project. The consortium consisted of Alcatel Bell Telephone (Belgium), Dublin City 
University (Ireland), Humbolt Universität zu Berlin (Germany), Intracom S.A. (Greece), Verilog 
S.A. (France) and Vrije Universiteit Brussel (Belgium). 

The INSYDE methodology [HWW96] was developed during the INSYDE project and consists of 
a set of techniques and tools to enable the evolving co-design of hybrid systems from 
requirements analysis to implementation [SCVM95]. A hybrid system is one that contains 
significant hardware and software components. The methodology integrates the object-oriented 
analysis methodology OMT [RBP91] with two domain specific formal description techniques, 
namely SDL ('88 and '92) [EHS97] for the software side and VHDL [Nav93] for the hardware 
side. OMT is used as the system requirements analysis technique, and as the technique for the 
initial system specification. It offers a unified framework for the specification of many application 
domains in a consistent representation notation throughout the initial design stages. This allows the 
methodology to provide mechanisms for combining the individual design techniques (OMT, SDL, 
VHDL), maintaining the consistency of partial models at the detailed design stage and co-
simulating the formal description techniques to validate the hybrid system against the system 
specification. The relative strengths of each design technique (SDL for asynchronous 
communication systems, VHDL for synchronous reactive systems) can thus be exploited in an 
optimal way. 

Limiting our scope to the transition of OMT to SDL, the functional model of OMT is not useful, 
so only the static and dynamic models are used. While OMT is a good analysis methodology 
covering many aspects of system design, the informal nature of OMT makes an automatic 
translation infeasible. In our methodology, the analysis document is prepared for translation during 
system design. During this phase subsystems are identified, communication is formalized and 
information is ordered. To describe these aspects a new language is needed. OMT* [WWV95] is 
a dialect of OMT, specifically aimed to meet the requirements of system design. OMT* differs 
from OMT in that:  

• It contains only those OMT concepts suited for system design (e.g. no ternary associations, no 
overlapping subclasses and no hanging classes). 

• The possible interpretations of an OMT construct are reduced and clearly described. 
• It has a well-defined syntax. 
• There are clear relationships between the different models. 

In order to make the transition from OMT to OMT* as smooth as possible, OMT* contains as 
much as possible of OMT and has a semantics that is as close as possible to OMT. Therefore, the 
semantics of OMT* cannot be defined unambiguously, i.e. the possible interpretations of an 
OMT* construct is reduced with regard to OMT but not to one single interpretation. Furthermore 
OMT* does not contain any new constructs and is completely compatible with Rumbaugh 
[RBP91]. 
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Furthermore, the transformation of OMT* to SDL is assured by giving the language a 
transformational semantics [VJW96], this is a semantics defined by specifying the 
transformations of a construct to SDL. For those constructs having more than one interpretation, 
multiple transformations will be specified. 

Many concept of the INSYDE methodology are still applicable in the context of UML-SDL’96 
round-trip engineering. A UML analysis model should first be prepared during system design 
before it is ready for translation. The dynamic model of OMT is almost identical to the state 
diagrams of UML. Consequently, the state diagram translation, including flattening of hierarchical 
states, can be reused in the new context. Similar to OMT*, the possible interpretations of an UML 
construct are reduced for the purpose of the translation, but there are still several possibilities left. 
However, we do not create an UML* as a separate language. We rather define a set of guidelines 
and preprocessing rules that prepare the model.  
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II. 4 Object Oriented Analysis & Design 

Object-oriented analysis (OOA) is concerned with developing software engineering requirements 
and specifications of the system's object model (which is composed of a population of interacting 
objects), as opposed to the traditional data or functional views of systems. Object-oriented design 
(OOD) is concerned with developing an object-oriented model of a software system to implement 
the identified requirements. The use of OOD technology requires the development of object 
requirements using OOA techniques, and CASE tools to support both the drawing of objects and 
the description of the relationships between objects. Therefore, OOA&D is usually carried out 
using the same method or language to allow a smooth transition. 

Applying OOA&D can yield a number of benefits [Bau96]: 

• A better maintainability through simplified mapping to the problem domain, which provides for 
less analysis effort, less complexity in system design, and easier verification by the user.  

• The possibility to reuse the design artifacts, which saves time and costs.  
• Productivity gains through direct mapping to features of Object-Oriented Programming 

Languages. 

Many OOD methods have been described since the late 1980s. The most popular OOA&D 
methods include Booch, Rumbaugh OMT (Object Modeling Technique), Jacobson Objectory, 
Coad/Yourdon and Shlaer-Mellor. Since late 1990s, however, UML (Unified Modeling Language) 
is emerging as the defacto standard for OOA&D. For the analysis and design of real-time systems, 
UML-RT (UML Real Time) has some more problems for getting established. 

The UML and standard notation has the formal support of the Object Management Group 
(OMG) and its various member companies. It's important to realize, however, that the UML is 
only a standard notation. Essentially, it defines a number of diagrams that you can draw to 
describe a system, and describes what these diagrams mean. It does not prescribe the process to 
use to go about building software. Such a process description, or method, would include a list of 
tasks that need to be done, what order they should be done in, the deliverables produced, the 
kinds of skills required for each task etc. The original methodologies consist of both notations and 
a method. 

The idea is that by standardizing on the notation, software developers can better communicate 
providing all the deliverables in a method will use the UML. However, different groups are free to 
use whichever method they want to use to actually go about building software. Several methods 
have been proposed that use the UML. Rational has published its Unified Process [JBR99], 
strongly based on the work of Ivar Jacobson [Jac94]. HP's Fusion [CAB94] method is another 
method that is widely talked about. 

The UML contains so many different diagrams that one needs to decide which are appropriate for 
the problem a hand.  

• Use Case Diagrams  
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• Static Structure Diagrams: Object Diagrams, Class Diagrams  
• Interaction Diagrams:  Sequence Diagrams, Collaboration Diagrams  
• State Diagrams 
• Activity Diagrams  
• Implementation Diagrams: Component Diagrams, Deployment Diagrams 

In the context of UML-SDL round-trip engineering, we only use the class diagram and state 
diagram. However, when used in a complete process, other diagrams are used throughout the 
development process. During analysis, use case diagrams and sequence diagrams are important. 
During design, sequence diagrams and collaboration diagrams help finding the communication 
between classes and form a convenient starting point to model state diagrams. 
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II. 5 SDL as a Formal Specification Language 

This section gives a short introduction on SDL as a Formal Specification Language. After some 
general background information, we present a mini tutorial for SDL. This tutorial explains the 
minimum that the readers should know about SDL to understand the rest of the dissertation. 

SDL (Specification and Description Language) is a standard language for the specification and 
description of systems. It has been standardized as ITU (International Telecommunication Union) 
Recommendation Z.100. SDL is a general-purpose description language for communicating 
systems. Although SDL is widely used in the telecommunications field, it is also now being applied 
to a diverse number of other areas ranging over aircraft, train control, medical and packaging 
systems. The key features of the language are:  

•  suitability for real-time, stimulus-response systems;  
•  presentation in a graphical form;  
•  a model based on communicating processes (extended finite state machines)  
•  object oriented description of SDL components;  
•  the ability to be used as a wide spectrum language from requirements to implementation.  

The language has been evolving since the first Z.100 recommendation in 1980 with updates in 
1984, 1988, 1992, 1996 and 1999. Object Oriented features were included in the language in 
1992. This was extended in the latest version (SDL-2000) to give better support for object 
modeling and for code generation. Today SDL is a complete language in all senses. As this 
dissertation reflects the research done until the end of 1999, our round-trip engineering is based on 
SDL’96. The impact of SDL-2000 on the round-trip engineering, which is positive, is discussed in 
section VI 3.1. 

II 5.1 Benefits of a Specification Language 

It is widely accepted that the key to successfully developing a system is to produce a thorough 
system specification and design. This task requires a suitable specification language, satisfying the 
following needs:  

• a well-defined set of concepts  
• unambiguous, clear, precise, and concise specifications  
• a thorough and accurate basis for analyzing specifications  
• a basis for determining whether or not an implementation conforms to the specifications  
• a basis for determining the consistency of specifications  
• computer support for generating applications without the need for the traditional coding phase  

SDL has been defined to meet these demands. It is a graphical specification language that is both 
formal and object-oriented. The language is able to describe the structure, behavior, and data of 
real-time and distributed communicating systems with a mathematical rigor that eliminates 
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ambiguities and guarantees system integrity. It has a graphic syntax that is extremely intuitive. 
Even an SDL layman can quickly obtain an overview of a system's structure and behavior. The 
most important characteristic of SDL is its formality. The semantics behind each symbol and 
concept are precisely defined. Above all, the great strength of SDL lies in describing large real-
time systems [BH93].  

II 5.2 Mini Tutorial 

In this section, we present a short tutorial for SDL. We discuss only the most common SDL 
constructs. Together with the example in chapter IV, this should give enough information for the 
readers to understand the technical work in de rest of the dissertation. We distinguish four 
concepts of importance in SDL in more detail: architecture, behavior, communication and data. 

II.5.2.1 Architecture 

The architecture describes the static structure of a system. The system is the highest level in the 
structure. Everything outside the system level belongs to the environment. The blocks are used to 
partition the system into smaller parts. In this way, the readability of the specification is increased, 
especially when large systems are specified. The package is another structural feature that 
contains declarations and definitions similar to a system, but does not have its own scope. The 
contents of a package can be imported by a system or another package. 

A block must contain either one or more blocks or one or more processes. Blocks and processes 
must not be mixed in one block. A hierarchical structure is created with blocks in blocks. 
Processes describe the behavior of the system. 

SDL contains language concepts covering the four basic concepts of object orientation (identity, 
classification, polymorphism and inheritance). What in traditional object orientation is called a 
class is in SDL called a type, and objects are in SDL called instances. Systems, blocks and 
processes can all be classified in types: system type, block type and process type. Type 
specifications do not follow the conventional scoping rules, e.g. a process type can be defined on 
system level and process types and bock types can be mixed within the same scope. A type 
specification has to be instantiated before it can be used. Typically, one or more block or process 
specifications are placed in a package or a system level and instantiated in a system. Figure II-3 
illustrates the use of the most common SDL structures and structured types.   
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package myPackage 

myBlockType myProcType 

 

 

system mySystem 

myBlockInstance: 
myBlockType 

block normalBlock 

procInstance: 
myProcType 

use myPackage; 

 
Figure II-3. SDL structures and structure types 

II.5.2.2 Behavior 

Dynamic behavior is described by processes. Processes execute in parallel and are independent of 
each other. This means that the status in one process is not known by the other processes in the 
system. 

Processes are defined in the static specification. During run-time when a system is executing, 
instances from that definition are created. More than one instance of a process can exists at the 
same time during run-time. Process instances can be created at system startup or created and 
terminated dynamically at run-time. In Figure II-4, “init” is the initial number of instances at 
startup and “max” is the maximum number of instances that can exist at the same time during 
execution. 

ProcessName
(init, max)

 
Figure II-4. Process Definition 

The model used to describe behavior in processes is the finite state machine (FSM). An FSM 
consists of states, the example shown at the left hand side of Figure II-5 has two states A and B. 
Going from one state to another is called a transition. A transition between two states is made 
after a stimulus has been received. In the example, the state machine is waiting in state A and 
when stim1 is received, the transition to B is made. During the transition a number of actions are 
performed, in the example a response reps1 is send and a is assigned a value. Now the state 
machine is waiting in state B. If no stimulus is received, then the state machine is inactive, waiting 
in a state. When a finite state machine is executed, the initial state must be known. Therefore, 
each FSM contains a start transition, which must not contain a stimulus. The start transition is 
fired automatically when the FSM is executed. 
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A 

A 

stim1 

resp1 

B 

B 

stim2 

‘action’ 

A 

A 

B 

stim1/ 
^resp1; 
a:=5 
 

stim2/ 
action 

a:=5 

 
Figure II-5. Example FSM and the equivalent in SDL 

A process is a finite state machine extended with data and communication. Figure II-5 shows an 
FSM and the equivalent state machine in SDL notation. The process consists of two states A and 
B. State A is defined as the start state. The stimuli in SDL are called signals. The only way to 
leave a state is to receive a signal, also called an input signal. When the signal is received, the 
transition is initiated. During the transition, actions can be executed. In the first transition of the 
example, a signal is sent out. The next state defines the end of the transition and which state to 
enter next. Most of the time, an SDL process is waiting in a state. 

The body of the transitions can contain a wide range of actions. The graphical counterparts of 
each of the constructs are shown in Figure II-6. The decision construct is used to split a transition 
into two or more branches depending on some condition. Outputs are used to send signals and 
possibly contained values as parameters to other processes, thereby providing a mechanism of 
communication between processes. Additional information on the destination of the signal can be 
specified: to for a specific destination and via for sending the signal through a gate or signal route. 
A task is used to assign a new value to a variable. The call construct is used to call a procedure 
with an optional list of actual parameters. The create construct allows a process instance to create 
another process instance in the same block. The stop construct terminates the process instance, 
thereby freeing its variables from memory. With the comment structure, a textual documentation 
can be added and attached to a symbol.  

 
B  

decis ion 

s ignal 

Output  VIA G  task := true create  

B  call(par) comment  on   
s top symbol 

va lue1  
va lue2  else  

–  
 

Figure II-6. Transition showing the basic behavioral features 
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II.5.2.3 Communication 

Processes communicate with discrete signals. Communication in SDL is asynchronous, which 
means that the sending process continues executing without waiting for an acknowledgment from 
the receiving process.  

Signals are defined in a text symbol, as shown in Figure II-7. A signal defined at system level can 
be used in the whole system. If this is not necessary, the signals are better defined in the block 
where they are used. The signals can then be used by blocks and processes contained in the 
structure and by the block itself. 

 signal sig1(Charstring); 
signal sig2; 
signal SendMessage; 

 
Figure II-7. Text symbols with signals declarations 

Channels define the communication path through which blocks communicate with each other or 
with the environment. Communication with the environment takes place by connecting a channel 
or signal route with the outer frame of the block. Adjacent to the channel arrow, the signals that 
can travel on the channel in the arrow direction are stated within square brackets. Signal routes 
define the communication path through which processes communicate with other or with the 
block level above. To connect a signal route with a channel, the name of the channel is stated 
outside the frame; see Figure II-8 for an example. 

 system X 

channelname1 
block Y 

[signal1] 

channelname2  

block Y 

process Z 

[signal2] [signal3] 

channelname1 channelname2  
route2 route1 

[signal1] [signal2] [signal3] 

 
Figure II-8. Connecting Channel and Signal Routes 

II.5.2.4 Data 

A process can use data stored in variables. Variables can only be defined in processes. Variables 
are declared with the keyword DCL. The exchange of values between processes is performed by 
means of a parameters passing mechanism, i.e. values are send along with signals. 
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newtype NameArraySort
    String(charstring, emptylist)
endnewtype NameArraySort;

DCL names NameArraySort;
DCL text charstring;

 
Figure II-9. Newtype and Variable Declaration 

SDL provides a powerful method to define data types. The model for SDL data representation is 
the abstract data type (ADT). Data is represented in terms of values and behavior. The predefined 
data types are: integer, natural, real, boolean, character, charstring, PId, duration and time. A new 
data type (called sort in SDL) is defined with the NEWTYPE construct, e.g. see Figure II-9. A 
number of sort generators allow building sorts that are more advanced: structure sort, array sort, 
enumeration sort, etc. In an enumeration sort, the literals define the values that can be assigned to 
a variable of that sort.  



 

 

IIIIIIIII...   UUUMMMLLL---SSSDDDLLL   RRROOOUUUNNNDDD---TTTRRRIIIPPP   EEENNNGGGIIINNNEEEEEERRRIIINNNGGG   
MMMEEETTTHHHOOODDDOOOLLLOOOGGGYYY    

“You're either part of the solution or part of the problem.”  

- Eldridge Cleaver 
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III. 1 Introduction 

In this chapter, we look at the round-trip engineering from a methodological point of view. We 
give an informal overview on the mapping of UML and SDL concepts. We describe the phases in 
the round-trip process and position it into the whole life-cycle. 

UML and SDL share a number of qualities, like having a graphical notation, good readability and 
good tool support. They also incorporate object orientation and state machines, which make UML 
and SDL suitable to work together. Nevertheless, each of them also has enough advantages to 
make it worthwhile to use them both in one methodology. Section III. 2 provides a 
comprehensible description of how UML and SDL concepts relate to each other. The translation 
rules defined in chapter V give an exact definition of how a UML model is translated, but it is 
difficult to get a picture of the translation by reading them. The mappings given below are 
consistent with these definitions and are easy to read and understand.  

Section III. 3 gives an overview of the subsequent phases in the round-trip engineering process 
when performing several iterations. The full example in chapter IV is developed by following 
exactly this process. The process and mapping description together, provides the necessary 
background to read and comprehend the formal definition of translation rules in chapter V. 

Section III. 4 discusses how the UML-SDL round-trip process fits into the whole life-cycle. The 
UML-SDL round-trip engineering in itself is not a complete methodology. The notation and 
process described in this dissertation must be integrated into a larger methodology. In this section, 
we propose three scenarios of how UML and SDL can be combined: forward engineering, reverse 
engineering and round-trip engineering. 
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III. 2 Mapping of UML and SDL Concepts 

This section contains a comprehensible overview of the mapping of UML and SDL concepts. It 
assumes that the reader has reasonably knowledge in UML, as well has a basic understanding of 
the concepts of the SDL.  

The section starts with the mapping of classes and their relationships. Classes with different 
stereotypes have different mappings. The relationships are associations, aggregations and 
inheritance, which describes communication structures, hierarchies and inheritance relationships. 
The last part of the section describes the mapping between UML state charts and SDL process 
behaviour descriptions.  

III 2.1 Mapping of Static Structure 

The basic building blocks of a UML model are packages and classes, where the classes represent 
the active components. Several stereotypes have been defined to give classes various semantics. 
These stereotypes are «block», «process», «actor» and «newtype». A class in UML without a 
stereotype is by default transformed into a process; or into a block if the class has a component by 
aggregation. 

In SDL, the basic building blocks of a system are packages, blocks and processes. Blocks and 
processes also have a typed version, i.e. block type and process type. For this reason, «block» 
and «process» class can define a property called typed. A class with the typed property set to 
true, is said to be a typed class and maps on a block type or process type. The default value of the 
typed property depends on the global translation options and on restriction in the model. For 
example, a class involved in a generalization relationship is always typed. 

A class with stereotype «actor» represents an active entity outside the system. In terms of SDL, 
this corresponds with communication with the environment of the system. A class with stereotype 
«newtype», finally, represents an abstract data type and maps on an SDL newtype. This gives us 
the mapping table shown in Table III-1. Figure III-1 shows an abstract UML model with the 
mapped SDL system. The class C1 is typed and is mapped on the process type C1. The class 
User with stereotype «actor» is mapped only indirectly through the association as, which is 
mapped on the channel that going to the environment. 

UML SDL 
Model Specification 
Package Package/System 
Non-typed «block» class Block 
Typed «block» class Block Type 
Non-typed «process» class Process 
Typed «process» class Process Type 
«newtype» class Newtype definition 
«actor» class Environment 

Table III-1. Mapping of basic structures 
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system Sys 

«process» 
C1 

«newtype» 
Data 

«block» 
A 

«block» 
B 

«process» 
C2 

«actor» 
User 

block A 

block B 

a_C1 : C1 

a_C1:C1 

C2 

Sys 

dat 

process C1 

newtype Data; 
endnewtype Data; 

typed 

as as as 

 
Figure III-1. Example of Structural Mapping 

Another aspect of the static structure is the relationship between classes. Basically, associations 
map on communication in SDL and aggregation maps on nested structure. In fact, things are a bit 
more complicated than this, because on the UML side the semantics of the aggregations depends 
on the kind of component and on the SDL side we have different possibilities to allow 
communication. Table III-2 shows an overview of the mapping of the relationships. In Figure 
III-2, the typed class C1 is a component of classes A and B and therefore. Both aggregations are 
mapped on a type-based process. In the case of class C2, the aggregation makes the mapped 
process appear in block B, but does not have a mapping on its own. 

UML Concept SDL Mapping 
Aggregation to typed class Type based instance 
Aggregation to non-typed class Scope of definition 
Aggregation to «newtype» class Variable declaration 
Generalization Inheritance 
Association between «process» classes PId pointer 
Association to «process» class Signal Route and/or Pid variable 
Association to «block» class Channel(s) 
Role of association to typed class Gate 
List of Operations Signal list 

Table III-2. Mapping of UML relationships 

The mapping of communication needs some elaboration. The basic rule is that for every 
association between two non-abstract classes, there must be a communication route between the 
corresponding processes. However, this can be achieved in different ways. For two processes in 
the same block, there is no problem, the association maps on one single signal route between the 
two processes. But in order to connect two processes in a different block, we need two partial 
signal routes (i.e. signal routes to the environment) and a number of channels connecting the two 
signal routes. In order to maintain readability in larger systems, channels are merged as much as 
possible. See Figure III-2 for an example of merged channels. The channel assoc generated 
between block A and block B is reused to connect the signal routes assoc3 and assoc4.  
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A1 

A2 

A B 

B1 

B2 

assoc 

assoc4 

assoc3 

assoc1 assoc2 

block A 

process A1 

block B 

process A2 

process B1 

process B2 

assoc assoc1 assoc2 
assoc4 assoc4 

assoc3 assoc3 

 
Figure III-2. Translation of Communication 

III 2.2 Mapping of Declarations 

Other aspects of the mapping are the signal, type and variable declarations. Operations with 
stereotype «signal» maps on a signal declaration. For each class, a signal list is generated that 
contains all the signals of the class. Operations with stereotype «procedure» maps on an SDL 
procedure definition. By default, operations with a return type get the stereotype «procedure» and 
operations without a return type get the «signal» stereotype. Attributes of active classes map on 
SDL variable declarations. Table III-3 gives an overview of the declaration mappings. 

UML Concept SDL Mapping 
«signal» Operation Signal definition 
Set of Operations Signal list 
Attribute 
• Public 

Process Variable 
• Exported & Remote 

«procedure» Operation 
• Private Operation 
• Public Operation 
• NA 
• Parameter 

Procedure Definition 
• Local Procedure Def. 
• Exported Procedure Def. 
• Remote Procedure Def. 
• Formal Parameter 

Table III-3. Mapping of Declarations 

III 2.3 Mapping of State charts 

The mapping of UML state diagrams on SDL state diagrams is rather straightforward, except for 
nested state diagrams and entry and exit actions. 

UML Concept SDL Mapping 
State Diagram Final State Machine 
Initial State Start 
State State 
Final State Stop 
Nested State Diagram State lists and/or Flattening 
Submachine State Procedure & Procedure Call 
Entry/Exit Action Action on Transition 
Outgoing Transition Transition 
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Internal Transition Transition to – 
Output Event (Destination) Output Signal (To Pid) 
Action Action 

Table III-4. Mapping of state charts items 

Nested State Diagrams 
The UML state diagrams include the notion of nested hierarchical states. This concept is inherited 
from the Harel statecharts [Har87]. Basically it means that a state can contain substates and while 
being in a substate, the state machine will also fire transitions originating from the superstate. In 
the current version of SDL, nested states are not available, but SDL has the notion of statelists. A 
transition can be added to several states at the same time by listing the states in the state symbol.  

It can be shown that a hierarchical UML state diagram can be correctly translated to SDL using 
statelists when none of the substates have exit actions. In the other case, the substates containing 
exit actions, must be excluded from the statelist and get a duplication of all the transitions. Figure 
III-3 shows an example of a nested state diagram in UML and SDL. Note that, unlike the exit 
action, the entry action in state Sub2, does not cause the duplication of transitions. 

Super

ev1

ev2

Sub1
Sub2

entry/action1
exit/action2

sub1

Sub2

Sub2

ev1

ev2

action2

Super,
Sub1

ev2

action1

 
Figure III-3. Flattening a State Diagram with Entry & Exit actions 

UML differentiates between six events, each of which has a different mapping as shown in Table 
III-5. In UML, an event is what triggers a transition. There is always exactly one event for each 
transition, possibly guarded with a guard-condition. Please refer to the UML semantics definition 
for a comprehensive explanation of all different events.  

UML Event SDL Mapping 
Call Event RPC input 
Guard on Event Enabling Condition 
Change Event (e.g. [x < 10] ) Continuous Signal 
Time Event (e.g. after 5 sec) Action on Transition 
Signal Event Input 
Empty Event (or lambda transition) Spontaneous Transition 
Deferred Event (within state) Save (Signal / RPC) 

Table III-5. Mapping of Events 

In UML, an action is anything that happens on a transition. Compared to OMT, UML 
differentiates between many kinds of actions, which makes it easy to achieve a detailed mapping, 
see Table III-6.  
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UML Action SDL Mapping 
Send : ^target.event(parameter) Output event(parameter) TO 

target 
Call Procedure Call 
Create Create 
Terminate Stop 
Uninterpreted 
• With “:=” 
• With “call” 
• Other 

SDL Expression 
• Assignment 
• Procedure call 
• TASK ‘ ’  

Table III-6. Mapping of Action 

A number of UML concepts cannot be mapped to SDL because there is no equivalent and it 
would be too awkward to translate them. First, there are the history and deep-history states. 
Translating the history state to SDL would require duplicating the complete state diagram, which 
is unacceptable. Second, there are the concurrent and non-concurrent composite states. 
Composite states introduce concurrency within one class, but it is impossible to have concurrency 
in one SDL process. Related to this the fork and join states are not mapped either. If either of 
these constructs appear in a state diagram, they are simply ignored. For a full translation, the state 
diagram must be refactored without using the unsupported constructs. 

On the other side, there are a lot of SDL constructs that cannot be expressed in UML. For 
example the body of a newtype declaration, connection of multiple channels, timers in general and 
priority signals. There is one SDL feature that is particularly difficult to translate, namely the join. 
The join, together with the decision, allows one transition to have different paths and merge after 
some actions. For a correct reverse engineering from SDL back to UML, all actions after the join 
must be duplicated, resulting in a many on one mapping. 
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III. 3 Incremental Round-Trip Engineering 

In this section, we explain the basic principles of our round-trip engineering approach. It gives a 
comprehensible view on the incremental round-trip engineering process defined in chapter V. The 
mapping definition, given in the previous section, forms the basis for a translation from UML to 
SDL and the other way round and for tool support for synchronizing a UML model and an SDL 
specification. Because the mapping is not a strict one-on-one mapping, traditional round-trip 
engineering solutions cannot be used. Instead, we use a set of translation rules that define how 
changes in UML model are translated into changes in the SDL specification and the other way-
around. Some examples of possible changes are: new class, rename operation, delete association, 
etc. These changes are automatically detected, translated to SDL (or UML) and applied locally on 
the specification with maximal preservation of detailed design changes in SDL. Hierarchical links 
between UML and SDL syntactic elements provide the context in the SDL system where to apply 
changes. The “new class” change, for example, is translated by adding a block or a process to the 
block that is linked with the aggregate of the new class. Other information available in the parent 
block is kept untouched, including the graphical layout. 
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Figure III-4. Successive Iterations 

Figure III-4 depicts the first few phases in the round-trip engineering process. It consists of 
successive executions of forward incremental translation and reverse incremental translation. The 
round-trip engineering always starts with a more or less complete UML model �. In other words, 
it is currently not possible to start the process by reverse engineering an existing SDL 
specification. The class and state diagrams of UML model are translated into a full SDL 
specification �. Because the translation is defined in the form of changes, the first UML model is 
virtually compared with an empty model, such that all entities in the model are considered “new”. 
During detailed design, the generated SDL specification is further refined �. Detailed design 
includes refactoring the generated SDL, as well as adding new functionality. Next, the changes 
made in SDL are detected by comparing it with the original SDL specification and translated back 
to UML �. Similarly, the updated UML model is improved during system design � after which 
the changes are detected and translated to SDL �. In order to allow incremenal translation of 
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changes, the corresponding enties in the UML model and SDL specification are linked with each 
other. 

The algorithm that compares two models looks for new entities, deleted entities and matched 
entities based on the entities’ unqiue identifiers. An entity that is present in the new model but not 
in the old model is translated as a “new” entity. An entity that is present in the old model but not 
in the old model is translated as a “deleted” entity, usually by deleting the linked entities on the 
other side. An entity that is present in both models is said to “match”. The attributes of matching 
entities, such as name and type, are futher compared in the translation rules. In this sence, the 
translation rules themselves also perform a part of the comparison. 
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III. 4 Three Scenario’s for combining UML and SDL’96 

The UML-SDL round-trip engineering process alternates between system design and detailed 
design. However, these two phases do not make a full life-cycle. The round-trip engineering 
should be fit into a larger methodology. In this section, we describe three different scenarios how 
the UML/SDL translation can be embedded:  

1. Forward Engineering: This scenario is followed for new projects. The requirements analysis 
and system design is done in UML. The system design model is then translated to SDL, where 
the development continues with the round-trip scenario.  

2. Reverse Engineering: This scenario is followed in the case that there is already an SDL 
specification available. The specification is translated to UML, either for documentation 
purposes or for reengineer purposes. Altough the same mappings can be used, the current set 
of translation rules do not support the reverse engineering of a full SDL specification. 

3. Round-trip Engineering: After either scenario 1 or 2, there is UML and SDL available for the 
same system. From then on the two models are kept synchronous by forwarding the changes 
made on the other side. 

III 4.1 Forward Engineering 

In this first scenario, the developer starts building a new system in UML, which offers many 
advantages to start building a system from scratch. Figure III-5 shows an overview of the 
activities in this scenario.  

The set of external objects and their interaction with the system form the basis for the 
requirements analysis of the system [Dou98]. Use-case diagrams and collaboration diagrams are 
especially suited for this task. These, together with sequence diagrams, allow a smooth transition 
to system analysis.  

Use-Case Conceptual
Model

UML
Requirements

Analysis

State
Diagrams

Static
Diagrams

UML
System
Analysis

Sequence
Diagram State

Diagrams
Static

Diagrams
UML

System Design

SDL
Detailed
Design

translate

 
Figure III-5. Forward Engineering Scenario 
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The goal of system analysis is a static and behavior model of all the important components in the 
system. Starting from the requirements, the analyst must identify the key objects and classes and 
their relationships within the system. Using the first set of classes, a sequence diagrams is made 
for a number of use-cases, possibly detecting missing classes. The classes can also be extended 
with operations now; each message the class needs to understand becomes an operation. 

The last step before the translation to SDL is system design. Still a lot of design decisions need to 
be taken here. First, the classes need to be grouped into subsystems and packages can be split. All 
attributes and operation parameters must be given a type and undefined types must be defined. If 
state charts are used, all concepts that cannot be translated, like history states and concurrency, 
must be eliminated. It also matches the signals that are sent in any state diagrams with the 
«signal» operations in other classes. 

During detailed design, the developer can continue development based on the generated SDL. 
Typically this encompasses activities like –but not limited to– filling type declarations, improving 
channel definitions, completing details on transitions, process initialization, creating timers, adding 
formal parameters, etc. In other words, detailed design adds everything in SDL that cannot be 
expressed in UML. Note that this is more than only filling in the details; it is a continuation of the 
design. 

At this stage, we enter the round-trip scenario because we have a UML model and an SDL 
specification of the same system. From hereof, most changes one side can automatically be 
reflected on the other side. Please see section III 4.3 for the continuation of the development life 
cycle. 

III 4.2 Reverse Engineering 

The primary reason to reverse engineer an SDL system is to get a different, more abstract view 
on the system. This view can either be used as documentation to give better insights into the 
system or as a basis to refactor, restructure or reengineer the SDL system. The main advantages 
of using UML for reverse engineering is that it allows multiple views on the same information and 
that it incorporates other diagrams that can help documenting the system. The current set of 
translation rules do not support the reverse engineering of a full SDL specification. Nevertheless, 
we briefly discuss two possible reverse engineering scenarios. Figure III-6 shows an overview of 
both scenarios. 

III.4.2.1 Reverse Engineering for Documentation 

If the UML serves for documentation purposes, the developer chooses some parts of the SDL 
specification and gets the UML view of that part. He could extend the UML model with 
collaboration diagrams, sequence diagrams to make his insights explicit and available to other 
developers. When a large part of the development time is spent on reading the specifications, 
creating documentation in this way is a big asset. 
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Figure III-6. Reverse Engineering for Documentation 

III.4.2.2 Reverse Engineering for Round-trip Engineering 

In this case, the developer intends to make modification to the SDL system based on the UML 
model. The kind of the modifications can vary from behavior preserving refactoring to total 
restructuring for re-engineering. 

For this purpose, the complete SDL specification is reverse-engineered to UML. Although some 
round-trip support could be given on partial UML models, it would be very error prone because 
there is no context information about signals, declarations, packages, etc. Therefor the entire SDL 
specification is translated as complete as possible. The developer then improves the generated 
diagrams and creates more diagrams for specific views on the system. Now we have a UML 
model of our system, so we can continue with the round-trip scenario in section III 4.3.  

III 4.3 Round-trip Engineering 

In this scenario, the developer already has an UML and SDL model of his system and he would 
like to keep them synchronized. In this way, he profits from the advantages of UML and SDL 
during the whole development and maintenance life cycle.  

The main advantages of UML in a round-trip scenario is that it allows multiple views on the 
system and thus can give an abstract view on the system as well as the details on certain topics 
and relationships between classes in different sub-systems. It is also easier to make structural 
changes, because there are fewer limitations in how you can edit. In addition, the developer can 
still use all the UML diagrams to extend the requirements or continue the system analysis. 

The main issue in round-trip engineering is of course that no matter which model is modified, the 
common information in both models is kept up to date. Although any change may be made in 
either model, there is a difference in the typical changes you make in UML or SDL. Figure III-7 
shows the interaction between the different activities during round-trip engineering. 
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Figure III-7. Information flow during Round-Trip Engineering 

UML is better suited for high level changes. For example, for new requirements, you start creating 
one or more use cases and examine how it influences the class model and state diagram. 
Alternatively, as the system become bigger, it is probably a good idea to restructure the system on 
the analysis level. In addition, new design insight might lead you to refactor the class and state 
diagram, e.g. splitting a class in two classes or applying a design pattern. 

SDL is better suited to get all the details right. The first goal is usually to make the SDL 
specification ready for simulation. First of all, the things that could not be expressed in UML are 
added, e.g. timers, sorts specification, creation of process and Pid handling. The generated SDL 
specification can also be optimized from an SDL point of view, e.g. merging channels, moving 
signal declarations, creating signal lists, etc. Most important, the SDL system can be simulated, 
giving valuable feedback to the design and implementation. By observing the running system, you 
will find errors, missing parts or extra requirements, making the circle round.





 

 

IIIVVV...   EEEXXXAAAMMMPPPLLLEEE   

"There are two ways of constructing a software design: One way is 
to make it so simple that there are obviously no deficiencies, and 
the other way is to make it so complicated that there are no 
obvious deficiencies. The first method is far more difficult." 

-C.A.R. Hoare  

 

"Things turn out best for the people that make the best of the way 
things turn out." 

-John Wooden- 
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IV. 1 Introduction 

This chapter demonstrates the UML-SDL round-trip engineering process by following two 
iterations in the development of the toffee vendor example (presented in [EHS97]). The main 
purpose of this chapter is to explain the concepts of this dissertation in an intuitive way. While the 
extensive list of translation rules of chapter V are hard to read and comprehend, it is easy to 
understand this concrete example. We start with a UML design model of a simplified version of 
the toffee vendor and explain the specific use of UML during system design. Then we translate 
the UML model into an SDL specification as a one-shot translation and explain the different 
elements of the generated SDL specification and how the generated SDL is linked with the UML 
model elements. Next, we alternately make improvements to the system in UML and in SDL and 
show how it affects the other model. The changes are chosen as to illustrate many different 
features of the round-trip engineering. We show that, in some particular cases, the input of the 
user is necessary to perform the translation of changes. 

The toffee vendor used in our example is taken from [EHS97] and adapted for our needs. In our 
initial version, the user starts by chooses an item (chocolate, coffee or gum). The system checks 
whether the requested item is still available. If so, the coin slot is opened and the price is displayed 
for that particular item. Then the user starts inserting coins. Every time a coin is inserted, the 
displayed price is updated to reflect the amount due. Once the full price is paid, the requested item 
is delivered. Figure IV-1 shows the sequence diagram for buying a chocolate. In the initial version, 
nothing is provided for any exceptional cases; nor does the user get any change back if he pays 
too much. New features are added in the sections below. 

 

 
Toffee 
Vendor 

User 
Choise 
(Chocolate) 

Price(60) 

coin50 

Price(10) 

coin10 

Chocolate 

Open Coin Slot 

Close Coin Slot 

 
Figure IV-1: Typical use of Toffee Vendor. 
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IV. 2 System Design 

We start the round-trip engineering process of the toffee vendor by presenting the initial system 
design model in UML. The system design model consists of a class diagram and three state 
diagrams. System design is in it selve again an iterative process between modeling the class 
diagram, state diagrams and inspecting the generated SDL code. Here, we start with a first version 
of the class diagram that does not take the translator specific issues into account. Next, we show 
the state diagrams for the three active classes. The SDL system generated from this model is not 
satisfactory; therefore, we revisit the class diagram to fine-tune it toward the translator. Among 
others, this means that all classes get a stereotype, associations get a name and all attributes and 
parameters get a type definition. 

IV 2.1 Class Diagram 

We partition the behavior of the toffee vendor in three classes as shown in Figure IV-2. The 
Coins class accepts the coins from the user and transforms it to an actual value for the controller. 
The control class receives the order and keeps track of the amount due. The WareMgr (Ware 
Manager) checks the availability of a specific article and delivers the ordered item when triggered 
by the control class. The User class represents an active entity outside the system. Actors supply 
stimuli for the system, but can also receive signals. 

The operation declarations in the classes are used as signal input declarations. Each class should 
declare all the signals it can receive as an operation and the parameters of the operation match the 
parameters of the signal. For example, the Control class can receive four signals. The Choice 
signal has one parameter to indicate the article the user has chosen. The signals Empty and 
NonEmpty are sent by the Ware Mgr to indicate whether the requested item is available or not. 
The Money signal, finally, is sent by Coins whenever a coin is accepted. The parameter value of 
the Money event indicates the value of the coin. 

Accept
Close
Coin10
Coin50
Coin100

Coins

Choice(article)
Empty
NonEmpty
Money(value:integer)

Control

box: Cont

Exists(request)
Paid

Ware Mgr

Ware
Display(text:string)

User

 
Figure IV-2. Initial Class Diagram of Toffee Vendor 

The default semantics of associations between two active classes when translating to SDL is 
communication. It means that some or all instances of one class are able to exchange signals with 



 

58  Kurt Verschaeve 
  

 

some or all instances of the second class. The specific code generated from an association 
depends on the translation options. All associations in our example model communication. The 
associations to the actor User denote communication of the system with its environment. 

IV 2.2 State Diagrams 

We now give some details about state diagrams of the three active classes. A UML class can have 
one state diagram that describes the behavior of that class. It describes what actions are taken 
given a certain state and stimulus. In translation to SDL, most of the UML state diagram concepts 
can be used, including entry and exit actions, output events, initial and terminal states and nested 
state diagrams. However, many of these features are not available in SDL. Therefore, the UML 
state diagram is flattened as part of the translation. 

Figure IV-3 shows the state diagram of the Control class, which demonstrates many special 
features. Starting in the initial idle state, the controller waits for the user to make his Choice. It 
asks the ware manager to check the availability for the requested article by sending an Exists 
signal. The ware manager responds with an Empty or NonEmpty signal. If the article is not empty, 
the user can start paying. The payment state in has two entry actions. The first entry action is an 
assignment, recognized by the ‘:=’, and initializes the cost for the article. The second entry action 
Accept is an output event to Coins, because Coins declares it as an input event. The internal 
transition Money decreases the cost every time a coin is inserted. The transition from payment to 
idle is a guarded transition. Whenever the cost becomes zero or less, the ware manager is notified 
that the article is paid and the control returns to the idle state. 

 

idle 

entry/cost:=value(article) 
entry/^Accept 
Money(coin)/cost:=cost-coin, Display(cost) 
exit/^Close 

[cost<=0]/ 
^Ware Mgr.Paid 

Choice(article)/ 
^Ware Mgr.Exists(article) 

NonEmpty 
Empty 

payment 

contents 

 
Figure IV-3. State Diagram of the Control Class 

Figure IV-4 show the state diagrams of the classes Ware Mgr and Coins. The overall behavior of 
the state diagrams is easy to understand. The ware manager checks for the availability of an item. 
If it is available, it waits until it gets a Paid message and then delivers the item. The Coins class 
accepts different coins and translates them into a value that is manageable by the control class. 
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Figure IV-4. State Diagram of the Ware Manager and Coins 

IV 2.3 Investigate Generated SDL 

We investigate the SDL system generated from the UML diagrams as we modeled them until 
now. Figure IV-5 shows the generated system, block and process structures. The system 
ToffeeVendor contains four block instances (single rectangle) and four block types (double 
rectangle). The WareMgr, Control and Coins block types contain a process with the same name. 
There are two main problems with this structure. First of all, the User class is supposed to 
represent the environment of the system and therefore does not need a block on its own. Second, 
it is overkill to generate an extra block and block type for each process, certainly if we consider 
the burden for extra communication routes. 

 
Figure IV-5. Structural overview of the generated SDL System 

Figure IV-6 shows a part of the generated signal and type declaration in the ToffeeVendor system. 
Again, we find a number of undesirable specifications. The parameter of the signals Exists and 
Choice is a_request, while it should state the type of parameter. The reason is that the type is not 
defined in the class diagram and default translation for a missing parameter or variable type is to 
prefix “a_” to the name. For the same reason the translator generates two new type declarations 
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a_request and a_article, while they should be the same type. These incorrect types are also used 
as type for the variable declarations in the processes. 

 

Figure IV-6. Declarations in the ToffeeVendor System 

IV 2.4 Class Diagram Revisited 

The problems found by investigating the generated SDL could be solved directly in SDL. 
However, this would require making updates on many different places. After regrouping the 
processes and deleting the User block and block type, almost all channels and signal routes would 
need to be rewired. After renaming the new types, all parameters and variables using the type 
need to be updated. 

Before touching the generated SDL, we first improve the UML class diagram. In general, one will 
continue working on the UML model until the generated SDL looks right at first glance. The 
round-trip engineering process benefits from a stable starting point. Figure IV-7 shows the 
improved class diagram of the toffee vendor example. First of all, we fill in the stereotypes of all 
classes. The stereotype of a class is important information for the translator. The Coins and 
Control classes get the stereotype «process» and are grouped together in the «block» Dialogue. 
The process for ware manager is kept separate. The User class has the stereotype «actor», which 
means that it represent an active entity outside the system. The two new classes Item and Cont 
(from Contents) are abstract data structures, indicated by the «newtype» stereotype. They are 
used as the type for attributes and parameters in Control and Ware Mgr. In our model, Item is an 
enumerated type to represents the choice made by the user. Cont is dictionary table that stores the 
amount of items available for each kind of item. We will fill in the exact details for this type in 
SDL, because SDL provides the specific constructs to specify ADT’s. Some extra attributes that 
are used during the execution of the state diagram are added to Control and Ware Mgr. For 
example the article attribute of the Control class shown in Figure IV-7 is used to store the user’s 
request. 
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Figure IV-7. Improved Class Diagram of Toffee Vendor 
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IV. 3 Translating UML to SDL 

The first step in iterating between UML and SDL is the generation of an SDL specification as a 
base for detailed design. In order to use the incremental translation rules, the UML model is 
virtually compared with an empty UML model, i.e. all classes, attributes, states, etc. are all 
translated as new entities. These translation rules are designed to generated readable SDL 
specifications that are a good base for detailed design. 

The translation is adjustable by a number of parameters, depending on the purpose of the 
generated SDL. For the toffee vendor example, we choose to generate a system (as opposed to a 
package), as the application will run standalone and is not a part of a bigger system. We choose to 
generate block types and process types to have more flexibility for future extensions. We choose 
to generate signals globally because the system is rather small. Finally, we choose not to generate 
PId variables, as no processes are created at run-time. 

Here we present an outline of the translation rules and apply them to the Toffee Vendor example. 
Before the actual translation, the UML model is preprocessed to check for missing information or 
inconsistencies. We divide the translation itself into three parts. First, we generate the structural 
objects of the SDL description. Then, the processes are interconnected with communication 
routes and declarations are generated. Finally, a finite state machine is generated for each process. 

IV 3.1 UML Preprocessing 

To assure a correct execution of the translation rules, the UML model must first be preprocessed. 
Although the class diagram of our example is quite complete already, a number of things need to 
be done here. The Ware Mgr class has the stereotype «process», but it does not have an 
aggregate. As this is not allowed, its stereotype is changed to «block». The association between 
Coins and Control does not have a name. As a default, the names of the classes are appended to 
form the name of the association, in this case Coins_Control. Moreover, none of the associations 
has their roles defined. The processor therefore assigns the default roles are “G1”, “G2”, etc. 
Finally, all spaces that occur in names are removed, so Ware Mgr becomes WareMgr. 

IV 3.2 Hierarchical Structure 

The classes and aggregations of an UML class diagram are translated into a static SDL structure 
specification. If the “generate types” option is on, a class is translated as a block type or process 
type. An aggregation is then used to identify an instance of the block or process type. If a class 
with stereotype «block» owns a state diagram, a process is created in the corresponding block. 
Figure IV-8 shows the resulting hierarchical structure after translating the class diagram of the 
toffee vendor (Figure IV-7). There are two block instances at system level, one for each top-level 
«block» class: a_WareMgr and a_Dialogue. These are the default names for instances, formed by 
prefixing "a_". 
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Figure IV-8. Hierarchy View of the Generated System 

IV 3.3 Declarations and Communication  

Signal declarations are an important aspect of an SDL system, as they form the only way of 
communication. Each signal used within a process, either as input or as output signal, should have 
a declaration within the scope of that process. An option of the translation lets the developer 
choose whether to put the signal declaration at system level or at the deepest block that is visible 
to all processes that use the signal. The same holds for type declarations. In our example, we 
choose to put all signals at system level.  

Figure IV-9 shows the signal and type declarations in the toffee vendor system. Note that, besides 
the signal declarations, a signal list is created for each class that contains all the signals the class 
can receive. These signal lists makes it much easier to maintain the SDL specification manually, 
because adding a signal only requires one update instead of many throughout the system. Two 
empty newtype declarations are created for the «newtype» classes Item and Cont. 

 
SYSTEM ToffeeVendor 

SIGNAL Ware; 
SIGNAL Display (charstring); 
SIGNALLIST User = Ware, Display; 
SIGNAL Exists (Item); 
SIGNAL Paid; 
SIGNALLIST WareMgr = Exists, Paid; 
SIGNAL Choice_ (Item); 
SIGNAL Empty; 
SIGNAL NonEmpty;  
SIGNAL Money (integer); 
SIGNALLIST Control = Choice_, Empty, NonEmpty, Money; 
SIGNAL Accept; 
SIGNAL Close; 
SIGNAL Coin10; 
SIGNAL Coin50; 
SIGNAL Coin100; 
SIGNALLIST Coins = Accept, Close, Coin10, Coin50, Coin100; 
SIGNALLIST Dialogue = empty;  

NEWTYPE Item 
   
ENDNEWTYPE Item; 
NEWTYPE Cont 

   
ENDNEWTYPE Cont; 

WareMgr 

Dialogue 

Control 

Coins 

 
Figure IV-9. Signal and Type Declarations in the Generated System 
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Another important issue is to connect processes that communicate through channels and signal 
routes. For every association between two classes, a communication path is generated between 
the corresponding processes or process instances. Channels are generated to reroute the 
communication path via the first common visible block. By default, the channels are made bi-
directional and hold the signal lists of the source process and destination process.  

SYSTEM ToffeeVendor

a_WareMgr : 
WareMgr

a_Dialogue : 
Dialogue

outWare

(User) (WareMgr)
G2

ware_control
(Control)

(WareMgr)

G1

G1
pay

(User) (Coins)
G1

input_

(User) (Control)
G1

 

BLOCK TYPE Dialogue

a_Control : Control

a_Coins : Coins

G1
(User)

(Control)

G1

G1

G1

ware_control

(WareMgr) (Control)
G2

input_

(User) (Control)
G1

Coins_Control
(Control)

(Coins)

G2

G3

pay

(User) (Coins)
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Figure IV-10. Block and Processing 

Interaction 
Figure IV-11. Process Interaction in 

Dialogue Block Type 

Figure IV-10 shows the block interaction at the system level after having translated the complete 
UML model. The channel ware_control is the result of rerouting the association between the 
classes Control and Ware_Mgr. The three other channels going to the environment are the result 
of the associations to the User class. 

IV 3.4 Finite State Machine 

Each UML state diagram is translated into a finite state machine (FSM). Both «process» and 
«block» classes can contain a state diagram, making it an active class. The FSM is created in the 
process that is generated from corresponding class. In the case of a «block» class, an additional 
process is created in the block (type) that holds the FSM and the variable declarations. 

Most constructs in an UML state diagram can directly be mapped onto SDL. States and 
transitions are equivalent in UML and SDL. Input events become input signals, output events 
become output signals and guards become provided constructs. Concerning actions, we 
differentiate four kinds of actions: assignment, output event, function call and informal text. Each 
of them is automatically recognized and accordingly translated to SDL. The other UML state 
diagram features are first convert to the basic features. Nested state diagrams are flattened before 
the translation. At the same time, entry and exit actions are moved onto the transitions. Figure 
IV-12 shows the finite state machine after translating the state diagram of the Control class shown 
in Figure IV-3. Note that the entry actions of the payment state are put on the NonEmpty 
transition and the exit action of the same state is put on the last transition. 
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DCL coin integer; 
DCL cost integer; 
DCL article Item; 
DCL value integer; 

idle contents payment 
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Figure IV-12. Generated FSM for Control_Process 

IV 3.5 Linking UML and SDL models 

In order to perform incremental changes after the initial code generation, we maintain links 
between the UML model and the SDL specification. All UML entities contain a number of 
link-variables that are specifically used to link the SDL entities that are generated from the entity. 
The set of link-variables depend on the UML entity. For example, a class is linked with the 
generated signal list, block and process. An association is linked with all generated channels, signal 
routes and gates. An operation is linked with the signal declaration, and so forth. The complete 
definition of this process is presented in section V. 5. Figure IV-13 illustrates the links built up 
during the translation of the toffee vendor. It shows a representative selection of entities of the 
UML model and SDL system in a hierarchical structure and the links between the corresponding 
constructs. The Ware Mgr class, for example, has three links: the signal list, the block type and 
the process. 

The UML-SDL links are used during the incremental translation to locate the entities that are 
affected by the change. Suppose the Ware Mgr class is deleted, then the linked signal list, block 
and process are removed. If an attribute is added to the class, then a variable is added to the 
linked process. If the name of the class changes, then the linked entities are renamed too, etc. 
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model ToffeeVendor 

class Dialogue 

class Ware Mgr 

class Item 

class User 

association ware_control

system  ToffeeVendor 

block instance  a_Dialogue 

process instance a_Control 

block type Dialogue 

process instance a_Coins  

signal route ware_control 

newtype Item 

process type Control 

variable article 

aggregation Control 

aggregation Coins  

signal Choice_(Item) 

signallist Control 

attribute article  

class Control 

operation Choice 

state idle  

transition Choice  

send Exists 

block type WareMgr 

block instance  a_WareMgr 

channel ware_control 

state idle 

input Choice 

output Exists 

process WareMgr 

signal route ware_control 

gate  G1 

gate  G2 

signallist User 

signallist WareMgr 

 
Figure IV-13. Hierarchical Links between UML and SDL 



 

Example   67 
  

IV. 4 Detailed Design 

If, after inspecting the generated SDL, the developer cannot or does not want to improve the 
UML at this point, he/she starts detailed design. In other words, he/she starts modifying and 
improving the generated SDL specification. On one hand, we lose the abstraction mechanisms of 
UML, but on the other hand, we gain the features of SDL that allows one to exactly specify the 
system. In this section, we discuss what typical detailed design embraces on the generated code 
and how it might affect the iteration. As a general guideline, structural changes are better 
performed in UML and local changes are better performed in SDL. Of course, a number of SDL 
constructs do not have a counterpart in UML and therefore always need to be design in SDL. 

IV 4.1 Structures 

Typically, the very first task in SDL is to improve the layout of the block and process interactions. 
For example, blocks are moved to avoid crossing channels or new declaration fields are created to 
group entities that belong to each other. Actually, the figures shown in the previous section were 
already modified in order to take less space. At the same time, superfluous declarations are 
deleted and the rest is reorder and grouped. 

At this point, the block and process structure is fine-tuned. Many SDL specific issues cannot be 
expressed in UML and thus are performed during detailed design. In our example, we carry out 
three structural changes: we convert the Dialogue block type into a block, we let the Control 
process create a Coin process dynamically and we move the process types into the Dialogue 
block. Each of these changes is explained in more detail below. Figure IV-14 shows the resulting 
structure hierarchy. 

 
Figure IV-14. System structure after Detailed Design 

The choice whether to translate classes as types or as definition is a global option and therefore 
needs some fine-tuning during detailed design. In our example, the only purpose of the Dialogue 
block type is to group the processes Control and Coins. We therefore transform the block type 
Dialogue into a block definition and delete the block instance a_Dialogue.  

The default name for a type based block or process is the name of the type with "a_" as prefix. 
We give the process instances a_Control and a_Coin clearer names: Controller and Coin. 
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Furthermore, we modify Coin such that one instance is created dynamically, in our case by 
Controller. As a side effect, the Control process type needs the Coin process instance within his 
scope level. We therefore move the Control and Coins process types in the Dialogue block. The 
resulting structure is shown in Figure IV-14. 

IV 4.2 Communication and Declarations 

Wherever blocks or processes are moved or created, the channels and signal routes have to be 
adapted accordingly. As a guideline, its better for the round-trip engineering process to reconnect 
existing channels if possible. In this way, the link between the association and the channel is 
retained. In our example, the type based Dialogue block is replaced by the Dialogue block 
definition and all channels previously connected to the block instance are reconnected to the block 
definition. Moving the Control and Coins process type to a different place does not have an 
impact on the communication routes. 

In the control process, we want more control over the destination of the signals it sends. To 
access the coin process, which is created dynamically, we create a variable coins that stores the 
PId after creating the process. To access the ware manager, we rename the rename the gate G2 of 
the Control process type into the more meaningful name Ware such that we can use it in a via 
statement. The ware_control signal route is adapted to connect with the renamed gate. One more 
change is to remove the signal list of the Dialogue block, which is never used. 

A detailed design activity is filling in the newtype declarations. The translator only handles 
structural newtypes, while in our example, the Item newtype is an enumeration of literals and the 
Cont newtype is an array. The specification of these two newtype is shown in Figure IV-15. 

NEWTYPE Item
  literals toffee, chocolate, gum;
  operators value: Item -> integer;
ENDNEWTYPE Item;

NEWTYPE Cont
  array(Item, integer)
ENDNEWTYPE Cont;

 

Figure IV-15. Detailed design of newtypes 

IV 4.3 Dynamic Behavior 

Adding detail to the process specification is probably the most important aspect of detailed design. 
Here, issues like timers, addressing and switches are tackled. On the initial transition, processes 
can be created and their addresses queried and stored. Output events can then be modified to send 
signals to specific processes. Tasks can be added or improved. Transitions can be grouped 
together using the decision constructs. In addition, error handling can easily be modeled in SDL 
using the asterisk state and priority input constructs. 

Figure IV-16 shows the Control process of our example after detailed design. The gray areas 
indicate the changes compared to Figure IV-12. On the initial state transition a process Coins is 
created, the output events have changed and the two transitions of the payment state have 
merged. The state idle is renamed into waiting. The destination of the output signals is changed 
from the class name into the correct PId value or gate. Furthermore, a new procedure IntToString 
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is added that converts an integer into a string. This procedure is called to convert the actual 
parameter when outputting Display. 

 DCL coins PId; 
DCL coin integer; 
DCL cost integer; 
DCL article Item; 

Coin 

coins := 
offspring 

waiting 

waiting 

Choice~ 
(article) 

Exists (article)  
via Ware 

contents 

contents 

Empty 

waiting 

NonEmpty 

cost:= 
value(article) 

Accept to  
coins 

payment 

payment 

Money(coin) 

cost 
:=cost-coin 

Display 
(call IntToString(cost)) 

cost <= 0 

- Close to  
coins 

Paid via Ware 

waiting 

IntToString 

false 

true 

 
Figure IV-16. Control Process after Detailed Design 

IV 4.4 Reverse Iteration 

Before switching to system design in UML, the relevant detailed design changes are translated to 
the UML model. As the major part of detailed design deals with SDL specific things, many of the 
detailed design changes will not be translated at all. The changes are detected by comparing the 
previous version of the SDL system (in this case the generated SDL) with the last version. Entities 
that appear in the old version and not in the new version are deleted. Entities that do not appear in 
the old version, but do appear in the new version are added. Entities that appear in both versions 
are compared to search for differences in name, type, scope, inheritance, etc. The comparison can 
also be hand tuned, e.g. to join a delete and a new operation into a modify operation. Some more 
details on the comparison and incremental translation is given in the forward iteration step below. 
The full definition is specified in chapter V. 

Table IV-1 shows the list of changes found in the SDL specification and the corresponding 
translation in UML. Note that in the first change, the structure link of the Dialogue class that 
original pointed to a block type is updated to point to the Dialogue block definition. 

 

 

SDL Change Translated change in UML 

Block Type Dialogue transformed to Block  Class Dialogue becomes non-typed, update the 
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structure link (ref. IV 3.5) 
Block Instance Dialogue transformed to Block No change (the aggregate defines the scope 

instead of the instance) 
Process instance Coin, number of instances 
changed  

No change 

Process types Coins and Control moved No change 
Process instances a_Coins and a_Control 
renamed to Coin and Controller 

Rename role names of aggregations  

Gate G2 of Control process type renamed to 
Ware  

Rename role of association ware_control 

Channels ware_control, pay and input~ 
reconnected to Dialogue block 

No change (associations connected to the same 
class) 

Procedure IntToString added Add operation to Control class  
Implement newtypes No change 
Rename state idle into waiting Rename the state 
Action create Coin added to initial transition  Add informal action to initial transition 
Action coins := offspring added to initial 
transition 

Add assignment action to initial transition 

Signal outputs modified No change 
Transitions from state payment merged (delete 
guarded transition. 

Delete transition from payment to idle, but we 
ask not to apply the change. 

Table IV-1: Detailed design changes in SDL and translation in UML 

Updating the UML model concludes the first iteration. The first iteration is a special case because 
the incremental UML to SDL translation actually generates a complete SDL specification. The 
UML model is virtually compared with an empty model such that all entities are considered new. 
In the second step, i.e. detailed design in SDL, we mainly focus on the SDL specific issues. 
Consequently, the reverse incremental translation does not change a lot at the UML side. 
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IV. 5 System Design II 

In this second iteration, we add new functionality to the toffee vendor. More specifically, we will 
improve the interaction with the user. We switch back to the updated system design model 
without loosing the detailed design. We discuss the changes in the class diagram and the 
controller’s state diagram. In the diagrams below, the changes resulting from reverse iteration of 
the detailed design changes are marked with the tiled pattern. 

IV 5.1 Class Diagram 

As a continuation of our system design of the toffee vendor, we now include a class Viewpoint to 
the class diagram. Viewpoint is a class that handles the interaction with the user. It senses when a 
button is pressed and it shows messages on the display, e.g., how much money needs to be 
entered. The User actor now communicates with Viewpoint instead of the Control class. One end 
of the association Input is moved from Control to Viewpoint. Another association displ is added 
between Viewpoint and Control. Finally, an operation Complete is added as a notification from 
the Ware Mgr that it has delivered the item. The resulting class diagram is shown in Figure IV-17. 
The system design changes compared to Figure IV-7 are marked in gray; the detailed design 
changes are marked with the hatched pattern.  

 

text: String article: Item 

Done Price(pr: integer) ShowTxt(text: String) Button(article: Item) 

«newtype» 
Cont 

«block» 
Dialogue 

«newtype» 
Item 

Accept 
Close 
Coin10 
Coin50 
Coin100 

«process» 
CoinHdlr 

coin:integer 
cost:integer 
article: Item 
Choice(article:Item) 
Empty 
NonEmpty 
Money(value:integer)  

     IntToString(integer):charstring 
Complete 

«process» 
Control 

box: Cont 
request:Item 
Exists(request:Item) 
Paid 

«block» 
Ware Mgr 

Ware 
Display(text: String) 
Overpay 
Empty 

«actor» 
User  

Viewpoint 
Coin Coin Controller Controller 

pay pay 

outWare  outWare  

ware_control  
ware 

ware_control 

inp
ut 
input 

displ 

ViewPt 

 
Figure IV-17. New System Design Model 

IV 5.2 State Diagram 

For the dynamic model, we only discuss the changes in the state diagram of the Control class. 
Most changes are related to the communication with Viewpoint. The signals Showtxt, Price and 
Done are all sent to Viewpoint. In the internal transition Money(coin), the output of Display is 
replaced with the Price signal. An extra state releasing is needed to wait for the event Complete 
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from the Ware Mgr. Figure IV-18 shows the resulting state diagram. Of course, the state diagram 
of the classes Viewpoint and WareMgr are changed too, but are not further discussed. 

 

entry/cost:=value(article); ^Price(cost) 
entry/Accept 
exit/Close 
Money(coin)/cost:=cost-coin; ^Price(cost) 

Ware Mgr 

releasing 

waiting Choice(article) 

Exists(article) 

[cost<=0]/ 
^Price(0); 

^WareMgr.Paid 
 

Complete 
/^Done 

NonEmpty/ 
^Showtxt(“pay”) 

Empty / 
^Showtxt(“empty”)  

payment 

contents 

/create coin; 
coins := offspring 

 
Figure IV-18. New State Diagram of Control 

IV 5.3 Forward Iteration 

After having changed the system design model, the detailed design model needs to be 
synchronized. Similar to the reverse iteration, this is accomplish by translating the changes in the 
system design model and apply them to the detailed design model. Unlike the reverse iteration, the 
UML changes in this forward iteration step have many implications on the SDL specification. We 
therefore discuss this step in more detail. The problem is threefold. How do we detect the system 
design changes (deltas), how do we translate them and how do we apply them to a specification 
that may be different than we expected. 

IV.5.3.1 Determine delta’s  

The first aspect is to determine the deltas between two UML models, i.e. determine the changes 
made to the model during system design since the previous iteration. For this purpose, we 
compare the models before (old model) and after editing (new model). Whenever (re)entering a  
certain phase, the current model is stored before editing. After having changed the model, it is 
saved as a second version and then a standalone program compares those models. If an entity is 
present in the old model and not in the new model, the entity has been deleted. If an entity is only 
present in the new model, the entity has been added and is considered “new”. If an entity is 
present in both the old and the new model, the entities “match” and are further compared to 
detect differences on a lower level. The matching of entities is based on their unique identifiers, 
such that renamings can also be detected. 

The multi-level comparison follows the hierarchical structural of UML. At top-level, the 
incremental translator checks whether classes or associations are added or deleted. For matching 
classes, the attributes, operations, generalization, aggregates and state diagram are compared. 
Within the state diagram, the states are compared and on the transitions on the next level. As for 
our example, the changes found during the comparison are discussed together with the translation 
in the next section. 

An alternative approach to determine changes is to track every edit commando during editing, 
together with its context.  It is preferable to have a structural editor in order to store useful context 
information during tracking. Most graphical editors, however, are already structural editors. 
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Although we have chosen the comparison approach, the rest of the iteration is independent of this 
choice, as both approaches produce a set of changes. 

IV.5.3.2 Translate and Apply Deltas 

The essence of the iteration is of course the actual synchronization of the system design model 
and the detailed design model. The changes detected during system design are translated and 
applied to the SDL specification. We go through the changes discussed in sections IV 5.1 and IV 
5.2 and translate them in the meantime. A complete specification of the incremental translation 
rules is given in V. 6.  

Viewpoint is a new class without a stereotype definition and is a component of the Dialogue 
class. The default stereotype for a leaf class is «process». This change is translated by creating a 
new SDL process type named Viewpoint and adding it to the Dialogue block. The instance of the 
process type is created later with the translation the new aggregation. Figure IV-19 shows the 
content of the Dialogue block after applying the incremental translation. 

The «process» class Coins is renamed into CoinHdlr. This is translated by renaming the linked 
process type Coins into CoinHdlr. The process instance is not renamed, as the explicit role name 
of the aggregation is not changed.  

The attributes and the operations in the Viewpoint class are all new too. Compliant with the 
mapping, the new attributes are translated as new variables in the Viewpoint process type and the 
new operations are translated as new signals, which are added to the signal list. The new 
operations in the classes User and Control are translated the same way. 

block Dialogue 1(1)

Control CoinHdlr Viewpoint

Controller : Control

Coin(0,1) : CoinHdlr

ViewPt:
Viewpoint

ware_control

input~pay

ware_control

(WareMgr) (Control)
ware

Coins_Control
(Control)

(CoinHdlr)

G2

G3

pay

(User) (CoinHdlr)
G1

displ

(Control)

(ViewPoint)

G2G1

input~

(User)

(Viewpoint)

G1

 
Figure IV-19. Static Structure of Dialogue block after Forward Iteration 

A new association called displ is added between Viewpoint and Control. This is translated by 
adding a gate the Viewpoint and Control process types and by connecting the process instances 
with a signal route. Note that the order of executing the changes in important, as this translation 
needs the generated Viewpoint process type. 
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The association Input is connected to a different class; more specifically, the Control association 
end is moved to Viewpoint. In theory, it would be sufficient to regenerate only one side of the 
communication routes. However, it is very difficult to specify exactly which part of the channels 
and signal routes of the unchanged side are still valid (gates, used signal lists, connections, etc.) 
Therefore, the full communication route is regenerated in cases like this. To demonstrate the 
incremental translation of state diagrams, we discuss the changes in Control’s state diagram. To 
find the changes, we compare the old version of the state diagrams, shown in Figure IV-3, with 
the new version, shown in Figure IV-18. The old version also includes the two actions on the start 
transition, which are generated during reverse iteration. These actions are therefore not considered 
new. 

In five transitions, a new action was added; all of these actions are output signals. These changes 
are translated by adding an output action at the end of the corresponding transitions. There is one 
exception; during detailed design, the guarded transition starting from the payment state was 
merged with the Money transition. Consequently, the UML transition between the states payment 
and idle is not linked anymore and the translations cannot be applied. 

The result is shown in Figure IV-21. The hatched areas are changes already applied during the 
detailed design phase, while the gray areas mark the changes applied by translating the system 
design changes. 

 

DCL coins PId; 
DCL coin integer; 
DCL cost integer; 
DCL article Item; 

Coin 

coins := 
offspring 

waiting 

waiting 

Choice~ 
(article) 

Exists (article)  
via Ware 

contents 

contents 

Empty 

Showtxt 
('empty') 

waiting 

NonEmpty 

cost:= 
value(article) 

Accept to  
coins 

Showtxt 
('pay') 

Price(cost) 

payment 

payment 

Money(coin) 

cost 
:=cost-coin 

cost <= 0 

Price 
(cost) 

- 

Close to  
coins 

Paid via Ware 

releasing 

releasing 

Complete 

Done 

waiting 

false 

true 

Display 
(call IntToString(cost)) 

 
Figure IV-20. Control Process after forward iteration 
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IV. 6 Detailed Design II 

The second iteration continues with the adaptation of the updated SDL specification. We 
manually finalize the translation of system design changes and we implement new functionality 
that is difficult to achieve in UML. 

On the structural and communication level, the translated system design changes do not need 
further detailed design. For the state machine, we again focus on the Control process. First, we 
apply the changes that could not be added because of the missing link. More specifically, we add 
an action to send Price(0) to the Viewpoint process and we correct the destination state of the 
transition. Second, we add some new functionality. To avoid deadlocks, we build in a timer that 
gives the user of the toffee vendor a certain amount of time. If the time is exceeded, the sale is 
canceled. The user is also given the possibility to undo the sale himself. The resulting process 
definition is show in Figure IV-21, only the relevant states and transitions are shown. The new 
detailed design changes are marked in gray. The hatched areas represent all the previous edit 
operations (system design and detailed design). 

 timer Timeout := 10.0; 
payment 

Money(coin) 

cost 
:=cost-coin  

Display 
(callIntToString 
(cost)) 

cost <= 0 

Price 
(cost)  

- 

Close to  
coins 

Paid via Ware 

releasing 

Undo 

Close to coins 

waiting 

Timeout 

Showtxt 
('timed') 

contents 

Empty 

Showtxt 
( 'empty') 

waiting 

NonEmpty 

cost:= 
value(article) 

Accept to  
coins  

Showtxt 
('pay') 

Price(cost) 

payment 

set(Timeout) 

set(Timeout)  

reset(Timeout) 

true 

false 

Price(cost) 

 
Figure IV-21. Control Process after Forward Iteration 

Again, these changes are translated into incremental changes to the UML model. There are two 
new transitions from the payment state to the waiting state. The actions below the join of the 
Undo transition are duplicated, such that the actions are present in both transitions. The new 
transitions are translated by adding two transitions to the UML state diagram. The resulting state 
diagram is shown in Figure IV-22 with the new elements marked in gray. 
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entry/cost:=value(article); ^Price(cost) 
entry/Accept 
exit/Close 
Money(coin)/cost:=cost-coin; ^Price(cost); 

set(Timeout) 

Empty / 
^Showtxt(“empty”)  

[cost<=0]/ ^Price(0); 
^WareMgr.Paid; reset(TimeOut);

^Price(cost)

Ware Mgr 

releasing 

waiting Choice(article) 

Exists(article) 

Complete 
/^Done 

NonEmpty/ 
^Showtxt(“pay”); 

set(Timeout) 

payment 

contents 

/create coin; 
coins := offspring 

Undo/
^coins.

Close

Timeout/
^Showtxt(“timed”);

^coins.Close

 
Figure IV-22. State Diagram of Control after Second Iteration 

This step concludes our example. This loop of system design and detailed can be repeated any 
number of times. After each iteration, the updated model or specification is examined and 
improved. After a few iterations, the UML model and SDL specification may diverge somehow. 
This has the advantage that the UML model can present a higher abstraction level. The 
disavantages are that UML and SDL are not completely synchronized and that due to missing 
links there is less support for iterative translation. The latter can be tackled by a manual relinking 
process. 



 

 

VVV...   RRREEEAAALLLIIIZZZIIINNNGGG   TTTHHHEEE   UUUMMMLLL---SSSDDDLLL   RRROOOUUUNNNDDD---TTTRRRIIIPPP   
EEENNNGGGIIINNNEEEEEERRRIIINNNGGG   

“Act as if what you do makes a difference. It does.” 

-William James-  

 

“Good timber does not grow with ease. The stronger the wind, the 
stronger the trees.” 

-Williard Marriott- 
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V. 1 Introduction 

This chapter contains the complete definition of the UML-SDL round-trip engineering process and 
is the technical core of this dissertation. A large set of rules defines how a UML model is 
preprocessed and how all the possible changes in UML or SDL are translated into changes in the 
opposite model. Before executing any rules, we need to build a valid information model of the 
UML model and the SDL specification. Moreover, the two information models must be linked 
with each other to determine the right scope for translating changes. The next subsection gives an 
overview in which order the various activities are executed, how the data flows between the 
activities and which section in this chapter deals with these issues. Section V 1.2 explains the 
notation of the transformation rules used throughout the chapter. 

V 1.1 Overview of the Round-Trip Process 

Figure V-1 captures the flow of activities and models during the round-trip process as described in 
this chapter. The process starts by loading the old and the new versions of the UML model. In the 
first iteration, the old UML model is empty and all entities in the new model are considered new. 
In the succeeding iterations, the old model is the previous version of the UML model. The exact 
structure of the UML information model is defined in section V 2.1. Both the old and the new 
UML model are preprocessed to check their consistency and to fill in missing information with 
defaults. The preprocessing rules are defined in section V 2.2. On the SDL side, the latest version 
of the specification is loaded in a specialized information model defined in section V. 2. Next, the 
links between the old UML model and the SDL specification are restored. Essentially, each UML 
entity has pointers to the SDL entities is has generated. Section V. 4 defines the exact list of links 
and back-links. The links between the new UML model and the SDL specification is build-up and 
updated during the compare process. 
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Figure V-1. Overview of the Forward Incremental Process 
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Once all data structures are in place, the old and the new UML models are compared to detect 
changes made in the model since the previous iteration. If an entity is present in the old model, but 
not in the new model, the entity has been deleted. If an entity is not present in the old model, but 
is present in the new model, the entity has been added (new entity). If an entity is present in both 
models, they are said to “match”. Matching entities are compared on their attributes, e.g. name, 
stereotype, etc. The comparison is done in a hierarchical fashion. First, the packages are 
compared, then the components and associations and then the attributes, operations and state 
diagrams. All sub-entities of a new entity are also new and all sub-entities of a deleted entity are 
also deleted. The order in which the changes are handled is crucial, because some changes 
interfere with each other. Section V. 5 defines the exact order in which the comparison is 
executed.  

For each new, deleted or matched entity, a set of rules is applied to the entity. Except stated 
otherwise, the rules are applied in order of appearance. Each rule defines a precondition that must 
be fulfilled before the action part is actually executed. The rules are defined in section V. 6, which 
is divided in subsections. Each subsection contains the set of rules necessary to translate or 
compare a particular entity. 

The second part in the round-trip engineering is the reverse incremental translation of changes in 
SDL to update the UML model. The process, illustrated in Figure V-2, is almost identical to the 
forward incremental translation. In this case, there are two SDL specifications that are compared 
and one UML model that is being updated. The link between UML and SDL is restored based on 
the old SDL specification. However, because the links are stored on the UML side and are based 
on identifications instead of direct pointers, there is also a link between UML and the new SDL 
specification. As in forward iteration, the links are updated to the new SDL specification in the 
translation rules. The rest of the process is identical to the forward variant, even though we use 
different comparison and translation rules (see section V. 8). 
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Figure V-2. Overview of the Reverse Incremental Process 
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V 1.2 How to read rule definitions 

The UML preprocessing and the translation of changes is defined in the form of rules. Each rule 
describes the actions to be taken if a certain condition is satisfied. The rules are presented in a 
uniform table with a maximum of four fields, as illustrated in Rule 0. The precondition field 
provides a list of conditions. If not mentioned otherwise, all the conditions must be  satisfied, for 
the rule to be executed. If there is no precondition field, the rule is always applied. The context 
field provides a list of variables within the context of the rule. They can be regarded as a number 
of “let” statements. The action field defines the actions that are taken when the rule fires. Most 
rules for translating new UML entities add a number of SDL constructs to the SDL data structure. 
The SDL is presented in the textual representation for easy readability. For example, instead of 
writing “system.addStructure (new SdlBlockType(var2));”, we write the 
statement shown in the illustration (Rule 0). The variable field, finally, defines a number of 
variables that are used by other rules in the same section or fills-in UML-SDL links. 

A general principle in all rules is that every variable, function or link that contains or returns an 
SDL value is underlined. Variables, functions or links that contain or return an UML value are not 
underlined. This notation increases readability because most rules mix UML and SDL expressions. 

Preconditions – Condition 1 All conditions must be fulfilled 
– Condition 2 to make this rule fire. 

Context – var1 = UMLVariable   
– var2 = var1.umlattribute Everything that contains 

– var  3 = var1.sdllink or returns an SDL value 

– var  4 = SDLVariable is underlined. 

– var5 = var  4.reverselink-1  
Action 

 

Do something. 

Add to system var  4 : References to variables. 

BLOCK TYPE <var2>; Generated code. 
ENDBLOCK TYPE <var2>; 
 
 

Variables – Global Variable = new value  Definition of new variable or 
  assignment of new value 

Rule 0. Illustration of a rule. 
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V. 2 UML Information Model 

The first activity in an iteration step is loading the UML model in a specialized information model 
and preparing the UML model for its translation to SDL. This section defines exactly what 
information is used for the translation and how it is organized. Almost any UML tool allows more 
information than can be stored in our information model. This extra information is simply ignored, 
as it is of no importance for the UML-SDL round-trip engineering. On the other hand, some 
information specific for the round-trip engineering is added to the model. This information is filled 
in during the preprocessing or during the translation. The next section discusses the UML 
information model in more detail.  

V 2.1 Information Model 

Figure V-3 shows an overview of the entities in the UML information model. The tables below 
define the attributes for the different UML entities. The first column gives the name of the 
attribute. The second column describes the semantics of the attribute or defines the possible valid 
values. The description also indirectly defines the type of the attribute. The last column defines 
the default value in the case that the attribute is empty. Filling in the default is one aspect of the 
UML preprocessing. We discuss some important issues for each of the entities. 

Model

Aggregation Association

Package

0..*

0..* 0..*

Attribute

Class
0..*

0..*

Parameter

Operation
0..*

0..*

State Diagram

0..*

State
0..*

Action

Transition
0..*

0..*

0..*0..*

0..*

0..* 0..* 0..*

0..*
0..*

0..*

0..*

0..*

 
Figure V-3. UML information model 
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The model is the root node for a UML model. Except for the name, it contains a flattened list of 
all packages in the model, i.e. the list also contains the packages that are nested within other 
packages.  

UML Model Description Default 
name Usually corresponds with file/project name. “the_model” 
packages List of packages - 

Table V-1. UML model 

The package is the main structuring mechanism. The stereotype determines whether the package 
maps on an SDL system or on an SDL package. The name does not have a default, a package 
without name is invalid and is skipped. The system class attribute points to a special class that 
represents the package. The system class is created during preprocessing and is an aggregate of all 
top-level classes by construction. The attributes global declaration and global type are both 
translation options. They affect in which scope declarations and structured types are defined. The 
packages attribute points to the packages in the model that this package depends on.  

UML Package Description Default 
stereotype «system» or «package» «package» 
name An empty name is invalid - 
system class The class that represents the package or system created during 

preprocessing 
global declaration if true, all signal and newtype declarations are 

defined at top level, if false: local declaration 
true 

global type if true, all block/process types are defined at 
system/package level, if false: local declaration 

false 

communication Option for generating communication, possible 
values are: none, gate only, conservative, full 

conservative 

packages The list of package that this package depends on - 
classes The list of all classes in the package - 
associations The list of all associations in the package - 
aggregations The list of all aggregations in the package - 

Table V-2. UML package 

The UML class is the most complex entity as it is overloaded with different semantics, depending 
on the stereotype, which is the first attribute of the UML class. The stereotypes «system» and 
«package» are reserved for the system class of the package. A class with stereotype «block» is 
mapped on an SDL block or block type with an optional process containing the behavior of the 
class. A class with stereotype «process» defines an active entity with its own variables and state 
diagram and is mapped on an SDL process or process type. A class with stereotype «newtype» 
describes an abstract data type, which can be used to type attributes and parameters. A class with 
stereotype «actor», finally, serves as placeholder for an active entity outside the system. Not all 
the attributes are applicable for all kind of classes. 

The class name is essential for all classes and must never be empty. The attribute is extern, is 
true for classes that are imported from another package. «Actor» classes are always external. For 
external classes, the package name attribute defines in which package the type is defined. A 
«block» or «process» class can contain maximum one state diagram. The typed attribute 
indicates whether a «block» or «process» class is a structure definition or a structure type that will 
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be instantiated with aggregates. The attribute defined in points to the class in the same package 
that provide the scope for the type declaration, i.e. the structure type will be placed in the 
structure linked with the defined in class. The management process decides whether a «block» 
class is also mapped on a process or not. 

UML Class Description Default 
stereotype Valid stereotypes: «system», «package», «block» 

«process», «newtype», «actor» 
«block» or «process» 

class name An empty name is invalid - 
is extern Is true for imported classes from another package 

and for actors. 
false 

package name Name of the Package for external classes. "" 
state diagram The UML State Diagram of this class. empty 
typed If true, class maps on SDL block or process type. If 

false, maps on block or process. Only applicable for 
«block» or «process» classes. 

true 

super class Class where this class inherits from. If empty, no 
inheritance. Multiple inheritance is not supported. 

empty 

defined in Class where this class is in defined.  system class 
management 
process 

If true class (also) maps on an SDL process. Always 
true for «process» class. True or false for «block» 
class. Always false for other classes. 

true for «process», 
false for others 

attributes List of attributes of the class empty 
operations List of operations of the class empty 

Table V-3. UML class 

The UML operation has three different semantics depending on the stereotype. A «signal» 
operation declares a signal and at the same time defines that the class containing the operation can 
receive the signal. A «procedure» operation defines the signature of an SDL procedure. 
«procedure» operations can only be used in «block» or «process» classes. An «operator» 
operation, finally, defines the signature of the behavior for an SDL newtype.  

UML Operation Description Default 
stereotype «signal», «procedure», or «operator» «signal» («operator» 

for «newtype» classes) 
name An empty name is invalid - 
return type Name of the return type "" 
parameters List of parameters of the operation  

Table V-4. UML operation 

UML Parameter Description Default 
stereotype «process» or «block» «package» 
name An empty name is invalid - 
type Name of the type of the parameter. "a_" + parameter name 

Table V-5. UML Parameter 

UML Attribute Description Default 
stereotype Not used in the translation «» 
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name An empty name is invalid. - 
type Name of the type of the attribute. "a_" + attribute name, see 

preprocessing options. 
default The string that represents the default value 

for the attribute. 
"" 

Table V-6. UML Attribute 

Our representation of aggregation and association relationships contains only the basic features: 
name, pointer to the connected classes, the role of the classes in the relationship and for 
aggregations a “composite” attribute. Other information like multiplicity, public/private and 
constraints are not needed for the translation to SDL. The default role name for associations is 
automatic counter prefixed with the letter “G”. 

UML Aggregation Description Default 
name May be empty. "" 
aggregate Pointer to the aggregate class - 
component Pointer to the component class - 
aggregate role Role of the aggregate class "" 
component role Role of the component class "a_"+component name 
composite If true, composite aggregation. If false, reference 

aggregation. 
true 

Table V-7. UML Aggregation 

UML Association Description Default 
stereotype «communication» or other «communication» 
name Name of association see preprocessing option 
 from class Pointer to the “From” Class - 
 to class Pointer to the “To” Class - 
 from role String that describes the role of the from class G# 
 to role String that describes the role of the to class G# 

Table V-8. UML Association 

The UML state diagrams consists of list of all states (including sub states) and a list of transition 
between those states. Sub-states have a reference to their super state. Start and exit states are 
regular states with the type attribute set to specific value. The UML transition contains many 
attributes to define its trigger: event, guard and timer. Table V-11 gives a short descriptions for 
each of the attributes. 

UML State 
Diagram 

Description Default 

name Name of the diagram Name of class 
states List of all states (including initial and 

termination states) 
empty 

transitions List of transitions empty 

Table V-9. UML State Diagram  

UML State Description Default 
name If this is a normal state, i.e. type=normal, - 
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then an empty name is invalid. 
super state reference to the super state empty 
transitions list of internal transitions  empty 
type Possible values: start, stop, normal normal 
entry actions List of entry actions - 
exit actions List of exit actions - 
activity Name of activity "" 

Table V-10. UML State 

There are three types of transitions, which differentiate in when they are fired. An event transition 
is triggered by an incoming signal and can optionally be guarded with an expression. A when 
transition is fired when the guard expression becomes true, usually due to an assignment.  An after 
transition is fired when a specific time has elapsed after entering a state. 

UML Transition Description Default 
event Name of the signal that triggers the transition "" 
source Source State - 
dest Destination State - 
type Possible values: event, when, after event 
guard Boolean expression that sets the guarded 

condition. Used for event and when transition. 
"" 

timer Time expression for an after transition "" 
actions List of UML actions empty 
is internal Is true for internal transitions false 

Table V-11. UML Transition 

UML Action Description Default 
name An empty name is invalid. - 

Table V-12. UML Action 

V 2.2 Translation and Preprocessing Options 

Several aspects of the UML to SDL translation are customizable. Here we define the options that 
are available to manipulate the translation and preprocessing. The options presented here are not 
accessed directly from the preprocessing rules and translation rules. Instead, the rules presume the 
default value of the options (with the exception of the communication option). The description 
below specifies what happens to the preprocessing or translation if the option is set to a different 
value. This way of working improves the readability of the translation rules, as the rules do not 
have to consider the different cases. 

Option Description Default 
Default Type By default, the prefix "a_" is put in front of the variable 

name to fill in a missing type. If the default type option is 
different from "", than this type name is used to fill in the 
type of attributes or parameters without type.  

"" 

Role Prefix By default, associations without role definition get role name 
by prefixing "G" to a counter ("G1", "G2", ...). With this 
option, this prefix can changed. 

"G" 
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Association Name This option defines which name an association without a 
name is given. 
• role: compose role names <FromRole>_<ToRole> 
• class: compose class names <FromClass>_<ToClass> 

role 

Communication This options define the way the association is translated into 
communication routes. This option has a great impact on the 
translation and is therefore considered in the translation 
rules. This option is referred to as the “communication 
option”. The possible values are: 
• no communication: no translation, associations are 

ignored 
• gate only: max. two gates are generated 
• conservative: the association ends are translated, 

including the gates 
• full: a full connection is generated (possibly many gates 

& many channels/signal routes) 

conservative 

Avoid Management If true, set management attribute of all «block» classes to 
false, so that no management processes (process linked with 
a «block» class) will be created. 

false 

Typed This option influences the “typed” attribute of the classes in 
the model. If a class’s typed attribute is true, it is translated 
as a block type or process type. Possible values of the typed 
option are:  
• default: no change, as defined in the class  
• all true: before preprocessing, make all «block» and 

«process» classes typed  
• all false: before preprocessing, make all «block» and 

«process» classes non-typed 

default 

Parameter Variable If this options is set to true, a class attribute is created for 
each parameters of a «signal» operations. If false, Rule 16 is 
not executed. 

true 

Table V-13. Options for Preprocessing  

V 2.3 Preprocessing 

Before comparing, translating or synchronizing a UML model, the model is always preprocessed 
to prepare the model for translation. Doing the preprocessing as a separate step simplifies the 
translation rules, as they do not have to consider aggregation loops or empty names or types. It 
assures a consistent model with all missing information filled with defaults and it processes 
inheritance of association and hierarchical state diagrams. The name, type and/or stereotype of 
classes, operations, attributes and associations are filled with defaults if this information is missing 
in the model. Furthermore, it calculates the extra associations needed to make subclasses inherit 
the communication from their super classes, see V.2.3.5. The last major activity during 
preprocessing is the flattening of hierarchical state diagrams, see section V.2.3.6. Each of the 
sections below is executed once for each corresponding entity, e.g. Rule 2 is executed for every 
package and Rule 4 through Rule 10 are executed for every class in every package. 
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V.2.3.1 Preprocessing UML Package 

The most important action for preprocessing a package is providing the system class, a special 
class that represents the package. The system class is used intensively during the whole translation 
process. It is constructed in Rule 2 by creating a new class with stereotype «package» or 
«system» and by making the class an aggregate of all active top-level classes. In other words, the 
system class becomes aggregate of all active classes that did not have an aggregate before. 

Context – package is the UML package to be preprocessed 
Preconditions – package.stereotype = "" 
Action package.stereotype = «system» 

Rule 1. Default Stereotype for Package 

Context – package is the UML package to be preprocessed  
– model is the UML model containing package 

Preconditions – package.systemclass = empty 
Action package.systemclass = a new class with the following properties: 

systemclass.stereotype = package.stereotype 
systemclass.name = package.name 

 
∀ class ∈ package.classes : if class has no aggregates and class.stereotype = 
«»,  «block» or «process», do 
Add an aggregation aggr to package with the following properties: 
– aggr.aggregate = package.systemclass 
– aggr.component = class 
– aggr.composite = true 

Variables sysclass = package.systemclass 

Rule 2. Create system class 

V.2.3.2 Preprocessing UML Class 

The rules in this section checks and prepares the stereotype, inheritance relationship, typed 
property and the defined in property of each class. Note that a class can only have one super type 
because of the information type. 

Context – class is the class to be preprocessed. 

Rule 3. Context for this section 

Preconditions – class.stereotype = "" 
– class has at least one components (is component part of a aggregation 

relationship) with stereotype «process»  
Action If class has a component comp, where comp.stereotype = «process», «block» 

or «», then 
class.stereotype = «block» 

else    class.stereotype = «process» 

Rule 4. Stereotype for every Class 
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Rule 5 and Rule 6 enforce that all classes involved in a inheritanc relationship are typed and have 
the same stereotype. Rule 7 checks whether a class has multiple aggregates, i.e. the class is the 
component part of an aggergation relationship. If this is true, it means that several instances are 
taken from the class and therefor the class should be typed. 

Preconditions – class.stereotype ≠ class .superclass.stereotype 
Action class.superclass = empty 

Rule 5. Same stereotype for super- and sub-class 

Context – class .superclass is not empty 
Preconditions – class.stereotype =  class.superclass .stereotype = «process» ∨ «block» 
Action class.typed = true 

class.superclass.typed = true 

Rule 6. Classes with inheritance must be typed 

Preconditions – class has more than one aggregate 
– class .stereotype = «process» ∨ «block» 

Action class.typed = true 

Rule 7. Multi-instance Classes must be Typed 

Context – class is a class. 
Preconditions – class.typed = false 

– class has exactly one aggregate 
Action class.definedin = aggregate of class 

Rule 8. Non-typed Class are Defined in their Aggregate 

Context – class is a class. 
Preconditions – class.typed = true 

– package.globaltype = true 
Action class.definedin = sysclass 

Rule 9. Global Typed Classes  

 
Context – class is a Class. 
Preconditions – class.definedin is not empty. 

– class has one or more aggregate 
– package.globaltype = false 

Action class.definedin = common aggregate of class (see description below) 

Rule 10. “Defined In” for Local, Typed Classes 

Rule 10 uses the term common aggregate to assign a default value for the definedin property of 
the class. The common aggregate of a class comp is the class aggr which scope contains all the 
instances of the class comp. Class aggr can be be found by comparing all the aggregation paths 
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(see section V 6.20) of comp. If only the first class (the system class) is common in all paths, then 
that is the common aggregate. Then the second classes in all paths are compared and so on. The 
last class which is common in all paths, except the class itself,  is the common aggregate. In Figure 
V-4 the only aggregation path of class D is (A,B,D) so the common aggregate of D is B. Class F 
has two aggregation paths: (A,B,E,F) and (A,C,E,F). The second class in the two paths are 
different, so the common aggregate of F is A. 

 «system» 
A 

«block» 
B 

«block» 
C 

«block» 
E 

«block» 
F 

«block» 
D 

 
Figure V-4. Aggregate Structure to Find Common Aggregate 

V.2.3.3 Preprocessing UML Operations 

Context – operation is the operation to be preprocessed 
– class is the class containing operation 

Rule 11. Context for this section 

Rule 12 determines the default stereotype for an operation. A UML operation can map on an SDL 
procedure or signal. Signals cannot have a return type, therefore the default stereptype for 
operations without return type is «signal». Procedures usually have a return type, therefore the 
default stereptype for operations with return type is «procedure».  

 

Preconditions – operation.stereotype = «» 
– class.stereotype ≠ «newtype»  

Action If operation.returntype is empty: 
operation.stereotype = «signal» 

else 
operation.stereotype = «procedure» 

Rule 12. Stereotype for every Operation 

Preconditions – operation.stereotype = «» 
– class.stereotype = «newtype»  
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Action operation.stereotype = «operator» 

Rule 13. Stereotype for operation in «newtype» class 

Preconditions – operation.name = "" 
Action Delete operation from the model. Nameless operations are not allowed. 

Rule 14. Delete attribute without name 

Context – Execute this rule for each parameter ∈ operation.parameters 
Preconditions – operation.stereotype = «signal» 

– parameter.type = empty 
Action – attr.type = "a_"+parameter.name 

Rule 15. Create Parameter Variables 

Preconditions – operation.stereotype = «signal» 
Action ∀ parameter∈ operation.parameters, add an attribute attr to class with the 

following properties: 

– attr.name = parameter.name 
– attr.type = parameter.type 

Rule 16. Create Parameter Variables 

V.2.3.4 Preprocessing UML Attributes 

Rule 17 deletes attributes that does not have a name. However, most UML tools will already 
enforce to give a name to attributes, so this rule should not be harmful.  

Context – attribute is the attribute to be preprocessed 
Preconditions – attribute.name = "" 
Action Delete attribute from the model; nameless attributes are not allowed. 

Rule 17. Delete attribute without name 

Context – attribute is the attribute to be preprocessed 
Preconditions – attribute.type = "" 
Action Set attribute.type = "a_"+attribute.name 

Rule 18. Default attribute type 

V.2.3.5 Preprocessing UML Association 

Context for this 
subsection 

– association is an Association. 

Rule 19. Context for Preprocessing Associations 
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Preconditions – association.fromRole = "" 
Context – i = gate counter of association.fromClass 
Action Set association.fromRole = G<i> 

Increment the gate counter of association.fromclass 

Rule 20. Fill-in empty from-role name 

Preconditions – association.toRole = "" 
Context – i = gate counter of association.toClass 
Action Set association.toRole = G<i> 

Increment the gate counter of association.toClass 

Rule 21. Fill-in empty to-role name 

In SDL, inheritance is expressed between types, while communication is expressed between (type-
based) instances. To prepare types for communication, they are provided with gates, but it is not 
possible to connect channels to types. In other words, we cannot use the SDL inheritance for 
inheriting communication. Therefore we have to model our own model for inheriting 
“communication” associations. 
 
The inheritance of associations is done on UML level as part of the pre-processing. There are two 
algorithms to process inheritance of associations: conservative scenario and full-connect scenario. 
The models shown in Figure V-5 are preprocessed in both ways to illustrates the algorithms. The 
resulting models are shown in Figure IV-6 and Figure IV-7. 
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Figure V-5. Example of association before resolving inheritance 

In the conservative approach, an association between two classes A and B is inherited by taking a 
subclass of A and a subclass of B at the same time. The original association is then copied 
between the two subclasses and between all other combinations of a subclass on both sides. This 
is repeated for the next level of inheritance, until there are not any subclasses left on both sides. 
 
Preconditions – communication option = conservative 

– either assciation.fromclass or association.toclass, or both, have at least one 
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subclass (inheritance) 
Context – fromclass = association.fromclass 

– toclass = association.toclass 
– subfrom = {c ∈ package.classes | c.superclass = fromclass} 
– If subfrom = ∅, let  subfrom = {fromclass} 
– subto = {c ∈ package.classes | c.superclass = toclass} 
– If subto = ∅, let  subto = {fromclass} 

Action 

 

For all (subfrom, subto) ∈ {(from, to) | from∈ subfrom , to ∈ subto} do 

– Let subassoc be an exact copy of association 
– subassoc.fromclass = subfrom 
– subassoc.toclass = subto 
– If subfrom = fromclass then subassoc.name = subassoc.name + “_” + 

subto.name, else 
  if subto = fromto then subassoc.name = subassoc.name + “_” + 

subfrom.name,  
  else subassoc.name = subassoc.name + “_” subfrom.name + “_” + 

subto.name 
– Add subassoc to package.associations 
– Apply this rule recursively to subassoc 

 

Rule 22. Conservative Association Inheritance 
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Figure V-6. Example after Conservative Association Inheritance 

In the full connect scenario, we create a copy of an association between any combination of 
subclasses of both end of the association. 
 
Preconditions – association.communication = full 

– either assciation.fromclass or association.toclass, or both, have at least one 
subclass (inheritance) 
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Context – fromclass = association.fromclass 
– toclass = association.toclass 
– subfrom = {c ∈ package.classes | ∃ (c1,…,cn) : ∀i∈(1..n): ci ∈ 

package.classes, ∀i∈(1..n-1) ci+1.superclass = ci , c1 = fromclass, cn = c} 
– subfrom = {c ∈ package.classes | ∃ (c1,…,cn) : ∀i∈(1..n): ci ∈ 

package.classes, ∀i∈(1..n-1) ci+1.superclass = ci , c1 = fromclass, cn = c} 
Action 

 

For all (subfrom, subto) ∈ {(from, to) | from∈ subfrom , to ∈ subto} do 

– Let subassoc be a exact copy of association 
– subassoc.fromclass = subfrom 
– subassoc.toclass = subto 
– If subfrom = fromclass then subassoc.name = subassoc.name + “_” + 

subto.name, else 
  if subto = fromto then subassoc.name = subassoc.name + “_” + 

subfrom.name,  
  else subassoc.name = subassoc.name + “_” subfrom.name + “_” + 

subto.name 
– Add subassoc to package.associations 

 

Rule 23. Full Connect Association Inheritance 
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Figure V-7. Example after Full Connect Inheritance of Association  

V.2.3.6 Preprocessing of State Diagram 

A state diagram is a collection of states and transitions. Most of the preprocessing is performed on 
state level, therefore there is only one rule in this section. Rule 29 makes sure that there is only 
one start transition. If there are two transitions leaving from a top-level start state, it only uses the 
first transition and deletes the other. 

Context – statediagram is a state diagram 
– (tran1, …, tranm) = statediagram.transitions 
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Preconditions – ∃ i,j : i ≠ j ∈ (1..m): transi.source.type = start, transj.source.type = start, 
transi.source.superState = empty and transj.source.superState = empty 

Action Delete transj. Repeat this rule. 

Rule 24. Only one start transition 

V.2.3.7 Preprocessing of State 

Context for 
this section 

– state is a state 
– statediagram is a state diagram containing state 

Rule 25. Context for preprocessing state 

The following two rules define some functions concerning substate diagrams. These functions are 
used for the preprocessing of transitions. 
 
Function substates(state) = {s ∈ statediagram.states | ∃ (s1,…sn) : s1 = s ∧ ∀ i ∈ 1..n-1: 

si = si+1.superstate} 

Rule 26. Function definition for substates. 

 
 
Function substartstates(state) = {s ∈ statediagram.states | s.superstate = state ∧ ∃ t ∈ 

statediagram.transitions: t.source.type = start ∧ t.dest = s} 

If substartstates(state) = ∅, substartstate(state) = empty, else 
substartstate(state) = any element from substartstates(state) 

Rule 27. Function definition for start state of substate diagram 

V.2.3.8 Preprocessing of Transition 

Context – transition is a transition 
– dest = transition.dest 
– source = transition.source 

Rule 28. Context for Preprocessing Transition 

The most difficult part in preprocessing the state diagrams is flattening substates in a hierarchical 
state diagram.  The substates need a copy of the transitions of their superstates, but these 
transitions need to be expanded with additional exit actions for the substate. Also, the destination 
of a transition should be changed to the initial state of the substate diagram of the destination state. 
Figure V-8 shows an example of a state diagram with with two superstate and three substates. 
Many states and transitions contain actions to illustrate the algorithm. Figure V-9 shows the same 
state diagram after the preprocessing. 



 

Realizing the UML-SDL Round-trip Engineering  95 
  

 /action1 

action1/action2 
exit/action3 

/action4 

entry/action5 
exit/action6 

B 

A 

entry/action7 
exit/action8 

C 

event3 
/action9 

entry/action10 
exit/action11 

entry/action12 
exit/action13 

B 

D 
event5 

 
Figure V-8. Example of Nested State Diagram 
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Figure V-9. Flatened version of Nested State Diagram 

The rules below process one transition at a time. Rule 29 collect the entry and exit actions of the 
state that are crossed by the transition. In our example, none of transitions crosses state boundries, 
so this rule has no effect on our example. Rule 30 appends the exit actions of the source state to 
the beginning of the transition. Rule 31 and Rule 32 are executed alternately to append the entry 
actions of the destinations state and to look for a possible sub start state. These two rules are 
repeated until there is no sub start state. Rule 33 and Rule 34, finaly, finds out the new destination 
state. The "+" operator used in the translation rules below append the list of actions. 

Preconditions – source.supertype ≠ dest.superstate 
Context – Let super be the common superstate for source and dest, or empty if the 

state diagram is the common super state. 
– Let (s1,…,sn) : s1 = super, sn = source, ∀i∈(2..n): si-1 = si.superstate 
– Let (d1,…,dm) : s1 = super, dm = dest, , ∀i∈(2..m): di-1 = di.superstate 

Action – transition.actions = sn-1.exitactions + … + s2.exitactions + 
transition.actions + d2.entryactions + … + dm-1.entryactions 

Rule 29. Collect exit and entry actions of superstates. 

Action – transition.actions = transition.source.exitactions + transitions.actions 

Rule 30. Append exit actions of source state 
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Action – transition.actions = transitions.actions + transition.dest.entryactions 

Rule 31. Append entry actions of destination state 

Preconditions – substartstate(dest) ≠ empty 
Context – startstate = substartstate(dest) 

– Let t ∈ statediagram.transitions, where t.source.type = start ∧ t.dest = 
startstate.  

Action – transition.actions = transition.actions + t.actions 
– transition.dest = startstate 
– repeat from Rule 31. 

Rule 32. Duplicate transitions to substates 

Preconditions – dest.type = stop 
– source.supertype ≠ empty 
– source.superstate = dest.superstate 

Action – transition.dest = source.superstate 

Rule 33. Move terminal transitions to superstate. 

Preconditions – source.substates() ≠ ∅ 
Action For each substate ∈ { s ∈ source.substates() | s.type = normal } : 

– create a copy of transition, called transcopy 

– transcopy.source = substate 

– transcopy.actions = substate.exitactions + transcopy.actions 
– repeat this rule (Rule 34) with source = transcopy.source 

Rule 34. Duplicate transitions to substates 
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V. 3 SDL Information Model 

The SDL information model provides the means to store and manipulate an SDL specification. 
Many of the translation rules refer to this information model to access information in or to make 
changes to the SDL specification. The SDL information model must be able to contain all the 
details of the SDL language, even those aspects that does not have a mapping with UML. The 
reason is of course that, after the round-trip engineering, the SDL model is exported to become 
the new version of the SDL specification. Information not stored in the model is lost. 

The SDL information model is designed for easy access and manipulation of the SDL entities 
involved in the mapping. Figure V-9 shows the generalization structure of the complete SDL 
information model. A number of generalizations allow us to reason on a more abstract level. For 
example, systems, blocks and processes are all structures that may contain declarations, 
communication or other structures. In addition, of all possible declarations possible in SDL, only 
those declarations that have a mapping to SDL are made explicit. Some of the declaration that 
have no explicit representation in our model are: syntype, timer, synonym and select. 

The presented information model is not a general purpose data structure. Only the entities relevant 
for the round-trip engineering with UML are explicitly modeled. When parsing an SDL 
specification, the information not modeled in the information model is stored invisibly to allow the 
export of a full SDL specification after a translation. The extra information includes graphical 
position information. 

V 3.1 Entity Inheritance Hierarchy 

The SDL information model is structured as an inheritance hierarchy, see Figure V-9. The 
translation rules often uses a super type to refer to any kind of subtype. For example, a list of 
communications may contain channels and/or signal routes and a structure pointer can be filled in 
with a system, package, (typed) block or (typed) process. This way of working makes the 
information model more compact and the translation rules easier to write.  
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Figure V-9. Inheritance Structure of SDL Entities 

In the tables below, we define the exact information model for SDL that is used to apply the 
incremental translation rules. The super type of an entity is denoted between angle brackets (<>), 
meaning that the entity inherits all the attributes of the super type. Note that more information, i.e. 
more attributes, is necessary to contain a complete SDL parse tree. This extra information is 
hidden for our purpose and is only needed to write back the finished SDL specification at the end 
of the iteration. 

 The first type, SDL entity, is the super type for all other SDL types. Besides the name and 
comment attribute, it provides a unique identification to all entities, which are used internally to set 
up the UML-SDL link as described in section V. 4.  

SDL Entity Description 
name Name of the entity 
comment Comment attached to the entity 
id Identifier used internally for the UML-SDL link 

Table V-14. Common Attributes for all SDL entities 

V 3.2 Static Structure 

SDL structure holds the common attributes for SDL system, package, block (type) and process 
(type). It allows us to reason on any kind of structure in a uniform way, e.g. to create a 
communication route between two structures, independent of their concrete type. The parent and 
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system attributes are used internally to conveniently access its relatives. The attributes 
declarations, children and communication contain the actual contents of the structure. 

UML Structure Description 
<entity> Inherit the attributes of SDL entity 
formal parameters String 
parent Reference to the parent structure 
system Reference to the parent system or package 
declarations List of declarations 
children List of structures 
communications List of channels and signal routes in this structure 

Table V-15. Common Attributes of all SDL structures 

SDL Specification Description 
<structure> Inherit the attributes of SDL structure 

Table V-16. Attributes of SDL specification 

SDL Block Description 
<structure> Inherit the attributes of SDL structure 
block type Is empty for regular blocks (block definition). For block instances, it 

refers to the block type the instance is based on. 

Table V-17. Attributes of SDL Block 

SDL Block Type Description 
<block> Inherit the attributes of SDL block 
virtuality String, defines the ability to subtype 
specialization Reference to the super-block type  
gates List of gates 

Table V-18. Attributes of SDL Block Type 

SDL Process Description 
<structure> Inherit the attributes of SDL structure 
process type Is empty for regular process (process definition). For process 

instances, it refers to the process type the instance is based on. 
number instances String without brackets, e.g. 1,4 
start The start transition 
states List of states 

Table V-19. Attributes of SDL Process 

SDL Process Type Description 
<process> Inherit the attributes of SDL process 
virtuality String, defines the ability to subtype 
specialization Reference to the super-structure  
gates List of gates 

Table V-20. Attributes of SDL Process Type 
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SDL Procedure Description 
<structure> Inherit the attributes of SDL process (procedure also contains a state 

diagram) 
parameters List of parameters 
returns Sort (String) 

Table V-21. Attributes of SDL Procedure 

SDL Parameter Description 
<entity> Inherit the attributes of SDL entity 
variable String 
type Sort (String) 

Table V-22. Attributes of SDL Parameter 

V 3.3 Communication 

Communication is our common notion of channels and signal routes. It allows us to reason on 
communication routes independently of what they connect (processes or blocks). SDL channel 
and signal route are concrete subentities of communication, but do not have any extra attributes. 
That reflects the facts that channels and signal routes only differs semantically (delaying, non-
delaying) and not syntaxtically. 

 
SDL Communication Description 
<entity> Inherit the attributes of SDL entity 
bidirect True if communication is in both directions 
from struct Reference to the “from” structure of the communication. Equals 

“ENV” if the communication comes from the environment. 
to struct Reference to the “to” structure of the communication. Equals 

“ENV” if the communication goes to the environment. 
from connect Reference to the gate or channel the “from” side is connected with. 
to connect Reference to the gate or channel the “to” side is connected with. 
from to signal list List of signals and signal lists on the communication going from 

“from” to “to”. 
to from signal List of signals and signal lists on the communication going from “to” 

to “from”. 

Table V-23. Attributes of SDL Communication 

 
SDL Channel Description 
<communication> Inherit the attributes of SDL communication 

Table V-24. Attributes of SDL Channel 

SDL Signal Route Description 
<communication> Inherit the attributes of SDL communication 

Table V-25. Attributes of SDL Signal Route 

SDL Gate Description 
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<entity> Inherit the attributes of SDL entity 
bidirect True if communication is in both directions 
to constraint Identifier string that refers to a type specification. 
from constraint Identifier string that refers to a type specification. 
out signal list List of signals and signal lists on the communication going the type. 
in signal list List of signals and signal lists on the communication going into the type. 

Table V-26. Attributes of SDL Gate 

V 3.4 Declarations 

We use declaration as a super type for everything that is specified in an SDL textbox. We 
explicitly define subtypes for the kind of declaration we need for the translation. Other kinds of 
declarations are stored as Unknown Dcl’s. Note that the attribute name is inherited from the entity 
super type. 

SDL Declaration Description 
<entity> Inherit the attributes of SDL entity 
declared in Reference to the structure where the declaration is defined. 

Table V-27. Attributes of SDL Declaration 

SDL Signal Description 
<declaration> Inherit the attributes of SDL declaration 
parameters List of strings, the “sort” of the parameters. 

Table V-28. Attributes of SDL Signal 

SDL SignalList Description 
<declaration> Inherit the attributes of SDL declaration 
signals List of signals contained in the signal list. 
signal lists List of signal lists contained in the signal list. 

Table V-29. Attributes of SDL Signal List 

SDL Datatype Description 
<declaration> Inherit the attributes of SDL declaration 
signature String containing the data part of the data type. A list of attributes 

for a “struct” newtype. 
behaviour String containing the operator part of the data type. A list of 

operators for a “struct” newtype. 

Table V-30. Attributes of SDL Datatype 

SDL Variable Description 
<declaration> Inherit the attributes of SDL declaration 
type The sort of the variable. 
initial expr The initial value of the variable. 

Table V-31. Attributes of SDL Signal 

SDL Unknown Dcl Description 
<declaration> Inherit the attributes of SDL declaration 
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Table V-32. Attributes of SDL Unknown Dcl 

V 3.5 State Machine 

The process structure holds two attributes that represents the state machine: start and states. Start 
points to the initial start transition of the state machine.  States is the list of states contained in the 
FSM. Each state contains the list of transitions that leave from that state. 

SDL State Description 
<entity>  
saves List of strings 
transitions List of SDL Transitions 

Table V-33. Attributes of SDL State 

SDL Transition Description 
<entity>  
virtuality String stating the virtuality contraint 
input String representing of the signal 
enable String of the enabling condition 
priority Boolean 
save Boolean 
actions List of SDL actions 
start bool 

Table V-34. Attributes of SDL Transition 

SDL Action Description 
<entity>  
action String (e.g. output, task, call, nextstate, stop) 
body String containing the rest of action, may be empty 

Table V-35. Attributes of SDL State 

SDL Decision Description 
<action>  

Table V-36. Attributes of SDL State 

SDL Answer Description 
<entity>  

Table V-37. Attributes of SDL State 

 



 

Realizing the UML-SDL Round-trip Engineering  103 
  

V. 4 Link UML and SDL 

V 4.1 Hierarchical Links 

As already explained in section IV 3.5, we need a link between the UML model and the SDL 
specification. During the translation, we maintain hierarchical links between the models and the 
specification. Each entity in the UML model is linked with its corresponding SDL entities. For 
example, a «block» class is, among others, linked with the generated block and management 
process. An association is linked with all generated signal routes and channels. Figure V-10 shows 
an limited overview of the UML and SDL information models and the links between the 
corresponding constructs. An example of the links between two concrete models is shown in 
Figure IV-13. 

 SDL Specification 

Transitions 

Actions 

State 

Operation Attribute State Diagram 

Class Association 

UML* Model 

Transitions 

Task, Output 

State 

Signal Dcl. 

Variable Dcl. 

Process Signal Route 

Block Channel 

 

Figure V-10: Hierarchical Links between UML and SDL 

In order to realize this link, we extend the UML information model defined in section V. 2 with 
links to the SDL information model defined in V. 2. These links forms a 1-to-n relationship 
between UML entities and SDL entities. For example, an association is linked with many channels 
and signal routes, but a specific channel is the result of exactly one association. This 
chararacteristic provides the possibility to use the UML-SDL in the reverse direction, see section 
V 4.3 for details. 

V 4.2 UML link extension 

We extend the UML information model defined in V 2.1 with links to the SDL data structure. 
These links enables us to translate changes in a particular context. For example, if a new attribute 
has been added to a class, then a variable declaration should be added to the process linked with 
the class. As one can see below, most UML entities have more than one link to SDL. Although 
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some of the links may be redundant in some cases, all links are necessary to allow correct round-
trip engineering. 

Note that we use unique identifiers as the link to SDL entities. In this way, a UML entity can 
point to the same entity in different SDL specifications at the same time. This aspect is important 
when using the reverse link during reverse iteration. An additional advantage is that the link can 
easily be stored in file.  

Initially the links are constructed during the translation of new UML entities. For example, if a 
management process is generated from a class, the generated process is assigned to the sdlprocess 
attribute of the class. The next time, during synchronization, the UML and SDL data structures 
are both build-up and the links created during the translation are restored. Without storing explicit 
link information in UML or SDL files, it is difficult to restore the original links. 

Package SDL link SDL Type Info 
sdlspecification  Specification Link to the complete SDL specification. 

Table V-38. SDL links of UML model 

Package SDL link SDL Type Info 
sdlspecification  Specification Back link to the complete SDL specification. 
sdlsystem System (Type) or 

Package 
The system or package that is linked with this 
package. 

sdlarchitecture System (Type) or 
Block 

Link with the structure that holds the instances 
of top-level classes. 

Table V-39. SDL links of UML package 

Class SDL link SDL Type Info 
sdldefinition Block(Type) or 

Process(Type) 
Link with the main structure generated from the 
class. 

sdlsuper Block Type or Process 
Type 

The type definition which is linked with the 
superclass. 

processesblock Block Link with the extra block containing the 
processes. May be empty or may be the same as 
sdldefinition. 

declarationStruct Structure Pointer to the structure that contains the 
declaration generated by the class 

sdlprocess Process Link with the process generated from the class. 
For «process» classes, sdldefinition = sdlprocess. 

sdlsignallist Signallist Declaration  
sdldatatype Newtype Declaration Only applicable for «newtype» classes. 

Table V-40. SDL links of UML class 

 
 
 
 
 
Operation SDL link SDL Type Info 
sdlsignal Signal Declaration Link to the signal declaration. Only applicable for 
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«signal» operations. 
sdlprocedure Procedure Definition Link to the procedure definition. Only applicable 

for «procedure» operations. 

Table V-41. SDL links of UML Operation 

Attribute SDL link SDL Type Info 
sdldeclaration Variable Declaration Link to the variable declaration generated from 

the attribute. 

Table V-42. SDL links of UML Attribute 

Aggregation links SDL Type Info 
sdlcomponent Structure Link with the structure definition or the type 

based instance. 
sdldeclaration Variable Declaration Link to the variable declaration generated from 

the aggregation. 

Table V-43. SDL links of UML Aggregation 

The UML association has a complicated mapping; therefore, it also needs many links to keep 
track of all the SDL entities that are generated from an association. The links used for a particular 
association depends heavily on the option settings and on the classes it is connected with. The 
most complicated case is where a full-communication association connects two processes in a 
completely different scope. 

Association links SDL Type Info 
sdlfromroute Signal Route Link to the signal route generated from the “From” 

association end. May be empty. 
sdltoroute Signal Route Link to the signal route generated from the “To” 

association end. May be empty and may be the same as 
sdlfromroute. 

sdlfromchannel Channel Link to the main channel generated from the “From” 
association end. May be empty. 

sdltochannel Channel Link to the main channel generated from the “To” 
association end. May be empty and may the same as 
sdlfromchannel.  

sdlchannels List of Channels A list of links to all the channels generated from the 
association, including the sdlfromchannel and 
sdltochannel.  

sdlgates List of Gate A list of links to all the gates generated from the 
association. 

fromsignallist Signallist Link to the SDL signallist that contains the signals that 
can be send to the From association end. May be the 
same as fromclass.sdlsignallist. 

tosignallist Signallist Link to the SDL signallist that contains the signals that 
can be send to the To association end. May be the same 
as toclass.sdlsignallist. 

Table V-44. SDL links of UML Association 

State Diagram links SDL Type Info 
sdlprocess Process(Type) Link with the process or process type definition. 
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Table V-45. SDL links of UML State Diagram 

State links SDL Type Info 
sdlstate State Link with the SDL state. 

Table V-46. SDL links of UML State 

Transition links SDL Type Info 
sdltransition Transition Link with the SDL transition. 
timerdeclaration Declaration  
nextstate Action Link with the nextstate statement, which 

corresponds with the destination state. 

Table V-47. SDL links of UML Transition 

Action links SDL Type Info 
sdlaction Transition Link with the SDL transition. 

Table V-48. SDL links of UML Action 

V 4.3 SDL ADT extension 

To write down the reverse iteration translation rules, we need links from SDL to UML. However, 
we define these links indirectly in terms of the UML-SDL links. As explained before, the UML-
SDL links can also applied in the reverse direction. If class.sdlprocess results in a certain process, 
then the reverse funtion process.sdlprocess-1 results in the original class. In other words, 
process.sdlprocess-1 must be interpreted as the function that returns the class that is linked with 
process with the sdlprocess link. For almost every link defined in the previous section, we define 
a reverse link. 

SDL Type Reverse Link Return Value 
Specification sdlspecification-1  The model that links with this specification. 

Table V-49. Reverse Links resulting in a UML model 

SDL Type Reverse Link Return Value 
System (Type) or 
Package 

sdlsystem-1 The package that links with this system or 
package as the sdlsystem. 

System (Type) or 
Block 

sdlarchitecture-1 The package that uses this structure (system or 
block) as the architecture block. 

Table V-50. Reverse Links resulting in a UML Package 

SDL Type Reverse Link Return Value 
Block(Type) or 
Process(Type) 

sdldefinition-1 The class that links to this block or process as its 
main structure. 

Block Type or 
Process Type 

sdlsuper-1 The class that links to this structure as its 
supertype. 

Block processesblock-1 The class that links to this block as its processes 
block. 

Process sdlprocess-1 The class that links to this process as its process 
as a main structure or as its management process. 
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Signallist Declaration sdlsignallist-1 The class that has generated this signal list. 
Newtype Declaration sdldatatype-1 The class that has generated this declaration. 

Table V-51. Reverse Links resulting in a UML Class 

SDL Type Reverse Link Info 
Signal Declaration sdlsignal-1 The operation that generated this signal.  
Procedure Definition sdlprocedure-1 The operation that generated this procedure. 

Table V-52. Reverse Links resulting in a UML Operation 

SDL Type Reverse Link Info 
Variable Declaration sdldeclaration-1 The attribute that generated this variable. 

Table V-53. Reverse Links resulting in a UML Attribute 

SDL Type Reverse Link Info 
Structure sdlcomponent-1 The aggregation that generated this structure 

definition  or instance. 
Variable Declaration Pid-1 The aggregation that generated this Pid variable 

declaration. 

Table V-54. Reverse Links resulting in a UML Aggregation 

SDL Type Reverse Link Info 
Signal Route / 
Channel 

sdlfrom-1 Association that generated this channel or signal route 
from the “From” association end. 

Signal Route / 
Channel 

sdlto-1 Association that generated this channel or signal route 
from the “To” association end. 

Signal Route / 
Channel 

sdlchannel-1 Association that generated this channel or signal route. 

Gate sdlgate-1 Association that generated this gate. 

Table V-55. Reverse Links resulting in a UML Association 

SDL Type Reverse Link Info 
State sdlstate-1 The UML state that generated this state. 

Table V-56. Reverse Links resulting in a UML State 

SDL Type Reverse Link Info 
Transition sdltransition-1 The UML transition that generated this state. 
Action nextstate-1 The UML transition  

Table V-57. Reverse Links resulting in a UML Transition 
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V. 5 Compare & Translate 

After loading and preprocessing the UML model(s) and SDL specification(s), the next step is 
comparing the two UML models (forward iteration) or the two SDL specifications. The 
comparison is performed in a hierarchical way and is based on identifiers instead of names in 
order to detect renames. An entity that is present in the old model but not in the new model is 
considered deleted. An entity that is not present in the old model but is present in the new model 
is new. An entity present in both models is said to match and is compared to find differences in its 
attributes. For each change or match, the corresponding set of translation rule is processed. For 
example, if a class is found in the old and the new UML model with the same identifier, then all 
the rules in section V 6.10 are processed one by one. If, for instance, the names of the two classes 
are different, then either Rule 73 or Rule 74 will effectively be executed, depending on the 
stereotype of the class.   

The order in which the different constructs are compared is not arbitrary. For example, a new 
attribute cannot be translated before its class has been translated and an association should be 
deleted before the classes it is connected with are deleted. The tree shown in Figure V-11 defines 
the order in which the various parts of the UML model are compared and processed. The tree is 
incomplete in the sense that the sub trees of the new and delete changes are left out of the picture. 
It is clear, that in a new package, all  its classes, aggregations and associations  are also new. 
When translating a new class, all its attributes and operations are also translated as new. Similarly, 
when deleting a class, its attributes and operations are deleted first. 

As a general rule, we first translate deleted entities, then compare matching items and then 
translate new items. When translating deleted classes, the leave components in the aggregation tree 
are translated first, then their aggregates and so on. New classes are processed in the opposite 
order, i.e. aggregates first. Note that the translation rules in the next sections are not ordered in 
order of execution, but are grouped per entity in the orther new, delete and compare. 
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Figure V-11. Hierarchy and Order of Model Comparison 
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V. 6 UML to SDL 

 

V 6.1 Introduction 

This section contains all rules necessary to translate any change in a UML model into a 
modification of the SDL specification. The rules are grouped in rule sets, i.e. each section is a rule 
set that translates a change. The compare sections compare the attribute of the entity and only 
translate something if a change is detected. The new and delete sections always translate the 
change, but uses other information (stereotype, relationships, UML-SDL links, etc.) to find out 
exactly which rules need to be fired. Each rule set is independent of the other rules sets, therefore 
each section starts by defining a list of context variables that are used in the rules. 

V 6.2 New Model 

The first rule defines the translation of a new UML model. For reasons of uniformity, this rule is 
also described as a change, i.e. the UML model is new as compared with nothing. This rule is 
actually the starting point to translate a new UML model for the first time, i.e. when there is 
nothing to compare the model with yet. 

A UML model maps on an SDL specification. Therefore, for a new model we create a new 
empty SDL specification called spec with the same name. The names of the model and the 
specification actually represent the filenames and are not really part of the model or specification. 

Context – model is the new UML model 

Action Create an empty SDL specification = spec. 

Set spec.name = model.name 

Variables – model.sdlspecification = spec 

Rule 35. Translate Change Package Name 

Note that after executing this rule, the packages, classes and other information contained in the 
model are all considered “new” and are all translated with their respective translation rules. The 
order of execution is globally defined in section V. 5 and is not repeated for each change. 

V 6.3 Compare Model 

The only information in a UML model that can change is the name. The other entities contained 
in the model are compared separately. Again, the order of execution of comparison is defined 
globally in section V. 5. 
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Context – modelold is the old UML model 
– modelnew is the new UML model, being compared with modelold 

Preconditions – modelold.name ≠ modelnew.name 

Action modelnew.sdlspecification.name = modelnew.name 

Rule 36. Change Model Name 

V 6.4 Delete Model 

Deleting a UML model corresponds to deleting all available information. For safety reasons, this 
rule should only be executed after user confirmation. This rule has little practical value and is 
presented here for the matter of completeness. 

Context – model is the old UML model 

Action Delete model.sdlspecification 

Rule 37. Translate Deleted Model 

V 6.5 New Package 

Packages are UML’s main structuring mechanism. They group classes that belong together, 
although classes from different packages can be placed next to each other in one diagram and 
connected with a relationship. Packages can be nested or connected with a dependency 
relationship. In SDL, the package concept is very similar, but the contents of SDL packages are 
strictly separated. An SDL package can contain all kind of declarations, e.g. signal, data types, 
block types and process types, but not block or process definitions. A system that imports such a 
package may use these declarations, e.g. to define process instances, but it may not directly refer 
to it like in UML. An SDL specification usually contains one system definition and many packages 
with a hierarchy of uses relationships. 

When translating a UML model for the first time, this rule set (New Package) is fired for the main 
package and for all the nested packages in the model. When comparing two models, this rule set is 
fired only for completely new packages.  

Note that before executing the rules below, the UML package has already been preprocessed by 
the algorithm defined in V.2.3.1. Therefore, the system class is already defined as the class that 
represents the package. 

 

Context – model is the UML model 
– package is the new UML package 
– sysclass = package.systemclass 
– spec = model.sdlspecification 
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Variables – package.sdlspecification = spec 

Rule 38. Translate Context for New Package 

A UML package is translated into SDL as a system or a package, depending on the stereotype of 
the package, see Rule 39 and Rule 41. If the stereotype is «system» and the system class is typed, 
the system is generated as a combination of a system type and a type based system instance, see 
Rule 40. An important aspect of these translation rules is the assignment of the architecture and 
sdldefinition variables. They respectively define where top-level instances and top-level types 
should be placed. As an SDL package cannot contain instances, Rule 41 creates an extra block 
type to hold the architecture (an instance of each top-level class).  

Preconditions – package.stereotype = «system» 
– sysclass.typed = false 

Action 

 

Add to spec: 

SYSTEM <package.name>; 
ENDSYSTEM <package.name>; 
 

Variables – package.sdlsystem = system = the added system 

– package.architecture = system 

– sysclass.sdldefinition = architecture 

Rule 39. Translate non-typed «system» Package 

Preconditions – package.stereotype = «system» 
– sysclass.typed = true 

Action 

 

Add to spec: 

SYSTEM TYPE <package.name>; 
ENDSYSTEM TYPE <package.name>; 
 
SYSTEM a_<package.name> : <package.name>; 
 

Translate package.systemClass as a new class, starting from Rule 55. 

Variables – package.sdlsystem = system = the added system type 
– package.architecture = system 

– sysclass.sdldefinition = architecture 

Rule 40. Translate Typed «system» Package 

 
 
Preconditions – package.stereotype = «package» 

Action 

 

Add to spec: 

PACKAGE <package.name>; 
 BLOCK TYPE <package.name>; 
 ENDBLOCK TYPE <package.name>; 
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ENDPACKAGE <package.name>; 
 
Translate package.systemClass as a new class, starting from Rule 55. 

Variables – package.sdlsystem = system = the added package 
– package.architecture = the block type in the package 
– sysclass.sdldefinition = architecture 

Rule 41. Translate «package» Package 

Rule 43 uses the “new class” translation rules on the system class to create a processes block and 
management process at system level. The definition structure of the system class has already been 
created in the previous rules. 

Action Translate package.systemClass as a new class, starting from Rule 55. 

Rule 42. Create Processes Block and Management Process 

Context – package.packages = (p1, …, pn) 

Action 

 

Add to package.sdlsystem: 

USE <p1.name>; 
… 
USE <pn.name>; 
 

Rule 43. Translate Package Dependencies 

V 6.6 Delete Package 

Deleting a package in UML simply results in deleting the SDL system or package linked with the 
UML package. In case that the different entities are stored in separated files, only the reference in 
the specification to the system or package should be deleted and not the files themselves. Even so, 
the execution of this rule should preferable be confirmed by the user, because it has big 
implications. 

Preconditions – Package package is deleted. 

Context – system = package.sdlsystem 
– architecture = system or the block type in package 

Action Delete package.sdlsystem from spec. If sysclass.typed = true, then first 
delete the instances of package.sdlsystem from spec. 

Rule 44. Delete Package 

V 6.7 Compare Package 

In this rule set, only the name, stereotype and package dependencies are checked. The options 
(local/global) are compared for each class separately. For example, if the global declaration 
option changes from true to false, many signal declarations should be moved from system level to 
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a more local block or process. It is easier to make each class responsible for his signal 
declarations. This has the additional advantage that the local/global options can be set for each 
class separately. 

Rule 45 defines many context variables to ease the specification of the translation rules. More 
important, however, is the initialization of the SDL links of the new model. Unlike the old model, 
the new model does not contain the restored SDL links. Each compare rule set therefore first 
copies the SDL links from the old entity to the new one. 

Context for 
this section 

– modelold is the old UML model 
– modelnew is the new UML model, being compared with modelnew 
– packageold is the previous UML package  
– packagenew is the new UML package to be compared with packageold 
– sysclassold = packageold.systemclass 
– sysclassnew = packagenew.systemclass 

Variables – packagenew.sdlsystem = packageold.sdlsystem (set initial value) 
– packagenew.architecture = packageold.architecture (set initial value) 

Rule 45. Context for Comparing Packages 

Preconditions – packageold.name ≠ packagenew.name 

Context  
Action packagenew.sdlsystem.name = packagenew.name 

packagenew.architecture.name = packagenew.name 

Rule 46. Change Package Name 

Rule 47 and Rule 48 defines how to translate a stereotype modification of a package. If the 
stereotype is changed from «system» to «package», an new architecture block is created and all 
non-typed structures and channels are moved into this block. In the other direction, the 
architecture block is simply eliminated after moving its contents to the system. 

Preconditions – sysclassold.stereotype = «system» 
– sysclassnew.stereotype = «package» 
– packagenew.sdlsystem is a system (type) 

Action Convert packagenew.sdlsystem into a package and delete the system instance 
in the specification if present. 

Create an architecture block type in packagenew.sdlsystem with name 
packagenew.name 

Move all block and process definitions, all type based instances and all 
channels from the system to the new architecture block type. 

Variables – packagenew.architecture = newly created architecture block type 
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Rule 47. Change Package «system» to «package» 

Preconditions – sysclassold.stereotype = «package» 
– sysclassnew.stereotype = «system» 
– packagenew.sdlsystem is a package 

Action Change packagenew.sdlsystem to a system. 

Move the complete contents of the architecture block to the system. 

Remove the architecture block. 

Variables – packagenew.architecture = packagenew.sdlsystem 

Rule 48. Change Package «package» to «system» 

Preconditions – ∃ pack ∈ packageold.packages : pack ∉ packagenew.packages 

Action Remove the clause “use <pack.name>;” from packagenew.sdlsystem 

Rule 49. Remove Package Dependency 

Preconditions – ∃ pack ∈ packagenew.packages : pack ∉ packageold.packages 

Action Add to the body of packagenew.sdlsystem: 

USE <pack.name>; 
 

Rule 50. Add Package Dependency 

 

V 6.8 New Class 

As could be expected from an object oriented modeling technique, the class concept plays a very 
central role in UML. The extensibility mechanisms allow the class concept to be overloaded to 
mean different things. Similarly, there are many different ways of translating a class, depending on 
the value of the stereotype and translation options. Note that, because of the preprocessing, every 
class always has a stereotype and a default value for the options.  

A class with stereotype «package» is translated as a package dependency, see Rule 52. A class 
with stereotype «block» is translated as a block or block type, see Rule 53 and Rule 54. If 
necessary, a processes-block and a management process are added to the block (type). From Rule 
58 on, consecutively «process» classes, «newtype» classes and inheritance relationships are 
translated. 

Context for 
this section 

– class is the new UML class 
– package is the surrounding package of class 
– sysclass = package.systemclass 
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– system = package.sdlsystem 
– architecture = package.sdlarchitecture 

Rule 51. Translate Context for New Class 

Preconditions – sysclass.stereotype = «package» 

Action Add to system: 

USE <class.name>; 
 

Rule 52. Translate Package Reference 

Preconditions – class.stereotype = «block» 
– class.typed = false 

Context – definedIn = class.definedin.sdldefinition  
Action Add to definedIn: 

BLOCK <class.name>; 
ENDBLOCK <class.name>; 

 
Variables – structure = the added block 

Rule 53. Translate Non-typed «block» Class 

Preconditions – class.stereotype = «block» 
– class.typed = true 

Context – definedIn = class.definedin.sdldefinition  
Action Add to definedIn: 

BLOCK TYPE <class.name>; 
ENDBLOCK TYPE <class.name>; 

 
Variables – structure = the added block type 

Rule 54. Translate Typed «block» Class 

According to the SDL syntax rules, a block can either contain blocks or contain processes, not 
both at the same time. This is solved by creating an extra processes block, i.e. a block that 
contains all the processes that would otherwise be in the aggregate, see Rule 55. The 
processesBlock variable is assigned to the structure where the processes should be inserted. So, in 
Rule 56 the processes may be inserted in the block itself, as there are no «block» components. 

Preconditions – class.stereotype = «block» ∨ «system»∨ «package» 
– (class.management = true ∨ class has «process» components) ∧ (class has 

«block» components) 
Context – structure is the new block or process as defined before 
Action Add to structure: 

BLOCK <class.name>_Processes; 
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ENDBLOCK <class.name>_Processes; 
 

Variables – class.processesBlock = the added block 
– class.processesBlock = structure if the last condition of the precondition is 

not fulfilled. 

Rule 55. Provide Processes Block 

Preconditions – class.stereotype = «block» ∨ «system»∨ «package» 
– class has no components with stereotype «block» 

Variables – class.processesBlock = structure 

Rule 56. No Processes Block Needed 

A management process is a regular SDL process that fulfills the behavioral aspects of a block. 
Because of the SDL syntax rules, a block cannot contain variables or a state chart. When 
translating a «block» class with attributes or a state diagram, Rule 57 adds a management process 
to the block, which then will hold the generated variables and state chart. The management 
attribute of the class is set during the preprocessing. 

Preconditions – class.management = true 
– sysclass.stereotype = «block» ∨ «system» ∨ «package» 

Context – structure = class.processesBlock 
Action Add to class.processesBlock: 

PROCESS <class.name>; 
ENDPROCESS <class.name>; 

 
Variables – class.sdlprocess = the added process 

Rule 57. Create Management Process 

Rule 58 and Rule 59 create the process or process type for «process» classes. The sdldefinition 
and sdlprocess link variables of the class are both set to point to the generated process (type). The 
sdldefinition link is used to connect signal routes, gates and local signals. The sdlprocess link is 
used to generate the variables and the state chart. Rule 59 only generates the process type, not the 
instances. The type based instances of this process type are generated from the aggregations in 
Rule 80. 

Preconditions – class.stereotype = «process» 
– class.typed = false 

Context – definedIn = class.definedin.sdldefinition  
Action Add to definedIn: 

PROCESS <class.name>; 
ENDPROCESS <class.name>; 

 
Variables – structure = the added process 

– class.sdldefinition = structure 



 

118  Kurt Verschaeve 
  

 

– class.sdlprocess = structure 

Rule 58. Translate «process» Class 

Preconditions – class.stereotype = «process» 
– class.typed = true 

Context – definedIn = class.definedin.sdldefinition  
Action Add to definedIn: 

PROCESS TYPE <class.name>; 
ENDPROCESS TYPE <class.name>; 

 
Variables – structure = the added process type 

– class.sdldefinition = structure 
– class.sdlprocess = structure 

Rule 59. Translate Typed «process» Class 

Rule 60 and Rule 61 fill in the link to the declaration structure (declarationStruct), depending on 
the global declaration option. Rule 62 uses this link to create the signal list associated with the 
class. The signals within the signal list are managed when translating operations. 

Preconditions – class.stereotype = «system» ∨ «package» ∨ «process» ∨ «block» 
– package.globaldeclaration = true 

Variables – class.declarationStruct = package.sdldefinition  

Rule 60. Set Global Declaration Struct  

Preconditions – class.stereotype = «system» ∨ «package» ∨ «process» ∨ «block» 
– package.globaldeclaration = false 

Variables – class.declarationStruct = class.sdldefinition  

Rule 61. Set Local Declaration Struct 

Preconditions – class.stereotype = «process» or «block» 
Action Add to class.declarationStruct : 

SIGNALLIST <class.name> = ; 
 

Variables – class.signallist = the added signal list  

Rule 62. Create Signal List 

Rule 63 translates the generalization relationship between «process» and «block» classes. Because 
of the preprocessing, super- and subclasses always have the same stereotype, so this is not 
checked again. The generalization concepts maps very well on the inherits concept in SDL, with 
one exception. In UML, a subclass inherites the association relationship from its superclass, while 
in SDL a channels and signal routes can not be connected to block or process types and therefore 
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cannot be inherited. This is solved during the preprocessing by generating extra associations, see 
Rule 22 and Rule 23. 

Preconditions – class.stereotype = «process» ∨ «block» 
– class.superclass ≠ empty 
– class.typed = true 

Context – structure = the added block type or process type 
Action Add to signature of structure: 

 INHERITS <class.superclass.name> ; 
 

Variables class.sdlsuper = class.superclass.sdldefinition 

Rule 63. Translate Inheritance 

Rule 64 translates passive classes into abstract data types. Passive classes are recognized by the 
stereotype «newtype», as of the SDL keyword for describing data types. This rule only translates 
the class itself; Rule 94 and Rule 107 respectively translate new attributes new and operations. 
SDL newtypes do not support inheritance, therefore inheritance between two «newtype» classes 
is translated in Rule 65 as an attribute “father” in the newtype generated from the subclass. 

Preconditions – class.stereotype = «newtype» 
Context – definedIn = class.definedin.sdldefinition 
Action Add to class.: 

NEWTYPE <class.name> STRUCT 
 <here comes the attributes> 
 operators 
 <here comes the operations> 
ENDNEWTYPE <class.name>; 

 
Variables – class.datatype = the added new type 

– signature = placeholder for translating the attributes 
– operator = placeholder for translating the operators 

Rule 64. Translate «newtype» class 

Preconditions – class.stereotype = «newtype» 
– class.superclass ≠ empty 
– class.superclass.stereotype = «newtype» 

Action Add to signature: 

 father <class.superclass.name> ; 
 

Rule 65. Translate Inheritance for «newtype» Classes 



 

120  Kurt Verschaeve 
  

 

V 6.9 Delete Class 

Deleting a class in a UML model can have significant consequences on the linked SDL 
specification. Most changes are indirect however and are translated as such. The attributes and 
operations in the old (deleted) class, are handled in sections V 6.15 and V 6.18. Association 
relationships with the deleted class are deleted too, see section V 6.22. The aggregation 
relationships are deleted in the same way and as a result, the components of the old class are 
automatically moved to another parent. Finally, subclasses of the old class will loose their 
inheritance by comparing the old subclass and the new subclass in Rule 75. Rule 66 therefore only 
has to delete the SDL entities it is directly linked with. 

Context for 
this section 

– classold is the old UML class being deleted 

Action Remove classold.sdldefinition from its parent 
Remove classold.sdlsignallist 
Remove classold.sdldatatype 

Rule 66. Translate Deleted Class 

After the delete operation, classold keeps a pointer to the original SDL entities. The definition, 
signallist and datatype are merely deleted from the children and declaration list of the structure 
containing the information. It is important that classold.sdldefinition is not deleted completely 
because some components of it may still be needed further on, e.g. to move them to another 
structure. 

V 6.10 Compare Class  

Class comparison is the most complex compare operation because there are so many things on a 
class that can change. Translating the changes rely a lot on the semantics regarding the mapping. 
A typical example is a class changing its stereotype from «block» to «process». This is a drastic 
change, but a lot of information can be preserved. The process linked to the original class 
becomes the main definition for the class. Because of the complexity of the class comparison, we 
divided the translation rules into the different facets. 

Rule 67 defines the context variables of the classes to be compared and some extra variables to 
ease the specification of the translation rules. As with any comparison, the SDL links of the new 
class are initialized with the links of the old class. In this way, the new class already has the 
necessary links. 

Context for 
this section 

– classold is the old UML class 
– classnew is the new UML class, being compared with classold 
– packageold is the UML package containg classnew 
– packagenew is the UML package containg classold 
– sysclassold = packageold.systemclass 
– sysclassnew = packagenew.systemclass 

Variables – classnew.sdldefinition = classold.sdldefinition 
– classnew.sdlsuper = classold.sdlsuper 
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– classnew.processesblock = classold.processesblock 
– classnew.sdlprocess = classold.sdlprocess 
– classnew.sdlsignallist = classold.sdlsignallist 
– classnew.sdldatatype = classold.sdldatatype 

Rule 67. Context for Comparing Classes 

V.6.10.1 Stereotype has changed 

The stereotype of a class actually determines the semantics of the class. Therefore, changing the 
stereotype can have far-reaching consequences. For example, take a «block» class with some 
«process» components, which’s stereotype is changed into «actor». The linked SDL block is 
removed and all channels to the block are rewired to the environment. Moreover, the UML 
aggregations become invalid, the «process» components become top-level and consequently 
become blocks. Fortunately, most of side affects of the stereotype change are already dealt with 
during the preprocessing. In the given example, the deleted aggregations, changed components and 
associations are all translated in their respective translation rules. For this reason, the translation 
rules can be kept quite simple. The only case where we can really preserve information is 
switching between the «block» and the «process» stereotype. 

Rule 68 defines the translation for a class that switches its stereotype from «block» to «process». 
The most common case is that the class has already a link to a process. In that case, the process 
takes over the role of the block. All declarations (signals, sorts, etc.) are moved into the process 
and the block is replaced by the process. It is possible that after this operation, a block and a 
process definition appear in the same scope level. This is not allowed in SDL, but this is solved 
during the SDL post processing explained in section. The other direction, a class changing from 
«process» to «block» is somewhat easier, see Rule 69. 

Preconditions – classold.stereotype = «block» 
– classold.sdlprocess is not empty 
– classnew.stereotype = «process» 

Context – let parent be the structure that contains classnew.sdldefinition 
Action – move declarations of classnew.sdldefinition into classnew.sdlprocess 

– move the complete contents of classnew.sdldefinition to parent 
– delete classnew.sdldefinition from parent 

Variables – classnew.sdldefinition = classnew.sdlprocess 

Rule 68. Change Stereotype «block» to «process» 
Preconditions – classold.stereotype = «process» 

– classnew.stereotype = «block» 
Action – translate classnew as a new class 

– copy the complete contents of classold.sdlprocess into classnew.sdlprocess  

Rule 69. Change Stereotype «process» to «block» 

Preconditions – classold.stereotype ≠ classnew.stereotype 
– Neither Rule 68 or Rule 69 have been fired 
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Action – translate classold as a deleted class 
– translate classnew as a new class 
– stop comparing this class 

Rule 70. Stereotype Category Change  

V.6.10.2 Typed has changed 

The typed value of a «block» («process») class determines whether it maps on a block type or a 
block definition. In other words, if the typed value changes to false, the block type is changed into 
a block definition and the other way around. It is more complicated than that, however. The 
aggregation to the class has a different semantics for typed and non-typed classes. For a typed 
class, the aggregation maps on a typed based instance. For a non-typed class, the aggregation only 
locates to the scope of the definition. Rule 71 and Rule 72 resolve this difference when the typed 
value is changed. 

Preconditions – classnew.stereotype = «block» ∨ «process» 
– classold.typed = false 
– classnew.typed = true 

Context – structure = classnew.sdldefinition 
– definedin = structure.parent 

Action Transform the block/process classnew.sdldefinition into a block type/process 
type and move it to classnew.definedin.sdldefinition. 

Add gates G1, …, Gn to classnew.sdldefinition for each channel/signal route in 
structure.parent going to structure. Reuse the name and signal lists of the 
channel/signal route. 

In structure.parent create a type based block/process instance (instance) with 
name structure.name prefixed with “a_” and type structure.name 

Reconnect the channels/signal routes to instance by using the newly generated 
gates 

Rule 71. Class becomes Typed 

In Rule 72, we look for an instance of the type that is about to be modified in a definition. In 
normal cases, there is not more than one instance of the class, because the UML preprocessor 
would mark the class as typed after all. However, if the models are not well synchronized, it may 
happen that some instances are overlooked. Therefore, we delete the instances in excess. In a tool 
environment, the user will be queried to agree with the proposed changes. 

Preconditions – classnew.stereotype = «block» ∨ «process» 
– classold.typed = true 
– classnew.typed = false 

Context – let instance be an instance of classnew.sdldefinition 
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Action Delete all instances of classnew.sdldefinition. 

Transform the block/process type classnew.sdldefinition into a block/process 
definition. 

If instance is not empty, replace instance with classnew.sdldefinition and 
reconnect the communication and delete other instance of classnew.sdldefinition,  

else, move classnew.sdldefinition to classnew.definedin.sdldefinition. 

Rule 72. Class becomes Non-Typed 

V.6.10.3 Name has changed 

To translating a name-change of a class, all the linked SDL entities are renamed. The rules below 
only have to be executed if the old and the new class have the same stereotype, i.e. both are either 
«block» or «process». If the stereotype is different, the name change is already handled in the 
previous section. 

Preconditions – classold.stereotype = «block» ∨ «process» 
– and classnew.stereotype = «block» ∨ «process», 
– or classold.stereotype = classnew.stereotype = «actor» 
– classold.classname ≠ classnew.classname 

Action Rename the following entities if not empty: 

– classnew.sdldefinition.name = classnew.classname 
– classnew.sdlprocess.name = classnew.classname 
– classnew.processesblock.name = <classnew.classname>_Processes 
– classnew.signallist.name = classnew.classname 

Update all references to classnew.signallist (on channels, gates, etc.). 

Rule 73. Rename «block» or «process» Class 

Preconditions – classold.stereotype = classnew.stereotype = «newtype» 
– classold.classname ≠ classnew.classname 

Action Rename the following entity: 

– classnew.datatype.name = classnew.classname 

Rule 74. Rename «newtype» Class 

V.6.10.4 Super Class has changed 

In the two rules below we only have to take care about the direct mapping of the inheritance, i.e. 
the “inherits” clause for types and the “father” entry for newtypes. Side effects such as new or 
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deleted associations and aggregations are handeled by the preprocessing and the rules about 
associations and aggregation.  

Preconditions – classnew.stereotype = «block» ∨ «process» 
– classold.superclass ≠ classnew.superclass  

Action If classold.superclass ≠ empty, delete the INHERITS reference from the signature 
of classnew.sdldefinition. 

If classnew.superclass ≠ empty, add the signature to classnew.sdldefinition: 

 INHERITS <class.superclass.name> ; 

Rule 75. Change Super Class  

Preconditions – classnew.stereotype = «newtype» 
– classold.superclass ≠ classnew.typed.superclass 

Action If classold.superclass ≠ empty, delete the attribute named “father” in 
classold.sdldatatype. If such an entry does not exists, delete the attribute of sort  
classold.superclass.name 

If classnew.superclass ≠ empty, add to class.datatype: 

 father <class.superclass.name> ; 

Rule 76. Change Super Class for Newtypes 

V.6.10.5 Defined in has changed 

The defined in value of a class defines the scope in which the linked type or definition is located. 
A different defined in value therefore means that the type must be moved to a different location. 
The defined in value already takes the global type option into account, i.e. if global type is true, 
the defined in variable is set to the system class for all typed classes. 

Preconditions – classnew.definedin ≠ classold.definedin 
Action If classnew.stereotype = «process» and classnew.typed = false, move 

classold.sdldefinition into classnew.definedin.processesBlock 

Else, move classold.sdldefinition into classnew.definedin.sdldefinition 

Rule 77. Change Defined In Class 

V 6.11 New Aggregation 

Adding an aggregation can have more implications than the aggregation itself. For example, adding 
a second aggregate to a non-type class automatically turns it into a typed class. Again, in the rules 
below we only have to take care of the direct translation and not of the side effects. Note also that 



 

Realizing the UML-SDL Round-trip Engineering  125 
  

if an aggregation modeled by the user replaces an aggregation previously added by the 
preprocessor, it will not be regarded as a new aggregation.  

Context for 
this section. 

– aggregation is the new UML aggregation 
– aggr is the aggregate class 
– comp is the component class 
–  
– package is the surrounding package of class 
– sysclass = package.systemclass 
– system = package.sdlsystem 

Rule 78. Context for Translating Aggregations 

If the component class of the new aggregation is typed, a new type based process or block (also 
called block or process instance) is created, as defined in Rule 79 and Rule 80. Rule 81 translates 
the case where a «block» or «process» class gets a new «newtype» component. In this case, a 
variable is added to the process linked with the aggregate class. Similarly, Rule 82 adds an entry to 
the signature of the aggregate new type. Aggregations between other type of classes, e.g. actor, 
are considered analysis only and are deleted during preprocessing. 

Preconditions – comp.stereotype = «block» 
– comp.typed = true 

Context – structure = aggr.sdldefinition 
Action Add to structure: 

 BLOCK a_<comp.name> : <comp.name>; 
 

Variable – aggregation.sdlcomponent =  created type based block  

Rule 79. Translate Aggregation with «block» Component 

Preconditions – comp.stereotype = «process» 
– comp.typed = true 

Context – structure = aggr.sdldefinition 
Action Add to structure: 

 PROCESS a_<comp.name> : <comp.name>; 
 

Variable – aggregation.sdlcomponent =  created type based process  

Rule 80. Translate Aggregation with «process» Component 

Preconditions – aggr.stereotype = «process» ∨ «block» 
– comp.stereotype = «newtype» 

Action If aggr. sdlprocess is not empty, add to aggr. sdlprocess: 

 DCL <aggregation.aggregationrole> <comp.name>; 
 

Variable – aggregation.sdldeclaration =  created variable declaration 
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Rule 81. Translate Aggregation with New Type Component 

Preconditions – aggr.stereotype = « newtype» 
– comp.stereotype = «newtype» 

Action Add to class.datatype.signature: 

 <attribute.name> <attribute.type>; 
 

Rule 82. Translate Aggregation between New Types 

V 6.12 Delete Aggregation 

Rule 84 only deletes the SDL component linked to the aggregation if it is a type-based instance, 
i.e. if the typed variable of the component is true.  In the case of a process or block definition, 
deleting the aggregation will cause the definition to move to system level (see Rule 77), not to 
delete it. 

Context for 
this section. 

– aggregationold is the old UML aggregation being deleted 
– aggrold is the old aggregate class 
– compold is the old component class 

Rule 83. Context for Deleted Aggregations 

Preconditions – compold.stereotype = «block» ∨ «process» 
– compold.typed = true 

Context – structure = aggrold.sdldefinition 
Action Delete structure from its parent. 

Rule 84. Translate Deleted Instance Aggregation 

 
Preconditions – aggr.stereotype = «process» ∨ «block» 

– comp.stereotype = «newtype» 
Context – variable = aggr. sdldeclaration 
Action Delete variable from aggr.sdlprocess 

Rule 85. Deleted Aggregation with New Type Component 

V 6.13 Compare Aggregation 

As with all compare rules, in Rule 86 we start by copying the link variables. Rule 87 handles the 
cases where no information can be reused and the old aggregation is deleted and the new 
aggregation is added. Rule 88 and Rule 89 respectively update the name and the type of a block or 
process instance based on the role name and component name. Rule 90and Rule 91 translate the 
same changes for «newtype» components. We do not need a rule for name changes of the 
aggregation itself, because the name of the aggregate itself is not used in the translation.  
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Context for 
this section. 

– aggregationold is the previous UML aggregation 
– aggregationnew is the new UML aggregation to be compared 
– aggrold  = aggregationold.aggregate 
– compold = aggregationold.component 
– aggrnew  = aggregationnew.aggregate 
– compnew = aggregationnew.component 
– aggregationnew.sdlcomponent = aggregationold.sdlcomponent 
– aggregationnew.sdldeclaration = aggregationold.sdlcomponent 

Rule 86. Context for Comparing Aggregations 

Preconditions – compold ≠ compnew , or 
– aggrold.stereotype ≠ aggrnew.stereotype, or 
– compold.stereotype ≠ compnew.stereotype 

Action Translate aggregationold as a deleted aggregation. 

Translate aggregationnew as a new aggregation. 

Stop comparing these aggregations. 

Rule 87. Translate Important Aggregation Change 

Preconditions – aggregationold.componentRole ≠ aggregationnew.componentRole 
– compold.stereotype = compnew.stereotype = «process» or  «block» 
– compnew.typed = true 

Action Change the instance name of compnew.sdlcomponent into 
aggregationnew.componentRole 

Rule 88. Translate Component Role Change 

Preconditions – compold.name ≠ compnew.name 
– compold.stereotype = compnew.stereotype = «process» or  «block» 
– compnew.typed = true 

Action Change the type of compnew.sdlcomponent into compnew.name 

Rule 89. Translate Component Type Change 

Preconditions – aggregationold.componentRole ≠ aggregationnew.componentRole 
– compold.stereotype = compnew.stereotype = «newtype» 

Action Change the variable name of aggregationnew.sdldeclaration into 
aggregationnew.componentRole 

Rule 90. Translate Role Change to New Type 

Preconditions – compold.name ≠ compnew.name 
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– compold.stereotype = compnew.stereotype = «newtype» 
Action Change the type of aggregationnew.sdldeclaration into compnew.name 

Rule 91. Translate Name Change of New Type 

V 6.14 New Attribute 

There are two different translations for an attribute, depending on the stereotype of the class it is 
defined in. If the class represents a structure, the attribute is translated as variable declaration in 
the process linked with the class, see Rule 92. If the class is a new type definition, the attribute is 
translated as an entry in the data type, see Rule 94. 

Context for 
this section 

– attribute is the new UML attribute 
– class is the surrounding class of attribute 

Rule 92. Context for New Attribute 

Preconditions – class.stereotype = «process» ∨ «block» ∨ «system» ∨ «package» 
– class.sdlprocess ≠ empty 

Action If attribute.default = "", add to class.sdlprocess 

DCL <atribute.name> <attribute.type>; 
 

else add to structure: 

DCL <atribute.name> <attribute.type> := <attribute.default>; 
 

Variable – attribute.declaration = the added declaration 

Rule 93. Translate Attribute in Active Class 

Preconditions – class.stereotype = «newtype» 
Action Add to class.datatype.signature: 

 <attribute.name> <attribute.type>; 
 

Rule 94. Translate Attribute in New Type 

V 6.15 Delete Attribute 

Deleting an attribute is simply translated as deleting the SDL entities that were generated from the 
original attribute.  

Context for 
this section. 

– attributeold is the old UML attribute being deleted 
– classold is the old class containing attributeold 

Rule 95. Context for Deleting an Attribute 
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Preconditions – classold.stereotype = «process» ∨ «block» ∨ «system» ∨ «package» 
Action Delete attributeold.declaration 

Rule 96. Deleted Variable Declaration 

In the case of a new type, the UML attribute has not a pointer to the part of the signature that is 
linked with the attribute. In Rule 97 we therefore search for a entry in the new type declaration 
with the same name as the old attribute. 

Preconditions – classold.stereotype = «newtype» 
Context – newtype = classold.declaration 
Action Delete the entry in the signature of newtype with name attributeold.name 

Rule 97. Deleted New Type Entry 

V 6.16 Compare Attribute 

There are three things of an attribute that can change: the name, the type and the default value. 
Translating any such change could be implemented as a combination of deleting the old attribute 
and adding the new attribute. It is possible however that, in UML only the type has changed and 
that the user has already modified the name of the SDL declaration and refers to this new name in 
the state chart. Taking the delete and add approach would result in references to a non-existing 
signal. Therefor we choose to handle each part seperatly. 

Context for 
this section. 

– attributeold is the previous UML attribute 
– attributenew is the new UML attribute to be compared 
– classold  = the class containing attributeold 
– classnew  = the class containing attributenew 

Rule 98. Context for Comparing Attributes 

For most UML entities, the first translation rule compares the stereotypes of the entities. 
Comparing attributes is an exception on this, because the stereotype of an attribute is not used in 
the mapping definition. The first translation rule handles name changes, see Rule 116.  

In Rule 99, Rule 100 and Rule 101 we only check the stereotype of the new class. The stereotype 
of the new class and the old class are not always the same. If a class changes from «block» to 
«process», the declarations will automatically be moved to the correct place. Note that in the case 
the stereotype of a class changes from «block» or «process» to «newtype» or the other way 
around, the attribute in the new and old classes will not be compared at all. The attributes in the 
new class will be translated as new attributes. Rule 102 and Rule 103 compares the name and 
type for the attributes in a «newtype» class. 

Preconditions – classnew.stereotype = «process» ∨ «block» ∨ «system» ∨ «package» 
– attributeold.name ≠ attributenew.name 

Context – variable = attributeold.declaration 
Action variable.name = attributenew.name 
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Rename all references to the variable within the classnew.managementProcess 

Rule 99. Translate Attribute Name Change 

Preconditions – classnew.stereotype = «process» ∨ «block» ∨ «system» ∨ «package» 
– attributeold.type ≠ attributenew.type 

Context – declaration = attributeold.declaration 
Action declaration.type = attributenew.type 

Rule 100. Translate Attribute Type Change 

Preconditions – classnew.stereotype = «process» ∨ «block» ∨ «system» ∨ «package» 
– attributeold.default ≠ attributenew.default 

Context – declaration = attributeold.declaration 
Action declaration.initialExpression = attributenew.default 

Rule 101. Translate Attribute Default Value Change 

Preconditions – classnew.stereotype = «newtype» 
– attributeold.name ≠ attributenew.name 

Context – newtype = classnew.declaration 
– entry = the entry in newtype with name attributeold.name 

Action Set the name of entry = attributenew.name 

Update all references to entry in all processes to which newtype is visible. 

Rule 102. Translate Attribute Name Change in «newtype» Class 

Preconditions – classnew.stereotype = «newtype» 
– attributeold.type ≠ attributenew.type 

Context – newtype = classnew.declaration 
– entry = the entry in newtype with name attributeold.name 

Action Set the type of entry = attributenew.type 

Rule 103. Translate Attribute Type Change in «newtype» Class 

V 6.17 New Operation 

An operation has different semantics depending on its stereotype: «signal», «procedure» or 
«operator». A «signal» operation means that the class that contains the operation can receive the 
specified signal. At the same time it also a declaration of the signal and its parameters. A 
«procedure» operation is translated as a SDL procedure in the process linked with the class. If the 
operation is public, the procedure is exported and declared remote so it can be called from outside 
the process. An «operator» operation becomes a function in a newtype definition. 
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The rules below do not check the stereotype of the class. Operations with stereotype «signal» and 
«procedure» can only appear in «process», «block», «system» or «package» classes. Operations 
with stereotype «operator» can only appear in «newtype» classes. Possible violations to this rule 
will automatically be corrected during the preprocessing. 

Context for 
this section 

– operation is the new UML operation 
– class is the class containing operation 

Rule 104. Context for New Operation 

Preconditions – operation.stereotype = «signal» 
Context – structure = class.declarationStruct 

– (par1…parm) = operation.parameters 
Action If m = 0, add to structure: 

SIGNAL <operation.name>; 
 

else add to structure: 

SIGNAL <operation.name> ( <par1.type> , … , <parm.type>); 
 

Add to class.signallist 

, <operation.name> 
 

Variable operation.sdlsignal = the generated signal 

Rule 105. Translate «signal» operation 

 
Preconditions – operation.stereotype = «procedure» 
Context – structure = class.managementProcess 

– declstruct = class.declarationStruct 
– (par1…parm) = operation.parameters 

Action Add to structure : 

EXPORTED PROCEDURE <operation.name>; 
FPAR IN <par1.name> <par1.type>,  
      … 
     IN <parm.name> <parm.type>, 
     RETURNS <operation.returntype>; 
 

Add to declstruct : 

REMOTE PROCEDURE <operation.name>; 
FPAR <par1.type>, … , <parm.type>; 
RETURNS <operation.returntype>; 

 
Variable operation.sdlprocedure = the generated procedure 
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Rule 106. Translate «procedure» operation 

Preconditions – operation.stereotype = «operator» 
Context – newtype = classnew.declaration 

– (par1…parm) = operation.parameters 
Action Add to the behaviour of newtype: 

 <operation.name> <par1.type>, …, <parm.type>  
     -> <operation.returntype>; 

 

Rule 107. Translate «operator» operation 

V 6.18 Delete Operation 

Context for 
this section. 

– operationold is the old UML operation being deleted 
– classold is the old class containing operationold 

Rule 108. Context for Deleting an Attribute 

Because of the consistent use of signallists instead of individual signals on channels and signal 
routes, Rule 109 does not have to care about references to the deleted signal. Of course, it is still 
possible that the deleted signal is used in some processes, but that is not part of the mapping. 

Preconditions – operationold = «signal» 
Context – signal = operationold.sdlsignal 

– signallist = classold.signallist 
Action Delete signal from signallist 

Delete signal from operationold.declarationStruct 

Rule 109. Deleted «signal» operation 

Preconditions – operationold = «procedure» 
Context – procedure = operationold.sdlprocedure  
Action Delete procedure from classold.sdlprocess. 

Delete the remote procedure definition of procedure if it exists. 

Rule 110. Deleted «procedure» operation 

Preconditions – operationold = «operator» 
Context – datatype = classold.datatype  
Action Delete the operator named operationold.name from datatype. 

Rule 111. Deleted «operator» operation 
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V 6.19 Compare Operation 

Three different aspects of an operation can change: the name, the parameters and the return type. 
For each of the possible stereotypes («signal», «procedure» and «operator»), these changes are 
translated differently.  

Context for 
this section. 

– operationold is the previous UML operation 
– operationnew is the new UML operation to be compared 
– (parold1, … , paroldn) = operationold.parameters 
– (parnew1, … , parnewm) = operationnew.parameters 
– classold  = the class containing operationold 
– classnew  = the class containing operationnew 

Rule 112. Context for Comparing Operations 

In contrast with attributes where stereotypes are not used, the stereotype is crucial to the 
semantics of an operation. If the old and the new operations have a different stereotype, nothing 
of the declarations can be reused, so the old operartion is deleted and the new operation is added, 
see Rule 113. As an extra feature, however, we do convert signal outputs into procedure calls if 
the operation has switch from «signal» to «procedure», see Rule 114 and Rule 115. 

Preconditions – operationold.stereotype ≠ operationnew.stereotype 
Action Translate operationold as a deleted operation 

Translate operationnew as a new operation 

Rule 113. Translate Operation Stereotype Change 

Preconditions – operationold.stereotype = «signal» 
– operationnew.stereotype = «procedure» 

Action For all classes associated with classold, transform all signal outputs of 
operationold into procedure calls to operationnew with the same parameters. 

Rule 114. Translate Operation «signal» to «procedure» 

Preconditions – operationold.stereotype = «procedure» 
– operationnew.stereotype = «signal» 

Action For all classes associated with classold, transform all procedure calls to 
operationnew into signal outputs of operationold with the same parameters. 

Rule 115. Translate Operation «procedure» to «signal» 

The rules below consecutively translate the changes for «signal» operations, «procedure» 
operations and «operator» operations. 
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Preconditions – operationold.stereotype = operationnew.stereotype = «signal» 
– operationold.name ≠ operationnew.name 

Context – signal = operationnew.sdlsignal 
Action signal.name = operationnew.name 

Rename all references to signal (e.g. signal lists, inputs, outputs, saves, etc.) in 
the complete scope of the signal declaration. 

Rule 116. Translate «signal» Operation Name Change 

Preconditions – operationold.stereotype = operationnew.stereotype = «signal» 
– (parold1.type, … , paroldn.type) ≠ (parnew1.type, … , parnewm.type) 

Action Replace operationnew.sdlsignal with the following declaration: 

SIGNAL <operation.name> ( <parnew1.type> , … , <parnewm.type>); 
 

Rule 117. Translate Parameter Type Change for «signal» Operation 

Preconditions – operationold.stereotype = operationnew.stereotype = «procedure» 
– operationold.name ≠ operationnew.name 

Context – procedure = operationnew. sdlprocedure 
Action procedure.name = operationnew.name 

Rename all references to procedure (e.g. procedure calls, signallists, etc.) in the 
complete system. 

Rule 118. Translate «procedure» Operation Name Change 

Preconditions – operationold.stereotype = operationnew.stereotype = «procedure» 
– operationold.returntype ≠ operationnew.returntype 

Context – procedure = operationnew. sdlprocedure 
Action Set procedure.returns = operationnew.returntype 

Rule 119. Translate « procedure » Operation Type Change 

Preconditions – operationold.stereotype = classnew.stereotype = «operator» 
– (parold1.type, … , paroldn.type) ≠ (parnew1.type, … , parnewm.type) 

Action Regenerate the parameter list of operationnew.procedure , see Rule 106. 

Rule 120. Translate Parameter Change of Operator 

Preconditions – operationold.stereotype = classnew.stereotype = «operator» 
– operationold.name ≠ operationnew.name 

Context – newtype = classnew.sdldatatype 
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– operator = the operator in newtype with name operationold.name 
Action Set the name of operator = operationnew.name 

Rule 121. Translate «newtype» Operation Name Change 

Preconditions – operationold.stereotype = classnew.stereotype = «operator» 
– operationold.type ≠ operationnew.type 

Context – newtype = classnew.sdldatatype 
– operator = the operator in newtype with name operationold.name 

Action Set operator.returns = operationnew.type 

Rule 122. Translate Operation Name Change 

Preconditions – operationold.stereotype = classnew.stereotype = «operator» 
– (parold1.type, … , paroldn.type) ≠ (parnew1.type, … , parnewm.type) 

Context – newtype = classnew.sdldatatype 
– operator = the operator in newtype with name operationnew.name 

Action Regenerate the parameter list of operator, see Rule 107. 

Rule 123. Translate Parameter Change of Operator 

V 6.20 Definitions for Associations 

This section gives semi-formal definitions for a number of functions that are needed to translate 
associations. In UML, classes within a package are all “visible” for each other and consequently 
can have communication associations between any two classes. The SDL instances generated 
from those classes, however may be invisible for each other. Therefore we need a rerouting 
mechanism that reroutes direct associations through a number of signal routes and channels. The 
basis for this mechanism, the (composite) aggregation tree, is defined below.  
 
The first function, “Corresponding type of a class”, returns the block type or process type in the 
SDL specification with the same name as the class, with a priority for block type. It returns 
nothing if there is no type named like that. Two block types never have the same name because it 
is not allowed to have two classes with the same name. 
 
Function CorrespondingType(class) 

Preconditions – package is a UML package 
– class is a class of package 

Defnition If package.sdlspecification contains a block type type, where type.name = 
class.name, then 

 CorrespondingType (class) = type 

else, if package.sdlspecification contains a process type type, where type.name 
= class.name, then 
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 CorrespondingType (class) = type 

else 

 CorrespondingType (class) = empty 

Rule 124. Function Definition for Corresponding Type 

The function to calculate the aggregation paths is very important in the translation of associations. 
An aggregation path is a list of classes that are each other’s aggregate and starts with the system 
class. For a given class, each aggregation path represents an instance or definition of that class. 
The function AggrPaths calculates all possible aggregation paths for a given class. An example 
shown in Figure V-12 clarifies the functionality. The subsequent functions filter the result of 
AggrPaths for specific purposes. 

Function AggrPaths(class) 

Preconditions – package is a UML package 
– class is a class of package 
– class.stereotype = «system» ∨ «package» ∨ «block» ∨ «process» 

Defnition AggrPaths(class) is the set of all possible lists of classes (a1,  a2, … am) with 
stereotype «system», «package», «block» or «process», where  

• a1 = package.sysclass 
• ∀i = 2..n, ∃ aggregation ∈ package : ai-1 = aggregation.aggregate ∧ ai = 

aggregation.component ∧ aggregation.composite = true 
• am = class 

Exceptions – The aggregation paths of an «actor» class “A” equals {(A)} 
– External classes are treated exactly like non-external classes. This is because 

the instance of an external class does not differ from normal ones. Note that 
external classes are not allowed to have composite aggregation components. 

Rule 125. Function Definition for Aggergation Path of Class 

A 

B 

C 

E D 

F G H 

«system»  

«block»  «block»  

«block»  «process»  «process»  «block»  

«block»  

 
Figure V-12. Aggregation Paths Example 
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In the example of Figure V-12, the system class has been added explicitly. The «block» class D 
does not have an aggregate and there will not have an instance in the generated SDL. This is only 
allowed if class D is types, if not, an aggregation to the system class is automatically added. Note 
also that aggregation loops are not allowed, so the set of aggregation paths is always finite. In the 
example we get the following results: 
• AggrPaths(C) = {(C)} 
• AggrPaths(A) = {(C,A)} 
• AggrPaths(F) = {(C,E,F)} 
• AggrPaths(H) = {(C,E,H), (C,E,G,H), (D,H)} 
• AggrPaths(D) = {(D)} 

Function difference(patha, pathb) 

Preconditions – package is a UML package 
– patha=(a1,…,am), pathb =(b1,…,bn)  

Defnition Let common be the maximum for which: acommon = bcommon 

difference(patha, pathb) = n + m – 2*common 

Rule 126. Function Definition for Difference between Paths 

Function truncate(patha, pathb) 

Preconditions – package is a UML package 
– patha=(a1,…,am), pathb =(b1,…,bn)  

Defnition Let common be the maximum for which: acommon = bcommon 

truncate(patha, pathb) = ((acommon,…,am), (bcommon,…,bn)) 

Rule 127. Function Definition for Truncate Common Paths 

Function CommAggrPaths(classa, classb) 

Preconditions – package is a UML package 
– classa and classb are classes of package 

Context – pathsa=(PA1,…, PAm)=AggrPaths(classa) 
– pathsb=(PB1,…, PBm)=AggrPaths(classb) 

Defnition – differencei,j = difference(PAi, PBj) 
– Let min be the minumum of {i = 1..n, j = 1..n, differencei,j} 
– CommAggrPaths(classa, classb) = { truncate(PAi, PBj) | i ∈ 1..n, j ∈ 1..m, 

differencei,j = min } 

Rule 128. Conservative Communication Aggregation Path between two classes. 

In Rule 128, PA=(a1,…,am) and PB=(b1,…,bn) are the two truncated aggregation paths that 
identify the SDL structures that need to be connected. The result of the function 
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CommAggrPaths(a,b) is the set of all non-equivalent tuples (A,B) with the least difference, or in 
other words, closest to each other in terms of scope. An example will clarify this function. 

A 

B 

C 

E 

D 

F G 

Y 

X 

Z 
H 

W B 

C 

E 

D 

F V 

U H 

 
Figure V-13. Illustration to explain Aggregation Paths 

In the first example, there are four associations W, X, Y and Z: 
• W: CommAggrPaths(B,F) = {((C,A,B), (C,E,F))} and not ((C,A,B), (D,E,F)) 
• X: CommAggrPaths(F,G) = {((E,F), (E,G))} 
• Y: CommAggrPaths(E,G) = {((E), (E,G))} 
• Z: CommAggrPaths(B,H) = {((C,A,B), (C,E,F,H), ((C,A,B), (C,E,G,H))} 

 
In the second example, there are two associations U and V: 

• U: CommAggrPaths(U) = {((B), (C,E,H)), ((B), (D,E,H))} 
• V: CommAggrPaths(V) = {((C,E,F), (C,E,F,H)) } and not ((C,E,F), (C,E,H)) which has 

more difference (7-6=1 as opposed to 6-4=2). 
 
The use and interpretation of these aggregation paths are explained in detail later. But basically it is 
used by the association translation to know which instances should be connected. The function 
FullCommAggrPaths (Rule 129) is similar to CommAggrPaths, with the only difference that 
instead of minimizing the difference, it takes all possible combinations. The elimination of 
equivalent tuples is still done. 

Function FullCommAggrPaths(classa, classb) 

Preconditions – package is a UML package 
– classa and classb are classes of package 

Context – pathsa=(PA1,…, PAm)=AggrPaths(classa) 
– pathsb=(PB1,…, PBm)=AggrPaths(classb) 

Defnition  
FullCommAggrPaths(classa, classb) = {truncate(PAi, PBj) | i ∈ 1..n, j ∈ 1..m} 
 

Rule 129. Full Communication Aggregation Paths between two classes. 
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The function Instance (Rule 130) returns the corresponding SDL instance given a aggregation 
path. 
 
Function Instance(path) returns the corresponding SDL instance given a aggregation path. 

Preconditions – package is a UML package 
– system = package.sdlsystem 
– path=(a1,…,am) 

Context – aggr = am-1 
– comp = am 

Defnition If aggr.typed = true, let structure be the block type or process type in system 
with aggr.name as name. Note that within a SDL package there are no two 
types with the same name. 

If aggr.typed = false, let structure be the block or process definition in system 
(or substructure) with aggr.name as name. Note that there is only one block or 
process with this name otherwise aggr would have been typed. 

Instance(path) = The block or process instance in structure with comp.name as 
name. 

Rule 130. Corresponding SDL Instance. 

V 6.21 New Association 

The default semantics for an association is communication. In other words, if two classes are 
connected with an association, it means that some of the instances of one class are able to 
communicate with some instance of the other class. To achieve the equivalent in SDL, the 
structures that correspond with the instances are connected with communication routes. For 
several reasons, translating an associations into channels, signal routes and gates that connect the 
connect structures is a complicated process. First, the structures to be connected are likely to be in 
a different scope, so the communication path has to be rerouted through the closest common 
aggregate. Second, a type based block or process instance can only be connected if the type has 
the appropriate gates. Moreover, to avoid superfluous gates, they are reused whenever possible.  

The translation depends on the communication approach. In the conservative approach, a partial 
communication route is build at both sides and other communication routes at a higher level are 
reused if necessary. The goal of this approach is to keep the resulting specification readable and 
easy to maintain manually. The successive steps to translate a new association for the 
conservative approach are: 

• For each of the two classes connected by the association, find all the combinations of 
aggregation paths and the corresponding instances. 

• Add one gate for each association ends whose class is typed. 
• Add two partial channels and/or signal routes, one for each association end. 

• The “from” part of the channels or signal routes is the instance corresponding with the 
class. 
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• The “to” part is one of three possibilities: the environment; the instance corresponding with 
the other association end or the instance that contains the corresponding instance. 

• Connect the channels with a gate at both ends if necessary. 

In the full connect approach; a complete communication route is build from source to destination. 
The goal of this approach is to attain code that is complete and can be simulated without further 
modifications. 

• For each of the two classes connected by the association, find all the combinations of 
aggregation paths and the corresponding instances. 

• For each couple of aggregation paths, generate a channel and/or signal route for each part in 
the non-common path. Use the same “from” & “to” rules as in the conservative approach. 

We explain each of these steps in more detail, but we start with the preparation of the signal list 
declarations for each association and build up the necessary context information. 

V.6.21.1 Signallists and Context 

All generated gates, channels and signal routes need to declare the signals that can be sent through 
it. We use the signal lists that are generated per class, see Rule 62. However, the channels 
generated from an association sometimes need to carry more signal lists than the two classes of 
the association. In the conservative approach, the “in” signal declarations are the signal lists of all 
classes in the aggregation tree that has an association with any class in the aggregation tree on 
opposite association end, including the class itself. The “out” signal declaration is calculated in the 
opposite direction. Figure V-14 illustrates the situation where both classes A and D have 
components that communicate with each other. The association between A and D must allow 
class B to send a signal to class F. The full connect approach is simpler because there is always a 
full connection between source and destination. In this case, the “in” signal declarations is the 
signal list of the class. The “out” signal declaration is the signal list of the opposite class. 

A 

S 

D 

«system»  

«block»  «block»  

E 
«block»  

B 
«process»  

F 
«process»  

(A),(B) 

(E),(F) 

(D),(E),(F) 

(B) 

(F) 

C 
«process»  no association 

 
Figure V-14. Illustration for using Class Signal Lists in Conservative Approach 
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This section, starting with the context in Rule 131, is repeated for every couple of frompath and 
topath as a result of CommAggrPaths or FullCommAggrPaths (for the full communication 
approach). In Rule 131 and Rule 132, the signal list variables of association are calculated. These 
signal lists do not appear as declarations in the system, but are rather used during the channel and 
signal route creation. 

Preconditions 
for this section 

– association.stereotype = «communication» 

Context for this 
section and 
subsections 

– association is the new UML association 
– fromclass = association.fromclass 
– toclass = association.toclass 
– frompath = (fc1, …, fcm) 
– topath = (tc1, …, tcn) 
– fc1= tc1 (if both are not external), fromclass = fcm, toclass = tcn 

Variables – association.fromsignallist = (<fromclass.name>) 
– association.tosignallist = (<toclass.name>) 

Rule 131. Context for New Associations. 

Preconditions – communication option  ≠ full 
– fromclass is not a deep component of toclass 
– toclass is not a deep component of fromclass 

Context – CC = {(class1, class2) | ∃ association between class1 and class2, class1 is a 
deep component from fromclass but not from toclass, class2 is a deep 
component from toclass but not from fromclass} 

Action ∀(classfrom, classto)∈CC: 

Add to “association.tosignallist” : 

 ,(<classto.name>) 
 

Add to “association.fromsignallist” : 

 ,(<classfrom.name>) 
 

Rule 132. Add signallists for underlying associations. 

Preconditions – Fromclass.stereotype = «process» 
– toclass.stereotype = «process» 
– association.variable = true 

Context – fromstruct = fromclass.sdldefinition 
– tostruct = toclass.sdldefinition 

Action Add to fromstruct: 

 DCL a_<toclass.name> Pid; 
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Add to tostruct: 

 DCL a_<fromclass.name> Pid; 
 

Rule 133. Add Pid variable between processes. 

V.6.21.2 Generating gates 

Before generating any channels or signal routes, we first generate all the gates for each 
association, with the necessary signal lists on each gate. The basic idea for generating gates is to 
add a gate to the corresponding type of each association end. In the full-connect scenario, a gate is 
added to each corresponding type of all the classes on the non-common aggregation path. Figure 
V-15 illustrates the generated gates with a theoretical example. The association Z generates a gate 
in class B and class F (i.e. in the structure linked with classes B and F) because they are both 
typed and they are the endpoints of the association. In the full connect scenario, class E also get a 
gate  
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Figure V-15. Example of generated gates 

In general, for each association end connected to a typed class, create a gate in the corresponding 
type. There is an exception in the case that one association end is defined in the scope of the other 
association end. In this case the former one does not need communication to the outside and thus 
no gate. 
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Preconditions – communication option  = gate only ∨ conservative 
– fromclass.external = false 
– fromclass.typed = true 
– fromclass ≠ tc1 

Context – fromstruct = fromclass.sdldefinition 
Action Add to fromstruct: 

GATE <association.fromrole> 
 OUT <association.tosignallist> 
 IN <association.fromsignallist>;  
    (skip last line if association.tofromnavigate= false) 

 

Rule 134. Add gate in gate-only or conservative communication. 

Repeat previous definition for other direction and switch all references to from and to. 

Add a gate to the corresponding type of all classes in the non-common path of the class connected 
to each association end in respect to the class connected to the other association end. 

 
Preconditions – communication option  = full 
Action ∀ fc ∈ (fc2, …, fcm): if fc.typed = true, then add to fc.sdldefinition: 

GATE <association.fromrole> 
 OUT <association.tosignallist> 
 IN <association.fromsignallist>;   
    (skip last line if association.tofromnavigate= false) 
 

∀ tc ∈ (tc2, …, tcm): if tc.typed = true, then add to tc.sdldefinition: 

GATE <association.torole> 
 OUT <association.fromsignallist> 
 IN <association.tosignallist>;   
    (skip last line if association.tofromnavigate= false) 

 

Rule 135. Add gates in gate only or conservative communication. 

V.6.21.3 Conservative Approach 

In the conservative approach, for generating channels and signal routes, the two ends of an 
associations are treated more or less separately. As shown in Figure V-16, an association to a 
«process» class A is translated into a signal route starting from a process instance a_A and going 
into direction of the other end. The other end either can be a process in the same block or can be 
in an different block. This translation scheme is easier than having to describe all possible 
combinations block/process, block/actor, system/process, etc. 
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Figure V-16. Illustration of “one-end” translation approach 

In the conservative scenario, we generate only one pair of channels and/or signal routes for each 
communication aggregation path tuple, one for each instance on both ends of the association. If 
both instances are in the same scope, we generate only one channel or signal route. We start 
calculating the aggregation paths and the instances. The rules in this section, starting with the 
context of Rule 136, are executed twice, once for each association end. The second time the 
frompath and topath are switched. 

 

Preconditions for 
this section 

– association.stereotype = «communication» 
– communication option  = conservative 

Context for this 
section 

– context from association (fromclass, toclass, frompath, topath, 
fromsignallist, tosignallist) 

– frompath = (fc1, …, fcm) 
– topath = (tc1, …, tcn) 
– Structure  from = Instance(frompath), possibly empty 
– Structure  to = Instance(topath), possibly empty 
 
Determine Process  from, Process  to, Block  from, Block  to (default is empty) 
– If fromclass.stereotype = «process», then 

 Process  from = Structure  from and 
 if (m>1 ∧ fcm-1.processesblock ≠ fcm-1.definitionblock), then  
 Block  from = fcm-1.processesblock else Block  from = empty 

– If fromclass.stereotype = «block», then 
 Process  from = fcm.sdlprocess and 
 if (m>1)  
 Block  from = Structure  from else Block  from = fcm.processesblock 

– If toclass.stereotype = «process», 
then Process  to = Structure  to,  
else Process  to = tcn.sdlprocess 

– Let Block  to be an SDL block in the same scope of Block  from, where 
Block  to is the instance or the definition of one of the classes in topath. 
(May be empty) or is the processes block surrounding Process  to 
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Rule 136. Context for Channel and Signal Creation. 

For each tuple and for each association end, we have to create some signal routes and/or 
channels. We will describe the process from the standpoint of class a, if am-1 ≠ bn-1, the same 
process should be repeated for the other direction. 
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Figure V-17. Communication with External Actor 

If the from class is an actor, the aggregation path frompath is not important, the instance is 
considered to be outside the package or system. Therefore a channel is created from the 
environment of the architecture block into the direction of the destination block or process. Note 
that in the case of a system, the system itself is actually the architecture block. If the other class is 
also an actor, no channel is created either. 

 
Preconditions – Process  from = empty ∧ Process  to=empty 

– Block  from ≠ empty ∨ Block  to ≠ empty 
Context – struct = Instance((tc1,tc2)) 
Action Add to package.sdlarchitecture: 

CHANNEL <association.name> 
FROM ENV TO <struct.name> WITH <tosignallist>; 
FROM <struct.name> TO ENV WITH <fromsignallist>; 

ENDCHANNEL <association.name>; 
 

Rule 137. Add channel for associations from outside 

Case 1: n=1. This means that there is no corresponding instance of class a, because a=a1 does not 
have an aggregate. No instance means no signal route 
 
Case 2: A = B. This means the StructureA = StructureB and thus no signal route should be 
created. 
 
Case 3: amm-1 = bn-1, b is «process». This means that classes StructureA and StructureB are both 
processes and are located in the same block. A single signal route is created between StructureA 
and StructureB. 
 
Case 4: amm-1 ≠ bn-1 or  b is «block». This means that StructureA and StructureB are located  in a 
different block. A signal route is created from StructureA to the environment. If StructureA is 
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located in a “Processes” block, an extra channel should be created from the “processes” block in 
the direction of StructureB: if amm-1 = bi∈ B, the channel goes to the corresponding block of bi+1, 
otherwise the channels goes to the environment. 
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Figure V-18. Illustration of cases for associations to «process» classes 

Preconditions – Process  from ≠ empty ∧ Process  to ≠ empty ∧ Process  fr  om ≠ Process  to 
– Process  from and Process  to are in the same scope 

Context – struct = parent structure of Process  from 
Action Add to struct: 

SIGNALROUTE <association.name> 
 FROM <Processfrom.name> TO <Processto.name>  

WITH <tosignallist>; 
 FROM <Processto.name> TO <Processfrom.name>  

WITH <fromsignallist>; 
 

Rule 138. Add signal route between two processes in the same scope. 

Preconditions – Process  from ≠ empty 
– Process  to = empty ∨ Process  from and Process  to are in a different same scope 

Context – struct = the parent structure of Structure  from 
Action Add to struct: 

SIGNALROUTE <association.name> 
 FROM <Processfrom.name> TO ENV  

WITH <tosignallist>; 
 FROM ENV TO <Processfrom.name>  

WITH <fromsignallist>; 
 

Rule 139. Add signal route from process to the environment. 
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Preconditions – Process  from ≠ empty ∧ Block  from ≠ empty 
– Block  from is not the parent structure of Process  from 

Context – Let struct be the parent structure of Process  from 
Action Add to Block  from: 

CHANNEL <association.name> 
 FROM <struct.name> TO ENV 

WITH <tosignallist>; 
 FROM ENV TO <struct.name> 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 140. Add chanel from processes block to the environment. 

Preconditions – Block  from ≠ empty ∧ Block  to ≠ empty ∧ Block  to ≠ Block  from 
– Block  from and Block  to are in a different same scope 

Context – Let struct be the parent structure of Block  from 
Action Add to struct: 

CHANNEL <association.name> 
 FROM <Blockfrom.name> TO <Blockto.name> 

WITH <tosignallist>; 
 FROM <Blockto.name> TO <Blockfrom.name> 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 141. Add signal route between two blocks in the same scope. 

Preconditions – Block  from ≠ empty 
– Block  to = empty ∨ Block  from and Block  to are in a different same scope 

Context – Let struct be the parent structure of Block  from 
Action Add to struct: 

CHANNEL <association.name> 
 FROM <Blockfrom.name> TO ENV 

WITH <tosignallist>; 
 FROM ENV TO <Blockfrom.name> 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 142. Add signal route from block to the environment. 

 
Case 1: n=1. This means that there is no corresponding instance of class a, because a=a1 does not 
have an aggregate. No instance means no signal route 
 
Case 2: A = B. This means the StructureA = StructureB and thus no signal route should be 
created. 
 
Case 3: amm-1 = bn-1 ∧ b is «block». This means that classes StructureA and StructureB are both 
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blocks and are located in the same structure. A single channel is created between StructureA and 
StructureB. 
 
Case 4: am ∈ B. This means that classes StructureB is defined within StructureA. No channel is 
created from StructureA. If StructureA contains a management process, see below. 
 
Case 5: other. This means that StructureA and StructureB are not located in the same structure. A 
channel is created from StructureA in the direction of StructureB: either to the environment or to a 
neighbor block containing StructureB. 
 
Management process, for case 3, 4 & 5: If in cases 3, 4 or 5, StructureA has a “management” 
process, an extra signal route should be created from the management process in the direction of 
StructureB. If this management process is in a “processes” block and StructureB is not defined in 
the processes block, then an extra channel should be created from the processes block  in the 
direction of StructureB. 
 

V.6.21.4 Full Connect Channel  & Signal Route Generation 

In the full connect scenario, we generate a full connection from one instance to another, using 
channels and/or signal routes for each part in the communication aggregation path. If both 
instances are in the same scope, we generate only one channel or signal route. As in the 
conservative approach, we start calculating the aggregation paths and the instances. 

Preconditions for 
this subsection 

– association.stereotype = «communication» 
– communication option  = conservative 

Context for this 
section 

– same context from association (fromclass, toclass, frompath, topath, 
fromsignallist, tosignallist) 

– frompath = (fc1, …, fcm) 
– topath = (tc1, …, tcn) 
– Structure  from = Instance(frompath), possibly empty 
– Structure  to = Instance(topath), possibly empty 

Rule 143. Context for New Associations. 

In Rule 144, we reuse the channel and signal route generation of the conservative approach to 
connect the process and the processes-block. In many cases, this will already result in a full 
connection, e.g. for two processes within the same scope. The advantage is that in the other rules 
(Rule 145 through Rule 147), we only have to take care about the channel generation between the 
block structures. Rule 145 takes the second classes in both aggregation paths and connects the 
linked structure with a channel. The aggregate of these classes is the first common aggregate of 
the instances to be connected. Rule 146 and Rule 147 build channels starting from the structures 
of Rule 145 down to the structure linked with the initial classes. Figure V-19 

Action Execute Rule 136 through Rule 142 of the conservative approach. 

Rule 144. Reuse Conservative Translation 



 

Realizing the UML-SDL Round-trip Engineering  149 
  

Preconditions – fc1= tc1 ∧ m>2 ∧ n>2 
Context – Block  from = Instance((fc1,fc2)) 

– Block  to = Instance((tc1,tc2)) 
– struct = fc1.sdldefinition      (the parent structure of Block  from and Block  to) 

Action Add to struct: 

CHANNEL <association.name> 
 FROM <Blockfrom.name> TO <Blockto.name> 

WITH <tosignallist>; 
 FROM <Blockto.name> TO <Blockfrom.name> 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 145. Add signal route between two blocks in the same scope. 

Preconditions – m > 3 
Context – ∀ i ∈ (3..m-1) : execute this rule, where block  from = Instance((fc1,…,fci)) 

– Let struct be the parent structure of Block  from 
Action Add to struct: 

CHANNEL <association.name> 
 FROM <Blockfrom.name> TO ENV 

WITH <tosignallist>; 
 FROM ENV TO <Blockfrom.name> 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 146. Add signal route from block to the environment. 

Preconditions – n > 3 
Context – ∀ i ∈ (3..n-1) : execute this rule, where block  to = Instance((tc1,…,tci)) 

– Let struct be the parent structure of Block  to 
Action Add to struct: 

CHANNEL <association.name> 
 FROM ENV TO <Blockto.name> 

WITH <tosignallist>; 
 FROM <Blockto.name> TO ENV 

WITH <fromsignallist>; 
ENDCHANNEL; 
 

Rule 147. Add signal route from block to the environment. 
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Figure V-19. Example of Channel Generation in Full Connect 

V.6.21.5 Connecting Channels and Signal Routes 

Because of the complexity and the customization of the translation rules, it is very difficult to 
predict to which gate or channel a channel or signal route will be connected. In this separate 
connecting phase, we search for the gate in a type or a channel in the environment that fits best. 
This search is done based on the in/out signallist, on the original value of the connection and on 
the name of the channel to be connected. 

For each end of a channel or signal route: 

– If going to the environment of a type search for a gate 
– If going to the environment of a definition, search for a channel 
– If going to a type based instance, search for a gate 
 
The following priorities hold: 

1. If the default connect given during translation exists (gate or channel), keep that connect. 
2. Search for a gate or channel in the environment with the same name 
3. Search for a gate or channel with exactly the same in/out signal lists. 
4. Search for a gate or channel with contains most of the in/out signal lists, possibly zero. 

V 6.22 Delete Association 

A deleted association is translated by deleting the gates, channels and signal routes that are linked 
with the association. After this step, other channels or signal routes that were connected with the 
linked entities now become unconnected. This is solved by performing the connection process 
described in section V.6.21.5.  

Context for 
this section. 

– associationold is the old UML association being deleted 
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this section. 

Rule 148. Context for Deleting an Association 

Action Delete association.sdlfromroute 

Delete association.sdltoroute 

Delete all channels in association.sdlfromchannels 

Delete all channels in association.sdltochannels 

Delete all gates in association.sdlgates 

Rule 149. Deleted association 

V 6.23 Compare Association 

Translating associations is very complex process and apply a small change to the association can 
have many implications on the generated SDL. For example, if one ends of an association is 
connected to a different class, possibly none of the previously generated channels can be reused 
(Rule 152). Such a change is translated as deleting the old association and adding the new 
association. Other changes, like renaming the association, can be translated gracefully. The 
translation rules start with the worst cases. 

Context for 
this section. 

– associationold is the previous UML association 
– associationnew is the new UML association to be compared 

Rule 150. Context for Comparing Associations 

Preconditions – associationold.stereotype ≠ associationnew.stereotype 
Action Translate associationold as a deleted association 

Translate associationnew as a new association 

Rule 151. Translate Association Stereotype Change 

Preconditions – associationold.fromclass ≠ associationnew.fromclass or 
– associationold.toclass ≠ associationnew.toclass 

Action Translate associationold as a deleted association 

Translate associationnew as a new association 

Rule 152. Translate Association Ends Change 



 

152  Kurt Verschaeve 
  

 

Rule 153 translate a name change of the association. Note that this also covers the case where the 
from and/or to classes are renamed and where the name of the association is derived from the 
class names. 

Preconditions – associationold.name ≠ associationnew.name 
Context – newname = associationnew.name 
Action For all channel ∈ association.sdlchannels do channel.name = newname 

Set association.sdlfromroute.name = newname 

Set association.sdltoroute.name = newname 

Rule 153. Translate Association Rename 

Preconditions – associationold.fromrolename ≠ associationnew.fromrolename 
Context – newname = associationnew.fromrolename 
Action ∀ gate ∈ association.sdlgates | ∃ channel ∈ association.fromchannels : 

channel is connected with gate, do 
 gate.name = newname 

Rule 154. Translate From-Role Rename 

Preconditions – associationold.torolename ≠ associationnew.torolename 
Context – newname = associationnew.torolename 
Action ∀ gate ∈ association.sdlgates | ∃ channel ∈ association.tochannels : channel is 

connected with gate, do 
 gate.name = newname 

Rule 155. Translate To-Role Rename 

V 6.24 New State Diagram 

A UML class can contain exactly one state diagram. As such, the class and its state diagram can 
be considered as one entity. This matches with the situation in SDL where the process is a 
structure as well as a container for states. Accordingly, a UML class and its state diagram both 
have a link to the same SDL process. For the translation, this means that the state diagram itself 
does not need any translation, because the process is already managed while translating the UML 
class. In Rule 156, we therefore only set the sdlprocess link variable to the same value as the 
class. 

Context for 
this section 

– statediagram is the new state diagram 
– class is the class containing statediagram 

Action Set statediagram.sdlprocess = class.sdlprocess 

Rule 156. Set sdlprocess link for State Diagram 
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V 6.25 Delete State Diagram 

Deleting a state diagram does not necessarily mean that the linked process must be deleted. The 
process can still contain declaration and procedures. As explained in the previous section, it is the 
responsibility of the class translation to manage the existence and properties of the linked process. 
However, by deleting the state diagram, all states in it are implicitly deleted too. Because the 
hierarchical comparison does not compare state if there are no matching state diagrams,  

Context for 
this section 

– statediagram is the delete diagram 
– process = statediagram.sdlprocess 

Action Delete the initial transition and all states from process  

Rule 157. Set sdlprocess link for State Diagram 

V 6.26 Compare State Diagram 

There are no attributes on a UML state diagram that can be modified, so there are no comparison 
rules for state diagrams. Of course, the states and transitions contained in the matching state 
diagrams are compared. The translation rules for these changes are given below. 

V 6.27 New State 

The basic state and transition concepts are very similar in UML and SDL and thus are easy to 
translate. Rule 159 translates only normal states. Start states and stop state do not have to be 
translated separately. The extra features of UML, like nested states and entry/exit actions, are 
already converted to basic concepts during the preprocessing of the UML model. 

Context for 
this section 

– state is the new state 
– statediagram is the state diagram containing state 
– class is the class containing statediagram 
– sdlprocess = class.sdlprocess 

Rule 158. Context for Translating State 

Preconditions – state.type = normal  (i.e. not start or stop) 
Action Add to sdlprocess: 

STATE <state.name>; 
ENDSTATE <state.name>; 
 

Variables state.sdlstate = the state created above 

Rule 159. Translate new State. 

V 6.28 Delete State 

Context for 
this section 

– stateold is the deleted state 
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this section – statediagramold is the state diagram containing stateold 
– sdlprocess = class.sdlprocess 

Rule 160. Context for Deleting State 

Preconditions – state.type = normal  (i.e. not start or stop) 
Action Delete stateold.sdlstate from statediagramold.sdlprocess 

Rule 161. Translate Deleted State 

V 6.29 Compare State 

The only property in a UML state that can change is its name. Rule 162 gibves the context and 
copies the state-link to the new UML state and Rule 163 translates the renaming if applicable. 

Context for 
this section. 

– stateold is the previous UML state 
– statenew is the new UML state 

Variables – statenew.state = stateold.state 

Rule 162. Context for Comparing States 

Preconditions – stateold.name ≠ statenew.name 
Action Set statenew.state.name = statenew.name 

Translate operationnew as a new operation 

Rule 163. Translate State Rename 

V 6.30 New Transition 

The transition in the UML data structure is built in correspondence with SDL, where a transition 
is represented by the input and/or guarded symbol. Except for the source and destination state, a 
UML transition also holds the input event that triggers the transition and/or the guard that gives 
the condition that must be fulfilled to execute the transition. Moreover, during the preprocessing, 
the entry and exit actions of the states are copied to the transitions. As a result, the rules below 
have all the necessary information in the transition itself.  

Context for 
this section 

– transition is the new transition 
– source = transition.source 
– dest = transition.dest 
– statediagram is the state diagram containing source 
– class is the class containing statediagram 
– sdlprocess = class.sdlprocess 

Rule 164. Translate Context for State Diagram 
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A transition coming from a start state, must always be a event-less and guard-less event. So there 
is only one possible translation. In Rule 165, the sdltransition link of the UML start transition is 
filled in so that actions can be added later on. For transitions starting from a normal state, there 
are three basic types: event, when and after. An event transition can also contain a when clause 
(guarded event). Rule 166 till Rule 168 translates the trigger of the transition and Rule 169 till Rule 
171 translates the destination of the transition. Note that the list of actions in the transition 
(transition.actions) are translated individually as new actions. 

Preconditions – source.type = start 
– sdlprocess does not contain a start transition 

Action Add to sdlprocess: 

START; 
 

In terms of the information model: sdlprocess.start = new transition  

Variables transition.sdltransition = the start transition created above 

Rule 165. Translate Start Transition. 

Preconditions – source.type = normal 
– transition.type = event 

Context – sdlsource = source.sdlstate 
Action Add to sdlsource: 

INPUT <tranistion.event>; 
 

If transition.guard is not empty, add to sdlsource: 

PROVIDED <tranistion.guard>; 
 

Variables transition.sdltransition = the transition created above 

Rule 166. Translate Normal Transition. 

Preconditions – source.type = normal 
– transition.type = when 

Context – sdlsource = source.sdlstate 
Action Add to sdlsource: 

PROVIDED <tranistion.guard>; 
 

Variables transition.sdltransition = the transition created above 

Rule 167. Translate Guarded Transition. 
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Preconditions – source.type = normal 
– transition.type = after 

Context – sdlsource = source.sdlstate 
Action Add to process : 

TIMER <transition.event> := <transition.timer>; 
 

Add to sdlsource : 

INPUT <tranistion.event>; 
 

Variables transition.sdltransition = the transition created above (= second code line) 

Rule 168. Translate Timer Transition. 

Preconditions – transition.isinternal = true 
Action Add to transition.sdltransition : 

NEXTSTATE -; 
 

Rule 169. Next State for Internal Transition. 

Preconditions – dest.type = normal 
– transition.isinternal = false 

Action Add to transition.sdltransition : 

NEXTSTATE <dest.name>; 
 

Rule 170. Normal Next State. 

Preconditions – dest.type = stop 
– transition.isinternal = false 

Action Add to transition.sdltransition : 

STOP; 
 

Rule 171. Transition to Stop State 

V 6.31 Delete Transition 

Context – transitionold is the deleted transition 
– stateold is the state containing transitionold 
– sdlprocess = class.sdlprocess 

Action Delete transitionold.transition from stateold.state 

Rule 172. Translate Deleted Transition 
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V 6.32 Compare Transition 

Many properties of a transition can be changed. Some changes are very hard to translate and 
require some overwriting, such as an internal transition that changes into an external transition 
(Rule 174) and a transition that changes the type of the trigger (Rule 175). A change of the source 
and/or destination state is easier to translate (Rule 176 and Rule 177). 

Context for 
this section. 

– transitionold is the previous UML transition 
– transitionnew is the new UML transition 

Variables – transitionnew.transition = transitionold.transition 

Rule 173. Context for Comparing Transitions 

Preconditions – transitionold.isinternal ≠ transitionnew.isinternal       or 
– transitionold.source.type ≠ transitionnew.source.type (from start to normal) 

Action Translate transitionold as deleted and transitionnew as new 

Rule 174. Translate Major Transition Change 

Preconditions – transitionold.type ≠ transitionnew.type 
Action Regenerate the input and the guard symbols from transitionold.transition by 

using Rule 166 until Rule 168. 

Rule 175. Translate Transition Type Change 

Preconditions – transitionold.source ≠ transitionnew.source 
Action Move transitionold.transition to transitionnew.source.state 

Rule 176. Translate Transition Move 

Preconditions – transitionold.dest ≠ transitionnew.dest 
Action Delete the nextstate statement from transitionnew.transition and reapply Rule 

170 or Rule 171. 

Rule 177. Translate Transition Destination Change 

V 6.33 New Action 

Only new actions are translated, not deleted actions. Moreover, actions are not compared and as a 
result, modifying an action will result in a new action. There are two main reasons for this. First, 
actions do not have a unique identification; they are merely sub-strings in the action string. 
Consequently, it is impossible to determine whether an action has been modified or an action was 
deleted and added. Second, it is typically not the intention in a UML state diagram to write full 
SDL code on the transitions, but rather a more informal description. During detailed design the 
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generated SDL actions will therefore be modified a lot, making it difficult to maintain the link and 
to translate changes in a sensible way.  

Rule 179 through Rule 182 determine the type of the action by checking for a certain sub-string. 
If no special string is found, the default translation is an SDL task with free text. 

Context for 
this section 

– action is the new action 
– transition is the action containing action 

Rule 178. Translate Context for Action 

Preconditions – action.name starts with "^" 
Variables – Parse action.name as d̂estination.signal or ŝignal ; possible parameters 

within parentheses are included in signal 
Action If destination is empty, add to transition.sdltransition : 

OUTPUT <signal>; 
else, 

OUTPUT <signal> TO <destination>; 
 

Rule 179. Translate Signal Send Action. 

Preconditions – action.name starts with "call" 
Action Add to transition.sdltransition : 

<action.name>; 
 

Rule 180. Translate Call Action. 

Preconditions – action.name includes the string ":=" 
Action Add to transition.sdltransition : 

TASK <action.name>; 
 

Rule 181. Translate Assignment Action. 

Preconditions – Rule 179, Rule 180 and Rule 181 do not apply. 
Action Add to transition.sdltransition : 

TASK '<action.name>'; 
 

Rule 182. Translate Free Text Action. 
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V. 7 SDL post processing 

After applying the translated changes, we check the resulting SDL specifications for 
inconsistencies or violations of the SDL syntax that are typical introduced by the translation. This 
“cleanup” is not part of the translation rules of the previous section for two reasons. First, we do 
not want to overload the translation rules with recurring aspects. For example, every rule adding 
or deleting a block or process should check whether there is not a block or process next to each 
other. Second, a problem introduced by one translation rule may already be solved be the 
application of a subsequent rule. 

V 7.1 Structure 

The main structural post-processing is to eliminate processes and blocks in the same scope. 
According to the SDL rules, a block and a process can never be in the same scope. Usually, this is 
avoided by creating an extra “processes block”. During iteration, however, it is for example 
possible that a block was added to a process-only block. Rule 183 therefore checks the 
coexistence of blocks and process in all blocks and solves it accordingly. Rule 184 performs the 
opposite action, i.e. delete the processes block if it is no longer necessary. Rule 183 and Rule 184 
must be checked for all block definitions and block types in the complete specification. 

Preconditions – block contains at least one block definition or block intance 
– block contains at least one process definition or process instance 

Context – class = block.sdldefinition-1 
Action Execute Rule 55 to add a processes-block processes in block. 

Move all process and signal routes of block into processes: 

For all moved signal routes that go to environment, create an equivalent channel 
in block. 

Variables – class.processesblock = processes 

Rule 183. Eliminate Blocks and Processes in the Same Scope. 



 

160  Kurt Verschaeve 
  

 

Preconditions – block.processesblock-1 = block.parent.sdldefinition-1 
– Except for block there are no other blocks, block instances, processes or 

process instances in its scope 
– block.parent ≠ block.system 

Context – class = block.sdldefinition-1 
Action Delete all channels from block.parent. 

Move the complete contents of block into block.parent. 

Delete block from block.parent. 

Variables – class.processesblock = class.sdldefinition 

Rule 184. Eliminate Unnecessary Processes-Blocks. 

V 7.2 Communication 

During the UML post processing, the channels and signal routes are connected with the generated 
gates. In a one shot translation, the gates are generated first and the channels are immediately 
connected to the best gate. Because gates can disappear during iteration, we connect channels and 
signal routes with gates during post processing.  

Context for 
this section 

– communication is a channel or signal route 
– parent is the structure that encloses communication 

Rule 185. Context for Connecting Commuincations 

Preconditions – communication.fromconnect is not a valid gate 
– communication.fromstruct = “ENV” 
– parent is a block type 

Action Set communication.fromconnect to the gate of parent.gates that best matches 
the input and output signals of communication. 

Rule 186. Connect Communication with Environment Gate. 

Preconditions – communication.fromconnect is not a valid gate 
– communication.fromstruct is a block instance or process instance 

Context – structtype is the block or process type of communication.fromstruct 
Action Set communication.fromconnect to the gate of structtype.gates that best 

matches the input and output signals of communication. 

Rule 187. Connect Communication with Best Gate. 
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V 7.3 Declarations 

There are two more issues concerning declarations. First, if a declaration is defined twice, the one 
in the highest scope is retained, see Rule 188. Rule 189 adds a default signal to signal lists that do 
not contain any signals yet. This is necessary for active classes that do not contain operations. 

Preconditions – decl is a signal, signal list or newtype declaration 
– The same declarations is already defined in a higher scope 

Action Delete decl. 

Rule 188. Connect Communication with Best Gate. 

Preconditions – signallist is a signal list without any signals defined in it.  
Action Add the signal “empty” to signallist. 

If the “empty” signallist is not defined yet, add a signal with name “empty” and 
no parameters to the system. 

Rule 189. Add default signal to empty signal lists. 



 

162  Kurt Verschaeve 
  

 

V. 8 SDL to UML 

V 8.1 Reverse Iteration 

This section defines the rules to translate changes in SDL into changes in UML. The intention is 
to update the system design document with the important changes made during detailed design, 
whether that be added, modified or deleted information. The approach is very similar to the 
forward iteration. The old and the new version of an SDL specification are compared in a 
structural way, i.e. compare data structures instead of ASCII texts. Changes 

Unlike the forward iteration, the reverse iteration is not intended for the translation of a complete 
specification. We assume that there has been carried out a forward translation before and that the 
UML model and SDL specification are synchronized before the reverse iteration starts. This is a 
reasonable assumption for projects where UML and SDL are used right from the start. For legacy 
systems for which only the SDL specification exists, a complete reverse engineering must be 
performed first. Most of the “new” translation rules presented below can be reused for that 
purpose, but they need to be extended with rules to generate diagrams, create packages and their 
relationships, find communication patterns, abstract or summarize state charts and link blocks with 
a process. Furthermore, these extra rules need customization options to be adaptable to the goal of 
the reverse engineering. We decided that a standalone reverse engineering is out of the scope of 
this dissertation. 

V 8.2 UML Model versus Diagrams 

Unlike SDL, UML has no strict correspondence between the class diagrams and the information 
contained in the model. In SDL, the only difference between the graphical notation and the textual 
notation is that the graphical notation uses extra positioning information. If this positioning 
information lacks, an SDL tool will perform an automatic layout. In UML, a class, an association 
or an inheritance relationship may be shown in several diagrams or may not be shown at all. In 
other words, diagrams are optional and usually show only a part of the information in the model. 
For this reason, the UML-SDL mapping rules are defined on the UML information model and not 
on the diagrams. Section V 9.1 illustrates the generation of some diagrams based on the translated 
changes. 

V 8.3 Specification & Packages 

As argued in section V 8.1, we do not support full reverse engineering. In a round-trip scenario, a 
UML model with packages is created first and translated to SDL before starting to iterate. 
Similarly, new packages should be added on UML level in order to include them in the round-trip 
process. Of course, developers are free to import other SDL packages in their system; these 
packages will simply not be translated to UML as a change. Rule 190 therefore only defines a 
number of context variables used throughout the SDL to UML translation. 

Context for 
this section 

– systemold is the previous version of the SDL system or package 
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this section – systemnew is the new and modified version of the SDL system or package 
– system = systemnew as a shorthand 
– package is the UML package that needs to be updated 
– sysclass = package.systemclass 
– architecture = package.sdlarchitecture is the structure that contains the 

instances of top-level classes. 

Rule 190. Translate Context for Reverse Iteration 

V 8.4 New Block 

The standard translation for a new block is to create a new class with stereotype «block» in the 
UML package. For a new block instance, only an aggregation to the class that is linked with the 
block type is created. However, for block instances of an imported block type this class is not 
available yet. In this case, the block instance is translated as a new external class, see Rule 192. 
Another exception is the processesblock (a block which only purpose is to hold te management 
process), which is not translated at all.  

The translation of the specialization construct into a generalization relationship is done separately 
in section V 8.10. 

Context for 
this section 

– block is the new SDL block, block type or block instance 
– parent is the surrounding SDL structure of block 
– parentclass = parent.sdldefinition-1 
– if parentclass is empty, set parentclass =  package.systemclass 

Rule 191. Translate Context for New Block 

– block is not a block instance of a block type declared within system  new 

– block.name ≠ "processesblock" 
– block.processesblock-1 is empty 
– block.name ≠ parent.name 

} 
 
Check that block is not a 
processblock. 

Precondition 

– package does not contain a class with name block.name 

Action Add a new class class to package with the following properties 

– class.name = block.name 
– class.stereotype = «block» 
– If block is a block type or block instance: class.typed = true 
– If block is a block definition: class.typed = false 
– If block is block instance and corresponding block type is not visible: 

block.extern = true 
– If block is a block type or block definition: class.definedIn = parentclass 

Variables – newclass is the newly created class 
– class.sdldefinition = block 

Rule 192. Translate New Block 
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Precondition block is not a block type (it is a block instance or a block definition) 

Action Add a new aggregation to package with the following properties 

– aggregation.aggergate = parentclass 
– aggregation.component = newclass  
– aggregation.componentrole = block.name 
– aggregation.composite = true 

Variables – aggregation.sdlcomponent = block 

Rule 193. Aggregate for Block Definition and Instance 

V 8.5 Delete Block 

A naïve approach would be to simply delete the class that is linked with deleted block. However, 
we have to check whether the class at issue is not linked with other information, more specifically, 
a management process or a processes block. An important condition that must be fulfilled is to 
find a class that is linked with the deleted class as the sdldefinition, see Rule 194. If the delete 
block is a processes block or an architecture block, there is no such link. Consequently, nothing 
changes in the UML model. Rule 197 defines the case where the linked class is also linked with a 
process. Instead of deleting the class, the class is transformed into a «process» class. 

Context for 
this section 

– blockold is the deleted SDL block, block type or block instance 
– class = blockold.sdldefinition-1 

Rule 194. Translate Context for Delete Block 

Precondition – class ≠ empty ∧ class ≠ package.systemclass 
– blockold is a block type or block definition 
– class.sdlprocess is empty or is a process instance 

Action Delete class in packagenew. 

Rule 195. Deleted Standard Block 

Precondition – blockold is a block instance 

Context – aggregation = block  old.sdlcomponent-1 

Action Delete aggregation from package 

Rule 196. Deleted Block Instance 

 
Precondition – class ≠ empty ∧ class ≠ package.systemclass 

– blockold is a block type or block definition 
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– class.sdlprocess is a process definition or process type 
Action Change the following properties of classnew 

– class.stereotype = «process» 
– class.type = false 
– class.definedIn = class.sdlprocess.parent.sdldefinition-1 

Rule 197. Transform «block» class into «process» class 

V 8.6 Compare Block 

Changes in a block are only translated if it is the main link (sdldefinition) of a class. Changes in 
the processes blocks, architecture block or block that are not linked can safely be ignored, see 
Rule 199. The rules below check whether the block has been renamed or moved to a different 
place, became (non-)type, has been switched from instance to definition or the type name of an 
instance has changed. The translation of changing the specialization in defined in section V 8.10. 

Context for 
this section 

– blockold is the old SDL block (or block type or block instance) 
– blocknew is the new SDL block to be compared with blockold 
– class = blockold.sdldefinition-1 
– parent  old = the SDL structure that surrounds block  old 
– parent  new = the SDL structure that surrounds blocknew 

Rule 198. Translate Context for Compare Block 

Precondition – class is empty 

Action Do nothing; do not check the rules below. 

Rule 199. Skip Unlinked Block 

Precondition – blockold.name ≠ blocknew.name 

Action Set class.name = blocknew.name 

Rule 200. Translate Block Rename 

Rule 201 translates the case where the block is moved to a different structure. For block types, 
this is translated by adapting the definedIn link of the class. For block definition and block 
instances, this is translated by modifying the aggregation that represents the block. The aggregate 
end of the association is modified to point to the class that is linked with the new aggregate 
structure. 

Precondition – parentold ≠ parentnew 
– parentnew.sdldefinition-1 is not empty 

Context – aggregation = block  old.sdlcomponent-1 
– parentclassnew = parentnew.sdldefinition-1 
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Action If blocknew is typed, set class.definedIn = parentclassnew 

else, set aggregation.aggregate = parentclassnew 

Rule 201. Translate Block Move 

Rule 202 and Rule 203 translates the switch between block type and a non-typed block. Except 
for changing the type attribute of the class, the aggregation that is used for non-typed classes 
(≈block definition) must be added or deleted. In the case that the block type becomes a block 
definition, we assume that the instances of the old block type are deleted and consequently the 
aggregations that represent the instances are deleted too. 

Precondition – blockold is a block definition  
– blocknew is a block type 

Context – aggregation = block  old.sdlcomponent-1 

Action Set class.type = true. 

Delete aggregation from package. 

Rule 202. Block Becomes Typed 

Precondition – blockold is a block type  
– blocknew is a block definition 

Context – parentclassnew = parentnew.sdldefinition-1 

Action Set class.type = false. 

Add an aggregation with the following properties 

– aggregation.aggergate = parentclassnew 
– aggregation.component = class  
– aggregation.composite = true 
– aggregation.sdlcomponent = blocknew 

Rule 203. Block Becomes Untype 

Precondition – blockold is not a block instance and blocknew is a block instance or 
– blockold is a block instance and blocknew is not a block instance 

Action Translate blockold as a deleted block and blocknew as a new block. 

Rule 204. Switch Instance – Non-Instance 

Rule 205 translates the case where the type of a block instance is modified. In other words, it is a 
different type from which an instance is defined. In terms of UML, this means that the 
component role of the aggregation must be moved to a different type. 
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Precondition – blockold and blocknew are both block instances 
– blockold.type ≠ blockne  w.type 

Context – aggregate = block  ol  d.sdlcomponent-1 
– typeclassnew = blockne  w.type.sdldefinition-1 
– typeclassold = blockold.type.sdldefinition-1 

Action If typeclassnew is empty or typeclassold is empty 

– Translate blockold as a deleted block instance. 
– Translate blockne  w as a new block instance. 

Else 

– aggregate.component = typeclassnew 
– aggregate.sdlcomponent = blockne  w 

Rule 205. Translate Type Change of Block Instance 

V 8.7 New Process 

If the new process is an independent process, it is translated into a new class with the same name 
(Rule 208). The new process is considered dependend of it is the only class in a block or if the 
process has the same name as the parent or the parent’s parent. In that case, the process is 
considered to be the management process of the block and the link is set accordingly (Rule 207). 
In addition to the creation of the class, Rule 209 creates an aggregation for process instances and 
process definitions. 

Context for 
this section 

– process is the new SDL process, process type or process instance 
– parent is the surrounding SDL block (type) of process 
– parentclass = parent. processesblock -1 
– if parentclass is empty, let = parent. sdldefinition -1 
– if parentclass is empty, set parentclass =  package.systemclass 

Rule 206. Translate Context for New Process 

Precondition – process.name = parent.name  or 
– process.name = parentclass.name or 
– process is the only process in parent and parentclass.processesblock = 

parent 
Action Set parentclass.managementprocess = process. 

Stop comparing this process. 

Rule 207. Translate New Management Process 

Precondition – process is not a process instance or 
process is a process instance of a type of another package (external) 

– package does not contain a class with name process.name 
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Action Add a new class class to package with the following properties 

– class.name = process.name 
– class.stereotype = «process» 
– If process is a process type or process instance: class.typed = true 
– If process is a process definition: class.typed = false 
– If process is process instance and corresponding process type is not 

visible: class.extern = true 
– If process is a process type or process definition: class.definedIn = 

parentclass 
Variables – newclass is the newly created class 

– class.sdldefinition = process 

Rule 208. Translate New Process 

Precondition process is not a process type (it is a process instance or a process definition) 

Action Add a new aggregation to package with the following properties 

– aggregation.aggergate = parentclass 
– aggregation.component = newclass  
– aggregation.componentrole = process.name 
– aggregation.composite = true 
– aggregation.sdlcomponent = process 

Rule 209. Aggregate for Process Definition and Instance 

V 8.8 Delete Process 

The deleted process can be linked with a class in two ways. If the process is the main link 
(sdldefinition), then the class is deleted (Rule 211). If the process is only the management process 
of the class, nothing happens (no rule). When the process is a process instance, the process is 
linked with a aggregation and so the aggregation is deleted (Rule 212). 

Context for 
this section 

– processold is the deleted SDL process, process type or process instance 
– class = processold.sdldefinition-1 

Rule 210. Translate Context for Delete Block 

Precondition – class ≠ empty 
– processold is a process type or process definition 

Action Delete class in packagenew. 

Rule 211. Deleted Standard Process 
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Precondition – processold is a process instance 

Context – aggregation = process  old.sdlcomponent-1 

Action Delete aggregation from package 

Rule 212. Deleted Process Instance 

V 8.9 Compare Process 

Similar to comparing blocks, the properties of a process that are compared and translated, are its 
name (rename), its scope (move), switch between type and non-typed or instance and non-
instance. However, most of the rules are only fired if the the process is the main link of the class; 
in other words, if the process is not just the management process of a class. 

Context for 
this section 

– processold is the old SDL process (or process type or process instance) 
– processnew is the new SDL process to be compared with processold 
– class = processold.sdldefinition-1 
– processclass = processold.sdlprocess-1 
– aggregation = process  old.sdlcomponent-1 
– parent  old = the SDL block (type) that surrounds processold 
– parent  new = the SDL block (type) that surrounds processnew 

Rule 213. Translate Context for Compare Process 

Precondition – processold.name ≠ processnew.name  
– class ≠ empty 

Action Set class.name = processnew.name 

Rule 214. Translate Process Rename 

Precondition – processold.name ≠ processnew.name  
– aggregate ≠ empty 

Action Set aggregate.componentrole = processnew.name 

Rule 215. Translate Process Instance Rename 

Precondition – processold is not a process instance and processnew is a process instance 
or 

– processold is a process instance and processnew is not a process instance 
Action Translate processold as a deleted process and processnew as a new process. 

Rule 216. Switch Instance – Non-Instance 
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Rule 217 specifies the translation of a process that is moved to a different scope. This is achieved 
by using the processeblock back link. Note that, if there is no explicit processes block, 
processesblock-1 still returns the correct class. 

Precondition – parentold ≠ parentnew  
– class ≠ empty  

Context – parentclassnew = parentnew.processesblock-1 

Action If parentclassnew is not empty, set aggregate.aggregate = parentclassnew. 

Rule 217. Translate Process Move 

Rule 218 and Rule 219 are the process equivalent of Rule 202 and Rule 203. They translate a 
conversion from process type to process and the other way around. 

Precondition – processold is a process definition  
– processnew is a process type 

Action Set class.type = true. 

class.definedin = aggregation.aggregate. 

Delete aggregation from package. 

Rule 218. Process becomes Typed 

Precondition – processold is a process type  
– processnew is a process definition 

Action Set class.type = false. 

Add an aggegation aggregation with the following properties 

– aggregation.aggergate = parentclassnew 
– aggregation.component = class  
– aggregation.composite = true 

Rule 219. Process becomes Untype 

Rule 220 translates the case where a process instance is changed to a different type. Note that 
process.type points to a SDL process type, in contrast with the class.type that is a boolean. The if 
part in the action section deals with the case when one of the necessary links are broken. 

Precondition – processold and processnew are both process instances 
– processold.type ≠ processne  w.type 

Context – aggregate = process  old.sdlcomponent-1 
– typeclassnew = processne  w.type.sdldefinition-1 
– typeclassold = processold.type.sdldefinition-1 
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Action If one of typeclassnew, typeclassold or aggregate are empty 

– Translate processold as a deleted process instance. 
– Translate processne  w as a new process instance. 

Else 

– aggregate.component = typeclassnew 
– aggregate.sdlcomponent = processne  w 

Rule 220. Process Instance of different Type 

V 8.10 New/Delete/Compare Specialization 

In SDL, a specialization is not a real entrity on its own, it’s rather an attribute of a block type or a 
process type. Nevertheless, we translate the specialization separately because the translation  is 
common for processes and blocks. Rule 221 is only fired if the comparison engine found a 
difference in the specialization of a structured typed, therefore there is no precondition to the rule. 

Context – class = struct  new.sdldefinition-1 
– struct  new is the SDL process or block type with the changed specialization 
– superstruct  new = struct  new.specialization (possibly empty) 
– superclass = superstruct  new.sdldefinition-1 (possibly empty) 

Action – class.superclass = superclass 

Rule 221. Translate Context for New Specialization 

V 8.11 New Procedure 

A new SDL procedure added to a process is translated by adding an UML procedure to the class 
that is linked with the process. 

Context – is the new SDL procedure 
– process is the process containing procedure 
– class = process.sdlprocess –1 
– procedure.params = (p  1, …, p  n) 

Action Add an new operation oper to class with the following attributes: 

– oper.name = procedure.name 
– oper.returntype = procedure.returns 
– ∀ i ∈ 1..n : add a parameter to oper, with name p i.variable and type 

p i.type. 

Rule 222. Translate New Procedure 
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V 8.12 Delete Procedure 

Context – procedureold is the deleted SDL procedure 
– operation = procedureold.sdlprocedure-1 

Action Delete operation from its class. 

Rule 223. Translate Deleted Procedure 

V 8.13 Compare Procedure 

For a procedure, the name, parameters and return sort are compared. We differentiate between 
two kinds of changes in the parameter list. Rule 226 is fired if there are more or less parameters or 
if the name of one of the parameters is changed. Rule 227 is fired if only the sort of one or more 
of the parameters had changed. 

Context for 
this section 

– procedureold is the old SDL procedure 
– procedureold.parameters = (p1,old, …, pn  ,old) 
– procedurenew is the new SDL procedure 
– procedurenew.parameters = (p1,new, …, pm  ,new) 
– operation = procedureold.sdlprocedure-1 

Rule 224. Translate Context for Delete Procedure 

Precondition – procedureold.name ≠ procedurenew.name 

Action Set operation.name = procedurenew.name 

Rule 225. Translate Procedure Rename 

Precondition – n ≠ m or 
– ∃ i ∈ (1..n) : pi  ,old.name ≠ pi  ,ne  w.name 

Action Delete all the parameters in operation and regenerate the parameters as 
defined in Error! Reference source not found.. Skip Rule 227. 

Rule 226. Translate Parameter Changes 

Precondition – n = m ∧ ∀ I ∈ (1..n) : pi  ,old.name ≠ pi  ,new.name 
– ∃ j ∈ (1..n) : pi  ,old.type ≠ pi  ,new.type 

Action Set the type of the jth parameter to pi  ,new.type 

Repeat for other parameters if necessary. 

Rule 227. Translate Parameter Type Change 

Precondition – procedureold.returns ≠ procedurenew.returns 
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Action Set operation.returntype = procedurenew.returns 

Rule 228. Translate Procedure Rename 

V 8.14 Communication 

The reverse incremental translation of communication routes into associations is somewhat 
problematic. In general, there is no one-on-one link between an association and a channel or signal 
route. In most cases, an association is linked with two or more channels, signal routes and/or 
gates. If one of these parts is renamed or deleted, the original association is not necessarily 
affected. Most of the support for communication is therefore focused on forward engineering 
instead of reverse engineering. Nevertheless, we do provide reverse translation of changes in some 
specific cases. More specifically, we translate a signal routes and channels if it does not go to the 
environment. We translate a deleted route if it was the last route linked with association. 

V 8.15 New Communication 

Context for this 
section 

– route is the new SDL signal route or channel 

Rule 229. Context for new Communication 

Precondition – route.fromstruct.parent = route.tostruct.parent 

Context – fromclass = route.fromstruct.sdldefinition-1 
– toclass = route.tostruct.sdldefinition-1 

Action Create a new association assoc with the following attributes 

– assoc.name = route.name 
– assoc.stereotype = «communication» 
– assoc.fromclass = fromclass 
– assoc.toclass = toclass 
– assoc.channels = {route} 

Rule 230. Create Association for Full Route 

V 8.16 Delete Communication 

Context for this 
section 

– route is the deleted SDL signal route/channel 
– association = route. sdlchannel-1 

Rule 231. Context for Deleted Communication 

Action Remove route from the association.sdlchannels list 

Rule 232. Delete link to Deleted Route 
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Precondition – association.sdlchannels is empty 

Action Delete association 

Rule 233. Delete Unlinked Association 

V 8.17 Compare Communication 

Communication routes (signal routes & channels) have several attributes that can change, but only 
in specific cases this results in a change on linked UML association. A route rename (Rule 235) is 
only translated if the routes linked at both ends of the association have the same name. A route 
that is connected to a different structure is translated by reconnecting the association to a different 
class (Rule 236 and Rule 237), only if the route represents an association end. 

Context for this 
section 

– routeold is the old SDL signal route/channel 
– routenew is the new SDL signal route/channel to be compared with routeold 
– association = routeold.sdlfrom-1 
– if association is empty, association = routeold.sdlto-1 
– if association is empty, association = routeold.sdlchannel-1 

Precondition for 
this section 

– association is not empty 

Rule 234. Translate Context for Comparing Communication Routes 

Precondition – routeold.name ≠ routenew.name 
– association.sdlfromroute.name = association.sdltoroute.name 
– association.sdlfromchannel.name = association.sdltochannel.name 

Action association.name = routenew.name 

Rule 235. Translate Route Rename 

Precondition – routeold = association.sdlfromroute or 
routeold = association.sdlfromchannel 

– routeold.fromstruct ≠ routenew.fromstruct 
Action If routenew.fromstruct is a block,  

association.fromclass = routenew.fromstruct.sdldefinition-1 

Else association.fromclass = routenew.fromstruct.sdlprocess-1 

Rule 236. Translate Route From Destination Change 

Precondition – routeold = association.sdltoroute or  
routeold = association.sdltochannel 

– routeold.tostruct ≠ routenew.tostruct 
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Action If routenew.tostruct is a block,  
association.toclass = routenew.tostruct.sdldefinition-1 

Else association.toclass = routenew.tostruct.sdlprocess-1 

Rule 237. Translate Route To Destination Change 

V 8.18 New newtype 

A new SDL newtype declaration is translated by creating a class with stereotype «newtype». The 
context variables defined in Rule 238 imediately parse the signature and behaviour into attributes 
and operators. For each attribute or operator, respectively Rule 240 or Rule 241 is executed to 
translated them into class attributes and operations. 

Context for 
this section 

– newtype is the new SDL newtype 
If newtype is a “struct” newtype, let :  
– newtype.signature = (attr  1, …, attr  n) is the list of attributes 
– attr i = (namei, typei) 
– newtype.behaviour = (oper  1, …, oper  m) is the list of operators 
– oper j = (namej, parametersj, returntypej) 

Rule 238. Translate Context for New Newtype 

Action Create a new class class with the following properties: 

– class.name = newtype.name 
– class.stereotype = «newtype» 

Variables class is the newly created class 

Rule 239. Create «newtype» class 

Context ∀ i ∈ (1..n) : execute the action with attr i 

Action Add a new attribute attr to class with the following properties: 

– attr.name = attr i.name 
– attr.type = attr i.type 

Rule 240. Translate Attribute in Newtype 

Context ∀ i ∈ (1..m) : fire this rule with oper j 
Let parameters j = (partype1, …, partypen) a list of Strings denoting types. 

Action Add a new operation oper to class with the following properties: 

– oper.stereotype = «operator» 
– oper.name = oper j.name 
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– oper.returntype = attr j.returntype 
– ∀ j ∈ (1..n) : add a parameter parameter to oper with the following 

properties: parameter.name = "par<j>", parameter.type = partypej 

Rule 241. Translate Operator in Newtype 

V 8.19 Delete newtype 

Deleting a newtype has only an effect on the UML model if the newtype is linked with a class. In 
other words, deleting the newtypes generated from types and return types, is not translated back 
to UML. 

Context – newtypeold is the deleted SDL new type 
– class = newtypeold.sdldatatype-1 

Action If class is not empty, delete class. 

Rule 242. Translate Deleted New Type 

V 8.20 Compare newtype 

The newtype comparison checks all components separately: the name, the attributes and the 
operators. However, we cannot translate renamings of individual attributes or operators. 

Context for 
this section 

– newtypeold is the old SDL new type 
– newtypeold.attributes = (a1,old, …, an  ,old) 
– newtypenew.operators = (p1,old, …, pm  ,old) 
– newtypenew is the new SDL new type 
– newtypenew.attributes = (a1,new, …, an  ,new) 
– newtypenew.operators = (p1,new, …, pm  ,new) 
– operation = newtypeold.sdlnewtype-1 

Rule 243. Translate Context for Delete New Type 

Precondition – newtypeold.name ≠ newtypenew.name 

Action Set operation.name = newtypenew.name 

Rule 244. Translate New Type Rename 

 
As the attributes of newtype do not have an own identity in the information model, it is not 
possible to detect individual renames. If the number of attributes and their names are the same, 
then the types of the attributes are compared, otherwise all the attributes are regenerated. The 
same approach is taken for comparing the operators of the newtype. 
 
Precondition – n,old ≠ n,new or 
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– ∃ i ∈ (1..n) : ai  ,old.name ≠ ai  ,new.name 
Action Delete all the attributes in class and regenerate the attributes as defined in Rule 

240. 

Rule 245. Translate Attribute Changes 

Precondition – n,old = n,new ∧ ∀ i ∈ (1..n) : ai  ,old.name = ai  ,new.name 
– ∀ j ∈ (1..n) : pi  ,old.type ≠ pi  ,new.type : execute the action 

Action Set the type of the jth attribute to pi  ,new.type 

Rule 246. Translate Attribute Type Change 

Precondition – m,old ≠ m,new or 
– ∃ i ∈ (1..m) : pi  ,old.name ≠ pi  ,new.name 

Action Delete all the operations in class and regenerate the operations as defined in 
Rule 241. 

Rule 247. Translate Operator Changes 

Precondition – m,old = m,new ∧ ∀ i ∈ (1..n) : pi  ,old.name = pi  ,new.name 
– ∃ j ∈ (1..m) : pi  ,old.returntype ≠ pi  ,new.returntype 

Action Set the type of the jth operation to pi  ,new.returntype 

Rule 248. Translate Parameter Type Change 

V 8.21 New Variable 

In SDL, attributes can only appear in processes, so it is easy to find the correct class to translate 
the SDL variable into a UML attribute. 

Context – variable is the new SDL variable 
– process is the SDL process that contains variable 
– class = parent. sdlprocess –1 

Action Add a new attribute attribute to class with the following properties: 

– attribute.name = variable.name 
– attribute.type = variable.type 
– attribute.default = variable.initialexpr 
– attribute.sdldeclaration = variable 

Rule 249. Translate New Variable 
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V 8.22 Delete Variable 

Context – variable is the deleted SDL variable 
– attribute = variable. sdldeclaration –1 

Action Delete attribute from its class. 

Rule 250. Translate Deleted Variable 

V 8.23 Compare Variable 

Here, all the properties of an SDL variable are compared and translated if necessary: name, type 
and default value. 

Context for 
this section 

– variableold is the old SDL variable 
– variablenew is the new SDL variable 
– attribute = variableold. sdldeclaration –1 

Rule 251. Translate Context for Delete Variable 

Precondition – variableold.name ≠ variablenew.name 

Action Set attribute.name = variablenew.name 

Rule 252. Translate Variable Rename 

Precondition – variableold.type ≠ variablenew.type 

Action Set attribute.type = variablenew.type 

Rule 253. Translate Variable Type Change 

Precondition – variableold.initialexpr ≠ variablenew.initialexpr 

Action Set attribute.default = variablenew.initialexpr 

Rule 254. Translate Variable Initial Expression Change 

V 8.24 New State 

The SDL state and UML state (after flattening) map one-on-one and has only one property, its 
name. Therefore, translating a new state, delete state or renamed state is straightforward. 

Context – state is the new SDL state 
– process is the SDL process that contains state 
– class = parent. sdlprocess –1 
– statediagram = class.statediagram 
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Action Add a new state state to statediagram with the following properties: 

– state.name = state.name 
– state.type = normal 

Rule 255. Translate New State 

V 8.25 Delete State 

Context – state is the deleted SDL state 
– state = state. sdlstate –1 

Action Delete state from its state diagram. 

Rule 256. Translate Deleted State 

V 8.26 Change State 

Context for 
this section 

– stateold is the old SDL state 
– statenew is the new SDL state 
– state = state. sdlstate –1 

Rule 257. Translate Context for Delete State 

Precondition – stateold.name ≠ statenew.name 

Action Set state.name = statenew.name 

Rule 258. Translate State Rename 

 

V 8.27 New Transition 

The transition concepts are somewhat different in SDL and UML. In SDL, a transition is 
identified by its input and/or guard. In UML, a transition has its own identity and the input and 
guard are properties. Moreover, a SDL transition can split into different transitions with different 
destination states, while in UML the transition has one fixed destination state. In the context 
definition in Rule 259, we make a list of all the destination states of the transition. For each of the 
destinations, Rule 261 creates another transition in UML. Rule 260 handles the case where the 
new tansition is actually the start transition (sdlprocess.start). In that case a new start state is 
created in the UML state diagram. 

Context for 
this section 

– transition is the new SDL transition 
– source is the source states of transition 
– source = source.state-1 
– {dest  1, …, dest  n} are all the possible destination states of transition 
– ∀ j ∈ (1..n) : execute rule Rule 261 with deststate = dest j 
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– let process be the process containing transition 
– statediagram = process.sdlprocess-1.statediagram 

Rule 259. Translation Context for New Transition 

Precondition – transition = process.start 

Action Let source be the start state in statediagram. 

If source is empty, add a new state source to statediagram with the following 
properties: 

– source.type = start 
– source.name = "" 

Rule 260. Translate New Start Transition 

Context – deststate is the added destination for transition 
– nextstate is the next state action of transition that correspond with deststate 

Action Add a new transition transition to statediagram with the following properties: 

– transition.name = transition.input (may be empty) 
– transition.guard = transition.enable (may be empty) 
– transition.source = source 
– transition.dest = dest i.state-1 

Variables – transition.nextstate = nextstate 
– transition.sdltransition = transition 

Rule 261. Translate New Transition Destination 

V 8.28 Delete Transition 

Context – transition  old is the SDL transition with deleted destinations 
– deststate is the deleted destination state from transition  old 
– state is the source state of transition  old 
– nextstate is the nextstate action of transition that correspond with deststate 
– transition = nextstate.nextstate-1 

Action Delete the UML transition from its state diagram. 

Rule 262. Translate Context for Deleted Transition 

V 8.29 Compare Transition 

Context for 
this section 

– transition  old is the old SDL transition 
– transition  new is the new SDL transition to be compared with transition  old 
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– deststate is the destination state of transition  old and transition  new 
– state is the source state of transition  old and transition  new 
– nextstate is the nextstate action of transition  old that correspond with deststate 
– transition = nextstate.nextstate-1 

Rule 263. Translate Context for Deleted Transition 

Precondition – transitionold.input ≠ transitionnew.input 

Action Set transition.event = transitionnew.input 

Rule 264. Translate Transition Rename 

Precondition – transitionold.enable ≠ transitionnew.enable 

Action Set transition.guard = transitionnew.enable 

Rule 265. Translate Transition Type Change 

V 8.30 New Action 

Context for 
this section 

– action is the new SDL action 
– transition is the transition containing action 
– {nextstate  1, …, nextstate  n} are all the possible nextstate statements reachable 

from  action. 
– {trans1, …, transn} are the corresponding UML transitions (transi = 

nextstatei.nextstate-1) 

Rule 266. Translate Context for Deleted Transition 

Precondition – action is an signal output action 

Context – Parse action as: <signal> <parameters> TO <destination> 
Leave destination empty if action does not contain "TO" 

Action ∀ j ∈ (1..n) : add the action to transj :  

;^<destination>.<signal><parameters> 

or ;^<signal><parameters> if <destination> is empty 

Rule 267. Translate New Output Action 

Precondition – action is an assignment  

Context – Parse action as: TASK <assignment>; 
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Action ∀ j ∈ (1..n) : add the action to transj :  

 <assignment>; 

Rule 268. Translate New Assignment 

Precondition – action is a informal task  

Context – Parse action as: TASK ‘<task>’; 

Action ∀ j ∈ (1..n) : add the action to transj :  

; <task> 

Rule 269. Translate New Informal Task 

Precondition – action is not a signal output nor task. 

Action ∀ j ∈ (1..n) : add the action to transj :  

; action 

Rule 270. Translate New General Action 
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V. 9 UML Post Processing 

V 9.1 Pass changes on to full UML model 

Unlike during the forward iteration, the resulting (UML) model cannot simply be stored with the 
necessary details to obtain the updated system design model. The internal model has been 
preprocessed by adding and changing information that is undesirable in a design document. 
Therefore, the changes applied to the internal information model are reapplied to the original UML 
model. There are two approaches to realize the forwarding of changes. 

One option is to keep a parallel data structure that is not preprocessed during the whole iteration 
process. Every time a change is translated to UML, the change is also immediately applied to the 
parallel data structure. If this parallel data structure in addition contains all other UML model 
information (use cases, sequence diagrams, etc.), it is sufficient to store the model as the new 
system design version. 

The second option is to keep a copy of the model directly after preprocessing. After the 
incremental translation, this copy is compared with the model that has been updated to discover 
the changes made by the translator. The UML translator used during the forward iteration can be 
reused for this purpose. Next, these changes are applied to the full version of the UML model. 
This approach has the major advantage that it can be applied to any proprietary data structure 
with an API. Moreover, the UML compare operation is already available because it is necessary 
for the forward iteration. 

V 9.2 Create and Update Diagrams 

Besides updating the UML model, the diagrams that visualize the information in the model also 
need to be updated. Entities that were renamed or deleted are automatically reflected in the 
existing diagrams. Also new attributes and operations are automatically shown if the class at hand 
is present in a diagram. However, new classes and their contents and new class relationships are 
shown nowhere. Unfortunately, there is no universal way to arrange the new information into 
diagrams, as it depends, among others, on the semantics of the model. The generation of extra 
diagrams is of particular interest when a significant system design effort has been performed in 
SDL. Therefore, the best approach is to let the user choose a number of diagrams out of a set of 
possible diagrams that should be generated. A non-exhaustive list of possible diagrams is: 

• All new classes in the whole model and the relationships between the new classes. 
• The new classes per package and their relationships. 
• Diagram for each new class and its related classes, with their relationships. 
• All new generalization relationships with the corresponding classes showing the generalization 

hierarchy, possibly including the existing super classes.  
• All new aggregation relationships with the corresponding classes showing the aggregation tree, 

possibly including existing aggregate classes.  
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• All new associations relationships with the corresponding classes showing the communication 
graph.  

•  All classes that have new attributes and/or new operations. 
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V. 10 User Interaction 

At this point, we have a large set of translation rules of how changes are translated. When we 
consider a tool that implement these rules, we do not want an all or nothing approach. Even more 
than setting a number of global options to influence the incremental translator, the user need to 
have a more control over how changes are interpreted, translated and applied. In this section, we 
describe a number of mechanisms that allows the user to fine-tune the incremental translation. 
Sections V 10.1 through V 10.3 discuss mechanisms that are applied dynamically during the 
incremental translation and require direct user interaction. Sections V 10.4 through V 10.6 discuss 
static ways to control the incremental translation process: exclude  certain parts of the model or 
specification for comparison or modification, allow a maintenance phase during which changes are 
not registered and the generation of a change report. A particular tool may support a selection out 
of these dynamic and static techniques, but probably not all of them as their functionality overlap 
partially. 

V 10.1 Interactive Comparison 

The first technique allows the user to confirm or cancel the detected changes before translation. 
The first step in the incremental translation is detecting the changes by comparing the previous 
version and the most recent version of the model or specification. For a number of reasons, the 
comparison may fail to find some changes or may detect a change that is actually unintentional or 
not relevant. For example, the UML comparison notices a new class and a deleted class, while 
actually the user intended to rename the class. Another example is when in SDL two transitions 
are merged into one by using a decision. The second transition will be marked as deleted, but that 
was not the intention. 

After the comparison, the change list is presented to the user, who can then discard incorrect 
changes or merge a delete and new change into a comparison. To make the evaluation easier, the 
user can view the deleted, new or modified entity in its context.  

Even if a structural editor is used and all changes are recorded immediately, this technique can still 
be applied. 

V 10.2 Interactive Rule Activation 

The second technique is to make the execution of rules during the translation process interactive. 
During the incremental translation, the detected changes are translated by firing the corresponding 
rules in a certain context. With this approach, to user confirms the execution of each rules or 
group of rules before it is fired. To ease the decision, the UML or SDL context to which the rule 
applies is shown, with or without the rule executed. Answers like “always yes”, “always yes for 
this class” and  “always no” avoid repetitive decisions. 
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V 10.3 Managing Links 

The third technique is to manually restore missing links between UML and SDL. The UML to 
SDL links are crucial for the incremental translation. Modification to an unlinked entity cannot be 
translated as there is no scope to translate that change to. In certain circumstances links may 
disappear, for example when an entity is deleted and remodeled or when some translation rules 
were not executed. For this reason, the user should be able to fill in missing links during the 
translation as well as during modeling. Actually, current tools already support linking entities 
between different abstraction layers. For example, Telelogic Tau describes three ways to create 
links (implinks) as support for its SOMT method [And95]: manually, by linking together two 
endpoints or by linking together an endpoint and a selected object or automatically, by copying 
and pasting an object (Paste As). Although implinks differ from our links, the tool support is very 
similar. Implinks can link any UML entity with any SDL entity, while our hierarchical UML-SDL 
links used for round-trip engineering have more constraints, i.e. each link must be of a certain 
type. Moreover, some entity have several distinct links, e.g. a class can be linked with a block 
(sdldefinition) and a process (sdlprocess) at the same time. The only extra tool support to adapt 
implinks to hierarchical links is an extra option to choose which link is specified. 

V 10.4 Protect Areas 

With this technique, the user can make an UML or SDL entity read and/or write protected.  If an 
entity is protected, its sub-entities are protected too. A write-protected entity is not updated during 
the incremental translation. For example, if an SDL process is write-protected and in the linked 
UML state diagram a state is deleted, this state will not be deleted from the process. A read 
protected entity is not taken into account during the comparison. For example, if an SDL process 
is read protected, non of the changes done to the process or to its contents are processed nor 
translated. 

A typical use of this technique is to make a analysis-only UML package read protected, such that 
it is not translated and changes in the package are ignored. An SDL process can be made write 
protected after testing to avoid accidental changes while editing or updating the UML model. On a 
smaller scale, a transition in a UML state diagram with actions in general terms, e.g. ‘process 
data’, can be made write protected to avoid that it becomes overloaded with all the actions added 
during the implementation in SDL. 

V 10.5 Maintenance Phase 

The maintenance phase allows the developer to correct the updated model after an incremental 
translation. This phase takes place after the translation process is finished and before the normal 
system design or detailed design is resumed. During the maintenance phase, the changes made to 
the UML model or to the SDL specification are ignored. The idea is to clean up unwanted 
artifacts of the translation process, without adding new information. It can be seen as a manual 
extension of the incremental translation. The resulting model or specification after maintenance is 
used as the reference to be compared with during the next incremental translation. The advantage 
of having a maintenance phase is that during the next iteration, the comparison will find less 
irrelevant changes and consequently need less user interaction.  

Typical examples of changes made during the maintenance phase in SDL are: deleting an 
unnecessary management process; deleting unwanted newtypes generated from types used in 
variables or parameters; renaming a process or block instances that was given a default name; and 
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deleting channels to group communication routes. These kind of changes do not have to be 
translated back to UML and can be done during the maintenance phase.  

V 10.6 Change Report 

The last feature we propose to improve the round-trip engineering is the creation of a change 
report. During each iteration all the changes found in the model or specification are logged in a 
change report together with the scope and translation rules that were applied. The resulting report 
is a hypertext document with summary report with links to the model for the scope and a link to a 
description of the translation rule. When viewing a translation rule, the variables used in the rule 
are assigned concrete values. In a version control system, this document is stored together with 
the new version of the model or specification.  

The change report is useful for several purposes. I can be used to find erroneous translation of 
changes. It can be used to document the changes or simply as a means to track changes in 
different versions. It can be used to navigate through the specification to find the spots that may 
need further development. Furthermore, this feature could be combined with the interactive rule 
activation technique. The change report is presented and the developer can choose to delete 
certain changes or rules in order to avoid wrong translations before they are applied. 
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"It is almost impossible to watch a sunset and not dream." 

-Bern Williams- 

 

"Instead of thinking about where you are, think about where you 
want to be. It takes twenty years of hard work to become an 
overnight success." 

-Diana Rankin- 



 

190  Kurt Verschaeve 
  

 

VI. 1 Main Contributions 

The research presented in this dissertation is an important contribution in bringing UML and SDL 
closer toward each other. We provide a complete mapping of UML class diagrams and state 
diagrams onto an SDL specification. Mismatches in the languages are solved by providing extra 
information (e.g. stereotypes) or by preprocessing the model (e.g. flattening nested state 
machines). Moreover, we developed a method to support round-trip engineering between two 
different paradigms that do not have a one-to-one mapping. During an iteration, only changes are 
translated and not the complete model. As long as an entity is not changed, the linked entities are 
completely untouched. This method maximizes the preservation of detailed design done during 
previous iterations. We applied this approach to allow round-trip engineering between UML and 
SDL.  

We already started to put our experiences in the real world. The current mapping and translation 
rules are validated during a joint research effort with Telelogic and a summary was published in 
[VE99]. The core of the UML to SDL translator of Telelogic Tau 3.6 was developed based on 
these results. There were concrete plans to implement the round-trip support as presented in this 
dissertation, but because of time constraints and the size of the project, this has been postponed. 

The idea of synchronizing two models on different abstraction levels by incrementally translating 
changes is a contribution on its own. By replacing the UML and/or SDL information models and 
rewriting the translation rules, the idea can be applied to other source and target languages. 

The idea of synchronizing two models on different abstraction levels by incrementally translating 
changes is a contribution on its own and is applicable to other source and/or target languages. The 
only requirement is that there exists a (partial) translation between the two languages. To apply 
our approach, an internal information model must be created for both languages and the 
translation must be broken up into sets of translation rules for each individual entity. Additionally, 
the translation rules for deleting and modifying entities must be worked out. 

Many of the criteria mentioned in the beginning of the dissertation (I 2.6) for the perfect UML-
SDL round-trip solution have been accomplished. The forward incremental translation rules are 
defined in such a way that they can translate a complete UML model into an SDL specification. 
The translation rules are also designed to preserve as much information as possible. The graphical 
layout information contained in UML or SDL will be conserved as long as the structure or 
diagram does not have to be regenerated. Moreover, the generated SDL is made as readable as 
possible such that a developer can easily adapt the specification to his own needs. Finally, thanks 
to the possibility of re-linking entities, the round-trip support can still be provided after many 
iterations and when the system design and detailed design have evolved considerably. 

On the other hand, the proposed UML-SDL solution is not perfect, as some of the criteria are not 
fulfilled. The reverse incremental translation rules can only be applied if there has been a forward 
translation first, so our solution cannot be applied to legacy SDL systems. We do not provide 
support to translate sequence diagrams into MSC’s. There is no static check to ensure that the 
UML model and SDL specification are synchronized. Over time, they might diverge from each 
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other, e.g. when the user asks to ignore deleting some entities. Then again, allowing UML and 
SDL to evolve separately and still provide round-trip support can be considered a positive feature.  

The goal of our research is to improve the development of large, high interactive systems. In other 
words, the systems’ behavior should be suitable to be expressed in state machines. The system 
should benefit from the formal specification and validation features of SDL. In addition, the 
development of the system should require a high-level viewpoint to keep an overview of the 
system. It is clear that the UML-SDL round-trip engineering does not come completely free. First, 
developers have to invest in learning both UML and SDL. Given a development team with a lot of 
SDL experience and no UML experience, chances are high that adding UML in the process does 
not improve quality or time-to-market. Second, to guarantee a correct operation of the incremental 
translations in the round-trip process, the developers need to have insight in the UML-SDL 
mapping and adapt the system design and detail design accordingly. In other words, the round-trip 
engineering should be integrated in a full development process to bring its full benefit. 
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VI. 2 Future Work 

Integrating the presented round-trip engineering in an existing UML and SDL tool requires more 
than implementing the translation rules one by one. The tool must be able to load a full SDL 
specification with al its peculiarities and graphical information, build the information model and 
write it back without loss of any details after it has been updated. This is a challenge because the 
presented information model does not cover the full SDL language. The same requirement holds 
for parsing, storing and writing back the UML model, including the diagram information. 
Furthermore, the translation rule definitions do not take error handling into account. Throughout 
all translation rules, extra checks must be performed to detect missing links or entities and to avoid 
duplication of information.  

More research must be performed on the reverse engineering of a complete SDL specification. 
Our methodology requires a UML model to start the first iteration. This restriction makes it very 
hard to start using UML for continuing the development of an existing specification. Such reverse 
engineering support could perform an analysis of communication through channels and signal 
routes to discover the associations between classes and to find the correct scope for method 
definitions. An important issue in reverse engineering is the creation of class diagrams. As there is 
no one best way to create diagrams, the user must be given the option to choose from different 
type of diagrams, e.g. generalization tree, aggregation tree, diagram per class, etc. The results 
from this reverse engineering research can then be reused by extending the reverse translation 
rules and thus improving the incremental reverse translation. Especially the reverse engineering  

The set of incremental translation rules that we propose in this thesis is not the only possible set of 
translation rules, nor is it necessarily the best possible set. Especially the translation rules that 
compare attributes of entities are subject for discussion. For example, an alternative for translating 
the change of the stereotype of a class from «block» to «process» is to regenerate the complete 
class, instead of reusing the management process linked to the class. Actually, there is no one best 
way to translate a particular change, as this probably depends on what the user intended with the 
change. In our translation rules, we choose the version that retains the most of the detail design 
decisions. 

Currently, no support is provided to simultaneously change the UML model and the SDL 
specification. This poses practical problems if an analysis team and a design team work together 
on the same system. So, allowing simultaneous development in UML and SDL may be an 
important feature for the development of bigger systems. One way to realize this kind of support 
is to perform the forward iteration and immediately perform the reverse iteration without taking 
the updated SDL (i.e. result of forward iteration) into account. This scenario is likely to cause 
more conflicts and making the UML model and SDL specification less consistent. For example, if 
the name of an entity is changed on both sides simultaneously, there is no way to automatically 
decide which name is the correct one. More user interaction will be necessary to support this kind 
of synchronization. More research is needed to estimate the consequences and find appropriate 
solutions. 



 

Conclusions  193 
  

VI. 3 Related Research 

This section describes existing research that is comparable to our round-trip process or that may 
be combined with it to improve it. In the current tendency, UML and SDL keep growing towards 
each other. This confirms the strong demand for combining and integrating the qualities of UML 
and SDL. The latest result in this area is the new version of SDL, namely SDL-2000. Because of 
the importance for our research, we discuss the impact of SDL-2000 to the UML-SDL round-trip 
engineering in more detail.  

VI 3.1 SDL-2000 

SDL-2000 is a major revision of SDL’96 and affects the UML-SDL round-trip engineering in 
many ways. In SDL-2000, outdated concepts are removed, existing concepts are aligned and new 
concepts are introduced. Many changes clearly improve the alignment with UML. For example, 
SDL-2000 now includes nested state diagrams, processes and blocks are unified in one concept 
called agents and non-delaying channels take over the role of signal routes. Moreover, SDL 2000 
is accompanied by a new standard Z.109 SDL-UML profile. In general, the new concepts in 
SDL-2000 make SDL more suitable to combine with UML and allow improvements to the round-
trip engineering process and translation rules. Below we describe the concepts that have an impact 
on the UML-SDL relationship. 

In SDL-2000, blocks and processes are unified in the agent concept. Agents model the active 
components of a system; they have a communicating state machine with its own life cycle and 
signal input queue. SDL-2000 still differentiates between block agents and process agents, but the 
previous limitation that blocks and processes cannot be located in the same scope is eliminated. 
Moreover, variables can be declared within a block agent and are visible for the nested agents. If 
applied to our round-trip solution, a number of simplifications can be applied. The extra 
processes-block can be skipped, changing the stereotype of a class has fewer implications and 
«block» classes with attributes do not need the extra management process. 

The alignment of the communication concepts in SDL-2000 makes the generated code easier to 
maintain. The signal route concept is purged and replaced by channels. A channel can be declared 
with the signals and without connections. The channel type can then be reused in different places 
throughout the system to connect block agents and process agents. Applied to our round-trip 
engineering, the UML association maps bi-directionally on an SDL channel type. The channel 
instances are only mapped in the forward direction. This eases the synchronization and the 
maintenance of the UML-SDL links.  

SDL-2000’s composite states allow hierarchical state machines. Just like in UML, states can be 
nested, agents can be in more than one state at a time and states can define an entry and exit 
procedure. This feature makes the flattening of the UML state diagram before translation 
unnecessary and provides a clearer link between UML states and SDL states. 

In SDL-2000, UML-like class symbols can be used to refer to type definitions and diagrams. 
Multiple references are allowed, but they all have to be consistent with the type definition. 
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Relations between two classes can be depicted by associations and specialization. Associations do 
not imply any predefined semantics to the referred SDL agents. Specializations must be consistent 
with the inherits-clause in the referred type definitions.  

Z.100 (SDL with UML) specifies how the UML notation may be used within an SDL 
specification and the Z.109 (UML to SDL) specifies how a UML model is translated into an SDL 
model. The purpose of the UML for SDL is to define a set of extensions and restrictions to UML 
to ensure an unambiguous mapping between the two languages. Based on the rules defined by 
Z.109 the UML to SDL tool translates UML static structure diagrams (class diagrams) together 
with state charts into SDL architecture and behavior. UML diagrams grouped into a package will 
automatically be transformed into an SDL packages or an SDL System. 

The UML to SDL tool adds SDL semantics to the UML model. As a result, the abstract UML 
model becomes a formal specification, which is possible not only to compile but also to simulate. 
The benefit is that an architecture specification with unambiguous interfaces can be achieved. It is 
also possible to verify the dynamic properties of the system's interfaces. The resulting SDL 
system can then be used as the basis for further implementation in SDL and automatic code 
generation for the application.  

To conclude, SDL-2000 is without doubt the next step toward the integration of UML and SDL. 
It would be an interesting challenge to make the best combination of our round-trip engineering 
solution with the updated language and mapping. Some of the tricky mapping problems are solved 
by the new concepts in SDL-2000 and the translation rules for changes can contain more 
semantics. 

VI 3.2 UML for Real-Time 

An interesting research track is to extend object oriented modeling languages with real-time 
aspects, such that source code can be generated directly from the high-level design model. The 
Real-Time Object-Oriented Modeling language (ROOM [SGW94]) specifically tailors object-
oriented concepts for real-time systems. It offers a single consistent set of graphical modeling 
concepts with the benefits of object paradigm and executable models. After UML has turned into 
the defacto OOA language, UML and ROOM have been combined into UML for Real-Time 
(UML-RT, [Lyo98]) to deliver a complete solution for modeling complex real-time systems. In 
UML-RT, structure is described in terms of capsules and is modeled by class diagrams and 
collaboration diagrams. Behavior is described in terms of extended, hierarchical, finite state 
machines. Communication between capsules is based on synchronous or asynchronous message 
passing. 

UML-RT introduces the concepts (i.e. stereotypes) capsule, port and connector to support the 
modeling of real-time systems. Capsules correspond to the ROOM concept of actors. Capsules 
are complex, potentially concurrent, and possibly distributed active architectural components. 
They interact with their surroundings through one or more signal-based boundary objects called 
ports. Collaboration diagrams are used to describe the structural decomposition of a Capsule class. 
A port is a physical part of the implementation of a capsule that mediates the interaction of the 
capsule with the outside world. Ports realize protocols, which define the valid flow of information 
(signals) between connected ports of capsules. By forcing capsules to communicate solely through 
ports, it is possible to fully de-couple their internal implementations from any direct knowledge 
they have about the environment. This de-coupling makes capsules highly reusable. Connectors 
capture the key communication relationships between capsules. These relationships have 
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architectural significance since they identify which capsules can affect each other through direct 
communication. 

The functionality of simple capsules is realized directly by the state machine associated with the 
capsule. Capsules that are more complex combine the state machine with an internal network of 
collaborating sub-capsules joined by connectors. These sub-capsules are capsules in their own 
right, and can themselves be decomposed into sub-capsules. This type of decomposition can be 
carried to whatever depth is necessary, allowing modeling of arbitrarily complex structures with 
just this basic set of structural modeling constructs. The state machine (which is optional for 
composite capsules), the sub-capsules, and their connections network represent parts of the 
implementation of the capsule, and are hidden from external observers. 

Current UML-RT tools (ObjectTime Developer and Rational Rose Real-Time) provide model 
execution capabilities, and automatically generate complete code for complex real-time 
applications from these modeling constructs. Unfortunately, UML and UML-RT still lacks a 
precise dynamic semantics necessary for formal specification.  

Of special interest in our context is that originators of UML-RT present a mapping of SDL to 
UML-RT in [SR99]. In this paper, they describe a transformation of an SDL system specification 
into a UML-RT model. The purpose behind such a translation is to take advantage of the 
formalized system specification of SDL and the versatility of UML with its broad acceptance and 
tool support. The mapping is describes in informal text. The SDL structural concepts map on 
capsules. Channels and signal route endpoints as well as gates map on ports. The outgoing and 
incoming signal lists of the gate serve to define protocol definitions. The channels and signal routes 
map directly to UML-RT connectors. As compared to our UML-SDL mapping, they provide 
some extra mappings such as the SDL save signals, create statement, decisions and timers. 

Our conclusion is that the mapping of SDL onto UML-RT is closer to a one-on-one mapping than 
the mapping we propose. However, this does not necessarily mean that it is more useful in all 
circumstances. The mapping on UML-RT is better to examine the exact structure of the SDL 
specification. Our mapping on UML is better to give a view on a higher abstraction level and to 
document different views on the system. 

VI 3.3 Version Management 

Our round-trip-engineering process can profit from the integration with a version management 
system. In our current approach, a copy of the model and specification is stored after each 
iteration. This copy is used as the “old” model or specification in the next iteration. This approach 
can be improved by integrating a version management system. Because such a system keeps track 
of all intermediate versions, it is possible to backtrack to an earlier version and to accumulate 
changes and their translations in two or more versions. If the subsequent versions are stored in the 
form of delta’s, the version management can take over part of the comparison process. Moreover, 
a version management system is almost indispensable for larger systems, where the UML model 
and the SDL specification are managed by different teams. 

VI 3.4 Round-Trip Engineering Solutions 

Many round-trip engineering approaches exist between UML and most object-oriented 
programming languages. The one-on-one mappings between UML concepts and their Java or C++ 
counterparts allow direct synchronization of the model with the source code. For example, if a 
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Java class has variable x, but the corresponding UML class does not have an attribute x, then the 
attribute is added to the UML class.  

The previous generation of round-trip engineering tools polluted the code with comments 
generation tags to indicate the part of the code that may be modified. Newer tools provide the 
same functionality without the need of these tags. In most UML tools with support for round-trip 
engineering (e.g. Rational Rose, Paradigm Plus and Rhapsody) the developer executes a 
incremental forward translation after changing the model or an incremental reverse translation 
after changing the code to synchronize the model with the code. Together/J gives a more 
advanced support for round-trip engineering in the sense that the UML models are always 
synchronized to the source code that implements them. Change something in a Class or other 
source generating diagram and the relevant source code updates immediately. Change the code 
and the visual model updates to stay in sync. 

These tools provide almost the perfect solutions according to the criteria given in section I 2.6. 
The iteration can be started by reverse engineering the source code; most information of the static 
structure is translated; the model and the source code is guaranteed to be synchronous after an 
iteration; the iteration can be applied over and over again and in recent versions, the source code 
is not polluted with round-trip specific comments. Criteria that these solutions do not provide are: 
the UML state diagram is not translated and the design model and implementation model cannot 
diverge, even if the developer would like to. 

Unfortunately, the UML based round-trip solutions mentioned above are very hard to apply to 
SDL as a programming language because of the complex mapping. The new features of SDL 
2000 and its relation with UML might improve the possibility to use existing approaches of round-
trip engineering. SDL 2000 provides a limited set of one-on-one mappings between UML and 
SDL. These mappings could be used for direct synchronization of a UML model and an SDL 
specification. However, further research is necessary to find out to which extend this is possible 
and whether the resulting round-trip solution generates enough SDL code. One of the tedious 
parts of writing SDL –creating gates and communication routes- would probably be hard or 
impossible to support by such round-trip engineering tool.  
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