VRIJE UNIVERSITEIT BRUSSEL — FACULTY OF SCIENCE
DEPARTMENT OF COMPUTER SCIENCE AND APPLIED COMPUTER SCIENCE
SYSTEM AND SOFTWARE ENGINEERING LAB

UML - SDL ROUND-TRIP ENGINEERING THROUGH
INCREMENTAL TRANSLATION OF CHANGES

Kurt Verschaeve
February 2001
Advisor: A dissertation in partia fulfillment of
Prof. Dr. Viviane Jonckers the requirements of the degree of

Doctor in Sciences.

VRIJE UNIVERSITEIT BRUSSEL — FACULTEIT WETENSCHAPPEN
VAKGROEP INFORMATICA & TOEGEPASTE INFORMATICA
LABORATORIUM VOOR SYSTEEM EN SOFTWARE ENGINEERING

UML - SDL ROUND-TRIP ONTWIKKELING DOOR HET
INCREMENTEEL VERTALEN VAN W1JZIGINGEN

Kurt Verschaeve
Februari 2001
Promotor: Proefschrift voorgelegd tot het behalen
Prof. Dr. Viviane Jonckers van de wetenschappelijke graad van

doctor in de wetenschappen.

Abstract

In the rea-time and telecom business, SDL is pre-eminently the language for design and
implementation. For many good reasons, UML is put forward as the front-end language for
analysis and system design of SDL based systems. UML and SDL are compatible as they share a
static definition of structure with a behavioral definition of active entities with state diagrams. Still,
each of them provides enough advantages over the other to make it worthwhile to combine them
in a single methodol ogy.

To make the combination of UML and SDL successful, it is essential to have round-trip support
that synchronizes the information common to the UML model and SDL specification. The UML
model and SDL specification provide a distinct view on a different abstraction level on the same
system. Changes on either level must be applied to the other level if the change concerns common
information. However, the mapping between UML and SDL concepts of structural and behavioral
information is not one-on-one. We propose a complex mapping that overcomes the existing
incompatibilities and takes into account the role of UML and SDL in the methodology. This
complex mapping makes building a trandator hard and makes applying existing round-trip
approaches very difficult.

In this thesis, we present a set of translation rules that define how changes in a UML model are
trandated into changes in the linked SDL specification and the other way-around. For example, a
new UML class with stereotype «block» is translated by creating a new SDL block; or renaming
an SDL variable is trandated by renaming the corresponding UML attribute. Each rule detects a
specific change and trandates it by making the appropriate change on the other side.
Corresponding entities in UML and SDL are linked with each other such that changes may be
applied at the right place. A continuous thread throughout all trandation rules is to preserve as
many manua changes as possible. For example, if the stereotype of a class changes from
«process» to «block», the original SDL process is preserved and is placed in the new SDL block.
Similarly, renaming an UML entity will result in renaming the linked SDL entity, without altering
its contents.

Based on the incremental trandation rules, we provide the full process for forward iteration and
reverse iteration. Together they provide full UML-SDL round-trip engineering. The first step in
the forward iteration process is building the internal information model of the new and the old
UML model and of the SDL specification. The information models are streamlined toward the
trandation and are extended with UML-SDL link information. Next, both UML models are
preprocessed for comparison and trandation. Some important features of the preprocessor are
caculating the inherited association, flattening nested state diagrams and assigning default
stereotypes to classes and operations. Then the two UML models are compared to find new,
deleted and matching entities. Finaly, each change is trandated by executing the corresponding set
of trandation rules. The attributes of matching entities are further compared as part of the
trandation rules.

Acknowledgements

| am most grateful to my supervisor Viviane bnckers for all the years of support, feedback and
invaluable discussions. From the very beginning, she gave me the possibility to perform research
in the best possible environment. | am grateful for the opportunity she gave to me to perform
research, to travel to conferences and foreign project partners and to finish this PhD.

Specia thanks to Bart Wydaeghe for being a fine colleague and a best friend at the same time.
Our discussions were ever enlightening and inspiring and definitely contributed to the resultsin this
work. Our non-academic conversations made work more enjoyable and over the years, | have
taken over his positive way of thinking.

| wish to thank al my colleagues and former colleagues at the System and Software Engineering
Lab for provinding a great and motivating work environment. In particular, | thank Luc Goossens
for al the interesting discussions and for answering many questions on various topics. Many
thanks to Ludo Cuypers for leading me and Bart Wydaeghe into the INSYDE project and
providing us with a fruitful start such that we could succesfully continue the project. | also thank
Wim Vanderperren for his talented work during his internship.

Of particular help from Teldlogic were Anders Ek, Niklas Landin and David Prather. | want to
thank Anders for guiding me into Telelogic and for our initial work on the UML to SDL mapping.
Thanks to Niklas for the nice cooperation and fine-tuning the trandation. Thanks to David for his
continuous technical support.

It is the encourgements from many people that convinced me to start, continue and finish this
PhD. | am grateful to my father, who triggered me for doing research and helped me through the
sparse moments of doubts. Thank you Serge Demeyer for persistently pushing me toward a
concrete PhD and for the early review and helpful hints on improving the text. Last but not least,
thanks to my spouse Pascale for all the support and encouragement and for granting me the most
wonderful gift in life, our son Jeroen.

Kurt Verschaeve

Contents

Table of Contents

I. THETHESS

[.1 CONTRIBUTION
| 1.1 Problem Statement
| 1.2 Contribution
| 1.3 Relevance
| 1.4 Novelty
| 1.5 Importance
| 1.6 Larger Research Context
.2 MOTIVATION
| 2.1 Why Methodology?
|22 Why UML?
2.3 Why SDL?
| 2.4 Why UML and SDL?
| 2.5 Why Round-Trip Engineering?
| 2.6 Criteria for Evaluation
.3 OVERVIEW OF THE DISSERTATION

. SOFTWARE ENGINEERING CONTEXT

SOFTWARE ENGINEERING

LIFE-CYCLES

INSYDE METHODOLOGY

OBJECT ORIENTED ANALYSIS& DESIGN

SDL ASA FORMAL SPECIFICATION LANGUAGE
1 5.1 Benefits of a Specification Language

Il 5.2 Mini Tutorial

1. UML-SDL ROUND-TRIP ENGINEERING METHODOLOGY

. 1 INTRODUCTION
. 2 MAPPING OF UML AND SDL CONCEPTS
1121 Mapping of Satic Sructure
11 2.2 Mapping of Declarations
11 2.3 Mapping of Sate charts
.3 INCREMENTAL ROUND-TRIP ENGINEERING
. 4 THREE SCENARIO’' SFOR COMBINING UML AND SDL’96
1141 Forward Engineering
11 4.2 Reverse Engineering
1143 Round-trip Engineering

IV. EXAMPLE

V.1 INTRODUCTION
V.2 SYSTEM DESIGN
IV2.1 ClassDiagram
IV22 SateDiagrams
IV 2.3 Investigate Generated SDL

G WNPE

11

12
12
13
14
15
15
16
17
17
18
19
19
21
22
23

25

26
27
31
33
35
35
36

41

42
43
43
45
45
48
50
50
51
52

55

56
57
57
58
59

6 Kurt Verschaeve

IV24 Class Diagram Revisited 60
V.3 TRANSLATING UML TO SDL 62
IV3.1 UML Preprocessing 62
IV 3.2 Hierarchical Sructure 62
IV 3.3 Declarations and Communication 63
IV 3.4 Finite Sate Machine 64
IV3.5 Linking UML and SDL models 65
V.4 DETAILED DESIGN 67
IV4.1 Sructures 67
IV 4.2 Communication and Declarations 68
IV4.3 Dynamic Behavior 68
IV 4.4 Reverselteration 69
IV.5 SYSTEM DESIGN || 71
IV5.1 ClassDiagram 71
IV5.2 SateDiagram 71
IV5.3 Forward Iteration 72
V.6 DETAILED DESIGN |1 75
V. REALIZING THE UML-SDL ROUND-TRIP ENGINEERING 77
V.1 |INTRODUCTION 78
V11l Overview of the Round-Trip Process 78
V12 How to read rule definitions 80
V.2 UML INFORMATION MODEL 81
Va1l Information Model 81
V2.2 Trandlation and Preprocessing Options 85
V23 Preprocessing 86
V.3 SDL INFORMATION MODEL 97
V3l Entity Inheritance Hierarchy 97
V3.2 Satic Sructure 98

V 3.3 Communication 100
V34 Declarations 101
V3.5 Sate Machine 102
V.4 LINK UML AND SDL 103
V4.1 Hierarchical Links 103
V4.2 UML link extension 103
V4.3 SDL ADT extension 106
V.5 COMPARE & TRANSLATE 108
V.6 UML TOSDL 110
V6.1 Introduction 110
V6.2 New Model 110
V6.3 Compare Model 110

V 6.4 Delete Model 111
V6.5 New Package 111

V 6.6 Delete Package 113
V6.7 Compare Package 113

V 6.8 New Class 115

V 6.9 Delete Class 120
V6.10 Compare Class 120
V6.11 New Aggregation 124
V6.12 Delete Aggregation 126

V6.13 Compare Aggregation 126

Contents

V 6.14 New Attribute
V6.15 Delete Attribute
V6.16 Compare Attribute
V 6.17 New Operation
V 6.18 Delete Operation
V6.19 Compare Operation
V 6.20 Definitions for Associations
V6.21 New Association
V 6.22 Delete Association
V 6.23 Compare Association
V 6.24 New Sate Diagram
V6.25 Delete State Diagram
V6.26 Compare State Diagram
V 6.27 New Sate
V 6.28 Delete Sate
V6.29 Compare Sate
V6.30 New Transition
V6.31 Delete Transition
V6.32 Compare Transition
V 6.33 New Action

V.7 SDL POST PROCESSING
V7.1 Sructure
V7.2 Communication
V73 Declarations

V.8 SDL ToUML
Va8l Reverse Iteration
V8.2 UML Model versus Diagrams
V8.3 Specification & Packages
V8.4 New Block
V85 Delete Block
V 8.6 Compare Block
V 8.7 New Process
Vv 8.8 Delete Process
V 8.9 Compare Process
V810 New/Delete/Compare Specialization
V811 New Procedure
V812 Delete Procedure
V8.13 Compare Procedure
V8.14 Communication
V815 New Communication
V8.16 Delete Communication
VvV 8.17 Compare Communication
V 8.18 New newtype
V819 Delete newtype
V820 Compare newtype
V8.21 New Variable
V8.22 Delete Variable
V 8.23 Compare Variable
V824 New Sate
V 8.25 Delete Sate
V8.26 Change Sate

128
128
129
130
132
133
135
139
150
151
152
153
153
153
153
154
154
156
157
157
159
159
160
161
162
162
162
162
163
164
165
167
168
169
171
171
172
172
173
173
173
174
175
176
176
177
178
178
178
179
179

Kurt Verschaeve

V 8.27
V 8.28
V 8.29
V 8.30

New Transition
Delete Transition
Compare Transition
New Action

V.9 UML POST PROCESSING

Vol
V9.2
V. 10
VvV 10.1
V 10.2
VvV 10.3
V104
V 10.5
V 10.6

Pass changes on to full UML model
Create and Update Diagrams

USER INTERACTION

Interactive Comparison
Interactive Rule Activation
Managing Links

Protect Areas
Maintenance Phase
Change Report

VI. CONCLUSIONS

Vi.1
VI. 2
VI.3
VI 3.1
VI 3.2
VI 3.3
VI 3.4

MAIN CONTRIBUTIONS
FUTURE WORK
RELATED RESEARCH

SDL-2000

UML for Real-Time

Version Management

Round-Trip Engineering Solutions

179
180
180
181
183
183
183
185
185
185
186
186
186
187

189

190
192
193
193
194
195
195

Contents 9
List of Figures
Figure I-1. Comparison of Features of UML and SDL 20
Figure 1I-1. The waterfall software development life-cycle model 27
Figure 11-3. SDL structures and structure types 37
Figure 11-4. Process Definition 37
Figure 11-5. Example FSM and the equivalent in SDL 38
Figure 11-6. Transition showing the basic behaviora features 38
Figure 11-7. Text symbols with signals declarations 39
Figure 11-8. Connecting Channel and Signal Routes 39
Figure 11-9. Newtype and Variable Declaration 40
Figure I11-1. Example of Structural Mapping 44
Figure I11-2. Trandation of Communication 45
Figure 111-3. Flattening a State Diagram with Entry & Exit actions 46
Figure 111-4. Successive lterations 48
Figure I11-5. Forward Engineering Scenario 50
Figure I11-6. Reverse Engineering for Documentation 52
Figure 111-7. Information flow during Round-Trip Engineering 53
Figure IV-1: Typica use of Toffee Vendor. 56
Figure IV-2. Initia Class Diagram of Toffee Vendor 57
Figure IV-3. State Diagram of the Control Class 58
Figure 1V-4. State Diagram of the Ware Manager and Coins 59
Figure 1V-5. Structural overview of the generated SDL System 59
Figure IV-6. Declarations in the ToffeeVendor System 60
Figure IV-7. Improved Class Diagram of Toffee Vendor 61
Figure 1V-8. Hierarchy View of the Generated System 63
Figure 1V-9. Signa and Type Declarations in the Generated System 63
Figure 1V-10. Block and Processing Interaction 64
Figure IV-11. Process Interaction in Dialogue Block Type 64
Figure 1V-12. Generated FSM for Control_Process 65
Figure 1V-13. Hierarchical Links between UML and SDL 66
Figure 1V-14. System structure after Detailed Design 67
Figure 1V-15. Detailed design of newtypes 68
Figure 1V-16. Control Process after Detailed Design 69
Figure IV-17. New System Design Model 71
Figure 1V-18. New State Diagram of Control 72
Figure 1V-19. Static Structure of Dialogue block after Forward Iteration 73
Figure 1V-20. Control Process after forward iteration 74
Figure 1V-21. Control Process after Forward Iteration 75
Figure 1V-22. State Diagram of Control after Second Iteration 76
Figure V-1. Overview of the Forward Incremental Process 78
Figure V-2. Overview of the Reverse Incremental Process 79
Figure V-3. UML information model 81
Figure V-4. Aggregate Structure to Find Common Aggregate 89
Figure V-5. Example of association before resolving inheritance 91
Figure V-6. Example after Conservative Association Inheritance 92

10 Kurt Verschaeve

Figure V-7. Example after Full Connect Inheritance of Association 93
Figure V-8. Example of Nested State Diagram 95
Figure V-9. Inheritance Structure of SDL Entities 98
Figure V-10: Hierarchical Links between UML and SDL 103
Figure V-11. Hierarchy and Order of Model Comparison 109
Figure V-12. Aggregation Paths Example 136
Figure V-13. lllustration to explain Aggregation Paths 138
Figure V-14. lllustration for using Class Signal Lists in Conservative Approach 140
Figure V-15. Example of generated gates 142
Figure V-16. Illustration of “one-end” trandation approach 144
Figure V-17. Communication with External Actor 145
Figure V-18. Illustration of cases for associations to «process» classes 146

Figure V-19. Example of Channel Generation in Full Connect 150

|. THE THESIS

12 Kurt Verschaeve

[.1 Contribution

1.1 Problem Statement

The Specification and Description Language (SDL) [ITU94] is an important real-time software
engineering language with a wide range of applications such as telecommunications, aerospace and
automoative. SDL has arich grammar to describe behavior and the semantics are formally defined.
As aresult, SDL tools can simulate systems specified in SDL and alows detections of errors in
the specification at a very early stage. However, SDL is less suited for the first stages in the
development life-cycle because of its lack of generic concepts and modeling freedom. Many real-
time devel opers are turning to object-oriented analysis for the first stages in their development life-

cycle.

Object oriented anaysis techniques provide a good medium for visualizing, constructing,
describing, and documenting the artifacts of software systems. The different diagrams available in
object oriented modeling languages (OOMLS) each cover another aspect of the system and the
underlying model can be presented in different ways to clarify specific relations. Thisis also away
to handle complexity, as complex diagrams can be divided into smaller ones. Finally, because
OOMLs in genera give little constraints during modeling, is gives the system architect more
flexibility to explore solutions. However, the same characteristic that make these modeling
languages good for analysis, makes them poor for excact specification of a system’'s dynamic
structure and behaviour.

The solution isto use a OOML for analysis and the first stages of design and to use formal design
techniques for design and implementation. A number of projects, methodologies and tools realized
by important players in this field confirm the trend towards this combination. The following
projects all combine OMT and SDL in their methodology: INSYDE [HWWO96], SISU | & I
[Brae96] & [MS97], SCREEN [SCR98] and TOSCA [TOS98]. The Integrated Method (TIMe)
uses the unified modeling language (UML) for object nodels in early phases, SDL for design of
structure and behaviour and message sequence charts (MSC) for describing interaction. The tool
Telelogic Tau offers extensive support for both UML and SDL.

A recurring problem when combining different models on different abstraction levels is the
synchronization of overlapping information. After the initial trandation step, the development
continues by adding more details to the generated design. When turning back to the higher
abstraction level, e.g. to make structural changes, simply rerunning the trandation results in
overwriting the previous changes. Relevant changes on one level of abstraction should
automatically be reflected on the other abstraction level while preserving as much of the detailed
design as possible. Without the necessary tools support for round-trip engineering, the higher level
design models will not get updated and loose their effectivness or will not be created in the first
place.

In short, we need a round-trip engineering process that integrates UML for sg/stem design and
SDL for detailed design and synchronizes the common aspect of the UML model and SDL
specification in such away that previous detailed handwork is not overwritten.

The Thesis 13

| 1.2 Contribution

The major contributions of this thesis are to bring the UML and SDL languages closer to each
other and to enable round-trip engineering based on the complex mapping between those
languages.

In this thesis, we present a validated mapping between UML and SDL concepts. In short, the
UML class diagrams map on the SDL static structure and the UML state diagrams map on SDL
state charts. The mapping is complex because entities do not map one-on-one. For example, a
UML association is mapped on a combination of channels, signal routes and/or gates and a class
can be mapped on a block and/or process. Moreover, some incompatibilities need to be resolved,
e.g. nested state diagrams must be flattened before they can be translated.

Based on the complex mapping, we provide support for round-trip engineering between a UML
model and a SDL specification. The typical one-shot trandation is replaced by a set of incremental
trandation rules that trandate changes rather than complete models. The model and the
specification are stored internally in an information model for UML and SDL that is specialized
toward the trandlation. The UML model is preprocessed to fill-in missing information, to check
consistency and to overcome two incompatibilities with SDL. More specifically, inherited
associations to subclasses and nested state diagrams are flattened.

The incrementa trandation algorithm is based on finding the changes made since the previous
iteration and trandating only those changes. To find these changes, the model is compared with its
previous version based on the entities unique identifier. The result is a set of new entities, deleted
entities and matched entities. Matched entities are entities that are present in both the old and the
new model and their attributes are further compared as part of the trandation. This comparison is
executed in a hierarchical fashion.

We developed a large set of trandation rules that trandate any possible change in UML (e.g. new
class, rename association, delete attribute) to local changes in SDL and the other way around in
complience with the mapping. Each trandation rule consists of a combination of preconditions,
context, trandation actions and variable definitions. Moreover, the trandation is aways done in
such a way that as much of the detailed design work in SDL is retained. For example, if aclass
with stereotype «block» becomes “typed”, the corresponding block is converted to a block type,
takeing over the complete contents of the block. This approach of updating the model instead of
regenerating it also makes sure that the graphical layout information of SDL entities is retained.

In order to determin the correct location to apply the trandated changes, we extended the UML
and SDL information model with explicit links between UML entity and SDL entities. When
trandating a “new” UML entity, it is linked with the generated SDL entities and some additional
links needed to trandate other change. A «block» class, for example, is linked with the generated
block (sdlidefinition), the management process (sdiprocess), the structure containing the signas
(declarationStruct) and the signal list (sdisignallist). The reverse version of these links are added
to the SDL information model, e.g. process.sdiprocess™ returns the class that is linked to the
process though the sdlprocess link.

In short, we introduce the technique of incrementa trandation of changes to synchronize the
UML mode and the SDL specification, while they present different abstraction levels of the
system. The rest of this section motivates why this contribution is relevant, novel and important to
the telecom community.

14 Kurt Verschaeve

1.3 Relevance

There is an increasing demand for an integration of object-oriented analysis with formal design
techniques for the development of real-time and embedded systems. Many real-time developers
are turning to object-oriented analysis for the first stages in their development life-cycle. It is a
natural demand to integrate this into the rest of the development life-cycle. Thisis reflected in a
number of projects, methodologies and tools realized by important playersin this field.

The INSYDE methodology [HWW96] integrates the object-oriented method OMT with two
domain-specific design techniques, namely SDL [ITU94] and VHDL. This research was
performed by three academic and three industrial partners. Baseline for the process model is
OMT, which offers a common platform for the analysis of software and hardware. The software
parts are trandated to SDL and the hardware parts are trandated to VHDL. Detailed design
continues in the specific target language. This combination of complementary notations offers a
number of advantages.

Octopus is a systematic and effective method for developing object-oriented software particularly
for embedded real-time systems. It has been developed at Nokia Research Center since 1993. The
Octopus method is based on the popular OMT and Fusion methods, but also embodies common
practice found in real-time system devel opment.

The methodologies developed by the SCREEN [SCR98] and TOSCA [TOS98] projects are based
on components being developed by combining UML (or OMT) and SDL. These components are
then incorporated into a framework. COSEC and TOSCA have in common that they provide a
rapid service provisioning based on the specialization of a framework with a nearly ready service
set of software components. The framework can be used to build a large number of standard and
customized services. More details about the alignment of the TOSCA and SCREEN approaches
can be found in [LKH99].

Another notable example is TIMe, The Integrated Method, which is a systems development
methodology from SINTEF Telecom and Informatics. TIMe is based on over 2 decades of
experience from research and industrial projects. It uses the unified modeling language (UML) for
object nodels in early phases, SDL for design of structure and behaviour and message sequence
charts (MSC) for describing interaction.

Within the SDL community, UML has gotten a lot of attention the last few years. The latest
version, SDL 2000, has a build-in graphical notation for the UML class diagram. Both major SDL
tool builders, Telelogic and Verilog, are building tools to integrate UML and SDL. Telelogic Tau
3.6, now covers al the phases of the development process and covers them with languages
optimized for each phase: UML, SDL and TTCN. We actively contributed to implementing the
translation of UML to SDL.

Even in an integrated tool/language, there will still be the need to maintain two levels of
abstractions. The system design view, is used for documentation and overview and on this level,
important design and architectural decisions are taken. On the implementation level, dl the details
are accessible. In this scenario, support for round-trip engineering is still necessary to synchronize
the different abstraction levels.

The Thesis 15

| 1.4 Novelty

At the time we first developed trandation rules from OMT to SDL’'88 [VWCJ95], this was a
brand new idea. The gap between the two languages was very wide and the OMT semantics had
to be bent a lot to make the trandation to SDL. Especialy the integration of OMT’s static model
and the dynamic model in the SDL code generator was novel. The transition to UML and SDL’92
imposed new possibilities and challenges. A continuous process of improvements [Ver97],
partially in cooperation with Telelogic [VEQ9], brought the quality of the trandation good enough
for commercia exploitation.

The integration of the class diagram and the state diagram of UML for round-trip engineering is
new. UML tools that support round-trip engineering only trandate the class diagram [Tog00],
[Rat00]. Methods that trandates both the class diagram and the state diagram [Har97], [Mel99]
are a one-shot trandations and require to write alot of code in the state diagram.

Round-trip engineering with complex underlying trandation rules is new. The trandation of UML
to SDL is complex; there is no simple one-to-one mapping between an entity in UML and an
entity in SDL. For example, an association maps on a set of channels and signal routes, spread
over severa structures. If the association is modified, this may have implications on al SDL
entities generated from the association. As long as there is no one-to-one mapping between UML
and SDL, an incremental trandation of changes is a good option to synchronize these abstraction
levels. Tools like Togetherd [Tog00] that do UML-Java round-trip engineering, are based on an
exact one-to-one mapping.

| 1.5 Importance

For developers that already use UML and SDL, it is of course very important that their processis
supported by the right tools and methods. Moreover, tool support for UML-SDL round-trip
engineering can really boost object-oriented design, with all its advantages, into the whole SDL
community. Automatic synchronization encourages people to maintain and exploit the system
design model of the system. This is already important in a waterfall-like process, but is crucial in
an iterative software development process.

Within the SDL community, UML has gotten a lot of attention the last few years. The latest
version, SDL 2000, has a build-in graphical notation for the UML class diagram. Both major SDL
tool builders, Telelogic and Verilog, are building tools to integrate UML and SDL. Telelogic Tau
3.6, now covers al the phases of the development process and covers them with languages
optimized for each phase: UML, SDL and TTCN. We actively contributed to implementing the
translation of UML to SDL.

Even in an integrated UML/SDL tool/language, there will still be the need to maintain two levels
of abstractions. The system design view, is used for documentation and overview and on this
level, important design and architectural decisions are taken. On the implementation level, all the
details are accessible. In this scenario, support for round-trip engineering is still necessary to
synchronize the different abstraction levels.

This research is aso reusable outside the UML-SDL scenario. Providing round-trip support by
incrementally applying trandlation rules can be applied to synchronize any two models on different
abstraction levels that contain parale information. The only prerequisite is a set of trandation
rules that is able to trandate the abstract model into the concrete model in an entity per entity
fashion. These trandation rules are dightly modified to trandate new items added after an

16 Kurt Verschaeve

iteration. To trandate other changes, the set of trandation rules must then be extended with rules
that trandate any individua change in the modd.

| 1.6 Larger Research Context

The research done for this dissertation has been part of several broader research efforts. During
the INSYDE project [INS94], OMT was used as an analysis and design front-end to SDL and
VHDL. The common front-end enabled developers to co-design hardware and software in one
method. In the ITA-2 [ITA98] AIA project [AIA98], we do research on a methodology for
component oriented service creation [VWWO0Q]. One specific feature of the methodology is that it
targets different kind of users, ranging from developers who demand high-flexibility to end-users
who like ease-of-use. In this research, the UML-SDL round-trip engineering is used to build an
SDL component framework with an easy-to-use UML front-end.

The results of our research should be applied in a larger context. In this dissertation, we provide
only a part of a software development process. In order to use the UML-SDL round-trip
engineering in area project, it should be fit into a global iterative process. Because such a process
is (and should be) different for each company or even for each project [Hig00], we do not put
forward a preferred process in this dissertation.

The core of our research, automatic synchronization of models expressed in different paradigms,
can be applied to other languages. In cases that there is a direct one-to-one mapping (e.g. UML-
C++), there is no need for complex algorithms like ours. However, for two modes written in a
different language with a complicated mapping and trandation, our approach can be applied to
synchronization the two models. The extra advantage is that our approach alows the models to be
on different abstraction levels, contain more or less details and still provide support for
synchronization.

The Thesis 17

[.2 Motivation

|21 Why Methodology?

A methodology is a definition of a set of work products and a set of notations, activities and tools
structured into a lifecycle process to produce and modify those work products [SPC94]. Each
company or even each project group has its own implicit or explicit methodology. The
methodology provides the people involved with guidelines when and how to perform certain
activities and how different team members should work together. Different methodologies differ a
lot in what part of the lifecycle they cover. Each methodology may have elements that are useful

to a portion of the development life cycle. The life cycles phases are defined as follows [TOA95]:

Domain Analysis addresses researching an application domain and identifying, documenting,
constructing, testing, and demonstrating reusable components useful in the domain.

Analysis is that portion of the life-cycle that describes the outwardly observable characteristics
of the system, e.g. functionality, performance, and capacity. Normally this description
includes models that depict the logical construction of the systems, and its placement within a
system environment.

Design is that portion of the life-cycle that prepares definitions as to how the system will
accomplish its requirements. The models prepared in andysis are ether refined, or
transformed, into design models that depict the real structure of the software product.

Implementation is that portion of the life-cycle that converts the developed design models into
software executable within the system environment. This either involves the hand coding of
program units, the automated generation of such code, or the assembly of aready built and
tested reusable code components from an in-house reusability library.

Testing focuses on ensuring that each deliverable from each phase conforms to, and addresses
the, stated user requirements.

A complete methodology is far more than a notation, a process, and some tools. There are
organizations that attempt to create fully elaborated methodologies. For instance, Ernst and
Young's Navigator method and Andersen Consulting's Foundation method [AC99] consists of
thousands of pages bound in a number of binders, provides a number of CD-ROMSs, and are
coordinated with extensive training. Even “extreme programming” [Beck99], a lightweight
methodology that relies on programming in pairs and unit testing during coding, can be considered
a full methodology as it provides many organizational and management aspects. In addition to a
“notation, process, and tools,” these “complete methodologies’ provide [TOA95]:

Cogt Estimating Guidelines,

Project Management Tasks and Deliverables,

Measures and Metrics,

Defined Forms and Déliverable Construction Directions,
Software Quality Assurance Policies and Procedures,

18 Kurt Verschaeve

Detailed Role Descriptions and Training Programs,
Completely Worked Examples,

Training Exercises,

Techniques for Tailoring the Method, and

Defined Techniques.

Setting the comments made above aside, this dissertation uses the term "methodology” as
consisting of a notation and a process. In this perspective, we provide a methodology that explains
the role of UML and SDL during analysis, design and implementation. Testing and domain
analysis are only covered partially. A considerable part of our methodology is about notation.
UML and SDL require the creation of abstract descriptions and graphical models, of the system
under analysis and/or design. These models are constructed using some form of notation. Our
methodology specifies which notation should be used for a particular model. The core of our
methodology covers the tool support needed for smooth integration of UML and SDL. The
different activities in the methodology are brought together in a number of scenarios that describe
the process.

The methodology described in this dissertation is not a complete methodology and therefore
cannot be used directly into rea projects. Either our methodology is integrated into an existing
methodology or our methodology is extended with those aspects in the list above that are relevant
for the project at hand.

122 Why UML?

It is not difficult to explain why we chose the Unified Modeling Language (UML) [BR95] over
other object oriented modeling languages. The UML is the proper successor to the object
modeling languages of three previoudly leading object-oriented methods (Booch, OMT, and
OOSE). The UML is the union of these modeling languages and more, since it includes additional
expressiveness to handle modeling problems that these methods did not fully address. UML mests
the following reguirements [OM G99]:

Formal definition of a common object analysis and design (OA&D) metamodd to represent
the semantics of OA&D modes, which include static models, behaviora modds, usage
models, and architectural models.

IDL specifications for mechanisms for model interchange between OA&D tools. The
specification includes a set of IDL interfaces that support dynamic construction and traversa
of auser model.

A human-readable notation for representing OA&D models. The UML notation is an elegant
graphic syntax for consistently expressing the UML’s rich semantics. Notation is an essentia
part of OA&D modeling and the UML.

Object oriented modeling languages in general are very useful in our context. They provide a good
medium to for specifying, visualizing, constructing, and documenting the artifacts of software
systems. The different diagrams each cover another aspect of the system and a set of class
diagrams may present the same underlying model in different ways to clarify specific relations.
This is also a way to handle complexity, as complex diagrams can be divided into smaller ones.
Finaly, because OOML in generd give little constraints during modeling, is gives the system
architect more flexibility to explore solutions.

The Thesis 19

123 Why SDL?

Of dl exigting forma specification languages, SDL [EHS97] is unique in that it combines many
qudlities: SDL isformally defined by the ITU, it has agraphical notation with one-on-one mapping
on the textual notation, SDL specifications are easy to read and understand, SDL’s state charts
have a high expressive power and a SDL specification can be simulated or transformed to an
executable. Because of these qualities, SDL became well accepted by the industry and high-
quality professional tools are available [Tele], [Cin]. Section I1. 5 gives more details on SDL and
provides a mini-tutorial.

Using SDL in a methodology has the great advantage that design, implementation and testing can
be performed in the same language. SDL combines powerful structural concepts and expressive
state charts and allows object orientation on both levels. Its integration with CCITT [ITUO4] and
MSC [ITU9-2] dlows advanced simulation and testing.

In this dissertation, we limit ourselves to systems that can be specified in SDL. SDL is widely
used in the telecommunications field, but it is also now being applied to a diverse number of other
areas ranging over aircraft, train control, medical and packaging systems. Some examples for
which SDL is not suited are database applications and mathematical libraries. Considering the
exponential growth of the telecommunication industry and the circulation of SDL, the constraint
of sticking to SDL does not seem to be too restrictive.

The latest version of SDL is SDL-2000, while the research presented in this dissertation is based
on SDL’96. The only reason for not using SDL-2000 is that this dissertation reflects the research
done before the definition of SDL-2000. However, it was already apparent that SDL-2000 had a
strong focus on UML.. In fact, many ideas presented in our work, such as linking UML entities to
its mapped SDL entity and using the UML extensibility mechanisms, are now standardized in
SDL-2000. Furthermore, some complex mappings in our current work are simplified by new
features in the language. For example, the composite states of SDL-2000 make it unnecessary to
flattening of the UML state diagram before trandation. We may conclude that SDL-2000 affirms
the idea of UML-SDL round-trip engineering and confirms many ideas presented in this
dissertation. More details on the impact of SDL-2000 on our approach are discussed in section VI
3.1 on related work.

|24 Why UML and SDL?

We sedlected UML as the best object oriented analysis language and SDL as the best forma
specification language, but why do we need both? Is UML or SDL in itself not enough? Only
UML is definitely not enough. None of the UML diagrams is able to specify al details about the
behavior of a class necessary to generate executable code. Even if UML could be stretched to
make it work [Har97], it is not very practical to write many pieces of Java or SDL into a state
diagram. Using only SDL is feasible for smaller projects. SDL could be used as a wide spectrum
language from requirements to implementation. But for larger projects, SDL is not flexible enough
for analysis and system design. Before one can start specifying in SDL, he or she needs a clear
view on the design of the system.

This view of combining UML and SDL is supported by the methodological supplement of the
Z.100 recommendation [ITUOO]. This supplement recommends the use of OMT for the initial
phases of analysis and design and then to pass to SDL. The next version of this methodology
guide, which is not yet published, will be updated towards UML, as it is the proper successor to
OMT. In addition, SDL-2000 incorporates the most useful UML constructs that were not yet

20 Kurt Verschaeve

available in SDL-96 and the traditional graphical representation of UML classes, and Z.109
[ITU99] alows a coherent combination of UML and SDL within the same project.

The main question we answer here is. in which way can UML improve the development or
maintenance of a system and how can it be combined with SDL in the best possible way? A good
introduction of how UML is used to modd real-time systems can be found in [Dou98]. Previous
research has been done for combining OMT and SDL in [HWW96].

Our goal is to get the maximum profit of the advantages of both UML and SDL. UML and SDL
share a number of qudlities, like having a graphica notation, good readability and good tool
support. They aso incorporate object orientation and state machines, which make UML and SDL
suitable to work together. Nevertheless, each of them also has enough advantages to make it
worthwhile to combine them both in one methodology. Below we list the most important
advantages.

Main advantages of UML over SDL.:
Generic Concepts

Smooth transition from Use Cases, Conceptual Model and Sequence Diagrams to Class
Diagrams and State Charts

Multiple Views on the same information, i.e. a class can be viewed in several diagrams.
Little constraints during modeling, more flexibility

Main advantages of SDL over UML.:
Specialized Concepts

Formal definition and semantics
Simulatable and executable
Both graphical and textual syntax

Type
Specificatio

Static Structure

Subsystem | Block
Class | Process
Association | Channel

=
. bi :
Collgboratlon iagram Behaviour
Diagram -
Finate
State
Diagram State
9 Machine

Figurel-1. Comparison of Featuresof UML and SDL

Transition
Implementation

Comparing the diagrams available in UML and SDL, we come to the same conclusion that UML
and SDL is a good aliance. Figure I-1 shows the diagrams or information available in UML and
SDL. They share the specification for the static structure, behavior and scenarios. Unique for
UML are the use cases and the collaboration diagrams. In SDL the type specifications and the

The Thesis 21

transitions can be implemented in full detail. Note that UML Sequence Diagrams and MSC's both
are used to specify scenarios, but are not dealt with in our round-trip engineering.

| 25 Why Round-Trip Engineering?

Knowing that UML and SDL will be used together, one will want tool support for the trandation
and synchronization of the corresponding information. Without specific support, the UML model
is nothing more than a document that can be used as a basis to implement the system in SDL. The
developer may put less effort in completing the details of the UML model, as the effort needs to
be done a second time anyway. Furthermore, there is no consistency check between the two
models and most likely, the UML will not be updated once the development in SDL has started.

The first step in supporting the cooperation between UML and SDL is the one-step trandation.
The system design phase in UML can be stretched, in order to make a design model that is as
complete and detailed as possible. The class diagram and the state diagram of the UML model are
then trandated completely into SDL. The translator makes extensive use of the UML stereotypes
and has a specific interpretation for associations, aggregation and generaization. Technically the
trandlator can translate any UML model, but unless the UML is prepared for the trandation, the
generated SDL will not be as expected. This preparation is part of the system design phase. The
advantages of the trangdlation are apparent. The effort to make a detailed system design model in
UML can be reused completely before starting detailed design in SDL. The transition from
analysis to design is smoother and many labor-intensive aspects of creating the initial SDL
structure and declarations are automated. Still, after the translation, the UML model and the SDL
specification are two separate documents. Changes to design should be applied to both UML and
SDL. In practice, however, the UML modd islikely to become outdated.

The one-step trandation can be extended with forward iteration. This means that changes to the
UML mode are applied to the SDL specification, even if the initial generated SDL specification
has already been modified by hand. From a methodological point of view, this is similar to the
one-shot trandation, but the developer is encouraged to maintain the UML model as it helps him
to make design level changes to the system. Provided that al design level changes are applied in
UML, forward iteration ensures consistent UML and SDL models. Technicaly, there are many
ways to put forward iteration into practice. Either the updated UML model is translated and then
tries to reuse parts of the modified version of the SDL specification. Alternatively, the modified
version of the SDL specification is taken as the basis and the changes made in UML are applied to
the SDL specification. The first approach is better suited for large changes in the UML model.
The second approach is better suited for incremental updates to the UML model. In this thesis,
we take the second approach and we extend it with reverse iteration.

The next step toward full round-trip engineering is two-way iteration. Changes in UML are
trandated to SDL and the other way around. This kind of iteration is applied in discrete steps.
Either model is modified and saved, then the iterative trandlator check for modifications or missing
information. It is this kind of support that we present in this dissertation. It allows design decisions
to be taken at the best possible side or smple at the side the devel oper is currently working at.

The ultimate support is the real-time round-trip engineering. It does not matter where or when the
design or implementation is done, the other model is always updated automatically in real-time.
Tools as Togetherd [Tog00] show the UML class diagram alongside of the generated Java codein
the same window. These tools are based on the one-on-one mapping between UML and Java
entities.

Kurt Verschaeve

| 2.6 Criteriafor Evaluation

In this dissertation, we present one possible solution to realize round-trip engineering between
UML and SDL. This solution was build with a certain vision of the perfect tool. Here, we present
alist of criteria that allows the evaluation of a certain solution in our context. An approach that
matches al criteriawould be the perfect round-trip solution. Note that our approach is not perfect.

Criteriafor the evaluation of a certain UML-SDL round-trip solution:

To boot strap the iteration, the tool should able to trandate a complete UML model to SDL or
a complete SDL specification to UML.

The tool should trandate and synchronize as much information as possible concerning the
static structure of the system, the behavior of individual classes and the scenarios for
collaborations.

The tool should never overwrite or delete manual changes on either side, unless a change in
the other side explicitly overwrites it. In particular, the tool should preserve: comments,
graphical layout information and analysis or implementation properties of an entity.

After an iteration, neither modd should contain information or constraints that are inconsistent
with the linked model, unless the developer explicitly chooses for it. This implies that a
developer should have the possibility to indicate that some entity does not take part in the
synchronization.

The tool should alow changesin UML and SDL at the same time.

In the case of conflicting changes, the tool should let the developer choose interactively
between several possihilities.

The kind of changes that the developer may apply should not be limited to adding code in
some predefined area.

The generated SDL should be readable and easy to change by a human.

The synchronization should keep working after many iterations, even if the model has
completely been changed since the first trandation.

The Thesis 23

.3 Overview of the Dissertation

This dissertation in organized in two main parts. Chapters Il, Il and IV gives the necessary
background and overview to understand the technical core presented in Chapter V.

Chapter 1l positions our research in context of software engineering and provides some
background information on object oriented analysis techniques and SDL. The mini SDL tutoria
provides the readers that do not know the language with a quick introduction to better understand
the rest of the dissertation. Chapter 11 also gives a summary of the initial research efforts to
combine object oriented analysis techniques and formal description languages.

Chapter 111 gives a comprehensible overview of the mapping of UML and SDL concepts and of
the round-trip process. This chapter is particularly interesting, as it gives the reader the necessary
background to read and understand the core of this dissertation in chapter V. We also present
three scenarios on how the round-trip engineering could be integrated in larger process.

Chapter 1V uses an example to illustrates the successive steps in the UML-SDL round-trip
engineering. The toffee vendor serves as the example. Starting in UML and an initial trandation to
SDL, we continue with two iterations through system design in UML and detailed in SDL.

Chapter V contains the technical core of this dissertation: the complete definition of the trandation
of changes in an UML model to SDL and the other way around. As preparatory work, the
information models for UML and SDL are defined, together with the hierarchical links between
both models. We define a set of preprocessing rules that prepare a UML maodel for trandation and
define how two UML models or two SDL specifications are compared with each other. Sections 6
and 8 of this chapter define the trandation of each possible change in respectively UML and SDL.
The definition is presented as a large set of trandation rules, where each rule has a precondition
that states when the rule is applicable or not.

Chapter VI concludes this dissertation by describing the main contributions and discussing related
and future research. Noteworthy, we discuss the impact of SDL 2000 on our results.

1. Software Engineering Context

“ Always design a thing by considering it in its next larger context -
- achair in aroom, aroom in a house, a house in an environment,
an environment in a city plan.”

-Elid Saarinen-

“If you don't know where you're going, any road will get you
there”

-Chinese Proverb-

26 Kurt Verschaeve

1.1 Software Engineering

According to the IEEE's definition [IEEE83], software engineering is the systematic approach to
the development, operation and maintenance of software in a cost effective way. In our context,
we define software engineering as the research for software development methodologies or
software processes that alows a systematic approach for the activities above. A software
development methodology or software process itself is defined as

a process for performing particular work tasks throughout the systems development life-cycle
and the measures to know they are being done properly;

a set of tools, methods and notations and a description when and how to use them throughout
the life-cycle; and

the total set of palicies, standards, and procedures related to performing software development
work tasks.

The aspects covered by a specific methodology can range from only one aspect (e.g. the life-cycle
in waterfal model) to a full coverage of al possible aspects (eg. Andersen Consulting's
Foundation method [AC99]). Some additional aspects can be considered from a management
perspective; the software development methodology may ded with financid, strategic, commercia
and human aspects. We do not cover this perspective in this dissertation.

Having a software development methodology is necessary to cope with the complexity of a
software system. To better understand the problems with software engineering, it is interesting to
explain how it is different from other engineering disciplines for a number of reasons.

The process of proving the correctness of software is extremely difficult if not impossible even
for small software projects.

Software engineering deals with abstractions with no physical form (the software). Thus, it is
not constrained by materials governed by physica laws or by manufacturing processes as in
other engineering disciplines. It is not tangible.

The software is usually large and complex, thus requires a team or teams of engineers.

Unlike other engineering products, software usualy evolves and requires a great dea of
maintenance.

Throughout the short history of software engineering, many methodologies were developed to
overcome these difficulties. Most of them improved existing methodologies, but some of them
also take radical new approaches. It is clear now that there is no one best methodology for al
problems. Instead, a methodology must be selected and tailored for each company or even for
each project.

In this chapter, we present some context on each of the three ingredients of a methodology: the
life cycle, tools and notation.

Software Engineering Context 27

1.2 Life-cycles

In [IEEE83], a software life cycle is defined as “The period of time that starts when a software
product is conceived and ends when the product is no longer available for use. The software life-
cycle typicaly includes a requirements phase, design phase, implementation phase, test phase,
installation and check-out phase, operation and maintenance phase, and sometimes, retirement
phase.” This definition concerns the software life-cycle of an actual system. Below, we define a
software life-cycle as the abstract description of how an actual life-cycle should take place. We
discuss a number of state of art software processes and their suitability for integrating the UML-
SDL round-trip engineering.

One of the first and successful approaches in software engineering is probably the conventional

“waterfall” software development life-cycle model as outlined in [Boe76]. This article was based
on the origina version that appeared in [Roy70]. The moddl in its pure form received a lot of
critique over the years. Most critique stress particular limitations and propose an extension to the
original version. Almost every more eaborated software development model has a connection
with the principles of the waterfall model somewhere. Just because of this, it is worth mentioning
it. Figure I1-1 gives an idea of the model. The full model is explained in [Boe81].

System
Reguirements |«

Validation

Software
> Requirements [«

Validation

Preliminary

Design |€—
Validation

Detailed
Design

Validation

Code and
Debug —

Development tes]

Test and
Preoperations |«

Validation test

Operations and
maintenance

Revalidation

Figurell-1. The waterfall software development life-cycle model

The original waterfall software development life-cycle has seven stages, as shown in Figure 11-1.
Each of these steps has some build-in validation procedures. These validation procedures are to be
fulfilled before the transition to the next step can be done. Failing for the validation procedure can
cause a revision of the current step as well as restart at one of the former steps. The validation
principle provides feedback to previous steps. After the last step, a global evaluation can be done
which results in new system requirements. This can be the starting point for a new project.

28 Kurt Verschaeve

Since the publication of the waterfall model, many new paradigms were proposed. Not all of them
take the same seven steps. However, the basic principles behind the life-cycle model seem to
appear in every methodology. They al have at least the three following steps in the same order:
requirements specification, design and coding.

A restricted list of current state of the art software processes include (in aphabetical ordering)
Catalysis, Dynamic System Development Method (DSDM), OO software process (OOSP),
Object-oriented Process, Environment and Notation (OPEN) and Rational Unified Process
(RUP). For each of these processes, we give a short synopsis and discuss their suitability to
integrate the UML-SDL round-trip engineering. An in-depth overview of software processes and
how to tailor them can be found in [Hig0Q].

Catalysis [DW9g] is a next generation approach for the systematic business-driven devel opment
of component-based systems, based on the industry standard Unified Modeling Language (UML).
Catalysis provides a systematic process for the construction of precise models starting from
requirements, for maintaining those models, for re-factoring them and extracting patterns, and for
reverse-engineering from detailed description to abstract models. The ultimate goa is to support
the modeling and construction of open distributed systems, i.e. systems whose form and function
evolves over time, as components and services are added and removed from it. All work donein
Catalysis can be based on composition of existing components, a the level of code, design
patterns and architectures, and even requirements specification.

The UML-SDL round-trip engineering fits very well in the Catalysis process. The requirements,
analysis and design are based on UML, while the coding language is open. SDL is suitable to
specify the kind of systems targeted with Catalysis. Moreover, the process is model oriented and
holds in itsdf forward and reverse engineering steps, making the UML-SDL support very
effective. On the down side, SDL is not very component friendly and the round-trip engineering
does not give explicit support for building components. We partially solved this issue by defining a
component framework for SDL [VWWO01].

The Dynamic Systems Development Method (DSDM) [Sta97] is a framework of controls for the
development of IT systems to tight timescales. DSDM provides a generic process that must be
tailored for use in a particular organization dependent on the business and technical constraints. It
is independent of any particular set of tools and techniques and can be used with object-oriented
and structured analysis and design approaches. The lifecycle that DSDM uses is iterative and
incremental. DSDM is particularly well-suited to business applications, where the functionality
contains user interfaces (screens, reports, etc.) so the prototyping can be used to maximum
benefit.

As DSDM is a generic iterative process, it could be tailored with the UML-SDL round-trip
engineering. However, this process targets the wrong kind of systems and requires the
involvement of the end-user. Therefore, DSDM is hot a suitable process to development of SDL
based systems.

The object-oriented software process (OOSP) is a collection of process patterns that target
medium to large-size organizations that need to develop software that support their main line of
busness. Similar to design patterns, process patterns describe strategies that software
professionals employ to solve problems that recur across organizations. A process pattern
describes a collection of genera techniques, actions, and/or tasks for developing object-oriented
software. The OOSP provides a framework that addresses issues such as how to successfully

Software Engineering Context 29

ddiver large applications using object technology and how to develop applications that are easy to
maintain and enhance.

Most of the OOSP process patterns are also applicable when using SDL as a programming
language. Still, some additional process patterns for UML-SDL round-trip engineering specific
issues should be developed for a full integration with OOSP. The details of using UML during
analysis and design should be taken from another methodology, e.g. RUP.

Object-oriented Process, Environment, and Notation (OPEN) [GHY97] is a full lifecycle,
process-focussed, methodological approach that was designed for the development of software
intensive applications, particularly object-oriented and component-based developments. OPEN is
defined as a process framework, known as the OPF (OPEN Process Framework). This is a
process metamodel from which can be generated an organizationally-specific process (instance).
Each of these process instances is created by choosing specific activities, tasks and techniques and
specific configurations thereof. OPEN provides strong support for the full lifecycle of a software
application.

The OPEN process forms a good framework to fit in the UML-SDL round-trip engineering.
Besides the original OML notation, OPEN &l so supports the UML notation. The management and
human relations issues of this process forms a good complement to our models only methodology.
Moreover, the OPEN process can be tailored to suit individual domains or projects.

The Rational Unified Process (RUP) [JBR99], [Kru99] is a Software Engineering Process built
around UML. It provides a disciplined approach to assigning tasks and responsibilities within a
development organization. RUP recognizes that no single process is suitable for al software
development by making the process configurable. The Unified Process is founded on a simple and

Phases
: GGrE FrMESS wnrkﬂﬂws |r|-;;upli|;||||E|abl;;r;J'.iq;|l1| Comnsriclion | Transition |
Business Medeling ..._:—— ;
Requiremerts R
Analysis & Design ... _./"_“__:_"“\-.._ I
) ! L
Implementation ...l ——__ —‘\-—a-.__
Tagk o i el e —'—-"—1‘_"-'*_"—
Deployment. o ; Y
Core Supporting Workflows ; I i
Gonfiguration & Change MgM!._ |
Project Mmenmt___..-_;l_.-__:_______,_____
Environment. ..o | e : -
prnllrrlnarrl ar | itar I it | Her. | I‘IEI'.I tar. | i I
paration(s) © #1 ¥ #n ' #n+ dne2’ #m #mer
Iterations

Figurell-2. The Iterative Model of RUP is structured along two dimensions

clear process architecture that provides commonality across a family of processes. Y, it can be
varied to accommodate different situations. The life-cycle model of RUP is structured along two
axes. The time axis shows the dynamic aspect of the process and it is expressed in terms of
cycles, phases, iterations, and milestones. The content axis represents the static aspect of the
process. how it is described in terms of activities, artifacts, workers and workflows. Because RUP
is the best fit for our purpose, we included an overview of the content activities and phases in
Figure I1-2.

30 Kurt Verschaeve

The Rational Unified Process is especialy well suited for an integration with UML-SDL round-
trip engineering. Most importantly, RUP has a strong focus on UML, giving many guidelines for
modeling requirements and analysis in UML. Furthermore, the process is fully iterative, making
the round-trip support very valuable. RUP appeals to model software visually and to control
changes in the software. SDL is a graphical implementation language and our round-trip
engineering solution is based on detecting changes. All this makes RUP a good partner for our
research.

Software Engineering Context 31

1.3 INSYDE Methodology

The INSYDE project [INS94] took place from 1994 until 1996 and laid the foundation to
combine object oriented analysis techniques with formal specifications. It was an EU ESPRIT-I1I
funded project. The consortium consisted of Alcatel Bell Telephone (Belgium), Dublin City
University (Ireland), Humbolt Universitét zu Berlin (Germany), Intracom S.A. (Greece), Verilog
SA. (France) and Vrije Universiteit Brussel (Belgium).

The INSY DE methodology [HWW96] was devel oped during the INSY DE project and consists of
a sat of technigues and tools to enable the evolving co-design of hybrid systems from
requirements analysis to implementation [SCVM95]. A hybrid system is one that contains
significant hardware and software components. The methodology integrates the object-oriented
analysis methodology OMT [RBP91] with two domain specific formal description techniques,
namely SDL (‘88 and '92) [EHS97] for the software side and VHDL [Nav93] for the hardware
side. OMT is used as the system requirements analysis technique, and as the technique for the
initial system specification. It offers a unified framework for the specification of many application
domains in a consistent representation notation throughout the initial design stages. This alows the
methodology to provide mechanisms for combining the individual design techniques (OMT, SDL,
VHDL), maintaining the consistency of partid models a the detailed design stage and co-
simulating the formal description techniques to vaidate the hybrid system against the system
specification. The relative strengths of each design technique (SDL for asynchronous
communication systems, VHDL for synchronous reactive systems) can thus be exploited in an
optimal way.

Limiting our scope to the transition of OMT to SDL, the functional model of OMT is not useful,
so only the static and dynamic models are used. While OMT is a good analysis methodology
covering many aspects of system design, the informa nature of OMT makes an automatic
trandation infeasible. In our methodology, the analysis document is prepared for translation during
system design. During this phase subsystems are identified, communication is formalized and
information is ordered. To describe these aspects a new language is needed. OMT* [WWV95] is
a didect of OMT, specifically aimed to meet the requirements of system design. OMT* differs
from OMT in that:

It contains only those OMT concepts suited for system design (e.g. no ternary associations, no
overlapping subclasses and no hanging classes).

The possible interpretations of an OMT construct are reduced and clearly described.
It has a well-defined syntax.
There are clear relationships between the different models.

In order to make the transition from OMT to OMT* as smooth as possible, OMT* contains as
much as possible of OMT and has a semantics that is as close as possible to OMT. Therefore, the
semantics of OMT* cannot be defined unambiguoudly, i.e. the possible interpretations of an
OMT* construct is reduced with regard to OMT but not to one single interpretation. Furthermore
OMT* does not contain any new constructs and is completely compatible with Rumbaugh
[RBPA1].

32 Kurt Verschaeve

Furthermore, the transformation of OMT* to SDL is assured by giving the language a
transformational semantics [VJW96], this is a semantics defined by specifying the
transformations of a construct to SDL. For those constructs having more than one interpretation,
multiple transformations will be specified.

Many concept of the INSYDE methodology are till applicable in the context of UML-SDL’96
round-trip engineering. A UML analysis model should first be prepared during system design
before it is ready for trandation. The dynamic model of OMT is amost identical to the state
diagrams of UML. Consequently, the state diagram trandation, including flattening of hierarchica
states, can be reused in the new context. Similar to OMT*, the possible interpretations of an UML
construct are reduced for the purpose of the trandation, but there are till several possibilities left.
However, we do not create an UML* as a separate language. We rather define a set of guidelines
and preprocessing rules that prepare the model.

Software Engineering Context 33

1.4 Object Oriented Analysis & Design

Object-oriented analysis (OOA) is concerned with developing software engineering requirements
and specifications of the system's object model (which is composed of a population of interacting
objects), as opposed to the traditional data or functional views of systems. Object-oriented design
(OOD) is concerned with developing an object-oriented model of a software system to implement
the identified requirements. The use of OOD technology requires the development of object
requirements using OOA techniques, and CASE tools to support both the drawing of objects and
the description of the relationships between objects. Therefore, OOA&D is usualy carried out
using the same method or language to alow a smooth transition.

Applying OOA&D can yield a number of benefits [Bau96]:

A better maintainability through simplified mapping to the problem domain, which provides for
less analysis effort, less complexity in system design, and easier verification by the user.

The possibility to reuse the design artifacts, which saves time and costs.

Productivity gains through direct mapping to features of Object-Oriented Programming
Languages.

Many OOD methods have been described since the late 1980s. The most popular OOA&D
methods include Booch, Rumbaugh OMT (Object Modeling Technique), Jacobson Objectory,
Coad/Y ourdon and Shlaer-Méllor. Since late 1990s, however, UML (Unified Modeling Language)
is emerging as the defacto standard for OOA&D. For the analysis and design of real-time systems,
UML-RT (UML Real Time) has some more problems for getting established.

The UML and standard notation has the formal support of the Object Management Group
(OMG) and its various member companies. It's important to realize, however, that the UML is
only a standard notation. Essentidly, it defines a number of diagrams that you can draw to
describe a system, and describes what these diagrams mean. It does not prescribe the process to
use to go about building software. Such a process description, or method, would include a list of
tasks that need to be done, what order they should be done in, the deliverables produced, the
kinds of skills required for each task etc. The origina methodologies consist of both notations and
a method.

The idea is that by standardizing on the notation, software developers can better communicate
providing all the deliverables in a method will use the UML. However, different groups are free to
use whichever method they want to use to actually go about building software. Several methods
have been proposed that use the UML. Rationa has published its Unified Process [JBR99],
strongly based on the work of Ivar Jacobson [Jac94]. HP's Fusion [CAB94] method is another
method that is widely talked about.

The UML contains so many different diagrams that one needs to decide which are appropriate for
the problem a hand.

Use Case Diagrams

34 Kurt Verschaeve

Static Structure Diagrams. Object Diagrams, Class Diagrams

Interaction Diagrams. Sequence Diagrams, Collaboration Diagrams
State Diagrams

Activity Diagrams

Implementation Diagrams. Component Diagrams, Deployment Diagrams

In the context of UML-SDL round-trip engineering, we only use the class diagram and state
diagram. However, when used in a complete process, other diagrams are used throughout the
development process. During analysis, use case diagrams and sequence diagrams are important.
During design, sequence diagrams and collaboration diagrams help finding the communication
between classes and form a convenient starting point to model state diagrams.

Software Engineering Context 35

1.5 SDL asaFormal Specification Language

This section gives a short ntroduction on SDL as a Formal Specification Language. After some
genera background information, we present a mini tutorial for SDL. This tutorial explains the
minimum that the readers should know about SDL to understand the rest of the dissertation.

SDL (Specification and Description Language) is a standard language for the specification and
description of systems. It has been standardized as ITU (International Telecommunication Union)
Recommendation Z.100. SDL is a general-purpose description language for communicating
systems. Although SDL iswidely used in the telecommunications field, it is aso nhow being applied
to a diverse number of other areas ranging over aircraft, train control, medical and packaging
systems. The key features of the language are:

suitability for rea-time, stimulus-response systems;

presentation in a graphical form,

amodel based on communicating processes (extended finite state machines)

object oriented description of SDL components;

the ahility to be used as a wide spectrum language from requirements to implementation.

The language has been evolving since the first Z.100 recommendation in 1980 with updates in
1984, 1988, 1992, 1996 and 1999. Object Oriented features were included in the language in
1992. This was extended in the latest version (SDL-2000) to give better support for object
modeling and for code generation. Today SDL is a complete language in al senses. As this
dissertation reflects the research done until the end of 1999, our round-trip engineering is based on
SDL’'96. The impact of SDL-2000 on the round-trip engineering, which is positive, is discussed in
section VI 3.1.

I 5.1 Benefits of a Specification Language

It is widely accepted that the key to successfully developing a system is to produce a thorough
system specification and design. This task requires a suitable specification language, satisfying the
following needs:

awd|-defined set of concepts

unambiguous, clear, precise, and concise specifications

athorough and accurate basis for analyzing specifications

a basis for determining whether or not an implementation conforms to the specifications

a basis for determining the consistency of specifications

computer support for generating applications without the need for the traditional coding phase

SDL has been defined to meet these demands. It is a graphica specification language that is both
formal and object-oriented. The language is able to describe the structure, behavior, and data of
rea-time and distributed communicating systems with a mathematical rigor that eiminates

36 Kurt Verschaeve

ambiguities and guarantees system integrity. It has a graphic syntax that is extremdy intuitive.
Even an SDL layman can quickly obtain an overview of a system's structure and behavior. The
most important characteristic of SDL is its formality. The semantics behind each symbol and
concept are precisaly defined. Above all, the great strength of SDL lies in describing large real-
time systems [BH93].

[1 52 Mini Tutorial

In this section, we present a short tutorial for SDL. We discuss only the most common SDL
congtructs. Together with the example in chapter |V, this should give enough information for the
readers to understand the technical work in de rest of the dissertation. We distinguish four
concepts of importance in SDL in more detail: architecture, behavior, communication and data.

11.5.2.1 Architecture

The architecture describes the static structure of a system. The system is the highest level in the
structure. Everything outside the system level belongs to the environment. The blocks are used to
partition the system into smaller parts. In this way, the readability of the specification is increased,
especially when large systems are specified. The package is another structural feature that
contains declarations and definitions similar to a system, but does not have its own scope. The
contents of a package can be imported by a system or another package.

A block must contain either one or more blocks or one or more processes. Blocks and processes
must not be mixed in one block. A hierarchical structure is created with blocks in blocks.
Processes describe the behavior of the system.

SDL contains language concepts covering the four basic concepts of object orientation (identity,
classification, polymorphism and inheritance). What in traditional object orientation is called a
class is in SDL cdled a type, and objects are in SDL caled instances. Systems, blocks and
processes can al be classified in types. system type, block type and process type. Type
specifications do not follow the conventiona scoping rules, e.g. a process type can be defined on
system level and process types and bock types can be mixed within the same scope. A type
specification has to be instantiated before it can be used. Typically, one or more block or process
specifications are placed in a package or a system level and instantiated in a system. Figure 11-3
illustrates the use of the most common SDL structures and structured types.

Software Engineering Context 37

use myPackage;

system mySystem

myBlockInstance:
myBlockType

package myPackage block normalBlock

procinstance:
myProcType

myBlockType [myProcType

Figurell-3. SDL structuresand structure types

11.5.2.2 Behavior

Dynamic behavior is described by processes. Processes execute in parallel and are independent of
each other. This means that the status in one process is not known by the other processes in the

system.

Processes are defined in the static specification. During run-time when a system is executing,
instances from that definition are created. More than one instance of a process can exists at the
same time during run-time. Process instances can be created at system startup or created and
terminated dynamically at run-time. In Figure 11-4, “init” is the initial number of instances at
startup and “max” is the maximum number of instances that can exist a the same time during
execution.

ProcessName
(init, max)

Figure I1-4. Process Definition

The model used to describe behavior in processes is the finite state machine (FSM). An FSM
consists of states, the example shown at the left hand side of Figure 11-5 has two states A and B.
Going from one state to another is called a transition. A transition between two states is made
after a stimulus has been received. In the example, the state machine is waiting in state A and
when stiml is received, the transition to B is made. During the transition a number of actions are
performed, in the example a response repsl is send and a is assigned a value. Now the state
machine is waiting in state B. If no stimulus is received, then the state machine is inactive, waiting
in a state. When a finite state machine is executed, the initia state must be known. Therefore,
each FSM contains a start transition, which must not contain a stimulus. The start transition is
fired automatically when the FSM is executed.

38 Kurt Verschaeve

stiml stim2 <

stiml/ stim2/ | |

"respl; action
a=5 e respl > | action’

W C¢)(A|)(B>
e

N

Figurell-5. Example FSM and the equivalent in SDL

A process is a finite state machine extended with data and communication. Figure 11-5 shows an
FSM and the equivalent state machine in SDL notation. The process consists of two states A and
B. State A is defined as the start state. The stimuli in SDL are caled signals. The only way to
leave a date is to receive a signa, also called an input signa. When the signal is received, the
transition is initiated. During the transition, actions can be executed. In the first transition of the
example, a signal is sent out. The next state defines the end of the transition and which state to
enter next. Most of the time, an SDL process is waiting in a state.

The body of the transitions can contain a wide range of actions. The graphical counterparts of
each of the constructs are shown in Figure 11-6. The decision construct is used to split atransition
into two or more branches depending on some condition. Outputs are used to send signals and
possibly contained values as parameters to other processes, thereby providing a mechanism of
communication between processes. Additional information on the destination of the signal can be
specified: to for a specific destination and via for sending the signal through a gate or signal route.
A task is used to assign a new value to a variable. The call construct is used to cal a procedure
with an optional list of actual parameters. The create construct alows a process instance to create
another process instance in the same block. The stop construct terminates the process instance,
thereby freeing its variables from memory. With the comment structure, a textual documentation
can be added and attached to a symbol.

valuel else
Output VIA G task := true create
comment on
(B) call(par) stop symbol

D

Figurell-6. Transition showing the basic behavioral features

Software Engineering Context 39

11.5.2.3 Communication

Processes communicate with discrete signals. Communication in SDL is asynchronous, which
means that the sending process continues executing without waiting for an acknowledgment from
the receiving process.

Signals are defined in a text symbol, as shown in Figure 11-7. A signal defined at system level can
be used in the whole system. If this is not necessary, the signals are better defined in the block
where they are used. The signals can then be used by blocks and processes contained in the
structure and by the block itself.

signal SendMessage;

signal sig1(Charstring);
signal sig2;

Figurell-7. Text symbolswith signals declarations

Channels define the communication path through which blocks communicate with each other or
with the environment. Communication with the environment takes place by connecting a channel
or signa route with the outer frame of the block. Adjacent to the channel arrow, the signals that
can travel on the channel in the arow direction are stated within sgquare brackets. Signal routes
define the communication path through which processes communicate with other or with the
block level above. To connect a signal route with a channel, the name of the channel is stated
outside the frame; see Figure 11-8 for an example.

system X
channelnamel block Y channelname2
[signal1] [signal2] [signal3]
block Y

1 route2
channelnamel TOUte process Z > channelname2
[signal1] [signal2] [signTIS]

FigureIl-8. Connecting Channel and Signal Routes

11.5.2.4 Data

A process can use data stored in variables. Variables can only be defined in processes. Variables
are declared with the keyword DCL. The exchange of values between processes is performed by
means of a parameters passing mechanism, i.e. values are send aong with signals.

40 Kurt Verschaeve

newtype NameArraySort
String(charstring, emptylist)
endnewtype NameArraySort;

DCL names NameArraySort;
DCL text charstring;

Figurel1-9. Newtype and Variable Declaration

SDL provides a powerful method to define data types. The model for SDL data representation is
the abstract data type (ADT). Data is represented in terms of values and behavior. The predefined
data types are: integer, natural, real, boolean, character, charstring, Pld, duration and time. A new
data type (called sort in SDL) is defined with the NEWTY PE construct, e.g. see Figure 11-9. A
number of sort generators alow building sorts that are more advanced: structure sort, array sort,
enumeration sort, etc. In an enumeration sort, the literals define the values that can be assigned to
avariable of that sort.

I1l. UML-SDL ROUND-TRIP ENGINEERING
METHODOLOGY

“You're either part of the solution or part of the problem.”

- Eldridge Cleaver

42 Kurt Verschaeve

[Il1.1 Introduction

In this chapter, we look at the round-trip engineering from a methodological point of view. We
give an informal overview on the mapping of UML and SDL concepts. We describe the phases in
the round-trip process and position it into the whole life-cycle.

UML and SDL share a number of qualities, like having a graphical notation, good readability and
good tool support. They aso incorporate object orientation and state machines, which make UML
and SDL siitable to work together. Nevertheless, each of them aso has enough advantages to
make it worthwhile to use them both in one methodology. Section Ill. 2 provides a
comprehensible description of how UML and SDL concepts relate to each other. The trandlation
rules defined in chapter V give an exact definition of how a UML modd is trandated, but it is
difficult to get a picture of the trandation by reading them. The mappings given below are
consistent with these definitions and are easy to read and understand.

Section 111. 3 gives an overview of the subsequent phases in the round-trip engineering process
when performing severa iterations. The full example in chapter |V is developed by following
exactly this process. The process and mapping description together, provides the necessary
background to read and comprehend the formal definition of trandation rules in chapter V.

Section 111. 4 discusses how the UML-SDL round-trip process fits into the whole life-cycle. The
UML-SDL round-trip engineering in itself is not a complete methodology. The notation and
process described in this dissertation must be integrated into a larger methodology. In this section,
we propose three scenarios of how UML and SDL can be combined: forward engineering, reverse
engineering and round-trip engineering.

UML-SDL Round-Trip Engineering Methodology 43

I11.2 Mapping of UML and SDL Concepts

This section contains a comprehensible overview of the mapping of UML and SDL concepts. It
assumes that the reader has reasonably knowledge in UML, as well has a basic understanding of
the concepts of the SDL.

The section starts with the mapping of classes and their relationships. Classes with different
stereotypes have different mappings. The relationships are associations, aggregations and
inheritance, which describes communication structures, hierarchies and inheritance relationships.
The last part of the section describes the mapping between UML state charts and SDL process
behaviour descriptions.

11 21 Mapping of Static Structure

The basic building blocks of a UML model are packages and classes, where the classes represent
the active components. Several stereotypes have been defined to give classes various semantics.
These stereotypes are «block», «process», «actor» and «newtype». A class in UML without a
stereotype is by default transformed into a process; or into a block if the class has a component by

aggregation.

In SDL, the basic building blocks of a system are packages, blocks and processes. Blocks and
processes also have a typed version, i.e. block type and process type. For this reason, «blocks»
and «process» class can define a property called typed. A class with the typed property set to
true, is said to be atyped class and maps on a block type or process type. The default value of the
typed property depends on the globa trandation options and on restriction in the model. For
example, aclassinvolved in a generdization relationship is aways typed.

A class with stereotype «actor» represents an active entity outside the system. In terms of SDL,
this corresponds with communication with the environment of the system. A class with stereotype
«newtype», finaly, represents an abstract data type and maps on an SDL newtype. This gives us
the mapping table shown in Table Il1-1. Figure I11-1 shows an abstract UML model with the
mapped SDL system. The class C1 is typed and is mapped on the process type C1. The class
User with stereotype «actor» is mapped only indirectly through the association as, which is
mapped on the channel that going to the environment.

UML SDL

Model Specification
Package Package/System
Non-typed «block» class Block

Typed «block» class Block Type
Non-typed «process» class | Process

Typed «process» class Process Type
«newtype» class Newtype definition
«actor» class Environment

Tablel11-1. Mapping of basic structures

44 Kurt Verschaeve

«block» «block» endnewtype Dat
A B

i
«process» «process» .
Cltyped C2 a Cl.C1
block A

T «actor» Jas
«ggvtype) User aCl:C1 as |8 Cc2

Data

s stem Sys
¥ newtype Data; T
a

Figurelll-1. Example of Structural Mapping

Another aspect of the static structure is the relationship between classes. Basically, associations
map on communication in SDL and aggregation maps on nested structure. In fact, things are a bit
more complicated than this, because on the UML side the semantics of the aggregations depends
on the kind of component and on the SDL side we have different possibilities to allow
communication. Table I11-2 shows an overview of the mapping of the relationships. In Figure
I11-2, the typed class C1 is a component of classes A and B and therefore. Both aggregations are
mapped on a type-based process. In the case of class C2, the aggregation makes the mapped
process appear in block B, but does not have a mapping on its own.

UML Concept SDL Mapping

Aggregation to typed class Type based instance
Aggregation to non-typed class Scope of definition

Aggregation to «newtype» class Variable declaration
Generdlization Inheritance

Association between «process» classes Pld pointer

Association to «process» class Signa Route and/or Pid variable
Association to «block» class Channel(s)

Role of association to typed class Gate

List of Operations Sgnd ligt

Table I11-2. Mapping of UML relationships

The mapping of communication needs some eaboration. The basic rule is that for every
association between two non-abstract classes, there must be a communication route between the
corresponding processes. However, this can be achieved in different ways. For two processes in
the same block, there is no problem, the association maps on one single signal route between the
two processes. But in order to connect two processes n a different block, we need two partia
signal routes (i.e. signa routes to the environment) and a number of channels connecting the two
signal routes. In order to maintain readability in larger systems, channels are merged as much as
possible. See Figure 111-2 for an example of merged channels. The channel assoc generated
between block A and block B is reused to connect the signal routes assoc3 and assoc4.

UML-SDL Round-Trip Engineering Methodology

45

A assoc B
! I
Al assoc3 B1
assocl assoc2
A2 | assoc4 B2

block A

processAl

process A2

Figurelll-2. Translation of Communication

1l 22 Mapping of Declarations

Other aspects of the mapping are the signal, type and variable declarations. Operations with
stereotype «signa» maps on a signal declaration. For each class, a signal list is generated that
contains all the signals of the class. Operations with stereotype «procedure» maps on an SDL
procedure definition. By default, operations with a return type get the stereotype «procedure» and
operations without a return type get the «signal» stereotype. Attributes of active classes map on

SDL variable declarations. Table 111-3 gives an overview of the declaration mappings.

UML Concept SDL Mapping
«signal» Operation Signd definition
Set of Operations Sgnd ligt
Attribute Process Variable
Public Exported & Remote

«procedure» Operation
- Private Operation
Public Operation
NA
Parameter

Procedure Definition
Local Procedure Def.
Exported Procedure Def.
Remote Procedure Def.
Formal Parameter

TableI11-3. Mapping of Declarations

11 23 Mapping of State charts

The mapping of UML state diagrams on SDL state diagrams is rather straightforward, except for
nested state diagrams and entry and exit actions.

UML Concept SDL Mapping

State Diagram Final State Machine

Initid State Start

State State

Fina State Stop

Nested State Diagram State lists and/or Flattening
Submachine State Procedure & Procedure Call
Entry/Exit Action Action on Transition
Outgoing Transition Transition

46 Kurt Verschaeve

Internal Transition Transition to —
Output Event (Destination) Qutput Signal (To Pid)
Action Action

Tablell1-4. Mapping of state chartsitems

Nested State Diagrams

The UML state diagrams include the notion of nested hierarchical states. This concept is inherited
from the Harel statecharts [Har87]. Basically it means that a state can contain substates and while
being in a substate, the state machine will aso fire trangitions originating from the superstate. In
the current version of SDL, nested states are not available, but SDL has the notion of statelists. A
transition can be added to several states at the same time by listing the states in the state symbol.

It can be shown that a hierarchica UML state diagram can be correctly trandated to SDL using
statelists when none of the substates have exit actions. In the other case, the substates containing
exit actions, must be excluded from the statelist and get a duplication of al the transitions. Figure
[11-3 shows an example of a nested state diagram in UML and SDL. Note that, unlike the exit
action, the entry action in state Sub2, does not cause the duplication of transitions.

“ C ;)(Sé‘u"fi‘) { >)
| (m)ml< v {
X

X

Super

evl Sub2
Subl entry/actionl
exit/action2
ev2 X(:

y

Figurelll-3. Flattening a State Diagram with Entry & Exit actions

UML differentiates between six events, each of which has a different mapping as shown in Table
[11-5. In UML, an event is what triggers a transition. There is always exactly one event for each
transition, possibly guarded with a guard-condition. Please refer to the UML semantics definition
for a comprehensive explanation of all different events.

UML Event SDL Mapping

Call Event RPC input

Guard on Event Enabling Condition
Change Event (e.g. [x < 10]) Continuous Signal
Time Event (e.g. after 5 sec) Action on Transition
Signal Event Input

Empty Event (or lambda transition) Spontaneous Transition
Deferred Event (within state) Save (Signa / RPC)

Tablel11-5. Mapping of Events

In UML, an action is anything that happens on a transition. Compared to OMT, UML
differentiates between many kinds of actions, which makes it easy to achieve a detailed mapping,
see Table I11-6.

UML-SDL Round-Trip Engineering Methodology

a7

UML Action SDL Mapping
Send : Marget.event(parameter) Output event(parameter) TO
target
Cal Procedure Call
Create Create
Terminate Stop
Uninterpreted SDL Expression
With “:=" Assignment
With “cal” Procedure cdll
Other TASK "’

Tablel11-6. Mapping of Action

A number of UML concepts cannot be mapped to SDL because there is no equivaent and it
would be too awkward to trandate them. First, there are the history and deep-history states.
Trandating the history state to SDL would require duplicating the complete state diagram, which
is unacceptable. Second, there are the concurrent and non-concurrent composite states.
Composite states introduce concurrency within one class, but it isimpossible to have concurrency
in one SDL process. Related to this the fork and join states are not mapped either. If either of
these constructs appear in a state diagram, they are simply ignored. For afull trandation, the state
diagram must be refactored without using the unsupported constructs.

On the other side, there are a lot of SDL constructs that cannot be expressed in UML. For
example the body of a newtype declaration, connection of multiple channels, timers in general and
priority dgnals. There is one SDL feature that is particularly difficult to trandate, namely the join.
The join, together with the decision, allows one transition to have different paths and merge after
some actions. For a correct reverse engineering from SDL back to UML, all actions after the join
must be duplicated, resulting in a many on one mapping.

48 Kurt Verschaeve

I11. 3 Incremental Round-Trip Engineering

In this section, we explain the basic principles of our round-trip engineering approach. It gives a
comprehensible view on the incremental round-trip engineering process defined in chapter V. The
mapping definition, given in the previous section, forms the basis for a trandation from UML to
SDL and the other way round and for tool support for synchronizing a UML model and an SDL
specification. Because the mapping is not a strict one-on-one mapping, traditional round-trip
engineering solutions cannot be used. Instead, we use a set of trandation rules that define how
changes in UML mode are trandated into changes in the SDL specification and the other way-
around. Some examples of possible changes are: new class, rename operation, delete association,
etc. These changes are automatically detected, trandated to SDL (or UML) and applied locally on
the specification with maximal preservation of detailed design changes in SDL. Hierarchical links
between UML and SDL syntactic elements provide the context in the SDL system where to apply
changes. The “new class’ change, for example, is trandated by adding a block or a process to the
block that is linked with the aggregate of the new class. Other information available in the parent
block is kept untouched, including the graphical layout.

O System Dedign

UML

® Sygem
?)yaign 2 || DL
B s ©) Deta_iled
DsbL Design

D sbL

Figurelll-4. Successive | terations

Figure 111-4 depicts the first few phases in the round-trip engineering process. It consists of
successive executions of forward incremental translation and reverse incremental tranglation. The
round-trip engineering always starts with a more or less complete UML model @. In other words,
it is currently not possible to start the process by reverse engineering an existing SDL
specification. The class and state diagrams of UML model are trandated into a full SDL
specification @. Because the trandlation is defined in the form of changes, the first UML model is
virtually compared with an empty model, such that al entities in the model are considered “new”.
During detailed design, the generated SDL specification is further refined . Detailed design
includes refactoring the generated SDL, as well as adding new functionality. Next, the changes
made in SDL are detected by comparing it with the original SDL specification and translated back
to UML @. Similarly, the updated UML model is improved during system design ® after which
the changes are detected and translated to SDL ®. In order to alow incremena trandation of

UML-SDL Round-Trip Engineering Methodology 49

changes, the corresponding enties in the UML model and SDL specification are linked with each
other.

The agorithm that compares two models looks for new entities, deleted entities and matched
entities based on the entities' ungiue identifiers. An entity that is present in the new model but not
in the old modd is trandated as a “new” entity. An entity that is present in the old model but not
in the old modél is trandated as a “deleted” entity, usualy by deleting the linked entities on the
other side. An entity that is present in both models is said to “match”. The attributes of matching
entities, such as name and type, are futher compared in the trandation rules. In this sence, the
trand ation rules themselves also perform a part of the comparison.

50 Kurt Verschaeve

[11.4 Three Scenario’sfor combining UML and SDL’96

The UML-SDL round-trip engineering process alternates between system design and detailed
design. However, these two phases do not make a full life-cycle. The round-trip engineering
should be fit into a larger methodology. In this section, we describe three different scenarios how
the UML/SDL translation can be embedded:

1. Forward Engineering: This scenario is followed for new projects. The requirements analysis
and system design is done in UML. The system design model is then trandlated to SDL, where
the development continues with the round-trip scenario.

2. Reverse Engineering: This scenario is followed in the case that there is aready an SDL
specification available. The specification is transated to UML, either for documentation
purposes or for reengineer purposes. Altough the same mappings can be used, the current set
of trandation rules do not support the reverse engineering of afull SDL specification.

3. Round-trip Engineering: After either scenario 1 or 2, there is UML and SDL available for the
same system. From then on the two models are kept synchronous by forwarding the changes
made on the other side.

11 41 Forward Engineering

In this first scenario, the developer starts building a new system in UML, which offers many
advantages to start building a system from scratch. Figure I11-5 shows an overview of the
activitiesin this scenario.

The set of external objects and their interaction with the system form the basis for the
requirements analysis of the system [Dou98]. Use-case diagrams and collaboration diagrams are
especialy suited for this task. These, together with sequence diagrams, allow a smooth transition
to system analysis.

Q/;MNCOHCE tual
Use-Cas€ Requirements p

Analysis Model

State UML Static
System

Dlagramwalyjis/&agrams
Sequence / \
Diagram State UML Static

Diagramg, System Design s Diagrams

Ty

Detailed
’\Desi‘gy

Figurell1-5. Forward Engineering Scenario

UML-SDL Round-Trip Engineering Methodology 51

The goal of system analysis is a static and behavior model of all the important components in the
system. Starting from the requirements, the analyst must identify the key objects and classes and
their relationships within the system. Using the first set of classes, a sequence diagrams is made
for a number of use-cases, possibly detecting missing classes. The classes can also be extended
with operations now; each message the class needs to understand becomes an operation.

The last step before the trandation to SDL is system design. Still alot of design decisions need to
be taken here. Firgt, the classes need to be grouped into subsystems and packages can be split. All
attributes and operation parameters must be given a type and undefined types must be defined. If
state charts are used, al concepts that cannot be trandated, like history states and concurrency,
must be diminated. It also matches the signals that are sent in any state diagrams with the
«signal» operations in other classes.

During detailed design, the developer can continue development based on the generated SDL.
Typicaly this encompasses activities like —but not limited to— filling type declarations, improving
channd definitions, completing details on transitions, process initiaization, creating timers, adding
formal parameters, etc. In other words, detailed design adds everything in SDL that cannot be
expressed in UML. Note that this is more than only filling in the details; it is a continuation of the
design.

At this stage, we enter the round-trip scenario because we have a UML model and an SDL
specification of the same system. From hereof, most changes one side can automaticaly be
reflected on the other side. Please see section 111 4.3 for the continuation of the development life

cycle.

11 42 ReverseEngineering

The primary reason to reverse engineer an SDL system is to get a different, more abstract view
on the system. This view can either be used as documentation to give better insights into the
system or as a basis to refactor, restructure or reengineer the SDL system. The main advantages
of using UML for reverse engineering is that it allows multiple views on the same information and
that it incorporates other diagrams that can help documenting the system. The current set of
tranglation rules do not support the reverse engineering of a full SDL specification. Nevertheless,
we briefly discuss two possible reverse engineering scenarios. Figure I11-6 shows an overview of
both scenarios.

[11.42.1 Reverse Engineering for Documentation

If the UML serves for documentation purposes, the developer chooses some parts of the SDL
specification and gets the UML view of that part. He could extend the UML model with
collaboration diagrams, sequence diagrams to make his insights explicit and available to other
developers. When a large part of the development time is spent on reading the specifications,
creating documentation in thisway is a big asset.

52 Kurt Verschaeve

Documentation
- Package Diagram
- Class Diagrams
- State Diagrams

Refactor

Edit

Generate I [

SDL Specifiation
- Structure & Dcl
- State Machines

Feedback————

Figurelll-6. Reverse Engineering for Documentation

11.4.2.2 Reverse Engineering for Round-trip Engineering

In this case, the developer intends to make modification to the SDL system based on the UML
model. The kind of the modifications can vary from behavior preserving refactoring to tota
restructuring for re-engineering.

For this purpose, the complete SDL specification is reverse-engineered to UML. Although some
round-trip support could be given on partiddl UML modéls, it would be very error prone because
there is no context information about signals, declarations, packages, etc. Therefor the entire SDL
specification is trandated as complete as possible. The developer then improves the generated
diagrams and creates more diagrams for specific views on the system. Now we have a UML
model of our system, so we can continue with the round-trip scenario in section 111 4.3,

11 43 Round-trip Engineering

In this scenario, the developer adready has an UML and SDL model of his system and he would
like to keep them synchronized. In this way, he profits from the advantages of UML and SDL
during the whole devel opment and maintenance life cycle.

The main advantages of UML in a round-trip scenario is that it alows multiple views on the
system and thus can give an abstract view on the system as well as the details on certain topics
and relationships between classes in different sub-systems. It is also easier to make structural
changes, because there are fewer limitations in how you can edit. In addition, the developer can
till use al the UML diagrams to extend the requirements or continue the system analysis.

The main issue in round-trip engineering is of course that no matter which model is modified, the
common information in both models is kept up to date. Although any dhange may be made in
either model, there is a difference in the typica changes you make in UML or SDL. Figure I11-7
shows the interaction between the different activities during round-trip engineering.

UML-SDL Round-Trip Engineering Methodology 53

Edit

A

Requirements (UML
- Use-Cases

- Sequence Diagrams
- CollaborationDiagra

System Design
- Package Diagram

- Class Diagrams

- State Diagrams

f

SDL Specifiation
- Structure & Dcl
- State Machines

\/—\

Simulate

Simulation
- Source Code
- Test Cases

Figurelll-7. Information flow during Round-Trip Engineering

UML is better suited for high level changes. For example, for new requirements, you start creating
one or more use cases and examine how it influences the class model and state diagram.
Alternatively, as the system become bigger, it is probably a good idea to restructure the system on
the analysis level. In addition, new design insight might lead you to refactor the class and state
diagram, e.g. splitting a class in two classes or applying a design pattern.

SDL is better suited to get all the details right. The first goal is usualy to make the SDL
specification ready for smulation. First of all, the things that could not be expressed in UML are
added, e.g. timers, sorts specification, creation of process and Pid handling. The generated SDL
specification can aso be optimized from an SDL point of view, e.g. merging channels, moving
signal declarations, creating signal lists, etc. Most important, the SDL system can be simulated,
giving valuable feedback to the design and implementation. By observing the running system, you
will find errors, missing parts or extra requirements, making the circle round.

V. EXAMPLE

"There are two ways of constructing a software design: Oneway is
to make it so simple that there are obviously no deficiencies, and
the other way is to make it so complicated that there are no
obvious deficiencies. The first method is far more difficult.”

-C.A.R. Hoare

"Things turn out best for the people that make the best of the way
thingsturn out."

-John Wooden-

56 Kurt Verschaeve

V.1 Introduction

This chapter demonstrates the UML-SDL round-trip engineering process by following two
iterations in the development of the toffee vendor example (presented in [EHS97]). The main
purpose of this chapter is to explain the concepts of this dissertation in an intuitive way. While the
extensive list of trandation rules of chapter V are hard to read and comprehend, it is easy to
understand this concrete example. We start with a UML design model of a simplified version of
the toffee vendor and explain the specific use of UML during system design. Then we trandate
the UML modd into an SDL specification as a one-shot trandation and explain the different
elements of the generated SDL specification and how the generated SDL is linked with the UML
model elements. Next, we aternately make improvements to the system in UML and in SDL and
show how it affects the other model. The changes are chosen as to illustrate many different
features of the round-trip engineering. We show that, in some particular cases, the input of the
user is necessary to perform the transation of changes.

The toffee vendor used in our example is taken from [EHS97] and adapted for our needs. In our
initial version, the user starts by chooses an item (chocolate, coffee or gum). The system checks
whether the requested item is till available. If so, the coin dot is opened and the price is displayed
for that particular item. Then the user starts inserting coins. Every time a coin is inserted, the
displayed price is updated to reflect the amount due. Once the full price is paid, the requested item
is delivered. Figure V-1 shows the sequence diagram for buying a chocolate. In the initial version,
nothing is provided for any exceptional cases; nor does the user get any change back if he pays
too much. New features are added in the sections below.

i Toffee
Vendor

User
Choise
(Chocolate) >
| Open Coin Slot]
< Price(60)
coin50 >
< Price(10)
coinl0 >
[Close Coin Slot|
< Chocolate

FigurelV-1: Typical use of Toffee Vendor.

Example 57

V.2 System Design

We start the round-trip engineering process of the toffee vendor by presenting the initial system
design model in UML. The system design model consists of a class diagram and three state
diagrams. System design is in it selve again an iterative process between modeling the class
diagram, state diagrams and inspecting the generated SDL code. Here, we start with afirst version
of the class diagram that does not take the translator specific issues into account. Next, we show
the state diagrams for the three active classes. The SDL system generated from this model is not
satisfactory; therefore, we revisit the class diagram to fine-tune it toward the translator. Among
others, this means that all classes get a stereotype, associations get a name and all attributes and
parameters get a type definition.

IV 2.1 Class Diagram

We partition the behavior of the toffee vendor in three classes as shown in Figure IV-2. The
Coins class accepts the coins from the user and transforms it to an actual value for the controller.
The control class receives the order and keeps track of the amount due. The WareMgr (Ware
Manager) checks the availability of a specific article and delivers the ordered item when triggered
by the control class. The User class represents an active entity outside the system. Actors supply
stimuli for the system, but can also receive signals.

The operation declarations in the classes are used as signal input declarations. Each class should
declare all the signals it can receive as an operation and the parameters of the operation match the
parameters of the signal. For example, the Control class can receive four signals. The Choice
signa has one parameter to indicate the article the user has chosen. The signals Empty and
NonEmpty are sent by the Ware Mgr to indicate whether the requested item is available or not.
The Money signd, finaly, is sent by Coins whenever a coin is accepted. The parameter value of
the Money event indicates the value of the coin.

Coins Control Ware Mgr
box: Cont
Accept Choice(article) Exists(request)
Close Empty Paid
Coin10 NonEmpty
Coin50 Money(value:integer)
Coin100
User
Ware
Display(text:string)

FigurelV-2. Initial Class Diagram of Toffee Vendor

The default semantics of associations between two active classes when translating to SDL is
communication. It means that some or al instances of one class are able to exchange signals with

58 Kurt Verschaeve

some or al instances of the second class. The specific code generated from an association
depends on the trandation options. All associations in our example model communication. The
associations to the actor User denote communication of the system with its environment.

IV 2.2 State Diagrams

We now give some details about state diagrams of the three active classes. A UML class can have
one state diagram that describes the behavior of that class. It describes what actions are taken
given a certain state and stimulus. In trandation to SDL, most of the UML state diagram concepts
can be used, including entry and exit actions, output events, initial and terminal states and nested
state diagrams. However, many of these features are not available in SDL. Therefore, the UML
state diagram is flattened as part of the trandation.

Figure 1V-3 shows the state diagram of the Control class, which demonstrates many specia
features. Starting in the initiad idle state, the controller waits for the user to make his Choice. It
asks the ware manager to check the availability for the requested article by sending an Exists
signal. The ware manager responds with an Empty or NonEmpty signal. If the article is not empty,
the user can start paying. The payment state in has two entry actions. The first entry action is an
assignment, recognized by the *:=’, and initializes the cost for the article. The second entry action
Accept is an output event to Coins, because Coins declares it as an input event. The interna
transition Money decreases the cost every time a coin is inserted. The transition from payment to
idle is a guarded transition. Whenever the cost becomes zero or less, the ware manager is notified
that the article is paid and the control returns to the idle state.

Choice(article)/
"Ware Mgr.Exists(article)
idle contents
Empty
[cost<=0]/ NonEmpty
"Ware Mgr.Paid
payment
entry/cost:=value(article)
entry/"Accept
M oney/(coin)/cost:=cost-coin, Display(cost)
exit/"Close

Figure1V-3. State Diagram of the Control Class

Figure 1V-4 show the state diagrams of the classes Ware Mgr and Coins. The overall behavior of
the state diagrams is easy to understand. The ware manager checks for the availability of an item.
If it is available, it waits until it gets a Paid message and then delivers the item. The Coins class
accepts different coins and trandates them into a value that is manageable by the control class.

Example 59

Coin 10/Money(10)

finitialise
.\ box Exists(request

idle exists Coin 50/
o Accept Money(50)
[box(request)=0]/ closed " accept
Paid Empty < |
/box(request) := [box(request)>0] Close
box(request-1); /NonEmpty
Ware Coin 100/Money(100)

FigurelV-4. State Diagram of the Ware Manager and Coins

IV 2.3 Investigate Generated SDL

We investigate the SDL system generated from the UML diagrams as we modeled them until
now. Figure IV-5 shows the generated system, block and process structures. The system
ToffeeVendor contains four block instances (single rectangle) and four block types (double
rectangle). The WareMgr, Control and Coins block types contain a process with the same name.
There are two main problems with this structure. First of al, the User class is supposed to
represent the environment of the system and therefore does not need a block on its own. Second,
it is overkill to generate an extra block and block type for each process, certainly if we consider
the burden for extra communication routes.

ToffeeVendor

EL_J ToffeeVendor

—{ v] a_Coins: Coing
—{ v | a_Control : Control

Wy
oy
Wy
oy

—{ vy | a_User: User

ooy | a_WareMar : WareMgr

—CJ] User
YWiarehigr

4@@ Warehar
iZontrol

4@@ Cantrol

Zoins
Cnins

i

Figure1V-5. Structural overview of the generated SDL System

Figure 1V-6 shows a part of the generated signal and type declaration in the ToffeeVendor system.
Again, we find a number of undesirable specifications. The parameter of the signals Exists and
Choiceis a_request, while it should state the type of parameter. The reason is that the type is not
defined in the class diagram and default trandation for a missing parameter or variable type is to
prefix “a ” to the name. For the same reason the translator generates two new type declarations

60 Kurt Verschaeve

a request and a_article, while they should be the same type. These incorrect types are also used
as type for the variable declarations in the processes.

SYSTEM ToffeeVendor DefinitionFPage(1)

MEWTYPE Cont
EMDMEWTYPE Cont;

SIGNAL Ware; MEWTYPE a_request

SIGRAL Display (charstring);

SIGMALLIST Lser =\Ware, Display; EMDMEWTYFE a_request;

SIGKAL Exists {a_request); MEWTYFE a_article

SIGKAL Paid;

SIGNALLIST WarelMgr = Exists, Paid, EMDMNEWTYPE a_atticle;

SIGRHAL Choice_ (a_aricle);

FigureIV-6. Declarationsin the ToffeeVendor System

IV 2.4 Class Diagram Revisited

The problems found by investigating the generated SDL could be solved directly in SDL.
However, this would require making updates on many different places. After regrouping the
processes and deleting the User block and block type, amost al channels and signal routes would
need to be rewired. After renaming the new types, al parameters and variables using he type
need to be updated.

Before touching the generated SDL, we first improve the UML class diagram. In genera, one will
continue working on the UML mode until the generated SDL looks right at first glance. The
round-trip engineering process benefits from a stable starting point. Figure IV-7 shows the
improved class diagram of the toffee vendor example. First of al, we fill in the stereotypes of al
classes. The stereotype of a class is important information for the translator. The Coins and
Control classes get the stereotype «process» and are grouped together in the «block» Dialogue.
The process for ware manager is kept separate. The User class has the stereotype «actor», which
means that it represent an active entity outside the system. The two new classes Item and Cont
(from Contents) are abstract data structures, indicated by the «newtype» stereotype. They are
used as the type for attributes and parameters in Control and Ware Mgr. In our modedl, Itemis an
enumerated type to represents the choice made by the user. Cont is dictionary table that stores the
amount of items available for each kind of item. We will fill in the exact details for this type in
SDL, because SDL provides the specific constructs to specify ADT’s. Some extra attributes that
are used during the execution of the state diagram are added to Control and Ware Mgr. For
example the article attribute of the Control class shown in Figure IV-7 is used to store the user’s
request.

Example

61

—

«block»
Dialogue

«process»
Coins

\

«process»
Control

Accept
Close
Coinl0
Coin50
Coinl100

pay

coin:integer
cost:integer
article: Iltem

«process»
Ware Mgr

box: Cont
request:ltem

Exists(request:Item)
Paid

ware control

Choice(article:Item)
Empty

NonEmpty
Money(value:integer)

outWare

«actor»

«newtype»
Cont

«nhewtype»
Item

User

Ware
Display(text: String)

FigurelV-7. Improved Class Diagram of Toffee Vendor

62 Kurt Verschaeve

V.3 Translating UML to SDL

The first step in iterating between UML and SDL is the generation of an SDL specification as a
base for detailed design. In order to use the incremental trandation rules, the UML model is
virtually compared with an empty UML modedl, i.e. al classes, attributes, states, etc. are all
trandated as new entities. These trandation rules are designed to generated readable SDL
specifications that are a good base for detailed design.

The trandation is adjustable by a number of parameters, depending on the purpose of the
generated SDL. For the toffee vendor example, we choose to generate a system (as opposed to a
package), as the application will run standalone and is not a part of a bigger system. We choose to
generate block types and process types to have more flexibility for future extensions. We choose
to generate signals globally because the system is rather small. Finally, we choose not to generate
PId variables, as no processes are created at run-time.

Here we present an outline of the translation rules and apply them to the Toffee Vendor example.
Before the actual trandation, the UML model is preprocessed to check for missing information or
inconsistencies. We divide the trandation itself into three parts. First, we generate the structura
objects of the SDL description. Then, the processes are interconnected with communication
routes and declarations are generated. Finaly, afinite state machine is generated for each process.

IV 3.1 UML Preprocessing

To assure a correct execution of the trandation rules, the UML model must first be preprocessed.
Although the class diagram of our example is quite complete already, a number of things need to
be done here. The Ware Mgr class has the stereotype «process», but it does not have an
agoregate. As this is not allowed, its stereotype is changed to «block». The association between
Coins and Control does not have a name. As a default, the names of the classes are appended to
form the name of the association, in this case Coins_Control. Moreover, none of the associations
has their roles defined. The processor therefore assigns the default roles are “G1”, “G2", etc.
Finaly, all spaces that occur in names are removed, so Ware Mgr becomes WareMgr.

IV 3.2 Hierarchical Structure

The classes and aggregations of an UML class diagram are trandated into a static SDL structure
specification. If the “generate types’ option is on, a class is trandated as a block type or process
type. An aggregation is then used to identify an instance of the block or process type. If a class
with stereotype «block» owns a state diagram, a process is created in the corresponding block.
Figure IV-8 shows the resulting hierarchical structure after trandating the class diagram of the
toffee vendor (Figure 1V-7). There are two block instances at system level, one for each top-leve
«block» class: a WareMgr and a_Diaogue. These are the default names for instances, formed by
prefixing "a ".

Example

63

Toffee'endor
ToffeeVendor

a_Dialogue : Dialogue
a_\WareMgr : VWareMgr

Warehigr

Warehgr
Dialogue
a_Coins : Coins
a_Control . Control

—{) Cortrol

) Coins

FigureV-8. Hierarchy View of the Generated System

IV 3.3 Declarationsand Communication

Signal declarations are an important aspect of an SDL system, as they form the only way of
communication. Each signal used within a process, either as input or as output signal, should have
a declaration within the scope of that process. An option of the trandation lets the developer
choose whether to put the signal declaration at system level or at the deepest block that is visible
to all processes that use the signal. The same holds for type declarations. In our example, we
choose to put al signals at system level.

Figure 1V-9 shows the signal and type declarations in the toffee vendor system. Note that, besides
the signal declarations, a signa list is created for each class that contains all the signas the class
can receive. These signal lists makes it much easier to maintain the SDL gecification manually,
because adding a signa only requires one update instead of many throughout the system. Two
empty newtype declarations are created for the «newtype» classes Item and Cont.

SYSTEM ToffeeVendor

L]

NEWTYPE Item

SIGNAL Ware;

SIGNAL Display (charstring);
SIGNALLIST User = Ware, Display;
SIGNAL Exists (Item);

SIGNAL Paid;

SIGNALLIST WareMgr = Exists, Paid;
SIGNAL Choice_ (Item);

SIGNAL Empty;

SIGNAL NonEmpty;

SIGNAL Money (integer);

SIGNAL Accept;
SIGNAL Close;
SIGNAL Coinl0;
SIGNAL Coin50;
SIGNAL Coin100;

SIGNALLIST Dialogue = empty;

SIGNALLIST Control = Choice_, Empty, NonEmpty, Money;

SIGNALLIST Coins = Accept, Close, Coin10, Coin50, Coin100;

ENDNEWTYPE Item;
NEWTYPE Cont

ENDNEWTYPE Cont

A\

WareMgr

Control

Dialogue

Coins

FigurelV-9. Signal and Type Declarationsin the Generated System

64 Kurt Verschaeve

Another important issue is to connect processes that communicate through channels and signa
routes. For every association between two classes, a communication path is generated between
the corresponding processes or process instances. Channels are generated to reroute the
communication path via the first common visible block. By default, the channels are made bi-
directional and hold the signal lists of the source process and destination process.

[(User)]
SYSTEM ToffeeVendor G1
[(Control)]
j BLOCK TYPE Dialogue
outWare G2 a_WareMgr : ri
[(User)] [(WareMgr)] WareMgr |
Gl G1 ware_control " -,
[(WareMgr)] [(Control)] a_Control : Control
(WareMgr) input
G1 G1 G3
[(Control)] Ware—coerI (User)] [(Control)]
i (Control)]
Gl Coins_Control]
(Coins)
e Gl a_Dialogue : G2
[(User)]in ut [(Comsﬂ Dialogue G1 pay | G1
b G1 (Usen) [(cmns)ﬂ a_Coins : Coins
[(User)] [(Control)] -
Figure1V-10. Block and Processing FigureIV-11. Process Interaction in
Interaction Dialogue Block Type

Figure 1V-10 shows the block interaction at the system level after having trandated the complete
UML model. The channel ware_control is the result of rerouting the association between the
classes Control and Ware_Mgr. The three other channels going to the environment are the result
of the associations to the User class.

IV 3.4 Finite State Machine

Each UML state diagram is trandated into a finite state machine (FSM). Both «process» and
«block» classes can contain a state diagram, making it an active class. The FSM s created in the
process that is generated from corresponding class. In the case of a «block» class, an additional
process is created in the block (type) that holds the FSM and the variable declarations.

Most constructs in an UML sate diagram can directly be mapped onto SDL. States and
transitions are equivalent in UML and SDL. Input events become input signals, output events
become output signals and guards become provided constructs. Concerning actions, we
differentiate four kinds of actions. assignment, output event, function call and informal text. Each
of them is automatically recognized and accordingly trandlated to SDL. The other UML state
diagram features are first convert to the basic features. Nested state diagrams are flattened before
the trandation. At the same time, entry and exit actions are moved onto the transitions. Figure
IV-12 shows the finite state machine after trandating the state diagram of the Control class shown
in Figure IV-3. Note that the entry actions of the payment state are put on the NonEmpty
transition and the exit action of the same state is put on the last transition.

Example

65

L

) (e)
F——

‘ payment

(=

G
|

Choice_
(article)

Empty <

NonEmpt)<

Money(coi< <cost<=0 >

A

NN

Exists - cost:= cost
(article) (waiting > alue(article) :=cost-coin Close >
Display Paid to
contents Accept
P > (cost WareMgr

DCL coin integer;
DCL cost integer;
DCL article Item;
DCL value integer;

) O (&)

FigureV-12. Generated FSM for Control_Process

IV 3.5 Linking UML and SDL modes

In order to perform incremental changes after the initial code generation, we maintain links
between the UML model and the SDL specification. All UML entities contain a number of
link-variables that are specifically used to link the SDL entities that are generated from the entity.
The set of link-variables depend on the UML entity. For example, a class is linked with the
generated signal list, block and process. An association is linked with al generated channels, signa
routes and gates. An operation is linked with the signal declaration, and so forth. The complete
definition of this process is presented in section V. 5 Figure 1V-13 illustrates the links built up
during the trandation of the toffee vendor. It shows a representative selection of entities of the
UML modd and SDL system in a hierarchical structure and the links between the corresponding
constructs. The Ware Mgr class, for example, has three links. the sgnal list, the block type and
the process.

The UML-SDL links are used during the incremental trandation to locate the entities that are
affected by the change. Suppose the Ware Mgr class is deleted, then the linked signal list, block
and process are removed. If an attribute is added to the class, then a variable is added to the
linked process. If the name of the class changes, then the linked entities are renamed too, etc.

66 Kurt Verschaeve

system ToffeeVendor

newtype ltem

signallist User

signallist WareMgr

model ToffeeVendor signal Choice_(Item)

class Item signallist Control
class User block type WareMgr
class Ware Mgr i -~ process WareMgr

class Dialogue signal routeware_control

gate G1
ck type Dialogue

aggr egation Control

aggr egation Coins

class Control processinstance a_Control

attributearticle processinstancea Coins

operation Choice signal routeware_control

stateidle process type Control |

|transition Choice variable article
stateidle

input Choice |

|send Exists /=

| association Ware_control|<:i\‘ _
o~ output Exists |

SN \‘\\‘| gate G2 |

~o block instance a WareMgr |

~. block instance a_Dialogue

channel ware_control

FigurelV-13. Hierarchical Links between UML and SDL

Example 67

V. 4 Detailed Design

If, after inspecting the generated SDL, the developer cannot or does not want to improve the
UML at this point, he/she starts detailed design. In other words, he/she starts modifying and
improving the generated SDL specification. On one hand, we lose the abstraction mechanisms of
UML, but on the other hand, we gain the features of SDL that allows one to exactly specify the
system. In this section, we discuss what typical detailed design embraces on the generated code
and how it might affect the iteration. As a general guideline, structural changes are better
performed in UML and local changes are better performed in SDL. Of course, a number of SDL
constructs do not have a counterpart in UML and therefore always need to be design in SDL.

IV 4.1 Structures

Typicaly, the very first task in SDL is to improve the layout of the block and process interactions.
For example, blocks are moved to avoid crossing channels or new declaration fields are created to
group entities that belong to each other. Actually, the figures shown in the previous section were
already modified in order to take less space. At the same time, superfluous declarations are
deleted and the rest is reorder and grouped.

At this point, the block and process structure is fine-tuned. Many SDL specific issues cannot be
expressed in UML and thus are performed during detailed design. In our example, we carry out
three structural changes: we convert the Dialogue block type into a block, we let the Control
process create a Coin process dynamically and we move the process types into the Dialogue
block. Each of these changes is explained in more detail below. Figure 1V-14 shows the resulting
structure hierarchy.

Toffeeendor
| | Toffee’endor

a_Warehlgr Warehgr

| Warehdgr
Wiarehgr

| | Dialogue

; Zaoin (0,1} Coins
Controller : Control
1] Control

1] Coins
Figure1V-14. System structure after Detailed Design

The choice whether to trandate classes as types or as definition is a global option and therefore
needs some fine-tuning during detailed design. In our example, the only purpose of the Dialogue
block type is to group the processes Control and Coins. We therefore transform the block type
Dialogue into a block definition and delete the block instance a_Dial ogue.

The default name for a type based block or process is the name of the type with "a " as prefix.
We give the process instances a_Control and a_Coin clearer names. Controller and Coin.

68 Kurt Verschaeve

Furthermore, we modify Coin such that one instance is created dynamically, in our case by
Controller. As a side effect, the Control process type needs the Coin process instance within his
scope level. We therefore move the Control and Coins process types in the Dialogue block. The
resulting structure is shown in Figure 1V-14.

[V 4.2 Communication and Declar ations

Wherever blocks or processes are moved or created, the channels and signal routes have to be
adapted accordingly. As a guideline, its better for the round-trip engineering process to reconnect
existing channels if possible. In this way, the link between the association and the channd is
retained. In our example, the type based Dialogue block is replaced by the Dialogue block
definition and all channels previously connected to the block instance are reconnected to the block
definition. Moving the Control and Coins process type to a different place does not have an
impact on the communication routes.

In the control process, we want more control over the destination of the signals it sends. To
access the coin process, which is created dynamically, we create a variable coins that stores the
Pld after creating the process. To access the ware manager, we rename the rename the gate G2 of
the Control process type into the more meaningful name Ware such that we can use it in a via
statement. The ware_control signd route is adapted to connect with the renamed gate. One more
change is to remove the signal list of the Dialogue block, which is never used.

A detailed design activity is filling in the newtype declarations. The trandator only handles
structural newtypes, while in our example, the Item newtype is an enumeration of literals and the
Cont newtype is an array. The specification of these two newtype is shown in Figure 1V-15.

NEWTYPE Item
literals toffee, chocolate, gum;
operators value: ltem -> integer;
ENDNEWTYPE Item;

NEWTYPE Cont
array(Item, integer)
ENDNEWTYPE Cont;

Figure1V-15. Detailed design of newtypes

IV 4.3 Dynamic Behavior

Adding detail to the process specification is probably the most important aspect of detailed design.
Here, issues like timers, addressing and switches are tackled. On the initia transition, processes
can be created and their addresses queried and stored. Output events can then be modified to send
signals to specific processes. Tasks can be added or improved. Transitions can be grouped
together using the decision constructs. In addition, error handling can easily be modeled in SDL
using the asterisk state and priority input constructs.

Figure 1V-16 shows the Control process of our example after detailed design. The gray areas
indicate the changes compared to Figure 1V-12. On the initial state transition a process Coins is
created, the output events have changed and the two transitions of the payment state have
merged. The state idle is renamed into waiting. The destination of the output signals is changed
from the class name into the correct Pld value or gate. Furthermore, a new procedure IntToString

Example 69

is added that converts an integer into a string. This procedure is called to convert the actua
parameter when outputting Display.

L. DCL coins PId;
waiting contents payment DCL coin integer:
DCL cost integer;
| | DCL article ltem;

; Choice~)
Coin (article) < Empty < NonEmpty< Money(c0|<
coins ;= Exists (articl waitin cost:= cost
offspring via Ware 9 value(article) :=cost-coin
i Accept to Display
(waiting) < contents > coins > (call IntToSgrihg(cost))

true
<>

false

IntToString (_) Close to >
coins

waiting

Figure1V-16. Control Process after Detailed Design

IV 4.4 Reverselteration

Before switching to system design in UML, the relevant detailed design changes are trandated to
the UML model. As the mgjor part of detailed design deals with SDL specific things, many of the
detailed design changes will not be trandated at al. The changes are detected by comparing the
previous version of the SDL system (in this case the generated SDL) with the last version. Entities
that appear in the old version and not in the new version are deleted. Entities that do not appear in
the old version, but do appear in the new version are added. Entities that appear in both versions
are compared to search for differences in name, type, scope, inheritance, etc. The comparison can
also be hand tuned, e.g. to join a delete and a new operation into a modify operation. Some more
details on the comparison and incremental trandation is given in the forward iteration step below.
The full definition is specified in chapter V.

Table V-1 shows the list of changes found in the SDL specification and the corresponding
trandation in UML. Note that in the first change, the structure link of the Dialogue class that
original pointed to a block type is updated to point to the Dialogue block definition.

SDL Change Trandated changein UML

Block Type Dialogue transformed to Block Class Dialogue becomes non-typed, update the

70

Kurt Verschaeve

structure link (ref. IV 3.5)

Block Instance Dialogue transformed to Block

No change (the aggregate defines the scope
instead of the instance)

Process instance Coin, number of instances | No change
changed
Process types Coins and Control moved No change

Process instances a Coins and a_Control
renamed to Coin and Controller

Rename role names of aggregations

Gate G2 of Control process type renamed to
Ware

Rename role of association ware_control

Channels ware _control, pay and
reconnected to Dialogue block

input~

No change (associations connected to the same
class)

Procedure IntToString added

Add operation to Control class

Implement newtypes

No change

Rename state idle into waiting

Rename the state

Action create Coin added to initial transition

Add informal action to initia transition

Action coins := offspring added to initid
transition

Add assignment action to initia transition

Signd outputs modified No change
Transitions from state payment merged (delete | Delete transition from payment to idle, but we
guarded transition. ask not to apply the change.

Table1V-1: Detailed design changesin SDL and translation in UML

Updating the UML model concludes the first iteration. The first iteration is a special case because
the incremental UML to SDL trandation actually generates a complete SDL specification. The
UML model is virtualy compared with an empty model such that all entities are considered new.
In the second step, i.e. detailed design in SDL, we mainly focus on the SDL specific issues.
Consequently, the reverse incremental trandation does not change alot at the UML side.

Example 71

V.5 System Design ||

In this second iteration, we add new functionality to the toffee vendor. More specifically, we will

improve the interaction with the user. We switch back to the updated system design model
without loosing the detailed design. We discuss the changes in the class diagram and the
controller’s state diagram. In the diagrams below, the changes resulting from reverse iteration of
the detailed design changes are marked with the tiled pattern.

IV 5.1 Class Diagram

As a continuation of our system design of the toffee vendor, we now include a class Viewpoint to
the class diagram. Viewpoint is a class that handles the interaction with the user. It senses when a
button is pressed and it shows messages on the display, e.g., how much money needs to be
entered. The User actor now communicates with Viewpoint instead of the Control class. One end
of the association Input is moved from Control to Viewpoint. Another association displ is added
between Viewpoint and Control. Finally, an operation Complete is added as a notification from
the Ware Mgr that it has delivered the item. The resulting class diagram is shown in Figure 1V-17.
The system design changes compared to Figure IV-7 are marked in gray; the detailed design
changes are marked with the hatched pattern.

«block»
Dialogue
«block»
Ware Mgr
box: Cont
’ request:ltem
ViewPt Coin Controller -
Exists(request:ltem)
Viewpoint «process» «process» Paid
CoinHdIr Control
article: ltem — ware
text: String ggg:mggg ware_control
Button(article: Item) Accept article: Item
ShowTxt(text: String) Close
Price(pr: integer) Coinl0 Choice(article:Item) outWare
Done Coin50 Empty
Coin100 NonEmpty
| Maonev(value inteaer)
displ { IntToString(integer):charstring
pay Complete
| «actor»
K User
input
«newtype» «newtype» Ware
Cont Item Display(text: String)
Overpay
Empty

FigureIV-17. New System Design Model

IV 5.2 State Diagram

For the dynamic model, we only discuss the changes in the state diagram of the Control class.
Most changes are related to the communication with Viewpoint. The signals Showtxt, Price and
Done are al sent to Viewpoint. In the internal transition Money(coin), the output of Display is
replaced with the Price signal. An extra state releasing is needed to wait for the event Complete

72 Kurt Verschaeve

from the Ware Mgr. Figure 1V-18 shows the resulting state diagram. Of course, the state diagram
of the classes Viewpoint and WareMgr are changed too, but are not further discussed.

coins:= offspring v}
{ Exists(article)
waiting Choice(eirticle) contents

) Empty / NonE ,

(] il ty
Complete ~Showtxt(“empty”) onEmpty/
4 "Showtxt(*pay”)

payment
_ entry/cost:=value(article); “Price(cost)
[EOSE'O]/ entry/Accept
Price(0); | exit/Close
"WareMgr.Paid Money(coin)/cost:=cost-coin; *Price(cost)

FigurelV-18. New State Diagram of Control

IV 5.3 Forward Iteration

After having changed the system design model, the detailed design model needs to be
synchronized. Similar to the reverse iteration, this is accomplish by trandating the changes in the
system design model and apply them to the detailed design model. Unlike the reverse iteration, the
UML changes in this forward iteration step have many implications on the SDL specification. We
therefore discuss this step in more detail. The problem is threefold. How do we detect the system
design changes (ddltas), how do we translate them and how do we apply them to a specification
that may be different than we expected.

1V.5.3.1 Determinedelta’s

The first aspect is to determine the deltas between two UML models, i.e. determine the changes
made to the model during system design since the previous iteration. For this purpose, we
compare the models before (old model) and after editing (new model). Whenever (re)entering a
certain phase, the current model is stored before editing. After having changed the modd, it is
saved as a second version and then a standalone program compares those models. If an entity is
present in the old model and not in the new model, the entity has been deleted. If an entity is only
present in the new model, the entity has been added and is considered “new”. If an entity is
present in both the old and the new model, the entities “match” and are further compared to
detect differences on a lower level. The matching of entities is based on their unique identifiers,
such that renamings can also be detected.

The multi-level comparison follows the hierarchical structural of UML. At top-level, the
incremental trandator checks whether classes or associations are added or deleted. For matching
classes, the attributes, operations, generalization, aggregates and state diagram are compared.
Within the state diagram, the states are compared and on the transitions on the next level. As for
our example, the changes found during the comparison are discussed together with the trandation
in the next section.

An dternative approach to determine changes is to track every edit commando during editing,
together with its context. It is preferable to have a structural editor in order to store useful context
information during tracking. Most graphical editors, however, are aready structural editors.

Example 73

Although we have chosen the comparison approach, the rest of the iteration is independent of this
choice, as both approaches produce a set of changes.

IV.5.3.2 Trandateand Apply Deltas

The essence of the iteration is of course the actual synchronization of the system design model
and the detailed design model. The changes detected during system design are trandated and
applied to the SDL specification. We go through the changes discussed in sections 1V 5.1 and IV
5.2 and trandate them in the meantime. A complete specification of the incremental trandation
rulesisgiveninV. 6.

Viewpoint is a new class without a stereotype definition and is a component of the Dialogue
class. The default stereotype for a leaf class is «process». This change is trandated by creating a
new SDL process type named Viewpoint and adding it to the Dialogue block. The instance of the
process type is created later with the trandation the new aggregation. Figure 1V-19 shows the
content of the Dialogue block after applying the incremental trandation.

The «process» class Coins is renamed into CoinHdIr. This is trandated by renaming the linked
process type Coins into CoinHdlr. The process instance is not renamed, as the explicit role name
of the aggregation is not changed.

The attributes and the operations in the Viewpoint class are al new too. Compliant with the
mapping, the new attributes are trandated as new variables in the Viewpoint process type and the
new operations are trandated as new signals, which are added to the signa list. The new
operations in the classes User and Control are translated the same way.

block Dialogue 1(2)

ware_control {

ware_control ware G1 G2

(WareMgr)] I:(Control)]] (Control)] ViewPt:
Control(l;a:; : Control (ViewPoint)] Viewpoint
3) Gl
(Co.ntrol)J [(viewpoint)
oins_Control i
(CoinHdlr) nput

input~

pay

[(User)]

G2
bay Gl . .
wsen] [iconHain] |~ Coin(0,1) : CoinHdlr

FigureV-19. Static Structure of Dialogue block after Forward Iteration

A new association called displ is added between Viewpoint and Control. This is trandated by
adding a gate the Viewpoint and Control process types and by connecting the process instances
with a signa route. Note that the order of executing the changes in important, as this trandation
needs the generated Viewpoint process type.

74 Kurt Verschaeve

The association Input is connected to a different class; more specifically, the Control association
end is moved to Viewpoint. In theory, it would be sufficient to regenerate only one side of the
communication routes. However, it is very difficult to specify exactly which part of the channels
and signal routes of the unchanged side are still valid (gates, used signal lists, connections, etc.)
Therefore, the full communication route is regenerated in cases like this. To demonstrate the
incremental trandation of state diagrams, we discuss the changes in Control’s state diagram. To
find the changes, we compare the old version of the state diagrams, shown in Figure V-3, with
the new version, shown in Figure IV-18. The old version aso includes the two actions on the start
transition, which are generated during reverse iteration. These actions are therefore not considered
new.

In five transitions, a new action was added; al of these actions are output signals. These changes
are trandated by adding an output action at the end of the corresponding transitions. There is one
exception; during detailed design, the guarded transition starting from the payment state was
merged with the Money transition. Consequently, the UML transition between the states payment
and idle is not linked anymore and the trand ations cannot be applied.

The result is shown in Figure IV-21. The hatched areas are changes already applied during the
detailed design phase, while the gray areas mark the changes applied by trandating the system
design changes.

CO B () b) &)

Coin g:g:jg < Empty < NonEmpty< Money(coirf< Complete <
| | | | | |

coins := Exists (article Showitxt cost:= cost
offspring via Ware (‘empty’) value(article) [=cost-coin

- . Accept to Display ? iti
< waiting) (contents) (waiting > P > (call IntToSyhg(cost) waiting
Showtxt true
(‘pay’)

false

Price(cost) Price Clt_)se to
(cost) coins

N |

- >
e) () D

Figure 1V-20. Control Process after forward iteration

Done

DCL coins PId;
DCL coin integer;
DCL cost integer;
DCL article Item;

Example 75

IV. 6 Detailed Design I

The second iteration continues with the adaptation of the updated SDL specification. We
manually finaize the trandation of system design changes and we implement new functionality
that is difficult to achieve in UML.

On the structural and communication level, the trandated system design changes do not need
further detailed design. For the state machine, we again focus on the Control process. First, we
apply the changes that could not be added because of the missing link. More specifically, we add
an action to send Price(0) to the Viewpoint process and we correct the destination state of the
transition. Second, we add some new functionality. To avoid deadlocks, we build in atimer that
gives the user of the toffee vendor a certain amount of time. If the time is exceeded, the sale is
canceled. The user is also given the possibility to undo the sale himself. The resulting process
definition is show in Figure IV-21, only the relevant states and transitions are shown. The new
detailed design changes are marked in gray. The hatched areas represent al the previous edit
operations (system design and detailed design).

timer Timeout := 10.0;
contents payment
—
| I 1

Empty < NonEmpty < Money(coin< Undo < Timeout <

Showtxt cost:= cost Showtxt
(‘'empty") value(article) :=cost-coin ('timed")

i I I

B Display
(waiting) ':giz:pt to (callintToString
0

Close to coins

N4

true

reset(Timeout) (waiting >

Close to
coins

lset(Timeout) I:::rtligf) > Price(cost) >

L I

< payment) (- } Paid via W%

N

I releasing >

FigureIV-21. Control Process after Forward lteration

Showtxt
(pay’)

Price(cost) set(Timeout)

Ldd

Again, these changes are trandated into incremental changes to the UML model. There are two
new transitions from the payment state to the waiting state. The actions below the join of the
Undo transition are duplicated, such that the actions are present in both transitions. The new
transitions are trandated by adding two transitions to the UML state diagram. The resulting state
diagram is shown in Figure IV-22 with the new elements marked in gray.

76

Kurt Verschaeve
[create coin;
e Coins:= offspring 4
i Exists(article)
waiting Choice(article) contents
— J< Z— NonEmpty/
mp AShowtxt (n pay”)
' Undo/ Complete Aghowtxt(* empty” : '
Timeout/| -0 | ADone (“empty”) set(Timeout)
AShowtxt(“timed”); Close Y
coins.Close]

payment
entry/cost:=value(article); ~Price(cost)

entry/Accept
releasi ng exit/Close
. Money(coin)/cost:=cost-coin; ~Price(cost);
cost<=0]/ "Price(0)

)) N set(Timeout)
AWareMgr.Paid; reset(TimeOut);
"Price(cost)

FigurelV-22. State Diagram of Control after Second Iteration

This step concludes our example. This loop of system design and detailed can be repeated any
number of times. After each iteration, the updated modd or specification is examined and
improved. After a few iterations, the UML model and SDL specification may diverge somehow.
This has the advantage that the UML model can present a higher abstraction level. The
disavantages are that UML and SDL are not completely synchronized and that due to missing

links there is less support for iterative trandation. The latter can be tackled by a manua relinking
process.

REALIZING THE UM L-SDL ROUND-TRIP
ENGINEERING

“Act asif what you do makes a difference. It does.”

-William James-

“Good timber does not grow with ease. The stronger the wind, the
stronger the trees.”

-Williard Marriott-

78 Kurt Verschaeve

V.1 Introduction

This chapter contains the complete definition of the UML-SDL round-trip engineering process and
is the technical core of this dissertation. A large set of rules defines how a UML modd is
preprocessed and how all the possible changes in UML or SDL are trandated into changes in the
opposite model. Before executing any rules, we need to build a valid information model of the
UML model and the SDL specification. Moreover, the two information models must be linked
with each other to determine the right scope for tranglating changes. The next subsection gives an
overview in which order the various activities are executed, how the data flows between the
activities and which section in this chapter deals with these issues. Section V 1.2 explains the
notation of the transformation rules used throughout the chapter.

V 1.1 Overview of the Round-Trip Process

Figure V-1 captures the flow of activities and models during the round-trip process as described in
this chapter. The process starts by loading the old and the new versions of the UML model. In the
first iteration, the old UML model is empty and al entities in the new model are considered new.
In the succeeding iterations, the old model is the previous version of the UML model. The exact
structure of the UML information model is defined in section V 2.1. Both the old and the new
UML model are preprocessed to check their consistency and to fill in missing information with
defaults. The preprocessing rules are defined in section V 2.2. On the SDL side, the latest version
of the specification is loaded in a speciaized information model defined in section V. 2. Next, the
links between the old UML model and the SDL specification are restored. Essentially, each UML
entity has pointers to the SDL entities is has generated. Section V. 4 defines the exact list of links
and back-links. The links between the new UML model and the SDL specification is build-up and
updated during the compare process.

| Old UML | | NewUML|

Link Information

Old UML SDL
Model New UML |4)| Information
Model Updated Link Model
o Y &
g2
Ed ,
(@] 8 e
iy s =
=

Changed Entity |

FigureV-1. Overview of the Forward I ncremental Process

Realizing the UML-SDL Round-trip Engineering 79

Once al data structures are in place, the old and the new UML modes are compared to detect
changes made in the model since the previous iteration. If an entity is present in the old model, but
not in the new model, the entity has been deleted. If an entity is not present in the old model, but
is present in the new model, the entity has been added (new entity). If an entity is present in both
models, they are said to “match”. Matching entities are compared on their attributes, e.g. name,
stereotype, etc. The comparison is done in a hierarchical fashion. First, the packages are
compared, then the components and associations and then the attributes, operations and state
diagrams. All sub-entities of a new entity are also new and al sub-entities of a deleted entity are
also deleted. The order in which the changes are handled is crucial, because some changes
interfere with each other. Section V. 5 defines the exact order in which the comparison is
executed.

For each new, deleted or matched entity, a set of rules is applied to the entity. Except stated
otherwise, the rules are applied in order of appearance. Each rule defines a precondition that must
be fulfilled before the action part is actually executed. The rules are defined in section V. 6, which
is divided in subsections. Each subsection contains the set of rules necessary to trandate or
compare a particular entity.

The second part in the round-trip engineering is the reverse incremental trandation of changesin
SDL to update the UML model. The process, illustrated in Figure V-2, is aimost identical to the
forward incremental trandation. In this case, there are two SDL specifications that are compared
and one UML model that is being updated. The link between UML and SDL is restored based on
the old SDL specification. However, because the links are stored on the UML side and are based
on identifications instead of direct pointers, there is also a link between UML and the new SDL
specification. As in forward iteration, the links are updated to the new SDL specification in the
trandation rules. The rest of the process is identica to the forward variant, even though we use
different comparison and trandlation rules (see section V. 8).

Link Information

Old SDbL UML
Spec Ne‘SNp:CDL Model

Updated Link

4
N

Compare
Sub-Entities

New Entity

Delete Entity

Changed Entity

Figure V-2. Overview of the Reverse Incremental Process

80 Kurt Verschaeve

V1.2 Howtoread ruledefinitions

The UML preprocessing and the trandation of changes is defined in the form of rules. Each rule
describes the actions to be taken if a certain condition is satisfied. The rules are presented in a
uniform table with a maximum of four fields, as illustrated in Rule 0. The precondition field
provides a list of conditions. If not mentioned otherwise, all the conditions must be satisfied, for
the rule to be executed. If there is no precondition field, the rule is aways applied. The context
field provides a list of variables within the context of the rule. They can be regarded as a number
of “let” statements. The action field defines the actions that are taken when the rule fires. Most
rules for translating new UML entities add a number of SDL constructs to the SDL data structure.
The SDL is presented in the textual representation for easy readability. For example, instead of
writing “system addStructure (new Sdl Bl ockType(vary));”, we write the
statement shown in the illustration (Rule 0). The variable field, finally, defines a number of
variables that are used by other rules in the same section or fills-in UML-SDL links.

A genera principle in al rules is that every variable, function or link that contains or returns an
SDL vaueis underlined. Variables, functions or links that contain or return an UML value are not
underlined. This notation increases readability because most rules mix UML and SDL expressions.

Preconditions | — Condition 1 All conditions must be fulfilled
— Condition 2 to make this rule fire.
Context — var,=UMLVariable
— var, = var,.umlattribute Everything that contains
— varg = var,.sdllink or returns an SDL value
— vary,= SDLVariable is underlined.
— vars = vargreverselink
Action Do something.
Add to system var,: References to variables.
BLOCK TYPE <var »>; Generated code.
ENDBLOCK TYPE <var ,>;
Variables — Global Variable = new value Definition of new variable or
assignment of new value

Rule 0. lllustration of arule.

Realizing the UML-SDL Round-trip Engineering 81

V.2 UML Information Model

The first activity in an iteration step is loading the UML model in a speciaized information model
and preparing the UML model for its trandation to SDL. This section defines exactly what
information is used for the trandation and how it is organized. Almost any UML tool allows more
information than can be stored in our information model. This extra information is simply ignored,
as it is of no importance for the UML-SDL round-trip engineering. On the other hand, some
information specific for the round-trip engineering is added to the model. This information is filled
in during the preprocessing or during the trandation. The next section discusses the UML
information model in more detail.

V 2.1 Information Mod€

Figure V-3 shows an overview of the entities in the UML information model. The tables below
define the attributes for the different UML entities. The first column gives the name of the
attribute. The second column describes the semantics of the attribute or defines the possible valid
values. The description aso indirectly defines the type of the attribute. The last column defines
the default value in the case that the attribute is empty. Filling in the default is one aspect of the
UML preprocessing. We discuss some important issues for each of the entities.

Model

Y,

Package

Class Aggregation Association

0..* 0.* 0.*
Operation Attribute State Diagram

', T

State

Transition

b

Action

Parameter

FigureV-3. UML information model

82 Kurt Verschaeve

The model is the root node for a UML model. Except for the name, it contains a flattened list of
dl packages in the mode, i.e. the list also contains the packages that are nested within other
packages.

UML Model Description Default
name Usually corresponds with file/project name. “the model”
packages List of packages -

TableV-1. UML model

The package is the main structuring mechanism. The stereotype determines whether the package
maps on an SDL system or on an SDL package. The name does not have a default, a package
without name is invalid and is skipped. The system class attribute points to a specia class that
represents the package. The system class is created during preprocessing and is an aggregate of all
top-level classes by construction. The attributes global declaration and global type are both
tranglation options. They affect in which scope declarations and structured types are defined. The
packages attribute points to the packages in the model that this package depends on.

UML Package Description Default

stereotype «system» or «package» «package»

name An empty nameisinvalid -

system class The class that represents the package or system created during
preprocessing

global declaration if true, al signal and newtype declarations are|true
defined at top leve, if false: local declaration

global type if true, all block/process types are defined at |false
system/package levd, if false: local declaration

communication Option for generating communication, possible | conservative
valuesare: none, gate only, conservative, full

packages The list of package that this package dependson |-

classes Thelist of dl classes in the package -

associations Thelist of dl associations in the package -

aggregations The list of all aggregations in the package -

TableV-2. UML package

The UML class is the most complex entity as it is overloaded with different semantics, depending
on the stereotype, which is the first attribute of the UML class. The stereotypes «system» and
«package» are reserved for the system class of the package. A class with stereotype «block» is
mapped on an SDL block or block type with an optional process containing the behavior of the
class. A class with stereotype «process» defines an active entity with its own variables and state
diagram and is mapped on an SDL process or process type. A class with stereotype «newtype»
describes an abstract data type, which can be used to type attributes and parameters. A class with
stereotype «actor», finally, serves as placeholder for an active entity outside the system. Not all
the attributes are applicable for al kind of classes.

The class name is essential for al classes and must never be empty. The attribute is extern, is
true for classes that are imported from another package. «Actor» classes are always external. For
external classes, the package name attribute defines in which package the type is defined. A
«block» or «process» class can contain maximum one state diagram. The typed attribute
indicates whether a «block» or «process» class is a structure definition or a structure type that will

Realizing the UML-SDL Round-trip Engineering

83

be instantiated with aggregates. The attribute defined in points to the class in the same package
that provide the scope for the type declaration, i.e. the structure type will be placed in the
structure linked with the defined in class. The management process decides whether a «blocks»
classis aso mapped on a process or not.

UML Class Description Default
stereotype Valid stereotypes. «systemy», «package», «block» |«block» or «process»
«Process», «newtype», «actor»
class name An empty nameisinvalid -
is extern Is true for imported classes from another package | fase
and for actors.
package name Name of the Package for external classes.
dtate diagram The UML State Diagram of this class. empty
typed If true, dass maps on SDL block or process type. If | true
false, maps on block or process. Only applicable for
«block» or «process» classes.
super class Class where this class inherits from. If empty, no | empty
inheritance. Multiple inheritance is not supported.
defined in Class where this classis in defined. system class
management If true class (also) maps on an SDL process. Always | true for «process»,
process true for «process» class. True or false for «block» | false for others
class. Always false for other classes.
attributes List of attributes of the class empty
operations List of operations of the class empty

TableV-3. UML class

The UML operation has three different semantics depending on the stereotype. A «signal»
operation declares a signal and at the same time defines that the class containing the operation can
receive the signal. A «procedure» operation defines the signature of an SDL procedure.
«procedure» operations can only be used in «block» or «process» classes. An «operator»
operation, finally, defines the signature of the behavior for an SDL newtype.

UML Operation Description Default

stereotype «signal», «procedure», or «operator» «signal» («operator»
for «<newtype» classes)

name An empty name isinvaid -

return type Name of the return type

parameters List of parameters of the operation

TableV-4. UML operation

UML Parameter Description Default

stereotype «process» or «block» «package»

name An empty nameisinvalid -

type Name of the type of the parameter. "a " + parameter name

TableV-5. UML Parameter

UML Attribute

Description

Default

stereotype

Not used in the trandation

«»

84 Kurt Verschaeve

name An empty nameisinvaid. -
type Name of the type of the attribute. "a" + atribute name, see
preprocessing options.
default The string that represents the default vaue | "
for the attribute.

TableV-6. UML Attribute

Our representation of aggregation and association relationships contains only the basic features:
name, pointer to the connected classes, the role of the classes in the relationship and for
aggregations a “composite’ attribute. Other information like multiplicity, public/private and
constraints are not needed for the trandation to SDL. The default role name for associations is
automatic counter prefixed with the letter “G”.

UML Aggregation |Description Default
name May be empty.
aggregate Pointer to the aggregate class -
component Pointer to the component class -
aggregate role Role of the aggregate class
component role Role of the component class "a "+component name
composite If true, composite aggregation. If false, reference | true
aggregation.

TableV-7. UML Aggregation

UML Association |Description Default
stereotype «communication» or other «communication»
name Name of association See preprocessing option
from class Pointer to the “From” Class -
to class Pointer to the “To” Class -
from role String that describes the role of the from class | G#
torole String that describes the role of the to class G#

TableV-8. UML Association

The UML state diagrams consists of list of al states (including sub states) and a list of transition
between those states. Sub-states have a reference to their super state. Start and exit states are
regular states with the type attribute set to specific value. The UML transition contains many
atributes to define its trigger: event, guard and timer. Table V-11 gives a short descriptions for
each of the attributes.

UML State Description Default

Diagram

name Name of the diagram Name of class

states Liss of al doates (including initid and|empty
termination states)

transitions List of transitions empty

Table V-9. UML State Diagram

UML State Description Default

name If this is a normal State, i.e. type=normadl, | -

Realizing the UML-SDL Round-trip Engineering 85

then an empty name isinvalid.
super state reference to the super state empty
transitions list of internal transitions empty
type Possible values. start, stop, normal normal
entry actions List of entry actions -
exit actions List of exit actions -
activity Name of activity

TableV-10. UML State

There are three types of transitions, which differentiate in when they are fired. An event transition
is triggered by an incoming signal and can optionally be guarded with an expression. A when
transition is fired when the guard expression becomes true, usually due to an assignment. An after
transition is fired when a specific time has elapsed after entering a state.

UML Transition | Description Default

event Name of the signal that triggers the transition

source Source State -

dest Destination State -

type Possiblevalues. event, when, after event

guard Boolean expression that sets the guarded|™
condition. Used for event and when transition.

timer Time expression for an after transition

actions List of UML actions empty

isinterna Is true for internal transitions fase

TableV-11. UML Transition
UML Action Description Default
name An empty nameisinvalid. -

TableV-12. UML Action

V 2.2 Trandation and Preprocessing Options

Several aspects of the UML to SDL translation are customizable. Here we define the options that
are available to manipulate the tranglation and preprocessing. The options presented here are not
accessed directly from the preprocessing rules and trandation rules. Instead, the rules presume the
default value of the options (with the exception of the communication option). The description
below specifies what happens to the preprocessing or trandation if the option is set to a different
value. This way of working improves the readability of the trandation rules, as the rules do not
have to consider the different cases.

Option Description Default

Default Type By default, the prefix "a " is put in front of the variable |""
name to fill in a missing type. If the default type option is
different from "", than this type name is used to fill in the
type of attributes or parameters without type.

Role Prefix By default, associations without role definition get role name|"G"
by prefixing "G" to a counter ("G1", "G2", ...). With this
option, this prefix can changed.

86

Kurt Verschaeve

Association Name

This option defines which name an association without a
nameis given.

role: compose role names <FromRole>_<ToRole>

class. compose class names <FromClass> <ToClass>

role

Communication

This options define the way the association is trandated into
communication routes. This option has a great impact on the
trandation and is therefore considered in the trandation
rules. This option is referred to as the “communication
option”. The possible vaues are:

no communication: no trandation, associations are

ignored

gate only: max. two gates are generated

conservative: the association ends are translated,

including the gates

full: a full connection is generated (possibly many gates

& many channels/signal routes)

conservative

Avoid Management

If true, set management attribute of all «block» classes to
false, so that no management processes (process linked with
a «block» class) will be created.

false

Typed

This option influences the “typed” attribute of the classes in
the modd. If a class's typed attribute is true, it is trandated
as a block type or process type. Possible values of the typed
option are:

default: no change, as defined in the class

all true: before preprocessing, make all «block» and
«process» classes typed

all false: before preprocessing, make all «block» and
«process» classes non-typed

default

Parameter Variable

If this options is set to true, a class attribute is created for
each parameters of a «signal» operations. If false, Rule 16 is
not executed.

true

Table V-13. Options for Preprocessing

V 2.3 Preprocessing

Before comparing, trandating or synchronizing a UML model, the model is always preprocessed
to prepare the model for trandlation. Doing the preprocessing as a separate step simplifies the
trandation rules, as they do not have to consider aggregation loops or empty names or types. It
assures a consistent model with al missing information filled with defaults and it processes
inheritance of association and hierarchical state diagrams. The name, type and/or stereotype of
classes, operations, attributes and associations are filled with defaults if this information is missing
in the moddl. Furthermore, it calculates the extra associations needed to make subclasses inherit
the communication from their super classes, see V.2.3.5. The last major activity during
preprocessing is the flattening of hierarchical state diagrams, see section V.2.3.6. Each of the
sections below is executed once for each corresponding entity, e.g. Rule 2 is executed for every
package and Rule 4 through Rule 10 are executed for every class in every package.

Realizing the UML-SDL Round-trip Engineering 87

V.23.1 Preprocessing UML Package

The most important action for preprocessing a package is providing the system class, a specia
class that represents the package. The system class is used intensively during the whole trandation
process. It is constructed in Rule 2 by creating a new class with stereotype «package» or
«system» and by making the class an aggregate of al active top-level classes. In other words, the
system class becomes aggregate of al active classes that did not have an aggregate before.

Context

— package is the UML package to be preprocessed

Preconditions

— package.stereotype = ""

Action

package.stereotype = «system»

Rule 1. Default Stereotype for Package

Context

— package is the UML package to be preprocessed
— model isthe UML model containing package

Preconditions

— package.systemclass = empty

Action

package.systemclass = a new class with the following properties:
systemclass.stereotype = package.stereotype
systemclass.name = package.name

" class T package.classes : if class has no aggregates and class.stereotype =

«», «block» or «process», do

Add an aggregation aggr to package with the following properties:

— aggr.aggregate = package.systemclass

— aggr.component = class

— aggr.composite = true

Variables

sysclass = package.systemclass

Rule 2. Create system class

V.2.3.2 Preprocessing UML Class

The rules in this section checks and prepares the stereotype, inheritance relationship, typed
property and the defined in property of each class. Note that a class can only have one super type
because of the information type.

Context — classisthe class to be preprocessed.
Rule 3. Context for this section
Preconditions | — class.stereotype =""
— class has a least one components (is component part of a aggregation
relationship) with stereotype «process»
Action If class has acomponent comp, where comp.stereotype = «process», «block»

or «», then
class.stereotype = «block»
else class.stereotype = «process»

Rule 4. Stereotype for every Class

88

Kurt Verschaeve

Rule 5 and Rule 6 enforce that al classes involved in a inheritanc relationship are typed and have
the same stereotype. Rule 7 checks whether a class has multiple aggregates, i.e. the class is the
component part of an aggergation relationship. If this is true, it means that several instances are
taken from the class and therefor the class should be typed.

Preconditions

— class.stereotype ! class.superclass.stereotype

Action

class.superclass = empty

Rule 5. Same stereotype for super- and sub-class

Context — class.superclass is not empty
Preconditions | — class.stereotype = class.superclass.stereotype = «process» U «block»
Action class.typed = true

class.superclass.typed = true

Rule 6. Classes with inheritance must be typed

Preconditions | — class has more than one aggregate

— class.stereotype = «process» U «block»
Action class.typed = true

Rule 7. Multi-instance Classes must be Typed

Context — classisaclass.
Preconditions | — class.typed = fase

— class has exactly one aggregate
Action class.definedin = aggregate of class

Rule 8. Non-typed Class are Defined in their Aggregate

Context — classisaclass.
Preconditions | — class.typed = true

— package.globaltype = true
Action class.definedin = sysclass

Rule 9. Global Typed Classes

Context — classisaClass.
Preconditions | — class.definedin is not empty.

— class has one or more aggregate

— package.globaltype = fase
Action class.definedin = common aggregate of class (see description below)

Rule 10. “Defined In” for Local, Typed Classes

Rule 10 uses the term common aggregate to assign a default value for the definedin property of
the class. The common aggregate of aclass comp is the class aggr which scope contains al the
instances of the class comp. Class aggr can be be found by comparing al the aggregation paths

Realizing the UML-SDL Round-trip Engineering 89

(see section V 6.20) of comp. If only the first class (the system class) is common in al paths, then
that is the common aggregate. Then the second classes in al paths are compared and so on. The
lagt class which is common in al paths, except the class itself, is the common aggregate. In Figure
V-4 the only aggregation path of class D is (A,B,D) so the common aggregate of D is B. Class F
has two aggregation paths. (A,B,E,F) and (A,C,E,F). The second class in the two paths are
different, so the common aggregate of Fis A.

«syg:em»
A

Q

[|
«block» «block»

B C

Q

[|
«block» «block»

D E

Y

«block»
F

Figure V-4. Aggregate Structure to Find Common Aggregate

V.2.3.3 Preprocessing UML Operations

Context — operation is the operation to be preprocessed
— classisthe class containing operation

Rule 11. Context for this section

Rule 12 determines the default stereotype for an operation. A UML operation can map on an SDL
procedure or signal. Signals cannot have a return type, therefore the default stereptype for
operations without return type is «signal». Procedures usually have a return type, therefore the
default stereptype for operations with return type is «procedure».

Preconditions | — operation.stereotype = «»
— class.stereotype ! «newtype»

Action If operation.returntype is empty:
oper ation.ster eotype = «signal»
else

oper ation.stereotype = «procedure»

Rule 12. Stereotype for every Operation

Preconditions | — operation.stereotype = «»
— class.stereotype = «newtype»

90 Kurt Verschaeve
Action operation.stereotype = «operator»
Rule 13. Stereotype for operation in «newtype» class
Preconditions | — operation.name =""
Action Delete operation from the model. Nameless operations are not allowed.
Rule 14. Delete attribute without name
Context — Executethis rule for each parameter T operation.parameters
Preconditions | — operation.stereotype = «signal»
— parameter.type = empty
Action — attr.type = "a "+parameter.name
Rule 15. Create Parameter Variables
Preconditions | — operation.stereotype = «signal»
Action " parameterl operation.parameters, add an attribute attr to class with the

following properties.

— attr.name = parameter.name
— attr.type = parameter.type

Rule 16. Create Parameter Variables

V.2.34 Preprocessing UML Attributes

Rule 17 deletes attributes that does not have a name. However, most UML tools will already
enforce to give a name to attributes, so this rule should not be harmful.

Context — attribute is the attribute to be preprocessed

Preconditions | — attribute.name =""

Action Delete attribute from the model; nameless attributes are not allowed.
Rule 17. Delete attribute without name

Context — attribute is the attribute to be preprocessed

Preconditions | — attribute.type =""

Action Set attribute.type = "a "+attribute.name

Rule 18. Default attribute type

V.2.35 Preprocessing UML Association

Context for this
subsection

— association is an Association.

Rule 19. Context for Preprocessing Assodations

Realizing the UML-SDL Round-trip Engineering

91

Preconditions | — association.fromRole =""
Context — i = gate counter of association.fromClass
Action Set association.fromRole = G<i>

Increment the gate counter of association.fromclass

Rule 20. Fill-in empty from-role name

Preconditions | — association.toRole =""
Context — i = gate counter of association.toClass
Action Set association.toRole = G<i>

Increment the gate counter of association.toClass

Rule 21. Fill-in empty to-role name

In SDL, inheritance is expressed between types, while communication is expressed between (type-
based) instances. To prepare types for communication, they are provided with gates, but it is not
possible to connect channels to types. In other words, we cannot use the SDL inheritance for
inheriting communication. Therefore we have to model our own mode for inheriting
“communication” associations.

The inheritance of associations is done on UML level as part of the pre-processing. There are two
algorithms to process inheritance of associations. conservative scenario and full-connect scenario.
The models shown in Figure V-5 are preprocessed in both ways to illustrates the algorithms. The
resulting models are shown in Figure IV-6 and Figure IV-7.

X

A

E H Y K

1

C < G |

ok

T

T

O

P

Figure V-5. Example of association befor e resolving inheritance

In the conser vative approach, an association between two classes A and B is inherited by taking a
subclass of A and a subclass of B at the same time. The original association is then copied
between the two subclasses and between all other combinations of a subclass on both sides. This

is repeated for the next level of inheritance, until there are not any subclasses left on both sides.

Preconditions

— communication option = conservative

— @ither assciation.fromclass or association.toclass, or both, have at |east one

92 Kurt Verschaeve

subclass (inheritance)

fromclass = association.fromclass

toclass = association.toclass

— SUbgom={cT package.classes | c.superclass = fromclass}
— If subgom = A let subgom = {fromclass}

— sub,={c1 package.classes| c.superclass = toclass}

— If sub, = A& let suby, = {fromclass}

Context

Action For al (subfrom, subto) T {(from, to) | froml Subyom, to1 suby} do

— Let subassoc be an exact copy of association
subassoc.fromclass = subfrom
subassoc.toclass = subto

— If subfrom = fromclass then subassoc.name = subassoc.name + “ " +
subto.name, else

if subto = fromto then subassoc.name = subassoc.name + “ " +
subfrom.name,

ese subassoc.name = subassoc.name +
subto.name

— Add subassoc to package.associations
Apply this rule recursively to subassoc

won

subfromname + “ 7 +

Rule 22. Conservative Association | nheritance

| I Y M
X C G Z}
O YOP

=

Figure V-6. Example after Conservative Association Inheritance

In the full connect scenario, we create a copy of an association between any combination of
subclasses of both end of the association.

Preconditions | — association.communication = full

— @ither assciation.fromclass or association.toclass, or both, have at |east one
subclass (inheritance)

Realizing the UML-SDL Round-trip Engineering 93

Context — fromclass = association.fromclass
— toclass = association.toclass
— Subyom = {c T packageclasses | $ (cy,....c) : "il(L.n): ¢ 1T
package.classes, " il (1..n-1) ci,,.superclass = ¢, ¢; = fromclass, ¢, = ¢}
— Subyom = {c T packageclasses | $ (cy,....c) : "il(L.n): ¢ 1
package.classes, " il (1..n-1) ci,1.superclass = ¢, ¢, = fromclass, ¢, = ¢}
Action For al (subfrom, subto) T {(from, to) | froml Subyom, toT suby} do
— Let subassoc be a exact copy of association
— subassoc.fromclass = subfrom
— subassoc.toclass = subto
— If subfrom = fromclass then subassoc.name = subassoc.name + “ " +
subto.name, else
if subto = fromto then subassoc.name = subassoc.name + “ " +
subfrom.name,
dse subassoc.name = subassoc.name + “ " subfromname + “ " +
subto.name
- Add subassoc to package.associations
Rule 23. Full Connect Association Inheritance
[Y
A X B E H K
% <~ X_F Z} % X G ﬂx [% [% ﬂx
X_B
XCF| F | /A JX\R\ M
C <} I G — / \

x
Q)
®
x
®
M
O 1>
—

o

Figure V-7. Example after Full Connect I nheritance of Association

V.2.3.6 Preprocessing of State Diagram

A state diagram is a collection of states and transitions. Most of the preprocessing is performed on
state level, therefore there is only one rule in this section. Rule 29 makes sure that there is only
one start trangition. If there are two transitions leaving from a top-level start state, it only uses the
first transition and deletes the other.

Context — statediagramis a state diagram
— (tran,, ..., tran,) = statediagram.transitions

94 Kurt Verschaeve

Preconditions | — $ij:itj 1 (1.m): trans.sourcetype = start, trans.source.type = start,
trans..source.superState = empty and trans.source.superState = empty
Action Delete trans. Repeat thisrule.

Rule 24. Only one start transition

V.2.3.7 Preprocessing of State

Context for — dStateisastate
this section — statediagram is a state diagram containing state

Rule 25. Context for preprocessing state

The following two rules define some functions concerning substate diagrams. These functions are
used for the preprocessing of transitions.

Function substates(state) = {s1 statediagram.states| $ (s;,...s): ss=sU" i1 1.n-1:
S = S.+1.SuUperstate}

Rule 26. Function definition for substates.

Function substartstates(state) = {s 1 statediagram.states | s.superstate = state U $ t 1
statediagram.transitions: t.source.type = start U t.dest = s}

If substartstates(state) = A substartstate(state) = empty, ese
substartstate(state) = any element from substartstates(state)

Rule 27. Function definition for start state of substate diagram

V.2.3.8 Preprocessing of Transition

Context — transition isatransition
— dest = transition.dest
— source = transition.source

Rule 28. Context for Preprocessing Transition

The most difficult part in preprocessing the state diagrams is flattening substates in a hierarchical
state diagram. The substates need a copy of the transitions of their superstates, but these
transitions need to be expanded with additional exit actions for the substate. Also, the destination
of atransition should be changed to the initia state of the substate diagram of the destination state.
Figure V-8 shows an example of a state diagram with with two superstate and three substates.
Many states and transitions contain actions to illustrate the algorithm. Figure V-9 shows the same
state diagram after the preprocessing.

Realizing the UML-SDL Round-trip Engineering 95

factionl - x ~ p 5 N
L _ _ events
aC'FI onl(actl on2 event3 en_try/ar_:tl onl0 —>@
exit/action3 Jaction9 exit/actionll

laction4 I

B C
entry/action5 entry/action7

exit/action6 exit/action8

S/
Figure V-8. Example of Nested State Diagram

/actionl, action2,
action4, action5

o—>»

event3/action6, action3,
action9, action10, action12

event5/action11

eventd/
action13

eventl/action5,
action?

®

event3/action8, action3,
action9, action10, action12

event5/action13,
action1l

event2/action8

Figure V-9. Flatened version of Nested State Diagram

The rules below process one transition at a time. Rule 29 collect the entry and exit actions of the
state that are crossed by the transition. In our example, none of transitions crosses state boundries,
s0 this rule has no effect on our example. Rule 30 appends the exit actions of the source state to
the beginning of the transition. Rule 31 and Rule 32 are executed alternately to append the entry
actions of the destinations state and to look for a possible sub start state. These two rules are
repeated until there is no sub start state. Rule 33 and Rule 34, finaly, finds out the new destination
state. The "+" operator used in the trandation rules below append the list of actions.

Preconditions | — source.supertype? dest.superstate

Context — Let super be the common superstate for source and dest, or empty if the
state diagram is the common super state.

— Let(sy...S): S = super, s, = source, " il (2..n): S.1 = S.superstate
— Let (dy,...,0n) : S = super, dy, = dest, , " il (2..m): di; = d.superstate

Action — trangtion.actions = s,i.exitactions + ... + S.exitactions +
transition.actions + dy.entryactions + ... + dy,..entryactions

Rule 29. Collect exit and entry actions of superstates.

Action transition.actions = transition.source.exitactions + transitions.actions

Rule 30. Append exit actions of source state

96

Kurt Verschaeve

Action — transition.actions = transitions.actions + transition.dest.entryactions
Rule 31. Append entry actions of destination state
Preconditions | — substartstate(dest) * empty
Context — startstate = substartstate(dest)
— Let t1 statediagramtransitions, where t.sourcetype = start U t.dest =
Startstate.
Action — transition.actions = transition.actions + t.actions
— transition.dest = startstate
— repeat from Rule 31.
Rule 32. Duplicate transitions to substates
Preconditions | — dest.type= stop
— source.supertype! empty
— source.superstate = dest.superstate
Action — transition.dest = source.superstate
Rule 33. Move terminal transitions to superstate.
Preconditions | — source.substates() * A
Action For each substateT { sT source.substates() | s.type = normal } :

_ create acopy of transition, called transcopy

_ transcopy.source = substate

— transcopy.actions = substate.exitactions + transcopy.actions
— repeat this rule (Rule 34) with source = transcopy.source

Rule 34. Duplicate transitions to substates

Realizing the UML-SDL Round-trip Engineering 97

V.3 SDL Information Model

The SDL information model provides the means to store and manipulate an SDL specification.
Many of the trandation rules refer to this information model to access information in or to make
changes to the SDL specification. The SDL information model must be able to contain all the
details of the SDL language, even those aspects that does not have a mapping with UML. The
reason is of course that, after the round-trip engineering, the SDL modd is exported to become
the new version of the SDL specification. Information not stored in the model is lost.

The SDL information modd is designed for easy access and manipulation of the SDL entities
involved in the mapping. Figure V-9 shows the generaization structure of the complete SDL
information model. A number of generalizations alow us to reason on a more abstract level. For
example, systems, blocks and processes are al structures that may contain declarations,
communication or other structures. In addition, of al possible declarations possible in SDL, only
those declarations that have a mapping to SDL are made explicit. Some of the declaration that
have no explicit representation in our model are: syntype, timer, synonym and select.

The presented information model is not a genera purpose data structure. Only the entities relevant
for the round-trip engineering with UML are explicitly modeled. When parsing an SDL
specification, the information not modeled in the information model is stored invisibly to alow the
export of a full SDL specification after a trandation. The extra information includes graphica
position information.

V 3.1 Entity Inheritance Hierarchy

The SDL information modd is structured as an inheritance hierarchy, see Figure V-9. The
trandation rules often uses a super type to refer to any kind of subtype. For example, a list of
communications may contain channels and/or signal routes and a structure pointer can be filled in
with a system, package, (typed) block or (typed) process. This way of working makes the
information model more compact and the trandation rules easier to write.

98 Kurt Verschaeve

Answer Decision
Transition Action
Gate
Channel
State Communication <
4/ SignalRoute
Entity
Procedure —
ﬂ StructureReference
Declaration Yg
Signal / Variable DataType Structure Specification
7
SignalList UnknownDcl / f \
Package System Block
g > Y Process
SystemType BlockType ProcessType

Figure V-9. Inheritance Structure of SDL Entities

In the tables below, we define the exact information model for SDL that is used to apply the
incremental tranglation rules. The super type of an entity is denoted between angle brackets (<>),
meaning that the entity inherits all the attributes of the super type. Note that more information, i.e.
more attributes, is necessary to contain a complete SDL parse tree. This extra information is
hidden for our purpose and is only needed to write back the finished SDL specification at the end
of the iteration.

The first type, SDL entity, is the super type for al other SDL types. Besides the name and
comment attribute, it provides a unique identification to al entities, which are used internally to set
up the UML-SDL link as described in section V. 4.

SDL Entity Description

name Name of the entity

comment Comment attached to the entity

id Identifier used internally for the UML-SDL link

Table V-14. Common Attributesfor all SDL entities

V 3.2 Static Structure

SDL structure holds the common attributes for SDL system, package, block (type) and process
(type). It alows us to reason on any kind of structure in a uniform way, e.g. to create a
communication route between two structures, independent of their concrete type. The parent and

Realizing the UML-SDL Round-trip Engineering 99

system atributes are used internally to conveniently access its relatives. The attributes
declarations, children and communication contain the actual contents of the structure.

UML Structure Description

<entity> Inherit the attributes of SDL entity

formal parameters String

parent Reference to the parent structure

system Reference to the parent system or package

declarations List of declarations

children List of structures

communications List of channels and signal routes in this structure
Table V-15. Common Attributes of all SDL structures

SDL Specification Description

<structure> Inherit the attributes of SDL structure

Table V-16. Attributes of SDL specification

SDL Block Description

<structure> Inherit the attributes of SDL structure

block type Is empty for regular blocks (block definition). For block instances, it
refers to the block type the instance is based on.

Table V-17. Attributes of SDL Block

SDL Block Type Description

<block> Inherit the attributes of SDL block
virtuality String, defines the ahility to subtype
speciaization Reference to the super-block type
gates List of gates

Table V-18. Attributes of SDL Block Type

SDL Process Description

<structure> Inherit the attributes of SDL structure

process type Is empty for regular process (process definition). For process
instances, it refers to the process type the instance is based on.

number instances String without brackets, eg. 1,4

start The start transition

states List of states

Table V-19. Attributes of SDL Process

SDL Process Type Description

<process> Inherit the attributes of SDL process
virtuality String, defines the ahility to subtype
specialization Reference to the super-structure
gates List of gates

Table V-20. Attributes of SDL Process Type

100 Kurt Verschaeve
SDL Procedure Description
<structure> Inherit the attributes of SDL process (procedure also contains a state
diagram)
parameters List of parameters
returns Sort (String)
Table V-21. Attributes of SDL Procedure
SDL Parameter Description
<entity> Inherit the attributes of SDL entity
variable String
type Sort (String)

V 3.3 Communication

Table V-22. Attributes of SDL Parameter

Communication is our common notion of channels and signal routes. It alows us to reason on
communication routes independently of what they connect (processes or blocks). SDL channel
and signal route are concrete subentities of communication, but do not have any extra attributes.
That reflects the facts that channels and signal routes only differs semantically (delaying, non-
delaying) and not syntaxtically.

SDL Communication Description

<entity> Inherit the attributes of SDL entity

bidirect Trueif communication isin both directions

from struct Reference to the “from” structure of the communication. Equals
“ENV” if the communication comes from the environment.

to struct Reference to the “to” structure of the communication. Equals

“ENV” if the communication goes to the environment.

from connect

Reference to the gate or channel the “from” side is connected with.

to connect

Reference to the gate or channel the “to” side is connected with.

fromto signa list

List of signads and signa lists on the communication going from
“from” to “to”.

to from signa

List of signals and signd lists on the communication going from “to”
to “from”.

TableV-23. Attributes of SDL Communication

SDL Chann€

Description

<communication>

Inherit the attributes of SDL communication

Table V-24. Attributes of SDL Channel

SDL Signal Route

Description

<communication>

Inherit the attributes of SDL communication

Table V-25. Attributes of SDL Signal Route

| SDL Gate

| Description

Realizing the UML-SDL Round-trip Engineering 101

<entity> Inherit the attributes of SDL entity

bidirect Trueif communication isin both directions

to constraint Identifier string that refers to a type specification.

from constraint Identifier string that refers to a type specification.

out signd list List of signals and signd lists on the communication going the type.
insgnd list List of signals and signal lists on the communication going into the type.

Table V-26. Attributes of SDL Gate

V 34 Declarations

We use declaration as a super type for everything that is specified in an SDL textbox. We
explicitly define subtypes for the kind of declaration we need for the trandation. Other kinds of
declarations are stored as Unknown Dcl’'s. Note that the attribute name is inherited from the entity
super type.

SDL Declaration Description
<entity> Inherit the attributes of SDL entity
declared in Reference to the structure where the declaration is defined.

Table V-27. Attributes of SDL Declaration

SDL Signal Description
<declaration> Inherit the attributes of SDL declaration
parameters List of strings, the “sort” of the parameters.

Table V-28. Attributes of SDL Signal

SDL SignalList Description

<declaration> Inherit the attributes of SDL declaration
signds List of signals contained in the signdl list.
signd lists List of signal lists contained in the signdl list.

Table V-29. Attributes of SDL Signal List

SDL Datatype Description

<declaration> Inherit the attributes of SDL declaration

signature String containing the data part of the data type. A list of attributes
for a“struct” newtype.

behaviour String containing the operator part of the data type. A list of

operators for a " struct” newtype.

Table V-30. Attributes of SDL Datatype

SDL Variable Description

<declaration> Inherit the attributes of SDL declaration
type The sort of the variable.

initial expr Theinitial value of the variable.

Table V-31. Attributes of SDL Signal

SDL Unknown Dcl Description

<declaration> Inherit the attributes of SDL declaration

102 Kurt Verschaeve

Table V-32. Attributes of SDL Unknown Dcl

V 35 State Machine

The process structure holds two attributes that represents the state machine: start and states. Start
points to the initia start transition of the state machine. Statesisthe list of states contained in the

FSM. Each state contains the list of transitions that |eave from that state.

SDL State Description

<entity>

saves List of strings
transitions List of SDL Transitions

Table V-33. Attributes of SDL State

SDL Transition Description
<entity>
virtuality String stating the virtuality contraint
input String representing of the signa
enable String of the enabling condition
priority Boolean
save Boolean
actions List of SDL actions
start bool
Table V-34. Attributes of SDL Transition
SDL Action Description
<entity>
action String (e.g. output, task, call, nextstate, stop)
body String containing the rest of action, may be empty
Table V-35. Attributes of SDL State
SDL Decision Description
<action>
Table V-36. Attributes of SDL State
SDL Answer Description
<entity>

Table V-37. Attributes of SDL State

Realizing the UML-SDL Round-trip Engineering 103

V.4 Link UML and SDL

V 41 Hierarchical Links

As dready explained in section 1V 3.5, we need a link between the UML model and the SDL
specification. During the trandation, we maintain hierarchical links between the models and the
specification. Each entity in the UML modé is linked with its corresponding SDL entities. For
example, a «block» class is, among others, linked with the generated block and management
process. An association is linked with all generated signal routes and channels. Figure V-10 shows
an limited overview of the UML and SDL information models and the links between the
corresponding constructs. An example of the links between two concrete models is shown in
Figure 1V-13.

-7 SDL Specification

[| 1
| Channe | [SignaDcl. | [Block |

o s o "Signal Route | [Process |
@ o e " o
[Asocaion [Cas | .~ ..o vaisend.] [sete |
| “._..v-;.-:f:-""'uu-'_.:.j/ . -
[Attribute | | Operation | [State Diagram]| I L

Figure V-10: Hierarchical Links between UML and SDL

In order to redize this link, we extend the UML information model defined in section V. 2 with
links to the SDL information model defined in V. 2. These links forms a 1-to-n relationship
between UML entities and SDL entities. For example, an association is linked with many channels
and signal routes, but a specific channd is the result of exactly one association. This
chararacteristic provides the possibility to use the UML-SDL in the reverse direction, see section
V 4.3 for details.

V 4.2 UML link extension

We extend the UML information model defined in V 2.1 with links to the SDL data structure.
These links enables us to trandate changes in a particular context. For example, if a new attribute
has been added to a class, then a variable declaration should be added to the process linked with
the class. As one can see below, most UML entities have more than one link to SDL. Although

104 Kurt Verschaeve

some of the links may be redundant in some cases, all links are necessary to alow correct round-
trip engineering.

Note that we use unique identifiers as the link to SDL entities. In this way, a UML entity can
point to the same entity in different SDL specifications at the same time. This aspect is important
when using the reverse link during reverse iteration. An additional advantage is that the link can
easily be stored in file.

Initially the links are constructed during the trandation of new UML entities. For example, if a
management process is generated from a class, the generated process is assigned to the sdlprocess
attribute of the class. The next time, during synchronization, the UML and SDL data structures
are both build-up and the links created during the trandlation are restored. Without storing explicit
link information in UML or SDL files, it is difficult to restore the origina links.

Package SDL link SDL Type Info

sdlspecification Specification Link to the complete SDL specification.

TableV-38. SDL links of UML model

Package SDL link SDL Type Info

sdlspecification Specification Back link to the complete SDL specification.

sdlsystem System (Type) or The system or package that is linked with this
Package package.

sdlarchitecture System (Type) or Link with the structure that holds the instances
Block of top-leved classes.

Table V-39. SDL links of UML package

Class SDL link SDL Type Info
sdldefinition Block(Type) or Link with the main structure generated from the
Process(Type) class.
sdlsuper Block Type or Process | The type definition which is linked with the
Type superclass.
processesblock Block Link with the extra block containing the
processes. May be empty or may be the same as
sdldefinition.
declarationStruct Structure Pointer to the structure that contains the
declaration generated by the class
sdiprocess Process Link with the process generated from the class.
For «process» classes, sdldefinition = sdlprocess.
sdisignallist Signallist Declaration
sdldatatype Newtype Declaration | Only applicable for «newtype» classes.

TableV-40. SDL links of UML class

Operation SDL link | SDL Type Info

sdlsignal Signal Declaration Link to the signal declaration. Only applicable for

Realizing the UML-SDL Round-trip Engineering 105

«signal» operations.

sdlprocedure Procedure Definition | Link to the procedure definition. Only applicable
for «procedure» operations.

Table V-41. SDL links of UML Operation

Attribute SDL link | SDL Type Info

sdldeclaration Variable Declaration | Link to the variable declaration generated from
the attribute.

TableV-42. SDL linksof UML Attribute

Aggregation links SDL Type Info

sdlcomponent Structure Link with the structure definition or the type
based instance.

sdldeclaration Variable Declaration | Link to the variable declaration generated from
the aggregation.

TableV-43. SDL links of UML Aggregation

The UML association has a complicated mapping; therefore, it also needs many links to keep
track of all the SDL entities that are generated from an association. The links used for a particular
association depends heavily on the option settings and on the classes it is connected with. The
most complicated case is where a full-communication association connects two processes in a
completely different scope.

Association links | SDL Type Info

sdifromroute Signd Route Link to the signal route generated from the “From”
association end. May be empty.

sditoroute Signd Route Link to the signal route generated from the “To”

association end. May be empty and may be the same as
sdlfromroute.

sdlfromchannel Channel Link to the main channel generated from the “From”
association end. May be empty.

sditochannel Channel Link to the main channel generated from the “To”
association end. May be empty and may the same as
sdifromchannel.

sdichannels List of Channdls | A ligt of linksto al the channels generated from the
association, including the sdifromchannel and
sditochannd.

sdlgates List of Gate A lig of linksto all the gates generated from the
association.

fromsignallist Signdlist Link to the SDL signadlist that contains the signals that

can be send to the From association end. May be the
same as fromclass.sdisignallist.

tosignallist Signdlist Link to the SDL signallist that contains the signals that
can be send to the To association end. May be the same
astoclass.sdlsignallist.

TableV-44. SDL links of UML Association

State Diagram links | SDL Type Info

sdlprocess Process(Type) Link with the process or process type definition.

106

Kurt Verschaeve

Table V-45. SDL links of UML State Diagram

State links SDL Type Info
sdistate State Link with the SDL state.
TableV-46. SDL links of UML State
Transition links SDL Type Info
sdltransition Transition Link with the SDL transition.
timerdeclaration Declaration
nextstate Action Link with the nextstate statement, which
corresponds with the destination state.
TableV-47. SDL links of UML Transition
Action links SDL Type Info
sdlaction Transition Link with the SDL transition.

TableV-48. SDL linksof UML Action

V 43 SDL ADT extension

To write down the reverse iteration trandation rules, we need links from SDL to UML. However,
we define these links indirectly in terms of the UML-SDL links. As explained before, the UML-
SDL links can also applied in the reverse direction. If class.sdlprocess results in a certain process,
then the reverse funtion process.sdliprocess® results in the origind class. In other words,
process.sdlprocess® must be interpreted as the function that returns the class that is linked with
process with the sdiprocess link. For amost every link defined in the previous section, we define

areverselink.

SDL Type Reverse Link Return Value

Specification sdl specification™ The model that links with this specification.
Table V-49. Reverse Linksresultingin a UML model

SDL Type Reverse Link Return Value

System (Type) or sdlsystem* The package that links with this system or

Package package as the sdlsystem.

System (Type) or
Block

sdlarchitecture™

The package that uses this structure (system or
block) as the architecture block.

Table V-50. Reverse Linksresulting in a UML Package

SDL Type Reverse Link Return Value

Block(Type) or sdldefinition™ The class that links to this block or process as its

Process(Type) main structure.

Block Type or sdisuper™ The class that links to this structure as its

Process Type supertype.

Block processeshlock™ The class that links to this block as its processes
block.

Process sdlprocess™ The class that links to this process as its process
as amain structure or as its management process.

Realizing the UML-SDL Round-trip Engineering

Signallist Declaration

sdisignallist™

The class that has generated this signal list.

Newtype Declaration

sdldatatype

The class that has generated this declaration.

TableV-51. Reverse Linksresultingin a UML Class
SDL Type Reverse Link Info
Signal Declaration sdlsignal ™ The operation that generated this signd.
Procedure Definition | sdlprocedure™ The operation that generated this procedure.

Tab

leV-52. Reverse Linksresulting in a UML Operation

SDL Type

Reverse Link

Info

Variable Declaration

sdldeclaration™

The attribute that generated this variable.

Table V-53. Reverse Linksresulting in a UML Attribute

SDL Type

Reverse Link

Info

Structure

sdlcomponent™

The aggregation that generated this structure
definition or instance.

Variable Declaration

Pid*

The aggregation that generated this Pid variable
declaration.

Table V-54. Reverse Linksresultingin a UML Aggregation

SDL Type Reverse Link Info
Signd Route/ sdlfrom* Association that generated this channel or signal route
Channel from the “From” association end.
Signd Route/ sdito™ Association that generated this channd or signal route
Channel from the “ To" association end.
Signd Route/ sdichannel ™ Association that generated this channel or signa route.
Channel
Gate sdlgate™ Association that generated this gate.
Table V-55. Reverse Linksresulting in a UML Association

SDL Type Reverse Link Info
State sdistate™ The UML state that generated this state.

Table V-56. Reverse Linksresulting in a UML State
SDL Type Reverse Link Info
Transition sdltransition™ The UML transition that generated this state.
Action nextstate™ The UML transition

Table V-57. Reverse Linksresultingin a UML Transition

107

108 Kurt Verschaeve

V.5 Compareé& Translate

After loading and preprocessing the UML model(s) and SDL specification(s), the next step is
comparing the two UML models (forward iteration) or the two SDL specifications. The
comparison is performed in a hierarchical way and is based on identifiers instead of names in
order to detect renames. An entity that is present in the old model but not in the new model is
considered deleted. An entity that is not present in the old model but is present in the new model
is new. An entity present in both modelsis said to match and is compared to find differencesin its
attributes. For each change or match, the corresponding set of trandation rule is processed. For
example, if a class is found in the old and the new UML model with the same identifier, then al
the rulesin section V 6.10 are processed one by one. If, for instance, the names of the two classes
are different, then either Rule 73 or Rule 74 will effectively be executed, depending on the
stereotype of the class.

The order in which the different constructs are compared is not arbitrary. For example, a new
attribute cannot be trandated before its class has been trandated and an association should be
deleted before the classes it is connected with are deleted. The tree shown in Figure V-11 defines
the order in which the various parts of the UML model are compared and processed. The tree is
incomplete in the sense that the sub trees of the new and delete changes are left out of the picture.
It is clear, that in a new package, al its classes, aggregations and associations are also new.
When trandating a new class, al its attributes and operations are also trandated as new. Similarly,
when deleting a class, its attributes and operations are deleted first.

As a genera rule, we first trandate deleted entities, then compare matching items and then
trandate new items. When trandating deleted classes, the leave components in the aggregation tree
are trandated first, then their aggregates and so on. New classes are processed in the opposite
order, i.e. aggregates first. Note that the trandation rules in the next sections are not ordered in
order of execution, but are grouped per entity in the orther new, delete and compare.

Realizing the UML-SDL Round-trip Engineering 109

Forward Iteration |

| Compare Class |

New Model |
Compare Model | <| Changes |
«I Delete Packages | Stereotype |
~| Compare Packages | Neme |
Typed |

~| Delete Association ~| Delete Attribute

~| Delete Aggregation

«I Delete Class ~| Compare Attribute

|
«I Delete Operation |
|
|

«I Compare Class ~| Compare Operation

Delete Parameter |
~| Compare Aggregation Compare Parameter |
- New Aggregation New Parameter |

~| Compare Association <| New Attribute |

|
|
|
|
~|New Class |
|
|
|
|

«I New Association

«| New Operation |

«I New Packages | ~| Compare State Diagram |

Figure V-11. Hierarchy and Order of Model Comparison

110 Kurt Verschaeve

V.6 UML toSDL

V 6.1 Introduction

This section contains al rules necessary to trandate any change in a UML mode into a
modification of the SDL specification. The rules are grouped in rule sets, i.e. each sectionisarule
set that tranglates a change. The compare sections compare the attribute of the entity and only
trandate something if a change is detected. The new and delete sections always trandate the
change, but uses other information (stereotype, relationships, UML-SDL links, etc.) to find out
exactly which rules need to be fired. Each rule set is independent of the other rules sets, therefore
each section starts by defining a list of context variables that are used in the rules.

V 6.2 New Mode€

The firgt rule defines the trandation of a new UML model. For reasons of uniformity, this rule is
also described as a change, i.e. the UML model is new as compared with nothing. This rule is
actually the starting point to trandate a new UML model for the first time, i.e. when there is
nothing to compare the model with yet.

A UML model maps on an SDL specification. Therefore, for a new model we create a new
empty SDL specification called spec with the same name. The names of the model and the
specification actually represent the filenames and are not really part of the model or specification.

Context — modd isthe new UML model

Action Create an empty SDL specification = spec.

Set spec.name = model.name

Variables — model.sdlspecification = spec

Rule 35. Transate Change Package Name

Note that after executing this rule, the packages, classes and other information contained in the
model are all considered “new” and are all translated with their respective trandation rules. The
order of execution is globally defined in section V. 5 and is not repeated for each change.

V 6.3 CompareModel

The only information in a UML model that can change is the name. The other entities contained
in the model are compared separately. Again, the order of execution of comparison is defined
globaly in section V. 5.

Realizing the UML-SDL Round-trip Engineering 111

Context — moddyq isthe old UML mode

— model ey isthe new UML model, being compared with model o4
Preconditions — modélgg.name! model,q.nName
Action model e Sdl specification.name = model ,e.Name

Rule 36. Change Model Name

V 6.4 Delete Model

Deleting a UML model corresponds to deleting all available information. For safety reasons, this
rule should only be executed after user confirmation. This rule has little practical value and is
presented here for the matter of completeness.

Context — model isthe old UML model
Action Delete model . sdl specification

Rule 37. Trandlate Deleted M odel

V 6.5 New Package

Packages are UML’s main structuring mechanism. They group classes that belong together,
although classes from different packages can be placed next to each other in one diagram and
connected with a reationship. Packages can be nested or connected with a dependency
relationship. In SDL, the package concept is very similar, but the contents of SDL packages are
strictly separated. An SDL package can contain all kind of declarations, e.g. signal, data types,
block types and process types, but not block or process definitions. A system that imports such a
package may use these declarations, e.g. to define process instances, but it may not directly refer
toit likein UML. An SDL specification usually contains one system definition and many packages
with a hierarchy of uses relationships.

When trandating a UML model for the first time, this rule set (New Package) is fired for the main
package and for al the nested packages in the moddl. When comparing two modédls, thisrule set is
fired only for completely new packages.

Note that before executing the rules below, the UML package has aready been preprocessed by
the algorithm defined in V.2.3.1. Therefore, the system class is already defined as the class that
represents the package.

Context — model isthe UML model

— package is the new UML package
— sysclass = package.systemclass
— spec = model.sdlspecification

112

Kurt Verschaeve

Variables

— package.sdlspecification = spec

Rule 38. Trandate Context for New Package

A UML package is trandated into SDL as a system or a package, depending on the stereotype of
the package, see Rule 39 and Rule 41. If the stereotype is «system» and the system class is typed,
the system is generated as a combination of a system type and a type based system instance, see
Rule 40. An important aspect of these translation rules is the assgnment of the architecture and
sdidefinition variables. They respectively define where top-level instances and top-levd types
should be placed. As an SDL package cannot contain instances, Rule 41 creates an extra block
type to hold the architecture (an instance of each top-leve class).

Preconditions

— package.stereotype = «system»
— sysclass.typed = false

Action

Add to spec:

SYSTEM <package. nanme>;
ENDSYSTEM <package. nane>;

Variables

— package.sdisystem = system = the added system
— package.architecture = system
— sysclass.sdldefinition = architecture

Rule 39. Trandlate non-typed «system» Package

Preconditions

package.stereotype = «system»
sysclass.typed = true

Action

Add to spec:

SYSTEM TYPE <package. nane>;
ENDSYSTEM TYPE <package. nane>;

SYSTEM a_<package. nane> : <package. nanme>;

Trans ate package.systemClass as a new class, starting from Rule 55.

Variables

- package.sdlsystem = system = the added system type
package.architecture = system
sysclass.sdldefinition = architecture

Rule 40. Trandate Typed «system» Package

Preconditions

package.stereotype = «package»

Action

Add to spec:

PACKAGE <package. name>;
BLOCK TYPE <package. nane>;
ENDBLOCK TYPE <package. nane>;

Realizing the UML-SDL Round-trip Engineering 113

ENDPACKAGE <package. nane>;

Trans ate package.systemClass as a new class, starting from Rule 55.

Variables - package.sdisystem = system = the added package
- package.architecture = the block type in the package
- sysclass.sdldefinition = architecture

Rule 41. Trandate «package» Package

Rule 43 uses the “new class’ trandation rules on the system class to create a processes block and
management process at system level. The definition structure of the system class has aready been
created in the previous rules.

Action Trans ate package.systemClass as a new class, starting from Rule 55.

Rule 42. Create Processes Block and Management Process

Context — package.packages = (py, ..., pn)
Action Add to package.sdlsystem:

USE <p;. name>;

USE <p,. nanme>;

Rule 43. Trandate Package Dependencies

V 6.6 Delete Package

Deleting a package in UML simply results in deleting the SDL system or package linked with the
UML package. In case that the different entities are stored in separated files, only the reference in
the specification to the system or package should be deleted and not the files themselves. Even so,
the execution of this rule should preferable be confirmed by the user, because it has big
implications.

Preconditions — Package packageis deleted.

Context — system = package.sdlsystem
— architecture = system or the block type in package

Action Delete package.sdisystem from spec. If sysclasstyped = true, then first
delete the instances of package.sdlsystem from spec.

Rule 44. Delete Package

V 6.7 Compare Package

In this rule set, only the name, stereotype and package dependencies are checked. The options
(locd/global) are compared for each class separatdly. For example, if the global declaration
option changes from true to false, many signa declarations should be moved from system level to

114

Kurt Verschaeve

a more local block or process. It is easier to make each class responsible for his signa
declarations. This has the additiona advantage that the local/globa options can be set for each

class separately.

Rule 45 defines many context variables to ease the specification of the trandation rules. More
important, however, is the initidization of the SDL links of the new maodel. Unlike the old model,
the new model does not contain the restored SDL links. Each compare rule set therefore first
copies the SDL links from the old entity to the new one.

Context for model 4 is the old UML model

this section model e, is the new UML model, being compared with model ey
packageq is the previous UML package
package.y is the new UML package to be compared with packageyq
sysclassy,q = packageyq.systemclass
sysclass,ey = package,q.Systemclass

Variables packagee,.sdlsystem = package,q.sdlsystem (set initial value)
package.q,.ar chitecture = packageyq.architecture (set initial value)

Rule 45. Context for Comparing Packages

Preconditions — packageyq.name! package,ey.name

Context

Action packagee,.sdlsystem.name = package,e,.-name

package.e,.ar chitecture.name = package,e,.name

Rule 46. Change Package Name

Rule 47 and Rule 48 defines how to trandate a stereotype modification of a package. If the
stereotype is changed from «system» to «package», an new architecture block is created and all
non-typed structures and channels are moved into this block. In the other direction, the
architecture block is simply diminated after moving its contents to the system.

Preconditions — sysclassyq.stereotype = «system»
— sysclass,q.Stereotype = «package»
— package.-sdlsystemis a system (type)

Action Convert package.ey.sdlsystem into a package and delete the system instance
in the specification if present.
Create an architecture block type in package,..sdlsystem with name
package,ey.name
Move al block and process definitions, al type based instances and all
channels from the system to the new architecture block type.

Variables — package..-architecture = newly created architecture block type

Realizing the UML-SDL Round-trip Engineering 115

Rule 47. Change Package «system» to «package»

Preconditions — sysclass,q.stereotype = «package»
— sysclass,ey.Stereotype = «systemy»
— package,.-sdlsystemis a package

Action Change package,q,.sdlsystem to a system.
Move the complete contents of the architecture block to the system.

Remove the architecture block.

Variables — packagena,-architecture = package,q,.sdlsystem

Rule 48. Change Package «package» to «system»

Preconditions — $pack] package,q.packages: pack | package..packages
Action Remove the clause “use <pack. name>; ” from package,e,.sdlsystem

Rule 49. Remove Package Dependency

Preconditions — $pack] package.e.packages: pack | packageyq.packages
Action Add to the body of package,q,.sdlsystem:

USE <pack. name>;

Rule 50. Add Package Dependency

V 6.8 New Class

As could be expected from an object oriented modeling technique, the class concept plays a very
central role in UML. The extensibility mechanisms alow the class concept to be overloaded to
mean different things. Similarly, there are many different ways of trandating a class, depending on
the value of the stereotype and translation options. Note that, because of the preprocessing, every
class always has a stereotype and a default value for the options.

A class with stereotype «package» is trandated as a package dependency, see Rule 52. A class
with stereotype «block» is trandlated as a block or block type, see Rule 53 and Rule 54. If
necessary, a processes-block and a management process are added to the block (type). From Rule
58 on, consecutively «process» classes, «newtype» classes and inheritance relationships are
translated.

Context for — classisthe new UML class
this section — package is the surrounding package of class
— sysclass = package.systemclass

116

Kurt Verschaeve

system = package.sdlsystem
architecture = package.sdlar chitecture

Rule 51. Trandate Context for New Class

Preconditions — sysclass.stereotype = «package»
Action Add to system:
USE <cl ass. name>;
Rule 52. Trandate Package Reference
Preconditions | — class.stereotype = «block»
— class.typed = false
Context — definedin = class.definedin.sdldefinition
Action Add to definedin:
BLOCK <cl ass. name>;
ENDBLOCK <cl ass. nane>;
Variables — structure = the added block
Rule 53. Translate Non-typed «block» Class
Preconditions | — class.stereotype = «block»
— class.typed = true
Context — definedin = class.definedin.sdldefinition
Action Add to definedin:
BLOCK TYPE <cl ass. nane>;
ENDBLOCK TYPE <cl ass. nanme>;
Variables — structure = the added block type

Rule 54. Trandate Typed «block» Class

According to the SDL syntax rules, a block can either contain blocks or contain processes, not
both at the same time. This is solved by creating an extra processes block, i.e. a block that
contains al the processes that would otherwise be in the aggregate, see Rule 55. The
processesBlock variable is assigned to the structure where the processes should be inserted. So, in
Rule 56 the processes may be inserted in the block itself, as there are no «block» components.

Preconditions

— class.stereotype = «block» U «system»U «package»

— (class.management = true U class has «process» components) U (class has
«block» components)

Context

— structure is the new block or process as defined before

Action

Add to structure:

BLOCK <cl ass. name>_Processes;

Realizing the UML-SDL Round-trip Engineering 117

ENDBLOCK <cl ass. nanme>_Pr ocesses;

Variables — class.processesBlock = the added block
— class.processesBlock = structure if the last condition of the precondition is
not fulfilled.

Rule 55. Provide Processes Block

Preconditions | — class.stereotype = «block» U «system»U «package»
— class has ho components with stereotype «block»
Variables — class.processesBlock = structure

Rule 56. No Processes Block Needed

A management process is a regular SDL process that fulfills the behavioral aspects of a block.
Because of the SDL syntax rules, a block cannot contain variables or a state chart. When
trandating a «block» class with attributes or a state diagram, Rule 57 adds a management process
to the block, which then will hold the generated variables and state chart. The management
attribute of the classis set during the preprocessing.

Preconditions | — class.management = true

— sysclass.stereotype = «block» U «system» U «package»
Context — structure = class.processesBlock
Action Add to class.processesBlock:

PROCESS <cl ass. nane>;
ENDPROCESS <cl| ass. nane>;

Variables — class.sdlprocess = the added process

Rule 57. Create M anagement Process

Rule 58 and Rule 59 create the process or process type for «process» classes. The sdldefinition
and sdlprocess link variables of the class are both set to point to the generated process (type). The
sdidefinition link is used to connect signal routes, gates and local signals. The sdiprocess link is
used to generate the variables and the state chart. Rule 59 only generates the process type, not the
instances. The type based instances of this process type are generated from the aggregations in
Rule 80.

Preconditions | — class.stereotype = «process»

— class.typed = false
Context — definedin = class.definedin.sdldefinition
Action Add to definedin:

PROCESS <cl ass. nane>;
ENDPROCESS <cl ass. nane>;

Variables — structure = the added process
— class.sdldefinition = structure

118

Kurt Verschaeve

class.sdlprocess = structure

Rule 58. Trandate «process» Class

Preconditions | — class.stereotype = «process»
— class.typed = true
Context — definedin = class.definedin.sdldefinition
Action Add to definedin:
PROCESS TYPE <cl ass. nane>;
ENDPROCESS TYPE <cl ass. nane>;
Variables — structure = the added process type

— class.sdldefinition = structure
— class.sdlprocess = structure

Rule 59. Trandate Typed «process» Class

Rule 60 and Rule 61 fill in the link to the declaration structure (declarationStruct), depending on
the global declaration option. Rule 62 uses this link to create the signa list associated with the
class. The signals within the signa list are managed when trandating operations.

Preconditions | — class.stereotype = «system» U «package» U «process» U «block»
— package.globaldeclaration = true
Variables — class.declarationStruct = package.sdldefinition
Rule 60. Set Global Declaration Struct
Preconditions | — class.stereotype = «system» U «package» U «process» U «block»
— package.globaldeclaration = false
Variables — class.declarationSruct = class.sdldefinition
Rule 61. Set Local Declaration Struct
Preconditions | — class.stereotype = «process» or «block»
Action Add to class.declarationStruct :
SI GNALLI ST <cl ass. nane> = ;
Variables — class.signallist = the added signdl list

Rule 62. Create Signal List

Rule 63 trand ates the generalization relationship between «process» and «block» classes. Because
of the preprocessing, super- and subclasses always have the same stereotype, so this is not
checked again. The generalization concepts maps very well on the inherits concept in SDL, with
one exception. In UML, a subclass inherites the association relationship from its superclass, while
in SDL a channels and signal routes can not be connected to block or process types and therefore

Realizing the UML-SDL Round-trip Engineering 119

cannot be inherited. This is solved during the preprocessing by generating extra associations, see
Rule 22 and Rule 23.

Preconditions | — class.stereotype = «process» U «block»
— class.superclass® empty
— class.typed = true

Context — structure = the added block type or process type

Action Add to signature of structure:

I NHERI TS <cl ass. supercl ass. nane> ;

Variables class.sdlsuper = class.superclass.sdldefinition

Rule 63. Trandate I nheritance

Rule 64 trandates passive classes into abstract data types. Passive classes are recognized by the
stereotype «newtype», as of the SDL keyword for describing data types. This rule only trandates
the class itself; Rule 94 and Rule 107 respectively translate new attributes new and operations.
SDL newtypes do not support inheritance, therefore inheritance between two «newtype» classes
istrandated in Rule 65 as an attribute “father” in the newtype generated from the subclass.

Preconditions | — class.stereotype = «newtype»
Context — definedln = class.definedin.sdldefinition
Action Add to class.:

NEWYPE <cl ass. nane> STRUCT
<here cones the attributes>
operators
<here cones the operations>

ENDNEWI'YPE <cl ass. name>;

Variables — class.datatype = the added new type
— signature = placeholder for trandating the attributes
— operator = placeholder for trandating the operators

Rule 64. Trandate «newtype» class

Preconditions | — class.stereotype = «newtype»
— class.superclass® empty
— class.superclass.stereotype = «newtype»

Action Add to signature:

father <class. supercl ass. nane> ;

Rule 65. Trandate Inheritance for «newtype» Classes

120 Kurt Verschaeve

V 6.9 DeleteClass

Deeting a class in a UML model can have significant consequences on the linked SDL
specification. Most changes are indirect however and are trandated as such. The attributes and
operations in the old (deleted) class, are handled in sections V 6.15 and V 6.18. Association
relationships with the deleted class are deleted too, see section V 6.22. The aggregation
relationships are deleted in the same way and as a result, the components of the old class are
automatically moved to another parent. Finally, subclasses of the old class will loose their
inheritance by comparing the old subclass and the new subclass in Rule 75. Rule 66 therefore only
has to delete the SDL entities it is directly linked with.

Context for — classyg isthe old UML class being deleted
this section
Action Remove class,q.sdldefinition from its parent

Remove class,q.sdisignallist
Remove class,q.sdldatatype

Rule 66. Trandate Deleted Class

After the delete operation, class,y keeps a pointer to the original SDL entities. The definition,
signallist and datatype are merely deleted from the children and declaration list of the structure
containing the information. It is important that class,q.sdldefinition is not deleted completely
because some components of it may still be needed further on, e.g. to move them to another
structure.

V 6.10 CompareClass

Class comparison is the most complex compare operation because there are so many things on a
class that can change. Trandating the changes rely a lot on the semantics regarding the mapping.
A typical example is a class changing its stereotype from «block» to «process». This is a drastic
change, but a lot of information can be preserved. The process linked to the original class
becomes the main definition for the class. Because of the complexity of the class comparison, we
divided the trandation rules into the different facets.

Rule 67 defines the context variables of the classes to be compared and some extra variables to
ease the specification of the trandation rules. As with any comparison, the SDL links o the new
class are initialized with the links of the old class. In this way, the new class aready has the

necessary links.

Context for — classygisthe old UML class

this section — class,y isthe new UML class, being compared with classyg
— package,q isthe UML package containg classyay

— package.y isthe UML package containg classygq

— sysclass,g = package,q.systemclass

— sysclass,qy = packageney.systemclass

Variables — class,gy.sdldefinition = classyg.sdldefinition
— classey-sdlsuper = classyg.sdlsuper

Realizing the UML-SDL Round-trip Engineering 121

— class,ey-processesblock = classyq.processeshlock
— class,ey-sdlprocess = classyq.sdlprocess

— class,e-sdisignallist = classyg.sdisignallist

— class,ey-Sdidatatype = classyq.sdldatatype

Rule 67. Context for Comparing Classes

V.6.10.1 Stereotype has changed

The stereotype of a class actually determines the semantics of the class. Therefore, changing the
stereotype can have far-reaching consequences. For example, take a «block» class with some
«process» components, which’s stereotype is changed into «actor». The linked SDL block is
removed and all channels to the block are rewired to the environment. Moreover, the UML
aggregations become invalid, the «process» components become top-level and consequently
become blocks. Fortunately, most of side affects of the stereotype change are already dealt with
during the preprocessing. In the given example, the deleted aggregations, changed components and
associations are al trandated in their respective trandation rules. For this reason, the trandation
rules can be kept quite simple. The only case where we can redly preserve information is
switching between the «block» and the «process» stereotype.

Rule 68 defines the trandation for a class that switches its stereotype from «block» to «process».
The most common case is that the class has aready a link to a process. In that case, the process
takes over the role of the block. All declarations (signals, sorts, etc.) are moved into the process
and the block is replaced by the process. It is possible that after this operation, a block and a
process definition appear in the same scope level. This is not alowed in SDL, but this is solved
during the SDL post processing explained in section. The other direction, a class changing from
«process» to «block» is somewhat easier, see Rule 69.

Preconditions | — classyg.stereotype = «block»

— classyg.sdlprocess is not empty
— class,e.Stereotype = «process»

Context — let parent be the structure that contains class,e,.sdldefinition
Action — move declarations of class,e,.sdldefinition into class,e,.sdlprocess

— move the complete contents of class,q,.sdldefinition to parent
— ddete class,.sdldefinition from parent

Variables — class,ey-sdldefinition = class,y.sdlprocess
Rule 68. Change Stereotype «block» to «process»
Preconditions | — class,q.Stereotype = «process»
— class,e-Stereotype = «block»
Action — trandate classe, as anew class

— copy the complete contents of class,y.sdlprocess into class,g,.sdlprocess

Rule 69. Change Ster eotype «process» to «block»

Preconditions — clasyg.stereotype ! class,e.Stereotype
— Neither Rule 68 or Rule 69 have been fired

122 Kurt Verschaeve

Action — trandate classyy as a deeted class
— trandate class,y, as anew class
— stop comparing this class

Rule 70. Stereotype Category Change

V.6.10.2 Typed has changed

The typed value of a «block» («process») class determines whether it maps on a block type or a
block definition. In other words, if the typed value changes to false, the block type is changed into
a block definition and the other way around. It is more complicated than that, however. The
aggregation to the class has a different semantics for typed and non-typed classes. For a typed
class, the aggregation maps on a typed based instance. For a non-typed class, the aggregation only
locates to the scope of the definition. Rule 71 and Rule 72 resolve this difference when the typed
value is changed.

Preconditions | — class,e,.stereotype = «block» U «process»
— classyg.typed = false
— class,entyped = true

Context — structure = class,q,.sdldefinition
— definedin = structure.parent
Action Transform the block/process class,ey.sdidefinition into a block type/process

type and move it to class.,.definedin.sdldefinition.

Add gates G, ..., G, to class,q,.sdldefinition for each channel/signal route in
structure.parent going to structure. Reuse the name and signa lists of the
channel/signal route.

In structure.parent create a type based block/process instance (instance) with
name structure.name prefixed with “a " and type structure.name

Reconnect the channels/signal routes to instance by using the newly generated
gates

Rule 71. Class becomes Typed

In Rule 72, we look for an instance of the type that is about to be modified in a definition. In
normal cases, there is not more than one instance of the class, because the UML preprocessor
would mark the class as typed after al. However, if the models are not well synchronized, it may
happen that some instances are overlooked. Therefore, we delete the instances in excess. In a tool
environment, the user will be queried to agree with the proposed changes.

Preconditions | — class,e,.stereotype = «block» U «process»
— classyg.typed = true
— class,entyped = false

Context — let instance be an instance of class,,.sdldefinition

Realizing the UML-SDL Round-trip Engineering 123

Action Delete all instances of class,ey.sdldefinition.

Transform the block/process type class.a..sdldefinition into a block/process
definition.

If instance is not empty, replace instance with class,q,.sdldefinition and
reconnect the communication and delete other instance of class,e,.sdldefinition,

else, move class,q,.sdldefinition to class.e,.definedin.sdldefinition.

Rule 72. Class becomes Non-Typed

V.6.10.3 Name has changed

To trandating a name-change of a class, al the linked SDL entities are renamed. The rules below
only have to be executed if the old and the new class have the same stereotype, i.e. both are either
«block» or «process». If the stereotype is different, the name change is already handled in the
previous section.

Preconditions | — classyg.stereotype = «block» U «process»

— and class,e,.stereotype = «block» U «process»,

— Or classyg.stereotype = classqy.Stereotype = «actor»
— classyg.classname ! class,q,.classname

Action Rename the following entities if not empty:

— class,gy.-sdldefinition.name = class,q,.classname

— classey-Sdlprocess.name = class,ey.Classname

— class,ey.-processeshlock.name = <class,q,.Classname>_Pr ocesses
— class,e-Signallist.name = class,q.classname

Update all references to class,ey-signallist (on channels, gates, etc.).

Rule 73. Rename «block» or «process» Class

Preconditions | — classyg.stereotype = class,q,.Stereotype = «newtype»
— classyg.classname ! class,q,.classname
Action Rename the following entity:

— class,ey.-datatype.name = class,q,.classname

Rule 74. Rename «newtype» Class

V.6.10.4 Super Class has changed

In the two rules below we only have to take care about the direct mapping of the inheritance, i.e.
the “inherits’ clause for types and the “father” entry for newtypes. Side effects such as new or

124 Kurt Verschaeve

deleted associations and aggregations are handeled by the preprocessing and the rules about
associations and aggregation.

Preconditions | — class,e,.stereotype = «block» U «process»
— classyg.superclass? class,q,.superclass
Action If classyg.superclass® empty, delete the | NHERI TS reference from the signature

of class,y,.sdldefinition.

If class,ey-SUperclass! empty, add the signature to class,q.sdldefinition:

I NHERI TS <cl ass. supercl ass. name> ;

Rule 75. Change Super Class

Preconditions | — class,q,.Stereotype = «newtype»
— classyg.superclass? class,q.typed.superclass
Action If classyg.superclass * empty, delete the attribute named “father” in

classyg.sdidatatype. If such an entry does not exists, delete the attribute of sort
classyg.superclass.name

If class,ey-SUperclass! empty, add to class.datatype:

father <class. supercl ass. nane> ;

Rule 76. Change Super Class for Newtypes

V.6.10.5 Defined in has changed

The defined in value of a class defines the scope in which the linked type or definition is located.
A different defined in value therefore means that the type must be moved to a different location.
The defined in value already takes the global type option into account, i.e. if global typeistrue,
the defined in variable is set to the system class for al typed classes.

Preconditions | — class,,.definedin?® classyy.definedin

Action If classy.Stereotype = «process» and class.typed = fase, move
classyg.sdldefinition into class,e,.definedin.processesBlock

Else, move classyy.sdldefinition into class,q,.definedin.sdldefinition

Rule 77. Change Defined In Class

V 6.11 New Aggregation

Adding an aggregation can have more implications than the aggregation itself. For example, adding
a second aggregate to a non-type class automatically turnsit into atyped class. Again, in the rules
below we only have to take care of the direct trandation and not of the side effects. Note a so that

Realizing the UML-SDL Round-trip Engineering 125

if an aggregation modeled by the user replaces an aggregation previously added by the
preprocessor, it will not be regarded as a new aggregation.

Context for -
this section. _

aggregation is the new UML aggregation
agor is the aggregate class
— comp is the component class

— package is the surrounding package of class
— sysclass = package.systemclass
system = package.sdlsystem

Rule 78. Context for Trandlating Aggregations

If the component class of the new aggregation is typed, a new type based process or block (also
called block or process instance) is created, as defined in Rule 79 and Rule 80. Rule 81 trandates
the case where a «block» or «process» class gets a new «newtype» component. In this case, a
variable is added to the process linked with the aggregate class. Similarly, Rule 82 adds an entry to
the signature of the aggregate new type. Aggregations between other type of classes, e.g. actor,

are considered analysis only and are deleted during preprocessing.

Preconditions | — comp.stereotype = «block»
— comp.typed = true
Context — structure = aggr.sdldefinition
Action Add to structure:
BLOCK a_<conp. nane> : <conp. nane>,
Variable — aggregation.sdicomponent = created type based block
Rule 79. Translate Aggregation with «block» Component
Preconditions | — comp.stereotype = «process»
— comp.typed = true
Context — structure = aggr.sdldefinition
Action Add to structure:
PROCESS a_<conp. nane> : <conp. nane>,
Vaiable — aggregation.sdlcomponent = created type based process

Rule 80. Trandate Aggregation with «process» Component

Preconditions | — aggr.stereotype = «process» U «block»
— comp.stereotype = «newtype»
Action If aggr. sdlprocess is not empty, add to aggr. sdlprocess:
DCL <aggregati on. aggregati onrol e> <conp. nane>;
Variable — aggregation.sdideclaration = created variable declaration

126 Kurt Verschaeve

Rule 81. Trandate Aggregation with New Type Component

Preconditions | — aggr.stereotype = « newtype»
— comp.stereotype = «newtype»
Action Add to class.datatype.signature:

<attribute.nane> <attribute.type>;

Rule 82. Trandate Aggregation between New Types

V 6.12 Delete Aggregation

Rule 84 only deletes the SDL component linked to the aggregation if it is a type-based instance,
i.e. if the typed variable of the component is true. In the case of a process or block definition,
deleting the aggregation will cause the definition to move to system level (see Rule 77), not to
deleteit.

Context for — aggregationyq is the old UML aggregation being deleted
this section. — aggryqisthe old aggregate class
— compgyq is the old component class

Rule 83. Context for Deleted Aggregations

Preconditions | — compyg.Stereotype = «block» U «process»
— compgg.typed = true

Context — structure = aggr o ¢.sdldefinition

Action Delete structure from its parent.

Rule 84. Trandlate Deleted I nstance Aggregation

Preconditions | — aggr.stereotype = «process» U «block»
— comp.stereotype = «newtype»

Context — variable= aggr. sdideclaration

Action Delete variable from aggr.sdlprocess

Rule 85. Deleted Aggregation with New Type Component

V 6.13 Compare Aggregation

As with al compare rules, in Rule 86 we start by copying the link variables. Rule 87 handles the
cases where no information can be reused and the old aggregation is deleted and the new
aggregation is added. Rule 88 and Rule 89 respectively update the name and the type of ablock or
process instance based on the role name and component name. Rule 90and Rule 91 trandate the
same changes for «newtype» components. We do not need a rule for name changes of the
aggregation itsalf, because the name of the aggregate itsdlf is not used in the trandation.

Realizing the UML-SDL Round-trip Engineering 127
Context for — aggregationyq is the previous UML aggregation
this section. — aggregation,, is the new UML aggregation to be compared
— agoryg = aggregationyq.aggregate
— COmpyg = aggregati onyg.component
— agyrney = aggregation,e,.aggregate
— COMPrey = aggregation,g,.component
— aggregation,e,.sdlcomponent = aggregationgq.sdlcomponent
— aggregation,e,.sdlideclaration = aggregationgq.sdlcomponent
Rule 86. Context for Comparing Aggregations
Preconditions | — compyg® COMPrew, OF
— aggrqg-stereotype ! aggrnen-Stereotype, or
— COmMpg.Stereotype ! compye,.Stereotype
Action Trandate aggregationy as a deleted aggregation.
Trand ate aggregation,e, 8s a new aggregation.
Stop comparing these aggregations.
Rule 87. Translate Important Aggregation Change
Preconditions | — aggregationq.componentRole * aggregation,q,.componentRole
— COMpgg.Stereotype = COMppay-Stereotype = «process» or «block»
— COMPpey.typed = true
Action Change the instance name of COMPyen-Sdlcomponent into
aggregation,q,.componentRole
Rule 88. Translate Component Role Change
Preconditions | — compgyg.name?! comp,e.name
— COMpgg.Stereotype = CoMppay-Stereotype = «process» or «block»
— COMpPpen-typed = true
Action Change the type of compyq,.Sdlcomponent into Compye,.Name
Rule 89. Translate Component Type Change
Preconditions | — aggregationygy.componentRole ! aggregation,e,.componentRole
— COMpyg-Stereotype = comp,g,.-Stereotype = «newtype»
Action Change the variable name of aggregation,.sdideclaration into
aggregation,q,.componentRole
Rule 90. Trandate Role Changeto New Type
Preconditions | — compyg.name?! compe,.name

128 Kurt Verschaeve

— COMPy4.StEreotype = ComMpPyqy.Stereotype = «newtype»

Action Change the type of aggregation,,.sdldeclaration into comp;e,.name

Rule 91. Trandate Name Change of New Type

V 6.14 New Attribute

There are two different trandations for an attribute, depending on the stereotype of the classit is
defined in. If the class represents a structure, the attribute is trandated as variable declaration in
the process linked with the class, see Rule 92. If the classis a new type definition, the attribute is
trandated as an entry in the data type, see Rule 94.

Context for — attribute is the new UML attribute
this section — classisthe surrounding class of attribute
Rule 92. Context for New Attribute
Preconditions | — class.stereotype = «process» U «block» U «system» U «package»
— class.sdlprocesst® empty
Action If attribute.default =", add to class.sdlprocess
DCL <atribute.nanme> <attribute.type>;
else add to structure:
DCL <atribute.name> <attribute.type> := <attribute.default>;
Vaiable — attribute.declaration = the added declaration
Rule 93. Trandate Attribute in Active Class
Preconditions | — class.stereotype = «newtype»
Action Add to class.datatype.signature:

<attribute.nane> <attribute.type>;

Rule 94. Trandate Attributein New Type

V 6.15 Delete Attribute

Deleting an attribute is simply trandated as deleting the SDL entities that were generated from the
origina attribute.

Context for — attributeyq isthe old UML attribute being deleted
this section. — classyq isthe old class containing attributeyg

Rule 95. Context for Deleting an Attribute

Realizing the UML-SDL Round-trip Engineering 129

Preconditions | — classyg.stereotype = «process» U «block» U «system» U «package»

Action Delete attribute,y.declaration

Rule 96. Deleted Variable Declar ation

In the case of a new type, the UML attribute has not a pointer to the part of the signature that is
linked with the attribute. In Rule 97 we therefore search for a entry in the new type declaration
with the same name as the old attribute.

Preconditions | — class,q.stereotype = «newtype»
Context — newtype = classyq.declaration
Action Delete the entry in the signature of newtype with name attribute,y.name

Rule 97. Deleted New Type Entry

V 6.16 Compare Attribute

There are three things of an attribute that can change: the name, the type and the default value.
Trandating any such change could be implemented as a combination of deleting the old attribute
and adding the new attribute. It is possible however that, in UML only the type has changed and
that the user has aready modified the name of the SDL declaration and refers to this new namein
the state chart. Taking the delete and add approach would result in references to a non-existing
signal. Therefor we choose to handle each part seperatly.

Context for — attributeyq isthe previous UML attribute

this section. — attribute,q, is the new UML attribute to be compared
— classyg = the class containing attributegy

— class,ey = theclass containing attributeng,

Rule 98. Context for Comparing Attributes

For most UML entities, the first trandation rule compares the stereotypes of the entities.
Comparing attributes is an exception on this, because the stereotype of an attribute is not used in
the mapping definition. The first trandation rule handles name changes, see Rule 116.

In Rule 99, Rule 100 and Rule 101 we only check the stereotype of the new class. The stereotype
of the new class and the old class are not always the same. If a class changes from «block» to
«process», the declarations will automatically be moved to the correct place. Note that in the case
the stereotype of a class changes from «block» or «process» to «newtype» or the other way
around, the attribute in the new and old classes will not be compared at al. The attributes in the
new class will be trandated as new attributes. Rule 102 and Rule 103 compares the name and
type for the attributes in a «<newtype» class.

Preconditions | — class,,.stereotype = «process» U «block» U «system» U «package»
— attributeyg.name attribute,q,.name
Context — variable = attribute,4.declaration

Action variable.name = attribute,g,.name

130 Kurt Verschaeve

Rename al references to the variable within the class,q,. managementProcess

Rule 99. Trandate Attribute Name Change

Preconditions | — class,,.stereotype = «process» U «block» U «system» U «package»
— attributeyq.type ! attribute,e,.type

Context — declaration = attribute,y.declaration

Action declaration.type = attribute,e,.type

Rule 100. Trandate Attribute Type Change

Preconditions | — class,,.stereotype = «process» U «block» U «system» U «package»
— attributeyg.default 1 attribute,q,.default

Context — declaration = attribute,y.declaration

Action declaration.initial Expression = attribute,,.default

Rule 101. Trandate Attribute Default Value Change

Preconditions | — class,q,.Stereotype = «newtype»
— attributeyg.name ! attribute,q,.name

Context — newtype = classq,.declaration
— entry = the entry in newtype with name attributeyg.name

Action Set the name of entry = attribute,e,.name

Update al references to entry in al processes to which newtype is visible.

Rule 102. Trandlate Attribute Name Change in «newtype» Class

Preconditions | — class,q,.Stereotype = «<newtype»
— attributeyq.type ! attribute,e..type

Context — newtype = class,q,.declaration
— entry = the entry in newtype with name attributeyg.name

Action Set the type of entry = attribute,q..type

Rule 103. Trandate Attribute Type Change in «newtype» Class

V 6.17 New Operation

An operation has different semantics depending on its stereotype: «signal», «procedure» or
«operator». A «signal» operation means that the class that contains the operation can receive the
specified signal. At the same time it also a declaration of the signal and its parameters. A
«procedure» operation is translated as a SDL procedure in the process linked with the class. If the
operation is public, the procedure is exported and declared remote so it can be called from outside
the process. An «operator» operation becomes a function in a newtype definition.

Realizing the UML-SDL Round-trip Engineering 131

The rules below do not check the stereotype of the class. Operations with stereotype «signal» and
«procedure» can only appear in «process», «block», «system» or «package» classes. Operations
with stereotype «operator» can only appear in «newtype» classes. Possible violations to this rule
will automatically be corrected during the preprocessing.

Context for — operation isthe new UML operation
this section — classisthe class containing operation

Rule 104. Context for New Operation

Preconditions | — operation.stereotype = «signal»
Context — structure = class.declarationStruct

— (par;...pary) = operation.parameters
Action If m= 0, add to structure:

SI GNAL <oper ati on. nane>;
else add to structure:

SI GNAL <operation. nane> (<pari.type> , ..., <parmptype>);
Add to class.signallist

, <operation. name>

Vaiable operation.sdisignal = the generated signal

Rule 105. Trandate «signal» operation

Preconditions | — operation.stereotype = «procedure»

Context — dtructure = class.managementProcess
— declstruct = class.declarationSruct
— (par;...pary) = operation.parameters

Action Add to structure :

EXPORTED PROCEDURE <oper ati on. nane>;
FPAR | N <par ;. nane> <par;.type>,

I N <par n name> <parn, type>,
RETURNS <oper ati on. returntype>;

Add to declstruct :
REMOTE PROCEDURE <oper ati on. nane>;

FPAR <pari.type>, ..., <parn,type>;
RETURNS <oper ati on. returntype>;

Vaiable operation.sdlprocedure = the generated procedure

132 Kurt Verschaeve

Rule 106. Translate «procedur e» operation

Preconditions | — operation.stereotype = «operators»

Context — newtype = class,q,.declaration
— (par;...pary) = operation.parameters

Action Add to the behaviour of newtype:

<oper ation. name> <par . type>, .., <parp,type>
-> <operation.returntype>;

Rule 107. Translate «oper ator » operation

V 6.18 Delete Operation

Context for — operationyg isthe old UML operation being deleted
this section. — classyq isthe old class containing operationyg

Rule 108. Context for Deleting an Attribute

Because of the consistent use of signallists instead of individual signals on channels and signa
routes, Rule 109 does not have to care about references to the deleted signal. Of coursg, it is till
possible that the deleted signal is used in some processes, but that is not part of the mapping.

Preconditions | — operationgy = «signa»

Context — signal = operationyg.sdisignal
— signallist = classyg.signallist

Action Deete signal from signallist

Delete signal from operationyq.declarationStruct

Rule 109. Deleted «signal» operation

Preconditions | — operationgyy = «procedure»
Context — procedure = operationgy.sdlprocedure
Action Delete procedure from class,y.sdlprocess.

Delete the remote procedure definition of procedure if it exigs.

Rule 110. Deleted «procedure» operation

Preconditions | — operationyy = «operator»
Context — datatype = class,q.datatype
Action Delete the operator named oper ationgg.name from datatype.

Rule 111. Deleted «operator» operation

Realizing the UML-SDL Round-trip Engineering 133

V 6.19 Compare Operation

Three different aspects of an operation can change: the name, the parameters and the return type.
For each of the possible stereotypes («signal», «procedure» and «operator»), these changes are
trandated differently.

Context for — operationgg is the previous UML operation

this section. — operation,ey is the new UML operation to be compared
— (pargdl, ..., parqgn) = operationgyy.parameters

— (parnenl, ..., parme,m) = operation,g,.parameters

— classyg = the class containing operationgg

— class,ey = the class containing operation,qy

Rule 112. Context for Comparing Operations

In contrast with attributes where stereotypes are not used, the stereotype is crucia to the
semantics of an operation. If the old and the new operations have a different stereotype, nothing
of the declarations can be reused, so the old operartion is deleted and the new operation is added,
see Rule 113. As an extra feature, however, we do convert signal outputs into procedure cals if
the operation has switch from «signal» to «procedure», see Rule 114 and Rule 115.

Preconditions | — operationyq.stereotype 1 operation,q,.stereotype

Action Translate operationyq as a deleted operation

Trandlate operation,, as a new operation

Rule 113. Trandate Operation Stereotype Change

Preconditions | — operationyg.stereotype = «signal»
— operation,g,.Stereotype = «procedure»
Action For al classes associated with classyg, transform al signa outputs of

operationyq into procedure calls to operation,q, With the same parameters.

Rule 114. Trandate Operation «signal» to «procedur e»

Preconditions | — operationq.stereotype = «procedure»
— operation,g,.Stereotype = «signal»
Action For al classes associated with classyg, transform al procedure cals to

operation,q, into signal outputs of operationyq with the same parameters.

Rule 115. Trandate Operation «procedure» to «signal»

The rules below consecutively translate the changes for «signal» operations, «procedure»
operations and «operator» operations.

134

Kurt Verschaeve

Preconditions | — operationyg.stereotype = operation,,.Stereotype = «signa»

— operationgg.name?! operation,e,.name
Context — signal = operation,e,.sdisignal
Action signal.name = operation,g,.name

Rename all references to signal (e.g. signal lists, inputs, outputs, saves, etc.) in

the compl ete scope of the signa declaration.

Rule 116. Trandate «signal» Operation Name Change

Preconditions | — operationyg.stereotype = operation,e,.Stereotype = «signa»

— (parggl.type, ..., parggn.type) * (parpesl.type, ..., par,em.type)
Action Replace operation,q,.sdlsignal with the following declaration:

SI GNAL <oper ati on. nane> (<parpewl. type> , <par newm t ype>) ;
Rule 117. Trandate Parameter Type Change for «signal» Operation

Preconditions | — operationyg.stereotype = operation,e,.Stereotype = «procedure»

— operationgg.name?! operation,e,.name
Context — procedure = oper ation,,._sdlprocedure
Action procedure.name = operation,e,.name

Rename all references to procedure (e.g. procedure calls, signalists, etc.) in the

complete system.

Rule 118. Trandate «procedure» Operation Name Change
Preconditions | — operationyg.stereotype = operation,e,.stereotype = «procedure»

— operationgg.returntype® operation,e,.returntype
Context — procedure = operation,q,._sdlprocedure
Action Set procedure.returns = operati Onpey.r €tur ntype

Rule 119. Trandlate « procedure » Operation Type Change
Preconditions | — operationyg.stereotype = class,q,.Stereotype = «operator»

- (parggl.type, ..., parqdn.type) * (pareyl.type, ..., parpem.type)
Action Regenerate the parameter list of operation,g,.procedure , see Rule 106.

Rule 120. Trandate Parameter Change of Operator

Preconditions | — operationyg.stereotype = class,q,.Stereotype = «operator»

— operationgg.name?! operation,e,.name
Context — newtype = classq,.sdldatatype

Realizing the UML-SDL Round-trip Engineering 135

— operator = the operator in newtype with name oper ationgq.name

Action Set the name of operator = operationpg,.Name

Rule 121. Trandate «newtype» Operation Name Change

Preconditions | — operationyg.stereotype = class,q,.Stereotype = «operator»
— operationgg.type! operationpe,.type

Context — newtype = classq,.sdldatatype
— operator = the operator in newtype with name operationgq.name

Action Set operator.returns = operati on,qy.type

Rule 122. Trandate Operation Name Change

Preconditions

operationgg.stereotype = classq,.Stereotype = «operator»
(pargql.type, ..., parqdn.type) * (parenl.type, ..., parnesm.type)

Context

newtype = classq,.sdldatatype
operator = the operator in newtype with name operation,g,.name

Action Regenerate the parameter list of operator, see Rule 107.

Rule 123. Trandate Parameter Change of Oper ator

V 6.20 Definitionsfor Associations

This section gives semi-formal definitions for a number of functions that are needed to trandate
associations. In UML, classes within a package are al “visible” for each other and consequently
can have communication associations between any two classes. The SDL instances generated
from those classes, however may be invisible for each other. Therefore we need a rerouting
mechanism that reroutes direct associations through a number of signal routes and channels. The
basis for this mechanism, the (composite) aggregation tree, is defined below.

The first function, “Corresponding type of a class’, returns the block type or process type in the
SDL specification with the same name as the class, with a priority for block type. It returns
nothing if there is no type named like that. Two block types never have the same name because it
is not allowed to have two classes with the same name.

Function CorrespondingType(class)
Preconditions | — packageisaUML package
— classisaclass of package
Defnition If package.sdispecification contains a block type type, where type.name =

class.name, then
CorrespondingType (class) = type

dse, if package.sdlspecification contains a process type type, where type.name
= class.name, then

136

Kurt Verschaeve

CorrespondingType (class) = type
dse

CorrespondingType (class) = empty

Rule 124. Function Definition for Corresponding Type

The function to calculate the aggregation paths is very important in the trandation of associations.
An aggregation path is a list of classes that are each other’s aggregate and starts with the system
class. For a given class, each aggregation path represents an instance or definition of that class.
The function AggrPaths calculates al possible aggregation paths for a given class. An example
shown in Figure V-12 clarifies the functionality. The subsequent functions filter the result of
AggrPaths for specific purposes.

Function

AggrPaths(class)

Preconditions

— packageisaUML package
— classisaclass of package
— class.stereotype = «system» U «package» U «block» U «process»

Defnition

AggrPaths(class) is the set of al possible lists of classes (&, &, ... an) with
stereotype «system», «package», «block» or «process», where

&, = package.sysclass

"i=2.n, $ aggregation I package : g, = aggregation.aggregate U a =
aggregation.component U aggregation.composite = true
an, = class

Exceptions

— The aggregation paths of an «actor» class“A” equals{(A)}
— External classes are treated exactly like non-external classes. This is because

the instance of an external class does not differ from normal ones. Note that
externa classes are not allowed to have composite aggregation components.

Rule 125. Function Definition for Aggergation Path of Class

«system»

C
| QQ |
«block» «block» «block»
A E

| Q Q I LI Q
«block» «prolgess» «block» | | «process»

¢

Figure V-12. Aggregation Paths Example

Realizing the UML-SDL Round-trip Engineering 137

In the example of Figure V-12, the system class has been added explicitly. The «block» class D
does not have an aggregate and there will not have an instance in the generated SDL. Thisis only
allowed if class D is types, if not, an aggregation to the system class is automatically added. Note
also that aggregation loops are not alowed, so the set of aggregation paths is aways finite. In the
example we get the following resullts:
- AggrPeths(C) = {(C)}

AggrPaths(A) = {(C,A)}

AggrPeths(F) = { (C,E,F)}

AggrPaths(H) = {(C,E,H), (C,E,G,H), (D,H)}

AggrPeths(D) = {(D)}

Function difference(path,, pathy)
Preconditions | — packageisaUML package
- patha:(al’ e 1am)a pa'thb :(bll e ,bn)
Defnition Let common be the maximum for which: acommon = Beommon
difference(path,, pathy) = n + m — 2* common
Rule 126. Function Definition for Difference between Paths
Function truncate(path,, pathy)
Preconditions | — packageisaUML package
— path=(ay,...,ay), path, =(by,...,by)
Defnition Let common be the maximum for which: acommon = Beommon
truncate(path,, pathy) = ((@commons -« 18m)s (Becommons -« - 1))
Rule 127. Function Definition for Truncate Common Paths
Function CommAggrPaths(class,, class,)
Preconditions | — packageisaUML package
— class, and class, are classes of package
Context — paths,=(PAy,..., PAn)=AdgrPaths(class,)
— paths,=(PBy,..., PB,)=AggrPaths(class,)
Defnition — difference; = difference(PA;, PB))

— Let min be the minumum of {i = 1..n, j = 1..n, difference;}

— CommAggrPaths(class,, class,) = { truncate(PA, PB) |i T 1.n,j T 1.m,
difference; = min}

Rule 128. Conservative Communication Aggregation Path between two classes.

In Rule 128, PA=(a,...,an) and PB=(b,,...,b,) are the two truncated aggregation paths that
identify the SDL structures that need to be connected. The result of the function

138 Kurt Verschaeve

CommAggrPaths(ab) is the set of al non-equivalent tuples (A,B) with the least difference, or in
other words, closest to each other in terms of scope. An example will clarify this function.

B g
A 7
B MWy F [X G B |:V_I
PR v L w

Figure V-13. lllustration to explain Aggregation Paths

In the first example, there are four associations W, X, Y and Z:
W: CommAggrPaths(B,F) = {((C,A,B), (C,E,F)} and not ((C,A,B), (D,E,F))
X: CommAggrPaths(F,G) = {((E,F), (E,G))}
Y: CommAggrPaths(E,G) = {((E), (E,G))}
Z: CommAggrPaths(B,H) = {((C,A,B), (C,E,F,H), ((C,A,B), (C,E,G,H))}

In the second example, there are two associations U and V:
U: CommAggrPaths(U) = {((B), (C,E,H)), ((B), (D,E,H))}
V: CommAggrPaths(V) = {((C,E,F), (C,E,F,H)) } and not ((C,E,F), (C,E,H)) which has
more difference (7-6=1 as opposed to 6-4=2).

The use and interpretation of these aggregation paths are explained in detail later. But basically it is
used by the association trandation to know which instances should be connected. The function
FullCommAggrPaths (Rule 129) is similar to CommAggrPaths, with the only difference that
instead of minimizing the difference, it takes al possible combinations. The dimination of
equivaent tuplesis still done.

Function Full CommAggrPaths(class,, class,)
Preconditions | — packageisaUML package

— class, and class, are classes of package
Context — paths;=(PA,,..., PA,)=AggrPaths(class,)

— paths,=(PBy,..., PB,)=AggrPaths(class,)

Defnition
FullCommAggrPaths(class,, class,) = {truncate(PA, PB) |i T 1.n,jT 1.m}

Rule 129. Full Communication Aggregation Paths between two classes.

Realizing the UML-SDL Round-trip Engineering 139

The function Instance (Rule 130) returns the corresponding SDL instance given a aggregation
path.

Function Instance(path) returns the corresponding SDL instance given a aggregation path.
Preconditions | — packageisaUML package
— system = package.sdlsystem
— path=(a,...,an)
Context — agor = am:
— COMP = &n
Defnition If aggr.typed = true, let structure be the block type or process type in system

with aggr.name as name. Note that within a SDL package there are no two
types with the same name.

If aggr.typed = false, let structure be the block or process definition in system
(or substructure) with aggr.name as name. Note that there is only one block or
process with this name otherwise aggr would have been typed.

Instance(path) = The block or process instance in structure with comp.name as
name.

Rule 130. Corresponding SDL Instance.

V 6.21 New Association

The default semantics for an association is communication. In other words, if two classes are
connected with an association, it means that some of the instances of one class are able to
communicate with some instance of the other class. To achieve the equivalent in SDL, the
structures that correspond with the instances are connected with communication routes. For
several reasons, trandating an associations into channels, signal routes and gates that connect the
connect structures is a complicated process. First, the structures to be connected are likely to bein
a different scope, so the communication path has to be rerouted through the closest common
aggregate. Second, a type based block or process instance can only be connected if the type has
the appropriate gates. Moreover, to avoid superfluous gates, they are reused whenever possible.

The trandation depends on the communication approach. In the conservative approach, a partia
communication route is build at both sides and other communication routes at a higher level are
reused if necessary. The goal of this approach is to keep the resulting specification readable and
easy to maintain manually. The successive steps to trandate a new association for the
conservative approach are:

For each of the two classes connected by the association, find all the combinations of
aggregation paths and the corresponding instances.

Add one gate for each association ends whose class is typed.
Add two partial channels and/or signal routes, one for each association end.

The “from” part of the channels or signa routes is the instance corresponding with the
class.

140 Kurt Verschaeve

The “to” part is one of three possihilities: the environment; the instance corresponding with
the other association end or the instance that contains the corresponding instance.

Connect the channels with a gate at both ends if necessary.

In the full connect approach; a complete communication route is build from source to destination.
The goal of this approach is to atain code that is complete and can be simulated without further
moadifications.

For each of the two classes connected by the association, find all the combinations of
aggregation paths and the corresponding instances.

For each couple of aggregation paths, generate a channel and/or signal route for each part in
the non-common path. Use the same “from” & “to” rules as in the conservative approach.

We explain each of these steps in more detail, but we start with the preparation of the signal list
declarations for each association and build up the necessary context information.

V.6.21.1 Signallists and Context

All generated gates, channels and signa routes need to declare the signals that can be sent through
it. We use the signa lists that are generated per class, see Rule 62. However, the channels
generated from an association sometimes need to carry more signal lists than the two classes of
the association. In the conservative approach, the “in” signal declarations are the signal lists of al
classes in the aggregation tree that has an association with any class in the aggregation tree on
opposite association end, including the class itself. The “out” signal declaration is calculated in the
opposite direction. Figure V-14 illustrates the situation where both classes A and D have
components that communicate with each other. The association between A and D must allow
class B to send a signa to class F. The full connect approach is simpler because there is always a
full connection between source and destination. In this case, the “in” signa declarations is the
signal list of the class. The “out” signal declaration is the signd list of the opposite class.

«syséem» ______________
N e 1 (D),(E),(F) !
LAE) P o0 ’ 200
[\\\ |
«block» |\ | «block»
A D
ok & [OF |
I R
| [«process»|. {" «block» «process»
i B AN E KK F
01]
<<pf08659> [~~--- i no association E

FigureV-14. lllustration for using Class Signal Listsin Conservative Approach

Realizing the UML-SDL Round-trip Engineering 141

This section, starting with the context in Rule 131, is repeated for every couple of frompath and
topath as a result of CommAggrPaths or FullCommAggrPaths (for the full communication
approach). In Rule 131 and Rule 132, the signal list variables of association are calculated. These
signal lists do not appear as declarations in the system, but are rather used during the channel and

signal route creation.

Preconditions
for this section

associ ati on.ster ectype = «communication»

Context for this
section and
subsections

association is the new UML association

fromclass = association.fromclass

toclass = association.toclass

frompath = (fcy, ..., fcy)

topath = (tcy, ..., tc,)

fc,= tc, (if both are not external), fromclass = fc,,,, toclass = tc,

Variables

association.fromsignallist = (<f r ontl ass. nane>)
association.tosignallist = (<t ocl ass. nane>)

Rule 131. Context for New Associations.

Preconditions

communication option * full
fromclass is not a degp component of toclass
toclass is not a degp component of fromclass

Context

CC = {(class,, class,) | $ association between class, and class,, class, isa
deep component from fromclass but not from toclass, class, is a deep
component from toclass but not from fromclass}

Action

" (classyom, Classy)l CC:

Add to “association.tosignallist” :

, (<cl assi,. hame>)

Add to “association.fromsignallist” :

, (<cl asstrom Nane>)

Rule 132. Add signallists for underlying associations.

Preconditions

Fromclass.stereotype = «process»
toclass.stereotype = «process»
association.variable = true

Context

fromstruct = fromclass. sdldefinition
tostruct = toclass.sdldefinition

Action

Add to fromstruct:

DCL a_<tocl ass. nane> Pi d;

142 Kurt Verschaeve

Add to tostruct:

DCL a_<frontl ass. nanme> Pi d;

Rule 133. Add Pid variable between processes.

V.6.21.2 Generating gates

Before generating any channels or signa routes, we first generate all the gates for each
association, with the necessary signal lists on each gate. The basic idea for generating gates is to
add a gate to the corresponding type of each association end. In the full-connect scenario, a gateis
added to each corresponding type of all the classes on the non-common aggregation path. Figure
V-15 illustrates the generated gates with a theoretical example. The association Z generates a gate
in class B and class F (i.e. in the structure linked with classes B and F) because they are both

typed and they are the endpoints of the association. In the full connect scenario, class E also get a
gate

«block» «block»
T W= - \\/
i Full Connect 1 . tCed D
: b yp typed
poJony o 00 0
[o RS
«block» | /W <—«block»
: ' E Y
nontyped \ Z<% typed «actor»
T f} <? H
<Process» 7 «<Process: X «pl’()c(gm W
typed typed nontyped

¥z ¥z ¥x

Figure V-15. Example of generated gates

In general, for each association end connected to a typed class, create a gate in the corresponding
type. There is an exception in the case that one association end is defined in the scope of the other
association end. In this case the former one does not need communication to the outside and thus
no gate.

Realizing the UML-SDL Round-trip Engineering 143

Preconditions | — communication option = gate only U conservative
— fromclass.external = fase

— fromclass.typed = true

— fromclass? tc;

Context — fromstruct = fromclass. sdldefinition

Action Add to fromstruct:

GATE <associ ation. fronrol e>

QUT <associ ation.tosignallist>
I N <associ ation. fronsignallist>;

(skip lest line if association.tofromnavigate= false)

Rule 134. Add gate in gate-only or conservative communication.
Repeat previous definition for other direction and switch all references to from and to.

Add a gate to the corresponding type of al classes in the non-common path of the class connected
to each association end in respect to the class connected to the other association end.

Preconditions | — communication option = full

Action " fcl (fcy ..., fon): if fe.typed = true, then add to fc.sdldefinition:

GATE <associ ation. fronrol e>
QUT <associ ation.tosignallist>
I N <associ ation.fronsignallist>;
(skip last line if association.tofromnavigate= false)

" tcl (tcy, ..., ty): if tc.typed = true, then add to tc.sdldefinition:

GATE <associ ation.torol e>
QUT <associ ation.fronsignallist>

I'N <associ ation.tosignallist>;
(skip last line if association.tofromnavigate= false)

Rule 135. Add gatesin gate only or conservative communication.

V.6.21.3 Conservative Approach

In the conservative approach, for generating channels and signal routes, the two ends of an
associations are treated more or less separately. As shown in Figure V-16, an association to a
«process» class A is trandated into a signal route starting from a process instance a_ A and going
into direction of the other end. The other end either can be a process in the same block or can be
in an different block. This trandation scheme is easier than having to describe al possible
combinations block/process, block/actor, system/process, etc.

144

Kurt Verschaeve

«ygem system C system C
f)
block type B <> process
a AA
«blocks»
<» Process type o
A "
? process ?
«process» ,)

Figure V-16. lllustration of “one-end” translation approach

In the conservative scenario, we generate only one pair of channels and/or signa routes for each
communication aggregation path tuple, one for each instance on both ends of the association. If
both instances are in the same scope, we generate only one channel or signal route. We start
calculating the aggregation paths and the instances. The rules in this section, starting with the
context of Rule 136, are executed twice, once for each association end. The second time the
frompath and topath are switched.

Preconditions for
this section

— association.stereotype = «communication»
— communication option = conservative

Context for this
section

— context from association (fromclass, toclass, frompath, topath,
fromsignallist, tosignallist)

— frompath = (fcy, ..., fcy)

— topath = (tcy, ..., tcy)

— Structuresgm = Instance(frompath), possibly empty
— Sructure,, = Instance(topath), possibly empty

Determine Processyom, Process,, Blockom, Block,, (default is empty)
If fromclass.stereotype = «process», then
Process; om = Structur &;om and
if (m>1 U fcy,q.processesblock * fcy, ;.definitionblock), then
Blocksrom = fCm.1. processeshblock else Blocksom = empty
— If fromclass.stereotype = «block», then
Process;om = fcy.sdlprocess and
if (m>1)
Blocksrom = Structur &om € se Blockom = fcr,. processesblock
— If toclass.stereotype = «process»,
then Process, = Sructure,,
else Process,, = tc,.sdlprocess

— Let Block, be an SDL block in the same scope of Blockom, Where
Block, is the instance or the definition of one of the classes in topath.
(May be empty) or is the processes block surrounding Process,

Realizing the UML-SDL Round-trip Engineering 145

Rule 136. Context for Channel and Signal Creation.

For each tuple and for each association end, we have to create some signal routes and/or
channels. We will describe the process from the standpoint of class a, if a,1 * b1, the same
process should be repeated for the other direction.

«System»
C
? system C
[I EDDE
«block» «block» «actor» | —e»— block E
A E D
: ™ block type E
“b'ECk” EDDE

Figure V-17. Communication with External Actor

If the from class is an actor, the aggregation path frompath is not important, the instance is
considered to be outside the package or system. Therefore a channel is created from the
environment of the architecture block into the direction of the destination block or process. Note
that in the case of a system, the system itsalf is actually the architecture block. If the other classis
also an actor, no channel is created either.

Preconditions | — Process;om = empty U Process,=empty
— Blockyom* empty U Block, * empty

Context — struct = Instance((tcy,tcy))

Action Add to package.sdlar chitecture:

CHANNEL <associ ati on. nane>
FROM ENV TO <struct.nane> W TH <t osi gnal | i st >;
FROM <struct. name> TO ENV W TH <fronsi gnal | i st >;
ENDCHANNEL <associ ati on. nane>;

Rule 137. Add channel for associations from outside

Case 1. n=1. This means that there is no corresponding instance of class a, because a=a, does not
have an aggregate. No instance means no signal route

Case 22 A = B. This means the Sructure, = Sructureg and thus no signal route should be
created.

Case 3. aym.1 = b,.1, b is «process». This means that classes Sructure, and Sructures are both
processes and are located in the same block. A single signd route is created between Sructure,
and Structureg.

Case 4: agm1t by or bis«block». This meansthat Sructure, and Structureg are located in a
different block. A signa route is created from Sructure, to the environment. If Sructure, is

146 Kurt Verschaeve

located in a “Processes’ block, an extra channel should be created from the “processes’ block in
the direction of Structures: if anm1 = bl B, the channel goes to the corresponding block of h.,
otherwise the channels goes to the environment.

«systen»

g

«blocks» «block» «process»
A 5 BF] e
P “processes’
| Q Q : | block
«process» «process» «block»
D E

Figure V-18. lllustration of cases for associationsto «process» classes

Preconditions | — Process;om® empty U Process, ! empty U Process,om® Process,
— Process;om and Process,, are in the same scope

Context — struct = parent structure of Process;om

Action Add to struct:

S| GNALROUTE <associ ati on. nane>
FROM <Pr ocesStrom Name> TO <Pr ocess;,. hame>
W TH <t osi gnal | i st >;
FROM <Pr ocess;,. name> TO <ProcesS;i,om hame>
W TH <fronsi gnal li st >;

Rule 138. Add signal route between two processes in the same scope.

Preconditions | — Process;om! empty

— Process, = empty U Process;om and Process,, are in a different same scope
Context — struct = the parent structure of Sructureyom
Action Add to struct:

SI GNALRQUTE <associ ati on. nane>
FROM <Pr ocesS¢rom Nane> TO ENV
W TH <t osi gnal | i st >;
FROM ENV TO <Pr ocesStrom Name>
W TH <fronsi gnal |i st >;

Rule 139. Add signal route from process to the environment.

Realizing the UML-SDL Round-trip Engineering 147

Preconditions | — Process;om® empty U Blockiom: empty
— Blockyom is not the parent structure of ProcesSyom
Context — Let struct be the parent structure of ProcesSyom
Action Add to Blocks o
CHANNEL <associ ati on. nane>
FROM <st ruct . name> TO ENV
W TH <t osi gnal | i st >;
FROM ENV TO <st ruct . nane>
W TH <fronsi gnal | i st >;
ENDCHANNEL ;
Rule 140. Add chanel from processes block to the environment.
Preconditions | — Blockyom* empty U Block,, * empty U Blocki, * Blockiom
— Blockyom and Block, are in a different same scope
Context — Let struct be the parent structure of Blocksom
Action Add to struct:

CHANNEL <associ ati on. nane>
FROM <BI ocks;om nane> TO <BIl ock;,. nane>
W TH <t osi gnal | i st >;
FROM <BI ock,. nane> TO <Bl ocks;om nane>
W TH <fronsi gnal | i st >;
ENDCHANNEL ;

Rule 141. Add signal route between two blocks in the same scope.

Preconditions | — Blockyom® empty

— Block, = empty U Blocksom and Block,, are in a different same scope
Context — Let struct be the parent structure of Blockom
Action Add to struct:

CHANNEL <associ ati on. nane>
FROM <BIl ocK¢rom Name> TO ENV
W TH <t osi gnal | i st >;
FROM ENV TO <BI ockf;om nane>
W TH <fronsi gnal |i st >;
ENDCHANNEL ;

Rule 142. Add signal route from block to the environment.

Case 1. n=1. This means that there is no corresponding instance of class a, because a=a, does not
have an aggregate. No instance means no signal route

Cae 2. A=
created.

B. This means the Structurey, = Structureg and thus no signal route should be

Case 3: @nm1 = bn.1 U b is «block». This means that classes Structure, and Structureg are both

148 Kurt Verschaeve

blocks and are located in the same structure. A single channel is created between Structure, and
Sructureg.

Case4: a, | B. This means that classes Structures is defined within Sructure,. No channel is
created from Sructure,. If Structure, contains a management process, see below.

Case 5: other. This meansthat Sructure, and Sructureg are not located in the same structure. A
channel is created from Structure, in the direction of Structureg: either to the environment or to a
neighbor block containing Sructureg.

Management process, for case 3,4 & 5 If in cases 3, 4 or 5, Sructure, has a “ management”
process, an extra signal route should be created from the management process in the direction of
Sructureg. If this management processis in a “processes’ block and Structureg is not defined in
the processes block, then an extra channel should be created from the processes block in the
direction of Srructureg.

V.6.21.4 Full Connect Channel & Signal Route Generation

In the full connect scenario, we generate a full connection from one instance to another, using
channels and/or signal routes for each part in the communication aggregation path. If both
instances are in the same scope, we generate only one channel or signa route. As in the
conservative approach, we start calculating the aggregation paths and the instances.

Preconditions for | — association.stereotype = «communication»

this subsection — communication option = conservative

Context for this — same context from association (fromclass, toclass, frompath, topath,
section fromsignallist, tosignallist)

— frompath = (fcy, ..., fcy)

— topath = (tcy, ..., tcy)

— Structuresqm = Instance(frompath), possibly empty
— Sructure,, = Instance(topath), possibly empty

Rule 143. Context for New Associations.

In Rule 144, we reuse the channel and signal route generation of the conservative approach to
connect the process and the processes-block. In many cases, this will aready result in a full
connection, e.g. for two processes within the same scope. The advantage is that in the other rules
(Rule 145 through Rule 147), we only have to take care about the channel generation between the
block structures. Rule 145 takes the second classes in both aggregation paths and connects the
linked structure with a channel. The aggregate of these classes is the first common aggregate of
the instances to be connected. Rule 146 and Rule 147 build channels starting from the structures
of Rule 145 down to the structure linked with the initial classes. Figure V-19

Action Execute Rule 136 through Rule 142 of the conservative approach.

Rule 144. Reuse Conservative Trandation

Realizing the UML-SDL Round-trip Engineering 149

Preconditions | — fc,;=tc; Um>2 U n>2

Context — Blockyom = Instance((fcy,fcy))
— Blocks, = Instance((tcy,tcy))
— struct = fc,.sdldefinition (the parent structure of Blocksom and Block;)

Action Add to struct;

CHANNEL <associ ati on. nane>
FROM <BIl ocks;om nane> TO <Bl ock;,. nane>
W TH <t osi gnal | i st >;
FROM <Bl ock;,. name> TO <Bl ocksom Nanme>
W TH <fronsi gnal |i st >;
ENDCHANNEL ;

Rule 145. Add signal route between two blocks in the same scope.

Preconditions | — m>3

Context — " il (3..m-1) : execute this rule, where blocksom = Instance((fcy,...,fc))
— Let struct be the parent structure of Blocksom

Action Add to struct:

CHANNEL <associ ati on. nane>
FROM <BIl ocksf,om Nname> TO ENV
W TH <t osi gnal | i st >;
FROM ENV TO <BI ockf;om nane>
W TH <fronsi gnal |i st >;
ENDCHANNEL ;

Rule 146. Add signal route from block to the environment.

Preconditions | — n>3

Context — " il (3..n1) : execute this rule, where block;, = Instance((tc;, ... ,tc))
— Let struct be the parent structure of Block,

Action Add to struct:

CHANNEL <associ ati on. nane>
FROM ENV TO <Bl ock;,. hame>
W TH <t osi gnal | i st >;
FROM <Bl ock;,. nanme> TO ENV
W TH <fronsi gnal li st >;
ENDCHANNEL ;

Rule 147. Add signal route from block to the environment.

150 Kurt Verschaeve

<<Syséem>> system C
A asc

J L block A v asc <
«block»| [«block» orocess B . e
A D “..l._l_| | conservative S|gnali
? 7 dsc ..__route_genration __!

7 [e
block D . 4
«process»| | «block» L /1" E EXtra fl|J||-00r'|ne.Ct |
B E block E t asc 1 channel generation.

asc ? process F E'SE*

«process»
F

Figure V-19. Example of Channel Generation in Full Connect

V.6.21.5 Connecting Channels and Signal Routes

Because of the complexity and the customization of the trandation rules, it is very difficult to
predict to which gate or channel a channel or signal route will be connected. In this separate
connecting phase, we search for the gate in a type or a channel in the environment that fits best.
This search is done based on the infout signalist, on the original value of the connection and on
the name of the channel to be connected.

For each end of a channel or signa route;

— If going to the environment of atype search for a gate
— If going to the environment of a definition, search for a channel
— If going to a type based instance, search for a gate

The following priorities hold:

If the default connect given during trandation exists (gate or channel), keep that connect.
Search for a gate or channel in the environment with the same name

Search for a gate or channel with exactly the same infout signal lists.

Search for a gate or channel with contains most of the infout signa lists, possibly zero.

WD p

V 6.22 Delete Association

A deleted association is trandated by deleting the gates, channels and signal routes that are linked
with the association. After this step, other channels or signal routes that were connected with the
linked entities now become unconnected. This is solved by performing the connection process
described in section V.6.21.5.

Context for — associationyyq is the old UML association being deleted

Realizing the UML-SDL Round-trip Engineering

151

this section.

Rule 148. Context for Deleting an Association

Action

Delete association.sdlfromroute

Delete association.sdltoroute

Delete dl channels in association.sdlfromchannels
Delete dl channels in association.sdltochannels

Delete all gates in association.sdlgates

Rule 149. Deleted association

V 6.23 Compare Association

Trandating associations is very complex process and apply a small change to the association can
have many implications on the generated SDL. For example, if one ends of an association is
connected to a different class, possibly none of the previously generated channels can be reused
(Rule 152). Such a change is trandated as deleting the old association and adding the new
association. Other changes, like renaming the association, can be trandated gracefully. The
trandation rules start with the worst cases.

Context for — associationgyyg is the previous UML association
this section. — associationye, is the new UML association to be compared
Rule 150. Context for Comparing Associations
Preconditions | — associationgg.Stereotype ! association,qy.Stereotype
Action Trandate associationyq as a deleted association
Tranglate association,e, 8 a new association
Rule 151. Translate Association Stereotype Change
Preconditions | — associationgg.fromclass ! association,e,.fromclass or
— associationgg.toclass® associationpg,.toclass
Action Trandate associationyy as a deleted association

Tranglate association,e, 8 a new association

Rule 152. Translate Association Ends Change

152 Kurt Verschaeve

Rule 153 trandlate a name change of the association. Note that this also covers the case where the
from and/or to classes are renamed and where the name of the association is derived from the
class names.

Preconditions | — associationgg.name ! association,e,.name
Context — newname = associ ation,g,.nName
Action For all channel T association.sdlchannels do channel.name = newname

Set associ ation.sdlfromroute.name = newname

Set association.sdltoroute.name = newname

Rule 153. Translate Association Rename

Preconditions | — associationgg.fromrolename? associationpe,.fromrolename
Context — newname = assoCi ati 0n,,.fromrolename
Action " gate T association.sdigates | $ channel T association.fromchannels :

channel is connected with gate, do
gate.name = newname

Rule 154. Trandate From-Role Rename

Preconditions | — associationgg.torolename ! association,q,.torolename
Context — newname = associ ation,,.torolename
Action " gatel association.sdlgates|$ channel T association.tochannels: channel is

connected with gate, do
gate.name = newname

Rule 155. Trandate To-Role Rename

V 6.24 New State Diagram

A UML class can contain exactly one state diagram. As such, the class and its state diagram can
be considered as one entity. This matches with the situation in SDL where the process is a
structure as well as a container for states. Accordingly, a UML class and its state diagram both
have a link to the same SDL process. For the trangation, this means that the state diagram itself
does not need any trandation, because the process is aready managed while trandating the UML
class. In Rule 156, we therefore only set the sdiprocess link variable to the same vaue as the
class.

Context for — statediagram is the new state diagram
this section — classisthe class containing statediagram
Action Set statediagram.sdlprocess = class.sdlprocess

Rule 156. Set sdiprocess link for State Diagram

Realizing the UML-SDL Round-trip Engineering 153

V 6.25 Delete State Diagram

Deleting a state diagram does not necessarily mean that the linked process must be deleted. The
process can ill contain declaration and procedures. As explained in the previous section, it is the
responsibility of the class trandation to manage the existence and properties of the linked process.
However, by deleting the state diagram, al states in it are implicitly deleted too. Because the
hierarchical comparison does not compare state if there are no matching state diagrams,

Context for — statediagram is the delete diagram
this section — process = statediagram.sdiprocess
Action Delete the initia transition and al states from process

Rule 157. Set sdiprocess link for State Diagram

V 6.26 Compare State Diagram

There are no attributes on a UML state diagram that can be modified, so there are no comparison
rules for state diagrams. Of course, the states and transitions contained in the matching state
diagrams are compared. The trandation rules for these changes are given below.

V 6.27 New State

The basic state and transition concepts are very similar in UML and SDL and thus are easy to
trandlate. Rule 159 translates only normal states. Start states and stop state do not have to be
trandlated separately. The extra features of UML, like nested states and entry/exit actions, are
already converted to basic concepts during the preprocessing of the UML modd.

Context for — stateisthe new state
this section — statediagram is the state diagram containing state
— classisthe class containing statediagram

— sdiprocess = class.sdlprocess

Rule 158. Context for Trandating State

Preconditions | — statetype=normal (i.e. not start or stop)
Action Add to sdlprocess:

STATE <st at e. nane>;

ENDSTATE <st at e. nane>;
Variables state.sdIstate = the state created above

Rule 159. Trandate new State.

V 6.28 Delete State

Context for — stateyq isthe deleted state

154 Kurt Verschaeve

this section — statediagramyg is the state diagram containing stateyq
— sdiprocess = class.sdlprocess

Rule 160. Context for Deleting State

Preconditions | — statetype = normal (i.e. not start or stop)

Action Delete state, q.sdlstate from statediagram,q.sdlprocess

Rule 161. Trandate Deleted State

V 6.29 Compare State

The only property in a UML state that can change is its name. Rule 162 gibves the context and
copies the gate-link to the new UML state and Rule 163 trandlates the renaming if applicable.

Context for — stateyq isthe previous UML state
this section. — State, iSsthe new UML state
Variables — state,.State = state,q.State
Rule 162. Context for Comparing States
Preconditions | — stateyg.name?! state,.name
Action Set state,q,.State.name = stateq,.name
Translate operation,, as a new operation

Rule 163. Trandate State Rename

V 6.30 New Transtion

The transition in the UML data structure is built in correspondence with SDL, where a transition
is represented by the input and/or guarded symbol. Except for the source and destination state, a
UML transition aso holds the input event that triggers the ransition and/or the guard that gives
the condition that must be fulfilled to execute the transition. Moreover, during the preprocessing,
the entry and exit actions of the states are copied to the transitions. As a result, the rules below
have all the necessary information in the transition itself.

Context for — transition is the new transition

this section — source = transition.source

— dest = transition.dest

— statediagram is the state diagram containing source
— classisthe class containing statediagram

— sdiprocess = class.sdlprocess

Rule 164. Trandlate Context for State Diagram

Realizing the UML-SDL Round-trip Engineering 155

A transition coming from a start state, must always be a event-less and guard-less event. So there
is only one possible trandation. In Rule 165, the sditransition link of the UML start transition is
filled in so that actions can be added later on. For transitions starting from a normal state, there
are three basic types: event, when and after. An event transition can aso contain a when clause
(guarded event). Rule 166 till Rule 168 trandates the trigger of the transition and Rule 169 till Rule
171 trandates the destination of the transition. Note that the list of actions in the transition
(transition.actions) are trandated individually as new actions.

Preconditions | — source.type = start
— sdiprocess does not contain a start transition
Action Add to sdlprocess:
START;

In terms of the information moddl: sdlprocess.start = new transition

Variables transition.sdltransition = the start transition created above

Rule 165. Trandate Start Transition.

Preconditions | — source.type = normal

— transition.type = event
Context — sdisource = source.sdistate
Action Add to sdisource:

I NPUT <trani stion.event>;
If transition.guard is not empty, add to sdlsource:

PROVI DED <t r ani sti on. guard>;

Variables transition.sdltransition = the transition created above

Rule 166. Trandate Normal Transition.

Preconditions | — source.type = normal

— transition.type = when
Context — sdisource = source.sdistate
Action Add to sdisource:

PROVI DED <tr ani sti on. guar d>;

Variables transition.sdltransition = the transition created above

Rule 167. Trandate Guarded Transition.

156 Kurt Verschaeve
Preconditions | — source.type = normal
— transition.type = after
Context — sdlsource = source.sdlstate
Action Add to process :
TIMER <transition.event> := <transition.tiner>;
Add to sdlsource :
I NPUT <tranistion. event >;
Variables transition.sditransition = the transition created above (= second code line)
Rule 168. Trandate Timer Transtion.
Preconditions | — transition.isinternal = true
Action Add to transition.sdltransition :
NEXTSTATE -;
Rule 169. Next State for Internal Transition.
Preconditions | — dest.type = normal
— transition.isinternal = false
Action Add to transition.sdltransition :
NEXTSTATE <dest . nanme>;
Rule 170. Normal Next State.
Preconditions | — dest.type = stop
— transition.isinternal = false
Action Add to transition.sdltransition :

STOP;

Rule 171. Transition to Stop State

V 6.31 Delete Transition

Context — transitionyq is the deleted transition
— stateyq is the state containing transitiongy
— sdiprocess = class.sdlprocess
Action Delete transitiongg.transition from state,q.state

Rule 172. Trandate Deleted Transition

Realizing the UML-SDL Round-trip Engineering 157

V 6.32 Compare Transtion

Many properties of a transition can be changed. Some changes are very hard to trandate and
require some overwriting, such as an internal transition that changes into an external transition
(Rule 174) and a transition that changes the type of the trigger (Rule 175). A change of the source
and/or destination state is easier to trandate (Rule 176 and Rule 177).

Context for — transitionyq is the previous UML transition
this section. — transitionye, is the new UML transition

Variables — transition,g,.transition = transitiongg.transition

Rule 173. Context for Comparing Transitions

Preconditions | — transitiongg.isinternal 1 transitionye,.isinternal or
— transitiongg.source.type ! transitiong,.source.type (from start to normal)
Action Trandate transitiongq as deleted and transition,g, as hew

Rule 174. Trandate Major Transition Change

Preconditions | — transitionyg.type! transition,e,.type

Action Regenerate the input and the guard symbols from transitiongg.transition by
using Rule 166 until Rule 168.

Rule 175. Trandate Transition Type Change

Preconditions | — transitiongg.source?! transition,q,.source

Action Move transitiongy.transition to transition,q,.source.state

Rule 176. Trandate Transition Move

Preconditions | — transitionyg.dest 1 transition,e,.dest

Action Delete the nextstate statement from transition.g,.transition and reapply Rule
170 or Rule 171.

Rule 177. Trandlate Transition Destination Change

V 6.33 New Action

Only new actions are trandated, not deleted actions. Moreover, actions are not compared and as a
result, modifying an action will result in a new action. There are two main reasons for this. First,
actions do not have a unique identification; they are merely sub-strings in the action string.
Consequently, it is impossible to determine whether an action has been modified or an action was
deleted and added. Second, it is typically not the intention in a UML state diagram to write full
SDL code on the transitions, but rather a more informal description. During detailed design the

158

Kurt Verschaeve

generated SDL actions will therefore be modified alot, making it difficult to maintain the link and
to trandate changes in a sensible way.

Rule 179 through Rule 182 determine the type of the action by checking for a certain sub-string.
If no specia string is found, the default trandlation is an SDL task with free text.

Context for — action isthe new action
this section — transition is the action containing action
Rule 178. Translate Context for Action
Preconditions | — action.name starts with "»"
Variables — Parse action.name as “destination.signal or ”signal ; possible parameters
within parentheses are included in signal
Action If destination is empty, add to transition.sditransition :
QUTPUT <si gnal >;
ese
QUTPUT <si gnal > TO <desti nati on>;
Rule 179. Trandate Signal Send Action.
Preconditions | — action.name starts with "call"
Action Add to transition.sdltransition :
<acti on. nane>;
Rule 180. Trandate Call Action.
Preconditions | — action.name includesthe string ":="
Action Add to transition.sdltransition :
TASK <acti on. nanme>;
Rule 181. Trandate Assignment Action.
Preconditions | — Rule 179, Rule 180 and Rule 181 do not apply.
Action Add to transition.sdltransition :

TASK ' <acti on. nane>';

Rule 182. Trandate Free Text Action.

Realizing the UML-SDL Round-trip Engineering 159

V.7 SDL post processing

After applying the trandated changes, we check the resulting SDL specifications for
inconsistencies or violations of the SDL syntax that are typica introduced by the trandation. This
“cleanup” is not part of the trandation rules of the previous section for two reasons. First, we do
not want to overload the translation rules with recurring aspects. For example, every rule adding
or deleting a block or process should check whether there is not a block or process next to each
other. Second, a problem introduced by one trandation rule may aready be solved be the
application of a subsequent rule.

V 7.1 Structure

The main structural post-processing is to eiminate processes and blocks in the same scope.
According to the SDL rules, ablock and a process can never be in the same scope. Usually, thisis
avoided by creating an extra “processes block”. During iteration, however, it is for example
possible that a block was added to a process-only block. Rule 183 therefore checks the
coexistence of blocks and process in al blocks and solves it accordingly. Rule 184 performs the
opposite action, i.e. delete the processes block if it is no longer necessary. Rule 183 and Rule 184
must be checked for all block definitions and block types in the complete specification.

Preconditions | — block contains at least one block definition or block intance

— block contains at least one process definition or process instance
Context — class = block.sdldefinition™
Action Execute Rule 55 to add a processes-block processes in block.

Move al process and signal routes of block into processes:

For al moved signal routes that go to environment, create an equivalent channel
in block.

Variables — class.processesblock = processes

Rule 183. Eliminate Blocks and Processes in the Same Scope.

160

Kurt Verschaeve

Preconditions

block. processesblock™® = block.parent.sdldefinition™

Except for block there are no other blocks, block instances, processes or
process instances in its scope

block.parent * block.system

Context

class = block.sdldefinition™

Action

Delete al channels from block.parent.

Move the complete contents of block into block.parent.

Delete block from block.parent.

Variables

class.processeshlock = class.sdldefinition

Rule 184. Eliminate Unnecessary Processes-Blocks.

V 7.2 Communication

During the UML post processing, the channels and signal routes are connected with the generated
gates. In a one shot trandation, the gates are generated first and the channels are immediately
connected to the best gate. Because gates can disappear during iteration, we connect channels and
signal routes with gates during post processing.

Context for
this section

communication is a channel or signa route
parent is the structure that encloses communication

Rule 185. Context for Connecting Commuincations

Preconditions

communication.fromconnect is not avalid gate
communication.fromstruct = “ENV”
parent is a block type

Action

Set communication.fromconnect to the gate of parent.gates that best matches
the input and output signals of communication.

Rule 186. Connect Communication with Environment Gate.

Preconditions

communication.fromconnect is not avalid gate
communication.fromstruct is a block instance or process instance

Context

structtype is the block or process type of communication.fromstruct

Action

Set communication.fromconnect to the gate of structtype.gates that best
matches the input and output signals of communication.

Rule 187. Connect Communication with Best Gate.

Realizing the UML-SDL Round-trip Engineering 161

V 7.3 Declarations

There are two more issues concerning declarations. First, if a declaration is defined twice, the one
in the highest scope is retained, see Rule 188. Rule 189 adds a default signal to signal lists that do
not contain any signals yet. This is necessary for active classes that do not contain operations.

Preconditions | — decl isasigna, signal list or newtype declaration
— The same declarations is aready defined in a higher scope

Action Delete decl.

Rule 188. Connect Communication with Best Gate.

Preconditions | — signallist isasigna list without any signals defined in it.
Action Add the signal “empty” to signallist.

If the “empty” signallist is not defined yet, add a signa with name “empty” and
no parameters to the system.

Rule 189. Add default signal to empty signal lists.

162 Kurt Verschaeve

V.8 SDL toUML

V 81 Reverselteration

This section defines the rules to trandate changes in SDL into changes in UML. The intention is
to update the system design document with the important changes made during detailed design,
whether that be added, modified or deleted information. The approach is very similar to the
forward iteration. The old and the new version of an SDL specification are compared in a
structural way, i.e. compare data structures instead of ASCII texts. Changes

Unlike the forward iteration, the reverse iteration is not intended for the trandation of a complete
specification. We assume that there has been carried out a forward trandlation before and that the
UML model and SDL specification are synchronized before the reverse iteration starts. Thisis a
reasonable assumption for projects where UML and SDL are used right from the start. For legacy
systems for which only the SDL specification exists, a complete reverse engineering must be
performed first. Most of the “new” trandation rules presented below can be reused for that
purpose, but they need to be extended with rules to generate diagrams, create packages and their
relationships, find communication patterns, abstract or summarize state charts and link blocks with
a process. Furthermore, these extra rules need customization options to be adaptable to the goal of
the reverse engineering. We decided that a standalone reverse engineering is out of the scope of
this dissertation.

V82 UML Modd versusDiagrams

Unlike SDL, UML has no strict correspondence between the class diagrams and the information
contained in the model. In SDL, the only difference between the graphical notation and the textual
notation is that the graphica notation uses extra positioning information. If this positioning
information lacks, an SDL tool will perform an automatic layout. In UML, a class, an association
or an inheritance relationship may be shown in several diagrams or may not be shown at all. In
other words, diagrams are optional and usually show only a part of the information in the model.
For this reason, the UML-SDL mapping rules are defined on the UML information model and not
on the diagrams. Section V 9.1 illustrates the generation of some diagrams based on the trand ated
changes.

V 83 Specification & Packages

As argued in section V 8.1, we do not support full reverse engineering. In around-trip scenario, a
UML model with packages is created first and trandated to SDL before starting to iterate.
Similarly, new packages should be added on UML level in order to include them in the round-trip
process. Of course, developers are free to import other SDL packages in their system; these
packages will simply not be translated to UML as a change. Rule 190 therefore only defines a
number of context variables used throughout the SDL to UML trandation.

Context for — systemyqisthe previous version of the SDL system or package

Realizing the UML-SDL Round-trip Engineering 163

this section

system,, is the new and modified version of the SDL system or package
system = system,,, @s a shorthand

package is the UML package that needs to be updated

sysclass = package.systemclass

architecture = package.sdlarchitecture is the structure that contains the
instances of top-level classes.

V 84 New Block

The standard trandation for a new block is to create a new class with stereotype «block» in the
UML package. For a new block instance, only an aggregation to the class that is linked with the
block type is created. However, for block instances of an imported block type this class is not
available yet. In this case, the block instance is trandated as a new external class, see Rule 192.
Another exception is the processesblock (a block which only purpose is to hold te management
process), which is not trandated at all.

Rule 190. Trandate Context for Reverse teration

The trandation of the specidization construct into a generalization relationship is done separately

in section V 8.10.

Context for

block isthe new SDL block, block type or block instance

this section parent is the surrounding SDL structure of block
parentclass = parent.sdldefinition™
if parentclassis empty, set parentclass = package.systemclass
Rule 191. Trandate Context for New Block
Precondition — block is not ablock instance of a block type declared within system,q,
— block.name ! "processesblock"
— block.processesblock™ is empty } Check that block is not a
— blockname? parent.name processbl ock.
— package does not contain a class with name block.name
Action Add anew class class to package with the following properties
— class.name = block.name
— class.stereotype = «block»
— If block isablock type or block instance: class.typed = true
— If block isablock definition: class.typed = false
— If block is block instance and corresponding block type is not visible:
block.extern = true
— If block isablock type or block definition: class.definedin = parentclass
Variables — newclassisthe newly created class

class.sdldefinition = block

Rule 192. Trandate New Block

164 Kurt Verschaeve

Precondition block is not ablock type (it is a block instance or a block definition)

Action Add a new aggregation to package with the following properties

aggregation.aggergate = parentclass

— aggregation.component = newclass

— aggregation.componentrole = block.name
— aggregation.composite = true

Variables — aggregation.sdlcomponent = block

Rule 193. Aggregate for Block Definition and Instance

V 85 Delete Block

A naive approach would be to smply delete the class that is linked with deleted block. However,
we have to check whether the class at issue is not linked with other information, more specificaly,
a management process or a processes block. An important condition that must be fulfilled is to
find a class that is linked with the deleted class as the sdidefinition, see Rule 194. If the delete
block is a processes block or an architecture block, there is no such link. Consequently, nothing
changes in the UML model. Rule 197 defines the case where the linked classis aso linked with a
process. Instead of deleting the class, the class is transformed into a «process» class.

Context for — blockyg isthe deleted SDL block, block type or block instance
this section — class= blockyg.sdldefinition™

Rule 194. Trandate Context for Delete Block

Precondition — class! empty Uclass! package.systemclass
— blockyq is ablock type or block definition
— class.sdlprocess is empty or is a process instance

Action Delete class in packag€an-

Rule 195. Deleted Standard Block

Precondition — block,q is ablock instance
Context — aggregation = blockgq.sdlcomponent™*
Action Delete aggregation from package

Rule 196. Deleted Block | nstance

Precondition — class! empty Uclass! package.systemclass
— blockyq is ablock type or block definition

Realizing the UML-SDL Round-trip Engineering 165

— class.sdlprocess is a process definition or process type

Action Change the following properties of class,ey

— Class.stereotype = «process»
— class.type =fdse
— class.definedin = class.sdlprocess.parent.sdldefinition™

Rule 197. Transform «block» class into «process» class

V 8.6 CompareBlock

Changes in a block are only trandated if it is the main link (sdidefinition) of a class. Changes in
the processes blocks, architecture block or block that are not linked can safely be ignored, see
Rule 199. The rules below check whether the block has been renamed or moved to a different
place, became (non-)type, has been switched from instance to definition or the type name of an
instance has changed. The translation of changing the specialization in defined in section V 8.10.

Context for — block,g isthe old SDL block (or block type or block instance)
this section — blockney is the new SDL block to be compared with blockyg
— class = blockyq.sdldefinition™

parentyq = the SDL structure that surrounds block, g
parent.o, = the SDL structure that surrounds blockney

Rule 198. Trandate Context for Compar e Block

Precondition — classisempty

Action Do nothing; do not check the rules below.

Rule 199. Skip Unlinked Block

Precondition — blockyg.name® block,e,.-name

Action Set class.name = block,e,-name

Rule 200. Trandlate Block Rename

Rule 201 trandates the case where the block is moved to a different structure. For block types,
this is trandated by adapting the definedin link of the class. For block definition and block
instances, this is trandated by modifying the aggregation that represents the block. The aggregate
end of the association is modified to point to the class that is linked with the new aggregate
structure.

Precondition — parentyq! parentey

— parentye,.sdidefinition™ is not empty
Context — aggregation = blockq.sdlcomponent™

— parentclasS,e, = parentyq,.sdldefinition™

166 Kurt Verschaeve

Action If blockney IS typed, set class.definedin = parentclass,qy

€lse, set aggregation.aggregate = parentclass,qy

Rule 201. Translate Block Move

Rule 202 and Rule 203 trandates the switch between block type and a non-typed block. Except
for changing the type attribute of the class, the aggregation that is used for non-typed classes
(»block definition) must be added or deleted. In the case that the block type becomes a block
definition, we assume that the instances of the old block type are deleted and consequently the
aggregations that represent the instances are deleted too.

Precondition — block,q is ablock definition

— block.ey isablock type
Context — aggregation = blockq.sdlcomponent™
Action Set class.type = true.

Delete aggregation from package.

Rule 202. Block Becomes Typed

Precondition — block,q is ablock type

— blockye, is ablock definition
Context — parentclasS,e, = parentyq,.sdldefinition™
Action Set class.type = fase.

Add an aggregation with the following properties

— aggregation.aggergate = parentclassay
— aggregation.component = class

— aggregation.composite = true

— aggregation.sdlcomponent = blockqay

Rule 203. Block Becomes Untype

Precondition — block,q is not a block instance and block,, is a block instance or
— block,q is ablock instance and block,, iS not a block instance
Action Trandlate block, 4 as a deleted block and block,., as a new block.

Rule 204. Switch Instance — Non-Instance

Rule 205 trandlates the case where the type of a block instance is modified. In other words, it isa
different type from which an instance is defined. In terms of UML, this means that the
component role of the aggregation must be moved to a different type.

Realizing the UML-SDL Round-trip Engineering 167

Precondition — block,q and block,e, are both block instances
— blockyg.type ! blocka.type
Context — aggregate = blockyg.sdlcomponent™
— typeclass,ey = blockne.type.sdldefinition™
— typeclassyg = blockyq.type.sdldefinition™
Action

If typeclass,ey iS empty or typeclassyq is empty

— Trandate block, 4 as a deleted block instance.
— Trandate block.ey as a new block instance.
Else

— aggregate.component = typeclass,ay
— aggregate.sdlcomponent = blocknay

Rule 205. Trandlate Type Change of Block I nstance

V 8.7 New Process

If the new process is an independent process, it is trandated into a new class with the same name
(Rule 208). The new process is considered dependend of it is the only class in a block or if the
process has the same name as the parent or the parent’s parent. In that case, the process is
considered to be the management process of the block and the link is set accordingly (Rule 207).
In addition to the creation of the class, Rule 209 creates an aggregation for process instances and

process definitions.

Context for
this section

process is the new SDL process, process type or process instance
parent is the surrounding SDL block (type) of process
parentclass = parent. processesblock *

if parentclass is empty, let = parent. sdldefinition™

if parentclassis empty, set parentclass = package.systemclass

Rule 206. Transate Context for New Process

Precondition

— process.name = parent.name or

— process.name = parentclass.name or

— process is the only process in parent and parentclass.processeshblock =
parent

Action

Set par entclass. managementprocess = process.

Stop comparing this process.

Rule 207. Trandate New Management Process

Precondition

— processis not a process instance or
process is a process instance of atype of another package (externa)

— package does not contain a class with name process.name

168

Kurt Verschaeve

Action Add anew class class to package with the following properties
— class.name = process.name
— class.stereotype = «process»
— If processis aprocess type or process instance: class.typed = true
— If processisaprocess definition: class.typed = false
— |If process is process instance and corresponding process type is not
visble: class.extern = true
— |If process is a process type or process definition: class.definedin =
parentclass
Variables — newclassisthe newly created class
— class.sdldefinition = process
Rule 208. Trandate New Process
Precondition process is not a process type (it is a process instance or a process definition)
Action Add a new aggregation to package with the following properties

aggregation.aggergate = parentclass
aggregation.component = newclass
aggregation.componentrole = process.name
aggregation.composite = true
aggregation.sdlcomponent = process

Rule 209. Aggregate for Process Definition and I nstance

V 88 Delete Process

The deleted process can be linked with a class in two ways. If the process is the main link
(sdldefinition), then the class is deleted (Rule 211). If the process is only the management process
of the class, nothing happens (no rule). When the process is a process instance, the process is
linked with a aggregation and so the aggregation is deleted (Rule 212).

Context for — processyq isthe deleted SDL process, process type or process instance
this section — class= processyq.sdldefinition™®
Rule 210. Translate Context for Delete Block
Precondition — class! empty
— processyq is aprocess type or process definition
Action Delete class in packagean-

Rule 211. Deleted Standard Process

Realizing the UML-SDL Round-trip Engineering 169

Precondition — processyq isaprocessinstance
Context — aggregation = process,q.sdlcomponent™
Action Delete aggregation from package

Rule 212. Deleted Process | nstance

V 89 Compare Process

Similar to comparing blocks, the properties of a process that are compared and trandlated, are its
name (rename), its scope (move), switch between type and non-typed or instance and non-
instance. However, most of the rules are only fired if the the process is the main link of the class;
in other words, if the processis not just the management process of a class.

Context for
this section

processyq isthe old SDL process (or process type or process instance)
process.y is the new SDL process to be compared with processyg
class = process,q.sdldefinition™

processclass = processyq.sdlprocess™

aggregation = processyq.sdlcomponent™

parent,q = the SDL block (type) that surrounds process,q

parent.o, = the SDL block (type) that surrounds processay

Rule 213. Trandate Context for Compare Process

Precondition

— processyg.name?! process.g,.name
— class! empty

Action

Set class.name = process,q,.nName

Rule 214. Trandate Process Rename

Precondition

— processyg-name! process,ey.name
— aggregate! empty

Action

Set aggregate.componentrole = process,q,.name

Rule 215. Trandate Process | nstance Rename

Precondition

— processyq is not a process instance and Process.y IS a process instance
or

— Pprocessyq is a process instance and process.y IS Not a process instance

Action

Trandlate process;q as a deleted process and process.qy 8 a New Process.

Rule 216. Switch Instance — Non-Instance

170 Kurt Verschaeve

Rule 217 specifies the trandation of a process that is moved to a different scope. Thisis achieved
by using the processeblock back link. Note that, if there is no explicit processes black,
processesblock* still returns the correct class.

Precondition — parentyg ! parente,
— class! empty
Context — parentclass,ey = parentyq,.processesblock™
Action If parentclass,qy iS NOt empty, set aggregate.aggregate = parentclass,qy.

Rule 217. Trandate Process Move

Rule 218 and Rule 219 are the process equivalent of Rule 202 and Rule 203. They trandate a
conversion from process type to process and the other way around.

Precondition — processyq isaprocess definition
— ProCeSS.y iS a process type
Action Set class.type = true.

class.definedin = aggregation.aggregate.

Delete aggregation from package.

Rule 218. Process becomes Typed

Precondition — processyq is aprocess type
— ProcesS.y IS a process definition
Action Set class.type = fase.

Add an aggegation aggregation with the following properties

— aggregation.aggergate = parentclassay
— aggregation.component = class
— aggregation.composite = true

Rule 219. Process becomes Untype

Rule 220 trandates the case where a process instance is changed to a different type. Note that
process.type points to a SDL process type, in contrast with the class.type that is a boolean. The if
part in the action section deals with the case when one of the necessary links are broken.

Precondition — processyq and process,qy are both process instances
— processyqtype?! process..type
Context — aggregate = process,q.sdlcomponent™

— typeclass,ey = Process.a.type.sdldefinition™
— typeclassyg = processyq.type.sdldefinition™

Realizing the UML-SDL Round-trip Engineering 171

Action If one of typeclassqy, typeclass,q or aggregate are empty

— Trangdlate process,q as a deleted process instance.
— Tranglate process.qy 8S a New process instance.
Else

— aggregate.component = typeclass,ay
— aggregate.sdlcomponent = proceSS,aw

Rule 220. Process | nstance of different Type

V 8.10 New/Delete/Compare Specialization

In SDL, a speciaization is not areal entrity on its own, it’'s rather an attribute of a block type or a
process type. Nevertheless, we trandate the specialization separately because the trandation is
common for processes and blocks. Rule 221 is only fired if the comparison engine found a
difference in the specidization of a structured typed, therefore there is no precondition to the rule.

Context — class = structye,.sdldefinition™

— struct,ey isthe SDL process or block type with the changed specialization
— superstruct,ey = Struct,e..Specialization (possibly empty)

— superclass = superstructe,.sdldefinition™ (possibly empty)

Action — class.superclass = superclass

Rule 221. Translate Context for New Specialization

V 811 New Procedure

A new SDL procedure added to a process is trandated by adding an UML procedure to the class
that is linked with the process.

Context — isthenew SDL procedure
— processis the process containing procedure
— class = process.sdlprocess™
— procedure.params = (py, ..., Pn)
Action Add an new operation oper to class with the following attributes:

— oper.name = procedure.name

— oper.returntype = procedure.returns

— " i1 1.n: add a parameter to oper, with name p.variable and type
pi.type.

Rule 222. Trandate New Procedure

172

Kurt Verschaeve

V 812 Deete Procedure

Context — procedure,q isthe deleted SDL procedure
— operation = procedureyg.sdlprocedure™
Action Delete operation from its class.

Rule 223. Trandate Deleted Procedure

V 8.13 Compare Procedure

For a procedure, the name, parameters and return sort are compared. We differentiate between
two kinds of changes in the parameter list. Rule 226 is fired if there are more or less parameters or
if the name of one of the parameters is changed. Rule 227 isfired if only the sort of one or more
of the parameters had changed.

Context for
this section

procedure,q isthe old SDL procedure

procedur ey q.parameters = (py oids «-+» Pnold)
procedure,, is the new SDL procedure

procedur &q,-parameters = (D1 news ---» Pmnew)
operation = procedure,q.sdlprocedure®

Rule 224. Trandate Context for Delete Procedure

Precondition

— procedure,g.name ! procedure.g,.name

Action

Set operation.name = procedure,e,.name

Rule 225. Trandate Procedure Rename

Precondition

— n*mor
- $il (L.n): pgg-name? p ng,.name

Action

Delete dl the parameters in operation and regenerate the parameters as
defined in Error! Reference source not found.. Skip Rule 227.

Rule 226. Trandate Parameter Changes

Precondition

— n=mU" IT (L.n): pggname? pe.name
- $jT1 (1.n): poatype® pnen-type

Action

Set the type of the j;, parameter to P nay-type

Repeat for other parameters if necessary.

Rule 227. Trandate Parameter Type Change

Precondition

— procedureyg.returnst procedur€.q,.returns

Realizing the UML-SDL Round-trip Engineering 173

Action Set operation.returntype = procedur €,q,.returns

Rule 228. Trandate Procedure Rename

V 8.14 Communication

The reverse incremental translation of communication routes into associations is somewhat
problematic. In general, there is no one-on-one link between an association and a channel or signal
route. In most cases, an association is linked with two or more channels, signal routes and/or
gates. If one of these parts is renamed or deleted, the original association is not necessarily
affected. Most of the support for communication is therefore focused on forward engineering
instead of reverse engineering. Nevertheless, we do provide reverse trandation of changesin some
specific cases. More specifically, we trandlate a signal routes and channels if it does not go to the
environment. We trand ate a deleted route if it was the last route linked with association.

V 8.15 New Communication

Context for this | — routeisthe new SDL signa route or channel
section

Rule 229. Context for new Communication

Precondition — route.fromstruct.parent = route.tostruct.parent
Context — fromclass = route.fromstruct.sdldefinition™

— toclass = route.tostruct.sdldefinition™
Action Create a hew association assoc with the following attributes

— assoc.name = route.name

— assoc.stereotype = «communication»
— assoc.fromclass = fromclass

— assoc.toclass = toclass

— assoc.channels = {route}

Rule 230. Create Association for Full Route

V 8.16 Ddete Communication

Context for this | — route isthe deleted SDL signa route/channel

section — association = route. sdichannel ™
Rule 231. Context for Deleted Communication
Action Remove route from the association.sdlchannels list

Rule 232. Delete link to Deleted Route

174 Kurt Verschaeve
Precondition — association.sdlchannels is empty
Action Delete association

Rule 233. Delete Unlinked Association

V 8.17 Compare Communication

Communication routes (signal routes & channels) have severd attributes that can change, but only
in specific cases this results in a change on linked UML association. A route rename (Rule 235) is
only trandated if the routes linked at both ends of the association have the same name. A route
that is connected to a different structure is translated by reconnecting the association to a different
class (Rule 236 and Rule 237), only if the route represents an association end.

Context for this
section

route,q isthe old SDL signal route/channel

route,qy is the new SDL signal route/channel to be compared with routeyq
association = routeyq.sdlfrom?

if association is empty, association = routeyq.sdlto™

if association is empty, association = route,q.sdlichannel ™

Precondition for
this section

association is not empty

Rule 234. Tranglate Context for Comparing Communication Routes

Precondition

routey,q.name! route,.name
association.sdlfromroute.name = association.sdltoroute.name
association.sdlfromchannel .name = association.sdltochannel .name

Action

association.name = route,q,.name

Rule 235. Trandate Route Rename

Precondition

route, 4 = association.sdlfromroute or
route,4 = association.sdlfromchannel

routeyq.fromstruct 1 routeq,.fromstruct

Action

If route,q,.fromstruct is a block,
association.fromclass = routena,.fromstruct.sdldefinition™

Else association.fromclass = route,e,.fromstruct.sdlprocess™

Rule 236. Transate Route From Destination Change

Precondition

route, 4 = association.sdltoroute or
route, 4 = association.sdlitochannel

routeyq.tostruct 1 route,q,.tostruct

Realizing the UML-SDL Round-trip Engineering 175

Action

If route,.tostruct is a block,
association.toclass = route,e,.tostruct.sdldefinition™

Else association.toclass = route,e,.tostruct.sdprocess™

Rule 237. Trandate Route To Destination Change

V 8.18 New newtype

A new SDL newtype declaration is trandated by creating a class with stereotype «newtype». The
context variables defined in Rule 238 imediately parse the signature and behaviour into attributes
and operators. For each attribute or operator, respectively Rule 240 or Rule 241 is executed to
trandated them into class attributes and operations.

Context for — newtype isthe new SDL newtype
this section If newtype isa“struct” newtype, let :

— newtype.signature = (attr,, ..., attr,) isthe list of attributes

— attr; = (name, type)

— newtype.behaviour = (opery, ..., Opery,) isthelist of operators

— oper; = (name, parameters;, returntype)

Rule 238. Trandate Context for New Newtype

Action Create anew class class with the following properties:

— class.name = newtype.name

— class.stereotype = «newtype»
Variables class isthe newly created class

Rule 239. Create «<newtype» class

Context " i1 (1.n) : execute the action with attr;
Action Add a new attribute attr to class with the following properties:

— attr.name = attr;.name

— attr.type = attr;.type

Rule 240. Trandate Attribute in Newtype

Context " i1 (1.m) : fire this rule with oper,

Let parameters = (partype, ..., partype,) alist of Strings denoting types.
Action Add a new operation oper to class with the following properties:

— oper.stereotype = «operator»
— oper.name = operj.name

176 Kurt Verschaeve

— oper.returntype = attr;.returntype

— " j1 (L.n) : add a parameter parameter to oper with the following
properties. parameter.name = "par<j>", parameter.type = partype,

Rule 241. Trandate Operator in Newtype

V 8.19 Delete newtype

Deleting a newtype has only an effect on the UML mode if the newtype is linked with a class. In
other words, deleting the newtypes generated from types and return types, is not transated back
to UML.

Context — newtype,q is the deleted SDL new type
— class= newtype,.sdldatatype™
Action If classis not empty, delete class.

Rule 242. Trandate Deleted New Type

V 8.20 Comparenewtype

The newtype comparison checks all components separately: the name, the attributes and the
operators. However, we cannot trandate renamings of individual attributes or operators.

Context for — newtype,q isthe old SDL new type

this section — newtypeyg.attributes = (8 giq, -+-» &old)
— Newtypene,.operators = (Ql,old’ T Qm,old)
— newtype., is the new SDL new type

— newtype.q.attributes = (8 naws ---» 8nnew)

— NeWtypene,.0perators = (Pynew: ---» Pmnew)
— operation = newtype,q.sdlnewtype™®

Rule 243. Trandate Context for Delete New Type

Precondition — newtype,g.hame?! newtype.q,.name
Action Set operation.name = newtype,q,.name

Rule 244. Trandate New Type Rename

As the attributes of newtype do not have an own identity in the information model, it is not
possible to detect individual renames. If the number of attributes and their names are the same,
then the types of the attributes are compared, otherwise al the attributes are regenerated. The
same approach is taken for comparing the operators of the newtype.

Precondition — n,0ld! n,new or

Realizing the UML-SDL Round-trip Engineering 177

— $il (L.n): gggname?l & g.name

Action Delete dl the attributes in class and regenerate the attributes as defined in Rule
240.
Rule 245. Trandate Attribute Changes
Precondition | — nold=nnewU" iT (1.n): &gg.NaMe = g y.Name
"1 (1.n): piggtype? piqes-type: execute the action
Action Set the type of the j, attribute to p; ney.type
Rule 246. Trandate Attribute Type Change
Precondition — m,0ld! m,new or
- $il (L.m): piggname?l piey.name
Action Delete al the operations in class and regenerate the operations as defined in
Rule 241.
Rule 247. Trandate Operator Changes
Precondition — mold=mpnewU" il (1.n): Bi olg-NAME = P e-NAME
- $j1 (1.m): pggreturntype ! piev.returntype
Action Set the type of the jy, operation to pj ney . €turntype

Rule 248. Trandate Parameter Type Change

V 8.21 New Variable

In SDL, attributes can only appear in processes, so it is easy to find the correct class to trandate
the SDL variable into a UML attribute.

Context — variableisthe new SDL variable
— processisthe SDL process that contains variable
— class= parent. sdlprocess™
Action Add a new attribute attribute to class with the following properties:

— attribute.name = variable.name

— attribute.type = variable.type

— attribute.default = variable.initialexpr
— attribute.sdldeclaration = variable

Rule 249. Trandate New Variable

178 Kurt Verschaeve

V 8.22 DeeteVariable

Context — variable isthe deleted SDL variable
— attribute = variable. sdldeclaration
Action Ddete attribute from its class.

Rule 250. Trandate Deleted Variable

V 8.23 Compare Variable

Here, al the properties of an SDL variable are compared and trandated if necessary: name, type
and default value.

Context for — variable,qisthe old SDL variable
this section — variable, isthe new SDL variable

— attribute = variable,q. sdldeclaration™

Rule 251. Trandate Context for Delete Variable

Precondition — variableyg.name?! variable,,.name

Action Set attribute.name = variable,qy.name

Rule 252. Trandate Variable Rename

Precondition — variable,g.type ! variable,,.type

Action Set attribute.type = variableq,.type

Rule 253. Trandate Variable Type Change

Precondition — variableyg.initialexpr * variable,q,.initialexpr

Action Set attribute.default = variable,g,.initialexpr

Rule 254. Trandate Variable I nitial Expression Change

V 8.24 New State

The SDL state and UML state (after flattening) map one-on-one and has only one property, its
name. Therefore, trandating a new state, delete state or renamed state is straightforward.

Context — stateisthe new SDL state

— processisthe SDL process that contains state
— class= parent. sdlprocess™

— statediagram = class.statediagram

Realizing the UML-SDL Round-trip Engineering 179

Action Add a new state state to statediagram with the following properties:

— state.name = state.name
— statetype= normal

Rule 255. Trandate New State

V 8.25 Delete State

Context — dateisthe deleted SDL state
— dtate= state. sdistate ™
Action Delete state from its state diagram.

Rule 256. Trandate Deleted State

V 8.26 Change State

Context for — date,qistheold SDL state
this section — date, isthe new SDL state
— state= state. sdIstate™

Rule 257. Trandate Context for Delete State

Precondition — stategg.name?! stateq,.name

Action Set state.name = state,qy.Name

Rule 258. Trandate State Rename

V 8.27 New Transtion

The transition concepts are somewhat different in SDL and UML. In SDL, a transition is
identified by its input and/or guard. In UML, a transition has its own identity and the input and
guard are properties. Moreover, a SDL transition can split into different transitions with different
destination states, while in UML the transition has one fixed destination state. In the context
definition in Rule 259, we make alist of al the destination states of the transition. For each of the
destinations, Rule 261 creates another transition in UML. Rule 260 handles the case where the
new tansition is actualy the start transition (sdiprocess.start). In that case a new start state is
created in the UML state diagram.

Context for — transition isthe new SDL transition

this section — sourceis the source states of transition

— source = source.statet

— {dedy, ..., dest,} areall the possible destination states of transition
— " jT (L.n): execute rule Rule 261 with deststate = dest;

180

Kurt Verschaeve

— let process be the process containing transition
— statediagram = process.sdlprocess™.statediagram

Rule 259. Trandation Context for New Transition

Precondition

— transition = process.start

Action

L et source be the start state in statediagram.

If source is empty, add a new state source to statediagram with the following
properties:

— sourcetype = dtart
— source.name=""

Rule 260. Trandate New Start Transition

Context

— deststate is the added destination for transition
— hnextgtate is the next state action of transition that correspond with deststate

Action

Add anew transition transition to statediagram with the following properties:

— transition.name = transition.input (may be empty)
— transition.guard = transition.enable (may be empty)
— transition.source = source

— transition.dest = dest,.state®

Variables

— transition.nextstate = nextstate
— transition.sdltransition = transition

Rule 261. Trandate New Transition Destination

V 8.28 Delete Transition

Context

— transition,q isthe SDL transition with deleted destinations

— dedtstate is the deleted destination state from transitionggq

— dtate is the source state of transitiongq

— hextstate is the nextstate action of transition that correspond with deststate
— transition = nextstate.nextstate™

Action

Delete the UML transition from its state diagram.

Rule 262. Trandate Context for Deleted Transition

V 8.29 Compare Trangtion

Context for
this section

— transitionyq isthe old SDL transition
— transitionn, is the new SDL transition to be compared with transitionyg

Realizing the UML-SDL Round-trip Engineering 181

deststate is the destination state of transitionyy and transition,ey

state is the source state of transitiong,y and transiti on,qy

nextstate is the nextstate action of transitiongq that correspond with deststate
transition = nextstate.nextstate™

Rule 263. Trandate Context for Deleted Transition

Precondition — transitionyg.input * transitione,.input
Action Set transition.event = transitionyg,.input

Rule 264. Trandate Transition Rename
Precondition — transitiongg.enable ! transition,e,.enable
Action Set transition.guard = transition,g,.enable

Rule 265. Trandate Transition Type Change

V 8.30 New Action

Context for action isthe new SDL action
this section transition is the transition containing action
{ nextstatey, ..., nextstate,} are al the possible nextstate statements reachable
from action.
{trans;, ..., trans;} are the corresponding UML transitions (trans =
nextstate.nextstate)
Rule 266. Translate Context for Deleted Transition
Precondition — action isan dgnal output action
Context — Parse action as. <signa> <parameters> TO <destination>
L eave destination empty if action does not contain "TO"
Action " j1 (1.n): add the action to trans
; A"<desti nati on>. <si gnal ><par anet er s>
or ; *<si gnal ><par anet er s> if <destination> is empty
Rule 267. Translate New Output Action
Precondition — action isan assignment
Context — Parse action as: TASK <assignment>;

182 Kurt Verschaeve
Action " j1 (1.n): add the action to trans :

<assi ghnent >;

Rule 268. Trandate New Assignment

Precondition — actionisainformal task
Context — Parseaction as; TASK ‘<task>';
Action " jT (1.n): add theaction totrans :

. <task>

Rule 269. Trandate New Informal Task

Precondition — action isnot asignal output nor task.
Action " j1 (1.n): add the action to trans

;action

Rule 270. Trandate New General Action

Realizing the UML-SDL Round-trip Engineering 183

V.9 UML Post Processing

V 9.1 Passchangeson to full UML modd

Unlike during the forward iteration, the resulting (UML) model cannot simply be stored with the
necessary details to obtain the updated system design model. The internal model has been
preprocessed by adding and changing information that is undesirable in a design document.
Therefore, the changes applied to the internal information model are reapplied to the original UML
model. There are two approaches to realize the forwarding of changes.

One option is to keep a paradld data structure that is not preprocessed during the whole iteration
process. Every time a change is trandated to UML, the change is also immediately applied to the
paralel data structure. If this paralel data structure in addition contains al other UML model
information (use cases, sequence diagrams, etc.), it is sufficient to store the model as the new
system design version.

The second option is to keep a copy of the model directly after preprocessing. After the
incremental trandation, this copy is compared with the model that has been updated to discover
the changes made by the trandator. The UML trandator used during the forward iteration can be
reused for this purpose. Next, these changes are applied to the full version of the UML model.
This approach has the major advantage that it can be applied to any proprietary data structure
with an API. Moreover, the UML compare operation is aready available because it is necessary
for the forward iteration.

V 9.2 Createand Update Diagrams

Besides updating the UML model, the diagrams that visualize the information in the model also
need to be updated. Entities that were renamed or deleted are automaticaly reflected in the
existing diagrams. Also new attributes and operations are automatically shown if the class at hand
is present in a diagram. However, new classes and their contents and new class relationships are
shown nowhere. Unfortunately, there is no universal way to arrange the new information into
diagrams, as it depends, among others, on the semantics of the model. The generation of extra
diagrams is of particular interest when asignificant system design effort has been performed in
SDL. Therefore, the best approach is to let the user choose a number of diagrams out of a set of
possible diagrams that should be generated. A non-exhaustive list of possible diagramsis:

All new classes in the whole model and the relationships between the new classes.
The new classes per package and their relationships.
Diagram for each new class and its related classes, with their relationships.

All new generalization relationships with the corresponding classes showing the generalization
hierarchy, possibly including the existing super classes.

All new aggregation relationships with the corresponding classes showing the aggregation tree,
possibly including existing aggregate classes.

184 Kurt Verschaeve

All new associations relationships with the corresponding classes showing the communication
graph.
All classes that have new attributes and/or new operations.

Realizing the UML-SDL Round-trip Engineering 185

V. 10 User Interaction

At this point, we have a large set of trandation rules of how changes are trandated. When we
consider a tool that implement these rules, we do not want an al or nothing approach. Even more
than setting a number of global options to influence the incremental trandator, the user need to
have a more control over how changes are interpreted, translated and applied. In this section, we
describe a number of mechanisms that alows the user to fine-tune the incremental trandation.
Sections V 10.1 through V 10.3 discuss mechanisms that are applied dynamically during the
incremental trandation and require direct user interaction. Sections V 10.4 through V 10.6 discuss
static ways to control the incremental trandation process. exclude certain parts of the model or
specification for comparison or modification, allow a maintenance phase during which changes are
not registered and the generation of a change report. A particular tool may support a selection out
of these dynamic and static techniques, but probably not al of them as their functionality overlap
partially.

V 10.1 Interactive Comparison

The first technique allows the user to confirm or cancel the detected changes before trandlation.
The first step in the incremental trandation is detecting the changes by comparing the previous
version and the most recent version of the model or specification. For a number of reasons, the
comparison may fail to find some changes or may detect a change that is actually unintentional or
not relevant. For example, the UML comparison notices a new class and a deleted class, while
actually the user intended to rename the class. Another example is when in SDL two transitions
are merged into one by using a decision. The second transition will be marked as deleted, but that
was not the intention.

After the comparison, the change list is presented to the user, who can then discard incorrect
changes or merge a delete and new change into a comparison. To make the evauation easier, the
user can view the deleted, new or modified entity in its context.

Even if a structural editor is used and all changes are recorded immediately, this technique can till
be applied.

V 10.2 Interactive Rule Activation

The second technique is to make the execution of rules during the transation process interactive.
During the incremental trand ation, the detected changes are trandated by firing the corresponding
rules in a certain context. With this approach, to user confirms the execution of each rules or
group of rules before it is fired. To ease the decision, the UML or SDL context to which the rule
applies is shown, with or without the rule executed. Answers like “aways yes’, “aways yes for
this class’ and “aways no” avoid repetitive decisions.

186 Kurt Verschaeve

V 10.3 Managing Links

The third technique is to manually restore missing links between UML and SDL. The UML to
SDL links are crucia for the incremental trandation. Modification to an unlinked entity cannot be
trandated as there is no scope to trandate that change to. In certain circumstances links may
disappear, for example when an entity is deleted and remodeled or when some trandation rules
were not executed. For this reason, the user should be able to fill in missing links during the
trandation as well as during modeling. Actualy, current tools already support linking entities
between different abstraction layers. For example, Telelogic Tau describes three ways to create
links (implinks) as support for its SOMT method [And95]: manudly, by linking together two
endpoints or by linking together an endpoint and a selected object or automatically, by copying
and pasting an object (Paste As). Although implinks differ from our links, the tool support is very
similar. Implinks can link any UML entity with any SDL entity, while our hierarchica UML-SDL
links used for round-trip engineering have more constraints, i.e. each link must be of a certain
type. Moreover, some entity have severa distinct links, e.g. a class can be linked with a block
(sdldefinition) and a process (sdiprocess) at the same time. The only extra tool support to adapt
implinks to hierarchical links is an extra option to choose which link is specified.

V 10.4 Protect Areas

With this technique, the user can make an UML or SDL entity read and/or write protected. If an
entity is protected, its sub-entities are protected too. A write-protected entity is not updated during
the incremental trandlation. For example, if an SDL process is write-protected and in the linked
UML dstate diagram a state is deleted, this state will not be deleted from the process. A read
protected entity is not taken into account during the comparison. For example, if an SDL process
is read protected, non of the changes done to the process or to its contents are processed nor
translated.

A typical use of this technique is to make a analysis-only UML package read protected, such that
it is not trandated and changes in the package are ignored. An SDL process can be made write
protected after testing to avoid accidental changes while editing or updating the UML model. On a
smaller scale, a transition in a UML state diagram with actions in general terms, e.g. ‘process
data’, can be made write protected to avoid that it becomes overloaded with all the actions added
during the implementation in SDL.

V 10.5 Maintenance Phase

The maintenance phase dlows the developer to correct the updated model after an incremental

trandation. This phase takes place after the trandation process is finished and before the normal

system design or detailed design is resumed. During the maintenance phase, the changes made to
the UML model or to the SDL specification are ignored. The idea is to clean up unwanted
artifacts of the trandation process, without adding new information. It can be seen as a manual

extension of the incremental trandation. The resulting model or specification after maintenance is
used as the reference to be compared with during the next incremental trandation. The advantage
of having a maintenance phase is that during the next iteration, the comparison will find less
irrelevant changes and consequently need less user interaction.

Typical examples of changes made during the maintenance phase in SDL are: deleting an
unnecessary management process; deleting unwanted newtypes generated from types used in
variables or parameters; renaming a process or block instances that was given a default name; and

Realizing the UML-SDL Round-trip Engineering 187

deleting channels to group communication routes. These kind of changes do not have to be
translated back to UML and can be done during the maintenance phase.

V 10.6 Change Report

The last feature we propose to improve the round-trip engineering is the creation of a change
report. During each iteration all the changes found in the model or specification are logged in a
change report together with the scope and trandation rules that were applied. The resulting report
is a hypertext document with summary report with links to the model for the scope and alink to a
description of the trandation rule. When viewing a trandation rule, the variables used in the rule
are assigned concrete values. In a version control system, this document is stored together with
the new version of the modd or specification.

The change report is useful for several purposes. | can be used to find erroneous translation of
changes. It can be used to document the changes or simply as a means to track changes in
different versions. It can be used to navigate through the specification to find the spots that may
need further development. Furthermore, this feature could be combined with the interactive rule
activation technique. The change report is presented and the developer can choose to delete
certain changes or rules in order to avoid wrong trandations before they are applied.

VI. CONCLUSIONS

"It isalmost impossible to watch a sunset and not dream."

-Bern Williams-

"Instead of thinking about where you are, think about where you
want to be. It takes twenty years of hard work to become an
over night success."

-Diana Rankin-

190 Kurt Verschaeve

VI.1 Main Contributions

The research presented in this dissertation is an important contribution in bringing UML and SDL
closer toward each other. We provide a complete mapping of UML class diagrams and state
diagrams onto an SDL specification. Mismatches in the languages are solved by providing extra
information (e.g. stereotypes) or by preprocessing the model (eg. flattening nested state
machines). Moreover, we developed a method to support round-trip engineering between two
different paradigms that do not have a one-to-one mapping. During an iteration, only changes are
trandated and not the complete model. As long as an entity is not changed, the linked entities are
completely untouched. This method maximizes the preservation of detailed design done during
previous iterations. We applied this approach to alow round-trip engineering between UML and
SDL.

We already started to put our experiences in the real world. The current mapping and trandation
rules are validated during a joint research effort with Telelogic and a summary was published in
[VE99]. The core of the UML to SDL trandlator of Telelogic Tau 3.6 was developed based on
these results. There were concrete plans to implement the round-trip support as presented in this
dissertation, but because of time constraints and the size of the project, this has been postponed.

The idea of synchronizing two models on different abstraction levels by incrementally trandating
changes is a contribution on its own. By replacing the UML and/or SDL information models and
rewriting the trandation rules, the idea can be applied to other source and target languages.

The idea of synchronizing two models on different abstraction levels by incrementally trandating
changes is a contribution on its own and is applicable to other source and/or target languages. The
only requirement is that there exists a (partia) trandation between the two languages. To apply
our approach, an internal information model must be created for both languages and the
trandation must be broken up into sets of trandation rules for each individual entity. Additionally,
the trandation rules for deleting and modifying entities must be worked out.

Many of the criteria mentioned in the beginning of the dissertation (I 2.6) for the perfect UML-
SDL round-trip solution have been accomplished. The forward incremental trandation rules are
defined in such a way that they can trandate a complete UML model into an SDL specification.
The trandation rules are aso designed to preserve as much information as possible. The graphical
layout information contained in UML or SDL will be conserved as long as the structure or
diagram does not have to be regenerated. Moreover, the generated SDL is made as readable as
possible such that a developer can easily adapt the specification to his own needs. Finally, thanks
to the possibility of re-linking entities, the round-trip support can till be provided after many
iterations and when the system design and detailed design have evolved considerably.

On the other hand, the proposed UML-SDL solution is not perfect, as some of the criteria are not
fulfilled. The reverse incremental trandation rules can only be applied if there has been a forward
trandation first, so our solution cannot be applied to legacy SDL systems. We do not provide
support to trandlate sequence diagrams into MSC's. There is no static check to ensure that the
UML model and SDL specification are synchronized. Over time, they might diverge from each

Conclusions 191

other, e.g. when the user asks to ignore deleting some entities. Then again, allowing UML and
SDL to evolve separately and still provide round-trip support can be considered a positive feature.

The goa of our research is to improve the development of large, high interactive systems. In other
words, the systems behavior should be suitable to be expressed in state machines. The system
should benefit from the formal specification and validation features of SDL. In addition, the
development of the system should require a high-level viewpoint to keep an overview of the
system. It is clear that the UML-SDL round-trip engineering does not come completely free. First,
developers have to invest in learning both UML and SDL. Given a development team with a lot of
SDL experience and no UML experience, chances are high that adding UML in the process does
not improve quality or time-to-market. Second, to guarantee a correct operation of the incremental
trandations in the round-trip process, the developers need to have insight in the UML-SDL
mapping and adapt the system design and detail design accordingly. In other words, the round-trip
engineering should be integrated in afull development process to bring its full benefit.

192 Kurt Verschaeve

V1.2 FutureWork

Integrating the presented round-trip engineering in an existing UML and SDL tool requires more
than implementing the trandation rules one by one. The tool must be able to load a full SDL
specification with al its peculiarities and graphical information, build the information model and
write it back without loss of any details after it has been updated. This is a challenge because the
presented information model does not cover the full SDL language. The same requirement holds
for parsing, storing and writing back the UML model, including the diagram information.
Furthermore, the trandation rule definitions do not take error handling into account. Throughout
all trandation rules, extra checks must be performed to detect missing links or entities and to avoid
duplication of information.

More research must be performed on the reverse engineering of a complete SDL specification.
Our methodology requires a UML modd to start the first iteration. This restriction makes it very
hard to start using UML for continuing the development of an existing specification. Such reverse
engineering support could perform an analysis of communication through channels and signa
routes to discover the associations between classes and to find the correct scope for method
definitions. An important issue in reverse engineering is the creation of class diagrams. Asthere is
no one best way to create diagrams, the user must be given the option to choose from different
type of diagrams, e.g. generalization tree, aggregation tree, diagram per class, etc. The results
from this reverse engineering research can then be reused by extending the reverse trandation
rules and thus improving the incremental reverse trandation. Especially the reverse engineering

The set of incremental tranglation rules that we propose in this thesis is not the only possible set of
trandation rules, nor is it necessarily the best possible set. Especially the trandation rules that
compare attributes of entities are subject for discussion. For example, an aternative for trandating
the change of the stereotype of a class from «block» to «process» is to regenerate the complete
class, instead of reusing the management process linked to the class. Actually, there is no one best
way to trandate a particular change, as this probably depends on what the user intended with the
change. In our trandation rules, we choose the version that retains the most of the detail design
decisions.

Currently, no support is provided to simultaneously change the UML model and the SDL
specification. This poses practical problems if an analysis team and a design team work together
on the same system. So, alowing simultaneous development in UML and SDL may be an
important feature for the development of bigger systems. One way to realize this kind of support
is to perform the forward iteration and immediately perform the reverse iteration without taking
the updated SDL (i.e. result of forward iteration) into account. This scenario is likely to cause
more conflicts and making the UML model and SDL specification less consistent. For example, if
the name of an entity is changed on both sides simultaneoudly, there is no way to automatically
decide which name is the correct one. More user interaction will be necessary to support this kind
of synchronization. More research is needed to estimate the consequences and find appropriate
solutions.

Conclusions 193

VI. 3 Related Resear ch

This section describes existing research that is comparable to our round-trip process or that may
be combined with it to improve it. In the current tendency, UML and SDL keep growing towards
each other. This confirms the strong demand for combining and integrating the qualities of UML
and SDL. The latest result in this areais the new version of SDL, namely SDL-2000. Because of
the importance for our research, we discuss the impact of SDL-2000 to the UML-SDL round-trip
engineering in more detail.

V1 3.1 SDL-2000

SDL-2000 is a major revision of SDL'96 and affects the UML-SDL round-trip engineering in
many ways. In SDL-2000, outdated concepts are removed, existing concepts are aligned and new
concepts are introduced. Many changes clearly improve the alignment with UML. For example,
SDL-2000 now includes nested state diagrams, processes and blocks are unified in one concept
called agents and non-delaying channels take over the role of signal routes. Moreover, SDL 2000
is accompanied by a new standard Z.109 SDL-UML profile. In general, the new concepts in
SDL-2000 make SDL more suitable to combine with UML and allow improvements to the round-
trip engineering process and trandation rules. Below we describe the concepts that have an impact
on the UML-SDL réationship.

In SDL-2000, blocks and processes are unified in the agent concept. Agents model the active
components of a system; they have a communicating state machine with its own life cycle and
signal input queue. SDL-2000 still differentiates between block agents and process agents, but the
previous limitation that blocks and processes cannot be located in the same scope is eliminated.
Moreover, variables can be declared within a block agent and are visible for the nested agents. If
applied to our round-trip solution, a number of simplifications can be applied. The extra
processes-block can be skipped, changing the stereotype of a class has fewer implications and
«block» classes with attributes do not need the extra management process.

The aignment of the communication concepts in SDL-2000 makes the generated code easier to
maintain. The signal route concept is purged and replaced by channels. A channel can be declared
with the signals and without connections. The channel type can then be reused in different places
throughout the system to connect block agents and process agents. Applied to our round-trip
engineering, the UML association maps bi-directionally on an SDL channel type. The channel
instances are only mapped in the forward direction. This eases the synchronization and the
maintenance of the UML-SDL links.

SDL-2000's composite states alow hierarchical state machines. Just like in UML, states can be
nested, agents can be in more than one state at a time and states can define an entry and exit
procedure. This feature makes the flattening of the UML state diagram before trandlation
unnecessary and provides a clearer link between UML states and SDL states.

In SDL-2000, UML-like class symbols can be used to refer to type definitions and diagrams.
Multiple references are allowed, but they all have to be consistent with the type definition.

194 Kurt Verschaeve

Relations between two classes can be depicted by associations and specialization. Associations do
not imply any predefined semantics to the referred SDL agents. Specializations must be consistent
with the inherits-clause in the referred type definitions.

Z.100 (SDL with UML) specifies how the UML notation may be used within an SDL
specification and the Z.109 (UML to SDL) specifies how a UML modd is trandated into an SDL
model. The purpose of the UML for SDL is to define a set of extensions and restrictions to UML
to ensure an unambiguous mapping between the two languages. Based on the rules defined by
Z.109 the UML to SDL tool trandates UML static structure diagrams (class diagrams) together
with state charts into SDL architecture and behavior. UML diagrams grouped into a package will
automatically be transformed into an SDL packages or an SDL System.

The UML to SDL tool adds SDL semantics to the UML model. As a result, the abstract UML
model becomes a formal specification, which is possible not only to compile but also to smulate.
The benefit is that an architecture specification with unambiguous interfaces can be achieved. It is
also possible to verify the dynamic properties of the system's interfaces. The resulting SDL
system can then be used as the basis for further implementation in SDL and automatic code
generation for the application.

To conclude, SDL-2000 is without doubt the next step toward the integration of UML and SDL.
It would be an interesting challenge to make the best combination of our round-trip engineering
solution with the updated language and mapping. Some of the tricky mapping problems are solved
by the new concepts in SDL-2000 and the trandation rules for changes can contain more
semantics.

VI 3.2 UML for Real-Time

An interesting research track is to extend object oriented modeling languages with real-time
aspects, such that source code can be generated directly from the high-level design model. The
Real-Time Object-Oriented Modding language (ROOM [SGW94]) specifically tailors object-
oriented concepts for rea-time systems. It offers a single consistent set of graphical modeling
concepts with the benefits of object paradigm and executable models. After UML has turned into
the defacto OOA language, UML and ROOM have been combined into UML for Real-Time
(UML-RT, [Lyo98]) to deliver a complete solution for modeling complex real-time systems. In
UML-RT, structure is described in terms of capsules and is modeled by class diagrams and
collaboration diagrams. Behavior is described in terms of extended, hierarchical, finite state
machines. Communication between capsules is based on synchronous or asynchronous message
passing.

UML-RT introduces the concepts (i.e. stereotypes) capsule, port and connector to support the
modeling of real-time s/stems. Capsules correspond to the ROOM concept of actors. Capsules
are complex, potentially concurrent, and possibly distributed active architectura components.
They interact with their surroundings through one or more signal-based boundary objects called
ports. Collaboration diagrams are used to describe the structural decomposition of a Capsule class.
A port is a physical part of the implementation of a capsule that mediates the interaction of the
capsule with the outside world. Ports realize protocols, which define the valid flow of information
(signals) between connected ports of capsules. By forcing capsules to communicate solely through
ports, it is possible to fully de-couple their internal implementations from any direct knowledge
they have about the environment. This de-coupling makes capsules highly reusable. Connectors
capture the key communication relationships between capsules. These reationships have

Conclusions 195

architectural significance since they identify which capsules can affect each other through drect
communication.

The functionality of simple capsules is realized directly by the state machine associated with the
capsule. Capsules that are more complex combine the state machine with an internal network of
collaborating sub-capsules joined by connectors. These sub-capsules are capsules in their own
right, and can themselves be decomposed into sub-capsules. This type of decomposition can be
carried to whatever depth is necessary, allowing modeling of arbitrarily complex structures with
just this basic set of structural modeling constructs. The state machine (which is optional for
composite capsules), the sub-capsules, and their connections network represent parts of the
implementation of the capsule, and are hidden from external observers.

Current UML-RT tools (ObjectTime Developer and Rational Rose Rea-Time) provide mode
execution capabilities, and automatically generate complete code for complex red-time
applications from these modeling constructs. Unfortunately, UML and UML-RT 4ill lacks a
precise dynamic semantics necessary for formal specification.

Of special interest in our context is that originators of UML-RT present a mapping of SDL to
UML-RT in [SR99]. In this paper, they describe a transformation of an SDL system specification
into a UML-RT model. The purpose behind such a trandation is to take advantage of the
formalized system specification of SDL and the versatility of UML with its broad acceptance and
tool support. The mapping is describes in informal text. The SDL structural concepts map on
capsules. Channels and signal route endpoints as well as gates map on ports. The outgoing and
incoming signd lists of the gate serve to define protocol definitions. The channels and signal routes
map directly to UML-RT connectors. As compared to our UML-SDL mapping, they provide
some extra mappings such as the SDL save signals, create statement, decisions and timers.

Our conclusion is that the mapping of SDL onto UML-RT is closer to a one-on-one mapping than
the mapping we propose. However, this des not necessarily mean that it is more useful in al
circumstances. The mapping on UML-RT is better to examine the exact structure of the SDL
specification. Our mapping on UML is better to give a view on a higher abstraction level and to
document different views on the system.

VI 3.3 Verson Management

Our round-trip-engineering process can profit from the integration with a version management
system. In our current approach, a copy of the model and specification is stored after each
iteration. This copy is used as the “old” mode or specification in the next iteration. This approach
can be improved by integrating a version management system. Because such a system keeps track
of al intermediate versions, it is possible to backtrack to an earlier version and to accumulate
changes and their trandations in two or more versions. If the subsequent versions are stored in the
form of delta's, the version management can take over part of the comparison process. Moreover,
a version management system is almost indispensable for larger systems, where the UML model
and the SDL specification are managed by different teams.

V1 3.4 Round-Trip Engineering Solutions

Many round-trip engineering approaches exist between UML and most object-oriented
programming languages. The one-on-one mappings between UML concepts and their Java or C++
counterparts allow direct synchronization of the model with the source code. For example, if a

196 Kurt Verschaeve

Java class has variable x, but the corresponding UML class does not have an attribute X, then the
attribute is added to the UML class.

The previous generation of round-trip engineering tools polluted the code with comments
generation tags to indicate the part of the code that may be modified. Newer tools provide the
same functionality without the need of these tags. In most UML tools with support for round-trip
engineering (e.g. Rational Rose, Paradigm Plus and Rhapsody) the developer executes a
incremental forward trandation after changing the model or an incremental reverse trandation
after changing the code to synchronize the model with the code. Together/J gives a more
advanced support for round-trip engineering in the sense that the UML modes are always
synchronized to the source code that implements them. Change something in a Class or other
source generating diagram and the relevant source code updates immediately. Change the code
and the visual model updates to stay in sync.

These tools provide almost the perfect solutions according to the criteria given in section | 2.6.
The iteration can be started by reverse engineering the source code; most information of the static
structure is trandated; the model and the source code is guaranteed to be synchronous after an
iteration; the iteration can be applied over and over again and in recent versions, the source code
is not polluted with round-trip specific comments. Criteria that these solutions do not provide are:
the UML dtate diagram is not transated and the design model and implementation model cannot
diverge, even if the developer would like to.

Unfortunately, the UML based round-trip solutions mentioned above are very hard to apply to
SDL as a programming language because of the complex mapping. The new features of SDL
2000 and its relation with UML might improve the possibility to use existing approaches of round-
trip engineering. SDL 2000 provides a limited set of one-on-one mappings between UML and
SDL. These mappings could be used for direct synchronization of a UML model and an SDL
specification. However, further research is necessary to find out to which extend this is possible
and whether the resulting round-trip solution generates enough SDL code. One of the tedious
parts of writing SDL —creating gates and communication routes- would probably be hard or
impossible to support by such round-trip engineering tool.

[AC99]

[AIA9S]

[Andos]

[Baugs)

[Beck99]

[Boe76]

[BoeB1]
[Brae9g]

[BR95]

[BHO3]

[CABY4]

[Cin]

REFERENCES

Every man | meet isin some way my superior.

- Ralph Waldo Emerson-

Andersen Consulting Foundation Software Organization.
http://www.ac.com/services/foundation/foun_home.html

Advanced Internet Access project description, ITA-2 AIA consortium, Brussd,
November 1998.

E. Anders. The SOMT Method. Preliminary product information, Teleogic,
September 19, 1995.

C. Baudoin, G. Hollowell. Realizing the Object-Oriented Lifecycle. Upper Saddle
River, NJ. Prentice Hall, 1996.

Kent Beck. Extreme Programming Explained: Embrace Change. Addison-
Wesley, 1999.

B. Boehm. Software Engineering. |EEE Transactions on Computers, vol. G25,
no.12, December 1976, pp.1226-1241.

B. Boehm. Software Engineering Economics. Englewood Cliffs, Prentice-Hall.
R. Brak, et a. SSU Integrated Methodology - at a glance, Oct 96.

G. Booch, J. Rumbaugh. Unified Method for Object-Oriented Development.
Rational Software Corporation, 1995.

R. Braek, @. Haugen. Engineering Real Time Systems, Prentice-Hall, 1993.

D. Coleman, P. Arnold, S. Bodoff, C. Dallin, H. Gilchrist, F. Hayes, P. Jeremaes.
Object-Oriented Development, The Fusion Method. Prentice Hall International
Editions, 1994.

Cinderella. http://www.cinderella.dk

198

Kurt Verschaeve

[Dou9s]

[DWOs]

[EHS97]

[GHY97]

[Har87]

[Har97]

[HigO0]

[HWW96]

[|EEESS3]

[INS94]

[ITA98]
[1ITU94]
[1TU94-2]
[1ITU99]

[1TU00]

[Jaco4]

[JBR99]

[Kru9g]

B. Douglass. Real-Time UML, Developing Efficient Objects for Embedded
Systems. Addison-Wesley, Massachusetts, 1998.

D. D'Souza, C. Wills. Objects, Components and Frameworks with UML : The
Catalysis Approach. Addison-Wesley, 1998.

J. Ellsberger, D. Hogrefe, A. Sarma. SDL, Formal Object-Oriented Language for
Communicating Systems. Prentice Hall, London, 1997.

I. Graham, B. Henderson-Sellers, and H. Younessi. The OPEN Process
Specification. Addison-Wesley, 1997.

D. Harel. Satecharts. a Visual Formalism for Complex Systems. Science of
Computer Programming 8, 1987, 231-274.

David Harel and Eran Gery. Executable Object Modeling with Satecharts, |IEEE
Computer Magazine, July 1997, pp 31-42.

J. Highsmith. Adaptive Software Development: A Collaborative Approach to
Managing Complex Systems. Dorset House, 2000.

E. Holz, M. Wasowski, D. Witaszek, S. Lau, J. Fischer, P. Roques, K.
Verschaeve, E. Mariatos, and J.-P. Delpiroux. The INSYDE Methodology.
Deliverable INSY DE/WP1/HUB/400/v2, ESPRIT Ref: P8641, January 1996.

Ingtitute of Electrical and Electronics Engineers. IEEE Standard Glossary of
Software Engineering Terminology. New York, NY: 1983.

INSYDE. Technical Annex: * Integrated Methods for Evolving System Design”,
ESPRIT-III Project P8641, restricted report edition, December 1994.

ITA-2 - Information Technology Access program, second part. http://www.iwt.be
ITU-T. Z.100, CCITT Specification and Description Language (SDL), June 1994.
ITU-T. Z.120, Message Sequence Chart. Sep. 1994.

ITU-T. Recommendation Z.109, SDL combined with UML (SDL/UML). 1999

ITU-T. Methodology on the use of ITU description techniques. SDL, MSC,
ASN.1, ODL and TTCN. Supplement 1 to ITU-T recommendation z.100.

I. Jacobson. Object-Oriented Software Engineering : A Use Case Driven
Approach. Addison-Wesley, 1994.

I. Jacobson, G. Booch, and J. Rumbaugh. Unified Software Devel opment Process.
Addison-Wesley, 1999.

Philippe Kruchten. Rational Unified Process-An Introduction. Addison-Wesley,
1999.

References

199

[LKHO9]

[Lyo9s8]

[MCD99]

[MS97]

[Mel9g]

[Navog]

[OMG99]

[PIHO5]

[Rat97]

[Rat99]

[Rat00]

[RBP91]

[RGGY6]

[Roy70]

[SCR98]

[SGW94]

[SCVMO5]

F. Lodge, K. Kimbler, M. Hubert. Alignment of the TOSCA and SCREEN
Approaches to Service Creation. 1IS&N’99, LNCS 1597, pp. 277-290, 1999.

A. Lyons. UML for Real-Time Overview. ObjecTime, April 1998.

Paul Monday, James Carey, Mary Dangler. SanFrancisco Component
Framework: An Introduction. Addison-Wesley, 1999.

G. Melby, R. Sanders (ed). Suttrapport for ISU 11, Mar 97.

Steve Mélor. Automatic Code Generation from UML Models. C++ Report, June
1999.

Z. Navabi. VHDL Analysis and Modeling of Digita Systems. McGraw-Hill, Inc.,
1993.

OMG (Object Management Group). Unified Modelling Language (UML) v. 1.3
specification, http://www.omg.org, June 1999.

J. Peeters, M. Jadoul, E. Holz, M. Wasowski, D. Witaszek, and J.P. Delpiroux.
Hw/sw co-design and the simulation of a multimedia application. In 7th
European Simulation Symposium, October 1995.

Rational Software Corporation, et al. UML 1.1 Semantics.

Rational Unified Process 5.5, Rational Software Corporation,
http://www.rational.com.

Rational Software Corporation. Rational Rose 2000. http://www.rational .com.

J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen. Object-
Oriented Modeling and Design. Prentice Hall, 1991.

E. Rudolph, J. Grabowski and P. Graubmann. Tutorial on Message Sequence
Charts (MSC'96). Tutoria of the Forte/PSTV'96 conference, Germany (October
1996).

W. Royce. Managing the Development of Large Software Systems: Concepts and
Techniques. Proceedings WESCON, Aug. 1970.

SCREEN ddliverable D28, SCREEN Engineering Practices for Component-based
Service Creation, SCREEN/A21-D29, ACTS SCREEN consortium, December
1998.

B. Sdlic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modelling. |EEE
Computer Society, 1994,

D. Sinclair, L. Cuypers, K. Verschaeve, V. Mariatos, N. Kyrlogou, J.L.Roux
(1995). A formal approach to HWSW Co-design: The INSYDE Project. 9th
International |EEE Symposium and Waorkshop on Engineering of Computer-Based
Systems (ECBS'96), Friedrichshafen, Germany.

200

Kurt Verschaeve

[Stad7]

[SPCY4]

[SR99]

[Tele]

[TOAOS]

[Tog00]

[TOS98]

[Ver97]

[VE9Y]

[VIWO6]

[VWCJ95]

[VWWOO]

[VWWO1]

[WVMV 98]

[WWV95]

J. Stapleton. Dsdm Dynamic Systems Development Method : The Method in
Practice. Addison Wesley, 1997.

Software Productivity Consortium. Using New Technologies: A Technology
Transfer Guidebook, 1994.

B. Sdlic, J. Rumbaugh. Mapping SDL to UML. Rational Software white paper,
1999.

Telelogic, www.telelogic.com

A Comparison of Object-Oriented Development Methodologies. The Object
Agency, Inc., 1995.

TogetherSoft. Together Enterprise. http://www.togethersoft.com.

TOSCA ddiverable D9, Specification of the TOSCA Process Architecture for
Service Creation, ACTS TOSCA consortium, December 1998.

K. Verschaeve. Automated Iteration between OMT* and SDL. Proceedings of the
Eighth SDL Forum (SDL’97), Evry, France, September 1997.

K. Verschaeve, A. Ek. Three Scenarios for Combining UML and SDL'96.
Proceedings of the Ninth SDL Forum (SDL’'99), Montréal, Québec, Canada, June
1999.

K. Verschaeve, V. Jonckers, B. Wydaeghe, L. Cuypers. Translating OMT* to
DL, Coupling Object-Oriented Analysis with Formal Description Techniques.
Proceedings of Method Engineering ‘96, p.126-141. IFIP, Atlanta, USA, 1996.

K.Verschaeve, B. Wydaeghe, L.Cuypers, V. Jonckers, J. Heirbaut. OMT*,
Bridging the Gap between Analysis and Design. Proceedings of 8th International
Conference on Formal Description Techniques (FORTE'95), Montreal, Canada,
1995.

K. Verschaeve, B. Wydaeghe, F. Westerhuis, J. De Moerloose (2000). Multi-level
Component Oriented Methodology for Service Creation. Proceedings of 7th
International Conference on Intelligence in Services and Networks (IS&N 2000),
Athens, Greece.

K. Verschaeve, B. Wydaeghe, F. Westerhuis, J. De Moerloose (2000). Visual
Composition with SDL Beans. Submitted to International Conference on
Engineering of Computer Based Systems (ICBS 2001), Athens, Greece.

B. Wydaeghe, K. Verschaeve, B. Michiels, B. Van Damme, E. Arckens, V.
Jonckers (1998). Building an OMT-Editor Using Design Patterns: An Experience
Report. Tools '98: The Move to Componentware. St. Barbara, 1998

M. Wasowski, D. Witaszek, K. Verschaeve, B. Wydaeghe, E. Holz, and V.
Jonckers. The complete OMT*. Deliverable INSY DE/WPL/HUB/300/v3, ESPRIT
Ref: P8641, December 1995.

References 201

[VWWMOO0] Multi-level Component Oriented Methodology for Service Creation, K.
Verschaeve, B. Wydaeghe, F. Westerhuis, and J. De Moerloose, IS&N 2000,
Springer, Athens, February 2000, ISBN 3-540-67152-8.

