

 FACULTY OF ENGINEERING

 Language Facilities for the

 Deployment of Reusable Aspects

 Thesis submitted in fulfilment of the requirements for the award of the degree of
 Doctor in de ingenieurswetenschappen (Doctor in Engineering) by

 Bruno De Fraine

 June 2009

 Advisor(s): Prof. Dr. Viviane Jonckers
 Department of Computer Science
 Dr. Wim Vanderperren
 Department of Computer Science

Language Facilities for the
Deployment of Reusable Aspects

Bruno De Fraine

June 2009

iv

Abstract

In the domain of aspect-oriented software development, there is a high level of interest in
reusable aspect modules by both researchers and practitioners. A number of approaches target
the incorporation of aspect mechanisms in a component-based style of software development.
But also in the context of traditional aspect systems the concept of aspect libraries with reusable
implementations of crosscutting concerns is becoming increasingly relevant.

At the level of the aspect programming language, considerable attention has been devoted
to powerful abstraction mechanisms, to be able to describe aspect behavior independent of a
specific context, with flexible extension points. However, a separate deployment step is also
needed, to configure and activate reusable aspect behavior for a concrete setting. We claim that
advanced deployment mechanisms are equally important to enable the intensive use and reuse
of aspects. We consider two dimensions of support for aspect deployment:

• Expressive deployment mechanisms allow to use existing aspects in more contexts. They
improve the general software engineering properties of deployment logic.

• Safe deployment mechanisms automatically verify the compatibility between the aspect
and the context where it is used. This makes the reuse of aspects more manageable.

We find that the deployment mechanisms of current aspect approaches are lacking in these two
respects, and present contributions in each area.

With respect to the expressiveness of deployment mechanisms, we analyze the current
mainstream deployment constructs and identify a number of common shortcomings that relate
to (i) reuse of the deployment logic, (ii) quantification of aspect behavior, and (iii) activation
of new deployments at dynamic program events. We propose a language design to remedy
these problems and we realize this design as the ECOSYS AOP framework. ECOSYS employs
general program code for the specification of deployment logic, which provides rich abstraction
mechanisms and control structures. It also allows for the deployment to be better integrated
with the rest of the program.

For the safety of deployments, we focus on the static typing of deployment code. Compared
to a full specification and verification of the program behavior, types offer a practical and
lightweight approximation of the semantics. Our contribution is the development of flexible
typing principles for the safe application of aspect behavior at concrete program points, based
on the subtype relations that provide both an upper and lower bound for types, and the use of
type variables to support genericity. We demonstrate how the type system can be integrated
with the dynamic deployment mechanisms of ECOSYS, thanks to generic typing features of

v

vi Abstract

recent languages such as JAVA 5. The proposed typed ECOSYS approach achieves a combination
of both expressive and typed aspect deployments, and demonstrates that these two properties
should not be considered at odds with each other. In addition, we present the STRONGASPECTJ
language, which integrates the proposed typing principles in a mainstream aspect language.
Finally, we provide a formal evaluation of the proposed typing principles with a rigorous proof
of the safety properties in the context of the FEATHERWEIGHT JAVA calculus.

Samenvatting

Binnen het veld van aspectgerichte softwareontwikkeling is een grote interesse in herbruikbare
aspectmodules merkbaar, zowel vanwege onderzoekers als gebruikers. Een aantal benaderin-
gen beoogt de integratie van aspectmechanismen binnen een componentgebaseerde manier
van softwareontwikkeling, maar ook voor traditionele aspectsystemen wordt het concept van as-
pectbibliotheken met herbruikbare implementaties van veelvoorkomende aspectfunctionaliteit
steeds belangrijker.

Op het niveau van de aspectprogrammeertaal werd aanzienlijke aandacht besteed aan
krachtige abstractiemechanismen, om aspectgedrag onafhankelijk van een specifieke context
en met flexibele aanpassingspunten te programmeren. Een afzonderlijke inzetstap is echter
vereist om het herbruikbare aspectgedrag te configureren en activeren binnen een concrete
omgeving. We beweren dat geavanceerde inzetmechanismen net zo belangrijk zijn om het
intensieve gebruik en hergebruik van aspecten mogelijk te maken. We beschouwen twee
belangrijke eigenschappen van de faciliteiten voor het inzetten van aspecten:

• Expressieve inzetmechanismen laten toe om bestaande aspecten in meer situaties te
gebruiken. Ze verbeteren de algemene softwareontwikkelingseigenschappen van de
inzetlogica.

• Veilige inzetmechanismes controleren automatisch de compatibiliteit tussen het aspect
en de context waar het wordt ingezet. Dit maakt het hergebruik van aspecten makkelijker
beheerbaar.

We stellen vast dat de inzetmechanismen van huidige aspectbenaderingen tekortschieten en
we dragen bij tot de verbetering van elk van deze twee eigenschappen.

Om de expressiviteit van inzetmechanismen te verbeteren, analyseren we de voornaamste
huidige inzetmechanismen en duiden we een aantal tekortkomingen aan die betrekking hebben
op (i) het hergebruik van de inzetlogica (ii) de kwantificering van het aspectgedrag, en (iii) het
inzetten van nieuwe aspecten bij dynamische programmagebeurtenissen. We stellen een
taalontwerp voor om deze problemen op te lossen en we werken dit ontwerp concreet uit als het
ECOSYS AOP framework. ECOSYS maakt gebruik van algemene programmacode om inzetlogica
uit te drukken en het kan hiervoor dus rijke abstractiemechanismen en controlestructuren
bieden. Deze organisatie laat ook toe om de inzetlogica beter te integreren met de rest van het
programma.

Om de veiligheid van de inzetmechanismen te verbeteren, concentreren we ons op de
statische typering van inzetlogica. In vergelijking met een volledige specificatie en verificatie

vii

viii Samenvatting

van het programmagedrag bieden types een praktische en eenvoudige benadering van de pro-
grammasemantiek. Onze bijdrage is de ontwikkeling van flexibele typeregels die garanderen
dat aspectgedrag veilig kan toegepast worden op concrete programmapunten. Hiervoor maken
we gebruik van subtyperelaties die zowel een boven- als een ondergrens voor types opgeven, en
een abstractie met typevariabelen om generiek aspectgedrag mogelijk te maken. We tonen hoe
dit typesysteem geïntegreerd kan worden met de dynamische inzetmechanismen van ECOSYS,
door gebruik te maken van de generieke typeringsfuncties van recente programmeertalen als
JAVA 5. De getypeerde variant van ECOSYS die aldus bekomen wordt, combineert zowel het ex-
pressief als veilig inzetten van aspecten, en toont aan dat deze twee eigenschappen verenigbaar
zijn. Daarnaast definiëren we de STRONGASPECTJ taal die de voorgestelde typeregels integreert
in een courante aspecttaal. Tot slot onderzoeken we de voorgestelde typeregels op een formele
wijze in de context van de FEATHERWEIGHT JAVA calculus en leveren we een rigoureus bewijs
van de veiligheidsgaranties.

Acknowledgments

The following three factors were of vital importance for the realization of this work:
− When I approached the SSEL lab as a stranger from a different university with the ob-

jective of obtaining a doctoral degree, I immediately received the confidence and support
from Viviane Jonckers to make this happen. As the main adviser, she displayed tremendous
practicality throughout and she was always available for constructive feedback on my work,
even as I delved into more technical regions.

− For the larger half of the time, Wim Vanderperren provided me with day-to-day guidance,
and I relied on his extensive know-how for more than one important decision. I appreciate
that he continued his role of adviser at his new position outside of the university. From the
beginning, Wim treated me as one of his peers, and the stereotype of the “evil postdoc” could
not have been further from the truth in his case.

− The financial support from the Institute for the Promotion of Innovation by Science and
Technology in Flanders (IWT) ensured that I could carry out the work in a largely carefree
manner.

The quality of my thesis text improved considerably from the corrections and knowledgeable
suggestions of my committee members: Jacques Tiberghien, Rik Pintelon, Theo D’Hondt, Dirk
Vermeir, Erik Ernst and Ralf Lämmel. I particularly thank the external examiners for their
scrutiny. Some chapters of the text were additionally proofread by courtesy of Mario Südholt
and Ragnhild Van Der Straeten. In general, I thank Mario for sharing his expertise during our
fruitful collaborations on this (and other) projects.

On countless occasions, I benefited from the scientific, technical and practical experience
from the colleagues that precede me at the SSEL lab — not to mention the friendship I received
from them. Other than Wim and Ragnhild, this includes Maja D’Hondt, Davy Suvée, Bart
Verheecke, María Agustina Cibrán and Dennis Wagelaar. Much the same can be said about
those colleagues that joined our group later on: Niels Joncheere, Mathieu Braem, Dirk Deridder,
Mario Sánchez, Oscar González, Andrés Yie, Eline Philips and Carlos Noguera. Additionally,
I greatly enjoyed the fellowship of many members of the PROG lab, too numerous to list
here. Suffice it to say that a bright future lies ahead in the new constellation as the “Software
Languages Lab”.

On a personal note, I thank Dominique for her unconditional love and encouragement
during these formative years of our joint lives. I thank my parents, sister and brother, Véronique

ix

x Acknowledgments

and Hans, friends and family for their interest and all-round support. The persistent inquiries
about my progress frequently caused me to reflect on the larger context of my work when it was
sorely needed.

Bruno De Fraine
June 2009

Contents

Abstract v

Samenvatting vii

Acknowledgments ix

Contents xi

List of Figures xv

List of Listings xvii

1 Introduction 1

1.1 Problem Statement . 1

1.2 Goal . 2

1.3 Context . 3

1.4 Approach . 3

1.4.1 Expressiveness of Deployment Logic . 3

1.4.2 Safety of Deployment Logic . 4

1.5 Contributions . 5

1.6 Outline . 6

2 Research Context: Aspects and Their Reuse 9

2.1 Aspect-Oriented Software Development . 9

2.1.1 Modularizing Crosscutting Concerns . 9

2.1.2 Aspect-Oriented Mechanisms . 12

2.2 Reuse in Representative Pointcut/Advice Approaches 18

2.2.1 AspectJ . 18

2.2.2 JAsCo . 20

2.2.3 AOP Approaches for Enterprise Middleware Frameworks 21

xi

xii Contents

I Expressiveness of Deployment Logic 25

3 Towards Expressive Aspect Deployment 27
3.1 Deployment Responsibilities . 27
3.2 Requirements for Expressive Deployment . 30

3.2.1 Reuse of Deployment Logic . 30
3.2.2 Deployment Quantification . 31
3.2.3 Dynamic and Integrated Deployment . 31

3.3 First-Class Deployment Procedures . 33
3.4 Discussion: Intensive Usage of Aspects . 35

4 The EcoSys AOP Framework 37
4.1 Programming Interface . 38

4.1.1 Join Point and Advice . 38
4.1.2 Pointcut and Binding . 40
4.1.3 Join Point Dispatch and Interaction Resolution 42

4.2 Demonstrations of First-Class Deployment Procedures 47
4.3 Developing an EcoSys Implementation . 49

4.3.1 Choice of Implementation Platform . 49
4.3.2 Prototype EcoSys Implementation . 50

5 Other Approaches for Expressive Deployment 55
5.1 CaesarJ . 55

5.1.1 Proposal . 56
5.1.2 Evaluation of Deployment Expressiveness 62

5.2 Eos . 64
5.2.1 Proposal . 64
5.2.2 Evaluation of Deployment Expressiveness 65

5.3 Stateful Aspects and Inter-crosscut Variables . 66
5.4 Reflex . 68

5.4.1 Proposal . 68
5.4.2 Evaluation of Deployment Expressiveness 69

5.5 AspectS . 70
5.5.1 Proposal . 70
5.5.2 Evaluation of Deployment Expressiveness 72

5.6 Summary . 73

II Safety of Deployment Logic 75

6 Subtype and Parametric Polymorphism 77
6.1 Concepts and Terminology . 77

6.1.1 On Types, Abstraction and Polymorphism 77
6.1.2 A Syntactic Approach to Type Soundness . 79

6.2 Subtype and Parametric Polymorphism for Functions 80
6.2.1 Simply-Typed First-Class Functions . 82

xiii

6.2.2 Subtype Polymorphism . 84
6.2.3 Parametric Polymorphism . 87

6.3 Java 5 Generics: Parametric Polymorphism for Objects 97
6.3.1 Generic Java: Invariant Type Parameters . 98
6.3.2 Wildcards: Use-site Variant Type Parameters 101
6.3.3 Discussion: Opportunities for Framework Designers 106

7 Typing Principles for Pointcut/Advice Bindings 107
7.1 Characterization of Advice Behavior . 107
7.2 Typing Principles for Join Points of General Type 108

7.2.1 A Sufficient Condition for Soundness . 109
7.2.2 Typing Advice with Subtype Polymorphism 110
7.2.3 Typing Advice with Parametric Polymorphism 112

7.3 Typing Principles for Function Join Points . 115
7.3.1 Relevance of Function Join Points . 115
7.3.2 Function Join Points and Pointcuts . 115
7.3.3 Ordinary Function Advice . 117
7.3.4 Generic Function Advice . 117

7.4 Join Points with a Special Type Structure . 119

8 Safe Deployment Logic in EcoSys 121
8.1 Current AOP Framework Typing . 121
8.2 Typed EcoSys . 122

8.2.1 Adaptations to the Programming Interface 122
8.2.2 Integration of Typed Pointcuts . 126
8.2.3 Typed First-Class Deployment Procedures 127

8.3 Typed Interaction Resolutions . 128
8.4 Some Real-life Examples . 130

9 StrongAspectJ: Recovering Mainstream AOP Type Safety 133
9.1 StrongAspectJ . 134

9.1.1 AspectJ Typing Particulars . 134
9.1.2 Language Definition . 136
9.1.3 Examples . 141

9.2 Postmortem of Traditional Aspect Typing . 141
9.2.1 Around Advice and Proceed Invocations . 141
9.2.2 Generic Advice and the Object Return Type 143
9.2.3 Other Accounts of the AspectJ Type System 144

9.3 An Implementation of StrongAspectJ . 145
9.4 Related Work: Typed Aspect Languages . 148

9.4.1 Aspectual Caml . 148
9.4.2 PolyAML . 149
9.4.3 AspectC++ . 150
9.4.4 AspectJ 5 . 151

xiv Contents

10 Formal Evaluation of Pointcut/Advice Bindings 153
10.1 Featherweight Java . 154

10.1.1 Definition . 154
10.1.2 Safety Properties . 159

10.2 Featherweight StrongAspectJ . 160
10.2.1 Definition . 160
10.2.2 Safety Properties and Corresponding Proofs 167

10.3 Related Work: Formal Advice Semantics . 170
10.3.1 Jagadeesan et al. 170
10.3.2 Clifton and Leavens . 171
10.3.3 Lämmel . 172
10.3.4 Other Work . 173

11 Conclusions 175
11.1 Summary of the Dissertation . 175
11.2 Recapitulation of the Contributions . 176
11.3 Future work . 177

11.3.1 Continuations . 177
11.3.2 Future Research Directions . 178

A Coq Specification of Featherweight StrongAspectJ 181
A.1 Library Aux . 181

A.1.1 Atoms . 181
A.1.2 Environments . 182
A.1.3 Zipping and list properties . 183

A.2 Library Definitions . 183
A.2.1 Syntax . 183
A.2.2 Auxiliaries . 185
A.2.3 Evaluation . 189
A.2.4 Typing . 190
A.2.5 Properties . 192

Bibliography 195

Index of Terms 207

List of Figures

1.1 Overview of the relation between the dissertation chapters 6

2.1 Modularization of two concerns in the Tomcat implementation 11

4.1 EcoSys programming interface . 38
4.2 Condensed class diagram of predefined EcoSys resolutions and advice application

types . 44

6.1 Definition of syntax and typing rules for simply-typed functions 81
6.2 Extension of the language of Figure 6.1 with subtypes 85
6.3 Extension of the language of Figure 6.1 with parametric polymorphism 93
6.4 Definition of the judgments regarding well-formed types and subtyping 94
6.5 Apparent member signatures and subtype relations for wildcard type arguments 103

7.1 Join point interface types before and after advice weaving 109
7.2 Definition of pointcut matching and pointcut/advice binding for general join

points . 111
7.3 Definition of pointcut matching and pointcut/advice binding for function join

points . 116

9.1 StrongAspectJ syntax definition (relevant parts) . 137
9.2 StrongAspectJ typing and matching rules . 138
9.3 Simplified architecture of the AspectBench compiler, StrongAJ modifications . . 146

10.1 FEATHERWEIGHT JAVA syntax . 155
10.2 FEATHERWEIGHT JAVA dynamics and auxiliary definitions 155
10.3 FEATHERWEIGHT JAVA statics . 156
10.4 FEATHERWEIGHT STRONGASPECTJ extension of the FEATHERWEIGHT JAVA syntax 161
10.5 FEATHERWEIGHT STRONGASPECTJ extension of FEATHERWEIGHT JAVA dynamics

and auxiliary advice compatibility judgment . 162
10.6 FEATHERWEIGHT STRONGASPECTJ extension of FEATHERWEIGHT JAVA statics . . . 164

xv

xvi List of Figures

List of Listings

2.1 Advice declaration to trigger display updates after figure element changes 12
2.2 Counting figure elements using a traversal . 14
2.3 Class composition to trigger display updates after figure element changes 15
2.4 Open class extension to count figure elements . 17
2.5 An aspect to check the argument of print invocations for null values 18
2.6 Aspect behavior to count the number of join point executions (abstract aspect

and concrete subaspect) . 19
2.7 Aspect behavior to count the number of join point executions (aspect bean and

connector) . 20
2.8 Interceptor to count the number of join point executions 22
2.9 XML configuration file to apply the Counter interceptor 23

3.1 AspectJ implementation of a reusable tracing aspect 28
3.2 Independent specification of program pointcuts 28
3.3 Elements of aspect deployment logic . 28

4.1 A predefined template advice method which includes configurable behavior be-
fore and after the execution of the intercepted join point 39

4.2 Example of an aspect module with different advice methods that operate on the
same set of data . 40

4.3 ECOSYS advice dispatch procedure . 42
4.4 Employing ASPECTJ to instrument all candidate join points with invocations of

the dispatch behavior . 51

5.1 CAESARJ collaboration interface for the display of a tree model 56
5.2 Implementation of the visualization facet of the TreeDisplay collaboration . . . 57
5.3 Implementation of the data model facet of the TreeDisplay collaboration 57
5.4 Mixin composition of implementations of the facets of the TreeDisplay collabo-

ration . 58
5.5 Implementation of the data model facet of the TreeDisplay collaboration using

existing figure element classes . 60
5.6 CAESARJ interface and example deployment for output advice 62
5.7 Example of an EOS classpect that specifies instance-level advising 65

xvii

xviii List of Listings

5.8 Dynamic deployment at a login event using a tracematch 67
5.9 Deployment of profiling advice behavior using REFLEX 69
5.10 Reusable AspectS aspect to log a timestamp before operations 71

8.1 Join point and advice interface classes of typed ECOSYS 123
8.2 Pointcut class of typed ECOSYS . 124
8.3 Example of ordinary advice behavior in typed ECOSYS 125
8.4 Redefinition of BeforeAfterAdvice as generic advice in typed ECOSYS 126
8.5 Typing of caching advice using typed ECOSYS . 130
8.6 Factory Method design pattern with decorator in typed ECOSYS 131
8.7 Typing of profiling advice using typed ECOSYS . 132

Chapter 1

Introduction

1.1 Problem Statement

Aspect-oriented and component-based software development are two paradigms that have
been proposed to cope with the complexity of present-day software. Component-based soft-
ware development (Szyperski, 1998) aims at the construction of software by composing a
number of off-the-shelf components. This requires highly reusable components and expressive
composition mechanisms that support plug-and-play recomposition. Aspect-oriented software
development (Kiczales et al., 1997a) pursues the modular treatment of specific concerns (as-
pects) that elude the traditional decomposition mechanisms, typically because the functionality
is non-hierarchical in nature. One of the best known mechanisms to achieve the modularization
of aspects in a software implementation consists in the specification of additional behavior
(advice) and a description (the pointcut) of the points during the execution (join points) where
the behavior needs to be included. The execution platform co-composes the aspect description
with the main program (a technique called weaving).

The usefulness of combining both paradigms has been demonstrated on numerous occa-
sions. In order to develop aspect behavior according to the component paradigm, it is crucial
to achieve independent and reusable aspect specifications. This is an important facet in the
work by Vanderperren (2004) or by Lieberherr et al. (1999). Outside of the component paradigm,
there is also an increasing interest for libraries of reusable aspect implementations as the ap-
plication of aspect technologies becomes more mature. This includes simple toolboxes with
direct solutions for a broad range of typical problems (Isberg, 2006; Colyer, 2005b) as well as
highly specialized catalogs of implementations for a specific problem such concurrency (Cunha
et al., 2006), object relationships (Pearce and Noble, 2006) or design patterns (Hannemann and
Kiczales, 2002).

At the level of the programming language, the reuse of aspects requires abstraction mech-
anisms, to describe aspect behavior independent of a particular context, and with flexible
extension points. However, equally important to enable advanced reuse are the deployment
mechanisms that instantiate and configure the aspects for a particular use1. It is not sufficiently

1Note that in context, we use the term ‘deployment’ for an activity during the software implementation, which is not

1

2 Introduction

recognized that the deployment of an aspect may describe a complex configuration that involves
(among other things) data exchange with the main application and interactions with other
aspects. Current mainstream approaches confine aspect deployment to various configuration
mechanisms with substandard language properties. We find that this second-rate treatment
prohibits the intensive usage of aspect mechanisms in the implementation of complex software.

One class of the issues with current deployment mechanisms relates to their lack of ex-
pressiveness. It is impossible to abstract the commonalities in deployment specifications,
which prevents any manageable reuse or quantification of aspect deployments. In addition, the
means to integrate the deployment of aspects with relevant events during the execution of the
program are rigid and restricted. This causes a direct failure to express a desired deployment
strategy. These expressiveness problems pose a serious obstacle for the advanced use and reuse
of aspects.

The other class of issues involves the verification of aspect deployments, in particular of
the compatibility between the reusable aspect and the concrete context where it is deployed.
We believe that an automated verification of the consistency of an aspect deployment may
unburden the developer from the need to have detailed knowledge about the implementation
of the employed reusable aspects, allowing him or her to reason about the application in more
abstract terms. However, it is an open problem which abstract properties should be part of this
verification process in order to preserve the expressiveness yet capture the essential properties
such that compatibility may be conclusively determined.

1.2 Goal

The general goal of the research in this dissertation is to enable the advanced reuse of aspect
implementations by providing improved programming language facilities for their deployment.
This is motivated by the observation that deployment facilities are a crucial requirement for the
effective reuse of aspects.

Observing the above problem description, we focus on two properties of deployment
facilities for reusable aspects:

• Expressive deployment facilities support the abstraction and quantification of deployment
behavior, and they allow a general integration of this behavior with the program logic.

• Safe deployment mechanisms support an automatic verification of the compatibility
between the aspect and the context where it is used.

We elaborate further on these properties below. For now, we specify that we do not consider
these two properties in isolation. Generally, it is harder to reason about behavioral program
properties such as safety in the presence of more expressive language mechanisms. This given
does not justify extremism in one or the other direction (i.e., considering only expressiveness
without regard for safety or the other way around). Rather, we believe that the most effective
programming language design is obtained when the two properties are properly balanced.

to be confused with the use of the term to denote a separate software life cycle step which installs and activates an
entire software system for concrete use.

1.3 Context 3

1.3 Context

The research reported in this dissertation was carried out at the System and Software Engi-
neering Lab (SSEL) at the Vrije Universiteit Brussel. SSEL has developed extensive expertise
in software language engineering and has made numerous contributions to the fields of both
component-based and aspect-oriented software development. In particular, the integration of
these two paradigms was pioneered by Suvée, Vanderperren, and Jonckers (2003) with the pro-
posal of the JASCO aspect language. Bruno De Fraine contributed to extensions of the pointcut
mechanism of JASCO, in collaboration with Vanderperren et al. (2005a) and Benavides Navarro
et al. (2006), in order to factor in temporal relations and distribution context in the activation of
advice behavior. These extensions are beyond the scope of this dissertation.

Nevertheless, the experience with the JASCO approach is the main point of departure for
the personal research on language facilities for aspect deployment reported here. JASCO places
a strong emphasis on the reusability of aspect logic and employs dedicated connector entities
for the deployment of aspect modules. This explicit treatment of aspect deployment brings
to light the second-rate treatment of deployment logic, as the connectors lack a number of
expressiveness and safety properties in comparison to the other language entities. We address
these shortcomings in this dissertation. However, as we will demonstrate, these are general
issues shared by all mainstream aspect approaches. Because of this wider relevance, the
research is not tied to the JASCO language.

1.4 Approach

1.4.1 Expressiveness of Deployment Logic

Current approaches organize aspect deployment by means of inheritance, with explicit con-
nector entities or through XML configuration files. Our analysis of these solutions in this
dissertation identifies shortcomings in three respects. First, when multiple aspects need to be
deployed in a similar manner, then the deployment of each of them needs to be rewritten from
scratch because of lacking abstraction mechanisms. Second, one cannot express quantifica-
tion of deployments due to the absence of control structure: when 3 aspects each need to be
deployed for 5 contexts, 15 deployment entities need to be written, which does not scale. Third,
it is often necessary to deploy aspect at specific program events, but since the deployment is
separated from the main program this is not always possible or fragile constructions need to be
set-up in order to exchange program data.

As a solution for these problems, we propose the design of first-class deployment procedures.
These deployment constructs can be parameterized with aspect entities such as pointcuts and
advice, which allows to reuse their behavior for multiple deployments. Additionally, they offer
control structures to express deployment quantification, and their invocation can be tied to
run-time events in the main program. We also provide a concrete realization of this design as
the ECOSYS approach. Starting from the observation that first-class deployment procedures
propose many facilities of standard program code, ECOSYS takes this one step further and
removes any distinction between deployment code and ordinary code. It provides an AOP
framework where the aspect behavior, including the aspect deployment, is expressed in a

4 Introduction

standard object-oriented programming language, using a number of predefined classes. ECOSYS

realizes the benefits of first-class deployment procedures, but also provides comprehensive
support for composition of advice behavior in the case where different advice instances advise
the same join point. A prototype implementation of ECOSYS has been developed by using
ASPECTJ and its tool chain for the atypical goal of bytecode manipulation.

Finally, we analyze a number of other, specific proposals for improvements in the field
of aspect languages, where we find that these proposals provide alternative ways to address
some of the shortcomings we discuss. However, none of these approaches provides a complete
solution for all of the issues tackled by first-class deployment procedures and ECOSYS. In some
cases, deployment is not an explicit focus of investigation, but deployment issues are at the root
of many of the examples that motivate a new language mechanism or a different organization.
This illustrates the breadth of deployment expressiveness issues in aspect languages.

Important parts of this work were reported previously in De Fraine et al. (2005a, 2006a,b)
and De Fraine and Braem (2007).

1.4.2 Safety of Deployment Logic

For the verification of aspect deployments, we focus on static typing to determine the compati-
bility between the advice behavior of a reusable aspect and the pointcut that specifies concrete
program points. Compared to a full specification and verification of the program behavior,
types offer a lightweight approximation of the semantics: types generally constrain only the
data values. Type checking can therefore be carried out automatically, as a mandatory part of
the compilation phase. Static typing is a common practice in current mainstream programming
and although typed aspect languages exist, we do not consider them adequate since they have
important safety problems and/or constrain practical aspect deployments.

The difficulty in developing an adequate type system for the aspect mechanism is due
to its expressive power: advice behavior for a join point completely controls its execution,
and the advice may manipulate the data transfer between the join point and its client in both
directions. Additionally, it is the nature of aspect-orientation to apply advice to many join points
at once, where the join points may be different in structure. This requires that the relevant
commonalities between the join point are tracked in the typing.

As a solution, this dissertation proposes typing principles based on the notions of sub-
type polymorphism and parametric polymorphism (as explored by Cardelli and Wegner, 1985).
Subtyping is a relation between a specific type (such as “integer”) and a more general type
(such as “number”), where instances of the specific type may be treated as instances of the
general type as well (i.e., integers may be treated as numbers). We use this concept to express
relations between advice and join point, for example, when advice behavior expects to obtain
a number from the join point yet itself provides an integer to the join point client instead,
then the advice behavior may be safely applied to both number and integer join points, as
in both cases both the assumptions of the advice and the join point are met. Alternatively,
parametric polymorphism provides a complementary mechanism to express type relations for
advice behavior of a different nature. When advice behavior returns an original value obtained
from the join point to the join point client, then this value is always valid, regardless of its
type. We track this by representing the join point type with a type parameter T and by verifying
that the advice behavior both accepts a T and provides a T , for any type T . We find that both

1.5 Contributions 5

typing mechanisms are useful for practical advice behavior and we describe how they may be
combined.

In this dissertation, we further present an integration of the typing principles with concrete
aspect approaches. This includes the development of a typed version of the ECOSYS approach,
where the typing principles may be enforced through the generics mechanism in recent object-
oriented languages (Naftalin and Wadler, 2006). Using this system, we illustrate that our typing
schemes are sufficiently expressive to support a variety of practical examples. While the typed
ECOSYS system achieves a combination of both expressive and safe aspect deployments, we
also present an extension of the ASPECTJ language, in order to directly apply our results in
a mainstream context. Finally, the dissertation contains a formal evaluation of the typing
principles inside the FEATHERWEIGHT JAVA calculus, where we rigorously prove that our typing
schemes prohibit safety problems.

Important parts of this work were reported previously in De Fraine et al. (2007, 2008b).

1.5 Contributions

The principal contributions of this dissertation are the following:

• An analysis of the deployment mechanisms in current mainstream aspect approaches
and the identification of a set of requirements for the expressive deployment of reusable
aspects.

• Proposal of the design of first-class deployment procedures to meet the identified require-
ments, and a concrete realization of this design as the ECOSYS AOP framework, including
a prototype implementation of this system.

• An extensive discussion of the other approaches from recent literature with relevance
to deployment expressiveness, and an analysis of their capabilities with respect to the
identified set of requirements.

• An informal characterization of the capabilities of advice behavior and the corresponding
formulation of typing principles for the pointcut/advice mechanism, integrating the
mechanisms of subtype and parametric polymorphism and the combination of the two.

• An extension of the ECOSYS approach to integrate the proposed typing principles in
the context of a framework-based AOP approach, employing only the facilities of JAVA 5
generics.

• The concrete STRONGASPECTJ proposal for the integration of the proposed typing princi-
ples in the traditional aspect language ASPECTJ, with an implementation of this system
using the ASPECTBENCH compiler.

• A comprehensive discussion of the safety loopholes and expressiveness restrictions in
ASPECTJ and other related typed aspect languages.

• A discussion of the practical applicability of the typing principles, using a variety of
real-life examples and some terminology introduced by Rinard et al. (2004).

6 Introduction

Introduction

Chapter 1

Research Context: Aspects and Their Reuse

Chapter 2

Towards Expressive Deployment

The EcoSys AOP Framework

Other Deployment Approaches

Chapter 3

Chapter 4

Chapter 5

Part I: Expressiveness

Subtype and Parametric Polymorphism

Typing Principles for Pointcut/Advice Bindings

Typed EcoSys Formal EvaluationStrongAspectJ

Chapter 6

Chapter 7

Chapter 8 Chapter 9 Chapter 10

Part II: Safety

Conclusions

Chapter 11

Figure 1.1: Overview of the relation between dissertation chapters. An arrow indicates when one
chapter builds on the material of a previous chapter. The width of the boxes is not significant.

• A formalization of advice behavior and the proposed typing principles in the context of
the FEATHERWEIGHT JAVA calculus, and a rigorous proof of the safety of this system.

1.6 Outline

Since the work in this dissertation focuses on both the expressiveness and safety facet of
the aspect deployment problem, the text is correspondingly structured using two parts that
are each devoted to one facet. In general, these two parts may be read independently from
each other. Additionally, the second part of the dissertation consists of a general proposal of
typing principles that is consecutively integrated in practical aspect approaches and a formal
framework. This treatment of the same principles on a number of different levels again provides
opportunities to read chapters independently from each other. The relation between the
different parts and chapters of the dissertation is outlined in Figure 1.1. The connecting thread
between the two parts is the ECOSYS approach, which is developed as an approach for expressive
aspect deployment in the first part and extended with a typing mechanism in the second part.

The following is a more detailed description of the contents of each of the chapters:

Chapter 2: Aspects and Their Reuse In this chapter, we introduce the most important con-

1.6 Outline 7

cepts from the field of aspect-oriented software development. We present the major
aspect-oriented mechanisms and their principal implementations, and we delineate for
which of these approaches our contributions are applicable. Additionally, we discuss the
major aspect module structures and reuse mechanisms in the current mainstream aspect
approaches.

Chapter 3: Towards Expressive Aspect Deployment This chapter, which marks the beginning
of Part I, starts with an analysis of the responsibilities of deployment logic for aspects.
Next, we describe the requirements for expressive deployment, and state three expres-
siveness properties that are lacking in current approaches. In order to remedy these
shortcomings, we propose the design of first-class deployment procedures.

Chapter 4: The EcoSys AOP Framework In this chapter, we realize the design of first-class
deployment procedures in the context of an AOP framework called ECOSYS. We exten-
sively discuss the programming interface of ECOSYS and we demonstrate how it provides
improved deployment expressiveness. We also discuss the current prototype implemen-
tation of ECOSYS.

Chapter 5: Other Approaches for Expressive Deployment This chapter considers five main
other approaches that provide some form of expressive deployment. We discuss the pro-
posal of each of these approaches and evaluate it with respect our criteria for deployment
expressiveness from the previous two chapters.

Chapter 6: Subtype and Parametric Polymorphism This chapter introduces the necessary
type system concepts; it marks the beginning of Part II. We explain how typing pro-
vides a static abstraction of the program semantics, and we define what type soundness
means. The main body of the chapter is then devoted to a presentation of the mechanisms
of subtype polymorphism and parametric polymorphism in the context of a simplified
functional programming language. Finally, we explain how parametric polymorphism is
realized in the generics features of recent object-oriented programming languages.

Chapter 7: Typing Principles for Pointcut/Advice Bindings In this chapter, we propose prin-
ciples for the flexible typing of the pointcut/advice mechanism in the context of the
functional language from Chapter 6. We characterize the general capabilities of advice
behavior and we informally consider a sufficient condition for the type soundness. From
this condition, we derive typing rules using both subtype and parametric polymorphism,
which introduces the concepts of ordinary advice and generic advice. We also elaborate
on the relation between the two. Because of its particular relevance in later chapters, we
specialize the typing rules for the case of advice for function join points.

Chapter 8: Safe Deployment Logic in EcoSys This chapter applies the typing principles from
Chapter 7 to the ECOSYS approach from Chapter 4. Since ECOSYS is an AOP framework
where the deployment logic is expressed as standard program code and compiled using
an ordinary compiler, we encode the typing rules using the generics features of JAVA 5.
Using the typed ECOSYS approach, we illustrate that the typing principles are sufficiently
powerful to support a variety of practical advice behavior.

8 Introduction

Chapter 9: Recovering Mainstream AOP Type Safety In this chapter, we demonstrate how the
typing principles from Chapter 7 may also be applied in traditional AOP languages. We
present an extension of the ASPECTJ language, named STRONGASPECTJ, and we discuss
its implementation. We discuss the relation to standard ASPECTJ typing and illustrate how
each difference causes either safety problems or restricted power in the case of ASPECTJ.
We also consider other related work in the area of typed aspect languages.

Chapter 10: Formal Evaluation of Pointcut/Advice Bindings This chapter presents a formal
evaluation of the typing principles from Chapter 7 in the context of the FEATHERWEIGHT

JAVA calculus. We develop a calculus where the most general mechanisms we have
discussed are captured in their essential form and we describe how the type soundness is
proved in a formal and rigorous manner. We also discuss the related work in the area of
formal foundations of AOP.

Chapter 11: Conclusion This chapter concludes the dissertation. An overview of the presented
work is given and future work is discussed.

Chapter 2

Research Context: Aspects and Their
Reuse

2.1 Aspect-Oriented Software Development

The field of aspect-oriented software development is generally concerned with novel notions of
modularity that crosscut traditional abstraction boundaries. Section 2.1.1 explains the modular-
ity problems in current programming paradigms — with typically hierarchical decomposition
mechanisms — and introduces common terminology from aspect-oriented approaches. While
there is general agreement on the problems and purpose of aspect-orientation, different solu-
tions have been proposed to achieve this goal. A representative set of four main aspect-oriented
composition mechanisms is presented and compared in Section 2.1.2. This discussion allows
to explain in clear terms for which aspect approaches the contributions in this dissertation are
applicable.

2.1.1 Modularizing Crosscutting Concerns

As with the construction of any nontrivial system, the process of software development is
concerned with many things. The majority of concerns originate from the complex functionality
that the software is required to provide, but requirements may also relate to the general quality
of its service (such as the system’s robustness or performance), or to its life cycle (e.g. the
support for evolution or reuse).

It is a fundamental and long-standing assumption of software engineering that develop-
ment greatly benefits from the identification of the software parts related to each concern, and
the ability to treat these parts in isolation. This property, which was referred to as the separation
of concerns by Dijkstra (1982), is traditionally achieved by decomposing the software’s imple-
mentation in modules (also see Parnas, 1972). Each concern is encapsulated in a distinct unit
with a well-defined interface, allowing for code that is easier to develop and maintain, and that
has a greater potential for reuse.

However, a clean modularization is only possible insofar as the implementation techniques

9

10 Research Context: Aspects and Their Reuse

provide abstraction and composition mechanisms that support the natural units of concern.
Most existing programming languages (including object-oriented, procedural and functional
languages) all have their key mechanisms rooted in some form of generalized procedure: e.g.,
method, function, service,. . . While composition mechanisms based on generalized procedure
calling are very well suited for a hierarchical breakdown of the system in functional units,
Kiczales et al. (1997b) argue that they cannot cleanly encapsulate those properties that crosscut
the functionality hierarchy (i.e., that fundamentally involve different parts of this hierarchy)1.

Such crosscutting concerns, which are also called aspects, require a composition different
from the generalized procedure calling provided in existing languages, yet coordinated with it.
Since such a mechanism is not provided by the programming language, the programmer must
co-compose the aspects manually, a process which is error-prone and which causes the aspect
concerns to end up “scattered” across modules and “tangled” with one another.

Example. A good illustration of the discussed modularity problems was presented by Kiczales
et al. (2001b). In a case study, several concerns are investigated in the implementation of the
Tomcat web server. In the visualization of Figure 2.1, the different modules (in this case classes)
are represented by vertical bars with a length proportional to the size of their code. While
some concerns, such as URL pattern matching, are well modularized in dedicated classes (see
Figure 2.1a), others concerns, such as logging, appear scattered across multiple implementation
modules (see Figure 2.1b). Although the functionality to implement that particular service
may be located in a single module, invocations of this code still appear scattered across many
modules. The concern fundamentally crosscuts the functional decomposition of the application
and is therefore a good example of an aspect.

Many other classic aspect examples from literature also affect the performance or seman-
tics of the functional concerns in systemic ways: program monitoring (Bodkin, 2005), loop
optimization (Harbulot and Gurd, 2006), synchronization of concurrent objects (Cunha et al.,
2006), result caching (Colyer, 2004), failure handling (Laddad, 2003, Sec. 3.2.8), enforcement of
security policies (De Win et al., 2001), etc.

The goal of aspect-oriented software development (AOSD) (Kiczales et al., 1997b) is to support
the developer in cleanly separating and encapsulating all concerns, by providing mechanisms
that are capable of abstracting the aspects and composing them. (The term aspect-oriented pro-
gramming (AOP) refers to doing so in the software’s implementation, using primarily language
changes, while AOSD considers the entire software life cycle and all the involved languages,
methods and tools.)

In order to achieve this goal, AOP languages generally complement a traditional base lan-
guage (or component language) with one or more aspect languages to program the aspects.
An aspect program is able to coordinate with certain elements of the base language, called
join points. The join points can be explicit constructs of the base language2, as well as implicit
properties that appear only in the base language’s semantics. An aspect weaver will process the
base and aspect languages, co-composing them properly to produce the total system operation.

1This encapsulation problem is generalized by Tarr et al. (1999): they claim that while current approaches might
allow multiple decompositions (e.g., the structural decomposition of object-oriented style versus the behavioral
decomposition of functional style), only one decomposition can be used at a time.

2Filman and Friedman (2000) additionally argue that the ability to coordinate with join points that do not explicitly
refer to (or exist solely for the purpose of) the aspects is the feature that discriminates AOP mechanisms from generalized
procedures. This property of an aspect language is referred to as obliviousness.

2.1 Aspect-Oriented Software Development 11

(a) URL pattern matching

(b) Logging

Figure 2.1: Modularization of two concerns in the implementation of the Tomcat web server.
Figures adapted from Kiczales et al. (2001b).

12 Research Context: Aspects and Their Reuse

1 after(FigureElement fe):
2 call(void FigureElement+.set*(..)) && target(fe) {
3 Display.update(fe);
4 }

Listing 2.1: Advice declaration to trigger display updates after figure element changes

The concrete realization of these concepts differs greatly between different proposals. This
is discussed in more detail in the following section.

2.1.2 Aspect-Oriented Mechanisms

We describe four representative techniques that allow the modular implementation of aspects,
and we discuss the prototypical aspect languages that implement these mechanisms. The
identification of these four mechanisms is originally by Masuhara and Kiczales (2003). This
discussion provides a reasonably complete overview of the spectrum of general-purpose aspect
approaches, i.e., languages that are not designed for one particular concern (as opposed to
domain-specific aspect approaches, which are not discussed here).

Pointcuts and Advice

The pointcut/advice mechanism is probably the AOP technique that is most widely used today.
It is the first of two mechanisms provided in the well-known ASPECTJ language3 by Kiczales et al.
(2001a); Colyer (2005a). This particular mechanism allows to intervene with the dynamic control
flow of the base program using two new constructs, called pointcut and advice. The pointcut
selects a set of join points, which are nodes in the execution tree of the program, while the advice
specifies preceding, succeeding or replacing behavior to be executed at these coordination
points. As such the behavior of aspects can be co-composed with the base program.

Example. Listing 2.1 shows an implementation of an event detector using the pointcut and
advice constructs in the ASPECTJ language. The purpose of this code is to trigger display updates
when figure elements are changed. The invocation of the update behavior is specified as the
body (line 3) of an advice method (lines 1–4), which differs from a method in the base language
(JAVA in this case) primarily in the characteristic that it is invoked implicitly: instead of a method
name, the declaration specifies a pointcut expression (line 2) and indicates the relative position
of the new behavior using a keyword (after on line 1). The advice weaver will arrange for the
execution of the method body at the join points selected by the pointcut expression.

In most approaches, the pointcuts are specified in a declarative fashion. In ASPECTJ, point-
cut expressions are logic propositions built up by connecting a number of primitives (such as
call to select method calls) which are often parameterized with method, type or identifier pat-
terns, or in some cases even with other pointcut expressions. This declarative notation allows
to select join points using very succinct expressions. For example, the first part of the pointcut
expression in Listing 2.1 selects the invocation of methods on objects of type FigureElement

3The pointcut/advice mechanism is also referred to as “dynamic crosscutting” in ASPECTJ documentation.

2.1 Aspect-Oriented Software Development 13

or its subtypes, where the method name starts with “set” and there are no return values and any
number of argument values.

The example also illustrates a feature of pointcuts which we have not discussed yet: they may
additionally indicate certain parameters from the join point’s context to be used as arguments
for the advice method (a technique called context exposure). In Listing 2.1, this is the case for the
receiver of the method call (as indicated by the usage of the primitive target); this particular
figure element is used to bind the method argument with name fe.

Beside ASPECTJ, a large number of AOP approaches have adopted the pointcut/advice
mechanism. For example, the vast majority of the languages discussed in the survey by Brichau
et al. (2005) employ a pointcut/advice mechanism for dynamic join points, either exclusively
or in combination with other mechanisms. Additionally, we observe that the composition
filters model by Bergmans and Akşit (2001) is technically a pointcut/advice mechanism for
one important kind of join points: the model allows to select incoming and outgoing message
sends, and advise them with filters that can inspect and modify information about the message
(such as the target, selector, arguments and sender) in some reified form. In their study of
aspect-oriented mechanisms, Masuhara and Kiczales (2003) also note that composition filters
appear to be a variant of the pointcut/advice mechanism.

Traversals

The Demeter method and related systems (Lieberherr, 1996) provide a mechanism that enables
programmers to implement functionality as traversals through object graphs in a structure-shy
fashion. This is an aspect-oriented mechanism since it allows to modularize behavior that
crosscuts the structural decomposition of an object-oriented application.

In contrast to standard behavioral decompositions, traversals avoid scattering the structural
information across different functions by confining the knowledge of the graph structure to
specific, minimal statements. They can thus obey the Law of Demeter (Lieberherr and Holland,
1989), which states that each unit should have minimal knowledge about the program structure
(this can be regarded as a special case of the low-coupling principle introduced by Stevens
et al., 1974). Functionality implemented as a traversal is therefore immune to most effects of
changing the object relationships. The technique is sometimes called adaptive programming
for this reason.

Example. In Listing 2.2, we show an example of a traversal specification using DJ, a pure-JAVA

package for adaptive programming by Orleans and Lieberherr (2001). The code fragment
implements the behavior of counting all direct and indirect figure elements in a figure using a
traversal specification s, which is a high-level descriptions of all objects to be visited, and an
adaptive visitor v, which defines the behavior at each traversed object (or host). These two
specification elements, together with the starting object, are sufficient input for the traverse
method from the DJ library to execute the traversal: the abstract traversal specification is
completed with the reachability information from the class graph (discovered through program
reflection) to determine the actual range of the traversal.

Since this operation combines data from many objects in the object graph, its implemen-
tation using ordinary object methods would be scattered across the different participating
classes. And while it is possible to employ a more functional style and centralize the operation

14 Research Context: Aspects and Their Reuse

1 class Figure {
2 static ClassGraph cg = new ClassGraph();
3

4 int countFigureElements() {
5 String s = "from Figure to FigureElement";
6 Visitor v = new Visitor() {
7 int count;
8 void start() { count = 0; }
9 void before(FigureElement host) { count++; }

10 Object getReturnValue { return count; }
11 }
12 return (Integer) cg.traverse(this,s,v);
13 }
14 }

Listing 2.2: Counting figure elements using a traversal

in bigger methods that retrieve data from (multiple levels of) associated objects, this design
implies a violation of the encapsulation principle, with detrimental effect on the adaptability
of the application: as the methods encode information about the structure of the application,
any changes to the object relationships will likely break the implementation of these methods.
Traversals alleviate this issue of behavioral decompositions by encoding only a minimum of
structural information in the operations4.

Using aspect-oriented terminology, we conclude that traversals offer an aspect language
that allows to modularize concerns that crosscut the structural decomposition of an object-
oriented program. The aspects are composed with this base program during the process of
an object graph traversal, where the arrival at objects constitutes a join point where aspect
behavior is considered. While the nature of this join point is very different from the dynamic
execution join point of the pointcut/advice mechanism, the two mechanisms are generally
considered complementary. For example, the JASCO language was extended by Vanderperren
et al. (2005b) to support a traversal mechanism in which its advice construct corresponds in
function to an adaptive visitor.

Alternatively, Lämmel et al. (2003) present a method of realizing structure-shy traversals
using the concepts of strategic programming, an approach which originates from the domain of
program transformation and analysis. Strategic programming organizes traversals by separating
the problem-specific actions from the reusable traversal schemes, which are constructed using
an algebra of predefined strategies and strategy combinators. Lämmel et al. demonstrate how
the traversal specifications of the Demeter method may be encoded as traversal schemes, and
thus gain reusability and flexible variation points. In addition, the different incarnations of
strategic programming demonstrate that the traversal concept is not tied to object graphs only.

4Traversals are thus similar to the Visitor design pattern described by Gamma et al. (1995, p. 331–344), but without
the overhead of manual creation and maintenance of “accept” methods in the object structure.

2.1 Aspect-Oriented Software Development 15

1 class Observable {
2 Display display;
3 void moved() {
4 display.update(this);
5 }
6 }
7

8 package figures : Kernel;
9 package display : Display;

10

11 hypermodule UpdatingDisplay
12 hyperslices: Kernel, Display;
13 relationships:
14 mergeByName;
15 equate class Kernel.FigureElement, Display.Observable;
16 bracket "{Point,Line}"."set*"
17 after Display.Observable.moved();
18 end hypermodule;

Listing 2.3: Class composition to trigger display updates after figure element changes

Program Composition

The HYPER/J system by Tarr and Ossher (2001) provides mechanisms to compose programs from
a number of self-contained (partial) programs. The approach is motivated by the observation
that the modular implementation of crosscutting concerns requires multiple decompositions
to be used simultaneously, i.e., without one decomposition dominating the other(s) (Tarr et al.,
1999). Different overlapping partial versions of program parts (called hyperslices) are therefore
constructed to enable multiple decompositions, while a composition rule specifies how to
automatically combine them in a resulting program or program part. The combination of a set
of hyperslices and their composition rule is also called a hypermodule. The authors refer to
this approach as multi-dimensional separation of concerns and consider HYPER/J the concrete
incarnation of these ideas for JAVA.

Example. Listing 2.3 presents an implementation of the event detector from Listing 2.1 using
class composition in HYPER/J. In lines 1–6, the display update behavior is implemented as a
small independent JAVA program. Two hyperslices are then defined using the concern mapping
declarations in lines 8–9: the hyperslice Kernel contains the main figure classes (from package
figures), and the hyperslice Display contains the new class regarding the display (from
package display). Finally, the hypermodule declaration in lines 11–18 will effectuate the
composition of the classes. The relationships section specifies that units with identical names
are to be merged (mergeByName strategy), but additionally configures an equate relationship
between the classes FigureElement and Observable, causing them to be merged as well.
Lastly, the bracket relationship specifies that the execution of “setter” methods from Point
and Line should be followed by an invocation of the method moved. This realizes the behavior

16 Research Context: Aspects and Their Reuse

of triggering display updates after figure element changes in the composed classes.

While the program composition mechanism from HYPER/J realizes the example behavior
similar to the pointcut/advice mechanism, it differs in two important respects:

1. The base classes and aspects are expressed in the same language, and a separate entity,
expressed in a metalanguage for matching and merging, is used to specify their composi-
tion. In fact, there is no distinction between base classes and aspects5, and HYPER/J is
generally considered a symmetrical AOP approach for this reason.

2. The join points for the composition process are static elements of the program structure:
the matching and merging composition rules refer to declarations in the composed
program.

Open Classes

The open class mechanism enables declaration of class features (methods, fields, supertypes)
outside of the textual body of the class declaration6. This is the second mechanism offered by
the ASPECTJ language7. Similar to traversals and visitors, it allows to modularize behavior that
crosscuts the structural decomposition of the class hierarchy (although not in a structure-shy
fashion: it does not prevent the scattering of structural information in the external definitions).
Additionally, the open class mechanism supports the addition of state to support the newly
introduced behavior.

Example. Listing 2.4 demonstrates these properties by presenting another implementation of
figure element counting behavior using the open class mechanism in ASPECTJ. The mechanism
simulates the effect of adding the counting functionality to all FigureElement subclasses, while
keeping the code of the concern textually localized.

First, the interface with which to invoke the counting behavior is declared in line 1. This
interface is then added as a supertype of the abstract class FigureElement (line 2). As with an
ordinary “implements” relation, each concrete subclass of FigureElement is required to have
an implementation for the method declared in the interface. The declaration of this method
is shown for class Point in line 4 and for class Group in lines 9–17. Being a composite figure
element, the implementation for a Group returns the sum of the count of each of its children,
and a cache is used to remember the result of this recursive calculation.

We added this memoization functionality to demonstrate that it is also possible to introduce
additional state in classes: the cached data value (and a flag regarding its validity) are stored for
each Group object by declaring new fields for this class in lines 6–7. It would have been much
harder to add this functionality to the traversal implementation of this counting behavior (cf.

5Although HYPER/J programs typically identify one core (or kernel) hyperslice that can be considered the base
program (other hyperslices will typically overlap with units from this kernel).

6This design already existed unrelated to the goals of AOP: it is supported in the “fragment language” for modular-
ization of BETA program (Kristensen et al., 1983), and some LISP object systems, such as FLAVORS (Moon, 1986) and
CLOS (DeMichiel and Gabriel, 1987), always have methods declarations external to the class declaration. It also arises
naturally when adopting multiple dispatch, since methods can no longer be logically tied to a single class. The term
“open class” was introduced in the context of a multi-dispatch system by Clifton et al. (2000).

7The open class mechanism is referred to as “static crosscutting”, “inter-type declaration” and “feature introduction”
in the ASPECTJ documentation.

2.1 Aspect-Oriented Software Development 17

1 interface Countable { int getCount(); }
2 declare parents: FigureElement implements Countable;
3

4 int Point.getCount() { return 1; }
5

6 boolean Group.hasValidCache = false;
7 int Group.cache;
8

9 int Group.getCount() {
10 if (!hasValidCache) {
11 cache = 0;
12 for(FigureElement fe: elements)
13 cache += fe.getCount();
14 hasValidCache = true;
15 }
16 return cache;
17 }

Listing 2.4: Open class extension to count figure elements

Listing 2.2), since that mechanism does not directly support the addition of state (and an explicit
map would need to be used to associate new data values with the objects). The downside of the
open class mechanism is that external declarations spread structural information about the
classes over multiple places. For example, if the association between a group and its element is
changed, this counting functionality would need to be updated as well.

Like traversals, open classes are considered complementary to the pointcut/advice mech-
anism. An aspect may combine both mechanisms, and can for example have an advice that
use class features that were themselves introduced by the aspect. In addition to ASPECTJ, both
JASCO and JBOSS/AOP also offer an open class mechanism. In both cases this mechanism is
formulated in terms of mixin composition (Bracha and Cook, 1990): the new features for a class
are jointly specified as a single mixin class (also called an abstract subclass, i.e., a class whose
parent is given as a formal parameter); one or more classes can be designated to receive the
features of the mixin class (i.e., they are each implicitly specialized by the mixin class).

Scope of the Dissertation

The remainder of this dissertation focuses on the pointcut/advice mechanism exclusively. In
general, our contributions are applicable for any approach that implements this mechanism.
Because of the widespread usage of pointcuts and advice for run-time join points, this includes
the majority of aspect approaches. In addition, because of the highlighted similarities with
some of the other aspect-oriented mechanisms (for example, traversals), our conclusions may
be valid in those contexts as well. However, this topic was not further researched.

18 Research Context: Aspects and Their Reuse

1 aspect NoNullPrint {
2 pointcut appScope():
3 within(com.company.demo..*) || within(com.company.core..*);
4

5 before(Object o): call(void PrintStream.print*(Object))
6 && args(o) && appScope() {
7 if(o == null)
8 throw new IllegalArgumentException();
9 }

10 }

Listing 2.5: An aspect to check the argument of print invocations for null values

2.2 Reuse in Representative Pointcut/Advice Approaches

Aspect modules So far, the description of the pointcut/advice mechanism has focused on
the ability to automatically compose functionality with the base program. By untangling the
implementation of aspects from the code of base concerns, the modularity of the base concerns
is preserved. However, for the modularization of the aspect concern, a simple advice method is
insufficient for any but the most trivial aspects. Most pointcut/advice approaches therefore
allow to group aspect functionality in an aspect module or simply an aspect (note that the latter
term is used both for an aspect concern and its principal implementation entity).

For almost all pointcut/advice approaches that target an object-oriented base language, the
aspect module construct is modeled heavily after the concept of objects and classes. Typically,
aspect modules may define multiple advice methods and ordinary methods, as well as instance
variables whose value is maintained between invocations of these methods. At run-time,
multiple aspect instances may exist for one aspect, each with its own state (i.e., its own set of
values for the declared instance variables). The advice body is run in the context of a particular
aspect instance, in a similar sense that object-oriented languages run a method body in the
context of an object.

In the following sections, we will discuss the possibilities for reuse of aspect modules as a
whole, or the sharing of pointcut and advice entities within or between aspect modules.

2.2.1 AspectJ

The aspect module of ASPECTJ (Kiczales et al., 2001a; Colyer, 2005a) is simply called an aspect.
It is largely analogous to a class in standard JAVA, but it may contain advice methods. The aspect
instances are automatically created and associated with advised join points, in order to have an
aspect instance available when an advice method is invoked. The default instantiation strategy
is simply to have one global instance of the aspect. ASPECTJ allows the reuse of both pointcut
and advice declarations inside aspect definitions.

2.2 Reuse in Representative Pointcut/Advice Approaches 19

1 abstract aspect Counter {
2 int count = 0;
3 abstract pointcut toCount();
4 before(): toCount() { count++; }
5 }
6

7 aspect MyCounter extends Counter {
8 pointcut toCount():
9 execution(void MyClass.expensive*(..));

10 }

Listing 2.6: Aspect behavior to count the number of join point executions (abstract aspect and
concrete subaspect)

Named pointcuts Pointcut expressions can be named and referenced from other pointcut
expressions through this name. This is demonstrated in Listing 2.5: the appScope pointcut
defines the extent of the in-house developed code in an application by selecting all join points in
the types of certain packages. The advice in lines 5–9 combines this pointcut with other criteria
to check a precondition for the invocation of library methods in this scope. The appScope
pointcut is a complex expression that might evolve in later revisions of the software. By defining
it separately it may be shared between several advice methods. The pointcut may be refined by
combining it with other pointcut expressions through the logical operators &&, || and !.

The usage of pointcut appScope is not confined to aspect NoNullPrint. Much like static
members, named pointcuts may be referenced from other aspects by prefixing them with the
aspect name (i.e., by referencing the pointcut as NoNullPrint.appScope in the case of our
example). Similar to other members, access modifiers may be used to control the accessibility
of pointcuts from other types. The technique of referencing pointcuts from other aspects is
employed in a common idiom that is termed the Border Control design pattern by Miles (2004,
Sec. 23.3). The idiom consists in defining an aspect with only a number of named pointcuts.
Each of these pointcuts defines an application scope which can be shared between different
aspect definitions with effective advice methods. As such, the definition of these program
scopes can be maintained in one place.

Abstract aspects, inheritance and refinement Contrary to pointcuts, the reuse of advice
methods is not done through simple referencing. As explained, advice methods are anonymous
entities that specify themselves where to be invoked through a pointcut expression. The
definition of an advice method is already the last step in the specification of the advice behavior:
any regular aspect is implicitly instantiated and all of the advice methods are woven (the
aspect is deployed). To prevent this, an aspect can be declared abstract, which will inhibit its
instantiation and the application of its advice methods. However, other aspects may inherit
functionality from an abstract aspect: any aspect may designate a class or an abstract aspect
(but not a concrete aspect) as its parent. When multiple concrete subaspects inherit from the
same abstract aspect, each of the subaspects is implicitly instantiated, and the advice methods

20 Research Context: Aspects and Their Reuse

1 class Counter {
2 int count = 0;
3 hook CountHook {
4 CountHook(method(..args)) { execution(method(args)); }
5 before() { global.count++; }
6 }
7 }
8

9 static connector CountDeployer {
10 Counter.CountHook c =
11 new Counter.CountHook(void Component.expensive*(*));
12 }

Listing 2.7: Aspect behavior to count the number of join point executions (aspect bean and
connector)

from the abstract aspect will be executed for each of the different subaspect instances. As such,
the advice declaration may be shared between multiple aspects.

In general though, it is not very useful to deploy multiple aspect instances with exactly the
same advice definitions. It is much more common to use aspect instances in different contexts
with an adapted definition (or at least a different pointcut expression). This is supported in
ASPECTJ through the overriding of aspect members in subaspects. Specifically, named pointcuts
can be overridden, and the reference to named pointcuts from advice methods is late bound: in
subaspects, inherited advice methods will employ the overriding definition of named pointcuts.
In fact, the definition of the named pointcut may be omitted altogether from the parent by
declaring it as an abstract pointcut. In that case, the compiler will enforce that each concrete
subaspect provides a definition of the pointcut.

The standard manner to share an advice method between different aspect modules is
therefore to bind the advice to an abstract pointcut in an abstract aspect, and have the different
aspect modules inherit from this abstract aspect. This is illustrated for a very simple advice
method in Listing 2.6. The abstract pointcut must be refined in each of the subaspects (e.g., in
lines 8–9 for aspect MyCounter) to determine where the advice should be applied.

2.2.2 JAsCo

The JASCO language is proposed by Suvée et al. (2003) as a general aspect-oriented approach
tailored for component-based software development (in the sense of Szyperski, 1998). One of
the main objectives of this work, is to enable common component properties (such as a high
degree of reusability, plug-and-play composition, etc.) for aspect modules. JASCO therefore also
contains mechanisms to reuse aspect behavior in different contexts.

Aspect beans and hooks The aspect module construct of JASCO is the aspect bean, which is
modeled after a JAVABEAN component. In addition to the regular component interactions, an

2.2 Reuse in Representative Pointcut/Advice Approaches 21

aspect bean is capable of describing aspect interactions through a pointcut/advice mechanism.
To this end, the aspect bean may contain one or more hooks, which provide functionality similar
to advice definitions in ASPECTJ.

An example of an aspect bean with a hook is shown in lines 1–7 of Listing 2.7. The hook
declaration (lines 3–6) has a syntactic form similar to the declaration of an inner class and
consists of two parts. The hook constructor (line 4) specifies a pointcut expression in terms
of an abstract method parameter (the syntax of pointcut expressions is otherwise similar to
ASPECTJ). The hook methods (line 5) specify advice behavior for the join points selected by this
pointcut.

Connectors Component approaches provide expressive composition mechanisms that are
available in separate connector entities. Taking inspiration from the aspectual components
proposed by Lieberherr et al. (1999), JASCO employs connector entities to deploy aspect beans,
and to connect them to components. The corresponding connector is shown in lines 9–12
of Listing 2.7. In the body of the connector, hook instances can be created and configured.
The hook instantiation will provide a method pattern as the actual argument for the hook
constructor. Together with the pointcut expression from the declaration of the hook constructor,
this will determine where the advice behavior of the hook is applied. Naturally, several instances
of the same hook can be defined, and these instances will share the specification of advice
behavior from the hook.

Compared to mechanism of advice code reuse in ASPECTJ, we encounter largely the same
capabilities in JASCO. An abstract aspect is similar to an aspect bean, and its advice methods
with abstract pointcuts are comparable to hooks. The concrete subaspect fulfills the role of the
connector that deploys the advice behavior in a concrete context. The remaining differences
between the two approaches are minor. Aspect beans are always independent of a concrete
context, while aspect needs to be defined specifically with an abstract pointcut. And while
abstract pointcuts are specialized with a pointcut expression, a hook is instantiated with a
pointcut designator argument (the method pattern). Typically, a hook will predefine a pointcut
that is a tiny bit more specific than a corresponding advice method with an abstract pointcut.
For example, when comparing Listing 2.6 and Listing 2.7, the Counter aspect bean will predefine
the matching of method execution join points, while the specification of the join point kind is
delayed until the subaspect for the abstract Counter aspect.

2.2.3 AOP Approaches for Enterprise Middleware Frameworks

A number of aspect-oriented approaches based on the pointcut/advice mechanism have been
proposed in the context of enterprise middleware frameworks. The textbook on the subject
by Pawlak, Retaillé, and Seinturier (2005) discusses the approaches JAC (Pawlak et al., 2001),
JBOSS/AOP (Burke et al., 2004) and SPRING/AOP (Johnson et al., 2004). Additionally, the AS-
PECTWERKZ approach by Bonér and Vasseur (2004) was incorporated with the ASPECTJ tools and
became available as framework variant of this language with the release of ASPECTJ 5 (Colyer
et al., 2005, Chap. 9). All of these approaches provide comparable framework-based mecha-
nisms for the definition of reusable aspects.

22 Research Context: Aspects and Their Reuse

1 import org.jboss.aop.joinpoint.Invocation;
2 import org.jboss.aop.advice.Interceptor;
3

4 class Counter implements Interceptor {
5 int count = 0;
6 Object invoke(Invocation inv) {
7 count++;
8 return inv.invokeNext();
9 }

10 }

Listing 2.8: Interceptor to count the number of join point executions

Enterprise frameworks such as JAVA EE offer a managed, server-side component architecture
for the development of software applications. In this architecture, a piece of middleware
(an application server) will host the software components and offer a number of services
that typically include a transparent distribution, persistent storage of data, enforcement of
security policies, and data integrity through transactions. The aforementioned AOP approaches
integrate aspect modules in a manner that is similar to the definition of components in these
enterprise frameworks. The advice code is specified as standard JAVA classes that must either
implement a predefined interface, or that must be decorated with predefined annotations. The
pointcuts and other weaving information is extracted from XML configuration files, or from
parameters in the annotations. The weaving is typically carried out at load-time by means of a
dedicated class loader.

An example advice definition for JBOSS/AOP is shown in Listing 2.8. In this approach,
advice behavior is specified as a class that implements the predefined interface Interceptor.
This interface contains only the invoke method (implemented in lines 6–9). It receives a
representation of the join point as an argument of type Invocation and implements the
actual advice behavior. The accompanying XML configuration is shown in Listing 2.9. This
configuration file references the class with the advice behavior and binds it to a pointcut
expression. It may also configure other properties of the deployment, for example, how the
interceptor class should be instantiated.

Through the separation of the advice definition and the advice application, a reuse of the
aspect specification similar to ASPECTJ and JASCO can be obtained. Although not fundamentally
different, the approach of specifying aspect behavior as plain JAVA code with configuration data
is perceived as a large benefit, because the standard compiler tool chain does not need to be
altered, and because the aspects can be reconfigured without recompilation.

2.2 Reuse in Representative Pointcut/Advice Approaches 23

1 <aop>
2 <bind pointcut="execution(void MyClass->expensive*(..))">
3 <interceptor class="Counter" />
4 </bind>
5 </aop>

Listing 2.9: XML configuration file to apply the Counter interceptor

24 Research Context: Aspects and Their Reuse

Part I

Expressiveness of Deployment Logic

25

Chapter 3

Towards Expressive Aspect
Deployment

The usage of reusable aspects necessarily involves a separate deployment step during which
the aspects are configured for a concrete application at hand. As explained in Section 2.2, the
deployment logic specified to this end can take various forms, e.g. subaspects, explicit connector
entities, or XML configuration files. We claim that the current means for the specification of
deployment logic are insufficiently expressive to (re)use aspects intensively when building a
software application. In this chapter, we analyze the different responsibilities of deployment
logic, and discuss the requirements that we identified to create more opportunities for reuse
and thus improve maintainability. We then propose to meet these requirements by specifying
deployment logic as procedures that borrow a number of properties from ordinary code.

Representative case Throughout the discussion, we will use a small but representative ex-
ample of a reusable aspect. The aspect is presented in the ASPECTJ language in Listing 3.1; it
implements functionality to print an execution trace of the program on a given output handle.
More concretely, the aspect declares an abstract pointcut (line 8) to select join points that
expose an object as a context value. An advice (lines 10–12) specifies that, before entering these
join points, a description of the exposed object has to be printed. The other members of the
aspect manage the output stream to which the tracing messages can be sent.

Additionally, the aspect in Listing 3.2 specifies a number of important pointcuts of the
application. We place them in a separate aspect since we have the intention of sharing them
between different aspects. The pointcut OrderManip selects the execution of setter-methods
that belong to the class Order. As the parameter, it exposes the Order object on which the
method is executed.

3.1 Deployment Responsibilities

We will now define deployment code by outlining its typical responsibilities. These responsibili-
ties are illustrated in Listing 3.3, which provides an example of deployment logic for the reusable

27

28 Towards Expressive Aspect Deployment

1 abstract aspect AbstractTrace {
2 PrintStream output;
3

4 void setOutput(PrintStream p) {
5 this.output = p;
6 }
7

8 abstract pointcut TracePoint(Object o);
9

10 before(Object o): TracePoint(o) {
11 output.println("Entering " + o.toString());
12 }
13 }

Listing 3.1: AspectJ implementation of a reusable tracing aspect

1 aspect ProgramPoints {
2 pointcut OrderManip(Order o): execution(* Order.set*(..)) && this(o);
3

4 ...
5 }

Listing 3.2: Independent specification of program pointcuts

1 aspect TraceDeploy issingleton()
2
extends AbstractTrace {

2 pointcut TracePoint(Object o): ProgramPoints.OrderManip(o)
1
;

3

4 TraceDeploy() {

5 setOutput(Application.getLog());
3

6 }
7

8 declare precedence: TraceDeploy, ProfilingDeploy
4
;

9 }

Listing 3.3: Elements of aspect deployment logic: 1. Concrete program points, 2. Instantiation,
3. Configuration, 4. Interaction resolution

3.1 Deployment Responsibilities 29

AbstractTrace aspect. As explained in Section 2.2.1, deployment occurs in the ASPECTJ lan-
guage by creating a concrete subaspect: concrete aspects are automatically instantiated and
their advices are woven. The other elements of the aspect TraceDeploy are the following:

Concrete program points Foremost, the advices of a reusable aspect must be connected to
program points in the concrete application where the aspect is deployed. This occurs
by overriding named pointcut definitions in ASPECTJ (so the unit for these program
points is a join point). Instead of defining a new pointcut expression, we employ the
predefined pointcut OrderManip in Listing 3.3. The pointcut is used as such, without
further modification. Note that the argument value of this pointcut is of a more specific
type (Order) than what is expected by the abstract aspect (Object).

Instantiation Several instances of the same aspect may be required in the deployment context.
In that case, the deployment code should specify an instantiation strategy. ASPECTJ
offers a number of predefined strategies that are selected through an aspect modifier.
In Listing 3.3, we use the issingleton strategy to create a single, global instance; this
option is used by default, when no strategy is specified. Other strategies create one
aspect instance per calling or receiving object associated with the join point (perthis
and pertarget), or per execution of a join point (percflow).

Configuration Related to instantiation, the aspect instances may need to be configured with
program parameters as well. Such parameters are typically stored as instance data for
the aspect. In the case of our tracing behavior, the aspect needs the handle of a log file to
write tracing messages to. The constructor of the aspect is used to configure this handle
in Listing 3.3.

Similar to JAVA classes, ASPECTJ aspects always execute a constructor upon instantiation;
because aspects are implicitly instantiated by the run-time environment, this is always
the nullary constructor, i.e., the constructor without arguments. This constructor can
therefore be employed to place initialization code. Alternatively, code outside of the
TraceDeploy aspect may access its sole aspect instance through the predefined static
aspectOf method.

Interaction resolution Multiple aspects deployed in the same application may produce results
that are unintended or undesirable. Most notably, when several aspects advise the same
join point, their weaving order is not defined (this is analyzed by Douence et al., 2002,
among others). In cases where the correct operation of the application depends on a
particular order or combination of the advice code, deployment logic may specify some
form of interaction resolution for aspects. For example, in Listing 3.3, we specify that trac-
ing advice should have higher precedence than profiling advice (which is deployed by a
similar ProfilingDeploy aspect), to avoid distortion of the performance measurements.
Note that while before advices are executed in order of decreasing precedence (highest
precedence first), after advices are run in the opposite order (lowest precedence first).
As such, the precedence declaration will ensure that the before/after tracing advices are
executed ‘around’ before/after profiling advices, which are in turn executed around the
join point.

30 Towards Expressive Aspect Deployment

In ASPECTJ, only ordering of advice code is supported: precedences may be declared
between aspect types, while the declaration order is employed for advice methods of
the same aspect. Other approaches offer more extensive means for the specification of
an interaction resolution, for example, dependencies, exclusions, implicit activations or
even arbitrary compositions between the advice behavior may be needed1.

Not all of the above elements are necessarily specified in a deployment. In some cases the
defaults may be sufficient, for example, when only a single aspect instance is needed and
all the aspects have strictly orthogonal functionality. The important point, however, is that
these properties normally depend on the concrete context where an aspect is deployed, and
deployment code will therefore typically control them.

3.2 Requirements for Expressive Deployment

We now present a number of problems that we have identified in the deployment facilities of
current aspect approaches. The problems concern the sharing of deployment logic between
different aspects, the growth of the deployment specification when quantifying deployments,
and the integration of deployment code with run-time events in the main program.

3.2.1 Reuse of Deployment Logic

As indicated by the previous discussion, the deployment entities for aspects may become a
complex and substantial piece of code. When multiple aspects are deployed with equal or
similar deployment logic, one may desire to share parts of their deployment code. However,
deployment logic is treated as ‘throwaway’ code in current aspect approaches: deployments are
intended to be used only once, and must be written from scratch for each new deployment.

Concretely, there is no sharing of deployment code between connectors in JASCO. In AS-
PECTJ, one can set-up an inheritance hierarchy to create multiple deployments of one reusable
aspect; these deployments may share elements of their deployment code. However, the same
mechanism cannot be used to share deployment elements between deployments of different as-
pects, due to the single inheritance restriction. For example, TraceDeploy cannot inherit from
both the AbstractTrace aspect and an aspect StandardDeploy with deployment elements.
StandardDeploy could inherit from AbstractTrace instead, but then it can only be used to
deploy tracing behavior. Finally, XML configuration files do not predefine general inclusion or
name reference mechanisms, and to our knowledge none of the aspect approaches discussed
in Section 2.2.3 provide custom mechanisms to share parts of a deployment configuration.

When more complex deployments are taken into account, a mechanism for the sharing of
deployment code between different aspects is required to avoid undesirable code duplication
and ensure maintainability of the software application.

1The subject of possible interaction resolutions is treated more extensively in Section 4.1.3, including a discussion
of literature. In the current context, we simply point out that the resolution specification is a non-trivial part of the
deployment logic.

3.2 Requirements for Expressive Deployment 31

3.2.2 Deployment Quantification

Current deployment means offer essentially no control structures: the deployment code is
executed only once, during weaving or initialization of the application. Consider an application
with n reusable aspects (defined as abstract aspects such as AbstractTrace) and m program
regions (defined by pointcuts such as the ones in ProgramPoints). To deploy an instance of
each aspect for each of these program regions, regardless of the approach, one has to write
n ×m deployment entities, one for each combination of an aspect and a program region. For
example, in ASPECTJ one has to define a concrete subaspect for each combination, and in
JASCO one has to write a hook instantiation line inside a connector for each combination.

Such a “specification complexity” of n ×m is much larger than it needs to be, since an un-
ambiguous specification may be given consisting of only n +m pieces of information (n aspect
names and m pointcut names), plus some constant information to specify the quantification.
When the quantification cannot be expressed in the specification, the programmer needs to
unwind the repetition manually and the specification may grow to an unwieldy large size for
larger values of n or m.

One might think that this limitation can be worked around by defining a new pointcut
that selects the union of the regions selected by the m pointcuts (i.e., that is the disjunction of
the pointcut predicates and thus a specification of size m), followed by a deployment of each
aspect with this new pointcut (these are n specifications of constant size). While this avoids
the growth of the specification, it does not achieve the same effect, since one instance of each
aspect is used for all program regions. The aspect uses one set of data for all regions, cannot be
(dis)activated per region separately, etc.

Proper means of deployment quantification are needed to further avoid undesirable code
duplication. They are required to avoid scalability problems that may — at least theoretically —
occur when a large number of aspects are deployed in an application.

3.2.3 Dynamic and Integrated Deployment

Most approaches only support the static deployment of aspects. In the ASPECTJ language
for example, the application of a reusable aspect requires the introduction of a static entity
such as the TraceDeploy aspect, even if an existing aspect and pointcut are being reused
without modification. This design choice is related to the implementation technology: if the
advice application can be determined at the time of weaving, the performance overhead of
a conditional dispatch at every candidate join point can be avoided. ASPECTJ supports only
compile-time or load-time weaving of advice, and can produce faster code if the pair of pointcut
and advice are known statically.

Dynamic deployment JASCO connectors are also static entities, but can be enabled and
disabled at run-time through predefined API methods, by polling a deployment directory
for changes, or through an administrative console called the introspect tool. This dynamic
deployment is realized by preparing all possible join points with a dispatch mechanism or, more
recently, by employing a run-time weaver to avoid the performance overhead (De Fraine et al.,
2005b). Alternatively, aspect-aware virtual machines (Bockisch et al., 2004; Bonér et al., 2005)

32 Towards Expressive Aspect Deployment

have been proposed for this purpose. JBOSS/AOP offers a dynamic deployment mechanism
very similar to the one of JASCO, called hot deployment.

Integrated deployment Although the above provisions for dynamic deployment remedy some
problems, the dynamic deployment is still separated from the main application, and intended
to be used by the application administrator rather than the developer. However, it is easy
to imagine situations where it is useful and desirable to deploy new aspect instances upon
run-time events. For example, one might want to deploy a new instance of the tracing aspect
when a user logs into the system (and subsequently remove this instance from the system
on logout). Since the developer has no explicit control over the instantiation of aspects in
most approaches, such integrated deployment is only supported through predefined aspect
instantiation strategies such as perthis, pertarget and percflow.

However, these predefined strategies cannot handle any but the most simple variations. For
example, only if the login event involves the creation of a session object, one is able deploy
one aspect instance for each session (by associating it to a session). If there do not happen to
be such session objects in the organization of the application, another instantiation strategy
would be needed or, if this is not supported, the design of the application would need to be
altered. Also, if it were required to create two aspect instances at this event, yet another strategy
would be needed to avoid writing two deployment aspects and duplicating the effort.

Information transfer A further problem is that the aspect instances often need to receive con-
figuration parameters from the main application and/or that results from the aspect instance
need to be transferred back to the main application. In case of our example tracing aspect, the
aspect instance needs to be configured with a log handle. Since the deployment is separated
from the main application, such information transfer requires a form of static lookup: either the
application makes the desired objects available through static fields or methods (as is done with
the getLog method in Listing 3.3), or the aspect instances are retrieved by the base application
through the static aspectOf construct, after which the base application injects (or retrieves)
the information in the aspects.

These solutions impose a restriction as the information must be addressable with a unique
key. In case of more complex instantiations, this becomes increasingly difficult to employ:
suppose two aspect instances could be implicitly created after a login, by what key would one
address each of them to pass the relevant log output? A workaround for this problem could
be that the aspect implements additional advice methods to capture (or expose) the required
information. This is not straightforward and error-prone: e.g., in case of a required parameter,
one has to verify that in all cases this capture has succeeded before the main advice of the
aspect is triggered.

In summary, we identify shortcomings with the static nature of deployment constructs in
current approaches. Useful cases require deployments that are not only dynamic, but which
can be integrated with program events of the main application. This necessitates the flexible
creation of aspect instances at these events, and the configuration of the aspect instances with
program parameters. Support for these cases is required to allow developers to reuse existing
aspects on more occasions.

3.3 First-Class Deployment Procedures 33

Requirement Solution

Reuse of deployment logic Shared deployment procedures parameterized with ab-
stract aspects, advice, pointcuts, resolution strategies,
etc.

Deployment quantification Control structures for deployment code, nested invoca-
tions of deployment procedures

Dynamic/integrated deployment Deployment procedure invocation from base program,
or attached to base program events, with a possible
transfer of program values

Table 3.1: Organizing deployment procedures to allow expressive deployment

3.3 First-Class Deployment Procedures

To meet the requirements from the previous sections, we propose to organize deployment code
as procedures that borrow a number of properties from ordinary code, and that could therefore
be called first-class deployment procedures. Concretely, we argue that it should be possible
to parameterize deployment procedures with aspect entities such as pointcuts and advice,
that control structures should be available in deployment procedures, and that it should be
possible to invoke deployment procedures from the base program (or otherwise connect them
to program events). Below, we discuss these properties in relation to the identified requirements;
the discussion is summarized in Table 3.1.

Reuse of deployment logic The ability to parametrize deployment procedures with aspect
entities such as pointcuts and advice enables to build abstractions that allow the reuse of the
deployment logic. For example, when it is required to deploy both tracing and profiling advice
in the same manner, we can define this common logic as a shared deployment procedure that
receives the advice to deploy as a parameter. As such, the specification can be shared between
the deployment of multiple concerns and implementation details of this shared behavior can
be hidden from its clients.

Additionally, other kinds of parameters may allow to build more variation points into
deployment procedures, such that similar but different deployments can share a common
specification. For example, a boolean parameter may be used to (dis)activate an optional part
of the deployment specification, or certain parts of the deployment may be left abstract such
that the client can fill in specific functionality by providing a function or object parameter.

Deployment quantification The ability to use control structures in the deployment code
allows to quantify deployments without the effects of growth that occur when all deployments
need to be manually enumerated. Control structures such as loops allow for a very direct
expression of the quantification: in case of the example from Section 3.2.2, one can specify a
loop that iterates over the m pointcuts that specify the main program regions and the n reusable
aspects, and deploys an aspect instance for each of the n ×m combinations.

34 Towards Expressive Aspect Deployment

Additionally, we observe that the mechanism of parameterization and invocation of deploy-
ment procedures already serves as a simple control structure. Since a deployment procedure
may create multiple aspect instances per invocation, one can define a deployment procedure
that receives an aspect as a parameter and that deploys m instances of this aspect, one for each
of the m pointcuts (this amounts to m statements). The deployment procedure may then be
invoked with each of the n reusable aspects that needs to be deployed (using n invocation
statements). In this way, we also achieve the desired creation of n ×m aspect instances with
a specification that has size n +m, without resorting to explicit control structures. Neverthe-
less, we feel that recognizability of control structures may still provide an additional level of
convenience for the developer, despite this redundancy.

Dynamic and integrated deployment Through a linking of the deployment procedures to
points in the execution of the main program, aspects can be deployed with a tight integration
to the run-time events of this program. The effect of the link is that the deploy procedure is
invoked each time the execution of the application reaches one of these points, which makes
it easier to accommodate for different variations in the instantiation of aspects, since aspect
instances can now be created explicitly by the developer, at the relevant events. This also greatly
facilitates the configuration of the aspect instances, because the relevant parameters for the
transfer of information to the base program are often readily available at these points (e.g. a
reference to the user and his log file is normally available in the code section that handles a
login event). For example, if we consider the requirement to deploy a new aspect instance at
each login that writes to the user’s personal log file, then the implementation becomes trivial
when one can attach the instantiation logic to that point in the base application where a user’s
login is processed. The occurrence of this event is the appropriate time to instantiate the aspect,
and the parameters to configure it (e.g. the session and the user) are readily available.

More concretely, we envisage two levels at which deployment logic can be integrated with
program events in the base application. The first, straightforward solution is to include invoca-
tions of deployment logic directly in the code of the main application. This may seem to imply
that the base program is no longer oblivious to the presence of the aspects2. Note however that
the program points where the advice behavior is applied can still be unaware of the aspects
— the implicit invocation of advice methods is retained. Nevertheless, if the deployment is
required in different parts of the application, this has the possible disadvantage of scattering
the deployment logic and tangling it with the implementation of the main application. At that
point, the deployment logic of the aspects has itself become a crosscutting concern, and its
modularization could be achieved by specifying it as another aspect. The second solution is
therefore to allow the invocation of deployment procedures from advice code inside of such
deployment aspects.

2Recall from page 10 that such obliviousness is considered a discriminating feature of AOP by Filman and Friedman
(2000). This is a source of much debate in the AOSD community, for example in relation to the use of annotations to
indicate program points where advice behavior needs to be applied.

3.4 Discussion: Intensive Usage of Aspects 35

3.4 Discussion: Intensive Usage of Aspects

This chapter discusses a number of problems in the deployment facilities of current aspect-
oriented approaches. These issues are not minor problems that ‘slipped through the net’ of the
unwary designers of one particular approach or the other, and that can be straightforwardly
patched or added by cherry-picking and combining from the different approaches available
today. The issues are more fundamental in the sense that all of the current approaches appear
to have been designed with a mindset of aspect-oriented technology where only a handful
of aspects are deployed inside of one application (e.g., one aspect for security, one aspect for
profiling,. . .). In a way, most or all of the discussed problems relate to the fact that current
deployment mechanisms do not scale up to a higher number of aspects or aspect instances.

This work paves the way for applications where aspects may be used much more intensively.
Similar to the number of objects and classes in object-oriented applications today, we envision
applications with hundreds or thousands of aspect instances. To enable applications with such
a large number of aspect instances it should be as easy and flexible to deploy an aspect as it is
to create an object instance, spawn a thread, etc. It should therefore not come as a surprise that
the solution proposed in this chapter — first-class deployment procedures — makes a number
of features from ordinary code available to deployment code.

36 Towards Expressive Aspect Deployment

Chapter 4

The EcoSys AOP Framework

In the previous chapter, we have made the case of increasing the expressiveness of aspect
deployment code by adding a number of rich mechanisms that are commonly available for
general program code (such as parameters, control structures, run-time execution,. . .) and
by providing a better integration with the code and program events in the base program.
Deployment entities with these properties were called first-class deployment procedures. In
this chapter, we take this idea one step further and propose an AOP approach named ECOSYS

which does not organize any distinction between deployment code and ordinary code. ECOSYS

provides an AOP framework where the aspect behavior — including the aspect deployment — is
expressed in a standard object-oriented programming language, using a number of predefined
classes. This object-oriented programming language is called the host language.

Recall from the discussion of existing pointcut/advice approaches in Chapter 2 that most
aspect languages already express the advice behavior in the host programming language. For
example, ASPECTJ advice method bodies are ordinary JAVA code blocks1. Other elements of
the aspect specification, such as the pointcut expressions and the deployment information,
are specified in a dedicated language. Current AOP frameworks, as discussed in Section 2.2.3,
enable the compilation of the advice methods using a base language compiler, but otherwise
the situation remains unchanged: the pointcuts and the aspect deployment is still expressed
using a dedicated formalism, although this specification is placed in XML configuration files
or expressed using annotations. ECOSYS differs fundamentally from these approaches in the
sense that at least the deployment specification is also specified in the host language.

The presentation of ECOSYS proceeds as follows. Section 4.1 introduces the classes and
interfaces that constitute the ECOSYS programming model and Section 4.2 demonstrates how
deployment logic specified in the host language using these types provides the features of
first-class deployment functions. The ECOSYS programming model is defined independent of a
particular implementation technology. Section 4.3 discusses a number of common implemen-
tation platforms for aspect-oriented approaches and evaluates how they may be employed for
an ECOSYS implementation. A prototype implementation that employs the ASPECTJ implemen-
tation to instrument the bytecode of possible join points is then presented.

1With the exception of the reserved identifier proceed in case of around advice. This is discussed extensively in
Section 9.1.1 and Section 9.2.1.

37

38 The EcoSys AOP Framework

Binding<JP>

-enabled:boolean

«interface»
Advice

+around(Object,JoinPoint):Object

1

Core<JP>

+dispatch(JP,Object. . .)

Variable type JP is the
join point type from the
implementation

*-deployments

«interface»
Resolution

+resolve(List<AdviceApplication>)
*

Pointcut<JP>

+bind(Advice):Binding<JP>
+match(JP,Advice):AdviceApplication

1

«interface»
JoinPoint

+invoke(Object):Object

JoinPoint is a join point
as matched and exposed
by a pointcut

Figure 4.1: UML class diagram of the central classes of the ECOSYS programming interface

4.1 Programming Interface

At its core, the ECOSYS framework consists of a number of interfaces and classes that function
as a programming interface that can be used to implement crosscutting behavior modularly as
one or more aspects. An overview of this interface is presented in Figure 4.1. The structure of
the aspect behavior corresponds to what is known from existing aspect approaches: (i) advice
methods specify preceding, succeeding or replacing for intercepted join points, (ii) advice is
bound to pointcuts, which select join points and expose context arguments, (iii) bindings of
pointcut and advice pairs may be deployed in the system, together with resolutions that handle
combinations of multiple advice applications. The elements of this model are discussed in
more detail over the course of the following subsections.

4.1.1 Join Point and Advice

Similar to other AOP frameworks such as JBOSS/AOP, the developer specifies advice behavior by
constructing a class that implements the predefined Advice interface. The interface prescribes
a very general advice method. It is executed in place of the intercepted join point and receives
the context arguments from the join point, as well as a closure representation of the intercepted
join point as an object of type JoinPoint. This closure object may be used to invoke the

4.1 Programming Interface 39

1 package ecosys;
2

3 public class BeforeAfterAdvice implements Advice {
4 public void before(Object arg) {}
5 public void after(Object arg) {}
6

7 public final Object around(Object arg, JoinPoint proceed) {
8 before(arg);
9 try { return proceed.invoke(arg); }

10 finally { after(arg); }
11 }
12 }

Listing 4.1: A predefined template advice method which includes configurable behavior before
and after the execution of the intercepted join point

intercepted join point at will (i.e., zero or more times, with the original or different arguments).
The only constraint is that the advice method should produce a result (or throw an exception)
to return to the join point client. An advice method corresponds to around advice in ASPECTJ,
with the difference that the join point closure is not an explicit argument in that language, but a
special method available through the reserved proceed identifier.

The binding of context arguments is the responsibility of the pointcut entity. There is
therefore no direct relation between the arguments of the invoke method in the JoinPoint
type and e.g., the actual method arguments in case the join point is some method invocation.
Different pointcuts may bind arguments differently, and one pointcut may even have different
bindings per join point. For example, a pointcut may expose the receiver of the invocation
for some of the join points, while it exposes the first argument for other join points, and
an unrelated object for yet other join points. The arguments of the invoke method in type
JoinPoint, as well as all but the last argument of the around method in type Advice always
refer to the join point arguments exposed by the pointcut. Join point arguments not bound by
the pointcut are simply “tunneled” from the join point client to any execution of the join point.
Note that the interfaces in Figure 4.1 only display versions of the interfaces for the case of one
exposed argument. Other cases, such as zero or two exposed arguments, are similar and have
been omitted from the presentation for reasons of simplicity.

Although the general Advice type is very powerful, it is not very convenient to specify simple
advice methods that only add preceding or succeeding behavior to the join point. ECOSYS

therefore provides a predefined BeforeAfterAdvice class, presented in Listing 4.1, which
implements the advice method as a template method which invokes the join point with the
original argument and returns it result, and additionally invokes the (currently empty) before
and after methods (this is an instance of the template method design pattern described by
Gamma et al., 1995, pp. 325–330). Subclasses of this class may override these two methods to
specify advice behavior similar to before and after advice methods in ASPECTJ. Since the around
method has been declared final, it is guaranteed that any instance of BeforeAfterAdvice

40 The EcoSys AOP Framework

1 class CollaboratingAspect {
2 int data;
3 class Capture extends BeforeAfterAdvice {
4 void before(Object o) {
5 CollaboratingAspect.this.data = ...;
6 }
7 }
8 class Use implements Advice {
9 Object around(Object arg, JoinPoint proceed) {

10 return CollaboratingAspect.this.data;
11 }
12 }
13 }

Listing 4.2: Example of an aspect module with different advice methods that operate on the
same set of data

follows this template and only adds behavior to the intercepted join point. This guarantee may
be exploited by an ECOSYS implementation.

Since the Advice interface defines only a single advice method, it may seem that a class
can define only one advice method, and instance data can therefore not be shared between
different advice methods. However, in JAVA, collaborating classes may be defined as inner
classes in an enclosing class. As explained by Gosling et al. (2005, §8.1.3), an instance of
an inner class is implicitly associated with an instance of the immediately enclosing class.
Instances of the inner classes that have the same enclosing class instance may share data in
this instance. The mechanism of inner classes may be used to define aspect modules where,
as explained in Section 2.2, different advice methods maintain one set of instance variables
between invocations of the advice methods. An example of such a pair of collaborating advice
methods is shown in Listing 4.2. This mechanism is very similar to the organization of aspect
modules in JASCO: different hooks in the same aspect bean may also share instance data
through the enclosing aspect bean instance.

4.1.2 Pointcut and Binding

While ECOSYS employs a standard object-oriented programming language for the specification
of advice methods and aspect deployment code, this is not necessarily the case for pointcut
expressions.

The choice of pointcut language is an important design decision for aspect languages, and
a wealth of pointcut approaches have been proposed in literature. While ASPECTJ employ
logic combinations of a fixed number of primitive pointcut designators that match individual
program points according to type and identifiers patterns, Douence et al. (2001), Walker and
Viggers (2004), Vanderperren et al. (2005a) and Allan et al. (2005) propose event patterns over
traces of the program execution as a more powerful model. Gybels and Brichau (2003), Rho and
Kniesel (2004) and Ostermann et al. (2005) employ yet another formalism, and select relevant

4.1 Programming Interface 41

program points through logic queries over structural or behavioral facts of the program. The
cited approaches also frequently make additional program properties available as selection
criteria. In addition, approaches by Nishizawa et al. (2004), Benavides Navarro et al. (2006),
Harbulot and Gurd (2006) and Tanter (2008) have independently extended the expressiveness
of pointcut languages with new properties, while Kiczales and Mezini (2005), Aldrich (2005),
Griswold et al. (2006), Kellens et al. (2006) and Sakurai and Masuhara (2008) propose measures
to make pointcut expressions more robust with respect to the evolution of the base program.

This is clearly a very active research domain, and while the targeted concerns are very
relevant, we note that they seem largely orthogonal to the problems we describe in Chapter 3
regarding the expressiveness of aspect deployments. Moreover, the underlying implementation
of an aspect approach generally determines the program properties that can be matched
efficiently. For these reasons, ECOSYS is designed independent of a particular pointcut approach.
In Figure 4.1, the Pointcut type, and the types Binding and Core that depend on this type,
have been parameterized with a type parameter JP which represents the type of a primitive
join point exposed by the underlying implementation. The match method of class Pointcut
is employed to check whether a pointcut matches such a join point. If there is indeed such a
match, then the method will return an AdviceApplication which is derived from the Advice
given as the second method argument. This application takes into account the bindings of
context arguments by the pointcut: it provides a translation between a raw join point where all
context is available and a high-level join point as provided to the advice (type JoinPoint). We
elaborate on the precise definition of AdviceApplication in the following section.

Based on the underlying implementation, a concrete pointcut language may be offered. We
identify at least two principal ways in which this language can be integrated with the framework:

1. The developer writes the pointcut in a concrete syntax that is separated from the host
language. For example, the pointcut expressions could be written in annotations or XML
files that are transformed to a subclass of Pointcut by a preprocessor, or the pointcut ex-
pression could be provided as a string to some interpreter that returns a Pointcut object.
This approach has the advantage that a concrete syntax is typically very convenient.

2. Abstract syntax tree nodes are provided as classes in the host language, and the developer
writes code that instantiates these classes and combines instances to construct Pointcut
objects. While it may be expected to be tedious to write the pointcut expressions directly
in the abstract syntax, the host language typically offers very rich abstraction mechanisms
and control-flow structures. These can be used to build pointcut libraries that offer more
powerful pointcuts that are reusable and high-level since the complexity can be hidden
in the library implementation. Ostermann et al. (2005, Sec. 3.2) have also noted such
advantages when employing a language with rich abstraction mechanisms (in their case
PROLOG) to specify pointcut expressions.

Finally, the Pointcut class also offers a bind method to construct a binding to an Advice
instance. (Both pointcuts and advice instances may be bound any number of times.) A point-
cut/advice binding is represented by an instance of the Binding class, which is returned by
this method. This is the principal unit of deployment; a binding may be enabled or disabled
individually.

42 The EcoSys AOP Framework

1 class Core<JP extends RawJoinPoint> {
2 Collection<Binding<JP>> deployments;
3 Collection<Resolution> resolutions;
4

5 Object dispatch(JP jp, Object thiz, Object target, Object... args) {
6 List<AdviceApplication> advs = new LinkedList<AdviceApplication>();
7 for(Binding<JP> b: deployments)
8 if(b.isEnabled()) {
9 AdviceApplication aa = b.pc.match(jp,b.adv);

10 if(aa != null)
11 advs.add(aa);
12 }
13

14 for(Resolution r: resolutions)
15 r.resolve(advs);
16

17 RawJoinPoint rjp = jp;
18 ListIterator<AdviceApplication> it = advs.listIterator(advs.size());
19 while(it.hasPrevious())
20 rjp = it.previous().apply(rjp);
21

22 return rjp.invoke(thiz,target,args);
23 }
24 }

Listing 4.3: ECOSYS advice dispatch procedure

4.1.3 Join Point Dispatch and Interaction Resolution

As shown in Figure 4.1, the Core class acts as a central registry where pointcut/advice bind-
ings may be deployed. In addition, resolutions that manipulate advice combinations may be
registered. The entities in the central registry are consulted during a dispatch procedure that
is triggered when the implementation encounters a new join point. A relevant portion of the
Core class related to the dispatch procedure is shown in Listing 4.3. Figure 4.2 presents a
class diagram with the central classes related to advice application and resolution, as well as a
class hierarchy of predefined resolutions. We describe these elements in the remainder of this
section.

Join Point Dispatch The dispatch method (lines 5–23) is invoked with a primitive join point
representation from the underlying implementation (type JP), together with the arguments
from the join point context: the caller object (typically called this but since this name is
reserved in many object-oriented languages, we employ thiz), the receiver object (called
target) and the remaining arguments (called args). Depending on the kind of join point, some
of these parameters will not be provided. For example, the invocation of a static method will not

4.1 Programming Interface 43

have a receiver object and a field get operation will not involve any arguments. On line 1, the JP
type parameter is declared a subtype of the type RawJoinPoint, which is shown in Figure 4.2.
While the join point type from the underlying implementation is unknown, this bound ensures
that the join point supports an invoke method to execute the join point with provided thiz,
target and args arguments.

The selection of advice is handled in lines 6–12 and the application in lines 17–20 (the
resolution occurs between these two steps and is discussed below). Advice is selected by
iterating over all the deployed bindings and collecting the advice applications that are returned
by the pointcuts of enabled bindings to indicate a match (null is returned to indicate that there
is no match). The list of collected AdviceApplication instances are applied by ‘wrapping’
the original join point by each of the advice applications in reverse order (a ListIterator
is employed to retrieve the list elements from last to first). As a result, when the resulting
RawJoinPoint is invoked with the arguments from the join point context on line 22, the advice
instances in the advice list will be considered first to last, ending with the original join point.
This is the typical chain of around advice in AOP approaches.

In this procedure, we detail that the apply method of an AdviceApplication constructs a
new RawJoinPoint that, when invoked, executes the advice with the relevant arguments routed
from the RawJoinPoint invocation. Similarly, the JoinPoint argument of the advice is bound
to a closure that will invoke the RawJoinPoint instance that was given as an argument to the
apply method by appropriately routing the new arguments coming from the advice (or tunnel-
ing the arguments that are not considered by the advice). In brief, an advice application does
not only provide an Advice instance but also routes back and forth between a RawJoinPoint
interface and the high-level JoinPoint that is employed by the advice.

Interaction Resolution As is also explained in Section 3.1, it is often necessary to control the
advice combinations that are employed when multiple aspects are deployed in one application,
due to the occurrence of undesirable aspect interactions. For interactions where the advice
methods are applied to a common join point, ECOSYS provides a simple but powerful dynamic
resolution model that was directly inspired by the combination strategies proposed for the
JASCO approach by Suvée et al. (2003, Sec. 2.3). The Core class also registers instances of type
Resolution, and between the selection and the application of advice, each registered resolution
is given an opportunity to manipulate the advice list through the invocation of its resolve
method (lines 14–15 in Listing 4.3). Note that the model does not presumptively restrict the
expressiveness of resolution with stipulations regarding the kind of manipulations that may be
applied: the position of advice applications may be changed, new advice applications may be
inserted or existing ones removed. (We will consider applications of all of these cases in the
following paragraph.) However, one can image that in quite a number of situations, restrictions
may be added to avoid excessive run-time overhead2, or to preserve modular reasoning about
the aspect behavior (currently any resolution may control the advice for any join point).

2The current resolution model does indeed give rise to worries regarding the execution efficiency. For example, the
registered resolutions are consulted for every join point, even when it is not matched by a pointcut. At present, this was
not considered, but in the long term the flexibility of resolutions should be optimized rather than maximized. A number
of possible optimizations are readily apparent: (i) if resolutions do not introduce advice for join points unmatched by
pointcuts, they need to be consulted for a much smaller number of join points, (ii) if resolutions only involve specific
advice instances, this number may be further reduced, (iii) if resolutions always provide the same results for the same

44 The EcoSys AOP Framework

R
andom

O
rdering

+resolve(List<A
A

>)

A
dviceP

riorityO
rdering

+getP
riority(A

dvice):int
+com

pare(A
A

,A
A

):int

«annotation»
P

riority

-value:int

TotalO
rdering

+resolve(List<A
A

>)
+com

pare(A
A

,A
A

):int

A
dviceP

recedenceO
rdering

-first:A
dvice

-second:A
dvice

+precedes(A
A

,A
A

):boolean

P
artialO

rdering

+resolve(List<A
A

>)
+precedes(A

A
,A

A
):boolean

A
dviceM

utex
-adv:A

dvice[2]

+conflict(List<A
A

>):boolean

A
dviceD

ependency

-subject:A
dvice

-object:A
dvice

+m
atch(List<A

A
>):int

C
onflictD

etection

+resolve(List<A
A

>)
+conflict(List<A

A
>):boolean

Im
plicitR

evocation

+resolve(List<A
A

>)
+m

atch(List<A
A

>):int

Im
plicitA

ctivation

+resolve(List<A
A

>)
+m

atch(List<A
A

>):int

«interface»
R

aw
JoinPoint(R

JP
)

+invoke(O
bject...):O

bject

«interface»
A

dviceA
pplication

(A
A

)

+apply(R
JP

):R
JP

«interface»
R

esolution

+resolve(List<A
A

>)

1
-extraA

dvice

Figu
re

4.2:C
on

d
en

sed
U

M
L

class
d

iagram
ofth

e
h

ierarch
y

ofp
red

efi
n

ed
E

C
O

S
Y

S
resolu

tion
s

an
d

typ
es

in
volved

in
ad

vice
ap

p
lication

.
T

h
e

ab
b

reviatio
n

s
AA

an
d
RJP

are
u

sed
fo

r
th

e
typ

e
n

am
es

AdviceApplication
an

d
RawJoinPoint

resp
ectively.

4.1 Programming Interface 45

While JASCO provides combination strategies in addition to an independent advice ordering
mechanism, ECOSYS integrates ordering with the aforementioned resolutions, to provide one
unified resolution mechanism. In addition, support for several other resolutions described in
literature by Brichau et al. (2002, Sec. 5), Douence et al. (2002, Sec. 4) and Tanter and Noyé (2005,
Sec. 5) is provided. The support for all of these common interaction resolutions is organized in
ECOSYS as a class hierarchy of predefined Resolution types. This class hierarchy is presented
in Figure 4.2; we organize the presentation of its members in three categories:

1. The permuting resolutions only reorder the elements of the advice list; they do not add
or remove advice applications. The implementation of these resolutions is structured
according to the mathematical kind of order they apply.

(a) Type TotalOrdering employs a total order specified by the method compare. When
this method is used to test the relationship between two AdviceApplication in-
stances, then either the first should come before the second (indicated by a negative
result), the second should come before the first (indicated by a positive result) or the
relative position of the two should be retained (indicated by the result zero). Since
there is always one of these relationships between any two elements, the relation is
total. In addition, it is required that the relation is transitive and antisymmetric3.
The resolve method will effectuate the total order through a classical sorting of the
list of advice applications.

The class AdvicePriorityResolution implements a concrete case of such a total
order by comparing advice applications according to the numerical priority that
is assigned to the involved advice. In this case, advice priorities may be assigned
by including the @Priority annotation in the definition of the advice class. Advice
instances of classes without this annotation are assigned a fixed priority value of
zero.

(b) Type PartialOrdering employs a partial order specified by the method precedes.
Unsurprisingly, this method returns a true result to indicate that the first argument
should precede the second argument. However, the result false indicates any
of two possible situations: either the second argument should precede the first,
or there is no relationship between the two arguments. (These two cases may be
distinguished by invoking the method again with the arguments in reverse order.)
When representing the relationships from a partial order as directed edges in a
graph the resulting graph should be acyclic, or put differently, the transitive closure
of the “precedes” relation should be antisymmetric. The resolve method will
effectuate the partial order by carrying out a topological sorting4 of the list of advice
applications. This procedure finds a total order of the elements that is compatible
with the specified partial order (where possible the original order is retained).

The class AdvicePrecedenceResolution may be used to enforce that one advice
instance should always precede another when they appear together in the advice ap-

inputs, their results may be cached.
3Where antisymmetry means that compare(x,y)<0 implies compare(y,x)>0 and vice versa, and compare(x,y)=0

implies compare(y,x)=0. Note that referential equality nor the equals relationship are involved in this definition.
4One of the better known applications of topological sorting is the linear scheduling of a number of tasks with

dependencies, as done by build tools such as MAKE.

46 The EcoSys AOP Framework

plication list. This resolution is configured with two advice instances; its precedes
method will indicate corresponding precedence for advice applications that involve
these advice instances. The use of this class is similar to a precedence declara-
tion in ASPECTJ, except that it operators at the level of advice instances instead of
aspects. ECOSYS also provides a resolution class that may be used to configure a
precedence based on advice types rather than specific advice instances, but this has
been omitted from Figure 4.2 for reasons of clarity.

(c) The RandomOrdering resolution will simply “shuffle” the advice application list. It
rearranges the elements into an undetermined order at each invocation. This may
seem a toy resolution, but since it causes many different advice orderings to be tried,
it may be used to detect dependencies between aspects. This could be considered
an instance of random testing as described by Hamlet (1994).

2. The verifying resolutions do not alter the advice application list; they detect invalid
advice combinations at run-time and abort the join point execution in case of a violation.
The resolve method of the type ConflictDetection will raise an exception when its
conflict method indicates that the advice list contains a conflicting combination. This
behavior is used for the implementation of a mutual exclusion between a pair of advices
in the type AdviceMutex. This type indicates a conflict when an advice application list
contains advice applications for both of the two configured advice instances.

3. The intervening resolutions alter the advice application list by adding or removing advice
applications. They can be considered extensions of the pointcut expression that can take
the presence of other advice behavior into account. We organize the implementation of
these resolutions according to the kind of modification:

(a) The ImplicitRevocation resolution will remove an advice application from the
list when its elements meet a certain condition. The match method verifies the con-
dition and indicates the position of the advice application that should be removed.
In case there is no match, a negative value is returned. The AdviceDependency res-
olution employs this behavior to realize that the application of one advice instance
(the object) is dependent on the presence of another advice instance (the subject).
The match method of this type will indicate the position of an advice application
involving the object in the case of advice application list that do not have elements
involving the subject as well. Note that this resolution will not activate the object
advice if it was not originally selected; this dependency is called a twin combination
by Suvée et al. (2003, Sec. 2.3).

(b) The ImplicitActivation resolution will insert additional advice in the advice
application list when its elements meet a certain condition. Tanter and Noyé (2005,
Sec. 5) refer to this kind of advice activation as an implicit cut. The match method
verifies the condition and indicates the position where the new advice is to be
inserted. Note that the additional advice behavior is specified as an instance of
AdviceApplication rather than Advice. Indeed, to apply the advice behavior it
is required to organize a binding of context parameters from the join point. As
we explained in the first part of this section, an instance of AdviceApplication
extends an advice with this function.

4.2 Demonstrations of First-Class Deployment Procedures 47

4.2 Demonstrations of First-Class Deployment Procedures

Since the programming interface of ECOSYS exposes all of the deployment primitives as standard
programming language elements, the deployment code in ECOSYS is written as an ordinary
program. This deployment code includes all of the responsibilities discussed in Section 3.1. For
example, the following snippet deploys a hypothetical tracing advice using an existing ECOSYS

core:

TracingAdvice adv = new TracingAdvice(Application.getLog());
adv.setOutputLevel(Logging.INFO);
core.deploy(modelManip.bind(adv));
core.addResolution(new AdvicePrecedenceResolution(authorization,adv));

The deployment code includes the instantiation of the advice, configuration of the advice
instance with program parameters and pointcut, and the specification of interaction resolutions.
The configuration of the instance employs an application log handle and the informative logging
level. For the binding with the pointcut, an existing modelManip pointcut instance is employed.
Finally, the resolution configures that an existing authorization advice instance precedes the
application of the tracing advice (such that join points for which the access is denied are not
included in the trace).

Since all the deployment responsibilities are specified using a language that offers the
expressive abstraction, quantification and integration mechanisms that are discussed in Sec-
tion 3.3, ECOSYS realizes the concept of first-class deployment procedures from this section.
To illustrate this point, we revisit the issues described in Section 3.2 and demonstrate that the
required expressiveness is available in ECOSYS.

Reuse of deployment logic Deployment logic may be shared between the deployment of
multiple aspects by constructing methods that are parameterized with pointcut, advice or
resolution entities. When multiple advice instances need to be deployed in a similar manner as
the tracing advice from above (for example, because all of these advice instances relate to the
registration of quality of service properties), then the commonalities of the deployment code
may be placed in a separate deployment method:

void deployQoS(OutputAdviceFactory factory) {
OutputAdvice adv = factory.createAdvice(Application.getLog());
adv.setOutputLevel(Logging.INFO);
core.deploy(modelManip.bind(adv));
core.addResolution(new AdvicePrecedenceResolution(authorization,adv));

}

For obvious reasons, this method is formulated in terms of the most general types that offer
the employed operations, in this case the OutputAdvice type. Since the constructor of the
advice class is not a first-class value, it cannot directly be employed as the parameter for this
method. The common solution in this case is to create some factory class which makes the
constructor available through one of its methods. Instances of this class may be used as the

48 The EcoSys AOP Framework

parameter to the deployment method. (An alternative approach is to use the reflective access of
the programming language to obtain some Class object: this is also a first-class value which
may be employed as a factory to create new instances of the advice class.) This deployment
method may now be used for the deployment for multiple advice types (provided that factories
for these advice types are available), for example:

deployQoS(profilingFactory);
deployQoS(tracingFactory);
deployQoS(invariantCheckFactory);
...

Besides sharing the deployment code, this deployment method also abstracts the implementa-
tion details involved in the deployment of quality of service advice behavior.

Deployment quantification The available control structures make it very straightforward to
express repetitions of deployment behavior. For example, we may deploy one advice instance
for each combination of a pointcut and advice from a list of pointcuts and a list of advice
factories by employing a nested loop:

for(AdviceFactory factory: new AdviceFactory[] {tracingFactory,...})
for(Pointcut pc: new Pointcut[] {modelQueries,modelManips,viewOps,...})

core.deploy(pc.bind(factory.createAdvice()));

An important characteristic from this piece of deployment code is that a large number of
advice instances may be created using a comparatively small specification. In this example, the
addition of one advice factory will trigger the creation of many advice instances, one for each
pointcut from the pointcut list.

Dynamic and integrated deployment Since the deployment logic is expressed using standard
code in the host programming language, it is trivial to integrate deployment code with program
events that occur in the base program, simply by placing the deployment code at the program
points that correspond to the relevant events. The following code demonstrates the deployment
of a new advice instance at a login event. Conveniently, the user and session instance are
directly available at this point and can be employed for the configuration of the pointcut and
advice behavior at this point:

void login(User u) {
Session s = new Session(u);
// Deploy tracing for this session:
core.deploy(sessionOps(s).bind(new TracingAdvice(u.getLog())));
...

}

Although the direct inclusion of the deployment code is a very straightforward approach, this
may cause scattering and/or tangling of the deployment logic if deployment is required at

4.3 Developing an EcoSys Implementation 49

several events, as explained at the end of section Section 3.3. However, the solution from that
section is also applicable here: since the deployment code may be moved to an advice method,
it is possible to employ a deployment aspect that will include the deployment of the original
aspect(s) at the relevant program points. Since the deployment is crosscutting, it is appropriate
to modularize its implementation using an aspect.

4.3 Developing an EcoSys Implementation

ECOSYS is designed independent of a particular implementation technology. In this section, we
discuss a prototype implementation of ECOSYS to prove its concepts and to provide a guideline
for possible future ECOSYS implementations. We first analyze the possible implementation
platform choices and then present the prototype that we have developed.

4.3.1 Choice of Implementation Platform

The ECOSYS programming model includes entirely dynamic aspect deployment facilities. De-
ployment code may register or remove advice behavior for any of the pointcuts at any point in
the execution. Additionally, the powerful model of interaction resolution may also manipulate
the advice behavior at any join point. These features need to be taken into account when
selecting an implementation platform for ECOSYS.

Aspect-aware Virtual Machines As explained, in Section 3.2.3, the use of aspect-aware execu-
tion models has been proposed to optimally support dynamic deployment of aspects. Since the
advice application cannot be statically determined in case of dynamic deployment, the byte-
code of the application cannot include direct advice invocations. While techniques such as the
HOTSWAP API (part of the JVM tool interface) allow the changing of bytecode at run-time, Bock-
isch et al. (2006) and Bonér et al. (2005) argue that this approach has several disadvantages that
direct support for the aspects in the virtual machine can avoid. Additionally, aspect-aware exe-
cution models may offer a more direct API for applying advice behavior to join points than the
instrumentation of the static join point shadow, since join points are run-time program points.
Aspect-aware virtual machines therefore appear a promising option for the implementation of
ECOSYS.

Unfortunately, comparatively few approaches employ this kind of implementation platform
and the choice of aspect-aware virtual machines is limited. The existing approaches have not
been declared stable by their authors or do not receive continuous maintenance, making it
still a high-risk endeavor to build implementations on top of them. STEAMLOOM and JROCKIT

are two concrete aspect-aware virtual machines. STEAMLOOM is an extension of the JIKES

research virtual machine proposed as the first virtual machine implementation to natively
support dynamic aspects by Bockisch, Haupt, Mezini, and Ostermann. Version 0.5 did not
support around advice which is highly problematic for our purposes; this was cited as future
work by Bockisch et al. (2004, Sec. 3.2) and later added by Haupt (2005, Sec. 3.6.4). JROCKIT is a
proprietary JAVA virtual machine from BEA Systems. An extension providing AOP support was
developed by Bonér, Vasseur, and Dahlstedt (2005) and released as a private beta. However, its
current status is unclear.

50 The EcoSys AOP Framework

An investigation of the programming API of these approaches reveals that their program-
ming model is directly targeting the end developer of aspects instead of the implementor of an
aspect language back-end. For example, the example programs that demonstrate the use of the
respective APIs are direct implementations of aspect behavior. This focus on a concrete user-
level aspect model proves problematic to realize at least one of the more uncommon features
of the ECOSYS model. From the description of its join point dispatch model in Section 4.1.3,
it is clear that control of the list of advice applications is needed. While the programming
interface of the discussed virtual machine approaches allow to deploy pairs of pointcuts and
around advice methods, they will directly construct the advice chain when multiple pointcuts
match the same join point, and invoke each around advice method with a closure that represent
the remainder of the advice chain. This fixed strategy renders it very complex for an ECOSYS

implementation to allow resolutions to manipulate the advice chain. It would be much more
practical for our purpose to have a slightly more low-level model where the virtual machine
invokes a custom piece of dispatch code with a closure that represents the intercepted join
point and a list of the pointcuts that triggered the match.

Bytecode Instrumentation A frequently employed technique for the implementation of
aspect-oriented approach is the instrumentation of the application bytecode to include invoca-
tions of advice behavior at the static program points that correspond to the relevant join points.
If this instrumentation occurs before the program execution, then dispatch behavior will need
to be included at all possible join points to check for applicable advice behavior. As explained,
some approaches propose to avoid the overhead of such a dispatch mechanism by changing
the bytecode of a running application when aspects are deployed.

One of the downsides of bytecode manipulation is that the selection of a run-time join point
is done in an indirect manner, through the join point shadow. Additionally, the manipulation
of bytecode involves many technical details, even when less low-level bytecode manipulation
toolkits such as BCEL from the JAKARTA project or JAVASSIST by Chiba (1998) are employed. To
avoid these complications and produce a straightforward prototype ECOSYS implementation,
we propose to employ an existing aspect-oriented approach to instrument the bytecode and
invoke the dispatch mechanism with relevant information about the join point such that the
advice behavior may be applied with full flexibility. Due to its simplicity, this is the technique
that is employed for the prototype implementation presented in the next section.

4.3.2 Prototype EcoSys Implementation

A prototype implementation of ECOSYS was developed by employing the facilities of the ASPECTJ
approach to realize the interception of the candidate join points in the application. This
implementation provides a number of pointcut primitives that may be directly composed in
the host programming language. Alternatively, pointcut expressions in the familiar ASPECTJ
pointcut language may be employed. This alternative does not diminish the utility of the ‘native’
ECOSYS pointcuts; rather, it acknowledges that multiple pointcut paradigms may be provide
different trade-offs as discussed in Section 4.1.2.

Join point dispatch The first responsibility of an ECOSYS implementation is to complete the
join point dispatch mechanism described in Section 4.1.3. To this end, the ASPECTJ around

4.3 Developing an EcoSys Implementation 51

1 @SuppressAjWarnings("adviceDidNotMatch")
2 aspect AJCore extends Core<AJJP> {
3 pointcut systemScope():
4 within(ecosys..*+) && !within(ecosys.Advice+) || within(@DontAdvice *);
5 pointcut aroundCapable():
6 !handler(*) && !initialization(new(..)) &&
7 !preinitialization(new(..)) && !staticinitialization(*);
8

9 pointcut dynamicScope(Object thiz, Object tgt):
10 !systemScope() && aroundCapable() && this(thiz) && target(tgt);
11

12 // Dynamic caller and receiver, 0 arguments
13 Object around(Object thiz,Object tgt): dynamicScope(thiz,tgt) && args() {
14 return dispatch(new AJJP(thisJoinPoint, new RawJoinPoint() {
15 public Object invoke(Object thiz, Object tgt, Object... args) {
16 assert args.length == 0;
17 return proceed(thiz,tgt);
18 }
19 }),thiz,tgt);
20 }
21

22 // Dynamic caller and receiver, 1 argument
23 Object around(Object thiz, Object tgt, Object arg1):
24 dynamicScope(thiz,tgt) && args(arg1) {
25 return dispatch(new AJJP(thisJoinPoint, new RawJoinPoint() {
26 public Object invoke(Object thiz, Object tgt, Object... args) {
27 assert args.length == 1;
28 return proceed(thiz,tgt,args[0]);
29 }
30 }),thiz,tgt,arg1);
31 }
32

33 ... // More cases that follow this pattern
34

35 pointcut staticScope():
36 !systemScope() && aroundCapable() && !this(Object) && !target(Object);
37

38 ... // Cases for static caller and receiver
39 }

Listing 4.4: Employing ASPECTJ to instrument all candidate join points with invocations of the
dispatch behavior

52 The EcoSys AOP Framework

advice mechanism is employed to instrument all candidate join points with invocations of the
dispatch behavior. This is illustrated by the code in Listing 4.4, which shows the extension of the
Core class specific to this implementation. By defining this extension as an aspect entity with a
singleton instantiation strategy on line 2, a single instance of the core registry is automatically
created. The body of this aspect defines two named pointcuts to delineate the scope where join
point interception should occur (lines 3–4) and to exclude the join point kinds that cannot be
intercepted with around advice (lines 5–7). While ECOSYS types and the dispatch mechanism
need to be excluded from the instrumentation to prevent an endless loop in the join point
interception, the Advice types may be included to enable advice behavior to be itself advised
(a situation sometimes called “aspects-on-aspects”).

The rest of the body consists essentially of a number of around advice methods that will do
the actual join points interception. This interception is divided over several advice methods
according to the structure of the context of the join point. In case both a caller and receiver
are available (as selected by the named pointcut defined in lines 9–10), and there are no other
arguments, the advice in lines 13–20 is employed. This advice binds the context parameters
and invokes the dispatch method that is inherited for the Core class with these context values
and an instance of the AJJP class that groups the information pertaining to the join point. This
consists on the one hand of a data structure with the join point properties, as provided by the
ASPECTJ thisJoinPoint construct. On the other hand, the invocation of the proceed method
is wrapped in a closure of type RawJoinPoint. This permits the execution of the intercepted
join point, possibly with new arguments which are provided to the invocation of proceed on
line 17.

The other around advice methods follow the same pattern and implement the interception
for cases with a different number of arguments, or where the caller and/or receiver are not
available (this may be the case for the invocation of a static member, for example). Since it may
very well be that not all the cases occur in the program the warnings from the ASPECTJ compiler
regarding the absence of matches for one of the around advice methods is turned off for the
entire aspect with the declaration on line 1.

Pointcut integration The second part of an ECOSYS implementation provides a pointcut lan-
guage and an integration of the pointcut primitives with the Pointcut class from Section 4.1.2.
The implementation provides two modes of pointcut integration, according to the two styles
that are discussed in this section.

Firstly, a number of pointcut primitives are provided without any dedicated syntax as classes
that extend the type Pointcut<AJJP> (a pointcut for join point of the implementation type
AJJP). These primitives implement a match method that employs the data structure with
properties of the intercepted join point available in the AJJP instance to determine a match.
Each primitive matches a different kind of join point and they may be configured with the
standard types from the reflective facilities of the JAVA language. For example, the primitive
MethodExecution matches method execution join points and it exposes the receiver of the
method to the advice. It may be configured as follows:

Pointcut<AJJP> pc = new MethodExecution(
Modifier.PUBLIC, // Modifier(s)
FigureElement.class, // Declaring type

4.3 Developing an EcoSys Implementation 53

void.class, // Return type
"set*" // Method name pattern

// Argument types (none)
);

Since the instantiation and composition of these primitives may occur in the JAVA language,
it is possible to build abstractions that provide more high-level pointcut primitives, e.g., a
method that constructs a pointcut to match the “setter” methods of a class that is provided as
an argument.

The second option is to use a standard pointcut expression in the familiar pointcut language
of ASPECTJ. The class AJHostedPointcut is another pointcut subclass that is configured with a
string that contains a pointcut expression. The standard ASPECTJ pointcut parser and matcher5

is then employed by this class to determine a match.

The combination of the above elements provides a complete implementation of the ECOSYS

framework6. It provides a very flexible model for the specification of aspects and advice behav-
ior, but since this is a prototype implementation, no efforts were made to provide performance
optimizations. The most obvious performance overhead is caused by the invocation of the
dispatch mechanism for every candidate join point, and the related construction of data struc-
tures for reflective access to this join point, both specified in Listing 4.4. Tracking information
about the possible pointcut and resolution entities should provide many opportunities for the
optimization of this behavior.

5The ASPECTJ implementation makes this functionality available as a part of an independent org.aspectj.matcher.
jar library. This is done with the specific intent of supporting the pointcut language in other aspect approaches such
as SPRING/AOP.

6The implementation is available for download at http://ssel.vub.ac.be/ecosys/. In addition to the material
from this chapter, it includes the typing schemes from Chapter 8.

http://ssel.vub.ac.be/ecosys/

54 The EcoSys AOP Framework

Chapter 5

Other Approaches for Expressive
Deployment

This chapter discusses a number of the aspect-oriented approaches or mechanisms that in-
fluence the expressiveness of the deployment logic compared to the situation discussed in
Chapter 3. Most of the work discussed in this section has been published simultaneously or
after the research that is reported on in Chapter 3 and Chapter 4 was undertaken1.

Since we do not assume that all readers have specific knowledge of the approaches discussed
here, we start the discussion of most approaches with a brief overview of the proposed language
elements. After this overview, we evaluate the contributions with respect to the requirements
outlined in Section 3.2.

To our knowledge, the set of selected approaches is a reasonably complete representation of
the body of related work available in literature. We remark that for some approaches, the authors
do not explicitly target the problem of deployment of reusable aspects. In some cases, the
approach targets specific parts of the deployment specification (e.g., the instantiation of aspect
instances). Other approaches address seemingly unrelated shortcomings in the programming
model of the ASPECTJ-family of aspect languages, or increase the general expressiveness of
those languages. The connection to aspect deployment may not be immediately apparent.
In such cases, we sketch how the proposed language elements may enable flexible aspect
deployment (and perhaps vice versa: some typical use cases of a particular approach may be
solved through better deployment support). The discussion in this chapter may therefore help
to give an impression of the breadth of deployment issues in aspect languages.

5.1 CaesarJ

CAESARJ is proposed by Aracic, Gasiunas, Mezini, and Ostermann (2006) as an aspect-oriented
language which combines aspect-oriented constructs such as pointcuts and advice with ad-
vanced object-oriented modularization mechanisms. It shares the aim of the JASCO approach

1One notable exception is the ASPECTS approach, which exists since 2002.

55

56 Other Approaches for Expressive Deployment

1 abstract cclass TreeDisplay {
2 // visualization
3 abstract void draw();
4 // data model
5 abstract Node getRoot();
6

7 abstract cclass Node {
8 // visualization
9 abstract void draw();

10 abstract boolean isSelected();
11 // data model
12 abstract String getLabel();
13 abstract int getNbChildren();
14 abstract Node getChildAt(int i);
15 }
16 }

Listing 5.1: CAESARJ collaboration interface for the display of a tree model

(from Section 2.2.2) to enable aspect components as reusable large-scale aspects. The language
also contributes several elements of dynamic aspect control.

5.1.1 Proposal

CAESARJ extends the JAVA language with a number of elements that add roughly one hierarchical
composition mechanism and two crosscutting composition mechanisms. We will present each
of these mechanisms in succession.

Hierarchical Composition

The designers of CAESARJ consider groups of collaborating classes as the basis for any large-
scale piece of functionality. The language therefore allows to group a set of interrelated classes
in a modular unit. This grouping is hierarchical: the unit is again a class, and it provides
object-oriented concepts such as abstraction, polymorphism and late binding with respect to
its member classes. We develop a small example to demonstrate the precise characteristics of
this class mechanism.

Consider the display of a tree-like data structure in a GUI tree control. For obvious reasons,
it is desirable to have a tree control that can display various data structures that have a tree
model. In addition, we may want to support the display of data through multiple tree control
implementations. In CAESARJ, the principle elements of interaction for a generic component
are laid out in a so called collaboration interface. A collaboration interface for the behavior of
our example is presented in Listing 5.1. The interface specifies a number of abstract operations
as well as types pertaining to the tree display behavior (the new types may again specify new
operations and types and so on).

5.1 CaesarJ 57

1 abstract cclass SimpleTreeControl extends TreeDisplay {
2 void draw() { getRoot().draw(); }
3 void onSelect(Node n) { n.selected = true; }
4 void onDeselect(Node n) { n.selected = false; }
5 abstract cclass Node {
6 boolean selected;
7 boolean isSelected() { return selected; }
8 void draw() {
9 ...getLabel();

10 ...getChildAt(i);
11 }
12 }
13 }

Listing 5.2: Implementation of the visualization facet of the TreeDisplay collaboration

1 abstract cclass DirectModelDisplay extends TreeDisplay {
2 Node root;
3 Node getRoot() { return root; }
4 abstract cclass Node {
5 String label;
6 List children = new LinkedList();
7 String getLabel() { return isSelected() ? "<"+label+">" : label; }
8 int getNbChildren() { return children.size(); }
9 Node getChildAt(int i) { return (Node)children.get(i); }

10 }
11 }

Listing 5.3: Implementation of the data model facet of the TreeDisplay collaboration

The operations may be logically partitioned according to different facets of the interaction.
In our example, a number of operations relate to the visualization of the tree, while others
concern its data model. We may define a number of subclasses of TreeDisplay that each imple-
ment one of these facets. Listing 5.2 presents a subclass that implements the visualization facet
and implements a simple tree display control. Listing 5.3 contains a subclass that implements
the data model by directly storing root and child nodes as instance data in the classes. Of course,
there may be other implementations of these facets as well, for example, a tree control with a
different presentation or a data model that stores the children in an array instead of a linked list.

At this point, it is important to highlight that the classes specified with the keyword cclass
are virtual classes. This signifies that inner classes are virtual members of the enclosing class
that may be overridden in subclasses of the enclosing class. This occurs with the Node class
in Listing 5.2 and Listing 5.3. The refinement of the inner class is employed in a subclass, for
example, in line 3 of Listing 5.2, we access the attribute selected, which is a field that is not

58 Other Approaches for Expressive Deployment

1 cclass SimpleDirectModelTreeDisplay extends
2 SimpleTreeControl & DirectModelDisplay {}

Listing 5.4: Mixin composition of implementations of the facets of the TreeDisplay collabora-
tion

present in the definition of Node from type TreeDisplay. This behavior is noticeably different
from standard inner classes in the JAVA language.

More specifically, CAESARJ adopts the family polymorphism model proposed by Ernst
(2001). In this design, virtual classes and the corresponding types are in fact attributes of
objects, not attributes of classes. For example, an occurrence of type Node in Listing 5.1 is
implicitly qualified with the instance of the enclosing class, TreeDisplay.this. Similarly, Node
in Listing 5.2 implicitly stands for SimpleTreeControl.this.Node. The Node instances of one
TreeDisplay instance are not compatible2 with another TreeDisplay instance, or in other
words, they must be of the same family (an enclosing class such as TreeDisplay is called a
family class for this reason). When Node is referenced from outside of the family class, it must
be explicitly qualified with a TreeDisplay instance.

To compose the different subclasses of a collaboration interface, the mechanism of mixin
composition is employed. Mixins are subclass definitions with a parameterizable parent class:
they specify a delta of new or overriding member definitions that may be applied to any
class given as an argument. This realizes a variant of multiple inheritance3 which linearizes
the superclasses, thereby avoiding ambiguities with respect to method dispatch and with
respect to sharing or duplication of inherited state. (Mixin composition was also briefly
considered at the end of Section 2.1.2.) In CAESARJ, the parent link for a subclass such as
SimpleTreeControl should not be considered the fixed class TreeDisplay: another subclass
of TreeDisplay may take its place. Mixin composition is specified using the & operator in
CAESARJ, as demonstrated in Listing 5.4. The composition of the two classes in this list-
ing results in a version of the class SimpleTreeControl where the place of the superclass
is taken by DirectModelDisplay. SimpleDirectModelTreeDisplay therefore inherits from
SimpleTreeControl, DirectModelDisplay and TreeDisplay, in that order. A linearization
algorithm defines the result of mixin composition in more complex cases.

It is important to remark that the mixin composition operator also propagates the composi-
tion into the inner classes. In the example, the Node classes are composed in the same order as
the linearization of the enclosing family class. Also, since SimpleDirectModelTreeDisplay is
a concrete class, the compiler will verify that all the abstract operations have been implemented.
This ensures that an implementation for all facets has been provided.

2To track this in the type system, dependent types are employed. Such types are abstracted over terms, which is
rather different from the type systems in this dissertation. We consider the opposite, i.e., terms abstracted over types, in
Section 6.2.3.

3Because of the availability of multiple implementation inheritance, CAESARJ does not need to distinguish between
interfaces and abstract classes. This explains why the collaboration interface in Listing 5.1 is defined as an abstract
class although none of its operations include an implementation.

5.1 CaesarJ 59

Crosscutting Composition

The crosscutting mechanisms supported by CAESARJ are wrapper classes and the pointcut/ad-
vice mechanism.

Wrapper classes The above mixin composition mechanism is hierarchical; in order to com-
pose different modules in a non-trivial way, they must have common ancestors because only
those inner class definitions are merged that override a common class definition. As a cross-
cutting alternative, facets can be implemented as adapters of already existing classes. This
expresses how the abstractions of a base application should be translated to the vocabulary of a
particular collaboration interface (this is termed on-demand remodularization by Mezini and
Ostermann, 2002). Such an adapter is similar to the object version of the adapter design pattern
described by Gamma et al. (1995, p.139–150), except that is directly built into the CAESARJ
language through the mechanism of wrapper classes.

Some examples of wrapper classes are shown in Listing 5.5, where we implement the data
model facet of the TreeDisplay collaboration using the FigureElement classes that we also
employed in Chapter 2. (Such a family class which implements a facet of the collaboration in-
terface by adapting external classes is called a binding.) The wrapper relationship is established
using the keyword wraps. One wrapper class is needed for each kind of figure element. Wrap-
pers implicitly maintain a reference to an instance of the class that they extend; this reference is
available by means of the predefined identifier wrappee. This wrappee instance is employed to
implement the behavior of the required interfaces.

The instantiation of wrappers differs syntactically from the ordinary object instantiation in
the omission of the new keyword (see line 3). The instantiations need to be qualified (implicitly
or explicitly) with an instance of the family class that encloses the wrapper class. The con-
structors of wrappers are implicitly defined; the argument of the constructor is the object to be
wrapped, and the result is the wrapper instance. The behavior of a constructor is different from
an ordinary constructor since it applies a mechanism called wrapper recycling: a new wrapper
instance is only created when no previous wrapper associated to the given object exist. The
existing wrapper instances are stored in a map that is stored in the outer family class instance.
As such, the wrapper instance may be used to store and access additional instance data for the
wrapped object relative to the involved family class instance. Multiple wrappers may still exist
for the same object when they are each associated with a different family class instance.

Finally, note in Listing 5.5 that we have defined multiple wrapper class with the same name
for different classes of the FigureElement hierarchy. These wrapper classes will implicitly
inherit from each other corresponding to the subtype relationships between the wrapped
classes, for example the version of FigureElementNode for class Point will inherit from the
version for class FigureElement, but not from the version for Group. When the joint constructor
of these classes is invoked, it will employ the dynamic type of the object to be wrapped to select
the most specific wrapper class (this is called dynamic wrapper selection). This feature facilitates
to build wrapper classes in a hierarchy that is parallel to the hierarchy of the wrapped classes.

The mechanism of wrapper classes is similar to the open classes mechanisms discussed
in Section 2.1.2 in the sense that they allow to add new state and behavior to existing classes
from outside of the class definition. However, it is argued by Ostermann and Mezini (2003)
that wrappers provide important advantages over the inter-type declarations of ASPECTJ. Most

60 Other Approaches for Expressive Deployment

1 abstract cclass FigureTreeDisplay extends TreeDisplay {
2 Figure figure;
3 Node getRoot() { return FigureElementNode(figure.getCanvasGroup()); }
4

5 cclass FigureElementNode extends Node wraps FigureElement { }
6 cclass FigureElementNode wraps Group {
7 String getLabel() {
8 return String.format("Group of %d elements",getNbChildren());
9 }

10 int getNbChildren() { return wrappee.getElementCount(); }
11 Node getChildAt(int i) {
12 return FigureElementNode(wrappee.getElement(i));
13 }
14 }
15 cclass FigureElementNode wraps Point {
16 String getLabel() {
17 return String.format("Point(%d,%d)",
18 wrappee.getX(),wrappee.getY());
19 }
20 int getNbChildren() { return 0; }
21 Node getChildAt(int i) { throw new IndexOutOfBoundsException(); }
22 }
23

24 pointcut figureChange(FigureElement fe):
25 execution(void FigureElement+.move(..)) && this(fe) ||
26 execution(void Group.add(..)) && this(fe) ||
27 execution(void Group.remove(..)) && this(fe);
28 after(): figureChange(fe) {
29 FigureElementNode(fe).draw();
30 }
31 }

Listing 5.5: Implementation of the data model facet of the TreeDisplay collaboration using
existing figure element classes

5.1 CaesarJ 61

notably, while for both mechanisms the added behavior may be polymorphic with respect
to base object types (wrappees), inter-type declarations do so by invasively changing the
classes directly. In contrast, wrappers allow to isolate the extensions with respect to different
aspect types and instances. The wrapper mechanism can therefore preserve the property of
independent extensibility. Additionally, the “mix-and-match” composition through mixins
provides a higher degree of reuse and variability than what is possible with abstract aspects and
single inheritance in ASPECTJ.

Pointcuts and Advice The existing classes may also need to adapt their existing behavior
within the composition. To this end, CAESARJ adopts the pointcut/advice mechanism from
ASPECTJ. This is demonstrated on lines 24–30 of Listing 5.5. Here, we want to trigger a redraw
of the display when the figure elements receive changes. This is expressed by advising the
relevant methods of the figure element classes. Note that we employ the wrapper constructor
of FigureElementNode in the advice method (line 30) to retrieve the associated node instance.

The pointcut/advice mechanism of CAESARJ is almost entirely identical to the one from
ASPECTJ (although pointcut and advice members may be more flexibly inherited in CAESARJ
due to the mixin compositions). One important point of divergence is with respect to aspect
deployment, where CAESARJ provides a number of mechanisms for dynamic aspect control.
When a concrete subclass is created that inherits advice methods then this class is not implicitly
instantiated as is the case for ASPECTJ (see the description in Section 2.2.1). For example:

cclass SimpleFigureTreeDisplay extends
SimpleTreeControl & FigureTreeDisplay {}

The advice behavior of this class is only applied after the class has been explicitly instantiated
and deployed by means of the built-in deploy operation.

TreeDisplay d = new SimpleFigureTreeDisplay();
deploy d;

After the execution of this operation, the advice methods defined in FigureTreeDisplaywill be
executed in the context of the d instance. The advice behavior may be removed with an inverse
undeploy operation. If such a dynamic deployment is not desired, the modifier deployed may
be added to the class declaration. This may be considered syntactic sugar for the definition of a
static initializer block that creates and deploys a single instance.

One variation in the dynamic deployment is that the deploy operation may also be provided
with a block:

deploy (d) { ... }

This will activate the advice behavior before the execution of the statements in the block and
deactivate it afterwards. It also limits the advice behavior to join points from the currently
executing thread (this could be interpreted as an additional condition that is included in the
pointcuts of the advice methods).

62 Other Approaches for Expressive Deployment

1 abstract cclass OutputAdvice {
2 abstract pointcut pc(Object o);
3 abstract setOutput(PrintStream o);
4 abstract setOutputLevel(Logging.Level l);
5 abstract void doDeployment();
6 }
7 cclass QoSDeployment extends OutputAdvice {
8 pointcut pc(Object o): ProgramPoints.modelManip(o);
9 void doDeployment() {

10 setOutput(Application.getLog());
11 setOutputLevel(Logging.INFO);
12 deploy this;
13 }
14 }

Listing 5.6: CAESARJ interface and example deployment for output advice

5.1.2 Evaluation of Deployment Expressiveness

Without taking anything away from the merits of the CAESARJ programming model, the language
elements that contribute to the deployment of pointcut/advice behavior are limited to the mixin
inheritance of pointcut and advice members and the facilities for the dynamic deployment of
advice behavior.

Reuse of deployment logic

Similar to ASPECTJ, CAESARJ employs the inheritance mechanism for the reuse of deployment
elements. In Section 3.2.1, we identified an important restriction for this reuse mechanism due
to the single inheritance model of ASPECTJ: it is not possible to inherit both the advice behavior
and the deployment elements, so one of these needs to be duplicated. The mixin mechanism of
CAESARJ addresses precisely this restriction. Provided that they both descend from the same
ancestor, an implementation of the advice behavior and an independent implementation of
the deployment elements can be inherited at the same time.

This is illustrated in Listing 5.6, where we present both a general interface for advice behavior
that writes to an output stream, and an implementation of the deployment of such advice
behavior. The deployment subclass QoSDeployment provides the same functionality as the
deployQoS procedure from page 47, with the exception of the interaction resolution behavior4.
The class may be composed with other subclasses of OutputAdvice, which define advice
methods that are bound to the named pointcut pc and that implement the remaining methods.
As such both the advice behavior and the deployment logic may be inherited.

4To the best of our knowledge, the subject of interaction resolution is not discussed in CAESARJ literature.

5.1 CaesarJ 63

Deployment control

Compared to ASPECTJ, the deployment model of CAESARJ assigns a different status to some
deployment operations. The instantiation of classes that contain advice methods, and the
subsequent activation of these advice methods, are no longer predefined operations. They
may occur at run-time through the invocation using user-level statements. This brings about
advantages for these deployment responsibilities similar to what is the case for ECOSYS, which
organizes these operations in a similar manner. However, we remark that we identify at least
one other important responsibility of deployment logic in Section 3.1: the configuration of
concrete program points by combining the advice method with a pointcut definition. This facet
of the deployment is still confined to the static domain in CAESARJ since the combination of
pointcuts and advice methods occurs through a static inheritance mechanism. (Put differently,
the pointcuts to which the advice methods of a class are bound are fixed at compile-time.) As a
result, this configuration of concrete program points does not benefit from these advantages,
and unfortunately, there are no provisions to compensate for this on the static level.

Concretely, with respect to deployment quantification, we observe that it is possible to
employ the ordinary JAVA control structures to flexibly create a large number of object instances
and activate their advice methods. The control structures allow to organize the specification
such that it does not grow at the same pace as the number of instances that are created.
However, it is not possible to use the control structures to create combinations of a number
of pointcuts and a number of advice methods, as in the original example from Section 3.2.2.
These combinations are fixed as a part of the static semantics, where no control structures
are available. It is therefore required to manually define a new type for every combination
of a pointcut and an advice method. This may lead to problematic growth if the number of
pointcuts and advice methods is high.

With respect to dynamic deployment, we similarly have the problem that advice methods
may not be bound to different pointcuts at run-time (let alone that new pointcuts may be
introduced). The only exception is that the application of the advice method may be restricted
to join point from the current thread by using a deployment block. Additionally, new object
instances may be created at run-time, and since this may be requested through ordinary
statements, it is possible to integrate this deployment behavior with the relevant program
points of the base application. At this point, data from the program context may be employed
for the configuration of the object instance. For example, we may recreate the deployment at
the login event from page 48 in CAESARJ:

void login(User u) {
Session s = new Session(u);
// Deploy instance of tracing advice class for this session:
deploy new TracingAdvice(s,u.getLog());
...

}

However, in this example, the advice method of all deployed TracingAdvice instances will
be invoked for operations on any session. The advice behavior will first need to check if the
intercepted session indeed matches the session for which the TracingAdvice instance was
triggered.

64 Other Approaches for Expressive Deployment

5.2 Eos

The EOS language by Rajan and Sullivan (2003, 2005) aims to enhance the conceptual integrity
of the programming model of aspect languages by unifying classes and aspects, and advice
methods and ordinary methods. The authors criticize the model of languages such as ASPECTJ
for organizing aspects as module-like constructs (with a single global module instance); it is
claimed that the unification contributes to an aspect construct that is more object-oriented, in
the sense that (i) aspect instantiation becomes available under program control, and (ii) allows
aspects to advise object instances rather than classes.

The motivation for these language changes is the application of aspects for the integration
of systems (as described by Sullivan et al., 2002), where it is frequently required to deploy
mediators for specific objects.

5.2.1 Proposal

EOS is presented as an extension of the C# programming language. The most important new
language element is the classpect, which is an ordinary class that may contain named pointcuts
and bindings among its members, in addition to fields and methods. An example of a classpect
is shown in Listing 5.7; a binding is defined on line 6.

A binding consists of a pointcut and the name of a method from the same class. The intent
of a binding is to implicitly invoke the specified method as advice behavior at the join points
that are matched by the pointcut. Additionally, the binding indicates the advice position (before,
after or around) and organizes the transfer of context arguments. The pointcut language is
identical to the one from ASPECTJ, with two notable exceptions. In case of after advice, the
return value of the join point may be bound using the pointcut designator return, and in case
of around advice, the designator aroundptr binds a closure object that may be used to execute
the intercepted join point.

Additionally, a binding may be declared static or non-static by including or omitting the
keyword static. In case of a static binding, one singleton instance of the classpect is created.
At the join points, the designated advice method is executed in the context of this instance. This
is identical to the standard behavior in ASPECTJ. In case of a non-static binding, the classpect
must be manually instantiated and instance-level advising is employed: only join points that
involve a specific set of receivers are advised5. This set is configured using the addObject and
removeObject methods that are introduced by the compiler in case of a non-static binding.
The binding in Listing 5.7 is non-static, and the instantiation and configuration of the classpect
instance are demonstrated on lines 11–12. As a consequence of only adding s1, only the first
invocation of the Detect method is advised, not the second.

Interestingly, the mechanism of instance-level advising is accommodated by EOS with an
adjusted implementation strategy. A straightforward implementation would be to store the
list of relevant join point objects as a part of the classpect instance data. It is then required to
check each classpect instance to determine whether the join point object is relevant, over and
over again for each join point. The EOS implementation will ‘precompile’ the relevant classpect
instances per advised object and store this list as a part of the instance data of that object. When

5A number of other aspect languages have adopted a similar activation of advice per instance, for example, it is
proposed for JASCO by Vanderperren (2004, Sec. 4.2.3.5).

5.2 Eos 65

1 class SelectiveTrace {
2 void trace(Sensor s) {
3 Console.WriteLine("Before Sensor Detect: " + s);
4 }
5

6 before(Sensor s): execution(void Sensor.Detect()) && this(s): trace(s);
7

8 static void Main(string[] args) {
9 Sensor s1 = new Sensor();

10 Sensor s2 = new Sensor();
11 SelectiveTrace t = new SelectiveTrace();
12 t.addObject(s1);
13 s1.Detect();
14 s2.Detect();
15 }
16 }

Listing 5.7: Example of an EOS classpect that specifies instance-level advising

a join point occurs for the object, the advice method is directly invoked on all of the classpect
instances in the list.

5.2.2 Evaluation of Deployment Expressiveness

The critical description by Rajan and Sullivan of ASPECTJ aspects as global modules can be
regarded as a report of the rigidness of the aspect deployment model in traditional aspect
languages. It should therefore not come as a surprise that the mechanisms proposed by these
authors, namely explicit classpect instantiation and instance-level advising, have some positive
impact on the flexibility of aspect deployment.

Similar to CAESARJ, EOS organizes the instantiation of aspects as a standard user-level
operation. As we discuss in Section 5.1.2 with respect to that language, this gives rise to certain
advantages since the operation becomes subject to the abstraction mechanisms and control
structures of the programming language, and since the operation can be used from within other
parts of the program. However, instantiation is only one element of a deployment specification.
Other elements such as the pointcut configuration and the resolution of interactions with other
aspects need to be accommodated with similar capabilities.

In this respect, the addObject and removeObject methods in the case of instance-level ad-
vising can be considered user-level deployment operations that allow to configure the pointcut
(i.e., the specification of where the advice behavior need to be applied). The configuration is
restricted to a very specific facet of the pointcut specification, as only object instances may
be added to or removed from the pointcut scope, but this particular variation is optimally
supported by the implementation technique. The run-time status of this very specific part of
the deployment specification makes it amenable to the aforementioned capabilities. We may
demonstrate this in the context of our dynamic integration example, where a configuration of

66 Other Approaches for Expressive Deployment

the pointcut to advise only a particular instance is precisely what is required:

void login(User u) {
Session s = new Session(u);
// Deploy instance of tracing advice class for this session:
new TracingAdvice(u.getLog()).addObject(s);
...

}

In comparison to the CAESARJ implementation of this deployment behavior on page 63, the EOS

version offers the additional benefit that it is able to configure the pointcut dynamically, based
on the available program entities. However, when any other configuration of the pointcut rather
than the receiver instances is required (for example, argument instances), the EOS mechanism
is no longer sufficient.

5.3 Stateful Aspects and Inter-crosscut Variables

Stateful aspects are proposed by Douence et al. (2002) as a mechanism to employ a protocol of
multiple events in the program trace as a pointcut specification for advice behavior. This is not
traditionally considered a deployment mechanism, and we will not discuss this mechanism
and its different incarnations in full here. However, we remark that this mechanism may be
employed to dynamically activate advice behavior at a program event using an aspect that is
otherwise statically deployed.

This dynamic deployment behavior is accomplished by specifying a protocol in which the
standard application of advice behavior at a program event is ‘guarded’ (i.e., preceded) by the
single occurrence of an activation event (optionally, the advice behavior may be succeeded
by a deactivation event as well). In fact, this is not an uncommon use of stateful aspects: for
example, 3 of the 6 typical applications presented by Allan et al. (2005, Sec. 2.1) follow this
pattern where standard (i.e., not stateful) advice behavior is deployed after a single activation
event (and optionally undeployed after a deactivation event).

Douence et al. (2004) additionally propose to extend stateful aspects with inter-crosscut
variables. This mechanism allows to bind context arguments during the beginning of the
protocol, and match new events against these context arguments in the remainder of the
protocol. Additionally, the context arguments may be employed in the advice behavior that is
eventually triggered. When stateful aspects are employed for the dynamic deployment of advice
behavior as we sketch in the previous paragraph, inter-crosscut variables may be employed
to configure the pointcut of the advice behavior (and the advice behavior itself) with context
information from the activation event. In this way, some integration of the deployment with the
context information from the base program is achieved.

A concrete realization of stateful aspects with inter-crosscut variables is provided by the
tracematch extension of the ASPECTJ language by Allan et al. (2005). Using this approach,
aspects may declare tracematches in addition to ordinary advice methods; this is demonstrated
in Listing 5.8. A tracematch does not contain a pointcut, but rather defines a number of symbols
(lines 3–5) and a regular expression involving these symbols (line 7). The symbols correspond to
the event of entry or exit of one of the join points matched by the pointcut given in the symbol

5.3 Stateful Aspects and Inter-crosscut Variables 67

1 aspect TraceDeploy extends AbstractTrace {
2 tracematch (Session s) {
3 sym login after returning(s):
4 call(Session.new(..)) && withincode(void login(User));
5 sym sessionOp before: ProgramPoints.sessionOp(s);
6

7 login sessionOp+
8 { traceWith(s.getUser().getLog()); }
9 }

10 }

Listing 5.8: Dynamic deployment at a login event using a tracematch

definition (the choice between entry and exit event is specified with the keywords before and
after). The advice body (line 8) is executed when a suffix of the program trace is matched by
the specified regular expression. Only program events that correspond to one of the symbols
are taken into account; the other events are ignored.

Additionally, the example in Listing 5.8 employs an inter-crosscut variable named s which
is declared on line 2. Notice that both the symbols login and sessionOp provide a binding of
this variable. Additionally, the value of s is referenced in the advice behavior. The semantics
of tracematches defines that the advice body is executed for each single variable value that
may be bound consistently to all the occurrences of the variable. In our example, this means
that an occurrence of the login symbol will bind the variable value, and any occurrence of
the sessionOp symbol will only be considered when its s value is equal to a previously bound
variable value. As a result, we obtain that at a login event where a session is created, tracing
behavior for the operations of that particular session is activated.

We have specifically structured TraceDeploy in Listing 5.8 as a deployment of advice be-
havior that is inherited from an abstract aspect AbstractTrace. (Notice that the deployment
does only activate the advice behavior but does not create different aspect instances, such that
we cannot store the output handle as a part of the instance data and assume that a method
traceWith is provided where this output handle is provided.) This realization of a form of
dynamic and integrated deployment is rather different from the previous implementations
of the same behavior in EOS (on page 66) and ECOSYS (on page 48): there is no deployment
invocation statement in the program code that corresponds to the activation event (i.e., in the
definition of the inline method); the activation event is designed by means of a pointcut. If
this is considered beneficial, for example because the activation should occur at program points
that are scattered across the code base, then this may be supported in the other two approaches
as well, by writing a deployment aspects that includes the deployment invocation as a part of
its advice code.

68 Other Approaches for Expressive Deployment

5.4 Reflex

REFLEX is a versatile kernel for multi-language AOP proposed by Tanter and Noyé (2005). The
intent of the approach is to enable the use of different aspect approaches in the same piece of
software, for instance various domain-specific aspect languages. The REFLEX kernel provides a
number of building blocks that may be employed by language plug-ins for the implementation
of the language. In addition, the kernel provides facilities for the management of interactions
between aspects from different approaches.

Although the end developer is not the primary user of REFLEX, it is explicitly considered by
the authors that some advanced aspects may be directly implemented as REFLEX configurations.
Moreover, the REFLEX building blocks are sufficiently high-level to be used by an end developer
in this manner. For this reason, we consider the approach eligible for evaluation with respect to
our purposes.

5.4.1 Proposal

At its core, REFLEX defines an API for the transformation of base programs, and one for the
composition of such transformations. The API is at a mid-level of abstraction, in between
high-level programming languages and low-level code transformation. Language plug-ins
translate the aspect specification from a high-level language into REFLEX API invocations. The
transformations are then effectuated by the kernel at load-time (using the JAVASSIST library by
Chiba, 1998).

The transformation API unifies several aspect-oriented mechanisms (such as pointcut-
s/advice and open classes) in one weaving model that adapts concepts from (static) meta-
programming. In this model, links are the main units of transformation; they consist of a cut
and an action and may be either structural or behavioral. A structural link (S-link) employs a
cut which selects static program elements. The attached action may be structural, in which case
new program elements are introduced (similar to the open class mechanism), or behavioral,
in which case the effect is similar to ASPECTJ error or warning declarations which signal the
existence of certain join points at weaving-time. A behavioral link (B-link) employs a cut which
selects dynamic program elements; when their action is behavioral, this corresponds to the
pointcut/advice mechanism.

Although the actions of behavioral links are applied at run-time, REFLEX will ‘set up’ these
actions during the weaving by inserting hooks which delegate control to a metaobject, which is
a run-time object which provides the action (i.e., the advice behavior). The concrete usage of
the REFLEX API is demonstrated in Listing 5.9. The definition of a B-link consists of a hookset
(lines 1–5) and a metaobject definition (line 7). The hookset is employed while weaving to
match the join point shadows (additionally, a B-link may also specify an activation condition,
which corresponds to the concept of a residue). The metaobject definition specifies which
code should be used in the hooks to obtain the metaobject instance. In case of line 7, we
specify that new instances of class Profiling should be created. Additionally, the link attribute
configuration on line 13 indicates that a single hookset instance should be used for all hooks,
while the configurations on lines 10–12 indicate that the hook should include invocations of
the start and stop method of the metaobject, respectively before and after the operation of
interest.

5.4 Reflex 69

1 Hookset mainOps = new PrimitiveHookset(
2 MsgReceive.class, // join point kind
3 new NameCS("Main"), // class selector
4 new NameOS("get","set") // operation selector
5);
6

7 MODefinition profiler = new MODefinition.ClassMO(Profiling.class);
8 BLink mainProf = API.links().createBLink(mainOps,profiler);
9

10 mainProf.setControl(Control.BEFORE_AFTER);
11 mainProf.setCall(Control.BEFORE, "Profiling", "start");
12 mainProf.setCall(Control.AFTER, "Profiling", "stop");
13 mainProf.setScope(Scope.GLOBAL);
14

15 API.rules().addRule(new Wrap(tracing,mainProf));

Listing 5.9: Deployment of profiling advice behavior using REFLEX

The weaving transformations specified by S-links and B-links are carried out in two con-
secutive phases: S-link applications and B-link setup (since the structural modifications of
S-links may be subject to behavioral cuts, they are considered first). Both phases contains a
detection/resolution scheme to manage the interactions between links. When multiple links
affect the same program point, this is considered a situation of underspecification, and link
composition rules are considered for additional information. For example, on line 15 of List-
ing 5.9, we define that the link elements of a tracing link should wrap those of the profiling
link using the Wrap composition operator. If the composition is not fully determined by the
composition rules, then an interaction listener is notified; the default implementation will issue
a warning regarding the underspecification. Other composition operators, as well as some
extensions of this mechanism are proposed by Tanter (2006b).

5.4.2 Evaluation of Deployment Expressiveness

The REFLEX kernel provides an open weaving platform where aspects may be deployed through
general JAVA code which invokes the operations of the REFLEX API. It is important to clarify
that this deployment code is executed once, at the time of weaving (which is normally when
the application is loaded). This is fundamentally different from the run-time deployment
operations that we have discussed for some of the other approaches in this chapter, or for
ECOSYS in Chapter 4. It is not possible to attach the operations of the REFLEX API to run-time
program events, which hampers the dynamic deployment of aspects and makes it cumbersome
to configure the metaobject instances (which are instantiated implicitly or by means of a factory)
with run-time program values.

However, by virtue of being specified in a high-level programming language such as JAVA,
the deployment code may be structured using procedural abstractions and the common control
structures. This enables to specify reusable deployment code, and provides deployment quan-

70 Other Approaches for Expressive Deployment

tification. For example, it is trivial to deploy links for each combination of a number of advice
methods (specified by metaobject definitions) and program regions (specified by hooksets).

for(MODefinition mod: ...)
for(Hookset hs: ...)

API.links().createBLink(hs,mod);

As a matter of fact, a dedicated language with a concrete syntax for the operations of the
REFLEX API is proposed as an extension by Tanter (2006a). Deployment code specified using
this dedicated language lacks the properties of reuse and deployment quantification since
the language lacks the high-level features of JAVA. One interesting property of this dedicated
language is that REFLEX statements may be placed inside of JAVA programs. This kind of
integration may be able to provide the best of both worlds.

5.5 AspectS

ASPECTS is an aspect-oriented approach for the SQUEAK SMALLTALK environment proposed by
Hirschfeld (2003). It is designed as a dynamic AOP approach which leverages the features of
the dynamic programming language SMALLTALK. One of its applications lies in the domain of
run-time adaptability: the modification of systems at run-time in order to carry out changes that
were not anticipated during development. This feature is crucial for systems with strong avail-
ability demands (for example, telecommunications). This application of ASPECTS is discussed
by Hirschfeld and Lämmel (2004).

5.5.1 Proposal

ASPECTS extends the SMALLTALK metaobject protocol in order to provide the aspect-oriented
mechanisms of pointcuts/advice and introductions. It employs method wrappers to instrument
both message sends and receptions. Method wrappers changes the SMALLTALK method lookup
process to return a decorated method instead of the original compiled method. ASPECTS is very
much a framework approach since it is implemented entirely on top of SMALLTALK itself.

In ASPECTS, aspects are subclasses of the predefined AsAspect class. Advice methods are im-
plemented by defining methods with a name that begins with the word advice. This method is
not the advice itself; instead it should return an AsAdvice object which specifies both the advice
behavior and its activation criteria. The predefined AsAdvice kinds are: AsBeforeAfterAdvice
(to add behavior before or after a join point), AsHandlerAdvice (to catch an exception thrown
by a join point), AsAroundAdvice (to replace a join point) and AsIntroduction (to introduce
new behavior).

Because of the implementation using method wrappers, the activation of an advice is
specified using two elements.

1. The first is the pointcut, which is specified by means of a list of AsJoinPointDescriptor
instances. Each join point descriptor denotes one target for the weaving process (i.e., a
method which can be wrapped). When multiple join points need to be specified, multiple
joint point descriptors can be enumerated manually, or a list of join point descriptors

5.5 AspectS 71

1 AsAspect subclass: #TimeAspect
2 instanceVariableNames: ’qualifier pointcut output’
3 classVariableNames: ’’
4 poolDictionaries: ’’
5 category: ’Demo’
6

7 TimeAspect>>adviceShowTime
8 ^ AsBeforeAfterAdvice
9 qualifier: self qualifier

10 pointcut: self pointcut
11 beforeBlock: [:receiver :arguments :aspect :client |
12 self output show: ’[’, Time now printString, ’]’]

Listing 5.10: Reusable AspectS aspect to log a timestamp before operations

can be calculated. So interestingly, ASPECTS does not employ type or method patterns
in order to quantify over join points; instead, some code block will use the reflective
facilities of SMALLTALK in order to find all desired methods, and it will construct a join
point descriptor for each of them and return the resulting list.

2. The second activation element is the advice qualifier. Using a number of attributes,
this qualifier determines the activation block for the advice: the activation block re-
turns a boolean to indicate whether the involved method wrapper should be activated
or not. The activation block may check for dynamic conditions that complement the
selection done by the pointcut. It has access to SMALLTALK’s activation stack and may
therefore implement conditions related to the sender class, involved sender or receiver
instances, or general control-flow. Two frequently used advice qualifier attributes are
#receiverClassSpecific, for an activation test that applies no further conditions, and
#cfFirstClass, for an activation test which examines the stack for one or more senders
with the same class as the receiver’s.

An example of an ASPECTS aspect is shown in Listing 5.10. The aspect defines one before
advice (defined in method adviceShowTime). This advice will print a timestamp before the
execution of the intercepted operation. In order to prepare for the reuse of this aspect behavior,
the configuration elements have already been placed in instance variables. These elements
are the pointcut (pointcut), the advice qualifier (qualifier), and the stream where the time
stamp needs to be printed (output). In order to deploy this reusable aspect, we may create an
aspect instance with a value for these configuration elements, and invoke the install method
in order to trigger the weaving by ASPECTS:

(TimeAspect
qualifier: (AsAdviceQualifier

attributes: { #receiverClassSpecific. #cfFirstClass. })
pointcut: [{AsJoinPointDescriptor

targetClass: TranscriptStream

72 Other Approaches for Expressive Deployment

targetSelector: #show:. }]
output: Transcript) install

As a result of this deployment, the advice behavior will be applied for the reception of show:
messages by instances of the class TranscriptStream. The timestamp will be written to the
standard console identified by the name Transcript. Since the advice behavior itself includes
an invocation of show: on a TranscriptStream, we must include the #cfFirstClass advice
qualifier in order to prevent triggering an endless loop.

5.5.2 Evaluation of Deployment Expressiveness

The fact that ASPECTS is able to organize the deployment specification as ordinary run-time
code is very beneficial for the deployment expressiveness. We may observe that it meets
the qualifications of first-class deployment procedures, similar to ECOSYS, since it provides:
(i) deployment procedures parameterized with aspects, pointcuts, etc., (ii) control structures,
(iii) deployment procedure invocation from base program. The only limitation is that AS-
PECTS does not provide support for the resolution of aspect interactions: to our knowledge,
the execution order in case of multiple advice instances that intercept the same join point,
is fixed (cfr. Hirschfeld, 2003, Sec. 5.2). The fact that ASPECTS otherwise offers first-class de-
ployment procedures has a direct impact on the possibilities for the reuse, quantification and
dynamism/integration of deployment code.

As an example of deployment reuse, we may recreate the deployQoS example from page 47
in ASPECTS:

deployQoS: anOutputAspect
(anOutputAspect

qualifier: (AsAdviceQualifier
attributes: { #receiverClassSpecific. })

pointcut: modelManip
output: Application log) install

In this example, we define a deployQoS method which takes an aspect as its argument. The
method will deploy the given aspect according to a specific strategy. This may be employed to
deploy multiple aspects in the same manner:

deployQoS: TimeAspect.
deployQos: SecurityAspect.
...

As an example of deployment quantification, we may deploy an aspect instance for each
combination of an aspect and a pointcut from a set of aspects and a set of pointcuts. This
may be done using a specification that does not grow as fast as the number of deployed aspect
instances if we employ a nested loop:

5.6 Summary 73

{ asp1. asp2. asp3. } do: [:asp |
{ pc1. pc2. pc3. } do: [:pc |

(asp
qualifier: (AsAdviceQualifier

attributes: { #receiverClassSpecific. })
pointcut: pc) install]]

It is clear that an example involving dynamic and integrated activation of deployment logic may
be created in a similar fashion.

In retrospect, the relatively large deployment expressiveness of ASPECTS might not come
as a surprise given that it is an open system built on top of a full-fledged metaobject protocol.
Since the distinction between the framework code and the user code is (deliberately) blurred,
practically all of the expressiveness of the metaobject protocol is made available to the user,
which is also more than what is needed for our goals. In comparison to this approach, the
benefit of first-class deployment procedures and ECOSYS is that the required expressiveness
elements are clearly identified, such that they may be harnessed and better support may be
provided (for example in the form of an automatic verification of the safety of the deployment
logic, as we explore in Part II of the dissertation).

5.6 Summary

A summary of the evaluation of the deployment expressiveness of the highlighted approaches
from the previous sections is presented in Table 5.1. This overview indicates that some ap-
proaches (e.g., CAESARJ and ASPECTS) address all of the different expressiveness properties that
are discussed in Section 3.2, but do not support all of the different deployment responsibilities
from Section 3.1. The other way around, other approaches (e.g., REFLEX) support all facets of
the deployment logic but are fundamentally lacking certain expressiveness for this deployment
logic.

As a conclusion, we say that while the other approaches overlap in different degrees with
our work, and provide solutions that may be employed as alternatives to our proposal, only
first-class deployment procedures (and their realization in the ECOSYS framework) provides all
of the discussed expressiveness properties for all facets of the deployment logic.

74 Other Approaches for Expressive Deployment

Reuse
Quantifi

catio
n

Dynamism/Integratio
n

CAESARJ PC, I/C I/C I/C

EOS (PC), I/C (PC), I/C (PC), I/C

Stateful aspects with
inter-crosscut variables

- - (PC), (I/C)

REFLEX PC, I/C, R PC, I/C, R -

ASPECTS PC, I/C PC, I/C PC, I/C

First-class deployment
procedures (ECOSYS)

PC, I/C, R PC, I/C, R PC, I/C, R

Table 5.1: Summary of the deployment expressiveness of the discussed approaches. The
columns correspond to the different expressiveness properties that are proposed in Section 3.2.
The values in each column list the facet of the deployment logic for which this property is offered.
These facets correspond to the deployment responsibilities from Section 3.1, with the following
abbreviations: “PC” for configuration of concrete program points, “I/C” for instantiation and
configuration of the instances, “R” for interaction resolution. Values in (parentheses) signify
that the property is only supported for specific parts of this facet.

Part II

Safety of Deployment Logic

75

Chapter 6

Subtype and Parametric
Polymorphism

This chapter discusses a number of type systems and type system features outside of aspect-
oriented programming. It establishes the preliminaries to work on the typing of pointcuts
and advice in the rest of the dissertation. Section 6.1 presents some important type system
concepts and terms in an abstract manner. Most notably the central notions of subtype and
parametric polymorphism are introduced. Section 6.2 then gradually builds up a concrete type
system with both these styles of polymorphism (and their combination) for a simple language
with first-class functions. This allows to present the detailed motivation for, and the different
realizations of, subtype and parametric polymorphism in a simplified setting with very little
complexity from other language features. The resulting type system is directly employed to
discuss pointcut and advice typing in Chapter 7. It is also used in Section 6.3 of this chapter,
which explains how the Generics feature of JAVA 5 adds parametric polymorphism to the type
system with object-oriented subtyping from previous JAVA versions. JAVA 5 Generics is heavily
employed to develop a typed version of the ECOSYS framework in Chapter 8.

6.1 Concepts and Terminology

The following two subsections carry the titles and explain the main concepts from two seminal
papers in the field. The first paper is by Cardelli and Wegner (1985); it classifies and explores
different abstraction techniques for achieving polymorphism in type systems. This work focuses
on the expressiveness of type systems. The second paper is by Wright and Felleisen (1994) and
proposes a manner to (formally) connect type systems to the programming language semantics
to evaluate their soundness guarantees. This technique has since become commonplace.

6.1.1 On Types, Abstraction and Polymorphism

Type systems classify program objects according to their usage or behavior: sets of objects
with uniform behavior may be named and are referred to as types. Program objects may

77

78 Subtype and Parametric Polymorphism

be data values here, but also functions, expressions, objects in the sense of object-oriented
programming, etc. The rules of a type systems are generally designed to ensure that composite
program objects are type-consistent, i.e., that the abstractions represented by the types of
their constituents are compatible. As such, types impose constraints which help to enforce
correctness: those programming errors that correspond to type violations can be automatically
detected. In a static type system, where types are determined for all static program elements,
errors can be detected early, before program execution. Additionally, the type information may
be exploited by a compiler to organize greater execution-time efficiency, or by a development
environment to make the program source code easier to navigate.

The downside of static typing is that its conservative notion of correctness may lead to a loss
of flexibility and expressive power. By (prematurely) constraining the behavior of objects to that
associated with a particular type, certain valid and useful programs may be rejected. Generally,
this problem can be alleviated by employing a more sophisticated type system that can track
properties of larger classes of programs. In this respect, type polymorphism has emerged as
an important technique to generalize conventional type systems. Traditional typed languages,
such as PASCAL, are said to be monomorphic, since they are based on the idea that their program
objects (in this case functions, procedures, and their operands) have a unique type. This may
be contrasted with polymorphic languages, which allow values, variables and other program
objects to have more than one type. Or interpreted differently, they allow program objects to
have a polymorphic type, i.e., a type whose operations are applicable to values of more than
one type.

Different ways of organizing polymorphism are used in both theory and practice. Cardelli
and Wegner (1985) distinguish between the apparent polymorphism of syntactic convenience
features such as coercions and overloading (termed ad-hoc polymorphism) and the true poly-
morphism of universal operations (universal polymorphism). While the constructs of the first
group are replaced by a predefined finite set of monomorphic operations after disambiguation,
true universal operations work on an open-ended set of types that meet a certain criterion. In
addition, the authors identify two common styles of universal polymorphism:

Subtype (inclusion) polymorphism partially orders types according to a subtype relation; the
objects of a subtype are considered to be included in all supertypes, so objects of a subtype
can be uniformly manipulated as if belonging to their supertypes (in this sense the same
object has many types). This inclusion structure will require that objects of subtypes
support at least the operations of their supertypes.

Inclusion polymorphism can be found in many class-based object-oriented languages
(with SIMULA 67 as the earliest example). The inheritance relation between classes is
normally used as the basis for the subtype relation.

Parametric polymorphism allows to type program objects with a specific type structure; it
allows to express relations between constituents in the type structure while keeping the
actual constituents unknown. An example is a function that returns a result of the same
type as its argument, regardless of this argument/result type. This kind of polymorphism
derives its name from the common practice of connecting related constituents using type
parameters: the example function takes an argument of type T and returns a result of
type T , where T is a formal type parameter that may be bound to any type value.

6.1 Concepts and Terminology 79

The paradigmatic language for parametric polymorphism is ML (Milner, 1984), which is
entirely built around this style of typing.

Note that parametric polymorphism allows to treat object uniformly, irrespective of any specific
aspects of the constituent types; it is only concerned with the type relations between these
constituents. While inclusion polymorphism is also able to treat all objects uniformly by
including them in a top type that is a supertype of all other types, this is of limited use from a
typing perspective, since the top type can only offer completely general operations. In essence,
all static information is lost when manipulating program objects by means of a top type. In
contrast, parametric polymorphism allows to retain static types even for operations that work
uniformly on all objects, since the operation can have a type structure where constituents are
interrelated. This difference is concretely illustrated in Section 6.2.3.

Both types of polymorphism are considered complementary and can be combined in the
same type system, as we will see in later sections.

6.1.2 A Syntactic Approach to Type Soundness

As we mentioned in the previous section, the rules of a static type system verify the consis-
tency of the types in a composite program object in order to prevent type violations during
the execution of the program. A type system is sound when the type checking provides an
actual guarantee of the absence of type errors for all possible executions of the program. The
typing rules are sometimes called the static semantics of the language, while the standard
semantics that govern the program execution is referred to as the dynamic semantics. With this
terminology, soundness can be interpreted in a wider sense as the guarantee that the static
semantics is a valid abstraction of the dynamic semantics (for some appropriate definition of
“valid abstraction”). Soundness is an essential property from which a type system derives most
of its usefulness.

To rigorously define and evaluate this (and other) type system properties, we need to deal
with the basic aspects of programming languages in a formal (i.e., precise, clear, mathematically
tractable) manner. While the means to formally define the syntax and typing rules are seldom
varied (typically a formal grammar and type inference rules are used), different styles have been
used to describe the evaluation: e.g., denotational, operational and axiomatic definitions of
the dynamic semantics may be used. Unsurprisingly, the choice of semantic style has a direct
impact on the definition and evaluation of the soundness property.

Wright and Felleisen (1994) show how an operational formulation of a language’s semantics
as a series of rewriting steps allows simpler soundness proofs that use a standard structure
and straightforward proof techniques. Using this technique, the semantics of a programming
language is modeled as a calculus, i.e., as a system of symbolic manipulation of programs.
Each intermediate step of an evaluation of a program is itself a program, and the evaluation is
performed by successive reductions into a new state. Reductions may either continue forever,
or may reach some final state where the semantics allows no further reduction. When this final
program adheres to a certain predefined structure that allows it to be interpreted as a primitive
value, the computation has completed. Otherwise the final state is taken to be a type error;
a run-time type error is thus indirectly defined as a stuck state: a non-primitive program for
which the semantics allows no reductions. Soundness can be formulated as the property that

80 Subtype and Parametric Polymorphism

the reduction of well-typed programs will only halt when a primitive result is obtained. The
slogan “well-typed programs don’t get stuck” is sometimes used to summarize this definition.

The strategy for proving soundness is then based on the observation that, since the interme-
diate states of evaluation are programs in this formulation of the semantics, the type system
may deduce a type for each state. The correspondence of the typing rules to the reduction
rules can therefore be shown rather directly, through the following two properties which are
sufficient conditions to establish soundness:

Preservation Reductions preserve type, i.e., any reduction of a well-typed program is again a
well-typed program.

Progress Well-typed programs are not in a stuck state, i.e., a well-typed program is either a
primitive value or can be reduced to another program.

The technique of proving soundness of a type system by modeling the semantics as a calcu-
lus and showing progress and preservation properties, is now widely used. Lambda calculus
(Barendregt, 1985) (or one of its extensions) typically serves as a foundation for functional and
procedural programming languages, while object calculi (Abadi and Cardelli, 1996; Igarashi
et al., 1999) have been developed for object-oriented languages.

6.2 Subtype and Parametric Polymorphism for Functions

This section will explore the concepts of subtype polymorphism and parametric polymorphism
by gradually building them into a simple functional programming language. This serves two
purposes, both of which originate from the fact that such a language can have a simple mathe-
matical foundation. First, it allows to present the typing concepts in a very general form, with
minimal interference from other language features. The language is also used for this purpose
in Chapter 7. Second, the language is simple enough to define its typing rules formally. This
section can be used as a light introduction to the notations and techniques from the formal
arsenal that will be used in some of the later chapters.

Although the language presented in this section is not derived from one particular source, al-
most all of its elements are known from literature. The presentation starts with a monomorphic
typed functional language that corresponds rather directly to the simply-typed lambda calculus
(Church, 1940). It is then gradually extended with features from the FUN language by Cardelli
and Wegner (1985), adding support for subtype polymorphism and various forms of parametric
polymorphism (and the combination of the two). A typed calculus with corresponding features
is known as F<: (“F sub”, see Cardelli et al., 1994), a system which has played a central role in
studies on the foundations of object-oriented programming. More background is given in the
textbook on type systems by Pierce (2002).

One important difference with systems from literature is that we will motivate and include
support for quantifying type variables with lower bounds in addition to the traditional up-
per bounds. This feature anticipates the type systems for aspect languages developed in the
following chapters.

6.2 Subtype and Parametric Polymorphism for Functions 81

Lexical metavariables
x, y term variables
I labels

Term expressions
e ::= true | false boolean constants

| if e0 then e1 else e2 boolean test
| 0 | 1 | -1 | . . . integer constants
| e1 +e2 | e1 ==e2 integer operations
| x variable term
| fun x :T => e function abstraction
| e0 e1 function application
| {I1 =e1, . . ., In =en} record construction
| e.I record projection

Type expressions
S,T,U ::= Bool boolean type

| Int integer type
| T1 ->T2 function type
| {I1 :T1, . . ., In :Tn} record type

Typing context (assumptions)
A ::= empty context

| A;x :T
term variable type

Term expression typing A ` e : T

TRUE

A ` true : Bool
FALSE

A ` false : Bool

IFTHENELSE

A ` e0 : Bool A ` e1 : T A ` e2 : T

A ` (if e0 then e1 else e2) : T

INT0

A ` 0 : Int
INT1

A ` 1 : Int · · ·

PLUS

A ` e1 : Int
A ` e2 : Int

A ` (e1 +e2) : Int

EQUAL

A ` e1 : Int
A ` e2 : Int

A ` (e1 ==e2) : Bool

VAR

. . .;x :T; . . . ` x : T

ABS

A;x :T1 ` e : T2

A ` (fun x :T1 => e) : T1 ->T2

APPL

A ` e0 : T1 ->T2 A ` e1 : T1

A ` (e0 e1) : T2

RECD

A ` e1 : T1 · · · A ` en : Tn

A ` {I1 =e1, . . ., In =en} : {I1 :T1, . . ., In :Tn}

PROJ

A ` e : {I1 :T1, . . ., In :Tn}

A ` e.Ii : Ti

Figure 6.1: Definition of syntax and typing rules for simply-typed functions. Syntactic categories
are represented by metavariables (in italic) which always bind elements of that category. They
are the nonterminals of the language (the terminals are in teletype). The typing judgment
is defined as a series of inference rules: the statements above the horizontal bar represent
conditions; the statement below the bar is the conclusion (the horizontal bar may be omitted if
there are no conditions). The appearing metavariables are always implicitly scoped over the
entire rule.

82 Subtype and Parametric Polymorphism

6.2.1 Simply-Typed First-Class Functions

The definition of the syntax and typing rules for a functional language with simply-typed
functions is given in Figure 6.1. The main elements of the language are terms and types.
The typing rules will associate a type with certain well-formed terms based on a number
of assumptions regarding the context where the term appears. The notation for this typing
judgment is A ` e : T , to be read as “term e has type T under assumptions A”.

Language constructs

The language contains a number of base types and values and their primitive operations. To
keep the presentation simple, only integers and booleans are included. The values of these
base types have a fixed type regardless of their context, as indicated by the unconstrained
metavariable A in rule TRUE, rule INT0, etc. The operations on these types are well known from
almost any programming language.

The language also allows to build anonymous functions (or lambdas) to abstract terms over
other terms, represented by variables. Although only functions with one argument are allowed
to keep the language minimal, multiary functions can be easily simulated using a series of unary
functions, as we will see below. As in any functional language, the functions in our language are
first-class terms. Such terms have a function type T1 ->T2 that captures the domain (T1) and
codomain (T2) of the function. This information allows to adequately type the application of a
function to an argument in rule APPL.

The typing of the function abstraction itself (rule ABS) will require a typing of the function
body in a context that is enriched with a term variable of the declared type. So when typing
the function fun x :T => e, it is verified that the body e is well-typed under the assumption
that variable x has type T , as well as any other assumptions from the context of the function,
if it is a nested term. To avoid confusion between the new variable and variables from the
context, we (silently) require that the name x be chosen so that it is distinct from the names of
the variables that already exist in the context. This is not a big restriction, since variables bound
by function abstractions can always be renamed when it is required (it is a general convention
to only distinguish function abstractions up to renaming of bound variables). Also, we note that
we explicitly declare the type T of the argument x in a function abstraction to make the type
checking process trivial. In some concrete programming languages, such a type specification
may sometimes be omitted. The compiler will then reconstruct the type of the argument based
on its usage in the function body. Type reconstruction is discussed by Pierce (2002, Ch. 22).

Example. We illustrate the complete process of typing the term fun x:Int => x+1 through
a derivation tree that employs multiple type rules in succession, starting from type rules that
have no conditions, up to a conclusion that is a typing for this term:

x:Int` x : Int
VAR

x:Int` 1 : Int
INT1

x:Int` x+1 : Int
PLUS

` (fun x:Int => x+1) : Int->Int
ABS

It may seem a little strange that type checking is presented as a free reasoning process: for any
particular term, can the compiler always decide whether it is well-typed, and if so, will the type

6.2 Subtype and Parametric Polymorphism for Functions 83

be fixed? Note however that the typing rules satisfy the following properties: (i) there is exactly
one typing rule for each syntactic form (the typing rules are syntax-directed), (ii) as conditions,
each typing rule requires only typings of subterms of the term treated in the conclusion, (iii) the
type used in the conclusion of a type rule is never free: it is either non-variable or a variable
bound by one of the conditions. As a consequence of these properties, it is easy to convert the
type rules to a recursive procedure that can always determine a type for each term, or otherwise
indicate a type error in a subterm.

Lastly, the language also includes a record construct that acts as a general compound
data structure. A record groups multiple terms, possibly of different type, where each term is
associated with a unique static identifier (a label), for example, {fst=1,snd=true} (we say this
record has fields fst and snd). The type of a record term will be a record type that contains both
the names of each field, as well as their type (rule RECD), in this case, {fst:Int,snd:Bool}.
Once again, this information allows to adequately type the term where a field is accessed from
a record (called a projection) in rule PROJ.

We point out that records are included in our language mainly for didactic purposes: record
types provide a very lightweight approximation of object interfaces, and they allow for a simple
and intuitive subtype relation that we introduce below, in Section 6.2.2. Records also play an
important role in the object encodings from literature (see for example Pierce, 2002, Ch. 18,
27, 32), but we stress that we do not recreate those results here. As an educational device, we
will favor the intuitive simplicity of plain record types over a complete modeling of all of the
features of object orientation (which would include encapsulation, inheritance, open recursion,
. . .).

Semantics

Since a rigorous evaluation of the soundness of the type system is beyond the scope of this
introduction, we will discuss the dynamic semantics of this language informally. The seman-
tics of the language constructs corresponds to their well-known behavior from functional
programming languages.

Concretely, the evaluation of programs can be defined as the rewriting of terms into primitive
terms that we categorize as values (cf. Section 6.1.2). The rules for rewriting are:

(i) primitive operations on argument values of the appropriate base types may be replaced
by their result,

(ii) the boolean test with true (resp. false) as condition-term may be replaced by its then-
term (resp. its else-term),

(iii) the application of an argument term to a function abstraction may be replaced by the body
term of the function, where the argument term is substituted1 for the function variable in
the body, and

(iv) the projection of a record according to a label may be replaced by the term associated with
that label in the record (if there is such a term).

Inside a larger term, subterms may be rewritten according to these rules as well. There is no
fixed evaluation strategy that determines the order in which this should occur.

1With the standard caveat that the substitution should avoid the capture of free variables. This is explained by Pierce
(2002, Sec. 5.3).

84 Subtype and Parametric Polymorphism

Top-level bindings

To avoid repeating complex terms in the presentation, we will occasionally define top-level
bindings of term variables. The variables can be considered to be bound in a global context:
after definition, the variables can be used in any context where it is not overridden by a local
binding of the same variable. For clarity, we will show both the term (after keyword let) and
type (after keyword val) when defining a top-level binding of a variable, for example:

let one=1
val one:Int

The variable one can now be used in any succeeding term, including other top-level bindings:

let succ= (fun x:Int => x+one)
val succ:Int->Int

When binding variables to function terms, such as the above succ, we can use the following
abbreviation:

let succ (x:Int)=x+one
val succ:Int->Int

When specifying multiple arguments this is taken to be an abbreviation of multiple nested
single-argument functions (a technique called currying). For example:

let plus (x:Int) (y:Int)=x+y
val plus:Int->Int->Int

Note here that the arrow operator in function types is right associative, so the type Int->Int->
Int is to be interpreted as Int-> (Int->Int).

6.2.2 Subtype Polymorphism

Motivation

The type system presented so far is entirely monomorphic. We encounter a motivation for a
first form of polymorphism when considering a function term such as fun x => succ (x.fst).
The argument x can be declared with any of a series of record types, all of which allow to obtain
a well-typed function body because they all have a field fst of type Int that can be accessed
through projection (rule PROJ):

{fst:Int}
{fst:Int,snd:Int}
{fst:Int,snd:Bool}

{fst:Int,snd:Int,trd:Bool}
. . .

However, if we pick one of these types as argument type, the function cannot be applied to
terms of the other types (rule APPL). Similarly, consider the following term which cannot be

6.2 Subtype and Parametric Polymorphism for Functions 85

Type expressions
S,T,U ::= . . . (previous forms)

| Top top type
| Bot bottom type

Term expression typing A ` e : T

· · ·
SUB

A ` e : S S <: T

A ` e : T

Subtyping S <: T

SREFL

T <: T

STRANS

S <: T T <: U

S <: U

STOP

T <: Top
SBOT

Bot<: T

SFUN

T1 <: S1 S2 <: T2

(S1 ->S2) <: (T1 ->T2)

SRECD

S1 <: T1 · · · Sn <: Tn

{I1 :S1, . . ., In :Sn, . . ., Im :Sm}<: {I1 :T1, . . ., In :Tn}

Figure 6.2: Extension of the language of Figure 6.1 with subtypes

typed because the two branches of the boolean test do not have the same type (rule IFTHENELSE),
although both of these types support the operation that is eventually applied to the result:

(if c then {fst=1} else {fst=0,snd=true}).fst

To support these examples, we need to formalize the intuition that some types are more
specific than others. We say that a type is a subtype of another type to mean that any term of
the first type can safely be used in a context where a term of the second type is expected (in the
other direction, the term supertype is used). This view of subtyping is often called the principle
of safe substitution. It requires that the subtype offers at least the operations (or satisfies at least
the contract of) the supertype. For example, {fst:Int,snd:Bool} is a subtype of {fst:Int},
since the first type also admits the sole operation admitted for the second type, namely the
projection of a field with name fst and type Int.

The subsumption rule

An extension of the functional language of the previous section with subtype polymorphism is
shown in Figure 6.2. We define a subtype relation between types (written S <: T to stand for “S
is a subtype of T ”), and add one important typing rule, generally known as the subsumption
rule (rule SUB). This rule attaches a meaning to the subtype relation by connecting it to the
derivation of term typings. Concretely, it states that if a term has a certain type, it can be
regarded as a term of any supertype of that type as well. The subtype relation needs to be
defined in such a way that we cannot obtain term typings that allow unsafe operations.

Note that contrary to the typing rules we have seen before, the subsumption rule has the
potential to type any kind of term (indicated by the bare metavariable e). Subtyping can
therefore be considered a crosscutting extension, one that interacts with most other language
features in non-trivial ways. We will treat each of the language features by considering the
subtype relation for each kind of type below.

86 Subtype and Parametric Polymorphism

The subtype relation

The definition of the subtype relation is given through a set of inference rules for the subtype
judgment S <: T . The first two general subtyping rules state that the subtype relation is both
reflexive and transitive (i.e., that is a preorder). These properties follow from the intuition of
safe substitution, but they can also be considered a regularization of properties that are already
present in the structure of the subsumption rule. Indeed, in case of rule SREFL, the conclusion
T <: T does not allow to derive additional typings, since the subsumption rule will simply have
a conclusion that is equal to its first condition in that case. And in case of rule STRANS, we could
also apply the subsumption rule twice (as shown on the left) to obtain the same typing that the
conclusion S <: U enables in one application of the subsumption rule (as shown on the right):

SUB

SUB
A ` e : S S <: T

A ` e : T T <: U

A ` e : U

A ` e : S

S <: T T <: U

S <: U
STRANS

A ` e : U
SUB

Two special new types are added to the type system, defined axiomatically through their
special subtype relations. The type Top (“the top type”) is a supertype of any type (rule STOP),
while type Bot (“the bottom type”) is a subtype of any type (rule SBOT). Together with the
subsumption rule, this entails that any well-typed term also has type Top, while a term of type
Bot can be used as a term of any other type. No operations are defined for terms of the ‘most-
general’ type Top: according to the safe substitution principle, only operations common to all
types could be allowed, but no such operations exist in our language2. Dually, no typing rules
are defined that assign terms the ‘most-specific’ type Bot, since such terms should support all
operations of all types. These properties do not imply that these types have no use: the type Top
corresponds to the Object type found in most object-oriented languages, while Bot is similar
to the type of a null reference that can be used as a ‘dummy value’ for any (reference) type. We
specifically include both types here because they will serve as convenient type variable bounds
in a following section on bounded quantification.

Next, we consider subtyping relations for the original type forms from Figure 6.1. For the
base types Int and Bool, we will not install any specific subtype relations. For function types, a
subtype relation is defined recursively (rule SFUN), based on the respective subtype relations of
the types of the domain and codomain. Note however that, when changing between supertype
and subtype, the codomain evolves in the same direction (it is covariant), while the domain
evolves in opposite direction (it is contravariant). For example, every function type is a subtype
of Bot->Top, but not of Top->Top. This can be understood through the intuition that a function
type T1->T2 guarantees a function that provides some result of type T2 for any argument of type
T1. We strengthen this contract (to obtain a subtype S1 ->S2) by accepting wider arguments
(T1 <: S1) and providing narrower results (S2 <: T2).

Additionally, without claiming complete rigorous treatment, we can give a more formal
justification of this subtyping rule by considering the operations that the type system allows for
term typings that can be obtained from this subtyping rule (via the subsumption rule). In this
case, the assigned types will be function types, and the only operation admitted for these types

2In other languages, some generally available operations may be defined for the top type.

6.2 Subtype and Parametric Polymorphism for Functions 87

is the function application, which is typed through rule APPL. The complete picture is therefore
that the type system might admit a function application e0 e1 through the following derivation:

A ` e0 : S1 ->S2

T1 <: S1 S2 <: T2

(S1 ->S2) <: (T1 ->T2)
SFUN

A ` e0 : T1 ->T2
SUB

A ` e1 : T1

A ` (e0 e1) : T2
APPL

However, we observe that it is possible to derive the same function application typing from the
same conditions, by employing the subsumption rule only for the conditions of the subtyping
rule, namely the relations T1 <: S1 and S2 <: T2:

A ` e0 : S1 ->S2

A ` e1 : T1 T1 <: S1

A ` e1 : S1
SUB

A ` (e0 e1) : S2
APPL

S2 <: T2

A ` (e0 e1) : T2
SUB

So by using the validity of subsumption for the conditions of the subtyping rule as an hypothesis,
we can demonstrate the validity of subsumption for the conclusion of the subtyping rule (where
the ‘validity’ is demonstrated by recreating all operation typings that could be derived from
the subtyping rule). Although by no means a rigorous proof, this illustrates how the inductive
step for this subtyping rule could be realized in a proof by induction3 on the derivation of the
subtype judgment.

Finally, for record types, rule SRECD stipulates that a record type is a subtype of another
record type, if the first has all the fields of the second (and possibly more), and the types of
the common fields are respectively in the subtype relation. An argument similar to the one for
function types could be made to demonstrate that this subtype rule preserves the validity of
its operation, the record projection. The type rule establishes the subtype relations that we
discussed in the examples:

Int<: Int
SREFL

{fst:Int,snd:Bool}<: {fst:Int}
SRECD

Together with the subsumption rules, this alleviates the inflexibility that motivated the addition
of subtyping.

6.2.3 Parametric Polymorphism

Motivation

On page 84, we have shown how to ‘wrap’ the addition operation in a function plus of type
Int->Int->Int. From a typing perspective, this functionality could be offered as a library

3In general, a proof by structural induction establishes a property P (e) for all expressions e, by demonstrating
for each possible expression form that P (e) can be derived from P (e1), . . . ,P (en), where e1, . . . ,en are the immediate
subexpressions of e in that form. This reasoning requires that expressions have a finite, acyclic tree structure, such
that we are guaranteed to eventually encounter base cases. We can similarly reason by induction on the structure of a
derivation tree.

88 Subtype and Parametric Polymorphism

function instead of a primitive operation. Now, it is somewhat more complicated to do the
same for the primitive boolean test. We have to define multiple functions that each represent
this test with branches of a different type. All of these functions share the same behavior (they
have the same body term) but accept arguments of a different type:

let if_int (c:Bool) (x:Int) (y:Int)=if c then x else y
val if_int:Bool->Int->Int->Int

let if_bool (c:Bool) (x:Bool) (y:Bool)=if c then x else y
val if_bool:Bool->Bool->Bool->Bool

let if_top (c:Bool) (x:Top) (y:Top)=if c then x else y
val if_top:Bool->Top->Top->Top

let if_fint (c:Bool) (x: (Int->Int)) (y: (Int->Int))=if c then x else y
val if_fint:Bool-> (Int->Int)-> (Int->Int)-> (Int->Int)

Of course, this duplication is unacceptable from a software engineering point of view. Notice
that subtype polymorphism does not remedy this problem: while the function if_top can be
used with arguments of any type, its result will be of the general type Top, which does not allow
any further operations (and rightfully so, because there is very little checking on the arguments
of the branches).

Universal quantification Instead, the solution will be to define one polymorphic function that
abstracts over the varying parts of these functions, the types. We will enable such abstractions
in a way that is largely parallel to the existing function mechanism. While function abstraction
terms abstract terms over other terms (represented by term variables), we will add a new
kind of term that abstracts terms over types (represented by type variables). This is written
all X => e, similar to fun x => e. (The keyword all is not to be confused with the keyword
forall, employed below.) And while function abstractions have a function type that contains
sufficient information to type a function application, these type abstractions will have a new
kind of type, called a universal type, which provides information to determine the type of a
type application, which is the application of a type abstraction to a type. The ordinary function
application is written by juxtaposing the abstraction and the argument (e0 e1), and for the
type application a similar juxtaposition is used with rectangular brackets placed around the
type argument to mark the difference: e [T]. Note here that although types are applied, there
is no implication that types can be manipulated as values: types and terms are still distinct
and type abstractions and applications serve type-checking purposes only, with no run-time
implications.

We will further integrate these elements in the formal language definition below. Here,
we will already continue the example by defining a polymorphic version of the if function,
which generalizes the above versions by nesting the function in a type abstraction. For top-level
bindings, we will use an abbreviation for type abstractions, similar to the one for function
abstractions:

let if_gen [X] (c:Bool) (x:X) (y:X)=if c then x else y

6.2 Subtype and Parametric Polymorphism for Functions 89

val if_gen:forall X,Bool->X->X->X

Here, X is a type variable that represents the type parameter of the type abstraction if_gen.
if_gen has a universal type, named as such because the type variable is universally quantified
(indicated by the keyword forall in the syntax of such types). This means simply that we can
bind the type variable to any type through a type application. For example, the application
if_gen [Int] has a type obtained by substituting Int for X, yielding Bool->Int->Int->Int,
while if_gen [Bool] has type Bool->Bool->Bool->Bool. These terms are equivalent to
respectively if_int and if_bool: they have the same type and behavior as those functions.

The interesting characteristic of type variables is that they not only allow to abstract types
(Top does this as well), they also allow to connect types in different positions because they
represent an unknown but fixed type. We have used this to connect the domain and codomain
types of a function type. It can also be used to connect the types of the fields in a record type:
for example, {const:X,op:X->Int} is the type of a record which contains a constant term of
a certain type (record const) as well as an operation to produce an integer from that same type
(record op). Several concrete records (with different types) fit this description. For example:

let int_rcd={const=1,op=succ}
val int_rcd:{const:Int,op:Int->Int}

let bool_rcd={const=true,op= (fun c:Bool => if c then 1 else 0)}
val bool_rcd:{const:Bool,op:Bool->Int}

We do not need specific information about type X in {const:X,op:X->Int} to make use
of such a record. We can define a polymorphic function for all such X to apply its operation field
to its constant field:

let use [X] (x:{const:X,op:X->Int})=x.op x.const
val use:forall X,{const:X,op:X->Int}->Int

Similar to if_gen, use is a type abstraction of a function term: it can be ‘instantiated’ with
different types to obtain different functions that have different function types. We can use this
to obtain two different functions to work with respectively int_rcd and bool_rcd. Both are
used in the following term:

if c then (use [Int] int_rcd) else (use [Bool] bool_rcd)

Note however that, in this case, the function types of use [Int] and use [Bool] differ only in
the type of their argument; the type of the result is constant (Int). Since there is no relation
between argument type and result type, it would be possible to have a single ordinary use
function, with an argument type that is the generalization of the different types with structure
{const:X,op:X->Int}. In fact, such a solution would be preferable, since it would allow to
move the use application outward in the above term, thus avoiding the duplication:

use (if c then int_rcd else bool_rcd)

90 Subtype and Parametric Polymorphism

We will therefore add a new kind of type4, called an existential type, that functions as a gen-
eralization of the different types with structure {const:X,op:X->Int} for some binding of
X.

Existential quantification An existential type is in many ways the dual of a universal type. It
consists of a type expression parameterized with a type variable that is existentially quantified,
for example, exists X,{const:X,op:X->Int}. The type of a term e is generalized to an
existential type by means of an explicit packing operation, which is written:

pack e as T1 [X =T0]

The result of this operation will be assigned the existential type exists X,T1, provided that e
has the type T1 where type variable X is bound to (replaced by) T0. So it is verified that e indeed
has type T1 from some binding of X , namely to T0 (the type T0 is sometimes called the witness
type for this reason). We illustrate packing by continuing the example from above:

let pkg1=pack int_rcd as {const:X,op:X->Int} [X=Int]
val pkg1:exists X,{const:X,op:X->Int}

let pkg2=pack bool_rcd as {const:X,op:X->Int} [X=Bool]
val pkg2:exists X,{const:X,op:X->Int}

We will not directly allow operations on terms of existential type. For example, the direct
projection pkg1.const will be prohibited. The reason is that the typing of this operation will
involve the variable type X, where it is not clear what is the scope of this type variable. By
first using an opening (or unpacking) operation, the scope can be explicitly controlled. This
operation is written:

open x [X]=e1 in e0

Where e1 must be a term of an existential type and X is a new type variable in the scope of body
e0. The ordinary variable x can be used, also in the scope e0, to refer to the term that is ‘packed’
inside e1, only is x typed with the abstract type variable X in place of the concrete witness type.
For example, in open x [X]=pkg1 in e0, the name x can be used in e0 to refer to int_rcd, only
does it now have the type {const:X,op:X->Int} instead of {const:Int,op:Int->Int}.
This will allow to operate on both pkg1 and pkg2 in a flexible and safe manner:

open x [X]= (if c then pkg1 else pkg2) in (x.op x.const)

This entire term is well-typed and has type Int. Since the witness type is available as type
variable X, we can obtain the same result using the polymorphic use function from above:

open x [X]= (if c then pkg1 else pkg2) in (use [X] x)

4Strictly speaking, existential types do not warrant a new type form as they can be encoded using universal types
and function types (see Pierce, 2002, Sec. 24.3). However, it is common to explicitly support them in the type system.

6.2 Subtype and Parametric Polymorphism for Functions 91

Remark. While we have introduced existential quantification of type variables as a polymor-
phism mechanism here, they are traditionally used for typing abstract data types, as developed
by Mitchell and Plotkin (1988). The type exists X,{const:X,op:X->Int} may indeed be
interpreted as a simple abstract type, packaged with its set of operations. The variable X is the
abstract type itself, which hides a concrete representation provided by the witness type (which
is also called the hidden representation type for this reason). The record {const:X,op:X->Int}
is the set of operations on that abstract type. Since client code is typed with a type variable
instead of the underlying representation type, it has no way of manipulating the abstract data,
except passing it to the provided set of operations. As such, the typing can enforce the principle
of representation independence (although other measures exist to protect programmer-defined
abstractions, for example, using function closures).

Bounded quantification So far, we have considered parametric and subtype polymorphism
as orthogonal features. One interesting way to mix them is by considering subtype constraints
(or bounds) in the quantification of type variables. We encounter a motivation for such bounded
quantification when typing a function that ‘passes an argument around’ (which is most flexibly
typed with universal quantification), while at the same time operating on it (which will require
some information about its type). Consider for example:

let bnd_up [X <: {val:Int}] (x:X)={fst=succ x.val,snd=x}
val bnd_up:forall X <: {val:Int},X->{fst:Int,snd:X}

In the type abstraction, we have quantified the type variable X as “any type which is a subtype of
{val:Int}”. This upper bound is required to operate on variable x of type X when constructing
the first field of the result; this function would not admit a typing if X were quantified without
the upper bound. And while it is possible to type this function with x declared to have a non-
variable type (such as {val:Int}), we must construct different versions to account for the
fact that the type of the second record in the result is guaranteed to be equal to the argument
type. The type abstraction with a bounded type variable can be seen as a generalization of these
different versions. Obviously, such a type abstraction can only be applied to a type that meets
the upper bound, e.g., the type application bnd_up [Bool] will be rejected.

Similarly, supertype constraints for type variables can be considered as well. Although this is
less frequently considered in literature and not supported in any real programming language we
are aware of, we motivate here that this naturally complements the case of subtype constraints.
While a subtype constraint allows to include a term of a variable type into an existing type (the
upper bound), a supertype constraint allows to include a term of an existing type (the lower
bound) into the variable type. This provides a way to introduce new values of this variable
type. For example, consider a function that will return either its argument or some fixed value,
depending on some condition:

let bnd_lo [X :> {fst:Int,snd:Bool}] (x:X)=if c then {fst=1,snd=true} else x
val bnd_lo:forall X :> {fst:Int,snd:Bool},X->X

Here, the lower bound is crucial to be able to assign the same type (X) to the two branches of the
boolean test. This example can again be interpreted as a generalization of different function
with non-variable type, such as {fst:Int,snd:Bool}->{fst:Int,snd:Bool}.

92 Subtype and Parametric Polymorphism

Subtype and supertype constraints are similarly useful for existential quantification, where
they allow to construct ‘less general’ generalizations of types by only partially abstracting types
in the type expression structure. We will see in Section 6.3.2 that such existential types form the
underpinning for a form of more flexible parametric object types, known as wildcards in JAVA.

We also note that all universal and existential types that we consider can be united in two
general forms that include both a lower bound type (S) and an upper bound type (U), written

forall X in S -U,T and exists X in S -U,T

The previous forms of quantification that were unbounded in upward or downward direction
(or both) is equivalent to respectively the usage of type Top as upper bound or type Bot as lower
bound (or both). However, double bounded quantification allows some extra terms to be typed,
for example:

let bnd_in [X in {fst:Int,snd:Bool}-{fst:Int}] (x:X)=
if c then {fst=succ x.fst,snd=true} else x

val bnd_in:forall X in {fst:Int,snd:Bool}-{fst:Int},X->X

Formal Definition

The formal definition of the language syntax and the term typing rules is extended in Figure 6.3
to account for the forms of parametric polymorphism we have discussed in this section. The
inclusion of variable types in type expressions is a change that warrants some extra infras-
tructure in our type system as the meaning of a type expression now depends on the context
where it appears. The typing context information is extended to include type variables and
their declared range (similar to how we track term variables and their declared type). Based
on this context information, we will first have to determine if a type expression containing
type variables even denotes some sensible type. This judgment is called type well-formedness,
written A ` T ok, to indicate “type expression T is well-formed under context assumptions
A”. Next, the subtype relation has also become dependent on the type variable declarations
from the context, and the old subtype judgment (S <: T) is therefore replaced by a new one
(A ` S <: T) that takes this information into account (and the subsumption rule is accordingly
adapted). Both judgments are defined in Figure 6.4.

Type well-formedness Basically, we will consider a type expression well-formed if it does not
contain free type variables. The ground types such as Bool, Int, etc. will be well-formed in any
context, while function types and record types are well-formed if their constituent types are well-
formed. (In rule OKRECD, note that we write condition A ` T1, . . . ,Tn ok, to abbreviate n separate
well-formedness conditions A ` T1 ok, . . . , A ` Tn ok.) A type denoted by a type variable is
well-formed within the scope of that type variable (rule OKVAR). Both a universal and existential
type bind a new type variable in the contained type expression (second condition of rule OKALL

and rule OKEX); we will also require the bounds of this type variable to be well-formed (first
condition).

The subtyping judgment has been set-up in such a way that it will only admit a subtype
relation between well-formed types. Similarly, the typing judgment for term expressions has
been set-up to only assign well-formed types to terms. (In both cases with the explicit provision

6.2 Subtype and Parametric Polymorphism for Functions 93

Lexical metavariables
. . . (previous vars)
X ,Y type variables

Term expressions
e ::= . . . (previous forms)

| all X in S -U => e type abstraction
| e [T] type application
| pack e as T1 [X in S -U =T0] packing
| open x [X]=e1 in e0 opening

Type expressions
S,T,U ::= . . . | Top | Bot (previous forms)

| X variable type
| forall X in S -U,T universal type
| exists X in S -U,T existential type

Typing context (assumptions)
A ::= . . . (previous forms)

| A;X in S -U
type variable range

Term expression typing A ` e : T

. . .

ABS

A ` T1 ok A;x :T1 ` e : T2

A ` (fun x :T1 => e) : T1 ->T2

SUB

A ` e : S A ` S <: T

A ` e : T

TABS

A ` S,U ok A;X in S -U ` e : T

A ` (all X in S -U => e) : forall X in S -U,T

TAPP

A ` e : forall X in S -U,T1 A ` S <: T0 <: U

A ` e [T0] : [X 7→ T0]T1

PACK

A ` e : [X 7→ T0]T1 A ` S <: T0 <: U

A ` (pack e as T1 [X in S -U =T0]) : exists X in S -U,T1

OPEN

A ` e1 : exists X in S -U,T1 A;X in S -U;x :T1 ` e0 : T0 A ` T0 ok

A ` (open x [X]=e1 in e0) : T0

Figure 6.3: Extension of the language of Figure 6.1 with parametric polymorphism. The auxiliary
judgments regarding subtyping and well-formed types are presented in Figure 6.4. These
definitions supersede the ones from Figure 6.2 since they include a new subtype judgment that
integrates context information. The rule ABS replaces the old rule by the same name.

94 Subtype and Parametric Polymorphism

Well-formed types A ` T ok

OKBOOL

A ` Bool ok
OKINT

A ` Int ok
OKTOP

A ` Top ok
OKBOT

A ` Bot ok
OKVAR

. . .;X in S -U; . . . ` X ok

OKFUN

A ` T1 ok A ` T2 ok

A ` (T1 ->T2) ok

OKRECD

A ` T1, . . . ,Tn ok

A ` {I1 :T1, . . ., In :Tn} ok

OKALL

A ` S,U ok A;X in S -U ` T ok

A ` (forall X in S -U,T) ok

OKEX

A ` S,U ok A;X in S -U ` T ok

A ` (exists X in S -U,T) ok

Subtyping A ` S <: T

SREFL

A ` T ok

A ` T <: T

STRANS

A ` S <: T A ` T <: U

A ` S <: U

STOP

A ` T ok

A ` T <: Top

SBOT

A ` T ok

A ` Bot<: T

SFUN

A ` T1 <: S1 A ` S2 <: T2

A ` (S1 ->S2) <: (T1 ->T2)

SRECD

A ` S1 <: T1 · · · A ` Sn <: Tn A ` Sn+1, . . . ,Sm ok

A ` {I1 :S1, . . ., In :Sn, . . ., Im :Sm}<: {I1 :T1, . . ., In :Tn}

SVARU

. . .;X in S -U; . . . ` X <: U

SALL

A ` S1 <: T1 A ` T2 <: S2 A;X in T1 -T2 ` S0 <: T0

A ` forall X in S1 -S2,S0 <: forall X in T1 -T2,T0

SVARS

. . .;X in S -U; . . . ` S <: X

SEX

A ` T1 <: S1 A ` S2 <: T2 A;X in S1 -S2 ` S0 <: T0

A ` exists X in S1 -S2,S0 <: exists X in T1 -T2,T0

Figure 6.4: Definition of the judgments regarding well-formed types and subtyping

6.2 Subtype and Parametric Polymorphism for Functions 95

that context for the judgment only contains well-formed types, of course.) To this end, a well-
formedness condition has been added to some of the rules that we have previously encountered.
For subtyping, this is the case for rule SREFL, rule STOP and rule SBOT. For term expression
typing, this is the case for rule ABS. In case of the other rules, the well-formedness follows from
existing subtype or typing conditions, it is not necessary to demand it explicitly.

New typing rules The typing rule for type abstractions (rule TABS) is entirely analogous to
the one for ordinary function abstraction (rule ABS). The body of the abstraction is checked in
a context that is extended with the new type variable and its declared bounds. As we did for
ordinary function abstraction in Section 6.2.1, we silently require that the name for the new
type variable be chosen distinct from the names of the type variables that already exist in the
context, to avoid variable capture. The type of a type abstraction (a universal type) contains
sufficient information for the typing of type applications (rule TAPP). This rule requires that the
type argument T0 meets the prescribed bounds, written A ` S <: T0 <: U as an abbreviation
for two conditions A ` S <: T0 and A ` T0 <: U . The type assigned to the type application will
be the type expression contained in the universal type (this is type expression T1), where type
variable X is bound to the type argument T0. This binding is effectuated by means of a type
substitution: [X 7→ T0]T1 is the notation for “the type expression obtained by substituting T0 for
X in type expression T1”.

To understand rule PACK, recall that the packing operation will generalize the type of term
expression e to a type expression T1 parameterized with type variable X ; this type variable takes
the place of some witness type T0. The typing rule will therefore require that e admits type T1

where X is bound to T0 (this binding is similarly effectuated with a type substitution). It is also
verified that T0 meets the declared bounds S and U . The opening operation (rule OPEN) allows
to employ a term e1 of some existential type with type expression T1 as a variable x of that type
T1. In the second condition, the body e0 is therefore typed with a context that is extended with
the type variable X (declared to have the appropriate bounds) and this variable x. The type of
the body (type T0) is used as the type of the entire open operation in the conclusion. The third
condition will however require that type expression T0 is well-formed in the original context of
the open operation. We have to check this explicitly to prevent that type variable X appears in
this type; in the original context this type variable has no meaning (i.e., the type variable would
escape its scope).

Example. Employing the following abbreviation of a set of context assumptions:

A0
def= X in Bot-Top;x:{const:X,op:X->Int}

We can derive the following term expression typing using the typing rules from Figure 6.1:

A0 ` x : {const:X,op:X->Int}
VAR

A0 ` x.op : X->Int A0 ` x.const : X
PROJ,PROJ

A0 ` (x.op x.const) : Int
APPL

This term can therefore be used in the body of an opening operation on top-level variable pkg1

96 Subtype and Parametric Polymorphism

from the motivating examples:

` pkg1 : exists X in Bot-Top,{const:X,op:X->Int}
A0 ` (x.op x.const) : Int ` Int ok

` open x [X]=pkg1 in (x.op x.const) : Int
OPEN

Here, the well-formedness condition (` Int ok) can be trivially established using rule OKINT.
Note that while we have also derived the typing A0 ` x.const : X, a corresponding opening
operation with the term x.const as the body could not have type X, since we cannot establish
the condition ` X ok. The type variable X would escape its scope if it were used as the type of
the opening operation. A workaround could be to use subsumption to derive another type for
the body term:

A0 ` x.const : X

A0 ` X ok
OKVAR

A0 ` X<: Top
STOP

A0 ` x.const : Top
SUB

There is no problem to establish that X is well-formed in A0 (alternatively, rule SVARU could
have been used to establish the subtype relation). And since Top is well-formed in any context,
we can use this type as the result of the opening operation.

New subtyping rules The first 6 rules of the new subtype judgment are simply updated ver-
sions of the rules from Figure 6.2, modified to include a typing context A (and to carry it over
between conditions and conclusion) and to demand a well-formed type where this is not guar-
anteed by the other conditions of the rule. We also define 4 new subtyping rules to define
subtyping for the new kinds of types that have been added. For variable types, two subtype
relations are considered. In rule SVARU, a variable type is defined to be a subtype of the upper
bound U that was declared for the type variable in the context, while rule SVARS defines it to be
a supertype of the lower bound S. These rules are the equivalent of rule VAR for term variable
type assumptions.

The combination of these two new subtyping rules entails (by transitivity) that the lower
bound is a subtype of the upper bound. This may lead to suspicious conclusions for certain
(equally suspicious!) context assumptions. For example, we can derive the conclusion Int<:
Bool from an assumption such as X in Int-Bool. It is of course unsound to include integers
in booleans, but note there is no concrete type T to which X could be bound under those
restrictions, i.e., there is no T for which we can obtain ` Int<: T <: Bool. So the conclusions
derived from the assumption that there is such a T have no effect in a context without that (or
an equivalent) assumption. More concretely, while we can type certain type abstractions with a
type of the form forall X in Int-Bool,T (and employ the relation Int<: Bool when typing
the body of that abstraction, see rule TABS), type applications of those abstractions will not
admit a typing, because, save for other assumptions, there is no type argument that meets both
of the bounds (second condition of rule TAPP). And dually, while it would be possible to open a
term of existential type exists X in Int-Bool,T (and employ the relation Int<: Bool when
typing the body of that operation, see rule OPEN), we cannot pack a term to have that existential
type since there is no witness type that meets these bounds (second condition of rule PACK).

6.3 Java 5 Generics: Parametric Polymorphism for Objects 97

Finally, we also include a subtyping rule for comparing universal types (rule SALL), as well as
one for comparing existential types (rule SEX)5. To intuitively understand rule SALL through the
principle of safe substitution, recall that the universal type forall X in T1 -T2,T0 describes a
collection of type abstractions, each of which can be instantiated with a type between T1 and
T2, to obtain an instance of T0. Similar to function abstractions, such a type abstraction may
safely be replaced with an type abstraction with a larger domain and a smaller codomain. The
larger domain is ensured by only lowering the lower bound and raising the upper bound (first
and second conditions). Ensuring a smaller codomain is slightly more involved, as with a type
application, the result type depends on the argument type (the result type will be the instance
of T0 obtained by binding X to the argument type). We require a smaller codomain, no matter
what is the argument: for all types U that are acceptable argument types for the original type
abstraction (so that are between T1 and T2), the U -instance of the new return type S0 should be
a subtype of the U -instance of the original return type T0. This is enforced by generalizing all
types U as the variable type X with the assumption X in T1 -T2 (third condition).

We can also explain the rule rule SEX using the principle of safe substitution, although in the
other direction: recall that the existential type exists X in S1 -S2,S0 is obtained by packing
a term with a type that is the U -instance of S0, where this witness type U is between S1 and
S2. We can equally pack this term to another existential type exists X in T1 -T2,T0, if the
witness type U is guaranteed to lie within T1 and T2, and if the term is also of a type that is
the U -instance of T0. The first requirement is ensured by demanding that bounds T1 and T2

are wider than bounds S1 and S2 (first and second condition). For the second requirement,
we demand that the U -instance of S0 is a subtype of the U -instance of T0, for every possible
witness type U between S1 and S2. This translates to the third condition.

The subtyping rule for existential types will explain the flexibility of the wildcard mechanism
in Section 6.3.2. The rule for covariant overriding of generic methods is a restricted form of the
subtyping rule for universal types.

6.3 Java 5 Generics: Parametric Polymorphism for Objects

Being a typed class-based object-oriented programming language, JAVA has supported subtype
polymorphism since its initial conception. The generics feature of JAVA 5 (Gosling et al., 2005)
adds comprehensive support for parametric polymorphism and pioneers new mechanisms
for combining it with object-oriented subtyping. Note that contrary to C++ templates, which
are essentially a form of macros that must be expanded and interpreted over and over for each
instantiation, the generic mechanisms in JAVA 5 are first-class language features.

The general design goal of generics is to allow a high amount of flexibility while ensuring
both forwards and backwards interoperability (i.e., JAVA 5 code should be able to interface pre-
JAVA 5 code and vice versa). In the next two sections, we discuss respectively the GJ and wildcard
proposals that contributed the major elements of the generics design. We then conclude with
a short discussion of the opportunities offered by generics to the designers of frameworks. A

5The rules included here correspond to ones for the “full” variant of F<:, where subtyping is theoretically unde-
cidable (see Pierce, 2002, Sec. 28.5). Discussion of the practical implications of this result is beyond the scope of this
introduction.

98 Subtype and Parametric Polymorphism

comprehensive discussion of JAVA 5 Generics is available in the textbook by Naftalin and Wadler
(2006).

6.3.1 Generic Java: Invariant Type Parameters

The basis for JAVA 5 Generics is the GJ proposal by Bracha, Odersky, Stoutamire, and Wadler
(1998). GJ extends the original JAVA with generic types and methods. A GJ program is imple-
mented by erasing all type parameters, mapping typing variables to their bounds and inserting
casts where needed (the result closely mimics the way generics were previously emulated in the
unextended language).

Generic methods

As a first mechanism, GJ allows to declare type variables at the level of methods, possibly with
an upper bound, for example:

<X extends Number> X poly(X x) {
System.out.println(x.intValue());
return x;

}

This method declares a type variable X to denote a variable type with upper bound Number.
Both the argument and the result of the method are declared to have this variable type.

A method whose declaration includes type variables is called a generic method. This con-
struct corresponds rather directly to the bounded universal quantification we have discussed
for type abstractions (with the important difference that methods are not first-class values).
The functional counterpart of this method would have the following universal type:

poly:forall X in Null-Number,X->X

(Here, the null type Null is the JAVA equivalent of the bottom type; it is the type of the special
reference null and a subtype of every reference type.) Note that inside this function, as well as
inside the above method, a value of type X may be treated as a Number, due to upper bound that
is declared for type variable X.

When invoking the generic method, type arguments can be given explicitly (this corresponds
to type application), for example <Integer>poly(5). If type arguments are omitted, the
compiler will infer them from the type of the arguments, so we can write the call as simply
poly(5). When typing these invocations, the method type will have Integer substituted for X,
so the invocation will have result type Integer.

Inside their scope, type variables can be used as type annotations, but new objects of a type
denoted by a type variable cannot be created. There are two reasons for this: first, the type
variable could be bound to an abstract or interface type, types which cannot be instantiated;
second, as mentioned above, the implementation of generic entities erases the type variables,
so the type values are not known at run-time.

6.3 Java 5 Generics: Parametric Polymorphism for Objects 99

Generic classes and interfaces

Type variables can also be defined at the level of class or interface declarations (resp. called
generic class and generic interface declarations). The scope of the type variable extends over all
members of the declaration. For example, we can define a small container class:

class Container<X extends Number> {
X val;
Container(X val) { set(val); }
X get() { return val; }
void set(X x) { val = x; }
int intValue() { return val.intValue(); }

}

Generic classes and interfaces are collectively called generic types. Generic types such as
Container cannot be directly used as types. The appropriate number of type parameters needs
to be provided, and the type parameters must respect the bounds. Container<Float> is a valid
parameterized class type; instances of this class can be created (since Container is a concrete
class) and the parameterized type offers all the members of Container, where X is substituted
by Float. We demonstrate this in the following example, where we assume that doubleFloat
is the name of a method that takes a Float argument and provides a Float result:

Container<Float> c = new Container<Float>(5.0);
c.set(doubleFloat(c.get()));

This is a big advantage over the pre-JAVA 5 version of Container (where every X would be
replaced by Number). As the result of the get method is already a Float, it does not need to be
cast from Number to Float. And since the argument of set is verified to be a Float, we cannot
erroneously pass in another kind of Number.

Within its scope, a type variable may be used as a type annotation, but also as a type
bound for another type variable or as a type parameter in a parameterized type. Both cases are
demonstrated in the following example.

class CopyContainer<X extends Number> extends Container<X> {
<Y extends X> void copyFrom(Container<Y> c) {

set(c.get());
}

}

Here, the generic method copyFrom of parameterized class CopyContainer<Float> will accept
any Container parameterized with a subtype of Float, i.e., any container whose value can
always be copied. Also note from the example that the scope of a class type variable includes the
declaration of the parent class. However, a parent class may not be specified as a type variable,
for much the same reasons why a type variable cannot be instantiated.

Interestingly, the scope of a type variable also includes its own bound, as well as the bounds
of other type variables that are declared at the same time (although a cycle is prohibited by

100 Subtype and Parametric Polymorphism

restricting such a forward reference to a type variable from being used directly as a bound). This
is different from the functional language we have described in Section 6.2.3. For example, the
following type variable declarations are supported:

<X extends Comparable<X>>
<X extends Comparable<Y>, Y extends Comparable<X>>

This feature was termed F-bounded polymorphism by Canning et al. (1989). It can be used
to assert certain operations of the type with respect to itself. For example, we can select the
greatest of two values of any type, as long as that type is comparable to itself:

interface Comparable<E> {
int compareTo(E that);

}
<E extends Comparable<E>> E max(E x, E y) {

return x.compareTo(y) < 0 ? y : x;
}

We can invoke the generic max method with two Byte values since Byte implements the inter-
face Comparable<Byte> (i.e., a byte is comparable to itself).

Invariant Subtyping

The parameterized type CopyContainer<Float> is a subtype of Container<Float>. Indeed,
we obtain this parent if we substitute Float for X in the parent declaration of the generic class
CopyContainer, and CopyContainer<Float> inherits all members of this parent.

But what about comparing parameterized types based on their type arguments: for ex-
ample, what is the relation between Container<Float> and Container<Number>? Intuitively,
we might say a floating-point number container is a number container, but this interpre-
tation is too simplistic: we remark that Container<Float> does not satisfy the contract of
Container<Number> (as the set method of the first will not accept any Number), nor the other
way around (as the get method of the latter is not guaranteed to provide a Float). For that
reason, there is no safe substitution between values of these types.

To illustrate this further, we may interpret the interfaces of instances of these two parame-
terized types as the following two record types6:

{get:{}->Float,set:Float->{}}
{get:{}->Number,set:Number->{}}

(We note that this interpretation is not a complete modeling of the features of objects: for
example, the implicit argument which represents the receiver has been omitted. We only
employ this crude simplification to illustrate the connection to the functional language from
the beginning of this chapter.)

6We employ the empty record type {} to represent void or the case of no arguments. This is a common generalization
in functional programming languages: type {} is the unit type, its only inhabitant is the empty record value {}. An
argument or result of this type is entirely fixed and therefore conveys equally little information as no argument or result.

6.3 Java 5 Generics: Parametric Polymorphism for Objects 101

There is no subtype relation (in either direction) between the above two record types. While
for the get field we have {}->Float<: {}->Number, we have a relation in the opposite direction
for the set field: Number->{}<: Float->{}. Because rule SRECD requires a subtype relation
in the same direction for all common fields, neither of these two types is a subtype of the other.

Accordingly, types Container<Float> and Container<Number> have no subtype relation
in GJ. In general, two parameterized types that stem from the same generic type are not in
relation unless their type parameters are pointwise equal. Since the subtype relations of the
type parameters is not considered to determine the subtype relation of parameterized types,
we say the type parameters in GJ behave invariantly with respect to subtyping.

6.3.2 Wildcards: Use-site Variant Type Parameters

Nevertheless, despite the soundness argument, the invariance of generic types proves to be
quite a strong restriction in practice, and several proposals safely relax this requirement.

Declaration-site Variance

A first straightforward observation is that a generic class or interface may only offer mem-
bers with a restricted structure, which allows to install a subtype relation that is variant with
respect to the type arguments. More precisely, a generic type C<X> is said to be covariant
with respect to X , if S <: T allows to safely conclude C<S> <: C<T>. This is the case if X is
only used in read-only positions in the class or interface declaration: as method return type
or as the type of an unassignable instance variable. For example, for the following read-only
container, SourceContainer<Float> will satisfy the interface of SourceContainer<Number>,
and a subtype relation could therefore safely be installed between the two parameterized types:

class SourceContainer<X extends Number> {
final X val;
SourceContainer(X val) { this.val = val; }
X get() { return val; }

}

Oppositely, C<X> is said to be contravariant with respect to X if S <: T allows to safely conclude
C<T><: C<S>; this corresponds to the restriction of X appearing only in write-only positions.
The combination of covariant and contravariant is called bivariant, and requires that X does
not appear in the interface of the generic type at all.

Based on these observations, declaration-site variance is proposed in approaches by Amer-
ica and van der Linden (1990); Bracha and Griswold (1993). This technique consists of attaching
variance annotations to the type variables in generic type declarations, to indicate these kind
of restrictions. The usage of the type variables in the class body is verified to match explicitly
given annotations, or, alternatively, the annotations may be implicit and derived from the usage
in the body. In either case, this approach requires great care from class designers, choosing
between a rich set of subtypes thanks to variance or a rich functionality because of unrestricted
usage of type variables.

102 Subtype and Parametric Polymorphism

Use-site Variance

Following an idea by Thorup and Torgersen (1999), Igarashi and Viroli (2002) developed a
proposal for use-site variance in GJ. This technique allows to defer the decision about which
variance is desirable until a generic type is employed, rather than when it is declared. This
proposal was redesigned and further extended by Torgersen, Hansen, Ernst, von der Ahé, Bracha,
and Gafter (2004) to obtain the wildcard mechanism as it exists in JAVA 5.

The basic idea of use-site variance is to include the variance annotation in the parame-
terized type, rather than in the declaration of the generic type. An example of such a vari-
ant parameterized type is Container<+Number>, where the + marks a covariant type parame-
ter. Variant parameterized types can be considered ‘automatic’ equivalents of types such as
SourceContainer<Number>: they restrict access to certain members in exchange for covariant
or contravariant subtyping relations. For example, the subtypes of Container<+Number> will
now include Container<Number>, Container<Integer>, Container<Float>, . . . However,
instead of defining this new type with a restricted interface and then determining its set of safe
subtypes, it is also helpful to reason in the opposite direction: consider a type that is defined to
include all (invariant) parameterized types of the form Container<S>, where S is some subtype
of Number, what interface can this type safely allow?

JAVA 5 employs the latter reasoning: by using (bounded) wildcards as type arguments,
we can introduce types such as Container<? extends Number>, which corresponds to this
interpretation of “a container of some type that is a subtype of Number”. Although this type
generalizes several container types with a different parameter type, the parameter type will in
any case be a subtype of Number. So when obtaining a value of this parameter type through
the get method, we know it will at least be a Number. Oppositely, this upper bound has no
effect when we have to provide a value of this parameter type for the set method: only the
null reference is guaranteed to work, simply because it is included in any reference type. To
summarize the access restrictions, the type Container<? extends Number> appears to have a
get method with return type Number and a set method with argument type Null.

Figure 6.5 depicts the result of repeating this exercise for other wildcard parametrization
of the generic type Container as a UML diagram. Besides wildcards with an upper bound,
we also use unbounded wildcards, written simply ?, or wildcard type arguments with a lower
bound, such as ? super Number. Note that in the cases where the wildcard does not have an
upper bound, we would normally conclude that only an Object result is guaranteed for the
get operation. However, because the generic type Container is defined with upper bound
Number for the type parameter on page 99, this can be refined to return type Number. For other
generic types, where the declaration does not include bounds on the possible values of the type
variables, this relaxation is not possible.

Besides the apparent member signatures, Figure 6.5 also demonstrates the direct subtype
relations between the different parameterized types. Two parametrizations of the same generic
class are defined (by Gosling et al., 2005, §4.10.2) to be in a subtype relation if the type argu-
ments of the first contain the respective type arguments of the second (where containment
corresponds to set inclusion for the sets of types denoted by invariant or wildcard type argu-
ments). This subtype relation corresponds to our informal intuition about parameterized types
with wildcard type arguments. For example, “a container of some subtype of Float” will also
be “a container of some subtype of Number” (because any subtype of Float is also a subtype of

6.3 Java 5 Generics: Parametric Polymorphism for Objects 103

Container<Number>
set(Number):void
get():Number

Container<? extends Number>
set(Null):void
get():Number

Container<? super Number>
set(Number):void
get():Object (Number)

Container<Float>
set(Float):void
get():Float

Container<? extends Float>
set(Null):void
get():Float

Container<? super Float>
set(Float):void
get():Object (Number)

Container<?>
set(Null):void
get():Object (Number)

Container<?>
set(Null):void
get():Object (Number)

Figure 6.5: Apparent member signatures and subtype relations for wildcard type arguments

Number). Alternatively, we can verify that the apparent signatures of the members of a subtype
indeed constitute a stronger contract than the corresponding signatures in the supertype.

Irrespective of the justification, it is clear from this diagram that the parametrization with
wildcard type arguments enables a very flexible subtyping scheme for generic types. While there
is still no direct relation between Container<Number> and Container<Float>, the similarity
of their get operation can be exploited through the common supertype:

Container<? extends Number>

while the similarity of set is captured in supertype:

Container<? super Float>

Wildcards also offer a simpler alternative for certain uses of generic methods that could be
considered overkill. For example, in the CopyContainer example on page 99 the type variable
of generic method copyFrom is only used to allow variation of the type argument of one type
annotation (it is not used to connect different type annotations). Using wildcards, this method
can be defined as an ordinary (non-generic) method with an argument type that contains a
wildcard type argument (which is arguably a more straightforward signature):

class CopyContainer<X extends Number> extends Container<X> {
void copyFrom(Container<? extends X> c) {

set(c.get());
}

}

104 Subtype and Parametric Polymorphism

Correspondence to Existential Types

We have already encountered a type generalization similar to Container<? extends Number>
in Section 6.2.3; the description of this wildcard parameterized type corresponds to the bounded
existential type

exists X in Null-Number,Container<X>

where Container<X> is an abbreviation for the record type {get:{}->X,set:X->{}}. The
existentially quantified type variable is used to hide information about the specific type argu-
ment in parameterized types such as Container<Number> and Container<Float>. Number
and Float are the respective witness types for these two cases.

Igarashi and Viroli, as well as Torgersen et al., exploit this correspondence to existential types
in the type systems with use-site variance that they propose. Chiefly, the access restrictions
for types with wildcard type arguments are enforced by enclosing all the operations on such
types in an implicit opening operation, and using a typing rule similar to that of rule OPEN from
Figure 6.3. For example, an operation on variable x of type Container<? extends Number> is
type checked using a context where the variant type parameter is captured using a fresh type
variable X, i.e., using the context assumptions:

X in Null-Number;x:Container<X>

For this context, the standard typing rules will allow to conclude that the result of calling method
get on x (or its functional counterpart x.get {}) will have type X, or by subsumption, Number.
Oppositely, we cannot type the invocation of the set operation with a Number argument (or the
counterpart, x.set e where e is some term of type Number).

So we observe that we can recreate our conclusions from above, but this mechanism also
allows to decide more complex cases. For example, consider the invocation of method copyFrom
on a variable of type CopyContainer<? super Number>. We can also type the operations on
nested parameterized types, such as List<? super List<? extends Number>>, through the
correspondence with nested existential types:

exists X in (exists Y in Number-Object,List<Y>)-Object,List<X>

All of these cases are uniformly treated by the standard typing rules and a relatively simple
opening operation.

As explained by Torgersen et al. (2005, Sec. 3.1), the opening operation for JAVA 5 wildcards
occurs through so-called capture conversion (defined in Gosling et al., 2005, §5.1.10), which
implicitly converts a type parameterized with wildcards into a type that is parameterized with
fresh type variables that are defined with appropriate bounds in a sufficiently large scope.
For example, consider the variable x of type List<?>. Capture conversion will convert the
type of this variable to List<X> where X is some fresh type variable (without a bound). This
conversion is sufficient to enforce the access restrictions of wildcard parameterized types. This
organization of JAVA 5 explains why we talk about “apparent” member signatures in the previous
section: the presented signatures are not explicitly considered by the type system, it will instead
employ capture conversion and type the members with fresh type variables.

As opposed to an explicit opening operation, capture conversion does not allow the pro-
grammer to refer to the fresh type variable that is introduced. In the above example with type

6.3 Java 5 Generics: Parametric Polymorphism for Objects 105

List<?>, we have no name to refer to the fresh type variable X 7. This is a problem for some
operations, e.g., we need define a variable of type X to use as temporary storage when swapping
two elements in the list. Wildcards are designed such that, in such cases, access to this type
variable can be recovered through a generic method. Observe that we can still invoke a generic
method m with type X as a type argument: thanks to the inference of type arguments, we do
not have to specify this type upon invocation. We can write the call m(x) and this will be taken
to mean <X>m(x), where X is inferred from the type of x (note that the inference is no longer
a convenience mechanism here). Thus if we place the swapping operation inside a generic
method:

<Y> void swap(List<Y> y) {
Y tmp = y.get(0);
y.set(0,y.get(1));
y.set(1,tmp);

}

We will be able to invoke swap(x) and have access to X through the name Y in the method
body. This mechanism of allowing a type variable to be instantiated to a wildcard is known as
wildcard capture.

Finally, we observe that subtype relations for parameterized types with wildcards can be
explained in terms of the subtyping rule for existential types, rule SEX in Figure 6.4 on page 94.
The fact that we obtain subtypes of Container<?> by narrowing the wildcard corresponds to
the narrowing relations that are required for the bounds of the existentially quantified type
variable in the first two conditions of this rule:

Container<? extends Number>
Container<? super Number>

. . .

The relation of the third condition corresponds to the other dimension of subtyping we have for
this type, by considering subclasses of the generic class Container:

CopyContainer<?>
. . .

Note however that the rule describes subtype relations between existential types only, and there-
fore only explains those subtype relations between types parameterized with wildcards. The in-
troduction of a wildcard that occurs when allowing invariant types, such as Container<Float>,
as subtypes of Container<?>, corresponds to an implicit packing operation where Float fulfills
the role of the witness type. In accordance with the second condition of rule PACK, this witness
type must adhere to the bounds (if any) of the wildcard by which it will be hidden.

7Although the introduced type variables are sometimes referred to as “capture of ?” in compiler error messages, such
a reference cannot be used by the programmer.

106 Subtype and Parametric Polymorphism

6.3.3 Discussion: Opportunities for Framework Designers

If there is a single conclusion to be taken from this chapter, then it should be that, with its
generics feature, JAVA 5 transferred some advanced results from type systems research into the
mainstream. This is quite surprising for a language that is criticized by many for at least lagging
behind in the adoption of recent programming language technology, if not obstructing further
development of that technology.

Nevertheless, the reception of JAVA 5 generics by the JAVA community has certainly not
been unanimously positive. Thought leaders such as Arnold (2005); Eckel (2005); Bloch (2007)
have criticized generics for its complexity; most complaints originate from constraints of the
implementation technique (erasure), interaction with other language features, and sometimes
the “under the hood” introduction of new type variables through capture conversion. Undeni-
ably, a significant learning process is required to become proficient with generics, and this is
sometimes overlooked because of the deceptive simplicity of a concept like List<String>.

However, it is equally true that generics have dramatically increased the expressiveness of
the type system. Its ‘killer app’ is the collections framework from the standard library (Naftalin
and Wadler, 2006, Part II), but we argue here that parametric polymorphism also enables
typed versions of language frameworks: libraries that offer otherwise primitive operations as
user-level functions. It is not a coincidence that our first example in Section 6.2.3 involves the
wrapping of the primitive boolean test in an ordinary function with a type that is equivalent
to the dedicated typing rule IFTHENELSE. Similarly, the type java.lang.Class in the standard
library offers many examples of reflective features that are typed as generic methods and types
(Naftalin and Wadler, 2006, Sec. 6.1). We will further exploit these possibilities when building a
typed version of our AOP framework in Chapter 8.

Chapter 7

Typing Principles for
Pointcut/Advice Bindings

In this chapter, we derive a set of principles for the flexible typing of pointcut and advice
bindings. These principles are the basis for the type systems for the pointcut/advice mechanism
presented in the remainder of this dissertation. More specifically, the goal of this chapter is to
obtain a typing for pointcuts and one for advice, and a set of rules that judge the compatibility
of pointcut and advice based on their respective types. The main criterion for designing such a
typing, is that it should be a ‘faithful’ abstraction of the pointcut/advice mechanism: it should
only allow pointcut/advice bindings for which the application of the advice to join points
matched by the pointcut cannot cause type errors, and it should be sufficiently expressive to
support common advice used in practice.

Section 7.1 characterizes the typical capabilities of advice behavior, and motivates that a
function that ‘wraps’ a join point is a general model of advice. Section 7.2 presents the core
contribution of this chapter: it formulates a soundness condition for advice application for
general join points, and it develops two sets of typing principles by employing respectively
subtype polymorphism and parametric polymorphism to meet this condition. It also considers
the relation between these two sets of typing principles, and describes how one can be incor-
porated into the other. Section 7.3 specializes the resulting typing principles for the case of
function join points, which are highly relevant for many concrete aspect languages. Finally,
although the typing principles of Section 7.2 are expressive enough to support a large set of
practical pointcut/advice pairs, Section 7.4 discusses the possibility of an extension to support
join points with a specific type structure.

7.1 Characterization of Advice Behavior

As we have discussed before, different advice kinds are offered by most aspect approaches that
support the pointcut/advice mechanism: before advice, after advice, around advice, etc. Of
these different advice kinds, the around advice is the most expressive: it can emulate the other
advice kinds. It is also the most interesting to type: because of its expressiveness, the typing will

107

108 Typing Principles for Pointcut/Advice Bindings

be more complex, but once accomplished, the typing for the other advice kinds will follow in a
straightforward manner. We will focus exclusively on around advice in this chapter.

An around advice is executed in place of the advised join point, and it will produce a result
to return to the join point client. However, the advised join point may be used at will during the
execution of the advice (it is typically available in around advice under the name proceed). For
example, when advising a method execution join point, the advice can execute this method
once, multiple times or not at all. The method arguments can be made available to the advice as
context parameters, and new argument values may be specified by the advice for the invocation
of the join point. Similarly, the advice can employ the results from join point invocations, and
a different result may be returned to the join point client. In other words, the advice ‘wraps’
the advised join point, similar to the wrapping of a component in the Decorator design pattern
described by Gamma et al. (1995, p. 175–184). The name “around” advice also stems from this
interpretation. Yet another interpretation is that around advice is a function that receives a join
point and returns a join point to be used by the join point client.

Note that, due to the use of pointcuts, a single advice may be applied to a number of join
points of different types. Preferably, these different join point types are generalized in one
pointcut type. When verifying the pointcut/advice binding, the compatibility between the
advice type and the pointcut type should entail the compatibility of the advice with all join
points matched by the pointcut.

7.2 Typing Principles for Join Points of General Type

We will develop principles for the typing of pointcut/advice bindings using the terminology
and notations of the functional language from Section 6.2. We will consider any usage of a
term as a join point; the context where the term is used is the join point client. For the sake of
generality, we will first consider join points of any type. The join point will have a certain most
specific type, but the join point client may be able to operate with a less specific type (recall
that is generally possible to assign less specific types by means of the subsumption rule). We
can summarize this situation as the following two propositions:

Ajp ` jp : Sjp Ajp ` Sjp <: Tjp if Ajp ` jp : T then Ajp ` Sjp <: T

Here, we use the following metavariables: jp is the join point term, Sjp is the most specific join
point type, Tjp is the type that the join point client expects from the join point and Ajp are the
assumptions regarding term and type variables from the join point context. It is established
that Sjp is indeed the most specific join point type by requiring in the third proposition that it is
a subtype of any other type T of the join point term.

Following the description of advice behavior from the previous section, we will model an
advice as a function that receives the join point as an argument and produces a result for the
join point client. In case of an ordinary function, its type is a general function type:

` adv : Tpro ->Tadv

Here, adv is the advice function, Tpro is the argument type (with notation Tpro because this
argument fulfills the role of proceed) and Tadv is the result type. Note that we consider only
top-level functions as advices: the advice is therefore typed with no context assumptions.

7.2 Typing Principles for Join Points of General Type 109

join point

join point client

Tjp

Sjp
advice

join point

join point client

Tjp

Tadv

Tpro

Sjp

(a) (b)

Figure 7.1: Join point interface types (a) before and (b) after advice weaving, in UML ball-and-
socket notation (Object Management Group, 2005). The additional dashed lines illustrate the
invasive effect of advice weaving.

As explained, advices are not directly connected to join points by the programmer. Pointcuts
are used as intermediate language elements that (declaratively) describe a number of join
points. We will not consider the specific details of any particular pointcut language here. We
simply employ pc as a metavariable that stands for a pointcut expression, and we consider two
judgments that involve pointcut expressions. One judgment holds when pc selects join point jp
and is written:

Ajp ` pc matches jp

Free term variables and type variables may appear in the join point term, and since the matching
may depend on the assumptions regarding these variables in the context of the join point term,
these assumption Ajp are included in the judgment. The other judgment concerns the valid
binding between pointcut pc and advice adv:

` (pc,adv) ok

This judgment will determine if the pointcut and advice (or their respective types) are compati-
ble. Our goal is to set-up the definition of this judgment in such a way that we are able to allow
flexible pointcut/advice bindings, but still obtain a sound type system.

7.2.1 A Sufficient Condition for Soundness

To derive the typing principles, we start from the following observation. The weaving of an
advice adv will replace some join points jp by the application of adv to jp, i.e., it will replace
term jp by term adv jp. However, this replacement occurs in a manner that is transparent to any
client of the join point: such a client was specified and typed with the original term. We argue
(informally) that the result of weaving will be sound if, for any type admitted by the original
term, the replacement term admits the same type. In that case, a well-typed client of the original
join point cannot use the replacement term in a manner that causes a run-time type error.

110 Typing Principles for Pointcut/Advice Bindings

This situation is illustrated graphically in Figure 7.1 in terms of provided and expected
elements. Originally, the join point is directly used by the join point client. The client will expect
a certain join point type (Tjp), which is provided by the most specific type of the join point (Sjp).
The advice weaving will change this situation: the advice will service the request of the join
point client instead of the original join point; in turn, the advice may use this original join point.
However, the join point client has not been changed and still expects a term of the same join
point type (Tjp). The advice should therefore preserve this type, for any type that was expected.
In addition, the join point has not changed either, so it will provide its original type (Sjp) to the
advice.

We will formulate the observation regarding type preservation by advice application as a
property that — for the explanatory purpose of this chapter — can be considered a sufficient
condition for the soundness of the typing of pointcut/advice bindings (it is of course not a
rigorous treatment of the problem):

` (pc,adv) ok Ajp ` pc matches jp Ajp ` jp : Tjp

Ajp ` adv jp : Tjp
PSOUND

Note that this is not the definition of a new typing rule! (This is the reason why we don’t write
the name PSOUND on the top.) It is simply a concise formulation of a property that we will
consider sufficient for soundness: if the conditions above the horizontal bar guarantee the
conclusion below the bar, for all bindings of the occurring metavariables, then we will consider
the type system sound. Essentially, the property states that for any join point matched by a
validly bound pointcut for an advice, the application of the advice to the join point should
preserve any of the join point types (which are any of the types the join point client may expect).
In the following sections we will start from this property and reason backwards to obtain typing
rules.

7.2.2 Typing Advice with Subtype Polymorphism

When the advice is an ordinary function of type Tpro ->Tadv (ordinary advice), the typing of its
application to a join point is governed by rule APPL. The join point will need to admit type Tpro,
and the result of the application has type Tadv. However, in property PSOUND, both argument
and result have the type Tjp instead. We will require appropriate subtype relations to be able to
transition between these types. To discover these relations, we apply subsumption both before
and after the function application. We will start from the most specific type of the join point
(written Sjp) and obtain the same conclusion as property PSOUND:

SUB

APPL

SUB
Ajp ` jp : Sjp Ajp ` Sjp <: Tpro

Ajp ` jp : Tpro

` adv : Tpro ->Tadv

Ajp ` adv : Tpro ->Tadv
PWEAK

Ajp ` adv jp : Tadv Ajp ` Tadv <: Tjp

Ajp ` adv jp : Tjp

Here, property PWEAK has been used. This is the weakening property, which states that derived
typing judgments are not affected when extending the typing context with additional assump-
tions, i.e., that reasoning is monotonic. This property is standard in most type systems, also the
one from Section 6.2.

7.2 Typing Principles for Join Points of General Type 111

Pointcut expressions
pc ::= Spc -Upc type range

Pointcut matching Ajp ` pc matches jp

MATCH

Ajp ` jp : Sjp Ajp ` Spc <: Sjp <: Upc

if Ajp ` jp : T then Ajp ` Sjp <: T

Ajp ` Spc -Upc matches jp

Valid pointcut/advice binding ` (pc,adv) ok

BIND

` adv : Tpro ->Tadv

` Tadv <: Spc `Upc <: Tpro

` (Spc -Upc,adv) ok

GBIND

` adv : forall X in Sadv -Uadv,X ->X
` Sadv <: Spc `Upc <: Uadv

` (Spc -Upc,adv) ok

Figure 7.2: Definition of pointcut matching and pointcut/advice binding for general join points

We will need to set up the typing of the pointcut/advice binding in such a way that the
conditions of property PSOUND guarantee those judgments that are not accounted for in this
derivation:

Ajp ` jp : Sjp Ajp ` Sjp <: Tpro Ajp ` Tadv <: Tjp (7.1)

Note that the two subtype relations are also present in Figure 7.1: a term of type Sjp is provided
by the join point to the advice where Tpro is expected, and the advice provides a result of type
Tadv where the join point client expects Tjp.

As explained, we ensure the judgments (7.1) through the intermediate step of pointcut
expressions and their types. Since the join point types are bounded on both ends in the
relations, we propose to have pointcut types with the form of a type range: Spc -Upc, where
a pointcut of this type should only match join points with a most specific type below upper
bound Upc and above lower bound Spc. In fact, since we are not discussing a particular pointcut
languages here, we will directly use such type ranges as pointcut expressions (see Figure 7.2)
and define their matching behavior accordingly. In rule MATCH, the first and third condition
require type Sjp to be the most specific join point type (specifically, the third condition requires
any other type Tjp to be equal or more general). The second condition requires this most
specific type Sjp to lie within the specified bounds. Note that the choice of a concrete pointcut
expression form does not affect the generality of our conclusions: other pointcut languages
may be employed, as long as we can derive a type range from a pointcut, where it is guaranteed
that the pointcut will only match join points with a most specific type that lies within this type
range.

The last two hypotheses of property PSOUND are Ajp ` pc matches jp and Ajp ` jp : Tjp. From
the conditions of rule MATCH (and since this rule is the only way to establish pointcut matching),
we then already have (by instantiating T to Tjp):

Ajp ` jp : Sjp Ajp ` Spc <: Tjp Ajp ` Sjp <: Upc (7.2)

In rule BIND, we require that the pointcut type range Spc -Upc is contained within the range
Tadv -Tpro. When this rule is used to establish the first hypothesis of property PSOUND, we will

112 Typing Principles for Pointcut/Advice Bindings

be able to extend the conclusions of (7.2) to obtain the relations of (7.1). Concretely, the first
relation is obtained as follows:

Ajp ` Sjp <: Upc

`Upc <: Tpro

Ajp `Upc <: Tpro
PWEAK

Ajp ` Sjp <: Tpro
STRANS

The case of the second relation is entirely analogous. This completes the demonstration of
property PSOUND for the case of this section (discussion of rule GBIND is postponed to the
following section).

Example. The following top-level function receives a record argument and constructs a new
record with an updated fst field and a fixed snd field:

let adv_sub (proceed:{fst:Int})={fst=succ proceed.fst,snd=true}
val adv_sub:{fst:Int}->{fst:Int,snd:Bool}

According to rule BIND, this function can be bound as an advice to pointcuts with the following
type range (or a narrower range):

{fst:Int,snd:Bool}-{fst:Int}

It can therefore be applied to record join points with a most specific type within this type range.

Remark. Observe in rule MATCH that a pointcut Spc -Upc can only match join points when
Spc <: Upc. And for a pointcut where this relation holds, rule BIND will ensure that it can only be
bound to an advice of type Tpro ->Tadv when Tadv <: Tpro. So while advice functions without
Tadv <: Tpro or pointcuts without Spc <: Upc are not directly prohibited, they cannot be used to
advise any join points.

7.2.3 Typing Advice with Parametric Polymorphism

Besides subtype relations, there is another important technique to have the application of an
advice preserve the type of the join point (and thus satisfy property PSOUND). If the advice is a
generic function of type X ->X (generic advice), where X is some universally quantified type
variable, we can conduct the application in two steps. First we instantiate the type abstraction
with the most specific join point type Sjp:

WEAK
` adv : forall X in Sadv -Uadv,X ->X

Ajp ` adv : forall X in Sadv -Uadv,X ->X Ajp ` Sadv <: Sjp <: Uadv

Ajp ` adv [Sjp] : Sjp ->Sjp
TAPP

(Again, the weakening property is used to first bring the advice function in the context of the
join point.) The resulting advice function can then be applied to the join point term. We can
then obtain the conclusion of property PSOUND as follows:

APPL
Ajp ` jp : Sjp Ajp ` adv [Sjp] : Sjp ->Sjp

Ajp ` adv [Sjp] jp : Sjp Ajp ` Sjp <: Tjp

Ajp ` adv [Sjp] jp : Tjp
SUB

7.2 Typing Principles for Join Points of General Type 113

In this derivation, we have used the following hypotheses:

Ajp ` Sadv <: Sjp <: Uadv Ajp ` jp : Sjp Ajp ` Sjp <: Tjp (7.3)

Similar to the case of subtype polymorphism from previous section, we set-up matching and
binding such that we can derive these judgments from the hypotheses of property PSOUND.
Matching is not modified, and from the last two hypotheses and the conditions of rule MATCH

(and by instantiating T to Tjp), we already have:

Ajp ` jp : Sjp Ajp ` Sjp <: Tjp Ajp ` Spc <: Sjp <: Upc (7.4)

In rule GBIND, which is also defined in Figure 7.2, the conditions require that the range Sadv-Uadv

of the advice’s type variable bounds contains the pointcut range Spc -Upc. This allows extend
the relation from (7.4) to derive the remaining relation from (7.3):

Ajp ` Spc <: Sjp <: Upc

` Sadv <: Spc `Upc <: Uadv

Ajp ` Sadv <: Spc Ajp `Upc <: Uadv
PWEAK,PWEAK

Ajp ` Sadv <: Sjp <: Uadv
STRANS,STRANS

With these derivations we have completed a second way to ensure property PSOUND.

Example. We revisit the function bnd_lo from page 91. It returns its argument or some fixed
record value, depending on some condition c. Reformulated with proceed as the argument
name, this becomes:

let adv_lo [X in {fst:Int,snd:Bool}-Top] (proceed:X)=
if c then {fst=1,snd=true} else proceed

val adv_lo:forall X in {fst:Int,snd:Bool}-Top,X->X

According to rule GBIND, this function can be bound as an advice to pointcuts with a type range
that is equal or narrower than the type range of type variable X. It can therefore be applied to a
join point with a most specific type that lies within this range, for example, a record join point
of type {fst:Int}.

Incorporation of subtype polymorphism Thanks to the preliminary material of Section 6.2,
we have been able to formulate rule GBIND for generic advices directly with double bounded
quantification of the type variable. To illustrate the expressiveness of this advanced form, we
demonstrate that it is capable of incorporating the case of subtype polymorphism from the
previous section.

Consider an ordinary advice function adv with type Tpro ->Tadv. This function can be used
as a function X->X when the type variable X is declared to lie within the type range Tadv-Tpro: it
will accept any value of type X, since X is a subtype of Tpro, and its result will always be of type X

since Tadv is a subtype of X. More formally, using the shorthand A0
def= X in Tadv -Tpro and some

of the subtyping rules from Figure 6.4, we can derive:

WEAK
` adv : Tpro ->Tadv

A0 ` adv : Tpro ->Tadv

A0 ` X<: Tpro
SVARU

A0 ` Tadv <: X
SVARS

A0 ` (Tpro ->Tadv) <: (X->X)
SFUN

A0 ` adv : X->X
SUB

` (all X in Tadv -Tpro => adv) : forall X in Tadv -Tpro,X->X
TABS

114 Typing Principles for Pointcut/Advice Bindings

(For the sake of completeness, we add that the application of rule TABS additionally requires
that types Tpro and Tadv are well-formed. However, this can be straightforwardly established
from the given that adv has type composed of these two types, namely Tpro ->Tadv.)

We obtain a universal type for the type abstraction all X in Tadv -Tpro => adv. If we now
consider rule GBIND with its metavariable adv bound to this type abstraction, and metavariables
Sadv, Uadv and X bound to respectively Tadv, Tpro and X, we obtain:

` (all X in Tadv -Tpro => adv) : forall X in Tadv -Tpro,X->X
` Tadv <: Spc `Upc <: Tpro

` (Spc -Upc,all X in Tadv -Tpro => adv) ok

The first condition is the typing of the type abstraction all X in Tadv -Tpro => adv we obtained
above. The second and third conditions are exactly the same as those of rule BIND. So we can
bind this type abstraction as an advice to exactly the same pointcuts as was possible for the
original advice adv.

The conclusion is that rule BIND is a special case of rule GBIND: any pointcut/advice binding
admitted by the former can also be admitted by the latter, if the advice adv is wrapped in a
type abstraction all X in Tadv -Tpro => adv, where Tadv and Tpro are respectively the result and
argument type of adv.

Example. We can abstract the advice adv_sub from page 112 as a function of type X->X when
X is declared with the appropriate bounds:

let adv_gsub [X in {fst:Int,snd:Bool}-{fst:Int}]=adv_sub as (X->X)
val adv_gsub:forall X in {fst:Int,snd:Bool}-{fst:Int},X->X

So far, we have always assigned the most specific type to top-level bindings, but here the
ascription operation (Pierce, 2002, Sec. 11.4) is used in the body term to obtain a more general
type (note that type X->X is a subtype of the original type of adv_sub). The ascription operation
is the equivalent of an explicit up-cast in languages such as JAVA. When a term e is well-typed
with some type S, then its admits all supertypes of S as well (because of the subsumption rule).
By ascribing e the type T (written e as T), where T is one of the supertypes of S, the admissible
types are restricted to a subset consisting of T and its supertypes. The formal typing rule for the
ascription operation is simple:

ASC

A ` e : T

A ` (e as T) : T

To meet the condition of this rule, the type checker must always at least subsume the original
type of e by T . As such, the ascription operation can force a less specific type for e.

As an alternative to function adv_gsub, we can directly specify the behavior of adv_sub as a
generic advice method of type X->X. The proceed argument is of a more specific type than it
needs to be, and the result is again ascribed to a more general type:

let adv_gsub’ [X in {fst:Int,snd:Bool}-{fst:Int}] (proceed:X)=
{fst=succ proceed.fst,snd=true} as X

val adv_gsub’:forall X in {fst:Int,snd:Bool}-{fst:Int},X->X

7.3 Typing Principles for Function Join Points 115

We thus obtain adv_gsub’ with the same type as adv_gsub. According to rule GBIND, both
functions can be used as advice with pointcuts with a type range that is equal or narrower than
the range of type variable X. This is the same range as allowed by rule BIND for the original
function adv_sub.

7.3 Typing Principles for Function Join Points

We will now formulate versions of the typing rules of the previous section that apply to the
specific case of function join points. The motivation for this exercise is the large importance
of function join points in practical AOP approaches, as explained below. The formulation of
these specialized typing rules will be helpful to transfer the results from this chapter to such
approaches in the next chapters.

7.3.1 Relevance of Function Join Points

The pointcut/advice mechanism in practical aspect approaches will typically model join points
as functions (or procedures, if the term “function” is restricted to subroutines without side
effects). This occurs not only when the underlying join point is a method or constructor
invocation (constructs which can be interpreted rather easily as some kind of procedure), also
field references or updates, initializers and exception handlers are presented as functions to the
advice. Recall that join points are nodes in the execution tree, and such a node can generally be
modeled as a function.

For example, when an around advice intercepts a field reference, then it will have access
to this join point through the proceed function or method1. The invocation of proceed will
trigger the execution of the join point. The arguments of this function correspond to certain
designated parameters from the context of the join point, for example, the object from which
the field is to be retrieved. The result of proceed will be the result of the join point execution,
which is the value of the field in this case.

Note that the unification of different join point kinds as functions may be practical rather
than conceptual: by presenting every kind of join point as a function to the advice, the same
advice can be used for join points of different kinds.

7.3.2 Function Join Points and Pointcuts

The development of specific versions of the rules of the previous sections proceeds by replacing
the general type of a join point by a function type consisting of an argument type and a result
type. The application of the subtyping rule for function types will then require separate relations
for both the arguments types and the result types, but in opposite direction.

As a first example, consider a function join point. This join point has a general function
type, which the join point client may expect, and which we will write as follows:

Ajp ` jp : T i
jp ->T o

jp

1And typically a closure function is created to implement this functionality, as explained by, e.g., Hilsdale and
Hugunin (2004).

116 Typing Principles for Pointcut/Advice Bindings

Pointcut expressions
pc ::= (U i

pc -Si
pc)-> (So

pc -U o
pc) type range function

Pointcut matching Ajp ` pc matches jp

FMATCH

Ajp ` jp : Si
jp ->So

jp Ajp `U i
pc <: Si

jp <: Si
pc Ajp ` So

pc <: So
jp <: U o

pc
if Ajp ` jp : T i ->T o then Ajp ` T i <: Si

jp and Ajp ` So
jp <: T o

Ajp ` (U i
pc -Si

pc)-> (So
pc -U o

pc) matches jp

Valid pointcut/advice binding ` (pc,adv) ok

FBIND

` adv : (T i
pro ->T o

pro)-> (T i
adv ->T o

adv)
` T i

pro <: U i
pc ` Si

pc <: T i
adv ` T o

adv <: So
pc `U o

pc <: T o
pro

` ((U i
pc -Si

pc)-> (So
pc -U o

pc),adv) ok

FGBIND

` adv : forall I inU i
adv -Si

adv,O in So
adv -U o

adv, (I ->O)-> (I ->O)
`U i

adv <: U i
pc ` Si

pc <: Si
adv ` So

adv <: So
pc `U o

pc <: U o
adv

` ((U i
pc -Si

pc)-> (So
pc -U o

pc),adv) ok

Figure 7.3: Definition of pointcut matching and pointcut/advice binding for function join
points

Here, T i
jp is the argument type of the function (input type) and T o

jp is the result type (output
type). A pointcut to select function join points types will consist of a type range between two
function types:

pc ::= (Si
pc ->So

pc)- (U i
pc ->U o

pc)

According to rule MATCH, this pointcut will match join points with a most specific type between
these two bounds:

Ajp ` (Si
pc ->So

pc) <: (Si
jp ->So

jp) <: (U i
pc ->U o

pc)

The subtyping rule for function types (rule SFUN) splits each of these subtype relations in a
relation between the result types and another relation, in opposite direction, between the
argument types:

Ajp `U i
pc <: Si

jp <: Si
pc Ajp ` So

pc <: So
jp <: U o

pc

The above pointcut for function join points has thus been split in two separate type ranges:
U i

pc -Si
pc for the argument type and So

pc -U o
pc for the result type.

Because of this observation, we will use an alternative notation for pointcuts for function
join points in Figure 7.3: rather than specifying the pointcut as a range of function types, we
will use the notation of a function of type ranges2. The specialized matching rule itself is given

2This is not very different from the previous notation, it only specifies the types Si
pc, U i

pc, So
pc and U o

pc in a different
order. But it may improve the understandability of the matching and binding rules.

7.3 Typing Principles for Function Join Points 117

as rule FMATCH in this figure. The last condition (to ensure that we are working with the most
specific type of the join point) has also been specialized for function types.

7.3.3 Ordinary Function Advice

An ordinary advice function for function join points is a function that receives a proceed
function, and returns a new function. Its general type is:

` adv : (T i
pro ->T o

pro)-> (T i
adv ->T o

adv)

Example. The following advice increases an integer argument value before passing it to the
function join point; the result is decreased before returning it to the join point client (we assume
that there exist functions succ and pred for increasing and decreasing integer values):

let adv_int (proceed:Int->Int) (x:Int)=pred (proceed (succ x))
val adv_int: (Int->Int)->Int->Int

Recall here that a function with multiple arguments is an abbreviation of multiple nested
functions, and that the arrow operator for function types is right associative. The type of
adv_int is the same as (Int->Int)-> (Int->Int).

We can specialize rule BIND for advice functions of the above type. The application of this
rule will require the following subtype relations in this case:

` (T i
adv ->T o

adv) <: (Si
pc ->So

pc) ` (U i
pc ->U o

pc) <: (T i
pro ->T o

pro)

Again, rule SFUN will split each of these subtype relations in separate relations for argument
types and result types. This leads to the specialized rule FBIND in Figure 7.3. Notice in this rule
how the direction of the advice range similarly differs between the argument and result types:
T i

pro -T i
adv and T o

adv -T o
pro. Both of these two ranges should contain the corresponding type

ranges of the pointcut (resp. U i
pc -Si

pc and So
pc -U o

pc).

7.3.4 Generic Function Advice

We can similarly consider a generic advice function for function join points. This will be a
function of type X ->X , where the bounds for type variable X are function types:

` adv : forall X in (Si
adv ->So

adv)- (U i
adv ->U o

adv),X ->X

Here, type variable X may be bound to any type that lies within the range of the two function
types. Notice that the only type arguments that can meet these bounds will be functions types,
which, according to rule SFUN, must have an argument type within range U i

adv -Si
adv and a

result type within range So
adv -U o

adv. A more direct representation of the type of this generic
function can therefore be obtained by replacing type X by function type I ->O, where we use
the metavariable I to represent the type variable for argument types, and the metavariable O to
represent the one for return types:

` adv : forall I inU i
adv -Si

adv,O in So
adv -U o

adv, (I ->O)-> (I ->O)

(Here, the nesting of two universal types is given a less heavyweight notation by not repeating
the keyword forall.)

118 Typing Principles for Pointcut/Advice Bindings

Example. We can consider a variation of function adv_lo from page 113. In the following
advice function, some condition c will determine whether to invoke the original join point or
not. If yes, the original argument is used and the result is directly returned. If no, a new term is
constructed using the original argument.

let adv_flo [I in Bot-{fst:Int}] [O in {fst:Int,snd:Bool}-Top] (proceed:
I->O) (x:I)=if c then proceed x else {fst=succ x.fst,snd=true}

val adv_flo:forall I in Bot-{fst:Int},O in {fst:Int,snd:Bool}-Top, (I->
O)->I->O

The bounds on type variables I and O are both required for the second branch of the boolean
test: the upper bound of I allows to access field fst of the argument x; the lower bound of O
allows to assign type O to the entire result of the branch.

For the binding of advice functions of the above form, rule GBIND will require the following
subtype relations:

` (Si
adv ->So

adv) <: (Si
pc ->So

pc) ` (U i
pc ->U o

pc) <: (U i
adv ->U o

adv)

We obtain rule FGBIND from Figure 7.3 by again incorporating rule SFUN to establish these
relations. According to the conditions of this rule, range U i

adv -Si
adv of type variable I must

contain the pointcut argument range U i
pc -Si

pc, while range So
adv -U o

adv of type variable O must
contain the pointcut result range So

pc -U o
pc.

Mixing subtype and parametric polymorphism We will still have that ordinary advice func-
tions can be incorporated in generic advice functions with appropriate bounds, i.e., this con-
clusion from Section 7.2.3 stays in effect. However, it is recommended to only employ type
variables and quantification with bounds when the expressive power of these constructs is
strictly required to obtain more flexible pointcut/advice bindings. Otherwise, an advice function
is generally easier to understand without these constructs.

In the case of advice for function join points, we additionally remark that an advice function
may mix the two styles of polymorphism. The advice may represent the argument type of the
join point with a regular type and the result with a type variable or vice versa. In general, it
becomes beneficial to use a type variable for the argument type when the advised join point is
invoked with the original argument value. Similarly, it is useful to represent the result type with
a type variable when the result of a join point invocation is used as the result of the advice.

Example. We can demonstrate this by considering two variations of function adv_int from
page 117. The first will modify the argument, but return the result directly, while the second will
employ the argument directly, but modify the result:

let adv_mix1 [O] (proceed:Int->O) (x:Int)=proceed (succ x)
val adv_mix1:forall O, (Int->O)-> (Int->O)

let adv_mix2 [I] (proceed:I->Int) (x:I)=decr (proceed x)
val adv_mix2:forall I, (I->Int)-> (I->Int)

7.4 Join Points with a Special Type Structure 119

The valid pointcut bindings for these advice functions can be determined through appropriate
combinations of rule FBIND and rule FGBIND. In case of adv_mix1 no benefit is gained from
representing the argument type by a type variable (the argument type will always need to be
Int). However, by employing a type variable for the result type, the typing can express that
the advice always preserves this type, which allows more flexible pointcut bindings. There is a
similar situation in the opposite direction for function adv_mix2.

Conclusion This section concludes the presentation of typing principles that are the ba-
sis for the type systems presented in the remainder of this dissertation. The polymorphism
mechanisms presented in this chapter provide highly expressive mechanisms for the typing of
pointcut/advice bindings. We have considered subtype polymorphism, as well as parametric
polymorphism with bounded quantification, and we have applied the resulting typing princi-
ples to the special case of function join points. This will be sufficient to support most of the
advice specifications that are commonly used in practice. To illustrate that it is possible to
imagine support for bindings beyond the mechanisms presented in this chapter, we devote a
short section to another case below.

7.4 Join Points with a Special Type Structure

In this section, we consider the case of (advice for) join points with a type structure where
different parts are interrelated. As an example, consider the following advice function that
swaps the first two fields of a record join point (and adds a third field):

let adv_stru [X] (proceed:{fst:X,snd:X})=
{fst=proceed.snd,snd=proceed.fst,trd=true}

val adv_stru:forall X,{fst:X,snd:X}->{fst:X,snd:X,trd:Bool}

Intuitively, we observe that this advice function can be safely applied to a record join points
with a most specific type that adheres to a certain type structure. Some example types:

{fst:Int,snd:Int}
{fst:Int,snd:Int,trd:Bool}

{fst:Bool,snd:Bool}
{fst:Bool,snd:Bool,trd:Bool}

. . .

In all of these cases, the fst and snd field may be interchanged (i.e., these fields have the same
type), and there may or may not be a trd field of type Bool. Although subtype polymorphism
allows us specify that a trd field is optional, our current mechanisms cannot express the relation
between the types of the fst and snd fields of the join point.

A first step to type the bindings of adv_stru to join points with the described type structure,
would be to add a pointcut type that guarantees that only join points with the specific type
structure are matched. Such a pointcut type would be reminiscent of a type range with a type
variable that is existentially quantified:

exists X,{fst:X,snd:X,trd:Bool}-{fst:X,snd:X}

120 Typing Principles for Pointcut/Advice Bindings

Join points matched by a pointcut of this type would need to have a most specific type that lies
within the specified type range, for some binding of type variable X. The pointcut could then be
safely bound to an advice with a complementary universal type such as the one from adv_stru.

The practical utility of advising such join points with a special type structure remains to be
investigated. Exploring the subject in further detail is beyond the scope of this dissertation.

Chapter 8

Safe Deployment Logic in EcoSys

This chapter incorporates the typing principles from Chapter 7 in the ECOSYS approach from
Chapter 4. Since ECOSYS is a framework-based AOP approach, Section 8.1 briefly reviews the
type checking facilities in current AOP frameworks. Section 8.2 then develops a typed version
of the ECOSYS programming interface using a novel technique, by employing the advanced
mechanisms of JAVA 5 generics. We also present the incorporation of a form of typed pointcuts
in the ECOSYS implementation. Next, Section 8.3 explores the currently unsolved topic of typed
interaction resolutions. Finally, Section 8.4 presents some examples of real-life advice behavior
expressed (and typed) using the ECOSYS approach. The examples illustrate how both the typing
schemes of ordinary and generic advice are employed in practice. The breadth of the examples
also provides a reasonable indication that the typing supports all the common classes of advice
behavior.

8.1 Current AOP Framework Typing

As explained in Section 2.2.3, AOP frameworks employ only standard language constructs to
describe aspect behavior. The advice code is compiled using a standard compiler that is not
aware of the aspects and the weaving is carried out at load-time or run-time. As a consequence,
these approaches typically offer limited static type safety guarantees in comparison to language
extensions such as ASPECTJ.

For example, the AOP ALLIANCE specification by Pawlak et al. (2004), which is adopted by a
number of approaches including JAC and SPRING/AOP, predefines a number of interfaces to be
used for the specification of advice behavior. In these interfaces, argument and return types are
made generic by reducing all types to the general Object type. And while JBOSS/AOP employs
its own set of interfaces, these are also typed using the general Object type, as demonstrated in
Listing 2.8 on page 22. This measure precludes any static type checking and forces the developer
to include numerous casts, which mark the points where type checks will occur at run-time.
The untyped1 version of ECOSYS in Chapter 4 is very similar to this approach.

1The untyped version of ECOSYS is in fact dynamically typed, but since dynamic typing is a minimum for prevalent
languages today, and entirely untyped languages are seldom considered in our context, we use the terms typed and

121

122 Safe Deployment Logic in EcoSys

Some improvement is achieved by the annotation-based style of ASPECTJ (Colyer et al.,
2005), which implements advice methods as regular JAVA methods with predefined annotations
Since advice methods have a concrete signature, their body can be checked by the standard JAVA

compiler. Additionally, the signature is checked for compatibility with the bound pointcut by
the aspect weaver at load-time. However, to implement around advice and proceed invocations,
the advice method must declare a parameter of the predefined interface ProceedingJoinPoint.
This interface again employs general Object argument and return types, and therefore reduces
safety guarantees to mere dynamic type checking.

8.2 Typed EcoSys

The advanced generics feature of JAVA 5 (among others), which we discussed in Section 6.3,
offer new possibilities for the static typing of AOP frameworks. We will employ features such as
type variables and wildcard parameterized classes to enforce the typing principles proposed
in Chapter 7 (and more specifically Section 7.3) using a standard JAVA 5 compiler. We do this
by developing a typed version of the ECOSYS AOP framework. This version offers expressive
aspects deployments as well as a compile-time type checking of the advice behavior. Both
the advice bodies and the pointcut/advice bindings are checked, and the checking of proceed
invocations is supported; this provides clear improvements over the safety guarantees provided
by current AOP frameworks.

8.2.1 Adaptations to the Programming Interface

Advice interfaces The JoinPoint interface of ECOSYS represents a function join point that
receives one argument and returns a result. In Section 7.3, we model advice for function join
points as an advice function that transforms a function into a new function. This corresponds
to the Advice interface of ECOSYS, although in a more direct sense: the interface defines an
around method which receives a function join point as a parameter, and after this parameter
has been bound, the resulting method may be employed as a new function join point.

Additionally, we defined two kinds of typing for function advice in Section 7.3. Ordinary
advice (Section 7.3.3) is typed using subtype polymorphism, while parametric polymorphism
and type variables are used for generic advice (Section 7.3.4). Listing 8.1 presents a typed
version of the JoinPoint and Advice interfaces, according to the function types for advice
functions from these sections:

• The JoinPoint interface is equipped with type parameters that represent the result
type (named O for output) and argument type (named I for input). As a result, the
parameterized type JoinPoint<O,I> corresponds directly to the function type I ->O.

• Different versions of the Advice interface are defined according to the different kinds of
typing for function advice from Section 7.3:

– The interface OrdAdvice represents ordinary advice. It is parameterized with four
type parameters that represent input and output types for the advice (with suffix a

untyped to refer to static typing only.

8.2 Typed EcoSys 123

1 public interface JoinPoint<O,I> {
2 O invoke(I arg);
3 }
4

5 public interface OrdAdvice<Oa,Op,Ia,Ip> {
6 Oa around(Ia i, JoinPoint<Op,Ip> proceed);
7 }
8

9 public interface GenAdvice<Ou,Iu> {
10 <O extends Ou, I extends Iu> O around(I i, JoinPoint<O,I> jp);
11 }
12

13 public interface MixAdvice1<Oa,Op,Iu> {
14 <I extends Iu> Oa around(I i, JoinPoint<Op,I> jp);
15 }
16

17 public interface MixAdvice2<Ou,Ia,Ip> {
18 <O extends Ou> O around(Ia i, JoinPoint<O,Ip> jp);
19 }

Listing 8.1: Join point and advice interface classes of typed ECOSYS

for advice) and the join point argument (with suffix p for proceed). This interface
defines an ordinary around method with a signature that corresponds to the advice
function type:

(T i
pro ->T o

pro)->T i
adv ->T o

adv

The four component types of this function type are represented by the respective
type variables Ip, Op, Ia and Oa.

– Generic advice is represented by the interface GenAdvice. It is parameterized with
two type parameters that represent the upper bounds (suffix u) for the input and
output type of the join point. (Unfortunately, JAVA 5 generics does not support lower
bounds for type variables.) The interface defines a generic around method with a
signature that corresponds to the advice function type:

forall I <: Si
adv,O <:U o

adv, (I ->O)-> I ->O

In the signature, type variables I and O assume the roles of I and O, while Iu and Ou
assume roles Si

adv and U o
adv.

– Additionally, the possibility to mix both typing styles within one and the same ad-
vice function is also introduced in Section 7.3.4. The interfaces MixAdvice1 and
MixAdvice2 represent the two possible combinations. Interface MixAdvice1 is
defined with ordinary result types and a variable argument type, while interface

124 Safe Deployment Logic in EcoSys

1 public abstract class Pointcut<O,I,JP> {
2 public Binding<JP>
3 bind(GenAdvice<? super O, ? super I> adv) {
4 ...
5 }
6

7 public Binding<JP>
8 bind(OrdAdvice<? extends O, ? super O, ? super I, ? extends I> adv) {
9 ...

10 }
11

12 public Binding<JP>
13 bind(MixAdvice1<? extends O, ? super O, ? super I> adv) {
14 ...
15 }
16

17 public Binding<JP>
18 bind(MixAdvice2<? super O, ? super I, ? extends I> adv) {
19 ...
20 }
21 }

Listing 8.2: Pointcut class of typed ECOSYS

MixAdvice2 has a variable result type and ordinary argument types. The defini-
tion of their type variables and their around methods is obtained by making an
appropriate combination of the above two cases.

Binding type relations The corresponding new version Pointcut class is presented in List-
ing 8.2. It realizes the type relations for pointcut/advice bindings from Section 7.3. The class
defines two additional type variables O and I that represent the result type and argument type of
the join points matched by the pointcut. Obviously, a pointcut may match join points with multi-
ple result types or multiple argument types. However, wildcard parameterizations of the generic
Pointcut type may be employed in such cases; if the wildcard type parameter includes an
upper or a lower bound, then this corresponds to guarantees about the result or argument types
of the matched join points. For example, a pointcut of type Pointcut<?, ? extends Person>
will match only join points where the argument type is a subtype of Person (the result type is
not constrained and may be any type). Similarly, a wildcard type parameter ? super Person
indicates that only supertypes of Person are matched. It is an important assumption of typed
ECOSYS that the employed pointcut formalism only constructs Pointcut objects where the
matching behavior corresponds to the type information given in the type parameters. This is
the responsibility of the particular ECOSYS implementation that provides the pointcut entities.
We elaborate on how this can be realized in Section 8.2.2.

8.2 Typed EcoSys 125

1 class IntAdvice implements OrdAdvice<Integer,Number,Number,Integer> {
2 Integer around(Number arg, JoinPoint<Number,Integer> proceed) {
3 return proceed.invoke(arg.intValue() + 1).intValue() - 1;
4 }
5 }

Listing 8.3: Example of ordinary advice behavior in typed ECOSYS

The interface of the Pointcut class now overloads the bind method to provide a different
version for each of the advice types. The signatures of these method implement the actual type
relations from the binding rules specified in Figure 7.3 on page 116:

• For the case of generic advice, instances of type GenAdvice<Ou,Iu> are only accepted
when Ou is provably a supertype of all join point result types, and Iu is provably a su-
pertype of all join point argument types. This is the case if the wildcard pointcut type
arguments have upper bounds which are subtypes of Ou and Iu . Consequently, this
enforces type relations that correspond to the following conditions from rule FGBIND:

` Si
pc <: Si

adv `U o
pc <: U o

adv

Since it is not possible to declare generic advice with lower bounds for its type variables,
the other conditions are always met.

• For ordinary advice, instances of type OrdAdvice<Oa,Op,Ia,Ip> are only accepted when
Oa is a provably subtype of all join point result types, and Op a supertype, and when Ia

is provably a supertype of all join point argument types, and Ip a subtype. This is the
case if the wildcard pointcut type argument for the result has a lower bound which is
supertype of Oa and an upper bound which is a subtype of Op , and the wildcard pointcut
type argument for the argument has an upper bound which is a subtype of Ia , and a
lower bound which is a supertype of Ip . Consequently, this enforces type relations that
correspond to the conditions from rule FBIND, in the following order:

` T o
adv <: So

pc `U o
pc <: T o

pro ` Si
pc <: T i

adv ` T i
pro <: U i

pc

• For advice that mixes both typing styles, an appropriate combination of the above cases
is employed.

Example (Ordinary advice). In Listing 8.3, we recreate the adv_int advice function from
page 117 in the context of JAVA. This is ordinary advice behavior since the advice body invokes
a join point with an argument that is increased by one, and return the result decreased by one.
For the increase and decrease operations, we employ the intValue method from the Number
interface, followed by an integer arithmetic operation. As a consequence, the increase and
decrease operations accept any Number object and return an Integer. (The operations are not
strictly an increase and decrease, but rather a rounding of a number to the next or previous
integer value.)

126 Safe Deployment Logic in EcoSys

1 public class BeforeAfterAdvice<Iu> implements GenAdvice<Object,Iu> {
2 public void before(Iu arg) {}
3 public void after(Iu arg) {}
4

5 public final <O,I extends Iu> O around(I arg, JoinPoint<O,I> proceed) {
6 before(arg);
7 try { return proceed.invoke(arg); }
8 finally { after(arg); }
9 }

10 }

Listing 8.4: Redefinition of BeforeAfterAdvice as generic advice in typed ECOSYS

In the advice declaration, note that the signature of the advice method is the most general
signature that can be given to an ordinary method with this advice body. An instance of this
advice is accepted by the bind method of an instance of any of the following types:

Pointcut<Integer,Integer,JP>,
Pointcut<Integer,Number,JP>,

Pointcut<Number,Integer,JP> and
Pointcut<Number,Number,JP>

Other pointcut types with type arguments outside of the bounds Integer and Number are not
accepted, and we can demonstrate that the advice behavior is indeed unsafe for such cases.
For example, a first type argument ? extends Number is not safe since the advice does not
provide a result that is guaranteed to be an instance of some unknown subtype of Number,
and a second type argument ? extends Number is not safe either since the advice does not
invoke the intercepted join point with an argument that is guaranteed to be an instance of some
unknown subtype of Number (e.g., the argument is not a Float).

Example (Generic advice). In Listing 8.4, we recreate the BeforeAfterAdvice from Listing 4.1
on page 39 using typed ECOSYS. This advice executes the join point unmodified, but includes
configurable behavior before and after this execution. Since the original join point argument
and result are retained by the advice, it is possible to represent the corresponding join point
types as type variables (i.e., this is generic advice behavior). For the result we employ the most
general upper bound Object, but since the before and after behavior may access the join point
argument, we employ the variable type Iu as the upper bound for the argument type. This
variable type is itself provided as a type argument to the generic class BeforeAfterAdvice.

As a consequence of the interface declaration of BeforeAfterAdvice, an instance of e.g., the
type BeforeAfterAdvice<Number> may be bound to pointcuts where the join point argument
is guaranteed to be a Number, for example Pointcut<?,? extends Integer>.

8.2.2 Integration of Typed Pointcuts

In the above, we explain that we assume that only pointcut entities can be obtained where
the matching behavior of the pointcut corresponds to the type information given in its type

8.2 Typed EcoSys 127

parameters. We now briefly discuss how this correspondence is realized in case of the pointcut
entities provided by the ECOSYS implementation presented in Section 4.3.2.

Recall that these pointcut entities are configured with instances of class Class, a type from
the JAVA reflection facilities which represents information about a type at run-time. An instance
of this class can be considered a class token and the class loader ensures that the same type is
always represented by the same class token. As explained by Naftalin and Wadler (2006, Sec. 6.1),
one of the changes of JAVA 5 is this class now takes a type parameter, so that the class token for
type T now has type Class<T>. Class literals and the invocations of the getClass method of
the Object type are treated specially by the compiler such that it is possible to write the first
and last of the following assignments without employing cast operations:

Class<Integer> ki = Integer.class;
Number n = new Integer(42);
Class<? extends Number> kn = n.getClass();

The advantage of having the type represented by a class token reified in the type parameter of
the token’s own Class type, is that this type information may be employed in the signature of
the reflection operations specified in the interface of type Class.

However, we may also employ this type information in the interface that is offered to create
pointcut entities. For example:

static <CT,RT> Pointcut<? super RT, ? extends CT, AJJP> methodExecution(
int modifierPos,
Class<CT> receiverClass,
Class<RT> returnType,
String methodPat);

This method execution pointcut will expose the receiver as a context argument. It matches those
join points where the receiver class is a subtype of the type represented by the second argument,
and the return type is a supertype of the third argument. This information is represented in the
type arguments of the parameterized Pointcut return type of this method.

8.2.3 Typed First-Class Deployment Procedures

In general, it is straightforward to program typed variants of first-class deployment procedures
in the typed ECOSYS system. In order to demonstrate this, we will revisit the first of the examples
presented in Section 4.2 using the untyped variant of ECOSYS. The other examples may be
treated in a similar fashion.

The example concerns a deployment specification that is shared between different quality
of service concerns in the system; all of these concerns have advice behavior that needs to be
bound to the same pointcut (modelManip), configured with the same log handle and resolution
behavior, and so on. The shared deployment behavior is specified as a method deployQoS,
which now becomes:

128 Safe Deployment Logic in EcoSys

void deployQoS(OutputAdviceFactory<FigureElement> factory) {
OutputAdvice<FigureElement> adv =

factory.createAdvice(Application.getLog());
adv.setOutputLevel(Logging.INFO);
core.deploy(modelManip.bind(adv));
core.addResolution(new AdvicePrecedenceResolution(authorization,adv));

}

In this code, we have assumed that the modelManip pointcut exposes the manipulated model
objects, which are of type FigureElement. The pointcut therefore has type:

Pointcut<Void, ? extends FigureElement, AJJP>

Additionally, we assume that OutputAdviceFactory<T> is a generic type of factories which
produce instances of type OutputAdvice<T>, which is a subtype of BeforeAfterAdvice<T>,
which, in turn, is shown in Listing 8.4 to be a subtype of:

GenAdvice<Object,T>.

The compatibility between the above Pointcut type and GenAdvice type is verified when
typing the modelManip.bind(adv) expression inside the deployment procedure. The compiler
will deduce that this invocation is well-typed according to the first bind method in Listing 8.2.

While the above example is a deployment procedure which concerns specific types only, we
observe that it is possible in typed ECOSYS to construct generic deployment procedures as well.
This is demonstrated in a generalization of the above example, where the employed pointcut
has become a parameter of the deployment procedure:

<T> void deployQoS(OutputAdviceFactory<T> factory,
Pointcut<?, ? extends T, AJJP> pc) {

OutputAdvice<T> adv = factory.createAdvice(Application.getLog());
adv.setOutputLevel(Logging.INFO);
core.deploy(pc.bind(adv));
core.addResolution(new AdvicePrecedenceResolution(authorization,adv));

}

Now, deployQoS is a generic method with the type of the exposed object as a type parameter
T. The signature of this method requires that an OutputAdviceFactory is combined with a
Pointcut that involves the same type T. Otherwise, the combination would not be guaranteed
to be type-safe, and consequently, the body of the deployment procedure would be rejected by
the compiler.

8.3 Typed Interaction Resolutions

The interaction resolution mechanism that we present for ECOSYS in Section 4.1.3 employs
general Object types (by means of the RawJoinPoint interface, as is presented in Figure 4.2 on
page 44). It is clear that these powerful interaction resolutions may cause run-time type errors

8.3 Typed Interaction Resolutions 129

as well, so the question naturally arises whether we can install a typing discipline for these
resolutions. This is not supported in the current version of ECOSYS and it seems that at least a
slightly different organization is needed in order to do so. Below, we provide a brief provisional
evaluation of the problem.

First, recall that resolutions compose the behavior of advice applications obtained using
different pointcuts. This is logical since interactions may very well occur between advice
instances that employ different pointcuts to advise the same join point. This organization
entails that compatibility of a resolution should be directly considered against a RawJoinPoint,
rather than the more high-level abstractions of the types JoinPoint and Pointcut. To this end,
it would be possible to equip the types RawJoinPoint as well as the type AdviceApplication
with type variables representing the types of the relevant join point (if we assume a variable O
for the type of the result, I1 for the type of the caller, and I2 for the type of the receiver):

RawJoinPoint<O,I1,I2>

AdviceApplication<O,I1,I2>

The type Resolution would also need to carry some type information which would be used
to specialize the AdviceApplication that it operates on with some type arguments. Corre-
spondingly, it would be necessary only to invoke a registered Resolution when a compatible
join point is encountered (currently, registered Resolution instances are considered for every
join point). This would need to be considered when a Resolution instance is registered in the
Core.

Alternatively, we observe that a wide class of useful interaction resolutions may be carried
out without specific knowledge of the type of the join point at hand, and are therefore com-
patible with any join point. For example, resolutions that only rearrange, duplicate or remove
existing advice applications will never produce a failing advice composition, if the list of advice
application they operate on is safe for the current join point to begin with. In order to track
that a resolution do add advice applications in the typing, it seems that wildcards may again be
employed. Consider the following Resolution type:

interface SafeResolution {
void resolve(List<AdviceApplication<?,?,?>> advs);

}

Since the type arguments of AdviceApplication are unknown (as represented by unbounded
wildcards), it is essentially impossible from an implementation of resolve to produce a new
advice application that it may add to the list. However, it is still possible to rearrange, filter or
duplicate the existing advice applications2.

2Although for some of these operations, it may be necessary to employ the mechanism of wildcard capture to assign
type variables to the different types represented by the ?, as explained in Section 6.3.2.

130 Safe Deployment Logic in EcoSys

1 import java.util.*;
2

3 class Caching implements MixAdvice1<Number,Number,DataProvider> {
4 Map<DataProvider,Number> cache = new HashMap<DataProvider,Number>();
5

6 <C extends DataProvider>
7 Number around(C ctx, JoinPoint<Number,C> proceed) {
8 Number result = cache.get(ctx);
9 if(result == null) {

10 result = proceed.invoke(ctx);
11 cache.put(ctx,result);
12 }
13 return result;
14 }
15 }

Listing 8.5: Typing of caching advice using typed ECOSYS

8.4 Some Real-life Examples

In this section, we present a number of examples of common aspect applications expressed
using typed ECOSYS. Beside enabling a better understanding of the proposed typing constructs,
these examples also illustrate the usefulness of the introduced mechanisms for practically-
relevant, realistic advice behavior. They provide a reasonable indication that the proposed
typing schemes are sufficient to support most common application of pointcuts and advice (in
particular around advice).

To categorize the demonstrated advice, we use some terminology of Rinard et al. (2004).
This work distinguishes between augmentation advice (which always executes the original
behavior entirely), narrowing advice (which either executes the original behavior or raises an
error) and replacement advice (which replaces the original behavior with entirely new behavior).

Caching Caching is a common example of a concern that can be implemented using aspects
(see e.g., Colyer, 2004). In Listing 8.5, we show a straightforward caching aspect that stores the
numeric return value of an expensive operation in a map, and then retrieves the cache value on
subsequent invocations. The DataProvider instance that is associated with the operation is
used as the key to access the cache values.

When no cache value is available, the advice behaves as an augmentation advice that stores
the original return value. Otherwise, it is a replacement advice that directly returns a value
without executing the original behavior. Since a result from a proceed invocation may be written
to the cache, the proceed result type should be a subtype of Number. And since a value read from
the cache may be used as a result of the advice, the advice result type should be a supertype of
Number. As a result of the interface declaration of the class Caching, an instance of this advice
may be bound to a pointcut with a result type that is exactly Number. Indeed, in case of a more
specific join point return type, the cache value may not be too general for the join point client.

8.4 Some Real-life Examples 131

1 import java.awt.Component;
2 import javax.swing.JTextArea;
3 import javax.swing.JScrollPane;
4

5 class Factory {
6 Component createTextArea(String t) {
7 return new JTextArea(t);
8 }
9

10 ...
11 }
12

13 class Decorator implements MixAdvice1<JScrollPane,Component,Object> {
14 <I> JScrollPane around(I arg, JoinPoint<Component,F> proceed) {
15 return new JScrollPane(proceed.invoke(arg));
16 }
17 }

Listing 8.6: Factory Method design pattern with decorator in typed ECOSYS

And in case of a more general join point return type, the result of the join point is too general
for the cache.

With respect to the argument, the original argument from the join point client is always
employed to invoke the join point, although the original join point is not always invoked. This
is the behavior of narrowing advice.

Factory Method Pattern In previous research, it has been recognized that the implementa-
tion of a number of common design patterns benefit from the application of aspect-oriented
programming3. In Listing 8.6, we provide an example of the Factory Method design pattern
(Gamma et al., 1995). The intent of this pattern is to create an interface for object creation
that defers instantiations to its specializations. Our example defines a factory that creates GUI
components (only one factory method is shown). An aspect specializes the factory methods to
decorate the created components with scrollbars.

In this case, the aspect performs replacement advice that returns a newly created compo-
nent. Since the invocation of the constructor of JScrollPane requires a Component while it
provides an instance of JScrollPane, we employ these types as respectively the proceed and
advice return types. Consequently, the advice can be bound to pointcuts where the first type
argument has upper bound Component and lower bound JScrollPane. The original join point

3As a matter of fact, the aspect-oriented implementation of design patterns is sometimes used as case study for
the evaluation of the expressiveness of aspect approaches (with regard to deployment and other features). Systematic
investigations of all of the design patterns from Gamma et al. (1995) have been conducted by Hannemann and Kiczales
(2002), Hirschfeld and Lämmel (2004), Rajan (2007) and Miles (2004), while Ostermann and Mezini (2003) considers
improvements to the implementation of one design pattern. Such a study is a part of the future work for (typed) ECOSYS,
and at present we limit ourselves to the discussion of the typing of one design pattern example.

132 Safe Deployment Logic in EcoSys

1 import java.util.*;
2

3 class Profiling implements GenAdvice<Object,DataProvider> {
4 Map<DataProvider,List<Long>> timings =
5 new HashMap<DataProvider,List<Long>>();
6

7 List<Long> getEntry(DataProvider key) {
8 List<Long> entry = timings.get(key);
9 if(entry == null) {

10 entry = new LinkedList();
11 timings.put(key,entry);
12 }
13 return entry;
14 }
15

16 <R, DP extends DataProvider> R around(DP dp, JoinPoint<R,T> proceed) {
17 long start = System.currentTimeMillis();
18 try { return proceed.invoke(dp); } finally {
19 long stop = System.currentTimeMillis();
20 getEntry(dp).add(stop - start);
21 }
22 }
23 }

Listing 8.7: Typing of profiling advice using typed ECOSYS

argument from the join point client is always directly employed for the proceed invocation (i.e.,
augmentation advice), so there are no restrictions with respect to the possible argument types.

Note that in case the specialized factory would refine the existing Component instead of cre-
ating a new value (e.g., a border can be defined for an existing component using the setBorder
method of class JComponent), the advice would qualify as augmentation advice. It would also
become possible to specify the advice behavior as an instance of GenAdvice.

Profiling Profiling is another example of a crosscutting concern that is often implemented
using aspects (see e.g., Laddad, 2003, sec. 5.6.2). Listing 8.7 presents profiling advice that mea-
sures the execution time of operations and stores the measurements in a list that is associated
with the DataProvider join point argument. As can be expected of profiling behavior, this
is purely augmentation advice. The join point argument should at least be a DataProvider,
so this type is employed as the upper bound for the corresponding type variable. No specific
bound is employed for the return types.

Chapter 9

StrongAspectJ: Recovering
Mainstream AOP Type Safety

In this chapter, we apply the typing principles from Chapter 7 to the mainstream aspect language
ASPECTJ. The result is a concrete proposal for a language extension, called STRONGASPECTJ1.
This contribution transfers the results of Part II of the dissertation to conventional aspect

languages: STRONGASPECTJ offers safe aspect deployments in the context of traditional de-
ployment mechanisms; it does not provide the advanced deployment expressiveness that is
present in ECOSYS. The motivation for this development is to underline the independence of the
contributions from Chapter 7, and to make the results directly adoptable by aspect languages
that wish to retain the traditional deployment mechanisms.

Another motivation for STRONGASPECTJ is the status of type systems in current aspect lan-
guages. Since ASPECTJ is designed as a seamless extension of the JAVA programming language,
it already offers a type system directly inspired by JAVA. This type system has also been adopted
by other aspect languages that employ the pointcut/advice mechanism, such as JASCO and
CAESARJ. It may seem a little odd that we present a new type system when there appears to
be a de facto standard for aspect typing, especially since the STRONGASPECTJ type system is
somewhat more complex than the existing solution. However, contrary to the impression given
by this situation, aspect typing is not a solved problem. The ASPECTJ type system exhibits
significant safety problems that STRONGASPECTJ overcomes, and hence the title of this chapter.
The fact that the ASPECTJ type system nonetheless enjoys widespread use indicates that these
issues are relatively unknown.

Section 9.1 presents the complete STRONGASPECTJ proposal and discusses how it integrates
the typing principles from this dissertation with the ASPECTJ language. Section 9.2 compares the
result to the existing ASPECTJ type system and explains the important improvements realized
by STRONGASPECTJ. Section 9.3 presents an implementation of the STRONGASPECTJ proposal
in the context of the ASPECTBENCH compiler. Finally, Section 9.4 discusses the related work in
the area of typed aspect languages.

1The “strong” prefix hints at the safety guarantees provided by the extension. The name is also loosely inspired by
the STRONGTALK type system for SMALLTALK from Bracha and Griswold (1993).

133

134 StrongAspectJ: Recovering Mainstream AOP Type Safety

9.1 StrongAspectJ

STRONGASPECTJ integrates the typing principles for pointcut and advice bindings with the
ASPECTJ language. We first discuss a number of particular design decisions that are present in
the current type system of ASPECTJ and that we choose to retain. We then present the STRONG-
ASPECTJ extension with a complete language definition and a discussion of the relation to the
typing principles developed in Chapter 7. Afterwards, the proposal is illustrated with some
examples.

9.1.1 AspectJ Typing Particulars

Similar to the typing of ECOSYS, the safe application of advice is checked in ASPECTJ through
three consecutive steps: (i) the body of an advice method must adhere to its signature, (ii) the
join points selected by a pointcut must adhere to the pointcut type, (iii) when advice is bound
to a pointcut, the advice signature and pointcut type must be compatible. While the first of
these steps is checked in a way that is almost identical to ordinary JAVA, and the approach for
the third step is quite similar to typed ECOSYS, the type system of ASPECTJ has an alternative
design for the second step, both with regard to the arguments and the result of join points. This
will be described in detail in this section.

STRONGASPECTJ adopts those aspects of the design of ASPECTJ described in this section, if
for no other reason than to keep the distance between both languages minimal. This does not
mean that these design decisions are undisputed; we will discuss both the advantages and the
disadvantages of the ASPECTJ design here.

Typing and Binding of Context Arguments

An ASPECTJ pointcut may expose context parameters of the selected join points through the
use of the primitive pointcut designators this, target and args. These designators bind a
pointcut or advice variable to respectively the caller object, the receiver object or the arguments
of the join point. The type of the exposed context arguments is an important part of the pointcut
type and advice signature. However, rather than checking that the join points matched by the
pointcut indeed have context objects that match the declared types and signaling an error when
this is not the case, ASPECTJ will adapt the pointcut matching semantics such that join points
with context objects of an incompatible type are not selected.

For example, the pointcut expression this(e), where e is the name of an Employee variable
from the enclosing declaration, will only match join points where the executing object has this
particular type Employee. This is a very straightforward design to ensure that the variable can
always be bound to an object of the appropriate type. The main disadvantage, however, is that
mistakes in pointcut expressions are not detected by the type system. If we want to bind the
receiver Employee object in the pointcut call(* Employee.*(..)), but by mistake employ a
combination with the expression this(e) (which binds the caller object instead), no error is
reported. Instead, the pointcut will be changed to match only those cases where an Employee
method is called from within its own class. This seemingly mysterious change in the matching
semantics of the original pointcut may be difficult to track down.

9.1 StrongAspectJ 135

We remark that the type comparison for this, target and args pointcut designators
involves the dynamic type of the to-be-bound object. If necessary, a code residue with an
instanceof test is woven into the static code location that correspond to the join point (the
join point shadow) to be able to include those join points where the static type of the to-be-
bound variable or expression is not sufficient to determine type compatibility. This is in contrast
to type patterns that are normally used in the pointcut language, and that match against static
types of interfaces and signature declarations. Since a dynamic type test is useful in its own right,
this, target and args may alternatively be used without binding a variable. For example, the
pointcut this(Employee) will only match join points where the caller object is an instance of
Employee.

Typing of the Join Point and Advice Result

The other important part of the pointcut type and advice signature is the return type of the
intercepted join points. However, before advice methods do not have access to the join point
return value, simply because the join point has not been executed yet. Ordinary after advice
cannot access the join point result either, because it is used in both the case of a normal and an
abnormal completion of the join point.

In case of an after returning advice method, a result is always available — at least for a
join point that can logically have a return value (e.g., not for a field set or the invocation of a void
method). To bind the join point result to an argument for this kind of advice method, ASPECTJ
does not employ a binding primitive pointcut designator such as this, target or args. The
result can be made available to the advice body by simply declaring an (additional) argument in
a section of the advice method signature after the returning keyword. Similar to the binding
with the this, target and args primitives, this implies a condition for the execution of the
advice (in addition to the conditions from the pointcut): the advice will only be applied when
the result has the type that is declared for this parameter (again, the dynamic type of the result
is considered, and a dynamic instanceof test is used to guard the advice execution when the
type relation cannot be statically determined). This design has roughly the same trade-offs as
the parameter binding mechanism that we discussed in the previous section.

This leaves only around advice methods, which may access the join point result through
an invocation of the proceed method. Contrary to the case of after returning advice, it is
not possible to apply the advice only on the condition that it is compatible with the dynamic
type of the join point result: since the join point has not been executed yet when the advice is
applied, this result is not yet known. In addition, such an advice method returns a new result
that is provided to the join point client instead. Obviously, the type system needs to ensure that
this new result does not violate the expectations of possible join point clients.

Contrary to the case for join point arguments, ASPECTJ opted for a design where type
information about the join point result is not included in the pointcut type. This information
would complicate the pointcut types while it is only used for around advice and not the other
advice kinds. Instead, when the weaver looks up the join point shadows that are matched
by the pointcut expression to which the advice is bound, the advice compatibility is verified
using the static type information of the join point shadow (i.e., the advice signature and the
join point type are compared directly, without the intermediate step of a pointcut type). The
major disadvantage of this approach is that the type checking of a pointcut/advice binding

136 StrongAspectJ: Recovering Mainstream AOP Type Safety

becomes dependent on the base application. The incompatibility of some pointcut and advice
combinations may only be detected when the code base includes join points that ‘trigger’
conflicting situations. In addition, since the weaving of aspects in the base code is increasingly
delayed from the compile-time to later stages in the deployment of the application (load-time
or run-time), errors may be detected much later than with traditional static type checking.

9.1.2 Language Definition

The STRONGASPECTJ language extension is defined by means of a syntax definition in Figure 9.1
and a number of (informal) semantic rules in Figure 9.2. The extension incorporates the typing
principles for function join points from Section 7.3 into the ASPECTJ language. We will discuss
the definition of the extension in detail in the following sections.

Pointcut type ranges

As explained in Section 7.3.1, a join point in the context of ASPECTJ may be considered a function
that receives a number of arguments and returns a result. Analogously, the signature of the
join point corresponds to a function type. We write such a signature So

jp(Si
jp), where So

jp is the
return type of the join point and Si

jp are zero or more argument types2.
In Section 7.3.2, it is proposed to attach type information to pointcuts that consists of zero

or more type ranges U i
pc -Si

pc for each of the join point arguments, and a type range So
pc -U o

pc
for the join point result. The contract of this type information is that the pointcut may only
match join points with a signature between lower bound signature So

pc(Si
pc) and upper bound

signature U o
pc(U i

pc). Concretely, the following subtype relations should hold for the join point
signature So

jp(Si
jp):

So
pc <: So

jp <: U o
pc U i

pc <: Si
jp <: Si

pc

(Recall that the lower bound and upper bound for the argument types are exchanged because
the subtyping rule for function types is contravariant for the argument types.)

In STRONGASPECTJ, type ranges are declared for the argument binding pointcut primitives
and for the arguments of named pointcuts, as defined in Figure 9.1. (Return types are not
included in the pointcut type in STRONGASPECTJ, the type relations for return types are verified
for the join points directly, as described below.) We remark that, contrary to the definition from
Gosling et al. (2005, §4.1), the null type (the type of null) is denotable in STRONGASPECTJ by
means of the reserved name Null. The direct supertypes of the null type are all reference types
other than the null type itself (Gosling et al., 2005, §4.10.2). Null is therefore particularly useful
as the lower bound of a type range, to avoid bounding the lower side of the range: e.g., the range
Null-Number includes all subtypes of Number, without restriction.

As explained before, STRONGASPECTJ will only match join points where the types of the
arguments are compatible with the declared type ranges for the binding primitives. This
matching behavior is defined in rule binding primitives in Figure 9.2. This rule is equivalent to
the case of the argument type in rule FMATCH in Figure 7.3 on page 116. Remark however that

2In Chapter 7, the various types Sjp stands for the most specific types that may be assigned to the join point, while
Tjp is any supertype of Sjp that the join point may receive through subsumption. In the context of JAVA however,
subsumption is built into the conditions of type rules and expressions are only assigned a single type.

9.1 StrongAspectJ 137

Lexical metavariables
c class names (incl. Object, Null)
p pointcut names
x, y term variables (incl. this)
X ,Y type variables
Type expressions
S,T,U ::= . . . | c<T> | X (JAVA types)
Term expressions, statements, pointcut expressions
e ::= . . . (JAVA terms)

| proceed(e) proceed invocation
M ::= . . . (JAVA statements)
pc ::= . . . (non-binding primitives)

| p(x) | args(U i
pc-Si

pc x) |
this(U i

pc-Si
pc x) | target(U i

pc-Si
pc x)

binding primitives

| (pc && pc) | (pc || pc) | !pc combinations
Member declarations
D ::= . . . (JAVA members)

| pointcut p(U i
pc-Si

pc x): pc; named pointcut
| before(T i

adv x): pc { M; } advice methods
| after(T i

adv x): pc { M; }

| <X extends U> T o
adv around(T i

adv x): pc:
T o

pro proceed(T i
pro) { M; }

Figure 9.1: STRONGASPECTJ syntax definition (relevant parts). The figure employs the nota-
tional conventions from Chapter 6 and Chapter 7. Additionally, we write e for a repetition of
zero or more element e1, . . . ,en , where the element separator may be space, comma or semi-
colon, depending on the context. The parts omitted from this figure keep the original JAVA

definition. Syntactic sugar not shown in the syntax definition, is the removal of the empty
angle brackets “<>” when no type variables are declared or no type arguments are provided.
Non-binding pointcut primitives are also omitted since they have the same syntax as in ASPECTJ.
The declarations from category D may be placed inside top-level class and aspect declarations
according to the rules from ASPECTJ.

138 StrongAspectJ: Recovering Mainstream AOP Type Safety

Advice declarations (cf. the last three clauses of D in Figure 9.1)

Type use (around only) The identifiers X may be used in the entire advice declaration (excluding the type parameter
section itself) to refer to variable types that have the declared bounds U as their direct supertypes (§4.10.2). All
employed types must be primitive types, known variable types or legal parameterized types (§4.5).

Variable signature types (around only) A type variable Xk may only appear in the advice signature as exactly one of
the type annotations {T o

adv,T i
adv}. In that case, the corresponding annotation from {T o

pro,T i
pro} should also

equal Xk . Similarly, Xk may only appear in the proceed signature when it appears in the corresponding position
in the advice signature.

Parameter use The identifiers x may be used as simple names in the body statements M to refer to parameter variables
of the declared types T i

adv.

Proceed use (around only) The fixed identifier proceed may be used for invocations in the body statements M . The
expressions used as arguments to an invocation must have types assignable (§5.2) to T i

pro. The invocation itself
has type T o

pro.

Body return value For an around advice declared with non-void return type T o
adv, it is not allowed to drop off the end

of the body statements M , and every return statement must have an expression of some type that is assignable
(§5.2) to T o

adv. For before or after advice, or around advice that is declared void, the body may only contain
return statements without an expression.

Pointcut usage (cf. the last four clauses of D in Figure 9.1)

Type range containment (auxiliary, cf. §4.5.1.1) A type range S-U is said to contain type range S′-U ′ when S is
assignable to S′ and U ′ is assignable to U . Type range S-U is said to contain type T when S is assignable
to T and T is assignable to U . (The assignment conversion is defined in §5.2.)

Parameter binding All declared advice or named pointcut parameters x must be bound (i.e., used as an argument)
exactly once in each disjunctive branch of the employed pointcut expression pc.

Pointcut parameter type (named pointcut only) When a named pointcut parameter x j is used as argument in a point-
cut expression, the argument position type range must be contained in type range U i

pc, j-Si
pc, j.

Advice parameter type (before and after only) When an advice parameter x j is used as argument in a pointcut expres-
sion, the upper bound of the argument position type range must be assignable (§5.2) to T i

adv, j.

Advice parameter type (around only) When an advice parameter x j is used as argument in a pointcut expression, the
argument position type range must be contained in range T i

pro, j-T i
adv, j, if T i

pro, j and T i
adv, j are non-variable, or

must be contained in range Null-Uk , if T i
pro, j and T i

adv, j both equal type variable Xk with bound Uk .

Advice return type (around only) The return type of join point shadows where an advice is woven, must be contained
in range T o

adv-T o
pro, if T o

adv and T o
pro are non-variable, or must be contained in range Null-Uk , if T o

adv and T o
pro

both equal type variable Xk with bound Uk .

Pointcut matching (cf. the clauses of pc for this, target and args in Figure 9.1)

Binding primitives Primitive pointcuts this, target and args match when the declared lower bound type U i
pc is

assignable (§5.2) to the compile-time type of the to-be-bound variable or expression, and its run-time type is
assignable to the upper bound Si

pc.

Figure 9.2: STRONGASPECTJ typing and matching rules. Together with the JAVA language
specification by Gosling et al. (2005), these rules define the language semantics. The (§) section
references refer to specific definitions from that document.

9.1 StrongAspectJ 139

the dynamic type of the join point argument (rather than the static type) is employed for the
comparison with the upper bound, as is usual in ASPECTJ.

Advice signature, type variables

In Section 7.3, we model function advice as a function that receives a function join point and
returns a new function join point. As can be observed in Figure 9.1 and Figure 9.2, around
advice methods in STRONGASPECTJ function equivalently, but use a more direct formalism.
The advice declares a number of ordinary arguments and a return value that are enforced for
the advice body by rule parameter use and rule body return value respectively. The advice also
declares a signature for the intercepted join point with the fixed identifier proceed, the usage
of which is enforced by rule proceed use. We can observe that this is indeed equivalent to the
model from Section 7.3, since after binding the proceed identifier to a join point, the remainder
is an ordinary function that may be used in place of the original join point.

Further recall that two kinds of advice functions are described for advising function join
points in Section 7.3. Ordinary advice (Section 7.3.3) is typed using subtype polymorphism,
while parametric polymorphism and type variables are used for generic advice (Section 7.3.4). A
typing using ordinary advice is useful for advice behavior that replaces the join point arguments
or results with values of a sub- or supertype, while a typing using generic advice is useful for
advice behavior that retains the original arguments or result. It is also explained that it is
possible to mix both forms within one advice function: for example, an advice may replace an
argument value while it retains the original result value (or vice versa).

As shown in Figure 9.1, STRONGASPECTJ employs one general form of around advice that
integrates both ordinary and generic advice. The advice may declare a number of type variables;
their usage is identical to that of type variables declared by standard generic methods in JAVA

(see rule type use in Figure 9.2). (Note that in contrast to the type variables in Chapter 6 and
Chapter 7, only an upper bound may be defined for type variables.) In particular, type variables
may be employed as a type annotation for an argument or a result in the signature defined by
the advice method for itself or for proceed, which allows to declare generic advice.

For this case, rule variable signature types stipulates that a type variable may be used at
most once as such a type annotation, and that it must then appear in the same position in
both signatures. This allows to treat the advice method as a generic advice with respect to a
particular argument or its result, but enforces the proper form for generic advice. The type
variable is bound to the type of the particular join point at hand, and the type variable should
therefore not be otherwise constrained (this is explained in Section 7.3.4).

Before and after advice kinds in STRONGASPECTJ do not support the declaration of type
variables and cannot be made generic. In general, type variables are only beneficial for advice
methods to express type relations between the signature of the advice method and the signature
of the intercepted join point. Since before and after advice methods do not have access to
proceed, there is generally no need to define them as generic advice methods.

Type relations, pointcut/advice binding

Section 7.3.3 and Section 7.3.4 each derive compatibility conditions for the binding between a
pointcut and an advice; the first for ordinary advice and the second for generic advice. These

140 StrongAspectJ: Recovering Mainstream AOP Type Safety

compatibility conditions are specified in the form of a number of subtype relations, that we
also apply here. It is additionally explained (in Section 7.3.4) that it is sound for function advice
to mix both advice styles on the condition that the compatibility with pointcuts is verified using
an appropriate combination of the compatibility conditions.

In STRONGASPECTJ, the compatibility of join point arguments is ensured through the combi-
nation of two measures. On the one hand, rule parameter binding requires that every parameter
declared in the signature of a named pointcut or an advice method is always bound in the
employed pointcut expression. On the other hand, rule pointcut parameter type and rule advice
parameter type ensure that for every such binding, the type range associated with the binding
position is contained in the type range declared for the parameter in the enclosing definition.

Specifically, the rule advice parameter type mandates different type relations depending
on the kind of type annotation declared for the advice parameter being bound: non-variable
or variable. In the first case, the rule ensures that an argument to proceed can be used by the
join point, and that an argument from the join point client can be used by the advice. This
correspond directly with the following conditions of rule FBIND from Figure 7.3 on page 116:

` T i
pro <: U i

pc ` Si
pc <: T i

adv

In the second case, the rule ensures that the join point argument type is a valid type value for
the type variable, i.e., that it fits within its bounds. This corresponds directly to the following
conditions of rule FGBIND from the same figure:

`U i
adv <: U i

pc ` Si
pc <: Si

adv

(Note however that the type variable lower bound U i
adv is necessarily the null type in STRONGAS-

PECTJ, so the first of these conditions is always met.) In both cases, the range U i
pc-Si

pc must be
contained within another type range. The rule pointcut parameter type therefore prevents this
range to change to “wider” ranges as named pointcuts are used to bind pointcut arguments.

With respect to return types, rule advice return type specifies type relations directly for
the join point return type (So

jp). Identical to rule advice parameter type, this rule distinguishes
between a non-variable and a variable advice return type. In the first case, the employed type
relations ensure that the result from the join point is valid for the advice body and that the
result from the advice body is valid for the join point client. This corresponds to the remaining
conditions from rule FBIND combined with the third condition from rule FMATCH:

` T o
adv <: So

jp <: T o
pro

In the second case, the employed type relations ensure that the result type from the join point
lies within the bounds of the corresponding advice type variable. This corresponds to the
remaining conditions from rule FGBIND, also combined with the third condition from rule
FMATCH:

` So
adv <: So

jp <: U o
adv

(Again, note that the type variable lower bound So
adv is necessarily the null type in STRONGAS-

PECTJ.)

9.2 Postmortem of Traditional Aspect Typing 141

9.1.3 Examples

In order to demonstrate the syntax and typing rules of STRONGASPECTJ, we consider both an
example of ordinary advice and of generic advice.

The first example recreates the ordinary advice behavior from Listing 8.3 on page 125. This
advice rounds the argument value to the next integer, executes the intercepted join point and
then rounds the result to the previous integer:

Integer around(Number n): pc(n): Number proceed(Integer) {
return proceed(n.intValue() + 1).intValue() - 1;

}

In this case, the rule advice parameter type stipulates the pointcut must provide an argument
n that is contained between Number and Integer. Similarly, rule advice return type stipulates
that the advice may only be applied to join points with static return type between Number and
Integer. This corresponds to the earlier conclusions for this example.

As a second example, we consider a generic advice which executes a join point with the
original parameter value, provided that this parameter value is higher than 10:

<N extends Number> void around(N n): pc(n): void proceed(N) {
if(n.intValue() > 10)

proceed(n);
}

In this case, rule advice return type stipulates that the advice may only be applied to join points
of void return type. With respect to the argument type, rule advice parameter type prescribes
an argument type below Number.

9.2 Postmortem of Traditional Aspect Typing

Readers with detailed knowledge of the type system of the ASPECTJ language will have noticed
that STRONGASPECTJ proposes somewhat more complex typing rules. STRONGASPECTJ may
therefore appear unduly restrictive, or at least ‘over-engineered’. However, the simplicity of
ASPECTJ typing is deceptive: it is not a consistent abstraction of the capabilities of pointcuts
and advice. In this section, we will demonstrate that the two main simplifications by ASPECTJ
directly introduce loopholes in the type system. This is an important problem: as explained
in Section 6.1.2, a type system without a safety guarantee is not considered very useful. The
deficiencies of the ASPECTJ type system have sporadically been reported before. Following the
discussion, we consider the other cursory reports of safety problems from literature.

9.2.1 Around Advice and Proceed Invocations

A cursory comparison of the STRONGASPECTJ and ASPECTJ type systems immediately reveals
that the former employs type ranges for the typing of pointcut arguments and join point results,
while the latter only tracks a singular type for these values. This corresponds with a difference

142 StrongAspectJ: Recovering Mainstream AOP Type Safety

in the type relations that are checked for pointcut/advice bindings. For all advice kinds, both
type systems will verify that the advice can operate with the context parameters from the join
points, by enforcing the advice argument type as an upper bound for the corresponding type in
the join points. In case of around advice, both type systems will additionally ensure that any
result from the advice meets the expectations of possible join point clients, by enforcing the
advice return type as a lower bound for the static join point return types. Thus far, there is no
difference between the two approaches.

However, in case of around advice, STRONGASPECTJ programs declare an additional signa-
ture for the proceed invocations; the types from this signature are enforced as lower bounds in
case of the arguments and as an upper bound in case of the result. ASPECTJ omits a signature
for proceed invocations and these additional checks. Instead, it is defined that inside the body
of an around advice, a proceed method may be invoked with a signature that is identical to
the signature of the advice method itself (Kiczales et al., 2001a, sec. 3.6). This is problematic
since it declares that intercepted join points may be invoked with whatever argument types
the advice method can handle, and that they will provide a result of the same type the advice
method can provide, while no such relation between the join points and the advice method
is guaranteed. Since an upper bound for the join points argument type is known, it can be
verified that the advice can handle the argument of any join point, but without a lower bound
for the argument type of the join points, it is impossible to guarantee which argument type the
join points can handle. Similarly, it is not possible to guarantee which result join points are
guaranteed to produce without tracking a lower bound for their return types.

This treatment of proceed invocations causes a loophole in the ASPECTJ type system. As a
concrete example, the following advice method is accepted by ASPECTJ’s typing rules:

void around(Person p): execution(void *()) && this(p) {
proceed(new Person());

}

While this advice behavior works correctly with any Person as an argument, it may incorrectly
assume the same of the intercepted join points. The advice also intercepts invocations of
methods of subclasses, e.g. Employee.promote(), in which case executing the join point with
an argument of the general type Person will cause a ClassCastException.

An identical situation can also occur with respect to the return types, as demonstrated by
the following advice method:

Integer around(): call(Number *()) {
Integer i = proceed();
// ...

}

Because this advice provides an Integer result, it can assume that its join points do so as well
in ASPECTJ. However, the advice can also be applied to join points where the returned value is
a different kind of Number, such as a Float, in which case a ClassCastException will occur
when returning from the proceed invocation to the advice body.

9.2 Postmortem of Traditional Aspect Typing 143

9.2.2 Generic Advice and the Object Return Type

The documentation of ASPECTJ makes no mention of any special provision for the case of
generic advice. ASPECTJ does not allow to declare type variables at the level of advice methods
and it does not support a typing using parametric polymorphism as present in STRONGASPECTJ.
Nevertheless, it is a very common practice to apply an around advice method to a heterogeneous
set of join points. An advice may be valid for all of these join points because it always invokes
the intercepted join point with an original argument from the join point client, or because
it always returns a result obtained from the intercepted join point. However, such genericity
characteristics are not tracked in the typing. So why don’t ASPECTJ users experience a lack of
typing expressiveness in such cases?

When an advice method is generic with respect to a join point argument, it turns out
ASPECTJ can benefit from the loophole that was described above. For example, the following
advice method simply invokes the intercepted join point with the original argument from the
join point client:

void around(Object o): call(* *(..)) && args(o) {
proceed(o);

}

The advice body may invoke proceed with any Object. However, in many cases the actual
join point will expect an argument of a more specific type. Since we happen to employ the
argument from the original join point client this poses no problems here, but as long as there is
no guarantee that no arbitrary Object argument will be used, a sound type system needs to
restrict this case. It then becomes necessary to track that the arguments type is retained in the
advice behavior (as in STRONGASPECTJ for example) in order to safely support such cases of
generic advice.

There is no such (dubious) luck in case of an advice method that is generic with respect to
the result. If we consider an advice method that simply returns the result from the intercepted
join point to the join point client, then this advice should not be accepted according to the
ASPECTJ type relations that we have discussed above:

Object around(): call(* *(..)) {
return proceed();

}

Indeed, the advice signature indicates that the advice body may return any Object value, which
will not be sufficient for join points with a more specific return type, e.g., Integer.

Remarkably, the ASPECTJ compiler does not reject the application of this advice method
to such join points. The implementation employs an additional type rule: in case of an advice
method declared with the java.lang.Object return type, the default type relation does not
apply and the application to any join point is accepted. For lack of better means to indicate
generic advice, this ad hoc exception for the Object return type is necessary to support advice
behavior that is generic with respect to the join point result. It is a very common practice for
ASPECTJ users to employ such generic advice and — consciously or unconsciously — depend
on this typing behavior.

144 StrongAspectJ: Recovering Mainstream AOP Type Safety

However, it is clear that the Object return type is not a necessary condition for generic
advice. Cases of generic advice that do not declare the Object return type are still being
restricted by the ASPECTJ type system. Consider the following advice method that keeping
invoking the intercepted join point until the integer value of the result is smaller than the
number 100:

Number around(): call((Integer || Float) *(..)) {
Number n = proceed();
while(n.intValue() > 100)

n = proceed();
return n;

}

The advice behavior will always return a result obtained from the intercepted join point and
it is therefore valid for any join point with a return type that is a subtype of Number However,
precisely the opposite (supertypes of Number) is enforced by ASPECTJ and the above advice
application will be rejected. The workaround to enable this binding consists in declaring the
Object return type for this advice and including explicit casts to Number at every invocation of
proceed. This is tedious, and of course it does not guarantee static type safety either.

Perhaps even more important than this expressiveness problem, is the fact that such an
exception to the standard typing relations introduces new safety problems. Special privileges are
being granted to advice methods that have the Object return type, but there is no verification
that they indeed have generic behavior. This measure to support generic advice therefore
introduces a new loophole in the type system as demonstrated by the following advice method:

Object around(): call(Number *()) {
return new Object();

}

The advice return a general Object value, which is insufficient when the join point client
is allowed to expect a more specific Number instance. Because of the exception for Object
return types, this is not rejected by the ASPECTJ compiler and causes a ClassCastException at
run-time.

9.2.3 Other Accounts of the AspectJ Type System

To our knowledge, the type safety problem involving around advice and proceed invocations
is first described by Wand, Kiczales, and Dutchyn (2004, Sec. 5.3), in the closing notes of their
formal study of the semantics of the advice mechanism. They present ASPECTJ’s typing policy
for this case and illustrate its lack of soundness. Some time later, in the on-line discussion of an
ASPECTJ bug report by Bodden, Isberg, and Colyer (2006), ASPECTJ developers independently
reach the conclusion that proceed may give rise to a ClassCastException at run-time. As
a consequence of this discussion, a short note stating this effect is added to the “Language
Semantics” and “Implementation Notes” documents of the ASPECTJ distribution. At the time of
writing, the bug is still marked unresolved in the bug database. In both of these cases, there is

9.3 An Implementation of StrongAspectJ 145

no discussion of generic advice methods, nor is there any mention of the special treatment of
the Object return type.

On the other hand, both Tatsuzawa, Masuhara, and Yonezawa (2005) and Jagadeesan, Jeffrey,
and Riely (2006) present a loophole example that involves the use of the Object return type
(and no proceed invocations). However, in both cases, this is simply to illustrate that typing
problems in ASPECTJ exist, and there is no investigation of the root of this problem. It is also not
explained that this problem does not exist for return types other than Object, and the problems
related to proceed are not considered.

As a conclusion, we may say that while the deficiencies that we report in this section have
been identified before, this always occurred in a cursory manner and outside of the main focus
of investigation. Our work constitutes the first comprehensive discussion of the ASPECTJ typing
rule and the related typing problems. At the same time, the STRONGASPECTJ language provides
a complete solution for these issues.

9.3 An Implementation of StrongAspectJ

In order to gain further understanding of the applicability of the STRONGASPECTJ proposal
as a mainstream AOP language, a prototype implementation has been realized as a plug-in
for the ASPECTBENCH compiler (abc) by Avgustinov et al. (2005). Since the STRONGASPECTJ
language retains the complete design of ASPECTJ except for some aspects of its type system, it is
an obvious implementation path to modify an existing ASPECTJ compiler. The abc platform was
specifically chosen over the standard ASPECTJ compiler (ajc) by Colyer et al. (2002), because abc
promises easy and modular addition of new aspect language features through plug-ins, without
the need to fork the current source tree of the compiler. Following abc conventions, the plug-in
is named STRONGAJ.

The AspectBench Compiler An overview of the architecture of the ASPECTBENCH compiler
is presented in Figure 9.3. abc is divided up in a front-end and back-end component. The
front-end is managed by the extensible compiler framework POLYGLOT by Nystrom et al. (2003).
POLYGLOT parses JAVA programs and performs complete semantic checking using a number of
AST visitor passes. An abc extension augments POLYGLOT with the ASPECTJ language constructs
and includes a number of compiler passes specific to the language. The back-end was designed
specifically for abc and makes heavy use of the bytecode analysis and transformation library
SOOT by Vallée-Rai et al. (1999). The back-end performs weaving at the level of “Jimple”, one
of SOOT’s intermediate representations of JAVA bytecode which is suitable for a number of
optimizations.

An important design decision involves the communication between the front-end and back-
end. The compilation of an ASPECTJ aspect is realized by translating the body of advice methods
and if pointcut tests to local JAVA placeholder methods, and by weaving invocations of the
advice code and inter-type declarations in the other parts of the program. Although POLYGLOT

is capable of a number of AST transformations, it is necessary to perform the actual weaving in
the back-end, since this may affect the class files (bytecode) for which no AST representations
are available. The front-end therefore performs semantic checking of the new source files
(based on a class table of the entire program that already takes inter-type declarations into

146 StrongAspectJ: Recovering Mainstream AOP Type Safety

.java

Polyglot parser
new syntax

AspectJ AST

Polyglot & abc visitor passes

disambiguate

add types, members (+ITDs)

type check

Polyglot
type

system

type use

checked AspectJ AST

parameter/proceed use

pointcut/advice
parameter type

.class

abc visitor passes

add aspect methods

harvest AspectInfo

clean members

Java AST AspectInfo

erasure

new syntax

code generation,
static weaving

Jimple IR

advice weaving,
post-processing

binding primitives

advice return type

bytecode

P
O

LY
G

L
O

T
fr

o
n

t-
en

d
w

it
h

ab
c

ex
te

n
si

o
n

ab
c

b
ac

k-
en

d
u

si
n

g
S

O
O

T
li

b
ra

ry

Figure 9.3: Simplified architecture of the ASPECTBENCH compiler. Additionally, the modifica-
tion by the STRONGAJ plug-in are indicated by ‘pin’ annotations connected to the relevant boxes.
Descriptions of modifications in italic refer to the names of semantic rules from Figure 9.2.

9.3 An Implementation of StrongAspectJ 147

account) and prepares the compilation to standard JAVA bytecode by separating the ASPECTJ
AST into a pure JAVA AST and an auxiliary “AspectInfo” structure with information about the
ASPECTJ language constructs. The back-end performs a conversion of the JAVA AST to Jimple,
and employs the AspectInfo to perform the static weaving and advice weaving.

The StrongAJ plug-in The abc platform provides a number of extension points that are em-
ployed by the STRONGAJ implementation to provide initial support for the STRONGASPECTJ
language. This involves an extension of the parser and the addition or subclassing of AST nodes
in the front-end to support the new (or changed) syntax elements (in this case, the pointcut
type ranges and the new proceed signature specification). By making the new nodes reachable
to the standard POLYGLOT AST visitors, ambiguities in the type nodes are automatically resolved
by the framework. A subsequent visitor will type check nodes against the information from the
type context. By installing the new proceed-signature in this context when the visitor enters
the scope of an advice declaration, the standard visitor will check the advice body according to
rule parameter use and rule proceed use from Figure 9.2.

Verifying the pointcut/advice bindings requires more effort, but in general we can locate the
existing ASPECTJ type checks in the original AST nodes and override them in the subclasses to
enforce the additional type relations that are present in STRONGASPECTJ (typically by adding a
lower bound check in addition to an existing upper bound check). Pointcut arguments are still
checked in the front-end, where the typeCheck method of the AST nodes of binding pointcuts
is overridden to implement the modifications from rule pointcut parameter type and rule advice
parameter type. Return types are checked while weaving, so it is required to transport the
additional type information of the advice signatures to the back-end through the AspectInfo
classes. The matching of this, target and args is also implemented in the back-end, where,
depending on the corresponding static join point type, they either never match, always match,
or construct a test residue. The residues are constructed by a number of classes that mirror the
AST structure, and by overriding the residue construction in subclasses, the matching behavior
from rule binding primitives is implemented. In order to employ the new implementations and
to provide them with the declared type range of the variable being bound, a number of other
back-end classes need to be subclassed as well.

Since the employed abc version (1.2.1) provides no support for Java Generics (nor for the
other features of the JAVA 5 release from 2004), there is no direct support for type variables in the
type system. Nevertheless, such a modification can be realized quite straightforwardly through
the introduction of a new class VariableType as a subclass of the ReferenceType class from
the POLYGLOT type system, equipped with a supertype link to the type variable’s bound. This
is sufficient to verify the usage of type variables according to rule type use. However, since the
back-end cannot handle these types (type variables are not supported in JAVA bytecode), it is
necessary to employ a new front-end visitor pass to erase type variables from the AST after type
checking. The type variables are replaced by their respective bounds, identical to the erasure
procedure for GJ that is discussed at the beginning of Section 6.3.1.

The current version of the StrongAJ plug-in3 implements the complete STRONGASPECTJ
proposal, as verified by a test suite of 62 static and 3 dynamic test cases. The implementation
itself consists of a total of 54 classes/interfaces or about 2500 LOC.

3Available at http://ssel.vub.ac.be/strongaj/

http://ssel.vub.ac.be/strongaj/

148 StrongAspectJ: Recovering Mainstream AOP Type Safety

9.4 Related Work: Typed Aspect Languages

9.4.1 Aspectual Caml

ASPECTUAL CAML by Tatsuzawa, Masuhara, and Yonezawa (2005) is an aspect-oriented ex-
tension of the functional programming language OBJECTIVE CAML. It includes two aspect
mechanisms: a type extension mechanism and a pointcut/advice mechanism. The extension
aims to integrate with the specific features of a statically-typed functional language such as
OBJECTIVE CAML: type inference, polymorphic types, curried functions, etc. The typing of the
pointcuts and advice functions is organized as follows. Pointcuts select join points through
name and argument patterns, but are typed with type variables whose bindings are inferred
from the advice functions to which the pointcuts are bound. The pointcut then only selects join
points that match its typing.

Example. To discuss the typing mechanism of ASPECTUAL CAML in detail, we consider the
example of an advice function for a simple evaluator of arithmetic terms:

advice eval_sub = [around call eval t]
match t with
| Sub (t1,t2) -> t1 + t2
| _ -> proceed t

In this code, call eval t is a pointcut specification, where eval is a name pattern and t is
a parameter pattern that binds the variable t. To determine the matching of this pointcut,
ASPECTUAL CAML associates a function type to the pointcut, which prescribes the static type of
the function whose invocation should be intercepted. This function type is determined from
the advice body using a type inference mechanism that is common in the language: the process
starts the polymorphic function type α→ β (where α and β are type variables), and based
on the advice code, this is specialized to exp→ int (since a destruction with constructor Sub
indicates type exp and a result from the infix function (+) indicates type int). Consequently,
the pointcut will match invocations of functions with name eval and type exp→ int.

The inference mechanism allows to specify advice behavior entirely without type annota-
tions. However, as a consequence, the matching behavior of the pointcut is dependent on the
result of type inference process. This may lead to surprising results where tiny changes in the
advice body cause different join points to be matched. In that case, explicit type annotations
may still be preferred. In the case where the pointcut is assigned — explicitly or by inference —
a polymorphic function type (such as α→ int) instead of a concrete type, the pointcut matches
any function with a type that is a specialization of this polymorphic type. This may be used to
quantify over join points with different types. In such a case, the advice body is guaranteed to
handle join points with an unknown argument or result type.

As such, ASPECTUAL CAML is able to handle the definition of pointcuts and generic advice
functions in a safe manner, and due to the type inference this may occur without specifying
any type annotations. However, we remark that there is no subsumption in the functional
context of OBJECTIVE CAML, only explicit coercion between structural subtypes. It is therefore
unclear how the results translate to an object-oriented context, where we have indicated that
subtype variance is important for advice functions. Also, the type inference algorithms (which
are Hindley-Milner based in OBJECTIVE CAML) would not be directly applicable in this context.

9.4 Related Work: Typed Aspect Languages 149

9.4.2 PolyAML

Dantas, Walker, Washburn, and Weirich (2005) propose the POLYAML language as an extension
of the ML family of languages. This is a statically-typed functional programming context that is
very similar to the one of ASPECTUAL CAML. However, there are quite some differences between
the languages. POLYAML includes only an advice mechanism for function invocations, and this
is restricted to either before or after advice. Although this advice may not control the execution
of the intercepted function, before advice may manipulate the function argument and after
advice may manipulate the function result, providing some of the capabilities of around advice
with a proceed facility.

An important aspect of the design of POLYAML is the choice for a first-class pointcut entities:
pointcuts are ordinary values that may be passed to and returned by functions, allowing to build
pointcut combinator functions. Two forms of pointcuts are supported: any (which matches
every function invocation) and a list of functions names {f,g} (which matches the invocation
of any of those functions). Contrary to ASPECTUAL CAML, the pointcut is not a pattern, and
the referenced function must be in scope. The type of a pointcut expression consists of a pair
of polytypes (one for the domain of the function and another for the range). Such a polytype
is an ordinary type (or monotype) that may be quantified with type variables. Concretely, the
type of pointcut any is (all a.a,all a.a) (where a is a type variable), and pointcut {f,g}
admits a type where the domain (resp. range) is more general than the domain (resp. range) of
each of the designated function. For example, if f has type string -> string and g has type
string -> unit, then the pointcut {f,g} admits the type (string,all a.a). In other words,
the polytype all a.a is used to generalize the difference in range between these functions.

An advice declaration in POLYAML consists of a before or after marker, a term expression
specifying the pointcut, three variable bindings and the advice body:

advice before {f,g}:(string,all a.a) (x,y,z) =
"(" ^ x ^ ")"

The first variable is either the function argument (in case of before advice) or the function result
(in case of after advice). The second and third variable provide access to a representation of
the stack and the intercepted function (which are part of other features of POLYAML which
provide a form of run-time reflection). The advice body should produce a new value for either
the function argument or result. In the above example, the advice will surround the string
argument of the functions f and g with parentheses (note that ^ is the string concatenation
operator).

The type checking of the advice declaration occurs as follows. From the pointcut type, the
relevant polytype is considered (either domain or range), and this polytype is opened for the
typing of the advice body4. That is, the type variables of the polytype are added to the context
assumptions, and the monotype inside of the polytype is used as the type of x. In addition, the
advice body expression should also be of this type.

Similar to the case of ASPECTUAL CAML, this provides a way to handle the definition of
generic advice functions in a safe manner, with support for some type inference in the defi-
nitions. However, identical to the situation there, the language provides no direct support for

4Although the authors of POLYAML mark a polytype with the keyword all, suggesting a universal quantification, it
bears resemblance to an existential type, for which a similar open operation is defined, see Section 6.2.3.

150 StrongAspectJ: Recovering Mainstream AOP Type Safety

subsumption and subtypes, and it is unclear how the results translate to an object-oriented
context.

9.4.3 AspectC++

Lohmann, Blaschke, and Spinczyk (2004) study the combination of AOP and C++ templates
in the context of the ASPECTC++ language. C++ templates provide a compile-time meta-
programming facility where different versions of one specification may be derived by providing
different type arguments. In contrast to the generics facilities that we describe in Section 6.3,
C++ template classes and template functions are not directly supported in the type system;
they are expanded and type checked for each set of type arguments.

One dimension of the work by Lohmann et al. focuses on the use of aspects to instrument
code in template classes and template functions. To this end, the pointcut language of AS-
PECTC++ is extended with patterns to match either specific instantiations of templates, or any
instantiation. The other dimension focuses on the usage of generic code in aspects. The authors
propose a mechanism where advice code is implicitly placed into a template member function
that is called from each instrumented join point. A specifically-generated class that encodes
the type information of the join point is passed as a type parameter for this call. As such the
advice code may be type-checked by the underlying C++ compiler for each advised join point.

Concretely, advice methods in ASPECTC++ receive an implicit type argument JoinPoint,
and an implicit ordinary argument tjp of type *JoinPoint. The JoinPoint type will provide a
number of type members that are aliases to the concrete types of the join point at hand. These
are named Target, Result, Arg<i>,. . . In addition, the JoinPoint type also provides a number
of methods that the advice method may use to interact with the join point. The signatures of
these methods are void proceed(), Result *result(), Target *target(),. . .

When an ordinary advice method is specified that accesses the join point context, then
one may make use of the relation that exists between the type members of JoinPoint and the
actual types of the join point. However, this relation is a subtype relation rather than an equality,
so a cast operation is still required when reading join point values (not when writing them):

advice execution("Vector Calc::%(...)") : around() {
Calc *target = (Calc*) *tjp->target();
...

*tjp->result() = myVector;
}

As a consequence, when this advice is applied to a join point where the target is not of the type
Calc, this is not detected.

On the other hand, one may specify generic advice by typing the advice method using
the type members of JoinPoint. For example, the following advice method executes the
interception join point twice and returns the result from the first invocation:

advice execution("% Calc::%(...)") : around() {
typename JoinPoint::Result res;
// First execution, copy result

9.4 Related Work: Typed Aspect Languages 151

*tjp->proceed();
res = *tjp->result();
// Second execution, write result back

*tjp->proceed();

*tjp->result = res;
}

However, although this advice method is type safe for any join point, the ASPECTC++ compiler
needs to check the body again at every join point where it is applied.

The templates of C++ are very expressive (in fact, Turing-complete) and Lohmann et al.
exploit this to provide generative advice, which may not only abstract over the types of the join
point context, but also over properties such as the number of arguments. However, the trade-off
is that less abstraction is possible as type-checking of templates can only be done after their
expansion. ASPECTC++ is therefore only capable of type-checking advices for a concrete join
point at hand, while ASPECTJ (and our STRONGASPECTJ extension) allows to type-check advices
against declared pointcut parameter types, irrespective of a base application.

9.4.4 AspectJ 5

The ASPECTJ 5 update by Colyer et al. (2005) modifies the ASPECTJ language to support JAVA 5
generics. Firstly, this involves coping with the presence of generics in the base language: type
patterns can match generic types and their instantiations, and generic members can be defined
through inter-type declaration. Secondly, type variables can be declared for aspects, similar to
generic classes. When these variables are employed as regular type annotations in the aspect
definition, this allows more advanced typing of generic aspect entities, akin to the advantages
of generic classes explained in Section 6.3.1.

For example, one may define generic tracing behavior with the following definition:

abstract aspect GenericTracer<T> {
abstract pointcut trace(T t);
abstract void report(String d, T t);
before(T t): trace(t) { report("Entering",t); }
after(T t): trace(t) { report("Leaving",t); }

}

Although the aspect will work with a pointcut that exposes a context variable of any single
type, we do not have the employ casts to invoke report from the advice methods. Also, when a
concrete subaspect is defined, it will be verified that the implementation of the named pointcut
trace and the method report involve the same type.

Additionally, type variables can also be employed in the type patterns of pointcuts and
inter-type declarations, where they directly influence the semantics of the aspect. As such, a
new class of generalizations (as partially proposed by Hanenberg and Unland, 2003) is made
possible. For example, consider:

152 StrongAspectJ: Recovering Mainstream AOP Type Safety

abstract aspect Serializer<S> {
declare parents: S implements Serializable;

}

When we define a concrete subaspect of Serializer<Order>, then the type argument Order is
not simply employed for typing; it causes the introduction of the interface Serializable in
the class Order as well.

Although generic aspects can generalize functionality over different deployments, it is not
possible to declare type variables for advice methods. It is as such not possible to generalize over
different applications of an advice method in one deployment, as generic advice in STRONGAS-
PECTJ allows. Furthermore, all of the typing problems outlined in Section 9.2 are not addressed
by ASPECTJ 5.

Chapter 10

Formal Evaluation of
Pointcut/Advice Bindings

In this chapter, we formally evaluate the soundness of the typing principles for pointcut/advice
bindings proposed in this dissertation. This occurs through a formal definition of the semantics
of pointcut/advice bindings in the context of the FEATHERWEIGHT JAVA calculus. Since it is a
necessary preliminary to our contribution, we discuss this minimal object-oriented calculus
in Section 10.1. We also employ the opportunity to present a version of FEATHERWEIGHT JAVA

which includes a number of provisions with a small impact on the language, but which facilitate
the definition of our extension later on. The extension itself is presented in Section 10.2; it adds
a general advice construct and it employs the typing principles from Chapter 7 to type this new
construct. Following the naming convention from this part of the dissertation, we refer to the
extended language as FEATHERWEIGHT STRONGASPECTJ. We contribute a rigorous proof for the
type safety properties of our extension in Section 10.2.2.

It may be surprising that we do start from the generic version of FEATHERWEIGHT JAVA to
define our extension. This language already supports variable types, generic classes and generic
methods, and after all, we employ similar concepts of parametric polymorphism to provide
a generic typing of advice methods. An earlier version of FEATHERWEIGHT STRONGASPECTJ
was indeed conceived as an extension of FEATHERWEIGHT GENERIC JAVA (see De Fraine et al.,
2007). However, it is our experience that the organization of generic classes and methods
(and the related concepts such as parameterized types and F-bounds) heavily complicate the
presentation of the aspect extension.

Moreover, it is the case that a generic typing of advice methods is perfectly useful in a
language without genericity (this point is also made by Jagadeesan et al., 2006, Sec. 2). A generic
language is obviously a better model for recent object-oriented languages such as JAVA 5, but
we have not investigated non-straightforward interactions with the concepts of generic classes
and generic methods. (There may nevertheless be interesting interactions, for example, if one
were to support that advice behavior for generic method invocations intercepts and updates
the type arguments of this invocation.) Since the interesting issues with generics are still a part
of future work, we decide to employ a non-generic language in this chapter.

153

154 Formal Evaluation of Pointcut/Advice Bindings

10.1 Featherweight Java

FEATHERWEIGHT JAVA is proposed by Igarashi, Pierce, and Wadler (1999, 2001) as a minimal core
calculus for JAVA and GJ (GJ is discussed in Section 6.3.1). It is formulated as a subset of JAVA

which omits any feature which is not considered essential for a soundness proof; this includes
features such as concurrency, inner classes, reflection, interfaces, abstract method declarations,
method overloading, field shadowing, super invocations, primitive types, access control, null
references and exceptions. Additionally, FEATHERWEIGHT JAVA omits assignment and mutable
state, restricting JAVA to a “purely functional” fragment. The authors make this choice based on
the observation that most of the tricky typing issues are independent of assignment. It is also
a substantial simplification since the operational semantics of FEATHERWEIGHT JAVA may be
formalized entirely within its own syntax, with no additional mechanisms such as object stores
to model the heap, and without enforcing a deterministic evaluation order1. The calculus is
similar in this respect to the systems we discuss in Chapter 6, since it also employs a small-step
reduction to describe the evaluation of expressions.

10.1.1 Definition

The definition of FEATHERWEIGHT JAVA is presented over the course of Figure 10.1, Figure 10.2
and Figure 10.3, which define respectively the syntax, dynamics and statics of the calculus. The
definition employs the notational conventions from Chapter 6. In particular, the terminals of
the language are written in teletype and the metavariables in italic. Metavariables represent
syntactic categories and different metavariables are used for the same syntactic category, in
order to distinguish between multiple instances of the same syntactic element in one definition
phrase or rule. In addition, we employ a specific notation to concisely describe sequences: ē
represents the ordered sequence of elements e1, . . . ,en , where the element separator is deter-
mined by the context. This notation is sometimes extended across binary constructs, where
the elements of two sequences are appropriately ‘zipped’, for example, x̄ : P̄ is a shorthand for
x1:P1, . . . , xn :Pn . This implies that both sequences need to have an equal number of elements.
Finally, we employ a bullet (•) to represent an empty environment or an empty set of fields.

We first discuss the language definition from a bird’s-eye view; below we make some more
detailed remarks that refer to our specific definition of the language. In general terms, FEATHER-
WEIGHT JAVA supports mutually recursive class definitions, object creation, field access, method
invocation, method override, method recursion through this and subtyping. The class Object
is predefined with no fields and methods, and other classes are defined with exactly one parent
and any number of fields and methods. The auxiliary function fields and meth are employed
to lookup field and method declarations for the declared classes in an implicit class table (Fig-
ure 10.2, upper part). We assume that the class definitions adhere to the following conditions to
ensure a sane definition of these functions: (i) there is at most one definition for a class name in
the class table, (ii) there is no definition for Object in the class table, (iii) the parent of a class is
either Object or another defined class, (iv) the inheritance hierarchy contains no cycles.

1Clearly, the call-by-value, left-to-right evaluation of JAVA is subsumed by this general relation. Additionally, it
is possible to demonstrate confluence for the evaluation in FEATHERWEIGHT JAVA: different evaluations of the same
program will yield the same result (modulo non-termination).

10.1 Featherweight Java 155

Lexical metavariables
c,d incl. Object class names
f , g field names
` method names
x, y, z incl. this term variables
Type and term expressions
P,Q,R,S,T,U ::= c class type
K ,L, M ::= x variable term

| M. f @c field access
| M.`@c(N̄) method invocation
| new c(N̄) object creation

Evaluation contexts
E [] ::= []. f @c field access target

| [].`@c(N̄) method inv. target
| M.`@c(N̄ , [], N̄ ′) method inv. arg
| new c(N̄ , [], N̄ ′) object creation arg

Member and top-level declarations
µ ::= R `(x̄ : P̄){L} method declaration
D ::= class c extends d { f̄ : T̄; µ̄} class declaration
Type and term environments
∆ ::= • empty environment
Γ ::= • empty environment

| Γ, x :T variable term type

Figure 10.1: FEATHERWEIGHT JAVA syntax

Class fields ` fields(c) = f̄ : T̄

FIELD-OBJECT

` fields(Object) = •
FIELD-THIS-SUPER

class c extends d { f̄ : T̄; · · ·}
` fields(d) = ḡ : S̄

` fields(c) = ḡ : S̄; f̄ : T̄

Class method `meth(c.`) = R(x̄ : P̄){L}

METHOD-THIS

class c · · ·{· · ·R `(x̄ : P̄){L} · · ·}
`meth(c.`) = R(x̄ : P̄){L}

METHOD-SUPER

class c extends d {· · ·; µ̄} ` ∉ µ̄
`meth(d .`) = R(x̄ : P̄){L}

`meth(c.`) = R(x̄ : P̄){L}

Evaluation M → M ′

EVAL-FIELD

` fields(c) = f̄ : T̄

new c(N̄). fi@d → Ni

EVAL-METHOD

M = new c(· · ·) `meth(c.`) = (x̄){L}

M.`@d(N̄)→ [
(this, x̄) 7→ (M , N̄)

]
L

EVAL-CONTEXT

M → M ′

E [M] → E [M ′]

Figure 10.2: FEATHERWEIGHT JAVA dynamics and auxiliary definitions

156 Formal Evaluation of Pointcut/Advice Bindings

Well-formed types ∆` T

TYPE-CLASS

class c {· · ·}
∆` c

TYPE-OBJECT

∆` Object

Well-formed environments ∆` ok ∆;Γ` ok

TENV-EMPTY

• ` ok

ENV-EMPTY

∆` ok

∆;• ` ok

ENV-TERM-VAR

∆;Γ` ok
x ∉ Γ ∆` T

∆;Γ, x :T ` ok

Subtyping ∆` S <: T

SUB-REFLEX

∆` T <: T

SUB-TRANS

∆` T <: T ′ ∆` T ′ <: T ′′

∆` T <: T ′′

SUB-CLASS

class c extends d {· · ·}
∆` c <: d

Term typing ∆;Γ` M : T

TERM-VAR

∆;Γ` ok x :T ∈ Γ
∆;Γ` x : T

TERM-OBJECT

∆;Γ` ok ` fields(c) = f̄ : T̄
∆;Γ` N̄ : S̄ ∆` S̄ <: T̄

∆;Γ` new c(N̄) : c

TERM-FIELD

` fields(c) = f̄ : T̄
∆;Γ` M : S
∆` S <: c

∆;Γ` M. fi@c : Ti

TERM-METHOD

`meth(c.`) = R(P̄){· · ·}
∆;Γ` (M , N̄) : (S0, S̄)
∆` (S0, S̄) <: (c, P̄)

∆;Γ` M.`@c(N̄) : R

Member declaration typing `µ ok for c,d

DEC-METHOD

` R •; (this, x̄): (c, P̄) ` L : R ′ ` R ′ <: R
if `meth(d .`) = S(Q̄){· · ·} then ` (R,Q̄) <: (S, P̄)

` R `(x̄ : P̄){L} ok for c,d

Declaration typing `D

DEC-CLASS

` fields(d) = ḡ : S̄
•; (ḡ , f̄): (S̄, T̄) ` ok

` µ̄ ok for c,d

` class c extends d { f̄ : T̄; µ̄}

Figure 10.3: FEATHERWEIGHT JAVA statics

A new expression is a structure that combines a class name and a number of subexpressions.
Recall that in the lambda calculus (or in the functional language from Section 6.2.1) a function
application may only be reduced after the function is simplified to a function abstraction.
Similarly, field accesses and method invocations may be reduced in FEATHERWEIGHT JAVA when
the receiver is simplified to a new expression (Figure 10.2, lower part). The field access operation
will retrieve one of the subexpressions of a new expression (rule EVAL-FIELD). The method
invocation will substitute the new expression (and any other arguments) in a function body that
is selected according to the class name that is stored in the new expression (rule EVAL-METHOD).
Since the method implementation that will be used is fixed only after the receiver term has been
reduced to a new expression, this models the concept of dynamic binding in object-oriented
languages.

The type checking is organized in a number of different levels (Figure 10.3). In order of
increasing granularity these are types, environments, terms, members and finally top-level
declarations. Additionally, subtyping is defined as the reflexive and transitive closure of the

10.1 Featherweight Java 157

parent link in class declarations. We note that, in general, well-formedness on a higher level will
require (directly or indirectly) that all involved elements of a lower level are also well-formed,
under the assumption that all declared classes are well-formed. For example, all types that
appear in a well-formed class are also well-formed, the result of a term typing is always a
well-formed type, etc. Most typing rules are familiar from JAVA, with some exceptions that we
detail below.

Differences w.r.t. Chapter 6. Due to the conventions for FEATHERWEIGHT JAVA, there are
three notable differences in organization compared to the systems of Chapter 6. First, the
typing context is no longer a single set of assumptions A. Instead, this is divided between a type
environment ∆ and a term environment Γ. Second, there is no explicit subsumption rule (rule
SUB). This means that a term typing always assigns the most specific type for that term. In order
to recover the flexibility of subsumption, a requirement for a specific term typing result is always
specified by means of a subtype relation in the condition of rules. Third, it is no longer the case
that a subtype relation may only exist between well-formed types. Recall that in Chapter 6, the
subtyping rules are organized to this effect, for example, rule SREFL in Figure 6.4 on Figure 6.4
on page 94 requires a well-formed type. In FEATHERWEIGHT JAVA, the convention is to organize
the definition of subtyping without depending on the definition of well-formed types2, and
there is no corresponding condition in rule SUB-REFL here.

General differences w.r.t. Igarashi et al. FEATHERWEIGHT JAVA is specified by Igarashi et al.
(1999) in order to prove the type safety of the GJ language and to evaluate the validity of the
erasure procedure employed in the implementation of that language. This context dictates a
number of features that are not relevant for our purposes and that we choose to omit. Firstly,
Igarashi et al. define FEATHERWEIGHT JAVA as a strict subset of JAVA, i.e., any valid FEATHER-
WEIGHT JAVA program is also a valid JAVA program. To this end, their version of the calculus
includes constructors that have an entirely fixed form, and the method bodies always includes
the return keyword. We do not include these syntactic redundancies here. In addition, we also
relax the requirement that overriding methods have the exact same types in their signature as
the method which they override. In JAVA, this is required at least for argument types in order
to manage method overloading, but otherwise it is safe to allow overriding methods with a
covariant return type and contravariant argument types (as stipulated in the last condition
of rule DEC-METHOD). The soundness of such variant method overrides is formally proved
together with our other extensions in Section 10.2.2. This also corresponds to the criteria for
safe substitution of function types, as captured by rule SFUN in Figure 6.2 and Figure 6.4.

Secondly, Igarashi et al. include a cast operation, while we define a language without a
general cast operation (nevertheless, we discuss some restricted form of up-casts below). The
casts play a central role in the erasure procedure, but provide little insight for our purpose.
In addition, their presence introduce non-essential complexity since we have to account for
programs which might get stuck due to a failing down-cast. Such a situation is not a loophole in
the type system, and the formulation of the safety properties needs to be adapted to exclude
this case.

2In fact, in the version of FEATHERWEIGHT JAVA with generic classes (Igarashi et al., 1999, Sec. 3), the conditions for a
well-formed parameterized class type include subtype relations, so the dependency is the other way around.

158 Formal Evaluation of Pointcut/Advice Bindings

Specific provisions in anticipation of our extension. We also include a number of differences
with respect to Igarashi et al. which enable us to present our extension in the following section
as a simple set of changes to the current language; these provisions avoid a large number of
trivial redefinitions later on. The first change is that we explicitly include a type environment in
typing and subtyping judgments, although there are no type variables in this version and the
type environment is always empty. As a second provision, we include a class name annotation
(after the @ sign) in the field access and method invocation terms. This class name makes
explicit the type from which the field or method is accessed in the original source program. The
annotation remains constant during the evaluation, while the receiver term of a field access or
method invocation may be reduced to a term of a more specific type. This change facilitates the
definition of the conditions under which advice behavior may replace the receiver of a method
invocation (for field access operations, the change is not strictly necessary, but this is included
nonetheless for uniformity).

The vigilant reader may raise the question to what extent this latter change causes a depar-
ture from the original FEATHERWEIGHT JAVA language. We address this concern in the following
discussion. With respect to evaluation of the field access and method invocation forms, note
that the class name annotation is not considered in the evaluation rules rule EVAL-FIELD and
rule EVAL-METHOD in Figure 10.2: it is bound to a free metavariable d which is not otherwise
constrained in each of these rules. So the evaluation of the terms remains entirely identical.
There is an influence, however, with respect to typing in the rules rule TERM-FIELD and rule
TERM-METHOD in Figure 10.3: the type of the field or method is retrieved for the class whose
name is given in the annotation and the receiver type needs to be a subtype of this class’s type.
In contrast, in the original FEATHERWEIGHT JAVA, the field or method type is retrieved for the
type of the receiver directly. For example, the original rule TERM-METHOD would be, in our
notation:

OTERM-METHOD

`meth(c.`) = R(P̄){· · ·} ∆;Γ` (M , N̄) : (c, S̄) ∆` S̄ <: P̄

∆;Γ` M.`(N̄) : R

We may illustrate a form of equivalence between these two variations as follows. When a
term M.`(N̄) is well-typed according to the original rule OTERM-METHOD, then it is trivial to
demonstrate that M admits a type c such that the term M.`@c(N̄) is well-typed in our version,
and that this typing has the same result as the typing of the original term. In the opposite direc-
tion, when M.`@c(N̄) is well-typed according to our typing rule, then the term ((c)M).`(N̄)
is well-typed in the original language, as illustrated by the following derivation, which employs
precisely the conditions from our version of rule TERM-METHOD as its assumptions:

OTERM-METHOD

OTERM-UCAST
∆;Γ` M : S0 ∆` S0 <: c

∆;Γ` (c)M : c
`meth(c.`) = R(P̄){· · ·} ∆;Γ` N̄ : S̄ ∆` S̄ <: P̄

∆;Γ` ((c)M).`(N̄) : R

The casting to c will always succeed (it is an up-cast), and it is only included to ensure that the
typing has the same result. We may additionally show that M.`(N̄) is well-typed, but since
M may be of a more specific type than c, say d , the result of the typing may be a subtype of R
when method ` is overridden with a covariant result type in d .

10.1 Featherweight Java 159

As a conclusion, we state that the method invocations and field accesses in our version of
the FEATHERWEIGHT JAVA language may be interpreted to include implicit up-casts that record
the original type of the receiver as it is replaced by a term of a more specific type. The class
name annotations remain constant when subterms of the method invocation or field access are
reduced, and eventually disappear when the method invocation or field access term itself is
reduced. A well-typed source program in the original FEATHERWEIGHT JAVA language may be
trivially converted before evaluation to a well-typed program in our version of the language, by
inserting class name annotations that correspond to the static types of the receivers.

10.1.2 Safety Properties

We now describe what we mean when we claim that the language definition of FEATHERWEIGHT

JAVA is type sound. In Section 6.1.2, type soundness for a rewriting calculus is described as the
guarantee that the reduction of a well-typed program will only halt when a primitive value has
been obtained. Therefore we first need to provide some definition of a well-typed program and
of a primitive value.

For FEATHERWEIGHT JAVA, a complete program specification consists of a collection of top-
level declarations (the class table) and a starting term. We will explicitly make the assumption
that all of the top-level declarations D are well-formed (written ` D). A well-typed program
may then simply be equated to a well-typed starting term.

Assumption 10.1.1. If D then `D.

In the context of FEATHERWEIGHT JAVA, a primitive value is a new expression with only other
primitive values among its subexpressions. An example of such a term is:

new c(new d(),new d())

It is clear that when the execution ends at such a form, this does not indicate any type error;
rather, it is the logical result of a computation. We formally describe which terms are considered
primitive values by means of a judgment `val M , which is defined using the following rule:

VALUE

`val N̄

`val new c(N̄)

With these preliminaries in place, we recall from Section 6.1.2 that the classic strategy
for the demonstration of the soundness property consists in proving two separate properties:
preservation and progress. The formal definition of these properties for FEATHERWEIGHT JAVA

is the following:

Theorem 10.1.2 (Preservation). If ∆;Γ` M : T and M → M ′, then ∆;Γ` M ′ : S for some S such
that ∆` S <: T .

Theorem 10.1.3 (Progress). If •;• ` M : T then either `val M or M → M ′ for some M ′.

These theorems provide more powerful results than what is strictly needed for the safety
property. For example, preservation states that a reduction step not simply retains the well-
formedness of a term, but also retains an equal or more specific type.

160 Formal Evaluation of Pointcut/Advice Bindings

Igarashi et al. provide proofs of these theorems for their version of FEATHERWEIGHT JAVA.
The proofs proceed by induction on the derivation of the evaluation judgment (in case of
preservation) or on the derivation of the typing judgment (in case of progress). The proof-by-
induction strategy explains why a more powerful preservation property is formulated: this also
implies that more powerful induction hypotheses may be used, which is needed to successfully
complete the proof.

The proofs make use of a number of auxiliary lemmas, most importantly, the facts that
subtyping preserves field and method types and that the substitution of term values preserves
the typing. It is straightforward to adapt the proofs of Igarashi et al. to support our version of
the FEATHERWEIGHT JAVA language. Due to the relaxed rules for overriding methods, subtyping
will not simply retain the signature of a method but instead provide a method with an equal or
more specific return type and equal or more general argument types. These relaxed guarantees
are still sufficient for the use of the lemma in the proof of the preservation property. Otherwise,
the original proof structure may be retained.

We do not present the proofs for our version of the FEATHERWEIGHT JAVA language in further
detail here, since we revisit the question of type safety of the language after the presentation of
our complete extension in the next section.

10.2 Featherweight StrongAspectJ

We now extend the FEATHERWEIGHT JAVA language in order to formally prove the soundness of
the typing principles from Chapter 7. The goal of this extension, which is called FEATHERWEIGHT

STRONGASPECTJ, is to describe the semantics of the essential interaction mechanism of advising
join points, as well as our typing principles for this mechanism, in their most general form.
Note that we do not aim to faithfully model the semantics of every feature present in concrete
aspect languages such as ASPECTJ and STRONGASPECTJ. Similar to Igarashi et al., we consider
the effect of a feature on the complexity of the type soundness proof as a “litmus test” for its
inclusion: any feature that significantly complicates the development without contributing to
the fundamental insights with regards to typing is a candidate for removal. The benefit of this
treatment is that we are able to prove the soundness of those features which we do model using
state-of-the-art approaches for formal rigor in Section 10.2.2.

10.2.1 Definition

The extensions of FEATHERWEIGHT STRONGASPECTJ are presented over the course of Figure 10.4,
Figure 10.5 and Figure 10.6. As an overview, we state that the language includes support for
around advice methods that is capable of intercepting method invocations. The advice method
bodies may invoke the intercepted method (or other advice instances of an advice chain) by
means of a proceed invocation, which may provide a new receiver and new arguments. The
typing of the advice method occurs by means of type variables which have both a lower and
upper bound. An advice is compatible with a method invocation join point when the method
type is contained with the range between the lower and upper bound. Below, we describe each
of these elements in more detail.

10.2 Featherweight StrongAspectJ 161

Lexical metavariables
. . . (previous variables)
a advice names
X ,Y , Z type variables
Type, term and pointcut expressions
P,Q,R,S,T,U ::= . . . (previous form)

| X variable type
| Null bottom type

K ,L, M ::= . . . (previous forms)
| M.`@c[ā](N̄) advised method invocation
| proceed(M, N̄) proceed invocation

Evaluation contexts
E [] ::= . . . (previous forms)

| [].`@c[ā](N̄) advised method inv. target
| M.`@c[ā](N̄ , [], N̄ ′) advised method inv. arg
| proceed([], N̄) proceed inv. target
| proceed(M, N̄ , [], N̄ ′) proceed inv. arg

Top-level declarations
D ::= . . . (previous forms)

| advice Y in R-S a(x0 :X0 in P0-Q0,
x̄ : X̄ in P̄-Q̄) {L}

advice declaration
Type and term environments
∆ ::= . . . |∆, X in S-U variable type bounds
Γ ::= . . . | Γ,S proceed(Q0,Q̄) proceed type

Figure 10.4: FEATHERWEIGHT STRONGASPECTJ extension of the FEATHERWEIGHT JAVA syntax

162 Formal Evaluation of Pointcut/Advice Bindings

Advice compatibility ` a ok for c.`

ADVCOMPAT-METHOD

advice R-S a(P0-Q0, P̄-Q̄) {· · ·}
`meth(c.`) = T(Ū){· · ·} ` (R,P0, P̄) <: (T,c,Ū) <: (S,Q0,Q̄)

` a ok for c.`

Evaluation M → M ′

· · ·
EVAL-METHOD

M = new c(· · ·) `meth(c.`) = (x̄){L}

M.`@d[](N̄)→ [
(this, x̄) 7→ (M , N̄)

]
L

EVAL-SELECT

` ā ok for c.`

M.`@c(N̄)→ M.`@c[ā](N̄)

EVAL-ADVISE

advice a0(x0, x̄){L}

M.`@c[a0, ā](N̄)→ [
(x0, x̄,proceed) 7→ (M , N̄ ,`@c[ā])

]
L

Figure 10.5: FEATHERWEIGHT STRONGASPECTJ extension of FEATHERWEIGHT JAVA dynamics
and auxiliary advice compatibility judgment

Advice and proceed mechanism

FEATHERWEIGHT STRONGASPECTJ supports the declaration of advice methods as top-level
entities, next to classes (Figure 10.4). It is not an uncommon simplification in this context to not
consider aspect modules and aspect instances; their addition is normally straightforward. The
advice methods define a number of argument names and an advice body which may include
invocations of the special proceed method. (The advice method declaration also includes
some type information which we discuss below.)

The evaluation of method invocations is adapted to include the effect of advice behavior.
In Figure 10.5 (bottom part), the original rule EVAL-METHOD is replaced by three rules. rule
EVAL-SELECT equips a method invocation expression with an advice chain, which is modeled
as a list of remaining advice names (the advised method invocation is a new syntactic form).
rule EVAL-ADVISE applies the advice at the head of the list and reduces the method invocation to
the advice body, where proceed is bound to the method invocation with the remaining advice
list. When the advice list is exhausted, rule EVAL-METHOD executes the method lookup and
reduces the method invocation to the method body. We note four particular features about the
organization of advice application in these rules:

1. We consider the possible effects of arbitrary pointcut expressions in any pointcut lan-
guage by describing a non-deterministic advice selection process (this explains why
the advice declarations do not include pointcut expressions). The condition of rule
EVAL-SELECT simply stipulates that each of the selected advice methods must be compati-
ble with the method at hand (this is captured by the judgment “` a ok for c.`”, which is
described below). There are no other constraints that further determine the advice list.
Consequently, multiple advice lists may satisfy this criterion: if we consider the set of all

10.2 Featherweight StrongAspectJ 163

advice methods that are compatible with the invoked method, then any advice list which
only draws its elements from this set (any number of elements, in any order, possibly
with duplication) is accepted.

This non-determinism allows for different reductions of the same term yielding different
results, which is obviously a highly undesirable property for a practical language. However,
we find it very useful in the context of this theoretical study of the typing principles to ab-
stract over different possible pointcut languages and interaction resolution mechanisms3:
the evaluation of a concrete pointcut expression and a concrete interaction resolution
may narrow the possibilities down to a single advice list and thus recover determinism,
as long as the resulting advice list satisfies the criterion from rule EVAL-SELECT, we have
considered its possibility in the soundness evaluation and our results will be applicable.

2. In rule EVAL-ADVISE, we note that advice methods receive the arguments directly from the
original method invocation (or from a proceed invocation by a preceding advice in the
chain), without any “routing” by means of a pointcut expression. We consider the routing
of context arguments by pointcut expression to be a factor of non-essential complexity for
our purposes. The omission of this feature implies that a single advice method may not
be used to advise the invocations of multiple methods that have a different structure. For
example, in the pointcut language of ASPECTJ, this is possible using a pointcut expression
with multiple disjunctive branches that each provide a binding of the same pointcut
variable:

call(void FigureElement.move(..)) && target(fe) ||
call(void Group.add(FigureElement)) && args(fe)

However, such examples may be emulated by means of multiple advice methods, one for
each different structure of the advised methods.

3. Similarly to treatment of the arguments of advice, the arguments to the invocation of
proceed are directly employed for the execution of the method body (or for the execution
of the body of a succeeding advice in the chain). This occurs through the mechanism
of substituting a method name (`), a class annotation (c) and an advice list (ā) for the
proceed marker. The proceed substitution will replace the proceed invocation by an in-
vocation of the given method, advised by the given advice list. Since this is not a common
substitution operation, we provide a formal definition of the substitution behavior. For
proceed invocation terms, the effect of the substitution will be the method invocation
we described: [

proceed 7→ `@c[ā]
]
proceed(M, N̄)= M.`@c[ā](N̄)

For terms of any other form, the substitution the substitution is simply carried over to
any subterms. For example, in case of field access terms there is one such subterm:[

proceed 7→ `@c[ā]
]

(M. f @c) = (
[
proceed 7→ `@c[ā]

]
M). f @c

3Recall from the discussion of interaction resolution in Section 4.1.3 that the resolution of a situation where multiple
aspects advise the same join point may be modeled as a manipulation of the list of applicable advice methods.

164 Formal Evaluation of Pointcut/Advice Bindings

Well-formed types
∆` T

· · ·
TYPE-VAR

X ∈∆
∆` X

TYPE-NULL

∆` Null

Well-formed environments ∆` ok ∆;Γ` ok

· · ·

TENV-VAR

∆` ok X ∉∆
∆` S,T

∆, X in S-T ` ok

ENV-PROCEED

∆;Γ` ok proceed ∉ Γ
∆` S,Q0,Q̄

∆;Γ,S proceed(Q0,Q̄)` ok

Subtyping ∆` S <: T

· · ·
SUB-NULL

∆` Null<: T

SUB-VARU
X in S-U ∈∆
∆` X <: U

SUB-VARS
X in S-U ∈∆
∆` S <: X

Term typing ∆;Γ` M : T

· · ·

TERM-PROCEED

S proceed(Q0,Q̄) ∈ Γ
∆;Γ` (M , N̄) : (P0, P̄)
∆` (P0, P̄) <: (Q0,Q̄)

∆;Γ` proceed(M, N̄) : S

TERM-AMETHOD

` ā ok for c.`
`meth(c.`) = R(P̄){· · ·}
∆;Γ` (M , N̄) : (S0, S̄)
∆` (S0, S̄) <: (c, P̄)

∆;Γ` M.`@c[ā](N̄) : R

Declaration typing `D

· · ·

DEC-ADVICE

∆= Y in R-S, X0 in P0-Q0, X̄ in P̄-Q̄
∆; (x0, x̄): (X0, X̄),Y proceed(X0, X̄)` L : U ∆`U <: Y

` advice Y in R-S a(x0 :X0 in P0-Q0, x̄ : X̄ in P̄-Q̄) {L}

Figure 10.6: FEATHERWEIGHT STRONGASPECTJ extension of FEATHERWEIGHT JAVA statics

4. Lastly, we note that the receiver of the method invocation is included with the arguments
that are provided to the advice body in rule EVAL-ADVISE. The receiver may be considered
the implicit argument of the method invocation and it is passed along together with the
explicit arguments (in the position x0). Similarly, proceed invocations require a receiver
argument in the first position, and this does not need to be the original receiver of the
method invocation. This mimics the possibility in aspect languages of advice behavior
that changes the receiver object; as explained by Clifton and Leavens (2006), this is useful
for such idioms as introducing proxy objects. Note that for the execution of the method
body in rule EVAL-METHOD, method lookup occurs for the final receiver that is obtained
after any replacements by any of the advice methods. The semantics of dynamic binding
of the method implementation is thus always retained.

10.2 Featherweight StrongAspectJ 165

Typing of the extensions

FEATHERWEIGHT STRONGASPECTJ includes the following changes to organize the typing of the
new constructs:

Type structure We extend the type structure with type variables and a bottom type (Null).
There are corresponding type well-formedness and subtyping rules for these new type forms
(Figure 10.6). The definition of these new rules is straightforward and corresponds with earlier
versions in Figure 6.4 on page 94. We choose the reserved name Null for the bottom type, since
it corresponds to the null type in JAVA, which is also a subtype of any reference type. However,
note that in contrast to the situation in JAVA, Null does not have any inhabitants, i.e., we do not
model null references (for reasons similar to those given for casts in Section 10.1.1). The type
Null is still a useful generalization in type comparisons: using Null as a lower bound for a type
variable means that there is no effective lower bound, any subtype of the upper bound will be a
valid type value for that type variable.

Advice typing The typing of advice declarations is the first place where we incorporate our
typing principles. Similar to Chapter 8 and Chapter 9, this is based on the typing principles
described for advice functions for function join points from Section 7.3, where we propose
a typing using subtype polymorphism (ordinary function advice, Section 7.3.3) and another
one using parametric polymorphism (generic function advice, Section 7.3.4). In the current
context, we are interested in including the most general typing principle, and the result from
page 113 regarding the incorporation of subtype polymorphism in parametric polymorphism is
of particular interest here, since it claims that ordinary advice may be emulated using generic
advice, provided that the type variables that are used for the generic typing have an upper and
lower bound.

We may demonstrate this with an example of an ordinary advice method in the STRONGAS-
PECTJ language from page 141:

Integer around(Number n): pc(n): Number proceed(Integer) {
return proceed(n.intValue() + 1).intValue() - 1;

}

If both upper and lower bounds are supported for type variables, this example may be recreated
as a generic advice method where the type variables have the concrete types from the advice
and proceed signatures as their lower and upper bounds:

<Y in Integer-Number, X in Integer-Number>
Y around(X n): pc(n): Y proceed(X) {

return proceed(n.intValue() + 1).intValue() - 1;
}

Note that although the types in the around and proceed signature must be equal, any value
of type X may be retrieved as a Number (due to its upper bound) and may be provided as an
Integer (due to its lower bound). The same holds for type Y.

166 Formal Evaluation of Pointcut/Advice Bindings

In the design of FEATHERWEIGHT STRONGASPECTJ, we therefore choose to include a general
generic advice typing where the type of the result and all of the argument position are neces-
sarily specified as type variables, which have their bounds specified in-place. In the syntax of
FEATHERWEIGHT STRONGASPECTJ, the above example becomes:

advice Y in Integer-Number a(n : X in Integer-Number) {
proceed(n.intValue().succ()).intValue().pred();

}

(Since there are no primitive arithmetic operations in the context of FEATHERWEIGHT JAVA, we
presume the simple operations for addition and subtraction by one are provided as the methods
succ and pred for the class Integer.)

The rule DEC-ADVICE requires a typing of the advice body using a type environment that
contains the assumption about the type variables, and a term environment that assigns the
variable types to the respective arguments and to the proceed marker (the latter assignment
allows proceed invocations to be used in the advice body because of rule TERM-PROCEED). Also
note that the conditions of rule DEC-ADVICE correspond to the conditions for obtaining the type
which we assigned to generic function advice in Section 7.3.4:

` adv : forall I inU i
adv -Si

adv,O in So
adv -U o

adv, (I ->O)-> (I ->O)

Although in the case of rule DEC-ADVICE, this is extended to the case of multiple arguments and
the roles of O and I are played by respectively Y and X̄ , and the roles of So

adv, U o
adv, U i

adv and
Si

adv are played by respectively R, S, P̄ and Q̄.

Advice compatibility Finally, we define the notion of advice compatibility in Figure 10.5
(upper part), which is employed as both a condition for the introduction of an advised method
invocation in rule EVAL-SELECT and the typing of such a term in rule TERM-AMETHOD. The
conditions for advice compatibility ` a ok for c.` need to ensure that the advice method a may
be safely applied to the invocation of method c.`, under the assumption that a is well-typed.
Concretely, rule ADVCOMPAT-METHOD stipulates that the method types should be contained
within the ranges from the advice declaration. This corresponds to the conditions of rule
FGBIND in Figure 7.3 on page 116, although there is no involvement of a pointcut type and the
join point type (i.e., the type of the invoked method) is directly used instead. (In other words,
the subtype conditions from rule FMATCH in the same figure are directly integrated here.) Once
again, this fits in our design motivation of eliminating all of the non-essential complexity.

Class annotations Now that the advice compatibility has been described, we are in a position
where we can more concretely explain why we introduce explicit class annotations in the syntax
for method invocations (as described at the end of Section 10.1.1). Consider a context without
these annotations and consider the advised method invocation M.`[ā](N̄). Suppose that
this term is correctly typed, because M admits a class type c and the advice methods ā are
compatible with the type of method c.`. This entails that c is contained in the range of the
receiver position of each of the advice methods ā.

Now, we remark that the term M.`[ā](N̄) may reduce to the term M ′.`[ā](N̄) where
M ′ admits a class type d where d <: c. In a subject reduction proof, we must show that the

10.2 Featherweight StrongAspectJ 167

typing of the original term is preserved by the new term. However, it is a problem to show
that the advice methods ā are compatible with the new type of the invoked method, since the
invoked method has become d.`, while d might not be included in the receiver ranges of the
advice methods ā. The class annotations provide a simple way to retain the information that
c.` is the method that is being invoked in the original program.

Alternatively, we may consider a design where we track in which class in the hierarchy the
method ` is first introduced. As long as the proceed invocations in the advice method provide
a receiver that is a subtype of this class type, the method invocation would be safe. However, it
would be rather restrictive if the advice method could not expect a receiver argument of a type
more specific of this class type. All in all, we believe the mechanism of class annotations is a
more straightforward mechanism since it allows the receiver to be treated similar to the other
(explicit) arguments.

10.2.2 Safety Properties and Corresponding Proofs

In this section, we state the progress and preservation theories for FEATHERWEIGHT STRONG-
ASPECTJ. There is a proof for theorems; the proof has been developed using the COQ proof
assistant4, which is described by Bertot and Castéran (2004). A proof assistant of this kind allows
the expression of formal assertions and mechanically checks the proofs of these assertions (it is
not an automated theorem prover but includes some automated theorem proving tactics and
various decision procedures). In the particular case of COQ, this is based on the type theory
of the calculus of (inductive) constructions, which is a higher-order lambda calculus initially
developed by Coquand and Huet (1988). The core logic of COQ is intuitionistic rather than
classical. Compared to the traditional paper-and-pencil proofs, mechanical proofs checked by
tools such as COQ rule out the possibility of mistakes by the proof author5. They represent the
current state-of-the-art in formal rigor.

Below, we present the main theorems of the development, as well as a number of key
auxiliary lemmas, in the notation of this chapter. We present the properties in the order in
which they can be derived (i.e., the auxiliaries come before the main theorems). We explicitly
repeat the assumption that all top-level declarations are well-typed:

Assumption 10.2.1. If D then `D.

There is a description of the proof with each statement. Since the details of the proofs have
been rigorously verified by COQ, we write the proof descriptions with the intent of providing
the reader with some insight in the proof structure, rather than convincing him/her of the
correctness of the proof. We therefore permit proof descriptions that are more informal than
what is customary for paper-and-pencil proofs.

Subtyping, term and proceed substitution

The first two lemmas provide some properties regarding the subtype relation. Remark that
we consider a relation ` c <: d between class types under an empty type environment. It

4The full COQ development is available from http://ssel.vub.ac.be/fsaj/. A formatted version of the COQ

definitions is included as Appendix A.
5There is still a possibility for bugs in the proof checking system or its underlying theory, as is discussed by Castéran

et al. (2009, answer 5). However, this is unlikely as it would have implications beyond any single development.

http://ssel.vub.ac.be/fsaj/

168 Formal Evaluation of Pointcut/Advice Bindings

is not possible to draw the same conclusions for an arbitrary type environment: if the type
environment contains unsatisfiable assumptions such as in the case of∆= X in Number-String,
then it is allowed to derive subtype relations that do not correspond to the class hierarchy, for
example, ∆ ` Number <: String. In contrast, under the empty type environment, subtyping
corresponds to the reflexive and transitive closure of the direct subclass relation.

Lemma 10.2.2 (Subtyping preserves fields). If ` c <: d and ` fields(d) = ḡ : S̄ then ` fields(c) =
ḡ : S̄; f̄ : T̄ for some f̄ and T̄ .

Proof. By induction on the left transitive step of the derivation of the subtype relation. In the
case of rule SUB-CLASS, rule FIELD-THIS-SUPER may be used directly. The cases of rule SUB-VARU

and rule SUB-VARS are absurd in case of an empty type environment. The case of rule SUB-NULL

is also impossible since Null is not a class type.

Lemma 10.2.3 (Subtyping preserves method types). If ` c <: d and `meth(d .`) = S(Q̄){· · ·}
then `meth(c.`) = R(P̄){· · ·} for some R, P̄ such that ` (R,Q̄) <: (S, P̄).

Proof. We employ the same structure as in the previous lemma. In the case of rule SUB-CLASS,
we have to distinguish between a method that is inherited with or without overriding. In case of
overriding, we employ the last condition from rule DEC-METHOD.

The following two lemmas are a typical term substitution lemma and a similar one, adapted
for the case of proceed substitution.

Lemma 10.2.4 (Term substitutivity). Consider variable declaration x̄ : P̄ and Γ0, N̄ such that
∆;Γ0 ` N̄ : Q̄ for some Q̄ such that∆` Q̄ <: P̄ . Now, if∆; x̄:P̄ ` M : T then∆;Γ0 `

[
x̄ 7→ N̄

]
M : T ′

for some T ′ such that ∆` T ′ <: T .

Proof. By induction on the derivation of ∆; x̄ : P̄ ` M : R . In the case of rule TERM-VAR, we know
the variable in question is among x̄, so the goal follows straightforwardly. In the other cases,
the substitution is carried through to any subterms, and we employ the induction hypotheses
corresponding to those subterms.

Lemma 10.2.5 (Proceed substitutivity). Consider proceed declaration S proceed(Q0,Q̄) and
`,c, ā such that ` ā ok for c.` and ` meth(c.`) = R(P̄){· · ·} where ∆ ` (R,Q0,Q̄) <: (S,c, P̄).
Now, if ∆;S proceed(Q0,Q̄)` M : T then ∆;• ` [proceed 7→ c@`[ā]] M : T ′ for some T ′ such
that ∆` T ′ <: T .

Proof. By induction on the derivation of the judgment ∆;S proceed(Q0,Q̄) ` M : T . In the
case of rule TERM-PROCEED, the goal follows straightforwardly from the hypotheses. In the
other cases, the substitution is carried through to any subterms, and we employ the induction
hypotheses corresponding to those subterms.

Type substitution

The following two lemmas relate to the substitution of types according to the bound declarations
from a type environment.

10.2 Featherweight StrongAspectJ 169

Lemma 10.2.6 (Type substitution preserves subtyping). Consider the type variable bound
declarations X̄ in S̄-Ū and types V̄ such that ` V̄ and ` S̄ <: V̄ <: Ū . Now, if X̄ in S̄-Ū ` T <: T ′,
then ` [

X̄ 7→ V̄
]

T <:
[

X̄ 7→ V̄
]

T ′.

Proof. By induction on the derivation of X̄ in S̄-Ū ` T <: T ′. In the cases of rule SUB-VARU and
rule SUB-VARS, we know the type variable in question will be among X̄ and the goal follows from
the hypotheses. The other cases are straightforward or the substitution has no effect.

Lemma 10.2.7 (Type substitutivity). Consider the type variable bound declarations X̄ in S̄-Ū
and types V̄ such that ` V̄ and ` S̄ <: V̄ <: Ū . Now, if X̄ in S̄-Ū ;Γ` M : T , then •;

[
X̄ 7→ V̄

]
Γ`

M : T ′ for some T ′ such that ` T ′ <:
[

X̄ 7→ V̄
]

T .

Proof. By induction on the derivation of X̄ in S̄-Ū ;Γ ` M : T . In the cases of rule TERM-VAR

and rule TERM-PROCEED, the type
[

X̄ 7→ V̄
]

T is available in
[

X̄ 7→ V̄
]
Γ. In the cases of rule

TERM-FIELD, rule TERM-OBJECT and rule TERM-METHOD, we employ the fact that methods and
fields have well-formed types in the empty type environment, i.e., that they do not contain any
type variables. We additionally employ Lemma 10.2.6 and the induction hypotheses.

Main properties

The following two theorems provide that preservation and progress properties. The definition
of the primitive values is the same as in the case of Section 10.1.2. Note that the preservation
property is specified for an empty type and term environment, to match the conditions of
Lemma 10.2.2 and Lemma 10.2.3. This does not affect the soundness result, since the evaluation
of a program starts with a main expression that is well-typed in an empty environment.

Theorem 10.2.8 (Preservation). If •;• ` M : T and M → M ′, then •;• ` M ′ : T ′ for some T ′ such
that ` T ′ <: T

Proof. By induction on the derivation of M → M ′. For the case of rule EVAL-FIELD, we employ
Lemma 10.2.2. For the case of rule EVAL-METHOD, we employ Lemma 10.2.3 and Lemma 10.2.4
for the substitution of the variables in the method body. The case of rule EVAL-SELECT follows
directly. For, the case of rule EVAL-ADVISE, we employ that the advice body is well-typed accord-
ing to rule DEC-ADVICE. We first employ Lemma 10.2.7 to substitute the types of the involved
method for the type variables. Next, we employ Lemma 10.2.4 and Lemma 10.2.5 for the sub-
stitution of the term variables and the proceed marker. For the case of rule EVAL-CONTEXT, we
make use of the induction hypothesis.

Theorem 10.2.9 (Progress). If •;• ` M : T then either `val M or M → M ′ for some M ′.

Proof. By induction on the derivation of the typing judgment. We can immediately contradict
the cases of rule TERM-VAR and rule TERM-PROCEED because of the empty environment. In case
of rule TERM-NEW, the induction hypotheses may be directly applied to the arguments of the new
expression. For the case of rule TERM-METHOD, progress is trivial using rule EVAL-SELECT. For the
cases of rule TERM-FIELD and rule TERM-AMETHOD, the induction hypothesis states that there is
either progress for the receiver or the receiver is a value. In the former case, progress is trivial
using rule EVAL-CONTEXT. In the latter case, the receiver is a new expression, and we may show
progress using Lemma 10.2.2 and rule EVAL-FIELD (for field accesses) or using Lemma 10.2.3 and

170 Formal Evaluation of Pointcut/Advice Bindings

rule EVAL-METHOD or rule EVAL-ADVISE (for advised method invocations, depending on whether
the advice list is empty or not).

10.3 Related Work: Formal Advice Semantics

10.3.1 Jagadeesan et al.

Jagadeesan, Jeffrey, and Riely (2006) define an aspect extension of FEATHERWEIGHT JAVA that is
the main source of inspiration for our formal model in this chapter. Their calculus also extends
FEATHERWEIGHT JAVA with advice method declarations that are typed using explicitly-declared
type variables, and there is a similar organization of the evaluation of method invocations by
means of advised method invocation terms that carry an advice chain.

However, differently from our approach, Jagadeesan et al. do include a specific pointcut
language that is directly integrated with the type variables from the advice declaration. We may
illustrate this with an example advice method expressed using their formalism:

advice a <R extends Number,T> R(T x): exe(R Person.*(T,*)) { proceed(x); }

Similar to our proposal, the type variables in an advice declaration are used in the typing of the
advice body. Concretely, if L represents the advice body, then the following typing is required
in the case of the above declaration (where the type environment ∆ contains the assumptions
about type variables R and T):

∆;x:T,R proceed(T)` L : R ′ ∆` R ′ <: R

Notice however that the pointcut expression exe(R Foo.*(T,*)) is not self-contained; it refers
to a type variables R and T from the advice declaration. The matching of this pointcut is
organized as follows: for an advice declaration a<X̄ extends C̄>, the pointcut φ will match a
method invocation when there exist type values V̄ for the variables X̄ such that V̄ adhere to
the bounds C̄ and

[
X̄ 7→ V̄

]
φ matches the method signature exactly (without subtype variance).

The invariant matching is required for type safety, but the binding of the values for the variables
X̄ allows for a form of quantification: in the case of our example, the pointcut matches any
method invocation on class Person with a return type that is a subtype of Number and any
argument type.

We think that this use of the type variables as a quantification mechanism in the pointcuts
is conceptually quite distant from actual pointcut languages such as in ASPECTJ. Additionally, it
is unclear if the possible values V̄ can always be (easily) determined. Worse, while the disjunc-
tion and conjunction of pointcuts is supported, their negation is problematic since it will not
produce a binding for the type variables Jagadeesan et al. (2006)[as discussed by][p. 16]. In con-
trast, our model supports arbitrary pointcut languages that correspond with a straightforward
compatibility criterion.

Admittedly, the restricted pointcut language also enables the authors to deeply explore the
interactions with a generic base language, which is an area that we have not considered here.
Jagadeesan et al. define their calculus as an extension of the generic version of FEATHERWEIGHT

JAVA, and they consider both the type-carrying and type-erasing implementation of the generics

10.3 Related Work: Formal Advice Semantics 171

features. The main difference for an aspect-oriented approach lies in the fact that there is
insufficient information for the matching of certain pointcuts in the case of type erasure. The
authors describe a system that restricts certain classes of pointcuts for which erasure removes
the necessary type information.

Another problem in the model of Jagadeesan et al. is the lacking support for ordinary advice.
We have explained how the presence of lower bounds for type variables is crucial in our system
to enable this important case. The calculus of Jagadeesan et al. lacks such lower bounds, and
the system therefore precludes advice behavior that replaces a join point argument or result (as
explained by Jagadeesan et al., 2006, p. 21). Additionally, their type system includes two other
important restrictions in comparison to ours: they do not allow the advice methods to change
the receiver of a method invocation and they do not support the case of contravariant argument
types. Finally, we also contribute a mechanically verified proof of the safety properties of our
system.

10.3.2 Clifton and Leavens

Clifton and Leavens (2006) propose MINIMAO1, an imperative core language for studying
the semantics of the pointcut/advice mechanism, including around advice and proceed. In
comparison to the previous approaches, their emphasis is on a formal description of the
dynamic semantics of the advice mechanism, and less on the flexible typing of this mechanism,
although a static semantics is provided and proven type sound. The authors consider a context
that is somewhat different than ours: MINIMAO1 is specified as an extension of CLASSICJAVA

by Flatt et al. (1999) and describes an imperative, reference-based semantics of a language
that includes assignment, sequences of statements and null references. It is nevertheless a
small-step, operational semantics, and therefore some machinery is required: the evaluation
proceeds as rewriting between triples consisting of a term, a representation of a heap and a
stack of activation records. Additionally, the syntax of terms is extended with a loc form, which
is a reference to an object on the heap. While the treatment of an imperative language is clearly
closer to semantics of concrete aspect-oriented languages such as ASPECTJ, the authors do
not report any cases where a model that includes assignment provides insights with respect to
typing that are not observable in a purely functional fragment of the language.

The MINIMAO1 language is a fairly complete model of the pointcut/advice mechanism
in the ASPECTJ language. It includes aspect modules, around advice methods with proceed
facility, advising of method call and execution join points, and a pointcut language with binding
primitives (this, target and args) and boolean operators. In addition, it is possible for advice
methods to change the receiver object when proceeding (both for call and execution advice).
One notable deviation from ASPECTJ, is the structure of such proceed invocations. While
the pointcut designator of an advice method may freely route the arguments and change the
argument order, there is no corresponding routing for proceed as in ASPECTJ, and proceed
is always invoked with values for all the argument positions of the advised method, in their
original order. The following example illustrate the syntax for proceed employed in MINIMAO1:

aspect Asp {
DSub around(A caller, B arg, C callee): call(D m(..)) &&

this(A caller) && args(B arg) && target(C callee) {

172 Formal Evaluation of Pointcut/Advice Bindings

new CSub().proceed(arg);
...

}
}

The matching rules of the pointcut language are very strict regarding the type of join points
that they match. For example, the pointcut:

call(D m(..)) && args(B x) && target(C y)

matches a method call of m on some subtype of C only when C is the class that first introduced
m (i.e., m is not inherited nor overridden by C), the return type of m is exactly D and the single
argument type of m is exactly B (since variant overriding is not considered by Clifton and
Leavens, the result and argument types remain constant). We note that this is quite different
from the ASPECTJ matching semantics.

The typing of MINIMAO1 is then organized using a combination of a pointcut typing and a
typing of the advice declaration. The pointcut typing assigns types for the positions of the target,
the arguments and the result of the matched join points. These types will be exactly equal to
the types as they appear in the primitives: in the above example, they will be the types C , B
and D respectively. Additionally, the pointcut type tracks the set of variables that a pointcut
binds in all branches and those that it may bind in any of the branches. For the typing of an
advice declaration, the following rules are then employed: (i) proceed is assigned exactly the
pointcut type, (ii) the arguments are assigned exactly the type from the position that they bind,
and (iii) the return type of the advice should be a subtype of the pointcut return type. For an
advice method bound to the above example pointcut, this means that proceed may be invoked
using the signature C ×B → D , which corresponds exactly to the way in which method m may
be called (recall that C is the class where m is introduced). This also corresponds with the types
assigned to the arguments y and x, which will be C and B respectively. Finally, the advice may
return a value which is a subtype of D , which is always valid for a client of this method.

As a conclusion, we may say that MINIMAO1 provides a safe type system but the typing rules
are not very flexible: while there is some variance for the return type, we must bind the receiver
exactly with the type where a method is first introduced, and we must bind the arguments with
the types exactly as they appear in the method definition. This precludes a large number of
useful advices that our approach admits. Relaxation of these restrictions is cited as future work
by Clifton and Leavens (2006, p.23). Additionally, there is no support for a typing of advice
methods using type variables (as a generic advice) which prevents another important class of
advice methods.

10.3.3 Lämmel

Lämmel (2002) formally studies a superimpose language construct which allows to set up
method-call interception (MCI) in a class-based object-oriented setting with imperative ele-
ments such as assignment and sequences of statements. He defines dispatch, enter and exit
join points for method calls, and consecutively considers a system with: (i) basic MCI, where
advice behavior is merely triggered at these join points, (ii) interactive MCI, where advice be-
havior may consult the receiver, arguments and tentative result of the method call, and may

10.3 Related Work: Formal Advice Semantics 173

provide a new result to return to the join point client, and (iii) collective MCI, where the advice
behavior is triggered by a location pattern that may abstract over multiple method calls (similar
to pointcuts).

In the most sophisticated system, we may define advice behavior similar to around advice
with a proceed mechanism:

superimpose result.intValue() on exit method(getAge) && result(Number)

This example will intercept the exit join point of invocations of methods named getAge with
return type Number (exactly). It will apply the intValue method on the tentative result returned
by the intercepted method (or by the preceding advice behavior) and it will return the new
result instead. (Recall that intValue is a method defined for class Number with return type
Integer.)

Lämmel defines a safe type system for his approach. A typing of location patterns assigns
a bound for the types of the receiver, arguments and the result of the method(s) of which the
invocation is matched. This typing is used as an advice environment in the typing of the advice
expressions. The typing of location patterns allows subtype polymorphism, but only for the
case of the result type this is tricky because only results of method invocations may both be
consulted and updated by advice behavior (whereas the receiver and the arguments may only
be consulted, not updated). However, for this case, the typing of the result pattern assigns a
return type that is exactly equal to the return type of the matched methods: recall that a pattern
such as result(Number) matches exactly the type Number, and not one of its subtypes, such as
Float. If that were the case, then the new result from the above advice behavior (an Integer)
might not meet the expectation of the join point client (which may expect a Float).

This exact type restriction hinders the flexibility of advice behavior defined for heteroge-
neous sets of join points, and in comparison to this system, FEATHERWEIGHT STRONGASPECTJ
supports type ranges to enable subtype variance for the typing of advice behavior. In addition,
we employ type variables to enable advice behavior which always returns the tentative result
from the intercepted join point. We also support full around advice behavior, which can up-
date the receiver and argument values in addition to the return value. Finally, Lämmel only
informally presents the proofs of the safety properties of his system.

10.3.4 Other Work

Ligatti, Walker, and Zdancewic (2006) define the MINAML system as an extension of simply-
typed lambda calculus which models the semantics of pointcuts and advice with two new
abstractions: explicitly labeled program points and first-class advice. The labels are used to
trigger the advice invocations as well as to mark points that the advice may return to. The
advice receives argument values and provides a value when returning, which may be used to
simulate some around advice with a proceed mechanism. The authors extend the type theory
to include their new concepts, but support neither the subtype nor parametric polymorphism,
making the typing rules less flexible than the systems we have considered (basically, the authors
only consider advice having exactly the same type as the join point triggering it). Ligatti et al.
additionally define type-directed translations from user-friendly external languages. One of
these is a core object-oriented language inspired by the object calculus from Abadi and Cardelli

174 Formal Evaluation of Pointcut/Advice Bindings

(1996). However, since their object-oriented formalism lacks important concepts such as classes
and subtyping, their results are only marginally relevant in our context.

Similarly, Aldrich (2005) defines a typed theory of aspect-oriented programming with a
focus on the interaction between aspect and modules, in particular a module sealing operation
that hides the internal control-flow points from external advice. The evaluation therefore occurs
in a functional context, and without considering subtype nor parametric polymorphism.

Finally, a variety of untyped definitions for the semantics of aspect-oriented mechanisms
has also been considered in literature. The approaches by Wand, Kiczales, and Dutchyn (2004)
and Douence, Fradet, and Südholt (2002) are only two examples.

Chapter 11

Conclusions

11.1 Summary of the Dissertation

The goal of this dissertation is to improve the language facilities for aspect deployment, in order
to enable the advanced reuse of aspect implementations. We focus on the pointcut/advice
mechanism and consider both the expressiveness and the safety of the deployment entities.

The deployment mechanisms of current mainstream approaches are analyzed with respect
to their deployment expressiveness and three important requirements are identified for the
intensive usage of aspects: reuse of deployment code, quantification of deployments, and inte-
gration of deployment with dynamic events in the main program. Based on these requirements,
the design of first-class deployment procedures is proposed. Such deployment procedures
may be parameterized with aspect entities such as pointcuts and advice to abstract and reuse
deployment, they integrate control structures to organize deployment quantification, and it is
possible to invoke the deployment procedures from the base program with a possible transfer
of program values.

A realization of first-class deployment procedures is presented in the form of the ECOSYS

AOP framework, which organizes the specification of all aspect logic — including the aspect
deployment — as code in a general purpose object-oriented programming language, using a
number of predefined classes. We define the programming interface of ECOSYS and include
comprehensive support for the specification of aspect interactions. We demonstrate that
ECOSYS indeed offers improved deployment expressiveness and a prototype implementation
of ECOSYS is presented. This prototype employs ASPECTJ for the atypical purpose of bytecode
manipulation. Additionally, we analyze a number of alternative language designs proposed in
more recent literature with some impact on the expressiveness of aspect deployment. While
these approaches offer a number of advantages similar to ECOSYS, they do not provide a
complete solution for the requirements we have identified. In some cases, deployment is not an
explicit part of investigation, but the motivational examples are caused by deployment issues.

In order to improve the safety of deployment entities, we focus on type systems as a means
to verify the compatibility between advice behavior and the context where it is employed.
We study the general model of around advice with a proceed mechanism in the context of

175

176 Conclusions

a simplified functional language, and we derive two main typing schemes for pointcuts and
advice. Ordinary advice is typed using subtype relations, while generic advice is typed using
type variables. We also explore the combination of the two typing schemes by considering a
quantification of type variables that is bounded by means of subtype relations. We find that
generic advice may emulate ordinary advice when type variables may define both a lower and
an upper bound may be defined.

We then integrate the proposed typing principles in two practical aspect approaches. We
define a typed version of ECOSYS where the typing rules are encoded using the features of JAVA 5
generics such that they are enforced by a standard JAVA compiler. We also propose the STRONG-
ASPECTJ language, an extension of ASPECTJ that incorporates our typing principles using a
limited number of modifications. While the typing rules of STRONGASPECTJ are more complex,
we demonstrate that any simplification by ASPECTJ is a direct cause for a safety problem or a
restriction of valid advice behavior. We have implemented the STRONGASPECTJ language as an
extension of the extensible ASPECTBENCH compiler.

Finally, we formally evaluate the proposed typing principles in the context of the FEATHER-
WEIGHT JAVA calculus. We extend the calculus with a general advice mechanism for method
invocations and we model any possible selection of advice through a form of non-determinism
in the evaluation. We type the advice construct using type variables with both lower and upper
bounds, and we define the conditions for the safe application of an advice to a method type
based on inclusion in the range between lower and upper bound. We have developed a proof
for the type safety properties of this formal framework using the COQ proof assistant. Since
this tool mechanically checks the development according to an established theory, this may be
regarded a highly rigorous evaluation of the properties.

11.2 Recapitulation of the Contributions

We summarize the contributions of the dissertation as follows:

• The identification of a set of requirements for the expressive deployment of reusable
aspects and a proposal of a design of first-class deployment procedures to meet these
requirements. A concrete realization of this design is presented as the ECOSYS AOP
framework, with prototype implementation.

A discussion of the other work in recent literature with an impact on deployment expres-
siveness confirms the novelty and relevance of this approach.

• The formulation of a set of flexible typing principles for the pointcut/advice mechanism
based on the notions of subtype and parametric polymorphism. The typing principles
are integrated and implemented in two practical aspect approaches and the soundness
of the typing principles is rigorously evaluated using a formal definition and proof of the
safety properties.

An analysis of the safety loopholes and expressiveness restrictions in traditional aspect
type systems highlights the improvements of this approach, and a presentation of various
examples of practical advice behavior confirms its applicability.

11.3 Future work 177

11.3 Future work

11.3.1 Continuations

ECOSYS is developed as a realization of first-class deployment procedures inside a framework-
based AOP approach. While this is very beneficial platform for experimentation, and while
frameworks are naturally open and extensible systems, there are certain limitations to this
approach. We remark that the design of first-class deployment procedures does not necessitate
a framework-based approach, and a language-based realization may provide certain benefits
such as a more convenient syntax, better tool support, alternative implementation strategies,
etc. Also, it is currently not obvious from the end result — ECOSYS — which language features
are essential for improved deployment expressiveness, since a complete general-purpose pro-
gramming language is employed for the expression of deployment logic. A language-based
version of first-class deployment procedures may render the necessary language elements more
explicit and therefore make the arguments from our discourse more apparent.

An open item in the current version of ECOSYS is the typing of its very general interaction
resolution mechanism. We have presented a brief, provisional treatment in Section 8.3 that
indicates there is some potential, but obviously more work is required in order to obtain a
complete proposal. The insights from the discussion of our formal framework in Section 10.2,
regarding the compatibility of an advice list and a join point may be of use here.

Another important unresolved issue in Part II of this dissertation is the direct support for the
generics features of the base language in the typing of pointcuts and advice. While we provide
conclusions that are applicable to parameterized generic types based on the subtype relations
that exist between these types, we have otherwise sidestepped the issue. However, it seems that
direct support for generics features may allow more expressive advice behavior:

• In case of generic method invocations, it is conceivable for advice behavior of these
invocations to provide new type parameter arguments in addition to ordinary value
arguments. In the terminology of Chapter 7, this corresponds to the advice function which
receives a universal type as its argument, which is the case of first-class polymorphism
(Pierce, 2002, Ch.23).

• In case of a join point involving data of specific parameterized class or interface types
such as List<Number>, List<Person> or List<?>, it seems beneficial to be able to apply
advice behavior that works with List<X> for any value of X. Allowing the advice based
on the observation that the join point have a common structure List<X> for some value
of X corresponds to the case of join points with a special type structure, discussed in
Section 7.4.

With respect to the implementation there is also the effect of a type erasure strategy that will
make it impossible to match certain pointcuts. This is an important design problem for ASPECTJ
5 (as is reported in Section 9.4.4); the problem is also considered by Jagadeesan et al. (discussed
in Section 10.3.1).

178 Conclusions

11.3.2 Future Research Directions

Aspect interactions beyond shared join points In ECOSYS, the detection and resolution of
aspect interactions is restricted to the case where multiple advice methods intercept the same
join point. This is the common case that is considered in literature, and as explained by Douence
et al. (2002), this involves a non-determinism in the specification of the aspect behavior (without
further information, the advice ordering is random or depends on a non-essential property
such as the order of declaration). However, aspect interactions may occur in a much wider
sense, in any case where the effects of one aspect invalidate the assumptions of another aspect.
This problem may be expected to increase as aspects developed by independent teams are
combined.

In De Fraine et al. (2008a), we consider the concrete case of control-flow interactions.
Control-flow changes introduced by one aspect may modify the flow of control in a system in
such a way that it conflicts with other aspects. While these interactions are directly tied to the
aspect behavior, they generally do not involve shared join points. This work proposes to tackle
this problem by equipping aspect with a formal documentation of its control-flow assumptions.
A static control-flow analysis of the bytecode of the composed system allows the automatic
verification of certain classes of assumptions.

This technique is quite promising, but the current control-flow policies are conservatively
restricted in order to organize the static evaluation. Further research may enable more sophisti-
cated properties to be described. Furthermore, we observe that aspects often assume properties
that are not limited to control flow, for example, data flow relations are also relevant.

Intrinsic pointcut semantics The discussion in Section 9.1.1 has illustrated two main strate-
gies that are currently employed to organize the typing of pointcuts. The first strategy is
employed when binding variables using primitives such this, target and args in ASPECTJ
and STRONGASPECTJ: the pointcut variable is assigned a type based on the use of the variable in
the enclosing definition, and the matching behavior is adapted according to this type. This has
the downside that the pointcut may match (of fail to match) join points unintentionally, based
on the usage in the enclosing definition. The second strategy is employed for the return types
of around advice in ASPECTJ and STRONGASPECTJ. Here, the pointcut is expanded to a number
of static join point shadows, and for each of these the static type of the join point shadow is
checked and violations are reported. This is more intensive to check, and more importantly, it
has the downside that type errors in the pointcut become apparent only in the case of certain
base programs.

Both of these case have in common that most of the pointcuts are considered as opaque
patterns: there is no information for them other than that we may try to match them against
each join point (or join point shadow) and this will return a yes/no answer. However, there is
typically much more information, consider a pointcut to match the execution of the setters of a
particular class:

execution(void Order+.set*(..))

With respect to data types, we know from this definition that the result will always be exactly
void and the receiver will be a subtype of Order. This information is already considered (to a
limited extent) for pointcut typing by Lämmel (2002). In addition, Aotani and Masuhara (2007)

11.3 Future work 179

propose to include other properties such as the execution join point kind. Also, several other
pointcut paradigms have been proposed, which may provide different information. All of this is
currently not considered.

The gist of the argument is that pointcuts have a complex semantics and that the proper
role of a type system is to provide a simple but meaningful abstraction of these semantics (and
to verify that the pointcuts are employed in a manner consistent with the abstraction). By
considering pointcuts as opaque entities we do not think this is the case.

Semantics of pointcuts and advice Our formal model of the semantics of the advice mech-
anism in Chapter 10 focuses on the evaluation of the soundness properties of the proposed
typing principles. It is not concerned with developing any particular insight in the fundamental
nature of aspect-oriented mechanisms. For example, we model proceed invocations in an ad
hoc manner, with a custom defined substitution. Although the effect is precisely defined and
corresponds to the “real-life” semantics from practical aspect languages, we learn relatively
little about this construct in relation to other language constructs, e.g., is proceed a method
invocation? Some of the other formal evaluations discussed in Section 10.3, but there is no
consensus, new models are still being proposed (for example by Schippers et al., 2008) and a
number of open questions remain.

Further work on the semantics of pointcuts and advice may help answer these questions
and gain a better understanding of the aspect-oriented mechanism. A related topic is the
incorporation of aspect deployment in a semantic model in order to capture the core of their
effects.

180 Conclusions

Appendix A

Coq Specification of Featherweight
StrongAspectJ

This appendix contains the COQ specification of the FEATHERWEIGHT STRONGASPECTJ calculus.
The specification is written in the GALLINA language. The terms of the language form the
calculus of inductive constructions, which is a higher-order typed lambda calculus. In addition,
a number of commands are available to create definitions and declarations. The precise
definition of GALLINA is given in the COQ reference manual1. The specification employs the List
module from the COQ standard library.

A.1 Library Aux

This library provides a number of auxiliary constructs that may be used to study programming
languages in Coq. The definition of these constructs is mostly straightforward.

A.1.1 Atoms

We assume there is a set of atoms which have decidable equality, i.e. for any two atoms there
is a proof of either their equality or inequality. Several datatypes can easily fulfil this role (for
example, the set of natural numbers).

Variable atom : Set.

Axiom eq_atom_dec : ∀ (x y : atom), {x = y} + {x 6= y}.

Notation "x
.= y" := (eq_atom_dec x y) (at level 67).

1Available at http://www.lix.polytechnique.fr/coq/distrib/current/refman/

181

http://www.lix.polytechnique.fr/coq/distrib/current/refman/

182 Coq Specification of Featherweight StrongAspectJ

A.1.2 Environments

An environment maps atoms to some value of an variable type A. We model an environment as
a list of pairs: list (atom × A).

Notation "x ∈ l" := (List.In x l) (at level 69).
Notation "x ∉ l" := (¬ List.In x l) (at level 69).

Section Environment.

Variable A : Type.

The function get x E retrieves the first binding of x in environment E.

Fixpoint get (x : atom) (E : list (atom × A)) : option A :=
match E with
| nil ⇒ None
| (y, v)::E ⇒ if x

.= y then Some v else get x E
end.

binds x v E holds when x is bound to v in E. no_binds x E holds when there is no binding for x in
E.

Definition binds (x : atom) (v : A) (E : list (atom × A)) : Prop :=
get x E = Some v.

Definition no_binds (x : atom) (E : list (atom × A)) : Prop :=
get x E = None.

The functions keys E and dom E retrieve the atoms that are bound in the environment E. The
function imgs E retrieves the values in E.

Definition keys (E : list (atom × A)) : list atom :=
List.map (@fst atom A) E.

Definition dom := keys.

Definition imgs (E : list (atom × A)) : list A :=
List.map (@snd atom A) E.

ok E holds when the environment E contains no duplicate bindings.

Inductive ok : list (atom × A) → Prop :=
| ok_nil: ok nil
| ok_cons: ∀ E x v,

ok E → no_binds x E → ok ((x, v) :: E).

forall_env P E holds when proposition P x v holds for all bindings (x, v) in environment E.

Section forall_env.

Variable P : atom → A → Prop.

Inductive forall_env : list (atom × A) → Prop :=
| fa_nil: forall_env nil
| fa_cons: ∀ E x v, forall_env E → P x v → forall_env ((x, v) :: E).

A.2 Library Definitions 183

End forall_env.

End Environment.

A.1.3 Zipping and list properties

Section Zip.

Variable B : Type.

zip al bl abl will match up atom list al with the value list bl to produce the environment abl.

Inductive zip : list atom → list B → list (atom × B) → Prop :=
| zip_nil: zip nil nil nil
| zip_cons: ∀ a al b bl abl,

zip al bl abl →
zip (a :: al) (b :: bl) ((a, b) :: abl).

zip3 al bl cl abcl will match up atom list al with the value lists bl and cl to produce the environ-
ment abcl.

Inductive zip3 (C : Type) :
list atom → list B → list C → list (atom × (B × C)) → Prop :=

| zip3_nil: zip3 nil nil nil nil
| zip3_cons: ∀ a al b bl c cl abcl,

zip3 al bl cl abcl →
zip3 (a :: al) (b :: bl) (c :: cl) ((a, (b, c)) :: abcl).

forall_list P bl holds when proposition P b holds for all elements b of list bl.

Inductive forall_list (P : B → Prop) : list B → Prop :=
| fal_nil: forall_list P nil
| fal_cons: ∀ b bl, forall_list P bl → P b → forall_list P (b :: bl).

End Zip.

A.2 Library Definitions

This library contains the actual Featherweight StrongAspectJ language definition. The definition
is divided up between syntax, auxiliaries, evaluation and typing.

A.2.1 Syntax

Lexical categories

Names of variables, type variables, fields, methods, classes and advice methods are atoms (their
equality is decidable).

184 Coq Specification of Featherweight StrongAspectJ

Definition var := atom .
Definition tvar := atom .
Definition fname := atom .
Definition mname := atom .
Definition cname := atom .
Definition aname := atom .

The names this and Object are predefined. We simply assume that these names exist.

Parameter this : var.
Parameter Object : cname.

Type and term expressions

There are three kinds of types: non-variables types (represented by a class name), variable types
(represented by a type variable) and the null type.

Inductive typ :=
| typ_nvar : cname → typ
| typ_var : tvar → typ
| typ_null : typ.

We define exp as a single term expression, and exps as a list of terms. We include the usual
expression forms from Featherweight Java (variable reference, field get, method invocation and
object creation). In addition, there is a method invocation with a list of advice names (written
alist) and a proceed invocation.

Notation alist := (list aname).

Inductive exp : Set :=
| e_var : var → exp
| e_field : exp → fname → cname → exp
| e_meth : exp → mname → cname → exps → exp
| e_meth_adv : exp → mname → cname → alist → exps → exp
| e_new : cname → exps → exp
| e_proceed : exp → exps → exp
with exps : Set :=
| el_nil : exps
| el_cons : exp → exps → exps.

Environments, class and advice tables

A var_env declares a number of variables and their types. A pcd_env optionally declares a
proceed type. env combines both environments.

Notation var_env := (list (var × typ)).
Notation pcd_env := (option (typ × typ × list typ)).
Notation env := (var_env × pcd_env).

A var_benv binds variables to expressions. A pcd_benv optionally binds proceed to an advised
method. benv combined both bindings.

A.2 Library Definitions 185

Notation var_benv := (list (var × exp)).
Notation pcd_benv := (option (mname × cname × alist)).
Notation benv := (var_benv × pcd_benv).

A tenv defines both lower and upper bound types for a number of type variables.

Notation tenv := (list (tvar × (typ × typ))).

flds and mths map the names of fields and methods to their definitions.

Notation flds := (list (fname × typ)).
Notation mths := (list (mname × (typ × var_env × exp))).

ctable and atable map the names of classes and advice methods to their definitions. A class
definition consists of a parent class and a number of fields and methods. An advice method
definition consists of:

• a type variable with bounds for the result
• a variable and a type variable with bounds for the receiver
• multiple variables and multiple type variables with bounds for the arguments
• a body expression

Notation ctable := (list (cname × (cname × flds × mths))).
Notation atable := (list (aname × (tvar × typ × typ ×

var × tvar × typ × typ ×
list var × list tvar × list typ × list typ ×
exp))).

We assume a fixed class table CT and a fixed advice table AT .

Parameter CT : ctable.
Parameter AT : atable.

A.2.2 Auxiliaries

Field and method lookup

field C f t holds if a field named f with type t is defined for class C in the class hierarchy.

Inductive fields : cname → flds → Prop :=
| fields_obj : fields Object nil
| fields_other : ∀ C D fs fs’ ms,

binds C (D, fs, ms) CT →
fields D fs’ →
fields C (fs’ ++ fs).

Definition field (C : cname) (f : fname) (t : typ) : Prop :=
∃ fs, fields C fs ∧ binds f t fs.

method C m mdecl holds if a method named m with declaration mdecl is defined for class C in
the class hierarchy.

Inductive method : cname → mname → typ × var_env × exp → Prop :=

186 Coq Specification of Featherweight StrongAspectJ

| method_this : ∀ C D fs ms m mdecl,
binds C (D, fs, ms) CT →
binds m mdecl ms →
method C m mdecl

| method_super : ∀ C D fs ms m mdecl,
binds C (D, fs, ms) CT →
no_binds m ms →
method D m mdecl →
method C m mdecl.

Zipping

ezip lenv lexp lzip will match up the atom list lenv with the expression list lexp in list lzip.

Inductive ezip : list atom → exps → list (atom × exp) → Prop :=
| ez_nil : ezip nil el_nil nil
| ez_cons : ∀ lenv lexp lzip a e,

ezip lenv lexp lzip →
ezip (a :: lenv) (el_cons e lexp) ((a, e) :: lzip).

Term substitution

subst_exp E e returns the term expression e where any occurrances of variables or proceed have
been replaced by their bindings in environment E.

Fixpoint subst_exp (E : benv) (e : exp) {struct e} : exp :=
match e with
| e_var v ⇒

match get v (fst E) with
| Some e’ ⇒ e’
| None ⇒ e_var v
end

| e_field e0 f C ⇒ e_field (subst_exp E e0) f C
| e_meth e0 m C es ⇒ e_meth (subst_exp E e0) m C (subst_exps E es)
| e_meth_adv e0 m C al es ⇒

e_meth_adv (subst_exp E e0) m C al (subst_exps E es)
| e_new C es ⇒ e_new C (subst_exps E es)
| e_proceed e0 es ⇒

match (snd E) with
| Some (m, C, al) ⇒

e_meth_adv (subst_exp E e0) m C al (subst_exps E es)
| None ⇒ e_proceed (subst_exp E e0) (subst_exps E es)
end

end
with subst_exps (E : benv) (es : exps) {struct es} : exps :=

match es with

A.2 Library Definitions 187

| el_nil ⇒ el_nil
| el_cons e es0 ⇒ el_cons (subst_exp E e) (subst_exps E es0)
end.

Well-formed types and environments

ok_type T t holds when t is a well-formed type in type environment T .

Inductive ok_type : tenv → typ → Prop :=
| okt_obj: ∀ T , ok_type T (typ_nvar Object)
| okt_nvar: ∀ T C, C ∈ dom CT → ok_type T (typ_nvar C)
| okt_var: ∀ T X , X ∈ dom T → ok_type T (typ_var X)
| okt_null: ∀ T , ok_type T typ_null.

Definition ok_types (T : tenv) (ts : list typ) :=
forall_list (ok_type T) ts.

ok_tenv T holds if type environment T is well-formed. ok_var_env T E holds if variable environ-
ment E is well-formed in T . ok_pcd_env T P holds if proceed environment P is well-formed in
T . Finally, ok_env T (E, P) holds if the combination of the two holds.

Inductive ok_tenv : tenv → Prop :=
| okte_nil : ok_tenv nil
| okte_cons : ∀ T X S U ,

ok_tenv T →
no_binds X T →
ok_type T S →
ok_type T U →
ok_tenv ((X , (S, U)) :: T).

Inductive ok_var_env : tenv → var_env → Prop :=
| okve_nil : ∀ T , ok_tenv T → ok_var_env T nil
| okve_cons : ∀ T E x t,

ok_var_env T E →
no_binds x E →
ok_type T t →
ok_var_env T ((x, t) :: E).

Inductive ok_pcd_env : tenv → pcd_env → Prop :=
| okpe_none : ∀ T , ok_tenv T → ok_pcd_env T None
| okpe_some : ∀ T t t0 ts,

ok_tenv T →
ok_type T t →
ok_types T ts →
ok_pcd_env T (Some (t, t0, ts)).

Definition ok_env (T : tenv) (EE : env) :=
match EE with (E, P) ⇒ ok_var_env T E ∧ ok_pcd_env T P end.

188 Coq Specification of Featherweight StrongAspectJ

Subtyping

extends C D holds if C is a direct subclass of D.

Definition extends (C D : cname) : Prop :=
∃ fs, ∃ ms, binds C (D, fs, ms) CT .

sub T s u holds if s is a subtype of u under type environment T . The subtype relation is the
reflexive, transitive closure of the following direct subtype relations:

• subclassing, for non-variable types
• the bounds declared in the type environment, for variable types
• any type, for the null type

Inductive sub : tenv → typ → typ → Prop :=
| sub_refl : ∀ T t, sub T t t
| sub_trans : ∀ T t1 t2 t3, sub T t1 t2 → sub T t2 t3 → sub T t1 t3
| sub_extends : ∀ T C D, extends C D → sub T (typ_nvar C) (typ_nvar D)
| sub_up : ∀ T X S U , binds X (S, U) T → sub T (typ_var X) U
| sub_low : ∀ T X S U , binds X (S, U) T → sub T S (typ_var X)
| sub_null : ∀ T t, sub T typ_null t.

Inductive subs : tenv → list typ → list typ → Prop :=
| subs_nil : ∀ T , subs T nil nil
| subs_cons : ∀ T t t’ ts ts’,

subs T ts ts’ → sub T t t’ → subs T (t :: ts) (t’ :: ts’).

Advice compatibility

ok_adv_for a c m holds if the advice named a is compatible with method m of class c.

Inductive ok_adv_for : aname → cname → mname → Prop :=
| okadv_meth : ∀ a c m Y R S x0 X P0 Q0 xs XS Ps Qs l T UE e,

binds a (Y , R, S, x0, X , P0, Q0, xs, XS, Ps, Qs, l) AT →
method c m (T , UE, e) →
sub nil R T →
sub nil T S →
sub nil P0 (typ_nvar c) →
sub nil (typ_nvar c) Q0 →
subs nil Ps (imgs UE) →
subs nil (imgs UE) Qs →

ok_adv_for a c m.

Inductive ok_advs_for : alist → cname → mname → Prop :=
| okadvs_nil : ∀ c m, ok_advs_for nil c m
| okadvs_cons : ∀ ad ads c m,

ok_adv_for ad c m →
ok_advs_for ads c m →
ok_advs_for (ad :: ads) c m.

A.2 Library Definitions 189

A.2.3 Evaluation

Evaluation contexts

We model evaluation contexts as functions of type exp → exp. exp_context EE holds if EE is an
evaluation context. Basically, any subexpression of an expression is an evaluation context.

Inductive exps_context : (exp → exps) → Prop :=
| esc_head : ∀ es,

exps_context (fun e ⇒ el_cons e es)
| esc_tail : ∀ e EE,

exps_context EE →
exps_context (fun e0 ⇒ el_cons e (EE e0)).

Inductive exp_context : (exp → exp) → Prop :=
| ec_field_arg0 : ∀ f C,

exp_context (fun e0 ⇒ e_field e0 f C)
| ec_meth_arg0 : ∀ m C es,

exp_context (fun e0 ⇒ e_meth e0 m C es)
| ec_meth_args : ∀ m e0 C EE,

exps_context EE →
exp_context (fun e ⇒ e_meth e0 m C (EE e))

| ec_meth_adv_arg0 : ∀ m C al es,
exp_context (fun e0 ⇒ e_meth_adv e0 m C al es)

| ec_meth_adv_args : ∀ m e0 C al EE,
exps_context EE →
exp_context (fun e ⇒ e_meth_adv e0 m C al (EE e))

| ec_new_args : ∀ C EE,
exps_context EE →
exp_context (fun e ⇒ e_new C (EE e))

| ec_pcd_arg0 : ∀ es,
exp_context (fun e0 ⇒ e_proceed e0 es)

| ec_pcd_args : ∀ e0 EE,
exps_context EE →
exp_context (fun e ⇒ e_proceed e0 (EE e)).

Evaluation

eval e e’ holds when term expression e reduces to e’ in one step. The evaluation of a method
invocation occurs by selecting a number of compatible advice methods (eval_select), applying
the advice behavior of each with proceed bound to the remaining advice chain (eval_advise),
and finally executing the method body itself (eval_method).

Inductive eval : exp → exp → Prop :=
| eval_field : ∀ C D fs es f e fes,

fields C fs →
ezip (keys fs) es fes →

190 Coq Specification of Featherweight StrongAspectJ

binds f e fes →
eval (e_field (e_new C es) f D) e

| eval_select : ∀ e0 m C es ads,
ok_advs_for ads C m →
eval (e_meth e0 m C es) (e_meth_adv e0 m C ads es)

| eval_advise : ∀ e0 m C a ads es Y R S x0 X P0 Q0 xs XS Ps Qs l ves,
binds a (Y , R, S, x0, X , P0, Q0, xs, XS, Ps, Qs, l) AT →
ezip xs es ves →
eval

(e_meth_adv e0 m C (a :: ads) es)
(subst_exp ((x0, e0) :: ves, Some (m, C, ads)) l)

| eval_meth : ∀ C D m t E e es ves es0,
method C m (t, E, e) →
ezip (keys E) es ves →
eval

(e_meth_adv (e_new C es0) m D nil es)
(subst_exp ((this , (e_new C es0)) :: ves, None) e)

| eval_context : ∀ EE e e’,
eval e e’ →
exp_context EE →
eval (EE e) (EE e’).

A.2.4 Typing

Term expression typing

typing T E e t holds when expression e has type t in term environment E and type environment
T . wide_typing T E e t holds when e has a subtype of t.

Inductive typing : tenv → env → exp → typ → Prop :=
| t_var : ∀ T E P v t,

ok_env T (E, P) →
binds v t E →
typing T (E, P) (e_var v) t

| t_field : ∀ T E e0 C f t,
field C f t →
wide_typing T E e0 (typ_nvar C) →
typing T E (e_field e0 f C) t

| t_meth : ∀ T E E0 e0 b C t m es,
method C m (t, E0, b) →
wide_typing T E e0 (typ_nvar C) →
wide_typings T E es (imgs E0) →
typing T E (e_meth e0 m C es) t

| t_meth_adv : ∀ T E E0 e0 b C t m es ads,
method C m (t, E0, b) →

A.2 Library Definitions 191

wide_typing T E e0 (typ_nvar C) →
wide_typings T E es (imgs E0) →
ok_advs_for ads C m →
typing T E (e_meth_adv e0 m C ads es) t

| t_new : ∀ T E C fs es,
fields C fs →
wide_typings T E es (imgs fs) →
typing T E (e_new C es) (typ_nvar C)

| t_proceed : ∀ T E P e0 es s q0 qs,
P = Some (s, q0, qs) →
wide_typing T (E, P) e0 q0 →
wide_typings T (E, P) es qs →
typing T (E, P) (e_proceed e0 es) s

with wide_typing : tenv → env → exp → typ → Prop :=
| wt_sub : ∀ T E e t t’,

typing T E e t → sub T t t’ → wide_typing T E e t’

with wide_typings : tenv → env → exps → list typ → Prop :=
| wts_nil : ∀ T E,

ok_env T E →
wide_typings T E el_nil nil

| wts_cons : ∀ T E E0 es e t,
wide_typings T E es E0 →
wide_typing T E e t →
wide_typings T E (el_cons e es) (t :: E0).

Declaration typing

ok_meth C D m t E e holds when (t, E, e) is a valid method declaration for method m in class C
with parent D.

Definition can_override (D : cname) (m : mname) (t : typ) (E : var_env) : Prop :=
∀ t’ E’ e, method D m (t’, E’, e) →

sub nil t t’ ∧ subs nil (imgs E’) (imgs E).

Definition ok_meth (C D : cname) (m : mname) (t : typ) (E : var_env) (e : exp) : Prop :=
can_override D m t E ∧ ok_type nil t ∧
wide_typing nil ((this , (typ_nvar C)) :: E, None) e t.

Definition ok_meth’ (C D : cname) (m : mname) (v : typ × var_env × exp) : Prop :=
match v with (t, E, e) ⇒ ok_meth C D m t E e end.

ok_advice Y R S x0 X0 P0 Q0 xs XS Ps Qs l holds when it is valid to declare an advice with:

• Y , R, S as the type variable and bounds for the result
• x0, X0, P0, Q0 as the variable, type variable and bounds for the receiver

192 Coq Specification of Featherweight StrongAspectJ

• xs, XS, Ps, Qs as the variables, type variables and bounds for the arguments
• l as the body expression

ok_atable atb holds when atb is a valid advice table.

Inductive ok_advice : tvar → typ → typ →
var → tvar → typ → typ →
list var → list tvar → list typ → list typ →
exp → Prop :=

| decl_adv: ∀ Y R S x0 X0 P0 Q0 xs XS Ps Qs l XPQs xXs,
zip3 XS Ps Qs XPQs →
zip xs (List.map typ_var XS) xXs →
wide_typing

((Y , (R, S)) :: (X0, (P0, Q0)) :: XPQs)
((x0, typ_var X0) :: xXs,

Some (typ_var Y , typ_var X0, List.map typ_var XS))
l (typ_var Y) →

ok_advice Y R S x0 X0 P0 Q0 xs XS Ps Qs l.

Definition ok_advice’ (a : aname) v : Prop :=
match v with
| (Y , R, SS, x0, X0, P0, Q0, xs, XS, Ps, Qs, l) ⇒

ok_advice Y R SS x0 X0 P0 Q0 xs XS Ps Qs l
end.

Definition ok_atable (atb : atable) :=
ok atb ∧ forall_env ok_advice’ atb.

ok_class C D fs ms holds when it is valid to define class C with parent D, fields fs and methods
ms. ok_ctable ct holds when ct is a well-formed class table.

Definition ok_class (C : cname) (D : cname) (fs : flds) (ms : mths) : Prop :=
(∀ fs’, fields D fs’ → ok_var_env nil (fs’ ++ fs)) ∧
(D = Object ∨ D ∈ dom CT) ∧
forall_env (ok_meth’ C D) ms.

Definition ok_class’ (C : cname) (v : cname × flds × mths) : Prop :=
match v with (D, flds, mths) ⇒ ok_class C D flds mths end.

Definition ok_ctable (ct : ctable) :=
ok ct ∧ forall_env ok_class’ ct.

A.2.5 Properties

We conclude the definition of the calculus with a definition of the safety properties that are
proven in the other parts of the development.

value e holds when the term expression e represents a value. Values are terms that consist only
of e_new expressions.

A.2 Library Definitions 193

Inductive value : exp → Prop :=
| value_new : ∀ cn es, values es → value (e_new cn es)
with values : exps → Prop :=
| values_nil : values el_nil
| values_cons : ∀ e el, value e → values el → values (el_cons e el).

The following module defines the hypotheses of the safety argument. We assume that Object is
not defined in the class table CT , that class table CT is well-formed, and that advice table AT is
well-formed.

Module Type HYPS.
Parameter ct_noobj : Object ∉ dom CT .
Parameter ok_ct : ok_ctable CT .
Parameter ok_at : ok_atable AT .

End HYPS.

Safety of the language may be demonstrated through an implementation of the following mod-
ule type: given the above hypotheses, it provides the properties of preservation and progress.

Module Type SAFETY (H : HYPS).
Parameter preservation : ∀ E e e’ t,

typing nil E e t → eval e e’ → wide_typing nil E e’ t.

Parameter progress : ∀ e t,
typing nil (nil, None) e t → value e ∨ (∃ e’, eval e e’).

End SAFETY.

194 Coq Specification of Featherweight StrongAspectJ

Bibliography

Martin Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, New York, USA, 1996.
Cited on pages 80 and 173.

Mehmet Akşit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2003), March 2003. ACM Press. Cited on pages 200, 202, 203, and 204.

Jonathan Aldrich. Open modules: Modular reasoning about advice. In Black (2005), pages
144–168. Cited on pages 41 and 174.

Chris Allan, Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Ondřej
Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. Adding trace
matching with free variables to AspectJ. In Ralph E. Johnson and Richard P. Gabriel, editors,
Proc. 20th ACM Conf. on Object-Oriented Programming, Systems, Languages, and Applications
(OOPSLA-2005), pages 345–364. ACM Press, 2005. Cited on pages 40 and 66.

Pierre America and Frank van der Linden. A parallel object-oriented language with inheritance
and subtyping. In OOPSLA/ECOOP ’90: Proceedings of the European conference on object-
oriented programming on Object-oriented programming systems, languages, and applications,
pages 161–168, New York, NY, USA, 1990. ACM. Cited on page 101.

Tomoyuki Aotani and Hidehiko Masuhara. Towards a type system for detecting never-matching
pointcut compositions. In William Harrison, editor, Proceedings of the 6th Workshop on
Foundations of Aspect-Oriented Languages, (FOAL 2007), pages 23–26. ACM, 2007. Cited on
page 178.

Ivica Aracic, Vaidas Gasiunas, Mira Mezini, and Klaus Ostermann. An overview of CaesarJ. In
Awais Rashid and Mehmet Akşit, editors, Trans. on Aspect-Oriented Software Development I
(TAOSD), volume 3880 of LNCS, pages 135–173. Springer Verlag, 2006. Cited on page 55.

Ken Arnold. Generics considered harmful. Blog post available at http://weblogs.java.net/
blog/arnold/archive/2005/06/generics_consid_1.html, June 2005. Cited on page 106.

Pavel Avgustinov, Aske Simon Christensen, Laurie Hendren, Sascha Kuzins, Jennifer Lhoták,
Ondřej Lhoták, Oege de Moor, Damien Sereni, Ganesh Sittampalam, and Julian Tibble. abc:
An extensible AspectJ compiler. In Tarr (2005), pages 87–98. Cited on page 145.

195

http://weblogs.java.net/blog/arnold/archive/2005/06/generics_consid_1.html
http://weblogs.java.net/blog/arnold/archive/2005/06/generics_consid_1.html

196 Bibliography

Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics, volume 103 of Studies in
Logic and the Foundations of Mathematics. North Holland, Amsterdam, The Netherlands,
second edition, 1985. Cited on page 80.

Don Batory, Charles Consel, and Walid Taha, editors. Proc. 1st ACM SIGPLAN/SIGSOFT Conf. on
Generative Programming and Component Engineering (GPCE-2002), volume 2487 of LNCS,
October 2002. Springer Verlag. Cited on pages 197 and 199.

Luis Daniel Benavides Navarro, Mario Südholt, Wim Vanderperren, Bruno De Fraine, and Davy
Suvée. Explicitly distributed AOP using AWED. In Masuhara and Rashid (2006), pages 51–62.
Cited on pages 3 and 41.

Lodewijk Bergmans and Mehmet Akşit. Composing crosscutting concerns using composition
filters. Communications of the ACM, 44(10):51–57, October 2001. Cited on page 13.

Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program Development —
Coq’Art: The Calculus of Inductive Constructions, volume XXV of Texts in Theoretical Computer
Science. Springer, 2004. Cited on page 167.

Andrew P. Black, editor. Proc. 19th European Conf. on Object-Oriented Programming (ECOOP-
2005), volume 3586 of LNCS, July 2005. Springer Verlag. Cited on pages 195, 201, and 203.

Joshua Bloch. The closures controversy. Presented at JavaPolis 2007, December 2007. Cited on
page 106.

Christoph Bockisch, Michael Haupt, Mira Mezini, and Klaus Ostermann. Virtual machine
support for dynamic join points. In Lieberherr (2004), pages 83–92. Cited on pages 31 and 49.

Christoph Bockisch, Matthew Arnold, Tom Dinkelaker, and Mira Mezini. Adapting virtual
machine techniques for seamless aspect support. In Proc. of International Conference on
Object-oriented Programming, Systems, Languages, and Applications (OOPSLA) 2006. ACM,
2006. Cited on page 49.

Eric Bodden, Wes Isberg, and Adrian Colyer. Typing of around closures can lead to class-cast
exceptions. AspectJ bug report #159390, available at https://bugs.eclipse.org/bugs/
show_bug.cgi?id=159390, September 2006. Cited on page 144.

Ron Bodkin. AOP@Work: Performance monitoring with AspectJ. Technical report, IBM De-
veloper Works, September 2005. Available at http://www-128.ibm.com/developerworks/
java/library/j-aopwork10/. Cited on page 10.

Jonas Bonér and Alexandre Vasseur. AspectWerkz: simple, high-performant, dynamic,
lightweight and powerful AOP for Java. Home page at http://aspectwerkz.codehaus.
org/, 2004. Cited on page 21.

Jonas Bonér, Alexandre Vasseur, and Joakim Dahlstedt. JRockit JVM support for AOP. Technical
report, BEA dev2dev, August 2005. Available at http://www.oracle.com/technology/pub/
articles/dev2arch/2005/08/jvm_aop_1.html. Cited on pages 31 and 49.

https://bugs.eclipse.org/bugs/show_bug.cgi?id=159390
https://bugs.eclipse.org/bugs/show_bug.cgi?id=159390
http://www-128.ibm.com/developerworks/java/library/j-aopwork10/
http://www-128.ibm.com/developerworks/java/library/j-aopwork10/
http://aspectwerkz.codehaus.org/
http://aspectwerkz.codehaus.org/
http://www.oracle.com/technology/pub/articles/dev2arch/2005/08/jvm_aop_1.html
http://www.oracle.com/technology/pub/articles/dev2arch/2005/08/jvm_aop_1.html

197

Gilad Bracha and William Cook. Mixin-based inheritance. In Proc. Conf. on Object-Oriented
Programming, Systems, Languages, and Applications and European Conf. on Object-Oriented
Programming (OOPSLA-ECOOP 1990), pages 303–311. ACM Press, 1990. Cited on page 17.

Gilad Bracha and David Griswold. Strongtalk: typechecking Smalltalk in a production envi-
ronment. In Proc. of OOPSLA ’93, pages 215–230. ACM Press, 1993. Cited on pages 101
and 133.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Making the future safe for
the past: Adding genericity to the Java programming language. In Proc. of OOPSLA ’98, pages
183–200. ACM Press, October 1998. Cited on page 98.

Johan Brichau, Kim Mens, and Kris De Volder. Building composable aspect-specific languages
with logic metaprogramming. In Batory et al. (2002), pages 110–127. Cited on page 45.

Johan Brichau, Shigeru Chiba, David Lorenz, Éric Tanter, and Kris De Volder, editors. Proc. of
Open and Dynamic Aspect Languages Workshop, March 2006. Cited on pages 198 and 204.

Johan Brichau et al. Survey of aspect-oriented languages and execution models. Deliverable 12,
Project IST-2-004349-NOE “AOSD-Europe”, May 2005. Cited on page 13.

Bill Burke et al. JBoss Aspect-Oriented Programming. Home page at http://www.jboss.org/
products/aop, 2004. Cited on page 21.

Peter Canning, William Cook, Walter Hill, Walter Olthoff, and John C. Mitchell. F-bounded
polymorphism for object-oriented programming. In FPCA ’89: Proceedings of the fourth
international conference on Functional programming languages and computer architecture,
pages 273–280, New York, NY, USA, 1989. ACM. Cited on page 100.

Luca Cardelli and Peter Wegner. On understanding types, data abstraction, and polymorphism.
ACM Computing Surveys, 17(4):471–522, December 1985. Cited on pages 4, 77, 78, and 80.

Luca Cardelli, Simone Martini, John C. Mitchell, and Andre Scedrov. An extension of System F
with subtyping. Information and Computation, 109(1–2):4–56, 1994. Cited on page 80.

Pierre Castéran, Hugo Herbelin, Florent Kirchner, Benjamin Monate, and Julien Narboux. Coq
version 8.2 for the clueless (frequently asked questions). Available at http://coq.inria.fr/,
2009. Cited on page 167.

Shigeru Chiba. Javassist — a reflection-based programming wizard for Java. In Proc. of the
OOPSLA’98 Workshop on Reflective Programming in C++ and Java, October 1998. Cited on
pages 50 and 68.

Alonzo Church. A formulation of the simple theory of types. The Journal of Symbolic Logic, 5(2):
56–68, June 1940. Cited on page 80.

Curtis Clifton and Gary T. Leavens. MiniMAO1: An imperative core language for studying
aspect-oriented reasoning. Science of Computer Programming, 63(3):321–374, December
2006. Cited on pages 164, 171, and 172.

http://www.jboss.org/products/aop
http://www.jboss.org/products/aop
http://coq.inria.fr/

198 Bibliography

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. MultiJava: Modular open
classes and symmetric multiple dispatch for Java. In OOPSLA ’00: Proceedings of the 15th
annual ACM SIGPLAN conference on Object oriented programming systems languages and
applications, pages 130–145. ACM Press, October 2000. Cited on page 16.

Adrian Colyer. AspectJ. In Robert E. Filman, Tzilla Elrad, Siobhán Clarke, and Mehmet Akşit,
editors, Aspect-Oriented Software Development, pages 123–143. Addison-Wesley, Boston,
2005a. Cited on pages 12 and 18.

Adrian Colyer. Implementing caching with AspectJ. Blog entry: http://www.
aspectprogrammer.org/blogs/adrian/, June 2004. Cited on pages 10 and 130.

Adrian Colyer. Aspect library discussion at AOSD 2005. Blog entry: http://www.
aspectprogrammer.org/blogs/adrian/, March 2005b. Cited on page 1.

Adrian Colyer et al. The AspectJ 5 development kit developer’s notebook. Available at http:
//www.eclipse.org/aspectj/doc/released/adk15notebook/, December 2005. Cited on
pages 21, 122, and 151.

Adrian Colyer et al. The AspectJ development environment guide. Available at http://www.
eclipse.org/aspectj/doc/released/devguide/, 2002. Cited on page 145.

Thierry Coquand and Gerard Huet. The calculus of constructions. Information and Computa-
tion, 76(2-3):95–120, 1988. Cited on page 167.

Carlos A. Cunha, João L. Sobral, and Miguel P. Monteiro. Reusable aspect-oriented implemen-
tations of concurrency patterns and mechanisms. In Masuhara and Rashid (2006), pages
134–145. Cited on pages 1 and 10.

Daniel S. Dantas, David Walker, Geoffrey Washburn, and Stephanie Weirich. PolyAML: A
polymorphic aspect-oriented functional programmming language. In Pierce (2005), pages
306–319. Cited on page 149.

Bruno De Fraine and Mathieu Braem. Requirements for reusable aspect deployment. In Markus
Lumpe and Wim Vanderperren, editors, Software Composition, volume 4829 of Lecture Notes
in Computer Science, pages 176–183. Springer Berlin / Heidelberg, December 2007. Cited on
page 4.

Bruno De Fraine, Wim Vanderperren, and Davy Suvée. Towards a better modularization of
entities in AOP languages. In Kris Gybels, Maja D’Hondt, Istvan Nagy, and Rémi Douence, ed-
itors, Proc. of European Interactive Workshop on Aspects in Software (EIWAS) 2005, September
2005a. Cited on page 4.

Bruno De Fraine, Wim Vanderperren, Davy Suvée, and Johan Brichau. Jumping aspects revis-
ited. In Robert E. Filman, Michael Haupt, and Robert Hirschfeld, editors, Dynamic Aspects
Workshop, pages 77–86, March 2005b. Cited on page 31.

Bruno De Fraine, Wim Vanderperren, and Davy Suvée. Motivations for framework-based AOP.
In Brichau et al. (2006). Cited on page 4.

http://www.aspectprogrammer.org/blogs/adrian/
http://www.aspectprogrammer.org/blogs/adrian/
http://www.aspectprogrammer.org/blogs/adrian/
http://www.aspectprogrammer.org/blogs/adrian/
http://www.eclipse.org/aspectj/doc/released/adk15notebook/
http://www.eclipse.org/aspectj/doc/released/adk15notebook/
http://www.eclipse.org/aspectj/doc/released/devguide/
http://www.eclipse.org/aspectj/doc/released/devguide/

199

Bruno De Fraine, Wim Vanderperren, and Davy Suvée. Eco: A flexible, open and type-safe
framework for aspect-oriented programming. Technical Report SSEL 01/2006/a, Vrije Uni-
versiteit Brussel, January 2006b. http://ssel.vub.ac.be/files/defraine-eco06a.pdf.
Cited on page 4.

Bruno De Fraine, Mario Südholt, and Viviane Jonckers. A formal semantics of flexible and safe
pointcut/advice bindings. Technical Report SSEL 02/2007/a, Vrije Universiteit Brussel, Octo-
ber 2007. Available at http://ssel.vub.ac.be/files/formal07a.pdf. Cited on pages 5
and 153.

Bruno De Fraine, Pablo Daniel Quiroga, and Viviane Jonckers. Management of aspect interac-
tions using statically-verified control-flow relations. In Proceeding of Aspect, Dependencies
and Interactions (ADI08), July 2008a. Cited on page 178.

Bruno De Fraine, Mario Südholt, and Viviane Jonckers. StrongAspectJ: Flexible and safe point-
cut/advice bindings. In Mezini (2008), pages 60–71. Cited on page 5.

Bart De Win, Bart Vanhaute, and Bart De Decker. How aspect-oriented programming can help
to build secure software. Informatica, 26(2):141–149, 2001. Cited on page 10.

Linda G. DeMichiel and Richard P. Gabriel. The Common Lisp object system: an overview. In
European conference on object-oriented programming (ECOOP ’87), pages 151–170, London,
UK, 1987. Springer-Verlag. ISBN 0-387-18353-1. Cited on page 16.

Edsger W. Dijkstra. On the role of scientific thought. In Selected Writings on Computing: A
Personal Perspective, pages 60–66. Springer Verlag, New York, 1982. Originally published as
EWD447, August 1974. Cited on page 9.

Rémi Douence, Olivier Motelet, and Mario Südholt. A formal definition of crosscuts. In
Yonezawa and Matsuoka (2001), pages 170–186. Cited on page 40.

Rémi Douence, Pascal Fradet, and Mario Südholt. A framework for the detection and resolution
of aspect interactions. In Batory et al. (2002), pages 173–188. Cited on pages 29, 45, 66, 174,
and 178.

Rémi Douence, Pascal Fradet, and Mario Südholt. Composition, reuse and interaction analysis
of stateful aspects. In Lieberherr (2004), pages 141–150. Cited on page 66.

Bruce Eckel. Generics. Blog post available at http://www.artima.com/weblogs/viewpost.
jsp?thread=117200, June 2005. Cited on page 106.

Erik Ernst. Family polymorphism. In J. L. Knudsen, editor, Proc. 15th European Conference on
Object-Oriented Programming (ECOOP-2001), pages 303–326, Berlin, June 2001. Springer-
Verlag. Cited on page 58.

Robert E. Filman and Daniel P. Friedman. Aspect-oriented programming is quantification and
obliviousness. In Peri Tarr, Lodewijk Bergmans, Martin Griss, and Harold Ossher, editors,
Workshop on Advanced Separation of Concerns (OOPSLA 2000), October 2000. Cited on pages
10 and 34.

http://ssel.vub.ac.be/files/defraine-eco06a.pdf
http://ssel.vub.ac.be/files/formal07a.pdf
http://www.artima.com/weblogs/viewpost.jsp?thread=117200
http://www.artima.com/weblogs/viewpost.jsp?thread=117200

200 Bibliography

Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Formal Syntax and Semantics
of Java, volume 1523 of LNCS, chapter A Programmer’s Reduction Semantics for Classes and
Mixins, pages 241–270. Springer, 1999. Cited on page 171.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns. Addison-
Wesley, 1995. Cited on pages 14, 39, 59, 108, and 131.

James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specification. Addison-
Wesley Professional, third edition, June 2005. Cited on pages 40, 97, 102, 104, 136, and 138.

William G. Griswold, Kevin Sullivan, Yuanyuan Song, Macneil Shonle, Nishit Tewari, Yuanfang
Cai, and Hridesh Rajan. Modular software design with crosscutting interfaces. IEEE Software,
23(1):51–60, 2006. Cited on page 41.

Kris Gybels and Johan Brichau. Arranging language features for pattern-based crosscuts. In
Akşit (2003), pages 60–69. Cited on page 40.

Richard Hamlet. Encyclopedia of Software Engineering, chapter Random testing, pages 970–978.
Wiley, 1994. Cited on page 46.

Stefan Hanenberg and Rainer Unland. Parametric introductions. In Akşit (2003), pages 80–89.
Cited on page 151.

Jan Hannemann and Gregor Kiczales. Design pattern implementation in Java and AspectJ. In
Matsuoka (2002), pages 161–173. Cited on pages 1 and 131.

Bruno Harbulot and John R. Gurd. A join point for loops in AspectJ. In Masuhara and Rashid
(2006), pages 63–74. Cited on pages 10 and 41.

Michael Haupt. Virtual Machine Support for Aspect-Oriented Programming Languages. PhD
thesis, Darmstadt University of Technology, Germany, December 2005. Cited on page 49.

Erik Hilsdale and Jim Hugunin. Advice weaving in AspectJ. In Lieberherr (2004), pages 26–35.
Cited on page 115.

Robert Hirschfeld. AspectS: Aspect-oriented programming with Squeak. In Mehmet Akşit,
Mira Mezini, and Rainer Unland, editors, Objects, Components, Architectures, Services, and
Applications for a Networked World (NODe 2002), volume 2591 of LNCS, pages 216–232,
Berlin, 2003. Springer Verlag. Cited on pages 70 and 72.

Robert Hirschfeld and Ralf Lämmel. Reflective designs. IEE Proceedings Software, 2004. Special
Issue on Reusable Software Libraries. Cited on pages 70 and 131.

Atsushi Igarashi and Mirko Viroli. On variance-based subtyping for parametric types. In Boris
Magnusson, editor, ECOOP 2002: Proceedings of the 16th European Conference on Object-
Oriented Programming, volume 2374 of LNCS, pages 441–469. Springer, 2002. Cited on pages
102 and 104.

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. In Proc. of OOPSLA ’99, pages 132–146. ACM Press, October 1999.
Cited on pages 80, 154, 157, 158, 159, and 160.

201

Atsushi Igarashi, Benjamin Pierce, and Philip Wadler. Featherweight Java: A minimal core
calculus for Java and GJ. Transactions on Programming Languages and Systems (TOPLAS), 23
(3):396–450, May 2001. Cited on page 154.

Wes Isberg. Check out library aspects with AspectJ 5. Technical report, IBM Devel-
oper Works, January 2006. URL http://www.ibm.com/developerworks/java/library/
j-aopwork14/. Cited on page 1.

Radha Jagadeesan, Alan Jeffrey, and James Riely. Typed parametric polymorphism for aspects.
Science of Computer Programming, 63(3):267–296, December 2006. Cited on pages 145, 153,
170, 171, and 177.

Rod Johnson et al. Spring Java/J2EE Application Framework. Home page at http://www.
springframework.org/, 2004. Cited on page 21.

Andy Kellens, Kim Mens, Johan Brichau, and Kris Gybels. Managing the evolution of aspect-
oriented software with model-based pointcuts. In Dave Thomas, editor, Proc. 20th European
Conf. on Object-Oriented Programming (ECOOP-2006), volume 4067 of LNCS, pages 501–525.
Springer Verlag, July 2006. Cited on page 41.

Gregor Kiczales, editor. Proc. 1st Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2002), April 2002. ACM Press. Cited on pages 202 and 204.

Gregor Kiczales and Mira Mezini. Separation of concerns with procedures, annotations, advice
and pointcuts. In Black (2005), pages 195–213. Cited on page 41.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. Technical Report SPL97-008
P9710042, Xerox PARC, February 1997a. Cited on page 1.

Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-oriented programming. In Mehmet Akşit and Satoshi
Matsuoka, editors, Proc. 11th European Conf. on Object-Oriented Programming (ECOOP-
1997), volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997b. Cited on page 10.

Gregor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G. Griswold.
An overview of AspectJ. In Jørgen L. Knudsen, editor, Proc. 15th European Conf. on Object-
Oriented Programming (ECOOP-2001), volume 2072 of LNCS, pages 327–353, Berlin, June
2001a. Springer Verlag. Cited on pages 12, 18, and 142.

Gregor Kiczales et al. Aspect-oriented programming in Java with AspectJ. Presented at O’Reilly
EJ Conference, March 2001b. Cited on pages 10 and 11.

Bent Bruun Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and Kristen Nygaard.
Syntax directed program modularization. In Pierpaolo Degano and Erik Sandewall, editors,
Integrated Interactive Computing Systems. North Holland, 1983. Cited on page 16.

Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Manning, 2003.
Cited on pages 10 and 132.

http://www.ibm.com/developerworks/java/library/j-aopwork14/
http://www.ibm.com/developerworks/java/library/j-aopwork14/
http://www.springframework.org/
http://www.springframework.org/

202 Bibliography

Ralf Lämmel. A semantical approach to method-call interception. In Kiczales (2002), pages
41–55. Cited on pages 172, 173, and 178.

Ralf Lämmel, Eelco Visser, and Joost Visser. Strategic programming meets adaptive program-
ming. In Akşit (2003), pages 168–177. Cited on page 14.

Karl Lieberherr, editor. Proc. 3rd Int’ Conf. on Aspect-Oriented Software Development (AOSD-
2004), March 2004. ACM Press. Cited on pages 196, 199, 200, and 203.

Karl Lieberherr, David Lorenz, and Mira Mezini. Programming with aspectual components.
Technical Report NU-CCS-99-01, College of Computer Science, Northeastern University,
Boston, MA, March 1999. Cited on pages 1 and 21.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The Demeter Method with Propagation
Patterns. PWS Publishing Company, Boston, 1996. Cited on page 13.

Karl J. Lieberherr and Ian Holland. Assuring good style for object-oriented programs. IEEE
Software, 6(5):38–48, September 1989. Cited on page 13.

Jay Ligatti, David Walker, and Steve Zdancewic. A type-theoretic interpretation of pointcuts and
advice. Science of Computer Programming, 63(3):240–266, December 2006. Cited on page
173.

Daniel Lohmann, Georg Blaschke, and Olaf Spinczyk. Generic advice: On the combination of
AOP with generative programming in AspectC++. In Gabor Karsai and Eelco Visser, editors,
Proc. 3rd Int’ Conf. on Generative Programming and Component Engineering (GPCE-2004),
volume 3286 of LNCS, pages 55–74, Berlin, October 2004. Springer Verlag. Cited on pages 150
and 151.

Hidehiko Masuhara and Gregor Kiczales. Modeling crosscutting in aspect-oriented mechanisms.
In Luca Cardelli, editor, Proc. 17th European Conf. on Object-Oriented Programming (ECOOP-
2003), volume 2743 of LNCS, pages 2–28. Springer Verlag, July 2003. Cited on pages 12
and 13.

Hidehiko Masuhara and Awais Rashid, editors. Proc. 5th Int’ Conf. on Aspect-Oriented Software
Development (AOSD-2006), March 2006. ACM Press. Cited on pages 196, 198, 200, and 203.

Satoshi Matsuoka, editor. Proc. 17th ACM Conf. on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA-2002), November 2002. ACM Press. Cited on pages
200 and 202.

Mira Mezini, editor. Proc. 7th Int’ Conf. on Aspect-Oriented Software Development (AOSD-2008),
March 2008. ACM Press. Cited on pages 199, 204, and 205.

Mira Mezini and Klaus Ostermann. Integrating independent components with on-demand
remodularization. In Matsuoka (2002), pages 52–67. Cited on page 59.

Russell Miles. AspectJ Cookbook. O’Reilly, December 2004. Cited on pages 19 and 131.

203

Robin Milner. A proposal for standard ML. In LFP ’84: Proceedings of the 1984 ACM Symposium
on LISP and functional programming, pages 184–197, New York, USA, 1984. ACM Press. Cited
on page 79.

John C. Mitchell and Gordon D. Plotkin. Abstract types have existential type. ACM Transactions
on Programming Languages and Systems, 10(3):470–502, July 1988. Cited on page 91.

David A. Moon. Object-oriented programming with flavors. In OOPLSA ’86: Conference pro-
ceedings on Object-oriented programming systems, languages and applications, pages 1–8,
New York, NY, USA, 1986. ACM. ISBN 0-89791-204-7. Cited on page 16.

Maurice Naftalin and Philip Wadler. Java Generics and Collections. O’Reilly Media, Inc., October
2006. Cited on pages 5, 98, 106, and 127.

Muga Nishizawa, Shigeru Chiba, and Michiaki Tatsubori. Remote pointcut: a language construct
for distributed AOP. In Lieberherr (2004), pages 7–15. Cited on page 41.

Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible compiler
framework for Java. In Görel Hedin, editor, 12th International Conference on Compiler
Construction, pages 138–152. Springer, 2003. Cited on page 145.

Object Management Group. Unified Modeling Language (UML) 2.0 Superstructure Specification,
August 2005. URL http://www.omg.org/docs/formal/05-07-04.pdf. Cited on page 109.

Doug Orleans and Karl Lieberherr. DJ: Dynamic adaptive programming in Java. In Yonezawa
and Matsuoka (2001), pages 73–80. Cited on page 13.

Klaus Ostermann and Mira Mezini. Conquering aspects with Caesar. In Akşit (2003), pages
90–99. Cited on pages 59 and 131.

Klaus Ostermann, Mira Mezini, and Christoph Bockisch. Expressive pointcuts for increased
modularity. In Black (2005), pages 214–240. Cited on pages 40 and 41.

David L. Parnas. On the criteria to be used in decomposing systems into modules. Communica-
tions of the ACM, 15(12):1053–1058, December 1972. Cited on page 9.

Renaud Pawlak, Lionel Seinturier, Laurence Duchien, and Gérard Florin. JAC: A flexible solution
for aspect-oriented programming in Java. In Yonezawa and Matsuoka (2001), pages 1–24.
Cited on page 21.

Renaud Pawlak, Rod Johnson, Andrei Popovici, et al. AOP Alliance (Java/J2EE AOP standard)
version 1.0. Home page at http://aopalliance.sourceforge.net/, March 2004. Cited on
page 121.

Renaud Pawlak, Jean-Philippe Retaillé, and Lionel Seinturier. Foundations of AOP for J2EE
Development. APress, 2005. Cited on page 21.

David J. Pearce and James Noble. Relationship aspects. In Masuhara and Rashid (2006), pages
75–86. Cited on page 1.

http://www.omg.org/docs/formal/05-07-04.pdf
http://aopalliance.sourceforge.net/

204 Bibliography

Benjamin Pierce, editor. Proc. 10th Int’ Conf. on Functional Programming (ICFP-2005), Septem-
ber 2005. ACM Press. Cited on pages 198 and 205.

Benjamin C. Pierce. Types and Programming Languages. The MIT Press, February 2002. Cited
on pages 80, 82, 83, 90, 97, 114, and 177.

Hridesh Rajan. Design pattern implementations in Eos. In PLoP ’07, Conference on Pattern
Languages of Programs, September 2007. Cited on page 131.

Hridesh Rajan and Kevin Sullivan. Eos: instance-level aspects for integrated system design.
In Proc. 9th European Conf. on Software Engineering and 11th ACM SIGSOFT Symp. on
Foundations of Software Engineering (ESEC/FSE-2003), pages 297–306. ACM Press, 2003.
Cited on pages 64 and 65.

Hridesh Rajan and Kevin J. Sullivan. Classpects: Unifying aspect- and object-oriented language
design. In Gruia-Catalin Roman, William G. Griswold, and Bashar Nuseibeh, editors, Proc.
27th Int’ Conf. on Software Engineering (ICSE-2005), pages 59–68. ACM Press, 2005. Cited on
page 64.

Tobias Rho and Günter Kniesel. Uniform genericity for aspect languages. Technical Report
IAI-TR-2004-4, Computer Science Department III, University of Bonn, 2004. Cited on page
40.

Martin Rinard, Alexandru Sălcianu, and Suhabe Bugrara. A classification system and analysis
for aspect-oriented programs. In Taylor and Dwyer (2004), pages 147–158. Cited on pages 5
and 130.

Kouhei Sakurai and Hidehiko Masuhara. Test-based pointcuts for robust and fine-grained join
point specification. In Mezini (2008), pages 96–107. Cited on page 41.

Hans Schippers, Dirk Janssens, Michael Haupt, and Robert Hirschfeld. Delegation-based
semantics for modularizing crosscutting concerns. In Proceedings of OOPSLA 2008, pages
525–542. ACM, 2008. Cited on page 179.

Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured design. IBM Systems
Journal, 13(2):115–139, 1974. Cited on page 13.

Kevin Sullivan, Lin Gu, and Yuanfang Cai. Non-modularity in aspect-oriented languages:
Integration as a crosscutting concern for AspectJ. In Kiczales (2002), pages 19–27. Cited on
page 64.

Davy Suvée, Wim Vanderperren, and Viviane Jonckers. JAsCo: An aspect-oriented approach
tailored for component based software development. In Akşit (2003), pages 21–29. Cited on
pages 3, 20, 43, and 46.

Clemens Szyperski. Component Software: Beyond Object-Oriented Programming. Addison
Wesley, Reading, Massachusetts, USA, 1st edition, 1998. Cited on pages 1 and 20.

Éric Tanter. An extensible kernel language for AOP: Reflex meets MetaBorg. In Brichau et al.
(2006). Cited on page 70.

205

Éric Tanter. Expressive scoping of dynamically-deployed aspects. In Mezini (2008), pages
168–179. Cited on page 41.

Éric Tanter. Software Composition, volume 4829 of Lecture Notes in Computer Science, chapter
Aspects of Composition in the Reflex AOP Kernel, pages 98–113. Springer Berlin / Heidelberg,
August 2006b. Cited on page 69.

Éric Tanter and Jacques Noyé. A versatile kernel for multi-language AOP. In Robert Glück and
Michael R. Lowry, editors, Proc. 4th Int’ Conf. on Generative Programming and Component
Engineering (GPCE-2005), volume 3676 of LNCS, pages 173–188. Springer Verlag, September
2005. Cited on pages 45, 46, and 68.

Peri Tarr, editor. Proc. 4th Int’ Conf. on Aspect-Oriented Software Development (AOSD-2005),
March 2005. ACM Press. Cited on pages 195 and 206.

Peri Tarr, Harold Ossher, William Harrison, and Stanley M. Sutton, Jr. N degrees of separation:
Multi-dimensional separation of concerns. In Proc. 21st Int’ Conf. on Software Engineering
(ICSE-1999), pages 107–119. IEEE Computer Society Press, May 1999. Cited on pages 10
and 15.

Peri L. Tarr and Harold Ossher. Hyper/J: Multi-dimensional separation of concerns for Java. In
Mary Jean Harrold and Wilhelm Schäfer, editors, Proc. 23th Int’ Conf. on Software Engineering
(ICSE-2001), pages 729–730. IEEE Computer Society, May 2001. Cited on page 15.

Hideaki Tatsuzawa, Hidehiko Masuhara, and Akinori Yonezawa. Aspectual Caml: An aspect-
oriented functional language. In Pierce (2005), pages 320–330. Cited on pages 145 and 148.

Richard N. Taylor and Matthew B. Dwyer, editors. Proc. 12th ACM SIGSOFT Int’ Symp. on
Foundations of Software Engineering (FSE-2004), November 2004. ACM Press. Cited on pages
204 and 206.

Kresten Krab Thorup and Mads Torgersen. Unifying genericity - combining the benefits of
virtual types and parameterized classes. In Rachid Guerraoui, editor, ECOOP’99 - Proceedings
of 13th European Conference on Object-Oriented Programming, volume 1628 of Lecture Notes
in Computer Science, pages 186–204. Springer, 1999. Cited on page 102.

Mads Torgersen, Christian Plesner Hansen, Erik Ernst, Peter von der Ahé, Gilad Bracha, and
Neal M. Gafter. Adding wildcards to the Java programming language. In Hisham Haddad,
Andrea Omicini, Roger L. Wainwright, and Lorie M. Liebrock, editors, Proc. of the 2004 ACM
Symposium on Applied Computing (SAC), pages 1289–1296. ACM Press, 2004. Cited on pages
102 and 104.

Mads Torgersen, Erik Ernst, and Christian Plesner Hansen. Wild FJ. In 12th International
Workshop on Foundations of Object-Oriented Languages (FOOL 12), January 2005. Cited on
page 104.

Raja Vallée-Rai, Laurie Hendren, Vijay Sundaresan, Patrick Lam, Etienne Gagnon, and Phong
Co. Soot - a Java optimization framework. In Proc. of the 1999 Conference of the Centre for
Advanced Studies on Collaborative Research, pages 125–135, November 1999. Cited on page
145.

206 Bibliography

Wim Vanderperren. Combining Aspect-Oriented and Component-Based Software Engineering.
PhD thesis, Vrije Universiteit Brussel, May 2004. Cited on pages 1 and 64.

Wim Vanderperren, Davy Suvée, María Agustina Cibrán, and Bruno De Fraine. Stateful aspects
in JAsCo. In Thomas Gschwind, Uwe Aßmann, and Oscar Nierstrasz, editors, Software
Composition, volume 3628 of LNCS, pages 167–181. Springer Berlin, 2005a. Cited on pages 3
and 40.

Wim Vanderperren, Davy Suvée, Bart Verheecke, María Agustina Cibrán, and Viviane Jonckers.
Adaptive programming in JAsCo. In Tarr (2005), pages 75–86. Cited on page 14.

Robert Walker and Kevin Viggers. Implementing protocols via declarative event patterns. In
Taylor and Dwyer (2004), pages 159–169. Cited on page 40.

Mitchel Wand, Gregor Kiczales, and Christopher Dutchyn. A semantics for advice and dynamic
join points in aspect-oriented programming. Trans. on Programming Languages and Systems
(TOPLAS), 26(5):890–910, September 2004. Cited on pages 144 and 174.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38–94, 1994. First appeared as Technical Report TR160, Rice
University, 1991. Cited on pages 77 and 79.

Akinori Yonezawa and Satoshi Matsuoka, editors. Proc. 3rd Int’ Conf. on Metalevel Architectures
and Separation of Crosscutting Concerns (Reflection 2001), volume 2192 of LNCS, September
2001. Springer Verlag. Cited on pages 199 and 203.

Index of Terms

abstract data type, 91
abstract subclass, 17
adapter design pattern, 59
adaptive programming, 13
adaptive visitor, 13
advice, 12

augmentation, 130
environment, 173
generative, 151
generic, 112
method, 12
narrowing, 130
ordinary, 110
qualifier, 71
replacement, 130

application server, 22
around advice chain, 43
ascription, 114
aspect, 10, 18

abstract, 19
instance, 18
module, 18
stateful, 66

aspect bean, 20
aspect-oriented programming, 10

domain-specific, 12
general-purpose, 12
symmetrical, 16

aspect-oriented software development, 10
AspectInfo, 147
aspects-on-aspects, 52
aspectual components, 21

B-link, 68
base language, 10

binding
in CAESARJ, 59
in EOS, 64

Border Control design pattern, 19
bound, type variable, 91

capture conversion, 104
class table, 159
classpect, 64
collaboration interface, 56
combination strategy, 43
composition filter, 13
composition rule, 15
confluence, 154
connector, 21
context exposure, 13
crosscutting, 10

dynamic, 12
static, 16

currying, 84

Decorator design pattern, 108
Demeter method, 13
dependency injection, 32
dependent type, 58
deployment, 1, 19

dynamic, 31
hot, 32
integrated, 32

deployment procedure, see first-class de-
ployment procedure

dynamic binding, 156

erasure, 98, 147
existential type, 90

207

208 Index of Terms

Factory Method design pattern, 131
family class, 58
family polymorphism, 58
feature introduction, 16
field, of record, 83
first-class deployment procedure, 33

generic, 128
forward reference, 100
free variable, 83
function, 115

generalized procedure, 10
generic

class, 99
deployment procedure, 128
interface, 99
method, 98
type, 99

hidden representation type, 91
hook, 21
host language, 37
hypermodule, 15
hyperslice, 15

implicit cut, 46
inner class, 40
instance-level advising, 64
instantiation strategy, 18
integrated deployment, 32
inter-crosscut variable, 66
inter-type declaration, 16

Jimple, 145
join point, 10
join point client, 108
join point shadow, 135

label, 83
lambda expression, 82
Law of Demeter, 13
link

in REFLEX, 68

macro, 97
metaobject, 68

method wrapper, 70
method-call interception, 172
mixin composition, 17, 58
monomorphism, 78
monotonic reasoning, 110
monotype, 149

named pointcuts, 19
null type, 98
nullary constructor, 29

obliviousness, 10, 34
on-demand remodularization, 59
open class, 16
opening, 90

packing, 90
partial order, 45
pointcut, 12

abstract, 20
expression, 12

pointcut/advice mechanism, 12
polymorphism, 78

ad-hoc, 78
F-bounded, 100
parametric, 78
subtype, 78
universal, 78

polytype, 149
preorder, 86
projection, 83

random testing, 46
reduction, 79
representation independence, principle of,

91
residue, 135
resolution, 42

intervening, 46
of interactions, 29
permuting, 45
verifying, 46

S-link, 68
safe substitution, principle of, 85
semantics

209

dynamic, 79
static, 79

separation of concerns, 9
multi-dimensional, 15

soundness, 79
strategic programming, 14
stuck state, 79
subsumption rule, 85
subtype, 78, 85
supertype, 78, 85
syntax-directed, 83

template method design pattern, 39
top type, 79
topological sorting, 45
total order, 45
tracematch, 66
traversal specification, 13
tunneling

of join point parameters, 39
twin combination, 46
type, 77
type abstraction, 88
type application, 88
type argument containment, 102
type parameter, 78
type range, 111
type substitution, 95
type system, 77

static, 78
type well-formedness, 92
type-consistent, 78
typed, 121

unit type, 100
universal type, 88
unpacking, 90
untyped, 121, 122
up-cast, 114

variance
annotations, 101
bi-, 101
co-, 86, 101
contra-, 86, 101

declaration-site, 101
use-site, 102

variant parameterized type, 102
virtual class, 57
Visitor design pattern, 14

weakening property, 110
weaver, 10
wildcard, 102

capture, 105
witness type, 90
wrapper

dynamic selection, 59
recycling, 59

wrapper class, 59

	Abstract
	Samenvatting
	Acknowledgments
	Contents
	List of Figures
	List of Listings
	1 Introduction
	1.1 Problem Statement
	1.2 Goal
	1.3 Context
	1.4 Approach
	1.4.1 Expressiveness of Deployment Logic
	1.4.2 Safety of Deployment Logic

	1.5 Contributions
	1.6 Outline

	2 Research Context: Aspects and Their Reuse
	2.1 Aspect-Oriented Software Development
	2.1.1 Modularizing Crosscutting Concerns
	2.1.2 Aspect-Oriented Mechanisms

	2.2 Reuse in Representative Pointcut/Advice Approaches
	2.2.1 AspectJ
	2.2.2 JAsCo
	2.2.3 AOP Approaches for Enterprise Middleware Frameworks

	I Expressiveness of Deployment Logic
	3 Towards Expressive Aspect Deployment
	3.1 Deployment Responsibilities
	3.2 Requirements for Expressive Deployment
	3.2.1 Reuse of Deployment Logic
	3.2.2 Deployment Quantification
	3.2.3 Dynamic and Integrated Deployment

	3.3 First-Class Deployment Procedures
	3.4 Discussion: Intensive Usage of Aspects

	4 The EcoSys AOP Framework
	4.1 Programming Interface
	4.1.1 Join Point and Advice
	4.1.2 Pointcut and Binding
	4.1.3 Join Point Dispatch and Interaction Resolution

	4.2 Demonstrations of First-Class Deployment Procedures
	4.3 Developing an EcoSys Implementation
	4.3.1 Choice of Implementation Platform
	4.3.2 Prototype EcoSys Implementation

	5 Other Approaches for Expressive Deployment
	5.1 CaesarJ
	5.1.1 Proposal
	5.1.2 Evaluation of Deployment Expressiveness

	5.2 Eos
	5.2.1 Proposal
	5.2.2 Evaluation of Deployment Expressiveness

	5.3 Stateful Aspects and Inter-crosscut Variables
	5.4 Reflex
	5.4.1 Proposal
	5.4.2 Evaluation of Deployment Expressiveness

	5.5 AspectS
	5.5.1 Proposal
	5.5.2 Evaluation of Deployment Expressiveness

	5.6 Summary

	II Safety of Deployment Logic
	6 Subtype and Parametric Polymorphism
	6.1 Concepts and Terminology
	6.1.1 On Types, Abstraction and Polymorphism
	6.1.2 A Syntactic Approach to Type Soundness

	6.2 Subtype and Parametric Polymorphism for Functions
	6.2.1 Simply-Typed First-Class Functions
	6.2.2 Subtype Polymorphism
	6.2.3 Parametric Polymorphism

	6.3 Java 5 Generics: Parametric Polymorphism for Objects
	6.3.1 Generic Java: Invariant Type Parameters
	6.3.2 Wildcards: Use-site Variant Type Parameters
	6.3.3 Discussion: Opportunities for Framework Designers

	7 Typing Principles for Pointcut/Advice Bindings
	7.1 Characterization of Advice Behavior
	7.2 Typing Principles for Join Points of General Type
	7.2.1 A Sufficient Condition for Soundness
	7.2.2 Typing Advice with Subtype Polymorphism
	7.2.3 Typing Advice with Parametric Polymorphism

	7.3 Typing Principles for Function Join Points
	7.3.1 Relevance of Function Join Points
	7.3.2 Function Join Points and Pointcuts
	7.3.3 Ordinary Function Advice
	7.3.4 Generic Function Advice

	7.4 Join Points with a Special Type Structure

	8 Safe Deployment Logic in EcoSys
	8.1 Current AOP Framework Typing
	8.2 Typed EcoSys
	8.2.1 Adaptations to the Programming Interface
	8.2.2 Integration of Typed Pointcuts
	8.2.3 Typed First-Class Deployment Procedures

	8.3 Typed Interaction Resolutions
	8.4 Some Real-life Examples

	9 StrongAspectJ: Recovering Mainstream AOP Type Safety
	9.1 StrongAspectJ
	9.1.1 AspectJ Typing Particulars
	9.1.2 Language Definition
	9.1.3 Examples

	9.2 Postmortem of Traditional Aspect Typing
	9.2.1 Around Advice and Proceed Invocations
	9.2.2 Generic Advice and the Object Return Type
	9.2.3 Other Accounts of the AspectJ Type System

	9.3 An Implementation of StrongAspectJ
	9.4 Related Work: Typed Aspect Languages
	9.4.1 Aspectual Caml
	9.4.2 PolyAML
	9.4.3 AspectC++
	9.4.4 AspectJ 5

	10 Formal Evaluation of Pointcut/Advice Bindings
	10.1 Featherweight Java
	10.1.1 Definition
	10.1.2 Safety Properties

	10.2 Featherweight StrongAspectJ
	10.2.1 Definition
	10.2.2 Safety Properties and Corresponding Proofs

	10.3 Related Work: Formal Advice Semantics
	10.3.1 Jagadeesan et al.
	10.3.2 Clifton and Leavens
	10.3.3 Lämmel
	10.3.4 Other Work

	11 Conclusions
	11.1 Summary of the Dissertation
	11.2 Recapitulation of the Contributions
	11.3 Future work
	11.3.1 Continuations
	11.3.2 Future Research Directions

	A Coq Specification of Featherweight StrongAspectJ
	A.1 Library Aux
	A.1.1 Atoms
	A.1.2 Environments
	A.1.3 Zipping and list properties

	A.2 Library Definitions
	A.2.1 Syntax
	A.2.2 Auxiliaries
	A.2.3 Evaluation
	A.2.4 Typing
	A.2.5 Properties

	Bibliography
	Index of Terms

