

VRIJE UNIVERSITEIT BRUSSEL

Faculty of Science – Department of Computer Science

November 2001

PACOSUITE

Component Composition
Based on Composition

Patterns and Usage Scenarios

Dissertation presented to the Vrije Universiteit Brussel in partial fulfillment of the

requirements for the degree of Doctor in Science

Author: Bart Wydaeghe

Promoter: Prof. Dr. Viviane Jonckers

PacoSuite

2

Abstract

Components come in a variety of formats, designs and implementations. Components can

be designed to work together or their designs can be totally incompatible. This influences

greatly the amount and kind of composition work that is to be done. In this work, we build

on the work of architectural description languages to improve current visual component

composition environments.

This is done using the concept of composition patterns. A composition pattern describes

an interaction between a set of roles using an extended sequence chart. It serves as a bridge

between the design and the implementation. We further propose a component

documentation using the same kind of extended sequence charts. The concept of

composition patterns lifts the abstraction level of current composition techniques to the

same level of the components. I.e. composition patterns are first class objects that can be

defined, stored and reused independently of the components.

We further develop and implement algorithms to perform automatic compatibility

checking based on finite automata theory. We also developed tool support that gives

feedback in case of a mismatch. This includes a visualization of the matching process and

the generation of adaptors. The latter is a new technique based on the adaptive

programming library and the results of Reussner. Finally, we describe how glue code can be

generated that constrains incompatible and unwanted behaviors of components based on

the constraints specified by the composition pattern. This glue code allows us to use a

more flexible compatibility check that leads to more generic and more reusable

composition patterns.

We implemented these checks and mismatch feedback in our prototype of a visual

component composition environment. This tool shows how the formal checks can be

hidden for the user to provide an intuitive and easy to use component composition

process. We demonstrate this by showing how a small exam construction kit is provided

and used in this prototype.

This work is mainly useful to build very flexible construction kits. It allows the developers

of such a kit to provide default composition patterns together with their set of components

without touching the ability of the users of these construction kits to build very complex

compositions that were not foreseen by the developers.

PacoSuite

3

Acknowledgements

Research is often considered to be a very solitary activity. The typical image of a weirdo

scientist doing all kind of obscure things in an isolated lab is still wide spread.

However, time has changed. When I started to know computers (about 20 years ago), most

of the successful computer games where made by one programmer. Today most of the

successful computer games involve hundreds of man-years. The same revolution took

place in computer science research. Current research has just become too complex and

involves too much resources and time to be done by one person. Successful research today

has become a very cooperative business.

So, how do you say thank you to everybody whom you worked with, lived with and talked

with in the last six years? The list of people that contributed to this work one way or

another is endless. Therefore, I like to thank here all the people I forgot to mention below.

I was guided to a research position while doing my master thesis on parallel algorithms for

singular value decomposition. My promoter for this work was Prof. Dr. Pieter De Groen.

During one of the meetings for this thesis a PhD student dropped in with some kind of

numerical analysis question for the image reconstruction of 3D PET scans. When I

showed my interest for that kind of research, he brought me in contact with Prof. Dr.

Michel De Vriese. The result was that I worked for half a year on image reconstruction for

3D PET scans on his lab. Without their support, I would never even have started doing

research at all.

After that time, I was invited by my current promoter Prof. Dr. Viviane Jonckers and my

current colleague and friend Dr. Kurt Verschaeve to discuss a research opportunity at the

software engineering lab. This time I did get a grant of the Belgian government to support

my research so I ended up for six year at the System and Software Engineering Lab.

Needless to say that I owe these two people a big “thank you”. My promoter must have

spent countless hours to correct all the papers and texts I have written during my research.

She is (often to my despair) awfully good in pinpointing both reasoning errors as well as

spelling errors in my work. Kurt Verschaeve was already a friend before we became

colleagues and working together only deepened this friendship. He has been my main

sounding board and many of the ideas in this work would not be what they are today

without him.

PacoSuite

4

Of course, I thank all other colleagues at the SSEL lab and the PROG lab for their support

and the fine environment they provided. I like to thank especially Luc Goossens for his

friendship and his incremental algorithm idea. I also want to thank Bart Michiels who

contributed to the code generation research mentioned in this work. Finally, I want to

express my gratitude to our new colleague Wim Vanderperren. He did his master thesis on

this subject and joined our lab about nine months before this work was finished. He is

responsible for a lot of the implementation effort and accelerated this research

considerably with his insights. He is currently working on his own PhD and I am sure that

he will do a very good job at it.

I further want to thank Prof. Dr. Dirk Vermeir for his interesting comments on this work

and Prof. Dr. Karl Lieberherr for his introduction to adaptive programming and the very

pleasant stay at his lab in Boston. I also owe my gratitude to Ralf Reussner, who gave me

interesting feedback regarding adapter generation.

Doing my studies and working on my PhD has been the best period of my life until now.

This is due to the great group of friends I encountered during this time. I thank everybody

in the 60s for their friendship. I also like to thank Rene Vergaerde for introducing me in

the world of medical websites and the pleasant times we spent together.

My parents made all this possible in the first place. They always supported me in what I

was doing without ever pushing me into it. They taught me to communicate with an open

mind. They never ceased to show me the other side of the story when I once again drew

my conclusions to fast. Thank you for everything.

I finish these acknowledgments with a special thank to my wife Marleen Vandepitte and

my little son Robin. When living together one often forgets to say explicitly how much the

others mean to you. Therefore Marleen: thanks for your support, your love and for just

always being there for me. And for my little son Robin: while you do not understand all

these complex sentences, I am sure that you do appreciate this big bunch of pages to cut

into pieces or to convert into beautiful drawings.

This research was conducted under grant number IWT 951222 and with the support of the

Flemish Government Project: Advanced Internet Access (ITA II)

PacoSuite

5

Table of Contents

1 INTRODUCTION 11

1.1 PROBLEM STATEMENT 12

1.2 APPROACH 14

1.3 A MOTIVATING EXAMPLE 17

1.4 CONTRIBUTIONS 20

1.5 OVERVIEW OF THE DISSERTATION 21

2 CONTEXT 22

2.1 STATE OF THE ART 23
2.1.1 Visual Programming Environments 23
2.1.2 Documentation 24
2.1.3 Compatibility 27
2.1.4 Design Patterns 29
2.1.5 Architectures 30
2.1.6 Formal Specifications 31
2.1.7 Higher Level API’s 31
2.1.8 Separation of Concerns 32
2.1.9 Conclusion 33

2.2 COMPONENT MODEL 34
2.2.1 Introduction 34
2.2.2 Our Opinion 35

2.3 WHY COMPONENTS? 37

2.4 WHY COMPOSITION PATTERNS? 39

3 DOCUMENTATION 41

3.1 INTRODUCTION 42
3.1.1 Observation 1: Usage Differs from Functionality 42
3.1.2 Observation 2: Components Have More Than One Use 43
3.1.3 Observation 3: Not Everything Is In A Name 44
3.1.4 Observation 4: Composition Patterns Need to be First Class 44

3.2 REQUIREMENTS 45

3.3 EXISTING DOCUMENTATION TECHNIQUES 46
3.3.1 Communicating Sequential Processes (CSP) 46
3.3.2 Petri Nets 47
3.3.3 State Diagrams 47
3.3.4 Sequence diagrams 48
3.3.5 Collaboration diagrams 49
3.3.6 Summary 50

3.4 OUR DOCUMENTATION 51
3.4.1 Introduction 51

PacoSuite

6

3.4.2 Scenarios 51
3.4.3 Participants 52
3.4.4 Messages 53
3.4.5 Control Blocks 57
3.4.6 Mapping 58
3.4.7 Documenting Components and Composition Patterns 59

4 MATCHING 61

4.1 INTRODUCTION 62

4.2 MAPPING MSC’S ON AUTOMATA 64

4.3 DEFINITIONS: COMPONENT AUTOMATA AND COMPOSITION AUTOMATA. 66

4.4 OPERATIONS ON COMPONENT AND COMPOSITION AUTOMATA 68
4.4.1 Projection of a composition pattern automaton 68
4.4.2 Applying the role map function 68
4.4.3 Parallel Composition 69
4.4.4 Laws for the Parallel Composition Operator. 71

4.5 COMPATIBILITY 72
4.5.1 Local Compatibility 73
4.5.2 Global Compatibility 75

4.6 LOCAL CHECK 79
4.6.1 Calculating the Intersection 79
4.6.2 Check for a Start-Stop Path in the Intersection 79

4.7 GLOBAL CHECK 81
4.7.1 Classic 81
4.7.2 Optimization using Asymmetric Cross Products 84

4.8 ROLE/COMPONENT MAPPING 86
4.8.1 Overview of the process 87
4.8.2 Calculating the intersection without role/component mapping 87
4.8.3 Select All Traces That Have Non-Contradicting Comp/Role Mappings 88

4.9 ROLE/ENV MAPPING 93
4.9.1 Mapping Rules for the “ENV” Participant 94
4.9.2 Checking the “ENV” participant mappings 95

4.10 MESSAGE HIERARCHY 97

4.11 NON-DETERMINISM 98
4.11.1 When Does Non-Determinism Occur? 98
4.11.2 How to Treat Implementation Non-Determinism? 99
4.11.3 How to Treat Scenario Non-Determinism? 101

5 MISMATCH FEEDBACK 102

5.1 INTRODUCTION 103
5.1.1 Problem Statement 103
5.1.2 Approach 104

5.2 ANNOTATING COMPATIBILITY ON MSC’S 106
5.2.1 From Automata to MSC’s 106

PacoSuite

7

5.2.2 Discussion 107

5.3 ADAPTER GENERATION 109
5.3.1 Reussner Adapter Generation 109
5.3.2 The Adaptive Programming Library 111
5.3.3 Link Adapter Generation and Adaptive Programming 119
5.3.4 Calculating Adapters 119
5.3.5 Conclusion 126

6 CODE GENERATION 128

6.1 INTRODUCTION 129

6.2 PREPROCESSING THE GLUE CODE AUTOMATON. 131
6.2.1 Remove Non-Valid Traces 131
6.2.2 Collapsing Out/In pairs. 131
6.2.3 Parameter Mappings 132

6.3 GENERATING JAVA EVENT HANDLING CODE 134

6.4 GENERATING CODE 140

7 THE EXAM CONSTRUCTION KIT 142

7.1 INTRODUCTION 143

7.2 DOCUMENTATION 144
7.2.1 Components 144
7.2.2 Composition Patterns 149

7.3 THE COMPOSITION PROCESS 151

7.4 CONCLUSIONS 155

8 CONCLUSIONS 156

8.1 CONTRIBUTIONS 157

8.2 APPLICABILITY 159
8.2.1 Influence on Visual Component Composition 159
8.2.2 Scalability 159
8.2.3 Influence on Other Research 160

8.3 FUTURE WORK 162

9 PRODUCTS AND SPECIFICATIONS 164

10 REFERENCES 165

PacoSuite

8

List of Figures

Figure 1: PacoDoc Screenshot ...14
Figure 2:PacoWire prototype visual composition tool...16
Figure 3: Toggling Composition Pattern..17
Figure 4: Typical use of a Juggler Component ..17
Figure 5: Typical use of a standard JButton Component...17
Figure 6: Composition Tool ..18
Figure 7: Levels of documentation..25
Figure 8: Summary of the scenario syntax ...52
Figure 9: Research by Shank for a minimal set of primitives to bring natural

language to a canonical form ..53
Figure 10: Set of Primitives...55
Figure 11: Why a hierarchy in primitives is needed...57
Figure 12: Documentation of the driving exam client interface59
Figure 13: Network Interaction Composition Pattern ...60
Figure 14: Converting sequence charts to automata ...64
Figure 15: Adding "relative" direction for component usage scenarios.65
Figure 16: Splitting messages in the composition pattern into a sending and a

receiving part..65
Figure 17: Generic observer behavior supporting both polling and notification

style ...73
Figure 18: Snapshot of the component composition process ...74
Figure 19: Why a global check is needed. ..76
Figure 20: Adding termination properties ..80
Figure 21: Calculating the shuffle automaton..82
Figure 22: Template for a single message in the intersection automaton going

from component 1 to component 2...83
Figure 23: The asymmetric cross product. ...85
Figure 24: Searching contradicting traces ...88
Figure 25: Example state diagram for role/component resolving90
Figure 26: Finding all role/component mappings using dynamic programming

ideas..92
Figure 27: Mapping multiple “env” participants on one role.......................................93
Figure 28: Mapping one "env" participant on multiple roles ..94
Figure 29: Illegal mapping of "env" participants...94
Figure 30: Mapping one "env" participant on multiple roles.95
Figure 31: Combining two equal messages with hierarchy ...97
Figure 32: Implementation non-determinism ...98
Figure 33:Example of scenario non-determinism ..99
Figure 34: In black box components, ALT blocks represent non-deterministic

behavior ... 100
Figure 35:Indicating the mismatch? .. 103
Figure 36: Feedback process by anotating MSC's .. 107
Figure 37: Marking incompatible traces? ... 108
Figure 38: Adapting a simple CD player... 109
Figure 39: The generated adapter. Transitions that are not marked with (M) are

needed adaptations.. 110
Figure 40: Bus simulation class graph. Squares and hexagons denote classes

(concrete and abstract, respectively), regular arrows denote fields and

PacoSuite

9

are labeled by the field name, and bold arrows (labeled with ◊) denote
the subclass relation (for the shading, see text) 112

Figure 41: Evolved bus simulation class graph... 112
Figure 42: Strategy graph corresponding with the "From Busroute through

BusStop to Person" strategy. .. 113
Figure 43: Example class graph and strategy graph used for the calculation of a

traversal graph. In this example e1 and e2 have no attached
constraints, the constraint attached to e3 specifies that the edge going
from A to D should be bypassed and the constraint attached to e4

specifies that A and all incident edges to A should by bypassed. 113
Figure 44: Applying the traversal graph algorithm on the example in the previous

picture .. 115
Figure 45: Class Graph and Strategy Graph with Corresponding Automaton 116
Figure 46: Applying the traversal graph algorithm to the component at the left

hand side and role R1 of the composition pattern at the right hand
side, results in a traversal graph specifying that the component fits
with the role if message C is inserted between B and D 120

Figure 47: Example for Adapter Generation... 121
Figure 48: Converting the Component and Composition Pattern specified in

Figure 47 to a Class Graph and a Strategy Graph.................................. 122
Figure 49: Marking the Traversal Graph for the example depicted Figure 47 123
Figure 50: Resulting Traversal Graph for the example in Figure 47......................... 123
Figure 51: The usage scenario of the component at the left hand side is not

compatible with role R1 of the composition pattern at the right hand
side. .. 124

Figure 52: How to Adapt? Inserting the first B or the second?.................................. 125
Figure 53: Using the Name Map function to select the adapter. 126
Figure 54:Template for messages with their implementation mapping in the

resulting global check automaton... 131
Figure 55: "Collapsing" Out/In pairs. ... 132
Figure 56: Parameter mapping dialog .. 133
Figure 57: DrivingExamGUI usage scenario.. 145
Figure 58: Typical use of a standard JButton Component ... 147
Figure 59: Usage scenario for the network client component 147
Figure 60: Documentation of the driving exam server component............................. 148
Figure 61: Description of a generic network server component 149
Figure 62: LaunchClientNetwork Composition Pattern describing the interactions

between a launcher, a client and a network role 150
Figure 63: Two basic composition patterns... 150
Figure 64: Snapshot of the development of an exam application using the exam

construction toolkit.. 151
Figure 65: Compilation of screenshots of the exam service application.................... 152
Figure 66: Usage scenario for a Console component... 152
Figure 67: UseNetwork composition pattern... 153
Figure 68: Extending the exam application with chat functionality. 154
Figure 69: Generic usage scenario and composition pattern..................................... 157
Figure 70:Composition Adapter: CONTEXT specifies where to apply and

ADAPTER specifies what to do. ... 162

PacoSuite

10

Figure 71: Applying the composition pattern adapter to the original composition
pattern on the left hand side results in the composition pattern at the
right hand side... 163

PacoSuite

11

1 Introduction
“I don't have a solution, but I certainly admire the problem”

- Ashleigh Brilliant

“For every problem, there is one solution which is simple, neat and wrong.”

- Henry Louis Mencken (1880-1956)

PacoSuite

12

1.1 Problem Statement
Component technology becomes increasingly important in the software industry. A large

community believes that components and associated component models help in reducing

the cost and the development time of new applications. The following quote is prototypical

for this way of thinking:

“Component Based Development is an approach to application development in which prefabricated, pre-

tested and reusable pieces of software are assembled together thereby enabling very flexible applications to be

built rapidly. It all sounds engagingly simple, to the extent that often the child's toy Lego is used as a

metaphor, appropriate right down to the need for standardization - visualize those neat little plugs and

sockets each brick has, irrespective of size and shape. If an application designer can draw upon a pool of

software objects, each plug-compatible with another, and whose form and function are as obvious as Lego

bricks, then the vision has been realized. A change in the requirements? No problem, just snap out one

brick or sub-assembly, and snap-in another”

[Short, 1997]

Components come in a variety of formats, designs and implementations. Components can

be designed to work together or they can be obtained from very different sources. Bringing

these building blocks together results in an application. Needless to say, that just bringing

components together is not enough to obtain a working application. In the real world,

application programmers write a lot of glue code to make components work together.

Today the cooperation between components is mainly defined at the implementation level.

At that level there exists standards so that programs written in different programming

languages and on different platforms can understand and use each other (e.g.[COM,

1999;CORBA, 2000;DCOM, 1998]). These technical possibilities provide component

connectivity. Connectivity on its own does not imply interoperability. The following

analogy of a "plain old telephone service" shows clearly the difference.

 “Thanks to a worldwide numbering scheme and the interconnection of all the national telephone networks,

it is fairly easy to establish a telephone connection between two arbitrary points in the world to carry sounds

between these two points. This is worldwide connectivity. If, however, people want to interoperate (do

meaningful things) through the telephone, they should not only be able to exchange sounds, but also to

understands each others sounds, i.e. to use a common language.”

[Tiberghien]

We believe that just as in the telephone example current approaches to component

technology and component composition have a serious problem in assuring component

PacoSuite

13

interoperability i.e. "the components plug, but they don't play". We need documentation

on how to implement a typical cooperation between components i.e. what interaction

scheme is needed between a given set of components to obtain a wanted application with a

given design. Today this is solved using experienced developers.

Current component documentation techniques enable humans to determine functionality.

However, the documentation provided to use a component is very weak in most cases. It is

common practice that developers start experimenting with a component to find out how it

should be used. This means that composing components requires a lot of technical

knowledge and a lot of effort. This stands in sharp contrast with the selection of suitable

components for your application. It is usually not necessary to know all the technical

details to identify a component as a possible candidate for your application. Just browsing a

catalogue with natural text descriptions will do in most cases. The knowledge needed to

select suitable components is knowledge about the application domain. We state that the

main reason of this situation lies in the lack of abstraction at the composition level. Even

the latest tools to compose components, force you to really code (be it manually or

visually) every connection between a set of components. Composition code is spread

around in your application and cannot be reused or considered to be black box.

This work tries to lift the abstraction level of the compositions to the same level as the

components. I.e. we want it to be as easy to select and apply a suitable component

composition, as it is to select and use a suitable component.

PacoSuite

14

1.2 Approach
Our approach is based on four concepts: composition patterns, component usage

scenarios, compatibility checking algorithms and glue code generation. A composition

pattern formally specifies how a set of roles interacts, while a component usage scenario

specifies how a component interacts with a set of environments. We use a special kind of

Message Sequence Charts (MSC's) [MSC, 1993] [Rudolph, 1996]to do this. Each

component is documented with a set of MSC's. Each MSC describes a scenario for one of

the functionalities supported by this component. The main difference with standard MSC's

lies in the kind of signals sent. We developed a compact set of primitives with a predefined

meaning. Instead of using API calls we use these primitives to model the components

behavior thus avoiding the confusion that stems from the use of API calls for the signal

labels. The syntax is mainly the MSC syntax. It contains a set of participants, a set of signal

sends between these participants and a set of control blocks and structuring mechanisms.

Figure 1: PacoDoc Screenshot

The idea is to document how components should be used. Composition patterns are

documented in a similar way using the same compact set of primitives. We developed a

prototype editor called PacoDoc (Figure 1) to browse and edit this kind of documentation.

PacoSuite

15

As the composition pattern and the component documentation are expressed in the same

formalism it becomes possible to check compatibility between the protocol offered by the

components and the protocol as specified by the composition pattern.

We developed algorithms to check compatibility based on finite automata theory. Our

compatibility definition allows components to offer more functionality than what the

composition pattern asks for, as is the case in most compatibility definitions found today in

literature. However, we view the composition patterns as first class reusable entities,

implying that also composition patterns can be more general than what the component

offers. A good example is an observer composition pattern specifying both polling

behavior as well as notification behavior. This composition pattern thus describes in

general that two roles should be connected using some kind of observing scheme. We do

not want to force any component using this composition pattern to implement both

possibilities. Restricting the composition pattern to only one option, on the other hand,

would render a less generic and less reusable composition pattern. In short, we declare a set

of components and a composition pattern to be compatible if there exists at least one

common trace (that reaches an end state) over all components that is also specified by the

composition pattern. Technically, we calculate the intersection between the protocols as

specified by the parallel composition of all components with the protocol specified by the

composition pattern. The result is a new state machine describing the “compatible”

behavior between this set of components, constrained by the protocol specified by the

composition pattern. If this automaton is not empty, we generate the source code that

implements this result automaton. This code is then used as the glue code between the

components. This is necessary as our compatibility definition only assures that there is a

common trace. It does not guarantee that it is the only trace, or that the components

follow this trace at runtime. The generated glue code ignores all non-valid behavior of the

components and allows only the common traces between the components and the

composition pattern. The details of this process are further explained in chapters 4 and 6.

If our compatibility checks returns a mismatch we offer the developer several possibilities

to analyze the incompatibility. This includes tools that mark the compatible behavior and

indicate were the compatibility check fails, as well as a tool that suggest “fixing” scenarios

for both components and composition patterns.

All these technical matters are transparent for the user. During component composition, a

user works with a visual composition editor that contains a palette of components and a

PacoSuite

16

palette of composition patterns. We developed a prototype of such a tool called PacoWire.

This tool allows dragging a component on a role of a composition pattern. The drag is

refused when the component does not match with the selected role. It is possible to drag a

component on more than one role, so that the same component can be shared among

different composition patterns. When all the roles of a composition pattern are filled, this

tool checks the components against the composition pattern and vice versa. If the check

succeeds, glue-code is generated.

Figure 2:PacoWire prototype visual composition tool

This implies that we have a new way to start the development of component-based

applications. In current visual composition tools, the developer selects a set of components

first and tries to implement this design afterwards using these components. There is no

feedback whether these components fit in the design or not. Composition patterns can be

selected based on a design document (typically use cases) and search for compatible

components based on these composition patterns.

PacoSuite

17

1.3 A Motivating Example
As a kind of “quick preview”, we describe here a small example that indicates the problem

and shows how we try to solve it. Our work is mainly targeted towards Java Beans. One of

the tutorials for the Java Bean Box describes how to build a Juggler application so that a

click on one button starts the juggling on the Juggler component and a click on a second

button stops the juggling on the Juggler component. The construction of this application

only requires visual wiring. We show how we use our approach to build a similar

application but instead of one start button and one stop button, we try to use the same

button component as a “toggle” button. This is not possible in the Bean Box (nor in any

other commercial visual wiring tool I know) without manual adaptation of the code,

because current tools only generate code for fixed event/action pairs. I.e. one event always

results in the same API call.

Toggler ToBeToggled

LOOP

STOP

START

Figure 3: Toggling Composition Pattern.

Env:ControlJuggler

ALT

STOP

START

startJuggling()

stopJuggling()

LOOP

Figure 4: Typical use of a Juggler Component

JButton Env: Observer

SIGNAL
LOOP

actionPerformed

Figure 5: Typical use of a standard JButton
Component

PacoSuite

18

In our approach, we add a pallet of standard composition patterns on top of the pallet of

components found in current tools. The documentation for a typical usage scenario for a

standard Java Button and for the Juggler component is shown in Figure 4 and Figure 5.

The documentation for a toggle composition pattern is depicted in Figure 3. This

documentation is made by the developer of the construction kit and is transparent for the

user. The user uses a tool as shown in Figure 6. He or she selects the toggle composition

pattern from the palette with composition patterns and he or she fills the Toggle role with

the Button component and the ToBeToggled role with the Juggler component. Our tool

then checks compatibility of the components with the composition pattern. If the check

succeeds it generates all code necessary to build the application. In case the check fails

gives mismatch feedback. In this small example, the documentation of the JButton

component is checked against the Toggler role. This is done based on the primitives

(START, STOP, SIGNAL…) and the sequence diagrams. We define a basic hierarchy on

the primitives where SIGNAL matches with any other primitive. It is easy to see that the

JButton component matches with the Toggler role and that the Juggler component

matches with the ToBeToggled role (for an exact definition of our compatibility definition

see section 4.5)

Figure 6: Composition Tool

PacoSuite

19

In this case, the tool performs the compatibility check and generates a main application

that instantiates a button and a juggler. It also generates a small state machine component

listening for JButton “actionPerformed” events and calling the “startJuggling()” and

“stopJuggling()” methods on the Juggler component alternately. This means that all the

necessary glue code is generated and that the tool does not require any programming

knowledge from the user.

It is clear that this approach is not limited to binary composition patterns only, nor is it

limited to a single composition pattern. However, this very simple example already

indicates the main principles and benefits of the approach. This research improves the

code generation process found in current commercial visual component composition tools

by generating full protocols between components instead of mere event/action pairs. The

main advantage of this approach lies in the reuse of the composition patterns, the shift of

expert knowledge from the application developer towards the component and construction

kit builder and in the introduction of compatibility checking algorithms.

PacoSuite

20

1.4 Contributions
The main contributions of this dissertation are:

1. Improvement of current visual component composition environments. This is

done using the concept of composition patterns. This concept lifts the abstraction

level of current composition techniques to the same level as that of the

components. I.e. composition patterns are first class objects that can be defined,

stored and reused.

2. Automatic compatibility checking based on finite automata theory using a

compatibility definition that allows components to offer more than what the

composition pattern asks for and allows composition patterns to be more general

than what the components offer.

3. Glue code generation that both forces components to follow only compatible

traces and restricts the composition pattern to what the components can offer.

This allows us to use more generic and more reusable composition patterns than

what is currently available.

4. Improved feedback at composition time allowing the composer to find out

mismatches and suggesting fixing scenarios.

5. Support for “composition based” construction of component based applications

because components can now be selected on their compatibility with a

composition pattern.

This work is mainly useful to build very flexible construction kits. It allows the

developers of such a kit to provide standard composition patterns together with their

set of components without touching the ability of the users of these construction kits

to build very complex compositions that were not foreseen by the developers.

PacoSuite

21

1.5 Overview of the Dissertation
The next chapter (Chapter 2) defines the context of this work. It describes the state of the

art of current component composition techniques and deals with the important issue of the

component model. It further elaborates on our motivation and view on components. The

questions: “Why do I propose to do component based development?”, “What is a

component in this dissertation?” are answered in this chapter. Finally, it gives the

background behind the concept of composition patterns.

Chapters 3 till 6 discuss the technical details of our approach. The documentation to define

usage protocols for components and interaction protocols for composition patterns is

introduced in chapter 3. To do this we first make some observations about the nature of

this kind of documentation. This leads us to a set of requirements that we want to be

satisfied by this documentation. This is followed by an overview of how existing

documentation techniques perform in view of these requirements. Finally, we present the

details of the documentation itself.

The next chapter (Chapter 4) describes the matching process. It starts with our view on

compatibility. It mainly describes two different situations. A local matching process that

checks a component against a role in a composition pattern and a global matching process

that checks if there exists cooperation between a set of components and a specified

composition pattern. It further describes algorithms to perform automatic matching of

components and roles. I.e. during the normal component composition process the

developer drags the right component on the right role of the composition pattern. We

devised an algorithm that searches the most likely role for a given component based on

compatibility. Finally, we go into more detail on how we handle environments and sub-

typing.

Chapter 5 describes techniques and tools to provide feedback in case of incompatibility.

This varies from tools that annotate partial compatibility to tools that hint at possible fixing

scenarios. The technical part stops with a discussion on the code generation process

(Chapter 6) itself. This is followed by a small example where a driving exam construction

kit is built (Chapter 7) to illustrate our approach.

At the end of this dissertation, we state our conclusions.

PacoSuite

22

2 Context
“When you steal from one author, it's plagiarism; if you steal from many, it's research.”

- Wilson Minzer (1876-1933)

PacoSuite

23

2.1 State of the Art
Component composition is a long-standing issue in software engineering. Many, quite

different sub-fields of software engineering research are applicable to this problem. For this

work, we use the results and the ideas from very different areas such as visual

programming, documentation techniques, patterns, API definitions and formal

compatibility checks. We also use ideas and terms coming from the separation of concerns

research. In this chapter, we try to give an overview of the relevant state of the art in these

domains.

2.1.1 Visual Programming Environments
Current visual programming environments offer a variety of component composition

possibilities. Today we see three main classes of visual component composition schemes:

1. The Intelligent Network Approach (LabVIEW [Wells, 1997], Java Studio [Weaver,

1998])

2. Overwriting Event Handlers (Visual Basic [VisualBasic, 2001], Delphi [Delphi,

2001], Visual Java [VisualJava, 2001],….)

3. Visual Wiring (NetBeans [NetBeans, 2001], Visual Age [VisualAge, 2001], BeanBox

[BeanBox, 2001],….)

Here the intelligent network approach is the eldest composition scheme and visual wiring

constitutes the most recent addition. However, this does not mean that the older

approaches are outdated. In fact, all these approaches are heavily used today and have all

found their own share of the market.

2.1.1.1 Intelligent Networks

This approach allows to visually script components together. Every component has a very

strict interface. A component can be started and throws a (set of) event(s) when finished.

Output events of one component can be connected with the start API call of another

component. This renders a system that is a close visual representation of a normal

programming language. Every wire can be viewed as one instruction. All this means that

the wiring is a local process. It is not possible to define global behavior over a set of

components. The wiring is certainly not a first class object. It needs to be done over and

over again. There is no possibility to store typical wiring except in combination with a set

of components.

PacoSuite

24

2.1.1.2 Overwriting Event Handlers

This is the approach found in the highly popular visual development environments such as

Visual Basic, Visual C++, Visual Delphi, etc. These environments allow drag and drop

facilities of components on a form and let the interaction between these components be

defined by “overriding” the event handlers with free code. I.e. for every component, the

programmer has the possibility to select an event and to provide code for it. A button

component for example allows the “overriding” of the “onClick” event or the

“onMouseOver” event. Typically, code that is written for such events involves calls to

other components methods (API). This means that the programmer has to know which

methods to call, what these methods do and in what order these methods should be called

to accomplish the task at hand. The glue code also tends to be scattered around and is

therefore difficult to maintain.

2.1.1.3 Visual Wiring

With the advent of Java Beans and more precisely with the Java Bean Box [BeanBox,

2001], a higher abstraction level was introduced. This environment allows the same drag

and drop facilities as the classic environments but is extended with a code generation

wizard for the basic interactions. These tools allow to drag and drop components on a

form and to connect them. Connecting two components pops up a dialog box where an

event of the source component can be selected and connected with a method call of the

target component. The corresponding code is then automatically generated by the

environment. This is the first step towards a higher abstraction level for the glue code.

However, even very little experiments show that the user still needs to know how the

component API needs to be used to obtain the wanted behavior. It is also very hard to

introduce global synchronization.

2.1.1.4 Conclusion

Visual component composition tools improved a lot in the last decade. The abstraction

level raised and they became very user friendly. However, composition information is still

spread around in the resulting applications and cannot be reused, nor saved independently.

This forces the developer to rewrite the glue code over and over again and to know in

detail how the components should be combined in new application

2.1.2 Documentation
In [Beugnard, 1999] a good overview of state of the art component documentation is

presented. In this paper, the authors introduce four different abstraction layers to describe

PacoSuite

25

contracts for components. These four layers are shown in Figure 7. The first level, basic, or

syntactic, contracts, is required simply to make the system work. It typically contains the

API of the components, possibly with the definition of the data passed between the

components. The second level, behavioral contracts, deals with the effect of one call on the

component. It typically describes in what context a given call produces valid results. The

third level, synchronization contracts, improves confidence in distributed or concurrency

contexts. This level typically describes protocols between components and their

environments and synchronization issues. The fourth level, quality-of-service contracts,

quantifies quality of service.

Level 4: Quality-of-service level

Level 3: Synchronization level
service object synchronization, path expression,
synchronization counters

Level 2: Behavioral level
pre- and postcondition,
Eiffel, Blue, Sather,
UML/OCL, iContract for Java

Level 1:Syntactic level
interface definition language, usual
programming language syntax

Figure 7: Levels of documentation

Together with the raise of the abstraction level, suitable documentation becomes less and

less obvious.

2.1.2.1 The Syntactical Level (Level 1)

At the syntactical level, there are plenty of possibilities. Standard programming languages

are typically used to describe the method signatures. More recently we the Interface

Description Language (IDL) [IDL, 2001] was introduced to abstract away from specific

programming languages. This documentation is also backed by plenty of checking tools

(typically performed by the compiler or the interpreter).

PacoSuite

26

2.1.2.2 The Behavioral Level (Level 2)

At this level we find more recent efforts such as design by contract [Meyer, 1992] (Eiffel),

contracts by Helm [Helm, 1990], contractual obligation by Lamping[Lamping, 1993], OCL

[Warmer, 1999], iContract for Java [Kramer, 1998], etc…. These all try to describe the

effect of one operation. I.e. at this level, a procedure or a method call is considered to be a

transaction. These contracts are typically added to the programming language (using asserts

or pre and post conditions) and are therefore checked automatically. The checking now

typically occurs at runtime.

2.1.2.3 The Synchronization Level (Level 3)

At his level, we find more formal approaches that are typically checked in a separate

environment. Campbell and Habermann’s [Campbell, 1974] introduced the idea of

augmenting interface descriptions with sequence constraints already in 1974 (using path

expressions). In the following years much work was done to capture this kind of

constraints. Most of these approaches build on a formal base such as Communicating

Sequential Processes [Hoare, 1985] (see for example the architectural description languages

Wright [Allen, 1997] and C2 [Taylor, 1995]) or state machines [Harel, 1987](see for

example work of Yellin and Strom [Yellin, 1994a;Yellin, 1994b] and Zaremski [Zaremski,

1997]). This documentation has still not reached the same level of acceptance as the

documentation techniques found on level 1 and level 2.

2.1.2.4 The Quality of Service level (level 4)

This level is typically not covered today. If it exists it is typically a natural text description

that describes the parameters that influence the quality of service, together with some test

results. Recent work at this level of documentation includes the CORBA 2.4 specification

by the OMG group (see following quote).

“CORBA 2.4 includes several Quality of Service specifications, which are intended for managing and

selecting various underlying transport choices based on application needs. Specifically, this version contains

the Asynchronous Messaging, Minimum CORBA, and Real-Time CORBA specifications as well as

revisions made by several RTFs and FTFs, including those responsible for the Interoperable Name Service,

Components, Notification Service, and Firewall specifications.”

Excerpt from the OMG web page at [CORBA, 2000]

2.1.2.5 Conclusions

In our work, we try to express compatibility constraints on the usage protocol of

components. This clearly asks for documentation at level 3. Current documentation

PacoSuite

27

techniques at this level are not in wide spread use today. We believe that this is mainly

caused by the formal notations. Therefore, we try to use a notation that is already accepted

to make the acceptance less difficult. The documentation introduced in this work

complements other documentation and is only used to perform automatic compatibility

checks and glue code generation. It is not suited to find out neither what a component

does nor what quality of service it delivers. It only describes how the component should be

used.

A more specific and focused overview of possible documentation techniques is given in

section 3.3. There we focus specifically on existing documentation techniques to specify

interactions between software artifacts.

2.1.3 Compatibility
Research related to compatibility checks and definitions is mainly found in the field of

architectural description languages. The architectural mismatch problem was first

recognized and described by Garlan and co. in [Garlan, 1995]. This launched a whole new

research field around Architecture Description Languages [Allen, 1997;Luckham,

1995;Taylor, 1996] (building on Module Interconnection Languages [DeRemer,

1976;Parnas, 1972]). An architecture in this context is generally considered to consist of

components and the connectors (interactions) between them. As the existing architectural

descriptions are often informal and ad hoc, this research tries to formalize this

documentation. We too try to formalize cooperation between components.

These approaches nearly all define compatibility between a composition specification and a

set of component. However, most of this works defines compatibility in a different context

than ours.

The RAPIDE system [Luckham, 1995] differs from our approach in their use of

unidirectional protocols only. I.e. components are used as a class library where functions

are called and output is never actively sent. In RAPIDE, compatibility is deduced from a

simulation. I.e. the system is simulated to see whether the components work together as

specified.

Yellin and Strom [Yellin, 1994a;Yellin, 1994b] use state machine descriptions to define

component compatibility. Their approach is however restricted to two parties. The

component composition model used in their approach allows an interface in one

component to be bound to an interface in a second component. It does not allow an

interface in one component to be bound to multiple interfaces (in several components) or

PacoSuite

28

to check a component against a role in a composition specification, as our system does.

They define components to be compatible if they are deadlock free and agree on the

followed trace. Note that this does not mean that the components may not be able to

follow different traces in general. As long as divergent behavior never occurs in the

specified composition specification, the components are declared compatible.

The architectural language Wright [Allen, 1997] uses the same concepts as we do. I.e. they

have components, composition specifications and roles. Informally they define

compatibility as follows: “A component may offer more than what the composition

specification asks for but it forces the components to implement at least all the behavior

that is specified in the composition specification.” We argue in section 4.5 that our

definition is more generic.

Other interesting work regarding compatibility checking can be found in protocol

conversion literature [Reussner, 2000] and the interface adaptors of Thatte [Thatte, 1994].

In this work, protocols are used to specify interfaces and an algorithm is described that

synthesizes a converter given the protocols and the specification. However, the goal of this

work is to generate converters from one protocol to another rather than checking

compatibility.

Reussner also uses finite automata theory in his “Coconut” project [Reussner, 1999] to

perform component matching. His work is very similar to ours as far as the local check is

involved. At the moment, he does not perform a global check. He uses the incremental

algorithm to generate adapters for mismatching components. We also share another the

asymmetric cross-product algorithm (see section 4.7.2). It is used by Reussner to calculate

adapters to combine two non-compatible components. The problem is indeed similar. He

needs to follow a common trace as long as possible, once he reaches a point where one

component no longer implements the same behavior he keeps the behavior of the first

component until he reaches a point where the behavior is compatible again. We do the

same where we just keep the traces of the composition pattern for those parts that are not

concerned with the component at hand.

2.1.3.1 Conclusion

All work we know adopts a similar definition of compatibility. That is:

• The system is simulated to deduce compatibility or,

• Compatibility is defined for exactly two parties as having common behavior or,

PacoSuite

29

• A component needs to be a refinement of the role it is playing in a composition

pattern.

We already argued that it is better to allow both a component to offer more than what the

composition pattern asks for and a composition pattern to be more general than what the

component offers.

2.1.4 Design Patterns
Around 1995 research on reusable software solutions for recurring problems gained a lot

of attention. This research is known in literature as the pattern research [Alpert,

1998;Gamma, 1995;Lajoie, 1994;Riehle, 1997]. Depending on granularity they are

respectively called: Idioms, Cliches, Design Patterns and Architectures. Design Patterns

and Architectures both launched a new research field. As they both greatly influenced our

proposal, we discuss these in further detail.

The design pattern research was launched by the publication of the so-called Gang-of-Four

Book [Gamma, 1995] in 1995. The authors were inspired by the book “A timeless way of

building” [Christopher Alexander, 1979] the architect Cristopher Alexander tried to write

down his knowledge about architectural problems in a fixed format. The GOF book

describes twenty recurring design problems with their solution. All twenty problems are

written down in the same format (called a Design Pattern Language). This format contains

a combination of informal text, UML sketches and implementation snippets. The

description is informal but proves to be of great value for developers. A lot of the design

patterns are concerned with the cooperation of two or more “participants” in an

application. The GOF book [Gamma, 1995] for example contains the observer pattern

(cooperation data-view), the visitor pattern (cooperation data-traversal function), the chain

of responsibility pattern (typically event cooperation between interface elements), the

bridge pattern (kind of indirect cooperation between sender and receiver of a message), the

factory pattern (another kind of indirect cooperation between sender and receiver of a

message) and many others. Therefore, patterns are good candidates as specification on how

components work together in a component based development approach.

The success of these patterns proves that the same kind of compositions is used over and

over again. With our usage scenarios and composition patterns, we try to capture this

“composition” information. However, as we try to build automatic tool support based on

this information, we need to use a more formal notation. Formalizing design patterns tends

to diminish the power of it as it usually restricts its generality. It is still an open question in

PacoSuite

30

the research community if formalizing is the way to go or not [Coplien, 1996]. We do not

have the answer to this question, however we think that formalizing a specific

interpretation of a pattern brings many virtues. Components are built with a certain

composition scenario in mind. This scenario is not at all general. It involves a very specific

order of API calls. We state that formalizing such protocols brings many advantages

without the loss of generality that occurs in formalizing design pattern.

2.1.5 Architectures
The architectural mismatch problem was first recognized and described by Garlan and co.

in [Garlan, 1995]. This launched a whole new research field around Architecture

Description Languages [Allen, 1994b] [Luckham, 1995] [Shaw, 1978] (building on Module

Interconnection Languages [DeRemer, 1976]). An architecture in this context is generally

considered to consist of components and the connectors (interactions) between them. As

the existing architectural descriptions are often informal and ad hoc this research tries to

formalize this documentation. These ADL’s seek to increase the understandability and

reusability of architectural designs, and enable greater degrees of analysis. We too try to

formalize cooperation between components. However, most of the architectural

description languages today specify component composition in the context of the

component model rather than the application context. We start from the assumption that

the component model is already chosen and stable. We consider the component model as

a necessary precondition before we start specifying our composition patterns. Another

known problem with a formal approach like architectural description languages is that they

are difficult to learn and to use and suffer from scalability problems. We believe that

choosing a set of primitives is a promising approach to bridge the gap between the lack of

any semantics and a full-fledged formal specification as in architectural description

languages. Closely related work can be found in both Allen and Garlan’s work [Allen,

1994b] as well as in the work on contracts by Helm et al [Helm, 1990].

In both models, components may have one or more interfaces, each with its own formal

specification based on finite state protocols. Their connectors are first-class, reusable

components in their own right and can support n-party interactions. They use a stronger

compatibility rule that allows them to deduce deadlock and livelock freedom using the local

checks alone. We extended this work with glue code generation that allows a more flexible

compatibility check leading to more generic and more reusable composition patterns.

Using a compact set of known terms to document components and composition patterns

also improves the reusability of our connectors.

PacoSuite

31

2.1.6 Formal Specifications
2.1.6.1 Description

There also exists significant work in specifying the behavioral constraints on components.

Assertion languages, pre- and post condition specification, design-by-contract (from

Eiffel), Contracts, [Helm, 1990] [Meyer, 1992] [Beugnard, 1999], have all been focused on

ensuring behavioral match between a system using a component and the component itself.

The main topic is how components can be trusted and what can be done if a component

behaves unexpectedly. The proposed solution is to provide every component with a

contract that specifies what the component does.

2.1.6.2 Relation with This Work

There exist clear similarities in our work with this approach. Our usage scenarios explicitly

define constraints on the interaction scheme between components. The difference between

this work and our approach mainly lies in the concept of composition patterns. In our

approach, we not only check compatibility of a set of components but also whether there

exist a common trace in the combined behavior of the components with a wanted usage

scenario. Another difference is the usage of abstract primitives rather than specific API

calls.

2.1.7 Higher Level API’s
Interesting related work for the construction of our set of primitives is found in “The

DARPA Knowledge Sharing Initiative” [Genesereth, 1992;KIF, 2001]. This project defines

the Knowledge Interchange Format (KIF). Currently this language is used (among others)

as a communication language for agents. To do this they propose a set of “performatives”.

These “performatives” are similar to our primitives. We add a sequence diagram and a

mapping to the API to show the behavioral aspect and a possible implementation but the

basic idea is similar. I.e. defining a set of predefined terms to specify how parts of an

application work together.

Another interesting reference in this context is [Mclennan , 1998]. The Austin Product

Center in Texas develops oilfield systems and application libraries that are used all over the

world in different offices and field units. By performing API usability tests (how easy the

API is to learn, what misconceptions or errors programmers make using the API, etc.…),

they show that providing code examples successfully supported a deep understanding of

the libraries. The code examples give a better understanding of the purpose of the library,

PacoSuite

32

the usage protocols and the usage context. We believe that usage scenarios (see section

3.4.7) can bring similar benefits while being more general than examples.

2.1.8 Separation of Concerns
Aspect Oriented Programming, Subject Oriented Programming, Generative Programming,

Adaptive Programming, Composition Filters and many others are all research topics that

try to solve the separation of concerns problem. This research is under constant evolution,

but important milestones in this research include the Law of Demeter, the technical report

on separation of concerns by Christina Lopez and Walter Huersch, the PhD thesis by

Christina Lopez: "D - A language framework for distributed programming” [Lopez, 1997],

GenVoca by Don Battory, the paper “Subject-Oriented Programming (A Critique of Pure

Objects)” by William Harrison and Harold Ossher [Harrison, 1993], the position paper

“Composition-Filters Based Real-Time Programming” by J. Bosch and M. Aksit and the

book: “Adaptive Object-Oriented Software: The Demeter Method with Propagation

Patterns” by Prof. Dr. Karl Lieberherr [Lieberherr, 1996].

The goal of this research is fundamentally different from what we try to do. “Separation of

Concerns” is about building programs by using a specific tailored aspect language for every

concern in an application and to weave these aspects or concerns together afterwards. In

that sense, it has nothing to do with component composition. However, as attempts were

made to introduce aspects in component based applications, as this research also needs to

generate “glue code” and as it often uses similar terminology as we do, we discuss a couple

of papers out of this research to avoid confusion.

The term composition filters suggests that this research could be relevant for our

composition patterns. After all, we try to compose components. However, composition

filters should be viewed as “adapters” or “wrappers”. I.e. all interactions between a set of

components or objects go through a (set of) composition filter(s). These filters can be

defined and programmed independently of the application. This allows the developer to

localize and modularize crosscutting concerns. Composition filters do not define

interactions as our composition patterns do, but they adapt interactions.

The term composition pattern is also used in the Subject-Oriented Programming

community. See the paper by Clarke and Walker at ICSE 2001 [Clarke, 2001]. However,

the goal of their composition patterns is different. We use composition patterns to describe

reusable compositions of components and use them to check if the components match

PacoSuite

33

with the corresponding roles described in the composition pattern. They want to use

composition patterns to specify crosscutting requirements or aspects independently of a

given design. So their goal is separation of concerns, my goal is component composition.

So why do we use the same term? It seems to be very hard to come up with a name that is

not "taken" yet. We have used many names to indicate composition patterns (micro-

architectures, role cooperation, usage patterns, etc.) but nearly all terms have so many co-

notations today that none of them really suits our needs. Therefore, we just decided to stick

to the term composition patterns and usage scenarios.

Another related term that needs clarification is AP&PC (Adaptive Plug-and-Play

Components) and Aspectual Collaborations. The terms contain the words collaborations

and components, but the idea here is that aspects should be treated as components. These

components are then woven automatically in the application. The focus is again on

separation of concerns and aspect weaving but this time in the context of components.

However, this is an interesting idea and a colleague of mine currently tries to apply these

ideas to our work.

2.1.9 Conclusion
There exists much relevant work to build on. However, at this point in the text it is difficult

to discuss the relevance of this work for our research. Therefore, a lot of the related work

discussion is spread over this work. A short overview:

In section 2.2.1 we give an overview of existing component models and the architectural

mismatch issue. Section 3.3 gives an overview of existing specification and documentation

techniques specifically focused on interactions. The introduction of section 4.5 further

discusses related approaches to compatibility specifications and compliance checking. In

section 5.1.2 we discuss existing approaches to generate mismatch feedback. Section 5.3.1

and 5.3.2 describe the most relevant algorithms in detail. These sections are mainly focused

on adapter generation techniques and adaptive programming research. The latter is not

directly research meant to generate mismatch feedback, but we indicate how results

obtained in this very different research area can be applied to mismatch feedback.

PacoSuite

34

2.2 Component Model
2.2.1 Introduction
A brainstorm session with people of the industry about the exact nature of components

produced very confusing results. It seems that the word “component” covers nearly

anything ranging from 2 bytes of memory with some bit manipulation in embedded

systems, over XML documents describing large sets of medical images to full blown

applications consisting of million lines of code. The real problem however is that all these

definitions are valid in their own context. To avoid confusion in this work we give a

definition of components for our context.

Szyperski and Pfister [Szyperski, 1997] proposed the following definition at the 1996

ECOOP conference:

Component definition

“A software component is a unit of composition with contractually specified interfaces and

explicit context dependencies only. A software component can be deployed independently

and is subject to composition by third parties”

Formulated at the ECOOP 1996 conference.

This definition describes the kind of components we use in this work. We do not state that

this definition is the only right one. In our view, the main property that distinguishes

components from other concepts as class libraries is the composability property. A

component needs to provide “hooks” to combine the component with other components.

This is where the component model comes in. A component model describes the exact

way that is used by components to interact. There are plenty of possibilities. A very well

known model is “pipes and filters”. This technique is known from the Unix world [Bach,

1986]. Unix provides operators in its command line window to pipe Unix applications

together. This makes these programs real components in the sense of the definition above.

They are independent (you can run them stand alone), they are configurable (most Unix

programs have a bunch of command line arguments), they are black box (they are binaries)

and provide a number of tasks and services and they provide a standard means to connect

them with other components. It is clear that one needs to specify how this is accomplished.

Unix programs that are going to be used in pipes and filters connections need to explicitly

open pipes, send data to pipes and close pipes using a predefined library (for an

introduction to programming pipes in C see for example [Marshall, 1999]).

PacoSuite

35

Java Beans [EJB, 2001] is a more recent example of a component model. This model

adheres to the principles as proposed by the Model-View-Control [Krasner, 1988] pattern.

Java Beans implement this architecture by providing “addListeners”, “removeListeners”

and “notifyListeners” methods. This allows them to fire events (call methods) on all

subscribed listeners. This is clearly a different composition scheme than the pipes and

filters of the Unix components.

We can extend this list with call backs, shared data resources, blackboard systems, layers

and many others (see [Garlan, 1993] for a good overview) all having different standards on

how components interact. It is not difficult to see that it would be very hard to combine

components that are written for different component models (the problems are related

both with technical as semantic properties of the different component models). Allen and

co. made a similar observation when they tried to build their Aesop system (a tool to

support architectural design and analysis [Allen, 1994b]). In [Garlan, 1995] they explain the

idea of architectural mismatch or why it is so hard to build systems out of existing parts.

They propose four ways to improve this situation: make architectural assumptions explicit,

construct large pieces of software using orthogonal subcomponents, provide techniques

for bridging mismatches, develop sources of architectural design guidance.

2.2.2 Our Opinion
At the technical level, there exists a wealth of research that tackles the problem of bridging

the gaps between several component models, platforms and languages (see for example the

ActiveX to Java Bean bridge [BeanActiveXBridge]). These tend to work only for

component models that have related semantics (as Active X [ActiveX, 1999] and Java

Beans [EJB, 2001]). However, we are confident that this problem is going to be dealt with

in a more pragmatic way. More precisely, the first company that constructs a set of “killer”

components will not only sell its components but also the associated component model.

Indications of this process can be found in the set of component models that exists today.

The best known component models all have a background of very successful software

companies (or consortiums), like Unix with pipes and filters, Microsoft with ActiveX

[ActiveX, 1999], Sun with Java Beans [EJB, 2001], etc… I.e. component models without a

very wide background stand no chance to become adopted. Therefore, we think that this

issue will be solved one day, either by an international standard or by a defacto standard.

Even when this turns out to be more difficult than expected we can still apply our research

in a context where we work within the same component model. This work is mainly useful

to build construction kits for a given domain. I.e. one component builder provides a set of

PacoSuite

36

components and a set of typical composition patterns. It is possible that the component

builder reuses a third party component but he will bring these in the same component

model and provide a suitable documentation. The user is only confronted with a set of

components using the same component model and a consistent documentation.

Therefore, the research presented here ignores component model issues and starts from a

world were there exists only one component model. In practice, we use the Java Bean

component model throughout this text. We have chosen this component model just for

practical reasons. There is no fundamental reason why we could not apply the concepts of

this work on other component models that allow complex interactions between

components.

The previous explained why we neglect the component model issues in this work.

However, the architectural mismatch problem as described in [Garlan, 1995] also exists

within the same component model and even in the same construction kit. In the last five

years, we saw the advent of many solutions for the mismatch problem. Among them

Architectural Description Languages [Allen, 1997;Luckham, 1995;Taylor, 1996], Mismatch

detection [Compare, 1999], Design and Architectural Patterns [Alpert, 1998;Gamma, 1995]

and Adapter Generation [Reussner, 1999;Shu, 1989;Yellin, 1994a;Yellin, 1994b;Zaremski,

1997].

In this work, we build on this research to provide automatic compatibility checks,

mismatch detection of components and roles, and to suggest adapters to overcome the

mismatches.

PacoSuite

37

2.3 Why Components?
At the time, I started my computer science studies we saw the advent of the first program

generators. I remember me to use Dbase III+ [Weber Systems Inc., 1985] to construct a

simple program to keep track of the members of the women organization my mother was

leading at that time. It had a simple wizard that constructed a database application with a

bunch of input screens, a set of reports and a set of tables and queries. No programming

knowledge at all was needed to construct an application that was capable of browsing,

editing, printing and displaying a set of records. I naively believed that it would take only a

couple of years before the first "generic" program generators would be constructed and

that plain programming would disappear. At that time, there was a lot of research in this

area but none of the results made the same quantum leap as I noticed in the database

world. The problem turned out to be far more complex than expected.

This inspired me to take a look at the reuse community. If it was not possible to get rid of

the programming effort, why not try to reuse somebody else’s work? I learned that reuse

mostly existed at the implementation level and that it was quite difficult to lift the

abstraction level because of the weak link between analysis and design documents and their

corresponding implementation.

Object Orientation was expected to come to the rescue. We know now that this technique

only partially lived up to this claim [Szyperski, 1997]. The main contribution offered by

object orientation for reuse is its introduction of modularity in the implementation that

corresponds with the modular elements found in the analysis and design models. The main

issues why it did not solve the reuse problems are dependencies and granularity. Select a

class in an object oriented application that you can reuse elsewhere and you often end up

with many other classes to support this class if not the complete application.

These observations lead to the component concept. A component is typically self-

contained and specifically designed for reuse. This makes it easier to reuse a component

than a class or an object. However, this improved reusability came at a price. The price was

adaptability and extensibility. You can either use a component or not, there is no way to

"patch" it to work (at least not with the same flexibility as classes and objects can be

adapted).

What convinced me to use components is that I found back "non programmers" tools

again. Components inspired tool vendors to build visual programming environments.

These environments were in the beginning mainly successful for GUI building, but

PacoSuite

38

recently visual "wiring" was added to these tools. This allows you to construct applications

without writing any line of code. However, this does not mean that a "non programmer" is

able to use these tools. The wiring is in fact just the visual counterpart of a line of code and

it involves exactly the same knowledge to program the code as to draw the right

connections.

It is clear however that components offer the potential to lift the abstraction level of the

current programming effort and this work tries to be a little part in this process.

PacoSuite

39

2.4 Why Composition Patterns?
As I explained in the previous section, visual wiring of components still involves a lot of

knowledge. I already indicated that you need to be a programmer to use these tools, but

things are even worse. It also forces the developer to go into the details on how to use the

component. Does the component need to be initialized? What API should be called to get

the wanted functionality? To answer these kinds of questions, the developer needs to

browse trough piles of documentation and needs a clear understanding of standard

programming concepts.

Note that the knowledge on how to use components comes on top of the knowledge

needed to know the functionality of a component. There exists a clear difference between

knowledge needed to select components and the knowledge needed to construct an

application with them. Selecting components for an application can be done by anyone

that reads the requirements and reads the documentation of the available components.

However, building an application with them involves programming knowledge.

With this work, we want to make the wiring process as simple as the component selection

process. It should be enough for a developer to understand the relation introduced by a

given wiring on a conceptual level to select and use the right wiring to construct the wanted

application.

Several other people in the research community also noticed this problem. Most of the

research effort was invested in the promotion of wiring to a first class object. I.e. it must be

possible to define, save and reuse wiring independently from the components. However, it

was unclear how this could be achieved. One of the promising solutions was the

introduction of connectors [Ducasse, 1997;Pintado, 1992]. In very rough terms: "package

the glue code in a component to make it reusable". However, this solution tends to shift

the problem to connecting connectors with components.

While we were searching for a better solution for the wiring problem, design patterns

[Alpert, 1998;Gamma, 1995;Lajoie, 1994;Mikkonen, 1998;Riehle, 1997] came into view.

Many design patterns contain exactly the kind of information you would expect in reusable

wiring schemes. An observer pattern not only explains that it is a good idea to split a view

from its model, but also indicates how these roles should work together to obtain this split.

What's more, it does so independently of a specific implementation. This was exactly what

we were searching for. However, design patterns have one main problem to make them

useful for our problem. Design patterns are not formally defined. They contain natural

PacoSuite

40

language descriptions, sketchy UML [UML, 2001] diagrams and implementation examples.

To build automatic tool support based on these patterns involves a formalization phase.

The question whether this is desirable or not is still an open discussion (see [Coplien, 1996]

for a typical discussion between the main players in the field). The main argument of the

group against formalization (including the inventors of patterns) is that formalizing

patterns make them less reusable. The group in favor of formalization claims that design

patterns need to be formalized to define what they are and to build tool support on top of

it.

We agree with both points of view. Therefore, we propose to combine both approaches.

Informal design patterns are a great way to learn developers how they should design an

application. Formally, described design patterns are better to describe the situation in a

given application. I.e. to pass experience one should use the informal version, to document

existing software artifacts it is better to use a more formal flavor because it allows

automatic tool support. As components already exist, it is natural to use a more formal

description to document them.

We are only interested in the formalization of the interaction between roles in a design

pattern. We are not trying to formalize what the component does, only how the

component is used. A formalization of role interactions is what we call a "composition

pattern". A composition pattern thus formally describes the interaction between a set of

roles. A role can be considered as a “placeholder” for a component. I.e. a composition

pattern describes the interaction between an abstract set of roles and these roles can be

filled by different components for every other application.

In this view, a role can be considered as an abstract component that is mapped on a real

component at composition time. It is clear that the interactions between these abstract

roles are also abstract interactions. This means that at composition time not only the roles

of a composition pattern are mapped on real components but also the interactions between

these roles are mapped on real component interactions.

PacoSuite

41

3 Documentation
“What do you mean? Do you wish me a good morning, or mean that it is a good morning

whether I want it or not; or that you feel good on this morning; or that it is a morning to be good

on?”

- Gandalf (J.R.R. Tolkien – Lord of the Rings)

“The trouble was that he was talking in philosophy, but they were listening in gibberish.”

- Terry Pratchett, Small Gods

PacoSuite

42

3.1 Introduction
In this chapter, we introduce the kind of documentation we use. As explained earlier we

want documentation that supports the combination of components based on typical

composition patterns and we want this process to be supported with automatic

compatibility checking and automatic glue code generation. We first make four

observations to aid in the definition of the set of requirements for our component and

composition documentation. These requirements are then used to check existing

documentation techniques for their suitability. Finally, in the last section of this chapter we

present our documentation.

3.1.1 Observation 1: Usage Differs from Functionality
Today most function libraries are documented with a description of the syntax and a

natural language description of every API call (this is documentation on level 1 and level 2

in [Beugnard, 1999]). It seems natural to use the same kind of documentation to document

components. However, a component differs fundamentally from such a function library as

it maintains state. This introduces the need to document the dependencies between the

various methods that can be called on a component (this argument also holds for a class in

OO languages). To use a component one needs to know the protocol it uses to interact

with its environment to accomplish the desired behavior1. This new dichotomy was nicely

summarized by Allen and Garlan in [Allen, 1994a] were they distinguish between

implementation relationships and interaction relationships of software modules or

components:

"Whereas the implementation relationship is concerned with how a component achieves its computation, the

interaction relationship is used to understand how that computation is combined with others in the overall

system".

A typical example of this situation can be found in the client network component we use in

our exam construction kit. Table 1 describes the interface of this component.

1 In general one needs to know a lot more than the interaction protocol and the functionality of a component alone, to use

it. Typical extra information includes platform requirements, performance, dependencies, version information, etc. In
this section, we concentrate on the difference between usage, functionality and implementation only.

PacoSuite

43

API Events
SetHost(host) connected
SetPort(port) disconnected

Connect() connectionFailed
Send() dataReceived(String aString)

DisConnect() dataSent(String aString)
Table 1: API of the NetworkClient component

Describing the effect of every call gives the user a good idea of what this component does.

To use this component on the other hand we also need to know that before we call the

“connect” method, we need to call “setHost” and “setPort” to specify where we want to

connect. After the connect call we need to wait for the “connected” event before we can

call the “send” method and so on. A developer typically uses his or her domain knowledge

to deduce this kind of usage information. However, we need to document this protocol

explicitly to allow automatic composition checks. In general, we need both kinds of

documentation to do a meaningful composition. In this work, we focus on the usage

aspects.

3.1.2 Observation 2: Components Have More Than One Use
This observation is not about the fact that a component can be used in many different

occasions in many different places, but rather that there exist a different usage protocol for

each behavior that is supported by a component. A good example is provided by a generic

network component we use in our experiments. This component can be used both as

network server and as a network client, it supports sending strings or streaming video, it

further supports the management of its clients (it allows to add, delete and get info of all

network clients). It supports both point-to-point communications and broadcast

communication. It is clear that setting up such a component as a client for example differs

fundamentally from its set-up as a server. Therefore, good usage documentation should

document all kind of uses for the given component. This is clearly impossible. The

developer of a component cannot foresee all the uses that are going to be made of this

component. However, we believe that providing the most typical scenarios already covers a

huge range of uses. Take for example a look at the simple JButton component in the Java

Development Kit. The API of such a component is large (11 API calls on its own and

more than 150 inherited from its ancestors). The use of such a component however is

nearly always the instantiation of the button with a given label, followed by the

subscription of the interested components on its “actionPerformed” event.

PacoSuite

44

3.1.3 Observation 3: Not Everything Is In A Name
Relying on the semantics derived intuitively from the name of an API call or its natural

language documentation works surprisingly well (it is by far the most often used technique

today), but it is clear that there remains a lot to be wished for. A simple search in the JDK

class library on the word “update” results in 52 hits. Comparing the real meaning of these

API calls reveals that the use of the “update” API covers very different meanings. In

graphical components, this call typically results in an update of the user interface, while in

security components; update is usually used to recalculate the security certificate. In

general, natural language descriptions work fairly well for interpretation by humans, but it

is very hard to create automatic support and tools for component composition.

3.1.4 Observation 4: Composition Patterns Need to be First Class
Even with a very good documentation on how to use one component, it still remains

difficult to know how to compose a set of components. The success of design patterns

[Alpert, 1998;Gamma, 1995;Lajoie, 1994] proves this point for standard program

constructs. Even when a developer masters a given class library and programming

language, he still needs to know standard compositions. Take for example the visitor

pattern. Suppose a given class supports a way to accept a visitor and that this behavior is

clearly documented. Another class is a visitor and also describes clearly how it behaves.

Without a generic introduction on how a visitor communication works, it will be very

difficult to compose these classes in the right way.

This means that composition documentation is more than a mere aggregate of the

interaction protocols of the components it composes. This view is not new. It was already

recognized in [Ducasse, 1997].

“Describing software architectures in terms of interaction relationships between components brings us closer

to a compositional view, and hence a more flexible or open view of an application [Nierstrasz, 1995]. First-

class connectors allow us to view an application's architecture as a composition of independent components.

We gain in flexibility, since each component could engage in a number of different agreements, increasing the

reuse potential of individual components. Separating connectors from the components also promotes reuse and

refinement of typical interaction relationships. It opens the possibility of the refinement of connectors and the

construction of complex connectors out of simpler ones.”

However, while the need for first class compositions was recognized at that time, this idea

is still not used in the current practice of component composition and documentation.

PacoSuite

45

3.2 Requirements
In the previous section, we made four observations about current component and

composition documentation. In the first two observations, we explain that “usage” or

“interaction” documentation for a component differs from documentation on what the

component does. We also note that components typically have more than one way of

interacting with other components. In the fourth observation, we recognize the need to

consider compositions as first class objects. Based on these observations we search for

documentation to specify:

• The sound or typical “usage(s)” of a component.

• Known and generic composition patterns.

As we already mentioned we are searching for component and composition

documentation to support automatic compatibility checking and automatic glue code

generation. More precisely, we search for documentation that allows us to:

• Check compatibility automatically in the sense that the interaction protocol

between a set of components complies with a given composition pattern (see

further for a more exact definition).

• Generate glue code automatically to obtain a working composition of components

as specified by a composition pattern.

This leads us to documentation techniques that specifically describe interactions between

software modules or components. Examples of this kind of documentation are found in

protocol checking literature. This literature also provides typical compatibility checks. An

interesting check in this context is a check for deadlock freedom. We explain further in this

work how we distinguish between two different versions of deadlock freedom. A local

check where a component is checked against its corresponding role in the composition

pattern and a global one where a set of components is matched against a composition

pattern. In the following section, we review some of the documentation techniques that are

used in the context of protocol checking and interaction specifications. We reflect on how

these techniques can be used to document component usage scenarios and composition

patterns. We also check if these techniques are suitable to perform the compatibility

checking and the automatic glue code generation. Finally, as we believe that many of these

techniques are not used because of their formal nature, we also assess the acceptance of the

technique as a measure for its ease of use.

PacoSuite

46

3.3 Existing Documentation Techniques
In this section we review some of the documentation techniques that are used in the

context of protocol checking and interaction specifications. We reflect on how these

techniques can be used to document component usage scenarios and composition

patterns. We also check if these techniques are suitable to perform the compatibility

checking and the automatic glue code generation. Finally, as we believe that many of these

techniques are not used because of their formal nature, we also assess the acceptance of the

technique as a measure for its ease of use.

3.3.1 Communicating Sequential Processes (CSP)
The Communicating Sequential Processes (CSP) language [Hoare, 1985] was introduced by

C. A. R. Hoare to describe patterns of communication between parallel processes using

algebraic expressions. These may be manipulated and transformed according to various

laws in order to establish important properties of the system being described. Behind CSP

lies a mathematical theory of traces, failures and divergences. Traces define the operational

model of CSP, while failures and divergences define abstract sets representing

circumstances under which a process might be observed to go wrong. The model supplies

a precise mathematical meaning to CSP processes, and is consistent with the algebraic laws

that govern them.

In the standard operational model of CSP, processes are represented by transition systems.

There is a close relationship between the operational model of CSP and the Failures-

Divergences model, which means that the former may be used to prove properties of a

system, phrased in terms of the latter.

CSP is a mathematical notation. However there are a number of concurrent programming

languages based on CSP, such as OCCAM [INMOS, 1988] and ADA [ADA, 2001]. Thus,

theoretical results derived using this model are applicable to real programming.

CSP is a very general model to describe communication between processes. The price for

its expressive power is that many interesting properties (as deadlock freedom) are not

decidable in general.

“The problem of determining whether any given concurrent system can ever deadlock is similar to the famous

halting problem of Turing machines – it is undecidable. This means that there can never be an algorithmic

method for proving deadlock freedom which will work in the general case.” [Mairson, 1989]

Deadlock freedom is proven for many special cases and for many restrictions of the

general model. However, this mainly reduces the model to a less general formalism. A

PacoSuite

47

promising approach in this field is the work done by Jeremy Martin where the formal basis

of CSP is used to prove and construct “rules of thumbs” (or design patterns) for

developers and designers to construct deadlock free systems [Martin, 1996].

Thus, while it is easy to specify a system in terms of CSP specifications (using ADA or

OCCAM for example), it is not easy to perform a compatibility check based on these

specifications. These restrictions always render a system with the expressive power of finite

state processes. In that case, it seems natural to use state diagrams as notation rather than

these restricted versions of CSP.

3.3.2 Petri Nets
Petri Nets is a formal and graphical appealing language, which is appropriate for modeling

systems with concurrency. Petri Nets has been under development since the beginning of

the 60'ies, where Prof. Dr. Carl Adam Petri defined the language [Petri, 1962]. It was the

first time a general theory for discrete parallel systems was formulated. The language is a

generalization of automata theory such that the concept of concurrently occurring events

can be expressed. It has since then been the subject of extensive study in the academic

world.

This model is widely used as a research tool and is backed by a considerable amount of

theory. Important properties for our research as deadlock freedom and liveness are at least

for standard Petri Nets decidable [Esparza, 1994] although they often require exponential

time. There also exists a lot of tool support to analyze Petri nets. This makes it an

interesting choice. The only disadvantage is the academic nature of this model. It is very

hard to convince developers to document their systems using Petri nets.

3.3.3 State Diagrams
State transition diagrams have been used right from the beginning in object-oriented

modeling. The basic idea is to define a machine that has a number of states (hence the term

finite state machine). The machine receives events from the outside world, and each event

can cause the machine to transition from one state to another.

State transition diagrams were around long before object modeling. They give an explicit,

even a formal definition of behavior. A disadvantage of them is that you have to define all

the possible states of a system. While this is all right for small systems, it soon breaks down

in larger systems, as there is an exponential growth in the number of states. This state

explosion problem leads to state transition diagrams becoming far too complex for much

practical use. To combat this state explosion problem, object-oriented methods define

PacoSuite

48

separate state-transition diagrams for each class. This pretty much eliminates the explosion

problem since each class is simple enough to have a comprehensible state transition

diagram. (It does, however, raise a problem in that it is difficult to visualize the behavior of

the whole system from a number of diagrams of individual classes - which leads people to

interaction diagrams).

The most popular variety of state-transition diagram in object-oriented methods is the

Harel Statechart [Harel, 1987]. This was introduced in OO modeling by

Rumbaugh[Rumbaugh, 991], taken up by Booch [Booch, 2001] and adopted in the UML

[UML, 2001]. It is one of the more powerful and flexible forms of state transition diagram.

A particularly valuable feature of the approach at the analysis phase is its ability to

generalize states, which allows you to factor out common transitions. They also include

concurrent state diagrams, allowing objects to have more than one diagram to describe

their behavior.

State diagrams have a firm formal basis in finite state machines. This theory provides us

with algorithms for equivalence checks, intersection and difference calculation (product

automaton) and the calculation of a parallel composition (shuffle automaton) [Hopcroft,

2001].

The weak point of state diagrams to describe compositions of components is it lack of

addressing. In general, a state machine receives events and broadcasts events from and to

an “environment”. They do not support further identification of this environment or of

the communication channels used.

This issue is addressed in many extensions on state machines. Among these, SDL

[Ellsberger, 1997] is one of the best-known formalisms. The theory to deal with these

addressing issues is also very well covered in the protocol checking, conversion and

adaptation literature. One of the best descriptions on how state machines can be extended

with addressing and used to check interactions between components can be found in

[Brand, 1983]. This work is extended and improved by Zaremski [Zaremski, 1997],

Reussner [Reussner, 1999]and Yellin and Strom [Yellin, 1994a;Yellin, 1994b].

State charts comply very well with our requirements except maybe for there ease of use.

3.3.4 Sequence diagrams
A sequence diagram shows a typical interaction between a number of parties over time. It

shows the parties participating in the interaction and the messages that they exchange.

These messages describe a communication between parties and the receipt of a message is

PacoSuite

49

normally considered as an event. Parties can be abstract entities as roles or implementation

entities as software modules, objects and components.

Sequence diagrams where first popularized by Jacobson [Jacobson, 1992] but by far the

best-known sequence diagram notation is the UML sequence diagram [UML, 2001]. The

latter is not the most expressive notation though. The most serious limitation is it lack of

support for loops and optional parts and its awkward definition of alternative constructs

(this is done by specifying conditions on a message per message base).

A more complete and expressive version of sequence diagrams is Method Sequence Charts

(MCS’s). These sequence diagrams are typically used for the formal specification of

telecommunication protocols (often in combination with SDL [Ellsberger, 1997]). The first

formal version called MSC’92 was standardized by the ITU as Z. 120 [MSC, 1993]. MSC’92

had more or less the same expressive power as the UML sequence charts. This version

evolved in MSC’96. As this new version supports basic messages, loops and alternatives it

has at least the power of regular expressions and improves considerable on the “single

trace” semantics of the UML sequence diagram.

This kind of documentation is widely used and fulfils most of our requirements. Sequence

diagrams in UML are typically used to define use cases [Jacobson, 1992] and are thus very

well suited to describe “usage information”. Their correspondence with regular expressions

means that we have algorithms to translate sequence diagrams to state machines and vice

versa (see [Hopcroft, 2001] pp 91-104). This allows us to use sequence diagrams as

notation and use state machine theory to do the compatibility checks.

3.3.5 Collaboration diagrams
In collaboration diagrams example objects are shown as icons. Arrows indicate the

messages sent in the use case. A sequence is indicated by a numbering scheme. Simple

collaboration diagrams simply number the messages in sequence. More complex schemes

use a decimal numbering approach to indicate if messages are sent as part of the

implementation of another message. In addition, a character can be used to show

concurrent threads. The UML notation guide describes the relation between a sequence

diagram and a collaboration diagram as follows:

“A pattern of interaction among instances is shown on an interaction diagram. Interaction diagrams come

in two forms based on the same underlying information, specified by an interaction, but each form

emphasizing a particular aspect of it. The two forms are: sequence diagrams and collaboration diagrams.

Sequence diagrams show the explicit sequence of stimuli and are better for real-time specifications and for

PacoSuite

50

complex scenarios. Collaboration diagrams show the relationships among instances and are better for

understanding all of the effects on a given instance and for procedural design.” [UML, 2001]

This quote tells us that collaboration diagrams and sequence diagrams have the same

expressive power and that the choice between them depends on the context or even

personal preference. As both presentations have the same underlying model, it is easy to

translate one representation in another.

3.3.6 Summary
The most general of the models described above is CSP. CSP describes protocols as

interacting concurrent processes. In this framework, one can specify all protocols and most

of their properties. The cost of this generality is the undecidability of most properties

[Mairson, 1989]. Therefore, existing methods of analysis use human assistance or take

advantage of the fact that many protocol features do not use all the generality available (as

is done in Wright [Allen, 1994b] for example). This allows a protocol to be analyzed as if it

were described in a less general formalism. A Petri net is a less general model. In this

formalism, protocols are more easily analyzable, and most of the properties we need for

our research are decidable for Petri nets. However, Petri nets are not easy to use and are

therefore mainly used as theoretical background or in very specific domains.

The least powerful model is that of a single finite-state machine describing the system

including all the component processes and interconnecting channels. In this model, only

certain protocols can be described. (For example, a protocol allowing an arbitrary number

of messages in transit cannot be described.) Nevertheless, describable protocols are

relatively easy to analyze in the sense that all properties are decidable by exhaustive analysis.

Therefore extending this model to use one finite state machine for each component and

adding addressing information to define the component interactions combines the best of

both worlds. As state diagrams can be converted in regular expressions (and hence in

sequence diagrams or collaboration diagrams) and vice versa, we have the option to use

sequence diagrams or collaboration diagrams as notation and use state machine theory to

perform the compatibility checks.

PacoSuite

51

3.4 Our Documentation
3.4.1 Introduction
In the previous sections, we introduced a set of requirements describing what we want to

document and we described in very general terms what we want to do with it. As the

documentation we are searching for is mainly interaction documentation (be it typical

composition patterns or typical “usage” scenarios of components) we now turn to the

question how exactly we are going to document this information.

Based on the little survey in the previous section we propose to use a special kind of

Message Sequence Charts (MSC's) [MSC, 1993] for this goal. Each component is

documented with a set of MSC's. Each MSC describes a typical “usage” scenario supported

by the component. The main difference with standard MSC's lies in the signal labels. We

have chosen a compact set of primitives with a predefined meaning. The use of this

standard set of labels avoids the confusion that stems from the interpretation of the

meaning of a set of API calls from its intuitive semantics. Using a standard set of labels

also allows the reuse of documentation. As the usage scenario is no longer bound to one

specific interface, the same scenario can be used to document two different components

that have the same behavior but use other interfaces. We explain later in this work how

these labels are mapped on real API calls and output events. This “interface mapping”

allows us to generate code afterwards.

3.4.2 Scenarios
Figure 8 summarizes our scenario syntax. Our syntax is mainly a subset of the MSC syntax

containing a set of participants, a set of signal sends between these participants and a set of

control. This section describes these syntax elements and their meaning.

PacoSuite

52

primitive

primitive

ALT

primitive
OPT

LOOP

primitive

Component Env1 Env2

primitive

Figure 8: Summary of the scenario syntax

3.4.3 Participants
Sequence charts describe interactions between a number of participants. We want to use

this documentation to document both components and composition patterns. A

component usage scenario describes the interaction for one “main” role (the component

itself) and a set of environment roles. A composition pattern on the other hand describes

the interaction between a set of roles. This introduces a small difference in the way we

document components and composition patterns.

Participants for Components

For components, we introduce "environment" participants. An environment participant

stands for any other cooperating component or glue code. The sequence diagram specifies

a contract for any component or glue code that plays the role of this participant. It

specifies what kind of messages the component expects from its environment and in what

order.

As can be seen a scenario contains exactly one "component" participant. All other

participants are "environment" participants. An "environment" participant is labeled ENVi.

A "component" participant is labeled with the component name. It is important to split up

the behavior to as many environments as possible. If a message could be sent to or

received from a different environment, this should be documented. The reason why is

discussed in detail in section 4.10.

Participants for Composition Patterns

PacoSuite

53

For composition patterns, every participant stands for a role that will be filled by a

component at composition time. A composition pattern specifies a contract that describes

a typical interaction between a set of roles. Thus, composition patterns are described

independently of specific components. This makes these patterns reusable in many

different contexts.

3.4.4 Messages
3.4.4.1 Introduction

Our documentation uses the standard MSC graphical symbols, but the labels for the signal

sends are taken from a compact set of terms with an agreed meaning. Those terms are then

mapped on the API of the component. This stands in contrast with standard MSC's

messages that are expressed directly in terms of API calls. Building automatic tool support

based on concrete API calls is very difficult. The "update" API call in a GUI component

for example has not the same meaning as the "update" API call found in a database

component. It takes a human and a lot of documentation to distinguish the two. This

makes it very difficult to construct automatic tool support. The primitives we propose are

used to map API calls from very different sources. Mapping a set of API calls from one

component on for example the primitive "CONNECT" indicates that these API calls

correspond with a set of other API calls on another component that are also mapped on

the primitive "CONNECT".

The idea to use a small set of primitives was inspired by the natural language research done

by Schank [Schank, 1973]. The exact nature of the language representation used by Shank

is beyond the scope of this work. Suffices it to say that he provides a small set of primitives

with a known meaning together with additional syntax to express any natural language

phrase in a language independent manner. An example of such a translated sentence is

given in Figure 9. “PROPEL” is one of the primitive actions with an agreed meaning. The

additional syntax shows that “John” initiates the “PROPEL” action and that “Ball” is the

object of the action.

John PROPEL Ball
O

“John throws the ball”

Figure 9: Research by Shank for a minimal set of primitives to
bring natural language to a canonical form

PacoSuite

54

The important concept behind this research is the difference between the associative

theory of meaning and the constructive theory of meaning. The associative theory of

meaning tries to define the meaning of concepts by relating it to other concepts. An often-

used analogy is to try to learn a foreign language by tracing the explanation of a word in a

dictionary. Many analysis techniques are implicitly based on the associative approach. Take

for example an association between two classes in a UML static structure diagram. This

diagram implies that there exists a relation between these two classes without defining the

meaning of the classes. This diagram informs the developers that the system contains two

entities that are related. Without further information, the developer could extract the main

structure of the system, but it is doubtful that the same technique can be used to describe

the meaning of every entity.

The constructive approach on the other hand starts with a set of known concepts and

relates all other concepts to these. The latter approach is the basis of the research of Shank.

In many formal systems this approach is used were meaning is based on mathematical

concepts. While it is possible to document the meaning of every API call in these formal

systems, this is often overkill for the properties we want to check. Therefore, we try to

bridge the gap between these full-fledged formal systems and informal documentation, by

introducing concepts in between by definition and relate the meaning of API calls to these

concepts.

Figure 10 shows the set of primitives we use in our experiments. These primitives are

classified in a simple hierarchy. This hierarchy is used during the matching process

described further in this text in the sense that we allow subtypes to map on super types and

vice versa.

Important note:
This set of primitives is just a proof of concept. We do not claim that this is the only set of

primitives or even that it is a good set of primitives. We use this set for our experiments

only. However, it gives indications on how such a set should look like and how it can be

organized.

From our limited experience in building a set of primitives for our experiments, we learned

that it is very hard to come up with a general set that is usable for all kinds of domains.

One should rather construct a set of primitives for a specific application domain.

Therefore, we state that this approach is especially useful to build "construction kits". It

gives developers the opportunity to build a set of components and to document for that

PacoSuite

55

set how they should be used and combined. Part of this research is done for the Advanced

Internet Access (AIA) project [Wydaeghe, 2000] were we try to build construction kits for

Internet services. For this project, we built a construction kit that allows us to build all

kinds of distributed exams for the Internet (real time, offline, multiple choice, open

questions, authorized, non authorized, with or without multimedia, etc.).

The set we present in Figure 10 proved to be sufficient to document all components and

composition patterns in this construction kit. This set was constructed during an iterative

process of several months. We started with a basic set of primitives that simply seemed to

be reasonable and adapted it based on the feedback from people documenting the exam

components and composition patterns.

Reference

Connect

Disconnect

Subscribe

Unsubscribe

Link

Create

Destroy

Start

Stop

Suspend

Resume

Control

Get

Set

Stream

Send

Notify

Data

Signal

Figure 10: Set of Primitives

The agreed meaning for this set of primitives is given in Table 2. The meaning for the

higher order primitives is defined by the aggregate of the meaning of its children. The

meaning is given from the viewpoint of the initiator. If a message is labeled with SEND

going from party one tot party two, it is clear that one party actually sends data, but the

other party receives this data. The latter is not indicated in the table.

LINK PRIMITIVES
Reference Acquire an explicit link to another participant
Connect Initialize a communication link with another participant
Disconnect Stop a communication link with another participant
Subscribe Register with another participant.

PacoSuite

56

Unsubscribe The unsubscribing participant expects that “Notify” messages be no
longer sent to him from the other participant.

CONTROL Primitives
Create The participant creates a participant.
Destroy The participant destroys a participant.
Start Request to start a service on a participant
Stop Request to stop a previously started service on a participant
Suspend Request to suspend a service on another participant
Resume Request to resume a previously suspended service on another participant

DATA primitives
Get Fetch data from another participant
Set Set data on another participant
Stream Continuously receiving or sending data from or to another participant.
Send Instantaneously receiving or sending data from or to another participant.
Notify Inform an other participant

Table 2: Agreed meaning of primitives

The previous table only gives an intuition for the meaning of these primitives. In practice,

the meaning and the differences between these primitives are established during multiple

iterations and during actual use. It is just a set of agreements between people providing a

set of component usage scenarios and their typical composition patterns.

3.4.4.2 Hierarchy of Primitives

As can be seen in the set of primitives presented in Figure 10, we introduced a hierarchy in

our messages. The signal primitive is the most general one. We want this primitive to match

with any other primitive. We recognized the need for this kind of hierarchy while modeling

very general components. A typical example is the JButton Java Bean included in the Java

Development Kit. This very standard button sends out an event each time it is pressed. Of

course, this button also supports a list of other behavior (setting its caption, size, icon,

events for mouse clicked and mouse released, etc…), but we restrict ourselves to the

typical use of this button: sending out an event whenever it is pressed.

PacoSuite

57

JButton Env: aListener

LOOP

SIGNAL

Env: anInitiator aComponent

CREATE

Env: anInitiator aComponent

START

Env: anInitiator aComponent

SEND

Figure 11: Why a hierarchy in primitives is needed.

Without hierarchy we would document this button with a loop over the NOTIFY

primitive. This would mean that a button could only be combined with another

component that waits for a NOTIFY message (see section 4.5 for a definition of

compatibility). This is not what we want. We want to be able to express that whenever the

button is pressed it needs to start another component or that it needs to send a string over

a network, or anything we can imagine. The problem is that anything can happen because

of pressing a button. Therefore, we model a button as a loop over the SIGNAL primitive

(Figure 11). Now the button defined in the left part can be matched with any of the

components on the right side of the picture.

The same argument does not hold for messages that are called on a component. While an

output event can result in all kinds of actions, a method call always means the same thing.

Specifying both the output events and these message calls in generic terms reduces the

value of the compatibility check. This leads us to the following rule of thumb:

In general one should document output events of components (outgoing messages from

the component participant) using the most general primitive that is applicable, while

messages that are called on a component should be documented as specific as possible.

3.4.5 Control Blocks
We use the OPT, ALT and LOOP keywords from the MSC syntax. The OPT keyword

means an optional block and the ALT keyword indicates alternatives. The LOOP keyword

indicates iteration over a part of the scenario (i.e. zero or more times).

PacoSuite

58

3.4.6 Mapping
For components only, we also provide the mapping between the set of primitives we use in

the MSC’s and the real API calls and output events. This gives the possibility to deduct

how a given component implements a required behavior. To be complete, two different

mappings should be provided: one to map participants in the composition pattern to

components and one to map primitives to API’s.

Every participant of a composition pattern should be linked with an existing component.

The “environment” participants are mapped later to other components automatically (see

the matching process in chapter 4).

The mappings allowed for primitives on API calls are different for outgoing messages as

for incoming messages.

We allow every outgoing primitive to be mapped to one event or to a set of alternative

events. We allow the latter because it provides a better alternative for non-deterministic

documentation. A little example makes this clear. A typical interaction between a user

interface and a FTP component is a request to make a connection to a given host followed

by a notification of “success” or “failure”. If we do not allow the “success” and the

“failure” event to be mapped on the same NOTIFY primitive we would obtain non-

deterministic behavior at the primitive level. Indeed, we would need to document this

interaction as a REQUEST followed by an alternative where both options contain a

NOTIFY primitive with the first one mapped to “success” and the second one to

“failure”. This leads to serious problems in compatibility checking and for the code

generation (For a discussion on this kind of non determinism see section 4.11). Now,

suppose that the user interface component only wants to print the result of the connect

request. In that case, we want to specify that, whatever event is thrown as result we want to

invoke some kind of display method on the user interface (if we do feel the need to specify

different traces, this means that the set of primitives is not specific enough). Allowing an

outgoing primitive to be mapped on several output events allows us to do just that, making

the documentation of components much more natural.

We allow incoming primitives to be mapped to one API call or to a sequence of API calls.

Allowing incoming primitives to be mapped on a set of alternative API calls makes it

impossible to generate code automatically. (In practice, we also allow this option in our

tool and we rely on user input during the code generation process to make the choice).

Finally, if a primitive term is contained in a LOOP block this term is mapped only once.

PacoSuite

59

3.4.7 Documenting Components and Composition Patterns
The documentation introduced in the previous sections is used to document both

components and composition patterns. The documentation for components is

straightforward. For every component a usage scenario describes the interaction of the

component with its environment. Thus, our component documentation contains exactly

one main participant and a set of environment participants. It also contains an

implementation mapping for every message used in this usage diagram. In Figure 12 we

depict the documentation for our UserExamControl component. This component

provides a user interface for multiple-choice exams. This component is launched by a

“setVisible” call. From then, it starts to receive commands and it sends the selections done

by the user to an environment.

LOOP

Env:Launcher

START

ALT

UserExamControl Env:UserExamListener

setVisible

PERFORM
doCommand

answerSelected|...
DATA

Figure 12: Documentation of the driving exam client interface

Composition patterns are documented in a very similar way. I.e. a composition is also

documented using a scenario that uses the fixed set of primitives we introduced. A

composition pattern describes the interaction between a set of role and can thus be viewed

as a kind of use case for (a part of an) application. As a composition pattern describes an

interaction between roles, it does not contain environment participants or implementation

mappings. A composition pattern is a high level description of the cooperation between

several roles without any indication on how this cooperation will be implemented. Figure

13 depicts a composition pattern describing the interactions between a network role (i.e. a

role that provides access to a network) and a role using this. As you can see, the only

difference with the component documentation is that the primitives are not mapped on

concrete API calls and there is no longer a “main” role depicting a specific component.

PacoSuite

60

LOOP

NetworkUser

ALT

Network

SEND

PERFORM

CONNECT

DISCONNECT

Figure 13: Network Interaction Composition Pattern

PacoSuite

61

4 Matching
“Wherever there is modularity there is the potential for misunderstanding: Hiding information

implies a need to check communication.”

- SIGPLAN Notices Vol. 17, No. 9, September 1982, pages 7 – 13

"It is easier to change the specification to fit the program than vice versa."

- SIGPLAN Notices Vol. 17, No. 9, September 1982, pages 7 – 13

PacoSuite

62

4.1 Introduction
This section is about compatibility checking. In the previous chapter, we introduced our

proposal for documenting components and composition patterns. The goal of this

documentation is to facilitate the component composition process. More specific, we

envision a tool were a set of components and composition patterns are selected to build a

component-based application. Once the composition pattern and the components are

chosen, the developer indicates which components map on which roles in the composition

pattern.

The next step is to check the compatibility between this set of components and the

composition pattern. This is the focus of this chapter. To do this we use automata theory.

This involves transformations from usage scenarios and composition patterns to automata.

The resulting automata of these transformations are called component automata and

composition automata respectively. On these automata, we then define our notion of

compatibility. We distinguish between the compatibility of a component with a role and the

compatibility of a set of cooperating components as specified by the composition pattern.

Part of the ideas in this chapter are based on existing theory but an important other part is

the result of explorative research. This means that every idea was implemented in our

prototype implementation and tested. These tests then inspired improved algorithms

and/or new theory. This means that the algorithms and definitions in this chapter present

the current status of our research. We only present the latest version and we do not

describe the intermediate solutions that lead to the current algorithms and definitions.

There are some exceptions however. We present for example two algorithms to perform

global compatibility checking. The second version was inspired by the performance

problems with the first algorithm. However, we do discuss both versions here because they

both have their virtues. The first algorithm is intuitive and easy to implement, while the

second alternative is more efficient.

The structure of this chapter is as follows. First, we define the transformation of usage

scenarios and composition patterns to automata. Next, we introduce a set of operators on

these automata. Using these definitions and operators we then define our notion of

compatibility. After that, we present first an algorithm to check local compatibility and an

algorithm to check global compatibility. For this global check, we provide two alternatives.

In the final sections of this chapter we describe in more detail how the component/role

mapping is used and we describe algorithms to search for suitable role/component

PacoSuite

63

mappings automatically. We also describe an additional compatibility check, to check the

mapping of environment participants on roles. Finally, we explain the effect of the message

hierarchy we introduced in section 3.4.4.2 and we discuss the issue of non-determinism.

PacoSuite

64

4.2 Mapping MSC’s on Automata
In the previous chapter, we introduced a special kind of sequence charts to document

usage scenarios and composition patterns. We want to use this documentation to perform

compatibility checking. While MSC’s are easy to use for the end user, it is better to work

with automata for the actual compatibility checks. In this section, we describe how we

translate component usage scenarios and composition patterns to component automata

and composition automata. These automata are defined further in this section.

As the scenarios we use are directly compatible with regular expressions, the conversion to

a DFA seems to be straightforward. The interested reader can find proves of equivalence

between regular expressions and automata in [Hopcroft, 2001]. A summary of the

conversion is depicted in Figure 14.

x

A*
LOOP

A

ALT
A

B

(A | B)

x

ALT
A

OPT
A

x

εεεεεεεε

εεεε

εεεε

εεεεεεεε

εεεε

εεεεεεεε

εεεεεεεε

εεεε
A B

A

Sequence Chart Regular Expression State Machine

(A | εεεε)

A

A

B

A

A BB

(I.e. connect the end state of A with
the start state of B)

Figure 14: Converting sequence charts to automata

If we do not want to lose information during this transition, we need to label the

transitions of the resulting component and compositions automata with more than the

message label alone. Especially the direction of the messages is important. Therefore, we

add “Out” or “In” to the transitions of a component automaton to indicate incoming and

outgoing messages from the viewpoint of the component. An example of this conversion

is depicted in Figure 15.

PacoSuite

65

Env1 Env2 C

A

A

1 2 3

A, In, C A, Out, C

Figure 15: Adding "relative" direction for component usage
scenarios.

In this conversion, we loose the environment mapping information. I.e. we do not

distinguish anymore between a message A coming from Env1 and a message A coming

from Env2. We come back on this issue in section 4.9. For now suffices to say that we

ignore environment mappings in our compatibility checking algorithms and that we

perform an additional check afterwards to deal with them.

To convert composition automata we need to do one extra step. Note that every transition

in a component automaton is either an incoming message or an outgoing message.

However, if we use again the standard conversion algorithm [Hopcroft, 2001] on

composition automata we end up with transitions that specify the sending and receiving of

a message in one transition. Therefore, we split every message of the composition

automaton in a sending and a receiving part. Thus, every message in a composition

scenario results in a sequence of two transitions. The first transition is labeled with the

message going out of a role and the second transition is labeled with the message going in a

given role. The result is depicted in Figure 16.

1

A, Role1, Role2

2

1

A, Out, Role1

2 3

A, In, Role2

Role2Role1

A

Figure 16: Splitting messages in the composition pattern into a
sending and a receiving part

PacoSuite

66

4.3 Definitions: Component Automata and Composition Automata.
The results of the mapping described in the previous section are component and

composition automata. These automata are defined as follows:

PacoSuite

67

DEFINITION: Component and Composition Automaton

Component and composition automata are both standard deterministic automata.

They are defined by the well known five tuple (S, q0, F, succ, Σ) where

• S = set of states
• q0 = initial state ∈ S
• F = set of final states ⊆ S
• Σ = a set of labels
• succ is a partial function mapping S x Σ → S. succ(s,α) is the state entered

after the label α is accepted in state s.

The difference between the composition automata and the component automata lies

in the structure of their labels.

A label of a component automaton corresponds with a message in the component

usage scenario. It is a four tuple (name, direction, component, implementation). For

a component usage scenario of a component c with a set of environment

participants E, this five tuple is defined as follows:

• name ∈ {signal, notify, set,…} the set of primitive messages for the
application domain

• direction ∈ {In, Out}
• component = c
• implementation is the actual implementation in terms of the interface

of the component. This is a set of output events if direction = Out
and a list of API calls if direction = In

It is important to note that all component automata need to be complete. Complete

here means that the alphabet of a component automaton always contains all possible

labels corresponding with a message received or sent by its corresponding

component c. Thus ∀ name ∈ {signal, notify, set,…}: ∀ direction ∈ { In, Out}:

(name, direction, c) ∈ Σ

Likewise, a label of a composition automaton corresponds with a message in the

corresponding composition pattern. It is a four tuple (name, direction, source,

destination) expressed in terms of the set of roles R of this composition pattern

where:

• name ∈ {signal, notify, set,…} the set of primitive messages for the
application domain

• direction ∈ { In, Out}
• role ∈ R (r is the role that sends the message if direction = Out and r is

the role that receives the message if direction = In)

PacoSuite

68

4.4 Operations on Component and Composition Automata
In the following, we often use a set of operations on the component and composition

automata defined above. These are introduced here.

4.4.1 Projection of a composition pattern automaton
The projection of a composition pattern CP to a role R is the restriction of this

composition pattern to the interactions that have role R as source or destination.

DEFINITION: Projection of a composition pattern to a role

We denote the projection of a composition pattern CP to a role R as:

PR(CP)

It can easily be constructed from the full composition pattern by replacing all

transitions that are labeled with a message that does not interact with role R (source

and destination ≠ R) with an epsilon transition. Calculating the epsilon closure of this

automaton calculates the projection. The set of messages of the projection is the

original set without these non-interacting messages. The set of roles of the

projection is the original set of roles without the roles that are not the source or the

destination of any message in the new set of messages.

4.4.2 Applying the role map function
In the following, we often need to replace every occurrence of a role name in the messages

of a composition automaton with its corresponding component name. Labels of a

composition automaton are four tuples containing source and destination roles. To allow

us to compare composition automata and component automata we translate these role

names in the component names based on the mapping given by the user. This operation is

defined here.

PacoSuite

69

Applying Role/Component Map Function

Let CP = (S, q0, F, succ, Σ) be a composition automaton

Let MAP be a total function that maps role names on component names if the role

is mapped on a component and is the identity function if the role has not been

mapped on a component.

Then CPMAP = (S, q0, F, succ, Σ’) denotes the composition automaton after applying

the MAP function to CP

⇔

Σ’={m = (name, direction, component) |∃ m = (name, direction, role) ∈ Σ:

MAP(role) = component)

4.4.3 Parallel Composition
To provide a more formal basis to our algorithms we introduce the parallel composition

operator for component and composition automata in analogy with the parallel

composition operator of CSP. We use this operator later to prove equivalence of our

compatibility checking algorithms. It describes both the independent execution of each of

the components as well as the performance of a joint step.

We define the parallel composition for component and composition automata as follows:

PacoSuite

70

Definition: the parallel composition operator

A parallel combination of two component or composition automata P1={S1, q1, F1,

succ1, Σ1) and P2 =(S2, q2, F2, succ2, Σ2) is described as:

21 21
PP ΣΣ

In this combination, P1 can perform events only in Σ1, P2 can perform events only in

Σ2, and they must simultaneously engage in events in the intersection of Σ1 and Σ2.

There are two rules that define the possible transitions of a parallel combination.

One rule describes the independent execution of each of the components, and the

other describes the performance of a joint step.

()[]

[]21'
2

'
121

'
22

'
11

21

'
1212

2
'

121

'
11

2121

1212

2121

\

Σ∩Σ∈
→
→

→

ΣΣ∈

→

→
→

ΣΣΣΣ

ΣΣΣΣ

ΣΣΣΣ

α

α

α

α

α

α

α

α

PPPP

PP

PP

PPPP

PPPP

PP

This corresponds with a new automaton

(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2) with

succ’: (S1 x S2) x (Σ1 ∪ Σ2) → S:

• succ’([s1,s2],α) = [t1,t2] ⇔ α ∈ Σ1 ∩ Σ2 and succ1(s1, α) = t1 and

succ2(s2, α) = t2

• succ’([s1,s2],α) = [t1,s2] ⇔ α ∈ ()21 \ ΣΣ and succ1(s1, α) = t1

• succ’([s1,s2],α) = [s1,t2] ⇔ α ∈ ()12 \ ΣΣ and succ2(s2, α) = t2

In our definition, we define the result of the parallel composition as a new automaton

where the new set of states is the cross product of the set of states of the component and

composition automata under composition. This is not obvious. If we allow the component

and composition automata to be non-deterministic we need to take the power set of states

PacoSuite

71

and we need to define the transition function in terms of state sets (i.e. we need to define

the result as the cross product of two non-deterministic automata. See [Hopcroft, 2001] for

a definition). Our definition implies that the automata under composition need to be

deterministic. This topic is described in detail in section 4.11.

An intuitive view on the parallel composition is that it allows component or composition

automata to perform their own transitions as long as no synchronization is required.

However, they need to perform a joint step for labels in the intersection of their alphabets.

I.e. they need to agree on common steps, but can go along with their own transitions.

This definition implies that the result of the parallel composition of P1 and P2 with totally

disjoint alphabets results in the shuffle automaton of these two automata. If P1 and P2 have

exactly the same alphabet, this operation corresponds to the intersection of these automata.

4.4.4 Laws for the Parallel Composition Operator.
We need to prove two properties of this parallel composition operator. These properties

are later used to prove equivalence of two algorithms.

Laws for parallel composition

() ()
commPPPP

assocPPPPPP

ABBA

CBABACBCBA

−=

−=
∪∪

1221

321321

(The operator is associative and commutative) (see p.70 [Hoare, 1985]).

PacoSuite

72

4.5 Compatibility
In this section, we define our notion of compatibility for a set of components. The

compatibility definition that is typically found in literature is that every component needs to

be a refinement of the role it is going to play in the composition [Hoare, 1985]. An intuitive

interpretation means that the set of traces of the component is a superset of the set of

traces of the composition automaton (the interested reader is referred to [Hoare, 1985] for

a stronger definition of refinement in terms of failures and divergences). In automata

terminology, this means that the language accepted by the composition automaton is part

of the language accepted by the component automaton. Informally this means that the

component at least offers what the role in the composition pattern asks for, but it allows

components to offer more than what was asked for.

This seems to be reasonable. Indeed components are explicitly built to be reusable and this

implies some level of generality. Components typically offer more services than what is

needed in a given application. Our exam construction kit for example contains a generic

network component that can be used as server or as client. A given application will nearly

never use both functionalities at once. This definition also has the advantage that it is

possible to prove deadlock freedom if the property holds that every component is a

refinement of its corresponding role. I.e. a local check of every component suffices to

know that the global system will not deadlock [Allen, 1997].

However, we also consider composition patterns to be reusable entities. This means that a

generic composition pattern often specifies more than what the components offer. Figure

17 shows a typical composition pattern expressing generic observer behavior. This

composition patterns tries to specify that two roles should be connected using some kind

of observing behavior. It does not care if the observation is done using an active polling

scenario or using a notification scenario. Even if the observation is done, by notification

the observer role can refresh its own data by getting the new data or it can ignore the new

value (an example of the latter is a notification of a simple button press).

PacoSuite

73

LOOP

Observable Observer

GET

SUBSCRIBE

NOTIFY

OPT

UNSUBSCRIBE

GET

LOOP

ALT

Figure 17: Generic observer behavior supporting both polling and notification style

It is clear that we do not want every component that is used in this composition pattern to

implement both possibilities.

However, defining compatibility based on refinement returns a mismatch if a component is

used that does not implement everything that the composition pattern asks for. We think

that this is too restrictive. Based on this observation we introduce our notion of

compatibility in the following sections.

4.5.1 Local Compatibility
Figure 18 depicts a snapshot during the development process of a component-based

application using our approach. At this point a composition pattern with three roles is

dragged on the canvas (see the “use case” notation consisting of an oval with three

connected boxes) and three components are selected to be used in this composition.

By dragging the network component to the "Network" role in the pattern, the developer

indicates that this component should fulfill this role in the composition. The provided

documentation is used to perform a compatibility check between the component and the

composition pattern.

PacoSuite

74

Figure 18: Snapshot of the component composition process

This is a “local” check. I.e. at this point, we can only check the compatibility of one

component with a role in the composition pattern. As we explain later in this text, it is

possible that all components match with their role in the composition pattern, but fail to

match with each other. Therefore, the checking process at this point differs from the global

checking process. We now define our notion of local compatibility.

Definition: Local Compatibility

Let C be a component and R be a role of the composition pattern CP. Further let

L(C) be the language accepted by the component automaton and let L(PR(CP)) be

the language accepted by the automata defined by PR(CP)

Then C is local compatible with R ⇔ L(C) ∩ L(PR(CP)) ≠ ∅

Informally this means that a component is defined to be compatible with a role if they

agree upon at least one trace. This allows a component to offer more than what the

composition pattern (the corresponding role) asks for and it also allows the composition

pattern (the corresponding role) to specify more than what the component offers.

PacoSuite

75

4.5.2 Global Compatibility
The local compatibility definition however looses the nice property that deadlock freedom

follows from the fact that every component is locally compatible with its corresponding

roles. The local compatibility definition only guarantees that there is a common trace

shared by the composition pattern role and the component, but this trace can be different

for every component. An example makes this clear.

Figure 19 depicts a theoretical situation where all the local compatibility checks for the

three components at the left hand side succeed but where there is clearly no trace in the

three components together that matches with the required trace of the composition

pattern. Matching component "C1" with the projection of the composition pattern to role

"R1" renders a non-empty intersection. Both the projection and the component send out

the message "A" and terminate after that. Matching component "C3" with the projection

of the composition pattern around role "R3" also renders a non-empty intersection. Both

scenarios accept a message "B" and terminate. The same goes for component "C2" and the

projection of the composition pattern to role "R2". The component matches with the

second alternative rendering again a non-empty intersection. However, if component "C1"

sends the message "A" to component "C2", component "C2" sends out the message "C"

to component “C3” this component does not accept this message "C".

The local compatibility check only searches for a non-empty intersection between the

component and the role. In this case, the intersections of the components mapped on

interacting roles are disjoint (more precisely the intersection of C2 with R2 and the

intersection of C3 with R3 are disjoint). Informally this means that it is possible for

different components to "select" different traces through the composition pattern that are

not necessarily compatible.

PacoSuite

76

C1 Env

C3 Env

A

B

Env1 C2 Env2

A
C

R1 R2 R3

A
B

A
C

ALT

Composition PatternComponent Usage Scenarios

Figure 19: Why a global check is needed.

From the previous, it follows that we need to take all the components into account to

check a full composition. We show that the parallel composition operator does exactly that.

Let C1,…,Cn be a set of components and let CA1,…,CAn be the corresponding

component automata (i.e. ∀i∈[1..n]:CAi is the component automaton of Ci)

Let CP be a composition pattern with roles R1,…,Rn. Let CPA be the

corresponding composition automaton.

Let MAP be a total function such that ∀i∈[1..n]:MAP(Ci) = Ri

Then ()nCACA L1 describes the concurrent execution of the components,

because the alphabets of these components are totally disjoint.

We want to constrain the set of traces in ()nCACA L1 to the traces as specified by the

composition pattern. We also want to constrain the traces of the composition automaton

to the traces supported by ()nCACA L1 . This means that we need to take the

intersection of these automata. I.e. we need to calculate:

CPA ∩()nCACA L1

However, the alphabet of the composition pattern automaton is totally disjoint from the

alphabet of ()nCACA L1 (which is U
n

i
iCAalph

1

)(
=

) as every label contains a role name

PacoSuite

77

and every label in U
n

i
iCAalph

1

)(
=

contains a component name. Therefore we apply the

role/component mapping first giving a new calculation:

CPAMAP ∩()nCACA L1

The intersection is however only a special case of the operator. It is the parallel

composition of two automata having the same alphabet. Therefore, we extend the

composition pattern with U
n

i
iCAalph

1

)(
=

. Let us denote the extension of the alphabet of

the automaton P with the alphabet of the automaton B as P+alph(B). It is easy to show that

)(
1 iCAalph

i

nMAP
CPA

=
∪+

has exactly the same alphabet as ()nCACA L1 .

Remember that we made the alphabet of the component automata complete. Thus

U
n

i
iCAalph

1

)(
=

contains all labels describing messages that are sent from, or received in,

component C1 to Cn. As we applied the role/component mapping to the composition

automaton, the alphabet of this automaton only contains labels describing messages that

are sent from, or received in, the same set of components2. Thus alph(CPAMAP) ⊆

U
n

i
iCAalph

1

)(
=

and because we extended the alphabet of CPAMAP with U
n

i
iCAalph

1

)(
=

 it

follows that

=
∪+)(

1 iCAalph
i

nMAP
CPAalph = U

n

i
iCAalph

1

)(
=

and thus

=
∪+

n

iCAalph
i

nMAP
CACACPA L1

)(
1

= CPAMAP ∩()nCACA L1 .

All this leads to the following definition of global compatibility:

2 This assumes that all roles are mapped. Our compatibility check fails if this is not the case.

PacoSuite

78

Definition: Global Compatibility

Let C1,…,Cn be a set of components. Let CA1,…,CAn be the corresponding

component automata (i.e. ∀i∈[1..n]:CAi is the component automaton of Ci)

Let CP be a composition pattern with roles R1,…,Rn. Let CPA be the

corresponding composition automaton.

Let MAP be a total function such that ∀i∈[1..n]:MAP(Ci) = Ri

Then CP is global compatible with C1,…,Cn

⇔

=
∪+

n

iCAalph
i

nMAP
CACACPAL L1

)(
1

≠ ∅

Informally this means that we define a set of components to be compatible with a

composition pattern if the composition pattern specifies at least one trace that is part of the

set of possible traces resulting from the parallel interleaving of these components.

PacoSuite

79

4.6 Local Check
We introduced our notion of local compatibility in the previous section. This section deals

with the practical implementation of this check. The local check is a straightforward

implementation of our compatibility definition. The local compatibility check involves four

steps:

1. Convert the usage scenario of the component and the composition pattern to a

component automaton and a composition automaton.

2. Take the projection of the corresponding role in the composition automaton

3. Calculate the intersection (or the difference) between the projected composition

automaton and the component automaton.

4. Check for a start-stop path in the intersection

The first two steps are already explained in the previous sections. Here we take a closer

look at step 3 and 4.

4.6.1 Calculating the Intersection
The calculation of the intersection automaton is straightforward using the algorithms

described in [Aho, 1985]. This is a standard intersection of two deterministic automata (the

component automaton and the composition automaton after the projection to the role

corresponding with that component). It is interesting however to discuss the difference

between taking the intersection and taking the difference between the component and the

projection of the composition pattern.

To check local compatibility as we defined it in section 4.5.1 we need to take the

intersection. However, as we discussed above, we often find a more stringent compatibility

definition in literature, namely that components need to offer at least everything what the

role asks for. It is easy to implement this more stringent constraint in our local

compatibility-checking algorithm. To achieve this we need to calculate the difference rather

than the intersection in this stage of the algorithm. As this is a simple thing to do, we leave

it as an option in our prototype. This indicates how the architectural description as

described by Garlan and co. [Allen, 1997] can be checked using automata algorithms

instead of using a full-fledged theorem prover.

4.6.2 Check for a Start-Stop Path in the Intersection
Theoretically, a match is found if the product automaton is not empty. However, it is

possible for a product automaton to render a result where the start-state is also a stop-state

PacoSuite

80

and where this "path" of length zero is the only start-stop path in the intersection. This is

obviously not a valid solution in practice because it means that the component fits in the

pattern as long as no events take place at all. This raises the question how long a start-stop

path should be before we consider the solution to be valid. In the basic version of our

prototype, we take a very pragmatic approach and check whether there exists a path of

length 1 or more.

LOOP

Observable Observer

GET

SUBSCRIBE

NOTIFY

OPT

UNSUBSCRIBE

GET

LOOP

ALT

POLLING ENABLED

NOTIFICATION ENABLED

Figure 20: Adding termination properties

A better solution is under implementation. We will annotate the composition pattern with

special labels indicating the state of the application if this label is reached. This is illustrated

in Figure 20. This composition scenario describes two different observer styles. One based

on polling, the other based on notification. If we take these labels with us during the

compatibility check, we can check what properties still hold in the resulting automaton. We

could then present a list of states that are guaranteed to be reachable to the user.

PacoSuite

81

4.7 Global Check
4.7.1 Classic
We defined global compatibility as:

=
∪+

n

iCAalph
i

nMAP
CACACPAL L1

)(
1

≠ ∅

In our implementation, we split this calculation in two stages. We first calculate the parallel

composition of all the components, i.e. ()nCACA L1 . We then calculate the parallel

composition of the result with MAPCP . The last step is the intersection of the composition

pattern and the parallel composition of the components. Thus, our implementation of the

compatibility check involves the following steps:

1. Convert the usage scenario of the components to component automata

(CA1…CAn).

2. Convert the composition scenario to a composition automaton CPA

3. Calculate ()nCACA L1

4. Apply the role component mapping function MAP to CP to obtain CPMAP

5. Calculate the parallel composition of
iC

i

nMAPCP
α

1=
∪+

and

 ++ MAPCPAalph

n

MAPCPAalph

CACA L1

6. Check for a start-stop path in the resulting automaton of step 5.

Steps one and two are already explained in section 4.2. Step 4 is explained in section 4.4.2.

The remaining steps are now further explained.

4.7.1.1 Calculate the parallel composition of the components

We now calculate ()nCACA L1 . As every label on a transition in a component

automaton contains the component identification, the alphabets of all component

automata are totally disjoint3. In that case, the parallel composition operator results in the

shuffle automaton of all these components. For performance reasons we implemented the

3 We do not allow the same instance of a component to be mapped on more than one role.

PacoSuite

82

shuffle automaton algorithm rather than using the more generic parallel composition

operation.

Calculating the shuffle automaton itself is a well-known process. It corresponds to the total

interleaving of the automata that are shuffled. Figure 9 gives an example for two

components with one single message “A”. Figure 21 gives an example for two components

with one single message “A”.

C1 Env

C2 Env

A

A

Components

1 2

A, Out, C1

3 4

A, In, C2

13 23

A, Out, C1

14 24

A, In, C2

Shuffle Automata

A, Out, C1

A, In, C2

Figure 21: Calculating the shuffle automaton

The result is obtained by advancing in one automaton at the time. For example if we are in

the combined state (1,3) we can advance with “A, In, C2” to the combined state (1,4) and

we can advance with “A, Out, C1” to the combined state (2,3). Formally:

A shuffle automaton of two automata P1=(S1, q1, F1, succ1, Σ1) and P2 =(S2, q2,

F2, succ2, Σ2) is a new automaton:

(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2) with

succ’: (S1 x S2) x (Σ1 ∪ Σ2) → S:

• succ’([s1,s2],α) = [t1,s2] ⇔ succ1(s1, α) = t1

• succ’([s1,s2],α) = [s1,t2] ⇔ succ2(s2, α) = t2

PacoSuite

83

4.7.1.2 Calculate the parallel composition of the composition pattern and the components

In this step we calculate the parallel composition of MAPCP and ()nCC L1 . However,

we extend the alphabet of CPMAP with the alphabet of (C1 … Cn) to remove all

transitions in the resulting automaton of the components that are not compatible with the

composition pattern. We also extend the alphabet of every component with the alphabet of

the composition pattern to remove all transitions in the resulting automaton of the

composition pattern that are not compatible with that particular component. The result is

that the parallel composition operator now corresponds with the intersection operator (the

alphabets of both automata are equal). Therefore our prototype implements the

intersection algorithm directly rather than the generic parallel composition operation. This

step is equivalent with the calculation of the intersection during the local check.

4.7.1.3 Check for a start-stop path in the result

Remember that we split every transition in the composition pattern automaton in two

separate transitions specifying the send and the receiving of messages. The calculation of

(CA1 … CAn) also results in an automaton where every transition corresponds with

sending or receiving a message. Thus, the result of the intersection of these automata also

contains separate transitions for sending and receiving messages. To check if the system

contains traces that terminate we need to find a trace where every outgoing transition

labeled (name, Out, component1) is followed by an incoming transition labeled

(name,In,component2). Thus the two subsequent transitions need to have the same name

and the first transition needs to be outgoing and the second transition needs to be

incoming. Figure 22 shows the general template for such an Out/In pair of transitions.

1

A, Out, Component1

2 3

A, In, Component2

Figure 22: Template for a single message in the intersection
automaton going from component 1 to component 2

This template indicates that a component first sends a message and this message is

immediately accepted by another component. All traces that send a message out first and

receive another message afterwards and all traces that receive a message first and send it

afterwards are traces that have nothing to do with component interactions.

PacoSuite

84

Therefore, we search for a start stop path where every two subsequent transitions follow

the template as specified by Figure 22. If such a path is found, we declare the set of

components global compatible with the composition pattern.

4.7.2 Optimization using Asymmetric Cross Products
The previous algorithm is very expensive due to the calculation of the shuffle automaton as

this is an exponential process. Now make the following observation.

As the global checking process ends with the calculation of the intersection between the

shuffle of all the component automata and the composition automaton, it is clear that

the result needs to be a restricted version of the composition automaton. (Mind that

restricted here means accepting a smaller language and not necessarily that the resulting

automaton is smaller)

This observation inspired us to the construction of a new algorithm. The idea is to skip the

calculation of the shuffle automaton and restrict the composition automaton incrementally

with the component automaton. Theoretically, this corresponds to:

() () ()

+
+

+ n
CCCCP

Calph
Calph

CalphMAP
L

3

2

2

1

1

Thus, the only difference with the previous algorithm is the place of the brackets and

where we extend the alphabets. From the associativity and commutativity laws it follows

that this renders the same results as the first algorithm. However as the first algorithm first

calculates the parallel composition of all components, it will construct a total shuffle first

(as the alphabets of the components are totally disjoint) and only restrict this result in the

very last step. This leads to a huge intermediate automaton and many useless transitions.

The new algorithm on the other hand restricts its result already from the first calculation.

The implementation of this process can be done efficiently using a kind of asymmetric

cross product. It involves the calculation of the intersection for all related transitions only

(i.e. all transitions that are part of the projection of the composition pattern to the role

mapped on the component we are intersecting with) and simply adding transitions that are

not part of this projection to the result. It is asymmetric in the sense that component

transitions are only added when there exists a matching transition in the composition

pattern, while transitions of the composition pattern are always added to the result except if

PacoSuite

85

they are part of the projection to the role mapped on the component and when they are

not compatible with the transitions as specified by the component.

Figure 23 gives an example for a very simple component (named “C1”) and a composition

pattern. We calculate the asymmetric cross product between this component automaton

and the composition automaton. The result contains the transitions “A, Out, C5” and “A,

In, C6” because this transition is not part of the alphabet of the component C1. It is thus

left intact. It also contains a transition “B, Out, C1” because this transition is related to the

component but occurs in both automatons and a transition “B, In, C3” as this transition is

not part of the alphabet of the component C1. The transition “C, Out, C1” of the

composition automaton is pruned because it is part of the (extended) alphabet of the

composition pattern but component “C1” has no corresponding transition and transition

“C, In, C2” is kept because it is not part of the alphabet of the component C1.

1 2 4

6

a b

A,Out,C5 B,Out,C1

C,Out,C1

B,Out,C1

Composition automaton after role-component substitution Result after the asymmetric product calculation

Component automaton for C1

3

A,In,C6

5

B,In,C3

7C,In,C2

1 2 4b

6

A,Out,C5 B,Out,C1

3a

A,In,C6

5

B,In,C3

7C,In,C2

Figure 23: The asymmetric cross product.

Another advantage of this algorithm is its incremental nature. This algorithm renders an

automaton for partially filled composition patterns. This makes it very well suited for

“component generation”. I.e. it is possible to take a composition pattern, fill it in partially

and use the unfilled roles as new environments for a super component.

PacoSuite

86

4.8 Role/Component Mapping
Before we calculate the parallel composition of a set of component automata with a

composition automaton, we use the role/component mapping provided by the user. We

use this mapping to bring both automata in the same alphabet. However, if we adapt our

equality definition of messages so that we declare two messages to be equal if only their

names are equal we obtain a match or a mismatch without using the mapping information

from components to roles in the composition.

This means that the global check process finds a suitable position for the components

automatically.

This makes the presented approach very easy to use. It means that a developer just has to

select a composition pattern and a set of components to obtain a working application. He

or she does not have to read the composition scenario to find out where every component

should be placed.

There are two problems with this approach.

Problem 1: Ambiguous situations occur

One problem occurs for example when a composition pattern specifies two standard

button components to launch two different windows. While it does not matter

theoretically which button instance is used for which window, it does so in practice. In

nearly every component based development tool you are able you to set properties on

component instances. A typical property for the button is its caption. Swapping the

buttons now renders a very confusion application where the captions of the buttons do

not match with the expected behavior. This situation also occurs with two components

that have the same usage scenario but different behavior (remember that a usage

scenario only describes how to use a component in terms of abstract primitives and not

what the component does).

Problem 2: The direction information is not used.

If we do not provide role component mapping information a message send by one

component and received by another component can be mapped on a message with the

same label going from role X to role Y as well on the same message going from role Y

to role X. Thus, the same set of components is compatible with both a composition

pattern and the mirrored version of this composition pattern. The situation is even

worse because this set of components will also match with the same composition

PacoSuite

87

pattern where only some of the messages are mirrored. Without any further checking,

our components will happily switch roles during the compatibility check.

We developed an algorithm that deals with these problems. It calculates all “valid”

mappings for a set of components and a composition pattern (i.e. all mappings such that all

components fit on their mapped role).

The basis of our new algorithm is the first global checking algorithm that calculates the

shuffle automaton of the components first and calculates the intersection afterwards

described in section 4.7.1 (thus not the asymmetric algorithm). This algorithm uses an

explicit role-component mapping to bring the composition automaton and the shuffle

automaton in the same alphabet before the calculation of the intersection.

The straightforward algorithm to find these mappings automatically is to calculate the

intersection for all permutations of role-component mappings and keep all permutations

that render a non-empty product automaton. This algorithm is clearly too expensive. We

developed an algorithm based on dynamic programming to circumvent this performance

problem.

4.8.1 Overview of the process
We try to obtain all role/component mappings for a given set of components and one

composition pattern. This process takes three steps. The first step is already explained in

the previous chapters. The second step is the calculation of the intersection with a slightly

different equality rule than in the previous. The last step is the proposed algorithm based

on dynamic programming. The overview of the full algorithm is thus:

Step 1: Calculate the shuffle automaton of all components as described in section 4.7.1.1

Step 2: Calculate the intersection regardless of the role/component mapping

Step 3: Select all traces in this cross product that have non-contradicting component/role

mappings

We will now explain step three and four in more detail.

4.8.2 Calculating the intersection without role/component mapping
In this step, we need to calculate the cross product between the shuffle automaton of all

the components and the composition pattern. As we do not have a role/component

mapping, we ignore role and component names. I.e. we check only the name and the

direction of message to decide if they are equal. As the alphabet of the shuffle automaton

contains labels expressed in terms of components and the alphabet of the composition

PacoSuite

88

automaton contains labels expressed in terms of roles, a joint step in the resulting

automaton is a combination of a label of the form (name, direction, component) and a

label of the form (name, direction, role). We define the new label for such a step as (name,

direction, component/role). The rest of the intersection calculation proceeds as usual. This

clearly constructs an automaton with many invalid traces as we allow components to

switch roles as they like. In the next step, we remove these invalid traces.

4.8.3 Select All Traces That Have Non-Contradicting Comp/Role Mappings
The labels in the automaton created in the previous step have the form (name, direction,

component/role). The semantics of a transition with such a label is that if that transition is

followed, we assume that “component” should be mapped on “role”. With this

observation, we start searching for any path that has non-contradicting mappings.

1 2

A, Out, C1/R3

3

A, In, C2/R2

4

B, Out, C3/R3

5

B, In, C2/R2

6

7

B, Out, C1/R3

B, In, C2/R2

Figure 24: Searching contradicting traces

Figure 24 shows a very small example of the kind of automata we obtain after step 3. The

only valid trace in this automaton is from state 1 to state 7 using message “A” and from

state 2 to state 3 using message “B”. The reason is that following message “A” from state 1

to state 2 implicitly implies that component “C1” is mapped on role “R3”. Following

message “A” from state 2 to state 3 implies that component “C2” is mapped on role “R2”.

If we now further follow the trace from state 3 to state 4 using message “B”, we read that

component “C3” is also mapped on role “R3” and this is not allowed.

We explain further how the resulting automaton is used as a specification for the glue code

needed to connect the components. In this context it is acceptable that one component

plays multiple roles, but it is not acceptable that one role is played by multiple components

(the semantics of the latter are not defined). Therefore, we need to reject the transition

PacoSuite

89

from state 3 to state 4 if we first followed state 1 to state 2. This renders the trace: (state1,

state2, state3, state 6, state 7) as the only possible trace in this automaton that goes from a

start state to a stop state.

To perform an automatic role/component mapping we need to find all traces without

contradicting mappings in this automaton. It is possible that there exist multiple sets of

role/components mappings that render valid traces in the automaton (an example of such

a situation is where we use two identical buttons in one composition). In this case, the user

should be confronted with the options and he or she has the final choice.

There are a number of possibilities to perform this search. In short:

1. Try all permutations of role/component mappings

2. Perform a breath-first search with history

3. Use a dynamic programming technique

 These are now discussed in more detail.

4.8.3.1 Try All Permutations of Role/Component Mappings

While this alternative seems prohibitively expensive, this option still remains open with the

observation that we only need to take the permutations of mappings already found in the

resulting automaton. Remind that this result automaton is a cross product between the

shuffle automaton and the composition automaton based on equality of the messages

regardless of their source and destination. If we now enumerate all transitions found in this

automaton and read the role/component mappings we will not have that much

contradicting mappings. Every mapping will appear in two directions (i.e. if there is a

message “A” going from Component 1 to Component 3 and there exists a mapping from

Role 2 to Role 4 we will have one mapping Component 1/Role 2, Component 3/Role 4

and one mapping Component1/Role 4, Component 3/Role 2), but chances are low that

these roles are also mapped on other components. As mappings that are not included in

this list are certain to lead to a dead end, we do not need to consider them. This means that

we only need to search for at least one trace in the automata for each permutation of this

limited set of mappings. This boils down to enumerating all transitions in the automaton

and removing all the transitions that have a mapping that is not included in the

permutation we are testing. This is followed by a search for at least one start-stop trace.

Any mapping tested this way that returns such a trace is a possible role/component

mapping.

PacoSuite

90

4.8.3.2 Perform A Breath First Search with History

This algorithm initially sets out as a normal breath first algorithm. From the start state all

outgoing transitions are followed and the destination states are added to the “to do” queue.

To avoid that we go round in circles we remember all histories of transitions we took to

reach a given state. To proceed we follow all outgoing transitions from the states in the “to

do” queue but only if this transition is not yet a part of this transition history.

If the mapping we add to a mapping history contradicts with one of the mappings in there

already, we stop following that trace. If a trace comes to a dead end (i.e. all possible

continuations follow transitions that are already included in the trace) we check if the trace

contains an end state. If so, this trace is a valid solution. In any case, we stop further

processing this trace.

The example in Figure 25 shows a possible automaton were we need to resolve the

role/component mapping. We will go trough this automaton using the algorithm described

above to clarify its working.

1

2 4

3

6

A(R1/C1)

B(R1/C1)

C(R2/C3)

D(R1/C3)

E(R3/C4)

F(R1/C1)

Figure 25: Example state diagram for role/component resolving

In the following we use the symbol Q for the “to do” queue at any given moment. An

element in the “to do” queue is a state that needs to be visited and the trace of transitions

(together with its corresponding role/component mapping) that has been followed already.

Q={1 (trace: null)}
Pop state 1 and expand.

Q={2 (trace:(A(R1/C1))), 3 (trace:(D(R1/C3)))}
Pop state 2 and expand.

Q={3 (trace:(D(R1/C3))), 4 (trace:(A(R1/C1),B(R1/C1)))}
Pop state 3 and expand.

PacoSuite

91

Q={4 (trace:(A(R1/C1),B(R1/C1))), 4 (trace:(D(R1/C3),E(R3/C4))}
Pop the first state 4 and expand.

Q={4 (trace:(D(R1/C3),E(R3/C4)), 6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3))}
As state 6 is a stop state mark this trace as a solution (6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3)))
Pop the state 4 and expand.

Q={6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3)), 6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3))}
Add a second solution (6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3)))
Pop first state 6 and expand

Q={6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3)), 4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1))}
Pop state 6 and expand.

Q={4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1)), 4 (trace:(D(R1/C3),E(R3/C4),C(R2/C3),F(R1/C1))}
We just added state 4 with a trace that contains an incompatible mapping. More precisely R1 is mapped on C3
(A(R1/C1)) and on C1 (F(R1/C1)). As this is not allowed we stop processing this trace any further. I.e. this
mapping is just removed from the queue.

Q={4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1))}
Now we reach a dead end. If we pop state 4 and try to expand we obtain: 4 (trace: (A(R1/C1) B(R1/C1),
C(R2/C3), F(R1/C1), C(R2/C3))
Note that this trace contains a transition that is already included in the trace (C(R2/C3)), but we are not in a end
state. At this point, we check if the history contains at least one end state (as is the case in this example). In that
case, we add this trace as a solution. We stop processing it any further.

4.8.3.3 Dynamic Programming Algorithm

The basic idea of this algorithm is to consider every state in the finite automaton as a

parallel process. Every process asks all its neighbors (i.e. all states that are connected with

this state with an outgoing transition) for a set of mappings such that they can reach a stop

state without contradiction. It then checks if the extra mapping needed to reach that

neighbor contradicts with that set of mappings. Every mapping that has no contradiction is

added to its own set of mappings to reach a stop state. This process iterates until no state

receives a new mapping.

In practice, this process is done sequentially instead of parallel. During one iteration, we

update every state once. Observe that we only need to update those states that have

neighbors who received a new mapping in the previous iteration. As we know that in the

first step only those states that have a stop state as neighbor can be updated, we start

pushing all stop states on the “to do” queue.

The algorithm then proceeds as follows:

PacoSuite

92

while ToDoQueue not empty {
s = ToDoQueue.pop()
for every state x that has a transition to s {

if (isUpdated(x,mappings(s))) ToDoQueue.push(x);
}

}

boolean isUpdated(State x, State s){
boolean updated = false;
Mappings m = s.getMappings();
for every transition t going from x to s {

if t.mappings() compatible with at least one element of m {
Updated = true;
… update own mapping table …

}
}
return updated;

}
Figure 26: Finding all role/component mappings using dynamic programming ideas

This algorithm ends when no state received a new mapping. At this point, the set of

possible mappings to reach an end state can be read from the start state.

PacoSuite

93

4.9 Role/Env Mapping
Until now, we only dealt with role/component mappings. These mappings are done

manually or automatically, but the “env” participants of a component are always ignored.

Figure 27 and Figure 28 give an example where the “env” participant/role mapping is not

one on one. It is easy to see that in both situations the network component on the left

hand side of the picture is compatible with the network role in the composition pattern on

the right hand side. In the translation of the usage scenario of the network component to a

state diagram all information about environment participants is dropped (both in the local

as well as in the global check). This means that in Figure 27 implicitly both environment

participants of the Network component are mapped on the same “NetworkUser” role in

the composition pattern, while in Figure 28 one “env” participant is mapped on the

“Initiator” and the “User” role of the composition pattern.

All these examples seem to be acceptable at first sight. We want it to be possible that the

network component is started by a different component than the one that is going to use

the network, but we accept that in some cases the same component creates and uses the

network.

Network Env: Initiator Env: User

Create

Send

NetworkUser Network

Create

Send

Composition PatternComponent Usage Scenario

Figure 27: Mapping multiple “env” participants on one role

PacoSuite

94

Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

Initiator

Figure 28: Mapping one "env" participant on multiple roles

Figure 29 shows a situation that is not acceptable. The component has two “env”

participants. It expects one “env” participant to give a create message, waits until another

environment uses the network to send something and then notifies the sender (for example

to tell that the send worked). The composition pattern gives a different interpretation.

Here the notification after the first send is given to the initiator (for example to tell the

initiator that the connection was used for the first time). However, the current checking

algorithms will not complain.

Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

InitiatorEnv: Initiator

Notify
Notify

Figure 29: Illegal mapping of "env" participants

4.9.1 Mapping Rules for the “ENV” Participant
It is hard to come up with a rule that accepts the mapping of multiple roles on one “env”

participant (as in Figure 28) and the mapping of multiple “env” participants on one role (as

in Figure 27), but rejects the situation in Figure 29. The reason is that we expect some kind

of identity in the example of Figure 29. We want the same “env” participant that initiated the

send on the network component to receive the notification.

PacoSuite

95

A closer look at the example in Figure 28 learns that we also give up this identity property

of the “env” participant in this example. A simple extension of the example makes this

clear.

Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

Initiator

Notify

Notify

Notify?

Figure 30: Mapping one "env" participant on multiple roles.

Figure 30 is an exact copy of Figure 28 where we added a notification message in the

component usage scenario. The composition pattern uses two different roles to model the

behavior of the “env: user” participant. Now we see that it is not well defined where we

expect the “notify” message to map. We want it to return to the same role that issued the

CREATE and the SEND messages, but this role has split in two different roles in the

composition pattern.

These observations led us to the following mapping rule:

Mapping “env” participants

One “env” participant is mapped to exactly one role.

One role can be mapped on many “env” participants.

4.9.2 Checking the “ENV” participant mappings
The algorithms to check local compatibility and global compatibility ignore all information

concerning “env” participants. In section 4.9.1 we defined the valid mappings for

environment participants. These mappings need to be checked. This is very similar to the

problem of finding all non-contradicting mappings in the automatic role mapping process

(4.8.3). Thus, we can ignore all environment information and calculate the resulting glue

code first. In a next step, we use any of the proposed algorithms for finding non-

PacoSuite

96

contradicting mappings (try all permutations, breath first search and dynamic

programming) to check the environment mappings. The only difference is that we

maintain a list of “env” participant/role mappings instead of role/component mappings.

We throw away all traces that imply a mapping of one “env” participant on multiple roles.

PacoSuite

97

4.10 Message Hierarchy
In section 3.4.4.2 we introduced a hierarchy of primitives for the composition patterns and

component usage scenarios. While we ignored this in the previous, we need to take a closer

look at the impact of this decision on our definition of equality of messages and on their

combination. In the following, we call the parent primitive of any sub tree in our hierarchy

a “super type” and its descendants a “sub type”. It is clear that we want super types to

match with sub types and vice versa. Thus in all the previous algorithm we consider two

names of different messages to be equal if they are identical or if the first name is the super

type of the second name or vice versa.

This has an impact on the construction of the intersection automaton. If we consider two

names n1 and n2 to be equal if n1 is a super type of n2 or if n2 is a super type of n1, we need

to specify the resulting label in the intersection automaton. Figure 31 gives an example.

1 2

1 21 2

1

SIGNAL, Out, Comp X, Imp

2

START, Out, Role Y, Imp

START, Out,Comp X / RoleY, Imp SIGNAL, Out,Comp X / RoleY, Imp

Figure 31: Combining two equal messages with hierarchy

We take the subtype as the new label because the subtype constrains the super type.

PacoSuite

98

4.11 Non-Determinism
As we explain further in this text we use the resulting automaton of the global check as the

intermediate glue code that is generated between a set of components. It can be argued that

there is no problem if this glue code behaves in a non-deterministic way (in CSP for

example non-determinism is built-in). However, as we show in the following, non-

determinism is sometimes introduced as a side effect resulting in unexpected non-

deterministic behavior. In this section, we handle these cases in a bit more detail.

4.11.1 When Does Non-Determinism Occur?
There are two possibilities to introduce non-determinism. The first one is by having the

same implementation mapping for different primitives. Figure 32 shows a small part of the

resulting automaton that will be used during the code generation. This automaton is

deterministic at the level of the primitives but it renders a non-deterministic behavior when

implemented. This automaton means that if component C2 sends an “actionPerformed”

event it can either call the “Init()” on component C1 or the “Quit()” method on

component C3. The only basis we have to make the decision is the primitive. However,

this primitive is only part of the documentation. At runtime, a component only sends the

“actionPerformed” event and we no longer know whether this was meant to be START or

STOP. This is what we call implementation non-determinism.

1

2

3

START
C2.actionPerformed / C1.Init()

STOP
C2.actionPerformed / C3.Quit()

Figure 32: Implementation non-determinism

The other possibility to introduce non-determinism is in the documentation itself. It is

possible to draw non-deterministic scenarios using the MSC syntax. Figure 33 gives an

example of such non-deterministic documentation.

PacoSuite

99

Chat Interface Env: User

SHOW

PERFORM

DATA

ALT

OPT

1

2

3

SHOW

SHOW

Launcher Env: ToLaunch

SHOW

Non-deterministic documentation of a chat component A simple launcher component

Result automaton after taking the intersection

Figure 33:Example of scenario non-determinism

As the first SHOW message of the chat interface component (upper left corner in Figure

33) is optional it supports both a SHOW and a PERFORM message as it first message.

Now suppose that this component is combined with a simple component that only sends a

SHOW message (upper right corner in Figure 33). As SHOW is a subtype of PERFORM,

the SHOW of this component will be matched with both the SHOW and the PERFORM

message of the chat interface component. We explained higher that if a subtype is matched

with a super type we label the resulting transition with the more specific one. This results in

the automaton depicted in the lower part of Figure 33. This automaton is clearly non-

deterministic. This is in fact not surprising as the documentation of the chat interface

component was non-deterministic to begin with. However, the example also indicates that

it is not always easy to recognize these situations. We call this kind of non-determinism

scenario non-determinism.

4.11.2 How to Treat Implementation Non-Determinism?
Before we go into further detail on how to treat implementation non-determinism, we take

a closer look at the cause of this non-determinism. We consider components to be black

box entities. I.e. we do not have an understanding on their inner working. We have no way

to predict what choice will be taken based on the documentation alone. Therefore, any

choice is non-deterministic for us. Figure 34 shows a component that sends either a

PacoSuite

100

START message or a STOP message. These messages are mapped on the same output

event “actionPerformed” (this seems strange but this is the way one would typically

indicate that the same event could result in either a START of another component or a

STOP). In that sense an ALT block in our MSC documentation, behaves just as the CSP

guarded command.

Thus, if this component sends the “actionPerformed” event it is unclear if this was meant

to be a “START” or a “STOP” message. One possibility would be to add an adapter to

every component that labels every output event of a component with the right primitive

message based on the state of the component. However, once a component reaches an

alternative block where all alternatives have the same implementation mapping; there is no

way to know for the component what alternative corresponds to the output event sent by

the component.

Component Env: anEnvironment

START
actionPerformed

STOP
actionPerformed

ALT

Figure 34: In black box components, ALT blocks represent non-deterministic behavior

This leaves very little room to handle these situations. We have no automatic means to

make the decision.

One could also argue that this kind of documentation is wrong. As indicated higher this

documentation is how one typically indicates that the same event could be mapped on

several primitives. This is an indication that the hierarchy of the primitives is not well

defined. It should be possible to find a super type that combines these primitives. This

would solve the problem. In case we do not want to alter the documentation, we can only

resort to user intervention. As these situations are easy to detect (the generated code

contains a state with different actions based on the same event), we can do this just before

the code for these states is generated.

PacoSuite

101

4.11.3 How to Treat Scenario Non-Determinism?
Scenario non-determinism can occur when a component contains a state with several

alternatives that have a common super-type. This means that there is a chance on this kind

of non-determinism in every alternative as all primitives are a sub-type of the SIGNAL

primitive. This does not mean that this is a very common situation. If the alternatives that

would result in non-determinism deal with different environments, there is no problem. As

we check that any environment is mapped on exactly one role (see 4.9.1), we know that

two different environment will be matched on two different components. In that case

adding the source of the message makes the state-machine deterministic again.

To check this at runtime we need to be able to check the source of an event. This is easily

done by adding adapters to every component that adds a pointer to the source of every

event (or when we have access to the components, by introducing a super-class for all

output events that supports a “getSource()” method as it is done in for example in Visual

Age for Java (IBM)). Our prototype tool uses the wrapper solution.

Nevertheless, we have no automatic solution if two messages come from the same

component with one message a super type of the other. In that case, we require user

intervention.

PacoSuite

102

5 Mismatch Feedback
“Feedback is the breakfast of champions. “

- Kenneth Blanchard - In the Ultimate Success Quotations Library, 1997

PacoSuite

103

5.1 Introduction
5.1.1 Problem Statement
What if a compatibility check fails? The idea of this work was to guide the developer as

much as possible during the composition process. Therefore we want to give feedback on

where the mismatch occurred and if possible how to cure it. There are two main problems

here.

The first problem is to define the kind of feedback we want. It can be argued that in the

most general case it makes no sense to provide mismatch feedback except for a simple

warning “total mismatch”. Suppose we try to match a component with a role in the

composition pattern that does not fit at all. Do we really want feedback saying that we need

to adapt the component such and such to make it work or do we want the algorithm to

come back with an error saying that this component is not compatible with the selected

role? And if so where do we draw the line? In Figure 35 we give an example of such a

mismatch.

Component Env

A

C

Role1 Role2

A

B

A

D

C

Figure 35:Indicating the mismatch?

How do we decide in this example if the message “A” of the component matches with the

first or the second “A” of the composition pattern? Moreover, suppose it matches with the

first “A”. Do we really want the program to show that everything between this first “A”

and the message “C” is incompatible? Do we want feedback that is centered on the

component or rather around the composition pattern? I.e. do want to adapt the

component to the composition pattern or the composition pattern to the component? It is

clear that there are no straight answers to this kind of questions.

PacoSuite

104

The second problem is the conversion of MSC’s to automata. A mismatch is detected

during operations on automata. The documentation is provided in the form of MSC’s. It

seems reasonable to provide the mismatch information as annotations on MSC’s. This

involves a conversion from automata to MSC’s. As an MSC corresponds to a regular

expression, we can use the well-known algorithm based on the elimination of states

[Hopcroft, 2001]. However, the result of this conversion is not always clear. In general, it

turns out to be difficult to see the link between the generated MSC’s and the original

MSC’s used in the compatibility check.

5.1.2 Approach
Therefore, we take the pragmatic approach. We provide a number of tools that can be used

by the developer to find out what is going wrong when the algorithms detect a mismatch

and to help the developer to find a solution. We developed two classes of tool support.

The first class consists of tools to indicate the mismatch. More precisely, we annotate on

the component MSC how far the scenario matches with the composition pattern and this

both starting from the first message as starting from the last message. We just present the

first possible match (i.e. we do not try to skip messages to find better matches). The tool is

used as a feedback tool only and needs human interpretation to judge the results. We also

developed a similar tool to annotate on the composition pattern how far it matches with

the set of components used in this composition pattern, again both starting from the first

message as well as starting with the last message.

By far the more interesting approach is the generation of adapters. Adapters are automata

that can be used to adapt the protocol specified by one automaton to the protocol

specified by another. There exist a whole field of research about adapter generation for

finite automata [Schmidt, 2000;Yellin, 1994a;Zaremski, 1997]. Building on this research, we

propose two different solutions for the problem. First, we describe the results of Reussner

as his solution is prototypical for the field and because the asymmetric cross product is

used to calculate the result, which indicates a similarity to our approach to compatibility

checking.

Next, we introduce the traversal strategies research done by Lieberherr and co. [Lieberherr,

1997]. The latter has nothing to do with adapter generation. The goal of this work is to

check a given class graph (i.e. a dependency graph of classes and objects for a given

application) against a traversal specification. A traversal specification describes a path in the

class graph possibly with more intermediate classes or objects. We noticed that the

PacoSuite

105

proposed algorithm to check a traversal specification (called a strategy) against a class graph

has many similarities with the algorithm proposed by Reussner. A closer look reveals that

the traversal strategy algorithm can be used as a more flexible and more efficient adapter

generator than the algorithm proposed by Reussner. We show how this can be achieved.

PacoSuite

106

5.2 Annotating Compatibility on MSC’s
A mismatch is detected in an automaton. We would like to show this mismatch on the

original MSC’s. The most obvious approach is to trace the automaton and convert this

automaton back in a MSC. However, this conversion is difficult and ill defined. There are

many ways to convert one automaton to a MSC and it could be very hard to see that the

generated MSC is in fact the same MSC you started form.

5.2.1 From Automata to MSC’s
To cope with the automata-MSC conversion problem, we skip the conversion and we

simply maintain the link between a transition in the automaton and the original message in

the component or composition scenario. As we are calculating cross products and perform

all kind of other operations, we end up with one transition that is linked to a number of

messages (for example one transition in the result is linked to at least the message in the

component and its corresponding message in the composition pattern). We implemented

this for all operations on our automata. A simple traversal over the automaton now allows

us to show all messages that are reachable from the start state and all states from where the

stop state can be reached. Mind that we need to calculate a full cross product to indicate

states and transition reachable from a stop state. In our optimized algorithms we calculate

the cross product starting with the two start states until we are stuck. This way we never

generate other traces. Therefore, we regenerate the cross product with a non-optimized

algorithm (add the cross product of states and add transitions for every state in this cross

product) before we start tracing the result. The whole process is depicted in Figure 36.

PacoSuite

107

1 2 3 4

a b c a z c

a

b

c

a

c

z

5 6 7 8

15
a

26 37
c

48

a

b

c

a

c

z

a

b

c

a

c

z

Build links between the original MSC’s and their corresponding automata

Calculate the intersection automata and combine the links

Anotate traces in the intersection by backtracking the links
Once for traces reachable from the common start state

Once for traces that reach the common end state

Figure 36: Feedback process by anotating MSC's

5.2.2 Discussion
The disadvantage of this approach is that the user has to distinguish him or herself

between real incompatible traces and traces that are “optional”. I.e. only compatible traces

are marked, but as we calculate the intersection, this does not mean that all non-marked

traces are incompatible. In Figure 37 we try to map the component on the left hand side

on role1 of the composition pattern.

PacoSuite

108

Component Env

A

D

Role1 Role2

A

B

C

OPT

Figure 37: Marking incompatible traces?

As this component is not compatible with this role, this generates a mismatch. The

mismatch feedback described above now marks all traces that are compatible. In this case,

only the message “A” is compatible (indicated by the double line).

However, it could be argued that the optional part (with the message “B”) in the

composition pattern is also compatible. Changing anything inside the optional part will not

make the composition pattern compatible or incompatible. If we remove message “D” in

the component scenario and message “C” in the composition scenario, we have two

compatible scenarios, but the same check of compatible traces will still only highlight the

message “A”.

PacoSuite

109

5.3 Adapter Generation
5.3.1 Reussner Adapter Generation
5.3.1.1 Introduction

In this section, we discuss the algorithm introduced by Reussner. We notice that the

asymmetric cross product (see section 4.7.2) is used to calculate: “a changing protocol

adapter”. In [Reussner, 1999] Reussner presents the example depicted in Figure 38.

1 2 3

4

play stop

pauseplay

3 4 5

6

play stop

pauseplay

1 2

init selectCD

selectCD

Figure 38: Adapting a simple CD player.

This example describes the usage behavior of the GUI interface of two Compact Disc

players. The first player is a more sophisticated player supporting multiple disc play, while

the second player describes a standard CD player allowing only one CD to be played. Now

suppose our composition pattern specifies the behavior of the multiple disc player and our

GUI component specifies a usage scenario corresponding with a single disc player. It is

clear that we need to prefix the simple component usage scenario with the “init” and

“selectCD” transition to make it work. Reussner explains how he uses the asymmetric

cross product to generate these prefixes.

5.3.1.2 Adapter Generation

The main step to compute these adaptations is to create the asymmetric cross product

automaton. This algorithm starts with one “master” automaton and one “slave” automaton

that will be adapted to the “master” automaton (in our case one “slave” component

automaton that needs to be adapted to the “master” composition automaton). The set of

states in the resulting automaton is a subset of the Cartesian product of the states of the

PacoSuite

110

“master” automaton and the states of the “slave” automaton. The general idea is that the

result contains two kinds of transitions: marked and unmarked transitions.

Marked transitions go from a state pair (sm, sl) containing one state from the “master” and

one state from the “slave” with an input “i”, where in the “main” the input “i” is handled

in state sm and the “slave” automaton handles input “i” in state sl.

In an unmarked transition the input “i” is only handled in state sm (i.e. in the main

automaton)

This algorithm is asymmetric in nature. Transitions with labels accepted in the “master”

but not in the “slave” are added to the result automation, while transition with labels

accepted in the “slave” but not in the “master” are not added to the result automaton.

Figure 39 shows the result for the CD example. For more details on this process see

[Schmidt, 2000].

3 4 5

6

Play(M) Stop(M)

Pause(M)Play (M)

1 2

init selectCD

Figure 39: The generated adapter. Transitions that are not
marked with (M) are needed adaptations.

This algorithm thus generates a solution on how to adapt a component to a role in the

composition pattern. Using the component automaton as “master” and the composition

automaton as “slave” on the other hand renders a suggestion on how to adapt the

composition pattern to the component. This does not mean that this algorithm is only

useful to generate an adapter between one component and a composition role. We also use

this adapter generation technique to generate an adapter for the global case. To do this we

consider the composition automaton as the “master” automaton and the automaton

resulting from the parallel composition of the components as the “slave” automaton. This

way an adapter is calculated for a given set of components against a given composition

pattern.

As a last step, we need to convert the resulting adapter back to MSC’s. We face again all

the problems mentioned in section 5.2.1. Therefore, we go for the same solution. I.e. rather

than converting the resulting adapter automaton back to a MSC, we keep track of the links

PacoSuite

111

with the original automata. Simulating the generated adapter on the MSC’s shows when

messages of the composition pattern need to be inserted for given scenarios or vice versa.

5.3.1.3 Conclusion

This algorithm comes up with only one solution. It favors early matches over later matches

(in Figure 35 this solutions assumes that the component matches with the first A in the

composition pattern) and adapts one party to the other instead of adapting both parties.

However, it gives a good indication on what is missing to make them compatible and is

thus useful as a feedback mechanism.

5.3.2 The Adaptive Programming Library
5.3.2.1 Introduction

In this section, we show the connection between the traversal strategies research described

in [Lieberherr, 1997] and adapter generation. The following example is used in [Lieberherr,

1997].

Consider the class graph depicted in Figure 40, which defines a data structure describing a

bus route. A bus route object consists of two lists: a list of bus objects, each containing a

list of passengers; and a list of bus stop objects, each containing a list of people waiting.

Suppose that as a part of the simulation, we would like to determine the set of person

objects corresponding to people waiting at any bus stop on a given bus route. The group of

collaborating classes that is needed for this task is shaded in Figure 40. To carry out the

simulation, an object-oriented program should contain a method for each of these shaded

classes.

The idea of traversal strategies is that this could be solved in a much more elegant way.

Below are two possible traversal specifications (called traversal strategies) that choose the

desired set of classes:

(1) from BusRoute through BusStop to Person;

(2) from BusRoute bypassing Bus to Person;

PacoSuite

112

Figure 40: Bus simulation class graph. Squares and hexagons denote classes (concrete and abstract, respectively), regular
arrows denote fields and are labeled by the field name, and bold arrows (labeled with ◊) denote the subclass relation (for
the shading, see text)

Suppose now that the bus route class has been modified so that the bus stops are grouped

by villages. The revised class graph is depicted in Figure 45. To implement the same

requirement of finding all people waiting for a bus, an object-oriented program must now

contain one method for each of the classes shaded in Figure 45, and thus the previous

object-oriented implementation becomes invalid. The traversal strategies (1) and (2),

however, are up-to-date and do not require any rewriting.

Figure 41: Evolved bus simulation class graph.

The basic idea of traversal strategies is that under a name map N (mapping concepts of the

traversal strategy on concepts in the class graph), a path in the strategy graph is an

abstraction of a set of paths in the class graph. This is done by viewing each strategy-graph

edge a → b as representing the set of paths in the class graph starting with node N(a) and

PacoSuite

113

ending at node N(b). An example of such a strategy graph is depicted in Figure 42. To be

complete every edge in the strategy graph can have a set of traversal constraints attached to

it. These are typically used to express bypassing constraints. I.e. if we need to specify that

we go from BusRoute to Person bypassing BusStop we construct a strategy graph with two

nodes BusRoute and Person and an edge going from BusRoute to Person with an attached

constraint that BusStop should be bypassed. For the formal definition of these constraints

and strategy graphs the user is again referred to [Lieberherr, 1997].

BusRoute BusStop Person

Figure 42: Strategy graph corresponding with the "From Busroute through BusStop to Person" strategy.

Their work presents an algorithm to construct a traversal graph from a given strategy graph

and a given class graph. This algorithm is called algorithm 1 in their paper [Lieberherr,

1997]. This graph is in fact an expanded version of the strategy graph using nodes from the

class graph such that the resulting graph contains only paths that comply with the given

traversal strategy.

In the next section, we explain in a bit more detail the inner workings of this traversal

graph construction algorithm.

5.3.2.2 The Traversal Graph Algorithm

In this section, we give an informal definition of the algorithm using a running example

used in [Lieberherr, 1997]. For the formal definition of the algorithm, we refer to the same

paper. Suppose we want to calculate the traversal graph for the class graph and the strategy

graph depicted in Figure 43.

A B C

D EY Z

A

source

D

Z

E

target

e1

e2 e3

e4

Class Graph Strategy

Figure 43: Example class graph and strategy graph used for the calculation of a traversal graph. In this example e1 and e2
have no attached constraints, the constraint attached to e3 specifies that the edge going from A to D should be
bypassed and the constraint attached to e4 specifies that A and all incident edges to A should by bypassed.

PacoSuite

114

The general idea is to expand the strategy graph by inserting a copy of the full class graph

for every edge in the strategy graph. Informally the algorithm proceeds as follows:

1. Copy the class graph as many times as there exist edges in the strategy graph

2. Apply any constraints attached to an edge in the strategy graph to the

corresponding class graph. I.e. in the copy of the class graph corresponding to e4 in

the example, remove class A and all incident edges (the result of step 1 and 2 is

depicted in Figure 44 square 1).

3. Connect these copies as specified by the strategy graph. In the example, edges e1

and e2 are connected by node D. In this step we connect the copy corresponding

to e1 with the copy corresponding with e2 by inserting an edge from class D in the

first copy to class D in the second copy (the result this step is depicted in Figure 44

square 2). As this results in class D showing up twice in the traversal of the

connected graph we replace this new interconnection edge with a set of edges

connecting all classes that are directly connected to D in the first copy with class D

in the second copy (the result this step is depicted in Figure 44 square 3).

4. Finally mark all classes in the class graph copies corresponding with edges in the

strategy graph that are connected with the initial node as start classes and mark all

classes in the class graph copies corresponding with edges in the strategy graph that

are connected with the final node as final classes. (the result of this step is depicted

in Figure 44 square 4, where the little arrows indicate a start class and the doubled

bordered classes indicate final classes).

PacoSuite

115

A B C

D EY Z

1

A B C

D EY Z

A B C

D EY Z

B C

D EY Z

A B C

D EY Z

2

A B C

D EY Z

A B C

D EY Z

B C

D EY Z

A B C

D EY Z

3

A B C

D EY Z

A B C

D EY Z

B C

D EY Z

A B C

D EY Z

4

A B C

D EY Z

A B C

D EY Z

B C

D EY Z

Figure 44: Applying the traversal graph algorithm on the example in the previous picture

5.3.2.3 Generating Adapters

In our research, the local check verifies if a given component C can be used to implement a

given role R. Both the component and the role are documented with an automaton that

represents the state transitions of the component and the role. The component is

compatible with the role if the component and the composition pattern share at least one

trace from a start state to a stop state. Typical mismatches occur when the component does

have such a trace except that it sends one or more message in between (so it has one or

more transitions that are not found in the role description, but it does have all the

transitions as specified by the role). The traversal graph algorithm called algorithm 1 in

[Lieberherr, 1997] recognizes all these situations and builds an automaton describing all

possible adaptations for the component so that it becomes compatible with the role or

renders an empty automaton if it cannot be done. To do this we consider the component

automaton as the strategy graph and the role automaton as the class graph. The traversal

graph is empty if there is no adaptation possible to make the component compatible.

Otherwise, the traversal graph contains all possible adaptations. To fully understand the

analogy we need to go into more detail on the connection between NDFA intersection and

the calculation of a traversal graph.

PacoSuite

116

5.3.2.4 Connection Calculation Traversal Graph with the Intersection of NDFA’s

During a discussion at ICSE 2000, Prof. Dr. Karl Lieberherr mentioned the connection

between the calculation of the traversal graph and the intersection of two NDFA’s. A slide

show explaining this connection can be found at [Lieberherr, 2001].

The idea behind calculating the traversal graph is to check if a start-stop path specified by

the strategy graph also exists in the class graph, allowing the class graph to use more

internal transitions. I.e. a strategy specifies where to start, where to stop and what

transitions should certainly be passed going from start to stop. This corresponds to

traversal specifications following the template: FROM x1 VIA x2…xn-1 TO xn. Note that

this is a restriction of the general traversal specification as defined by Lieberherr et al. They

also allow specifying what transitions are not allowed. For now, we stick to this restriction

for simplicity reasons. It is easier to see the connection with the intersection of NDFA’s

with this restriction. We come back to this later because adding constraints as to what

transitions are not allowed makes it possible to constructs adaptation views (see section

5.3.4.4 for details).

This analogy indicates that after each transition as specified by the strategy graph, we can

have any number and any kind of transitions in the class graph as long as we go on with

the transitions as specified by the strategy. An example makes this clear. Take the class

graph and the strategy as specified in the left hand side of Figure 45 (and assume the name

map to be identity). The strategy graph means: Traverse FROM a VIA c TO e. It is clear

that the class graph supports this strategy. The resulting traversal graph is identical with the

class graph.

A B C D E

1 2 3 4 5 A B C D 6E

A C E

1 2 3 4 A C E

Class Graph

Strategy Graph 1 2 3 4A C E

εεεε εεεε

Strategy State Machine

Figure 45: Class Graph and Strategy Graph with Corresponding
Automaton

PacoSuite

117

To illustrate the connection with NDFA intersection the corresponding automaton for the

class graph and the strategy graph is shown just below them in Figure 45 (the

correspondence is easy to see if you compare the strategy automaton with the specification

FROM a VIA c TO e). Calculating the intersection between the class graph automaton

and the strategy graph automaton as specified on the left hand side of Figure 45 returns an

empty automaton. Remind now that the strategy graph allows more internal transitions in

the class graph. This means that during the calculation of the intersection we should be

able to proceed at wish in the class graph automaton until we find a common transition

again. This is easily accomplished by adding epsilon transitions loops after every internal

transition in the strategy graph automaton. The result is depicted at the right hand side of

Figure 45.

It is important to note here that the traversal graph calculation algorithm does not perform

a general intersection of two NDFA’s. The correspondence works the other way round.

I.e. it is possible to translate the traversal graph and the class graph (for the restricted class

of strategies defined above) to NDFA’s where the intersection of these NDFA’s

corresponds with the traversal graph obtained by the algorithm as defined in the Adaptive

Programming library. It is in general not proven that two NDFA’s can be converted to a

class graph and a strategy graph so that their traversal graph corresponds with the

intersection of these NDFA’s.

5.3.2.5 Connection Calculation Traversal Graph with Parallel Composition

A closer look at the special kind of NDFA intersection introduced above reveals that we

obtain the same result using the parallel composition operator. To see this we first define

this special kind of NDFA intersection formally:

Definition: Asymmetric NDFA Intersection

An asymmetric NDFA intersection of two component or composition automata

P1=(S1, q1, F1, succ1, Σ1) and P2 =(S2, q2, F2, succ2, Σ2) is described as:

P1 ∩A P2=(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2)

where

• succ’([s1,s2],α) = [t1,t2] ⇔ α ∈ Σ1 ∩ Σ2 and succ1(s1, α) = t1 and

succ2(s2, α) = t2

• succ’([s1,s2],α) = [t1,s2] ⇔ α ∈ ()21 \ ΣΣ and succ1(s1, α) = t1

PacoSuite

118

A quick comparison between this definition and the definition of the parallel composition

operator shows that the only difference between them lies in the definition of the transition

function. The asymmetric NDFA intersection defines a result for transitions labeled with a

label that is part of the alphabet of the first automaton only and for joint steps. The parallel

composition operator additionally defines a result for transitions labeled with a label that is

part of the alphabet of the second automaton only. I.e. the parallel composition operator

allows both automata to proceed for transitions that are labeled with a label that is not part

of the other’s automaton alphabet, while the asymmetric NDFA intersection only allows

this for one of the automata.

Thus to get the same result from the parallel composition operator we need to prevent that

there exist labels that are part of the alphabet of the second automaton and that are not

part of the alphabet of the first automaton.

This is easily accomplished by extending the alphabet of the first automaton with the

alphabet of the second automaton.

All this means that the traversal graph can also be calculated using the parallel composition

operator (using the conversion of class graphs and strategy graphs as explained in section

5.3.4.1).

Using the Parallel Composition to Calculate Traversal Graphs

Let CGA be the automaton corresponding to a given class graph CG

Let SGA be the automaton corresponding to a given strategy graph SG

Then TG = CGA+αSGA SGA is an automaton that has the same start-stop paths as the

traversal graph resulting from the traversal graph calculation for the class graph CG and

the strategy graph SG as specified in [Lieberherr, 1997]

PacoSuite

119

5.3.3 Link Adapter Generation and Adaptive Programming
We state that the asymmetric cross product used by Reussner and the Traversal Graph

Generation Algorithm as defined by Lieberherr are closely related. In the previous we

indicate that extending the strategy graph with epsilon transition loops in every state and

performing a standard NDFA intersection between the thus extended strategy graph with

the class graph has the same result as applying the traversal graph algorithm directly to the

traversal graph and the class graph. Yannis Smaragdakis first indicated this link. We also

indicated that the asymmetric cross product used by Reussner to generate what he calls “a

changing protocol adapter” could also be obtained by performing a standard NDFA

intersection where the “slave” automaton is extended in the same way as the strategy graph

in the traversal graph algorithm. I.e. by adding epsilon transition loops in every state. As

the result of both algorithms can be obtained by the same process (i.e. adding transitions

and calculating the NFA intersection) we feel that both algorithms are essentially the same,

although used for very different purposes. Hence, our intuition that the traversal graph

algorithm can be used as an adapter generator.

The next section explains in detail how we use the traversal graph generation algorithm to

generate adapters. This result is not formally proven, but at least the new algorithm works

for all the examples we tried.

5.3.4 Calculating Adapters
It is clear from the previous that the traversal graph algorithm calculates the intersection

between a specific subset of NDFA’s. So, what does it mean if we just convert the role

automaton to a strategy graph and the component specification to a class graph? The

traversal graph algorithm first inserts ε-transition loops after every internal transition in the

class graph automaton (now corresponding with the role specification). This allows the

component to proceed until it finds a compatible transition in the role specification. The

traversal graph shows how the role R1 can be traversed as specified by the component in

Figure 46. Indeed, considering the role specification as the strategy means that we go from

A via B to D. Our component specification allows this with an intermediate transition C.

PacoSuite

120

Comp Env1 Env2

A

B

Component

C

D

Env3 R1 R2 R3

A

D

Composition

R3

B

Figure 46: Applying the traversal graph algorithm to the component at the left hand side and role R1 of the
composition pattern at the right hand side, results in a traversal graph specifying that the component fits with the role if
message C is inserted between B and D

All this means that we only need to convert the automata of the component to a class

graph, the role specification to a strategy graph and that the traversal graph algorithm then

calculates a traversal graph that corresponds with a automaton describing all traces that

renders the component to be compatible with the role. Any trace that is found in the

traversal graph corresponds with a solution of how we can adapt the component to the

role. Switching the inputs returns all possible adaptations of the role to the component.

To explain the technical details of the adapter generation using the traversal graph

approach we start with a small example. In Figure 47 we show a component usage scenario

and a composition pattern. It is clear that the intersection of these scenarios is empty. They

both engage in A, but fail to proceed any further as the composition pattern expects B

while the component only offers F or C.

PacoSuite

121

Comp

A

1

2

3

A

B

F

D

5

6

Z

ALT

1

2A
C

4

F

5

Z

4

C

Env

F

C

Z

Role1

A

ALT

Role2

F

C

Z

B

D

Figure 47: Example for Adapter Generation

Now we apply the traversal graph algorithm to generate an adapter for the component to

make it compatible with the composition pattern.

5.3.4.1 Converting to a Class Graph and a Strategy Graph

To achieve this we convert the composition pattern to a class graph. We do this by

constructing a class for every transition in the state diagram and adding dependency arcs

for every incoming transition to every outgoing transition. State 3 of the composition

pattern for example has an incoming transition B and outgoing transitions F and D.

Therefore we add dependency arcs from the class B to class F and class D. The classes are

labeled with the label of the transitions.

Next, we convert the component to a strategy graph. The process is exactly the same as the

conversion to a class graph, except that we construct labeled nodes instead of classes.

The result of both conversions is depicted in Figure 48.

PacoSuite

122

A

C

F

Z

A B F

D C Z

Class Graph Strategy Graph

Figure 48: Converting the Component and Composition
Pattern specified in Figure 47 to a Class Graph and a Strategy

Graph

An alternative approach is to use the equivalence of NFA intersection and the traversal

graph algorithm. To do this we add epsilon transitions to every state of the composition

automaton and calculate the intersection of this new automaton and the component

automaton. However, as an efficient implementation of the traversal graph algorithm is

readily available in the AP library [Lieberherr, 1997] we stick to this version.

5.3.4.2 Marking the Traversal Graph

Now we calculate the traversal graph. We need to do something extra to distinguish the

“adaptations”. If we calculate the traversal graph directly, the result does not distinguish

between “intermediate” classes in the class graph and the classes that correspond directly

with the strategy (technically this correspondence is defined by the name map function in

[Lieberherr, 1997]). We show that it is easy to adapt the traversal graph algorithm so that it

marks the classes that correspond with the strategy.

Remind that the traversal graph algorithm “replaces” every arc in the strategy graph with a

copy of the class graph. The idea behind this is that we can traverse any link in the class

graph to proceed from the source to the destination of one as specified by the strategy

graph. Cast in our terminology this means that we can traverse any message in the

composition pattern between the messages specified by the source and the destination in

the strategy graph. I.e. the source and the destination of the strategy graph are the

“common” messages. All other messages traversed in the class graph are “adaptations”.

Therefore, we mark the classes that correspond with the source and the destination of the

strategy graph in every copy of the class graph. The result is depicted in Figure 49. Here

“marked” states can be recognized by their double border.

PacoSuite

123

A B F

D C Z

A B F

D C Z

A B F

D C Z

A B F

D C Z

Figure 49: Marking the Traversal Graph for the example depicted Figure 47

5.3.4.3 Calculating the result

Proceeding with the algorithm as described in [Lieberherr, 1997] renders the result depicted

in Figure 50.

A B

A B

D C Z

F

Z

Figure 50: Resulting Traversal Graph for the example in Figure 47

Any traversal in this graph now gives a possible adaptation of the component to comply

with the composition pattern. In this case we can add the message B and D between A and

C in the component or we can add B between A and F.

PacoSuite

124

5.3.4.4 Constraints as Adaptation Views

The traversal graph algorithm supports the concept of constraints. These constraints allow

the specification of classes in the class graph that should be skipped or on the contrary

classes that should be part of the traversal. This is specified with the keywords: “bypassing”

and “via” in the traversal specification.

These constraints can be easily used to obtain a sub view of all adaptations by the

specification of transitions that must be part of the solution or by specifying transitions

that may not be used. Figure 51 shows a component and a composition pattern that are

not compatible. If we want to adapt the component at the left hand side to role 1 specified

by the composition pattern at the right hand side we have several possibilities.

The difference between the component scenario and the composition pattern are two

notification messages: one after the “send” message and one after the “receive” message.

To obtain a compatible component it suffices to provide only one of these notifications.

Now suppose that the developer knows that he is going to use the component as a

monitoring component and that this component never needs to send anything. Adding the

constraint: “ BYPASSING receive” (or in this case the equivalent phrase “VIA send” to

the traversal graph algorithm, returns only the adaptations needed to use the component in

“receive” mode.

Comp

START

ALT

Env

SEND

RECEIVE

Role1

START

ALT

Role2

SEND

NOTIFY

STOP

RECEIVE

NOTIFY

STOP

Figure 51: The usage scenario of the component at the left hand side is not compatible with role R1 of the composition
pattern at the right hand side.

With the right kind of tool support, this can be done very naturally for the developer. One

possibility is to run the adapter algorithm first without any constraints and present a list of

PacoSuite

125

messages that need to be added to the component to the developer. The developer then

selects the messages he or she wants to add or vice versa the messages that he or she thinks

are not needed for the application to work and we convert these in VIA and BYPASSING

constraints. We then rerun the adapter algorithm to see if there exists a solution with these

extra constraints.

To give an idea on how this works we look again at the correspondence with NDFA

intersection. Remember that the component usage scenario is converted to an automaton

where epsilon loops are added between every transition. During the intersection operation,

these epsilon transitions are allowed to match with any transition specified by strategy

graph (= the automaton corresponding with the composition pattern). Constraints are

easily added by constraining this match. “BYPASSING” constraints are introduced by

disallowing an epsilon transition to match with the specified transition. “VIA” constraints,

on the other hand result in the specification of another node in the strategy graph. The

interested reader is referred to [Lieberherr, 1997] for the details.

5.3.4.5 Handling Equal Named Messages Using Name Map

The traversal graph algorithm also offers a possibility to deal with one of the problems

specified earlier. The problem is depicted again in Figure 52. Do we want the B message of

the component to match with the first B in the composition pattern or with the second

one? In this case, one could argue that it does not matter theoretically, but it often does

matter when the implementation mapping is taken into account.

As we argued before this problem cannot be solved automatically. However the traversal

graph algorithm allows the developer to specify which solution he prefers. This is done

using the name map function.

Comp Env Role 1 Role 2

A

B

A

B

B

C

C

Figure 52: How to Adapt? Inserting the first B or the second?

PacoSuite

126

The name map function maps names of the strategy graph (thus in our case the

composition pattern) to names of the class graph (in our case the component usage

scenario). The default value is identity. Of course, this assumes that every name in the class

graph and the strategy graph is unique. Thus, in case a given transition occurs twice in the

composition pattern or the usage scenario we give them a unique index. To specify the

preferred solution we now specify a name map function that maps a transition to one of

these indexed transitions. This way the traversal graph algorithm constructs the preferred

adapters as it assumes that transitions with another index are totally different from the

transition we are matching with. In terms of the traversal graph algorithm the name map

function is used to construct the intercopy edges. Figure 53 shows the result of identifying

message B with message B1 or message B2 on the intercopy edges.

Two Possibilities to Draw the Intercopy Edges

B1 to B1 Favours first message
B2 to B2 Favours second message

Use name map B-> B1 to favour the first
Use name map B-> B2 to favour the second

B1 B2

C

A B1 B2

C

A

Figure 53: Using the Name Map function to select the adapter.

For the developer this mapping is again very natural to do. The component usage scenario

and the composition pattern are first analyzed to see if they contain several possibilities.

The tool then presents a simple dialog box with a message of the composition pattern at

one hand side and a set of component calls on the other side. The developer is then asked

to identify the best possible match (for example based on the implementation mapping and

the state of the component at that point). Once this identification is done, the traversal

graph algorithm generates the adapter.

5.3.5 Conclusion
While the algorithm of Reussner returns one clear solution, it can be argued that this is not

always a sensible solution. It has however the virtue of being easy to use. The algorithm

PacoSuite

127

using the adaptive programming library is as far as we know a new idea and has the

advantage of generating all possible adaptations. However a lot more user intervention is

needed, making this tool a bit harder to use.

PacoSuite

128

6 Code Generation
"Automatic simply means that you can't repair it yourself.”

- Mary H. Waldrip

PacoSuite

129

6.1 Introduction
In section 2.2.2 we explained why we use the Java Bean component model throughout this

text. Therefore, we need to take a closer look to this component model before we can start

generating code.

The Java Bean component model defines two different external interfaces for a Java Bean

[EJB, 2001]: API calls and events. This means that there exist two fundamentally different

implementation mappings in a component usage scenario. Outgoing messages are mapped

on (a set of) events, while incoming messages are mapped on a set of API calls. The most

basic communication between Java Beans is that a method is called on one Java Bean in

reaction to an event thrown by another component. This is what standard visual

composition environments support. They allow you to connect an output event on one

component with a method call on another component.

We improve on this model in several ways. First, we allow the reaction to be state

dependant. I.e. the same event can cause different methods to be called based on state

information. As the glue code we generate knows what events could be received in a given

state, it also notices unexpected events. These events can then be ignored to avoid a

disruption of the wanted behavior and/or a warning can be issued to the user. Because of

our compatibility definition that allows components to offer more than what is asked for, it

is possible that a component sends an event that is not supported by the other

components. The glue code needs to recognize this. Finally, we allow the same event to

cause a sequence of API calls on another component or several events to cause the same

API call.

In short, our solution is characterized by the following properties:

•The composition pattern is an active part of the constitutive solution

•The composition pattern is simulated with a state machine

•Communication is via API / event translation from the source component to the

right API on the destination component

The automaton resulting from the global checking process contains the information

needed for the simulation of the composition pattern. This automaton contains compatible

traces only, so it “knows” if a component sends an unexpected event. Therefore, we

simulate this automaton to serve as the glue code between the components. It translates

outgoing events of one component to incoming calls on another component based on the

PacoSuite

130

current state. However, before we can simulate this automaton we need to perform two

pre-processing steps. In the first step, we remove all non-valid traces and in the second

step, we combine transitions corresponding with sending a message with their subsequent

transition corresponding with the reception of this message. These steps are now further

explained.

PacoSuite

131

6.2 Preprocessing the Glue Code Automaton.
6.2.1 Remove Non-Valid Traces
Remember that the resulting automaton of the global checking process contains separate

transitions for sending and receiving messages. A valid trace needs to comply with the

template as shown in Figure 54.

1

A, Out, C1,“event1,event2”

2 3

A, In, C2, “call1,call2”

Figure 54: Template for messages with their implementation mapping in the resulting global check automaton.

This template indicates that a component first sends a message and this message is

immediately accepted by another component. All traces that send a message out first and

receive another message afterwards and all traces that receive a message first and send it

afterwards are traces that have nothing to do with component interactions. It is trivial to

remove all traces that do not comply with this template.

6.2.2 Collapsing Out/In pairs.
In the current automaton every transition is labeled with either a set of events, or a set of

API calls. During the simulation, we need to have transitions that link a set of events with a

set of API calls. More precisely: in the resulting automaton we want to have the following

information on every transition:

1. The source component

2. The destination component

3. The (set of) outgoing event from the source component

4. The (set of) incoming API calls for the destination component

In the previous step, we removed all traces that do not comply with the template depicted

in Figure 54. In this step, we construct a new automaton by “collapsing” these Out/In

pairs.

During this “collapse” operation, we combine the full implementation mappings

corresponding with the outgoing message with the implementation mapping

PacoSuite

132

corresponding with the incoming transition. Every transition now contains the wanted

information. The process is depicted in Figure 55.

1

A, Out, C1, “event1,event2”

2 3

A, In, C2, “call1,call2”

1 2

C1,C2, “event1,event2”/”call1,call2”

Figure 55: "Collapsing" Out/In pairs.

Technically the collapse operation constructs a Mealy automaton [Hopcroft, 2001]. I.e. we

produce an automaton that takes events as inputs and generate API calls as output. As the

output depends on the transition rather than on the state, this is a Mealy machine. It is this

machine that will be used as our glue code.

6.2.3 Parameter Mappings
Using the documentation, we know which events should be mapped on which methods.

The documentation only defines the parameters that can be found in the event and the

parameters that are needed for the methods. There is no indication how these parameters

should be translated. Take for example a database component that throws an

"addressRead" event every time it reads an address record. Take another component that

wants to display this address. Using our documentation, we know that on the

"addressRead" event the "displayAddress" method should be called on the other

component. Now say that “addressRead” contains one string describing this address, while

the "displayAddress" method needs a street parameter, a house number parameter, a city

parameter and a zip code parameter. The utopian perfect code generator would then insert

code that parses the string of the address into the four strings and integers expected by the

target component. This is clearly impossible. The current tool therefore checks the type of

the input parameter and the output parameter and passes the data along if these types are

the same. If the number of parameters differs or if the type of the parameters differ it pops

up a dialog box and asks the user to insert the needed conversion code. Figure 56 shows a

screenshot of such a parameter-mapping dialog.

PacoSuite

133

Figure 56: Parameter mapping dialog

It specifies the method that is going to be called (in this case “doCommand”), the event

that is received (in this case “rcv”) and it specifies the type of the parameters (in this case

doCommand has one parameter with type String and the rcv event has one parameter with

type PacoEvent). The user can then write a piece of Java code to translate the event

parameter(s) in the method parameter(s). He can also accept the default mapping.

PacoSuite

134

6.3 Generating Java Event Handling Code
Before we go into more detail on the actual glue code generation we need to explain the

event model of Java Beans. The event model of Java Beans has had a major revision

between version 1.0.2 and version 1.3 of the Java Development Kit (JDK). Instead of

events percolating up to parents as they did in JDK 1.0.2, any object or component can

register itself as a Listener, interested in hearing about a type of events originating in some

other component. When the event arises, the source component processes the event by

dispatching it to each of the registered Listeners. Dispatching is synchronous, i.e. the

Listener handler routines are called directly while the calling dispatcher waits for the

handler to complete. According to the specification, the Listeners may be informed in any

order, but the usual implementation is a queue, with Listeners informed in the same order

they were added.

There are many ways to implement this. We use a little example to show the possibilities

and to indicate the problems. We present the code for two Java Beans: “Thrower” and

“Receiver” and we describe how the Thrower bean sends an event to the Receiver bean. In

a first iteration, we show the most straightforward implementation of the Java Bean event

model.

We start with the code for the “Thrower” Java Bean.

public class Thrower {
private Vector listeners = null;

public Thrower() {
listeners = new Vector();

}

public void addThrowerListener(ThrowerListener listener) {
listeners.add(listener);

}
public void removeThrowerListener(ThrowerListener listener) {

listeners.remove(listener);
}
public void doSomething(){

System.out.println(“The method doSomething is called.”);
notifyListeners();

}
private void notifyListeners() {

for(Enumeration e=listeners.elements(); e.hasMoreElements();) {
ThrowerListener listener = (ThrowerListener) e.nextElement();
ActionEvent e = new ActionEvent(this,0,"Thrower Event");
listener.handleThrowerEvent(e);

}
}

}

PacoSuite

135

The constructor of this class allocates room for a list of objects. The methods

addThrowerListener and removeThrowerListener simply add and remove ThrowerListener

objects to this list of listeners. ThrowerListener objects are objects that implement the

ThrowerListener interface. The ThrowerListener interface is defined as follows:

public interface ThrowerListener {
public void handleThrowerEvent(ActionEvent e);

}

This means that any object implementing the ThrowerListener interface needs to have a

method:

public void handleThrowerEvent(ActionEvent e);

This method contains the code that gets executed when the event is received. The

notifyListeners method creates an event (we use a standard actionEvent in this example)

and calls the handleThrowerEvent method on every object in its list of listeners.

We now turn to the implementation of the “Receiver” bean.

public class Receiver implements ThrowerListener {

public Receiver () {
listeners = new Vector();

}

public void handleThrowerEvent(ActionEvent e);
System.out.println(“Event received!”);

}
}

This bean is used as a listener for events of the Thrower bean. Therefore, this bean

implements the ThrowerListener interface. We now build an application that instantiates

one Thrower and one Receiver bean. We then add the Receiver as listener to the Thrower.

The result is that any time the doSomething method in the Thrower is called; the

Receiver’s handleThrowerEvent is invoked. I.e. the Thrower instance sends an event to the

receiver instance. The code to do this is typically something as:

public static void main(String args[]){
Thrower t = new Thrower();
Receiver r = new Receiver();
t.addThrowerListener(r);
t.doSomething();

}

The result of the previous method would be:

>The method doSomething is called. Informing listeners.
>Event received!

PacoSuite

136

The problem with this naïve implementation is that it hard wires event senders and event

receivers. I.e. only those components that implement the right event interface can be used

as listeners. In our example, the Receiver bean needs to implement ThrowerListener to add

it as a listener to the Thrower bean. To support a more flexible composition, visual

component composition tools generate “a class in the middle”. This class implements the

interface needed to receive events and it calls any method on any other component as

specified by the developer.

Suppose for example that we want to use the JTextArea class that is built in, in the Java

Development Kit to react on events thrown by our Thrower class. More precisely we want

to call the method setText(“Event Received”) on JTextArea any time the Thrower throws

an event. To do this we need to generate the following code:

public class GlueCode implements ThrowerListener {
JTextArea toInform;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
this.toInform = toInform;

}

public void handleThrowerEvent(ActionEvent e){
toInform.setText(“Event received!”);

}
}

The application now becomes:

public static void main(String args[]){
Thrower t = new Thrower();
JTextArea j = new JTextArea ();
GlueCode c = new GlueCode(j);

t.addThrowerListener(c);
t.doSomething();

}

Thus, instead of adapting the JTextArea component to implement the ThrowerListener

interface we generate a dummy component that listens to the events and calls the method

we want on the receiving component. This solution also allows calling any method as a

result of an event rather than only the method described by the listener interface. This is

the standard solution found in all visual composition tools I know (including Visual Age

for Java, Symantec Cafe, NetBeans, Forte for Java, Borland JBuilder, Visual J++,… see

[Wydaeghe, 2001b] for a detailed overview)

PacoSuite

137

It could be argued that the semantics of the previous solution is somewhat strange. In this

implementation, the event handling is synchronous instead of asynchronous. I.e. the

component sending the event is blocked while the event is handled. It is the responsibility

of the receiving component to return as quickly as possible. Many Java tutorials suggest

that components implement an event queue themselves and handle the events in their own

thread. The following quote comes from the online version of the Java Tutorial in the

chapter about threads [SUN, 2001].

“Here is an example of using a “SwingWorker” to move a time-consuming
task from an action event handler into a background thread, so that the GUI
remains responsive.

//OLD CODE:
public void actionPerformed(ActionEvent e) {

...
//...code that might take a while to execute is

here...
...

}

//BETTER CODE:
public void actionPerformed(ActionEvent e) {

...
final SwingWorker worker = new SwingWorker() {

public Object construct() {
//...code that might take a while to

execute is here...
return someValue;

}
};
worker.start(); //required for SwingWorker 3
...

}

The value that “���������� returns can be any object. If you need to get the value,

you can do so by invoking the “	
�� method on your ���	����
� object. Be careful

about using “	
��. Because it blocks, it can cause deadlock. If necessary, you can

interrupt the thread (causing 	
� to return) by invoking “��
������ on the

���	����
�.”

The author here suggests that the actionPerformed event is handled in a separate thread

and provides a default class (called SwingWorker) that can be subclassed to do this. Note

that this SwingWorker class is not part of the standard Java Development Kit. I.e.

programmers are forced to program asynchronous event handling themselves.

Even in small experiments, this synchronous event handling leads to stack overflow

problems. Stack overflow occurs whenever an API called in response to a certain event

PacoSuite

138

generates the same event, because the API call only finishes as the new event is handled an

that one only finishes when its new event is handled and so on. Therefore, instead of an

endless loop, we get endless recursion.

It is easy to generate glue code that handles events asynchronously. To do this we have two

options: do the event dispatching asynchronously or handle every event asynchronously.

The first solution implements an event queue that accepts events and uses its own thread

to poll this queue and handle the event. The glue code of the example now becomes:

public class GlueCode extends Thread implements ThrowerListener {
JTextArea toInform;
Queue eventQueue;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
eventQueue = new Queue();
this.toInform = toInform;
start();

}

public void handleThrowerEvent(ActionEvent e){
eventQueue.push(e);

}

private void run(){
while(true){

ActionEvent e = eventQueue.pop();
if (e != null) toInform.setText(“Event received!”);

}
}

}

This solution could be improved using the built in system event queue, but the idea is clear.

The second solution uses the solution as explained in the Java Tutorial quote. I.e. the glue

code becomes:

public class GlueCode extends Thread implements ThrowerListener {
JTextArea toInform;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
this.toInform = toInform;

}

public void handleThrowerEvent(ActionEvent e);
final SwingWorker worker = new SwingWorker() {

public Object construct() {
return toInform.setText(“Event received!”);

}
};
worker.start();

}
}

PacoSuite

139

The second solution is very expensive as it creates a thread for every event. Tests with

these possibilities revealed that even the first solution is very expensive (to use it we need

to insert at least a delay in the event polling loop). This performance penalty explains why

our prototype implements the synchronous solution rather than the more natural

asynchronous solution.

PacoSuite

140

6.4 Generating Code
We now turn to the problem of generating glue code that considers state information.

More precisely, we want our glue code to implement the resulting Mealy automaton from

the global compatibility check after the pre-processing. There exists a lot of literature on

the implementation of automata (see for example [Aho, 1985]). The glue code to combine

three components A, B and C using a state machine with 2 states now becomes:

public class GlueCode implements Alistener, Blistener, CListener {
StateMachine stateMachine;
A a;
B b;
C c;

public GlueCode(StateMachine stateMachine, A a, B b, C c) {
listeners = new Vector();
this.stateMachine = stateMachine;
this.a = a;
this.b = b;
this.c = c;

}

public void handleAEvent(ActionEvent e){
processEvent(e, stateMachine.getCurrentState());

}
public void handleBEvent(ActionEvent e){

processEvent(e, stateMachine.getCurrentState());
}
public void handleCEvent(ActionEvent e){

processEvent(e, stateMachine.getCurrentState());
}

public void processEvent(ActionEvent e, PacoSuite currentState){
String name = e.getMessage();
PacoState nextState = stateMachine.doTransition(name);
If (nextState == null) return;
switch((int) currentState.getId()) {

case STATE_1: {
if (name.equals("actionPerformed") && (src == a)){

b.Launch();
}
break;

}
case STATE_2: {

if (name.equals("rcv") && (src == b)){
c.signalReceived();

}
else if (name.equals("readyToChooseSession") && (src == c)){

a.send();
}
break;

}
default: {

System.out.println("Illegal event received: " + name);
break;

}
}

PacoSuite

141

}
}

Thus, when an event is received, we first check if we find a transition labeled with this

event that allows us to advance one step in the automata. Next, we execute depending on

the state the right API call. We further generate a main method were the Mealy automata

corresponding with the composition patterns in our application and all cooperating

components are instantiated. This class also subscribes the Mealy automata

implementations to receive the events of every component that is a member of its

corresponding composition. All Mealy automata are started in their own thread.

Solving the odds and ends like handling multiple events in one state and user interaction

for the parameter mapping is trivial. The full code of our prototype can be downloaded at

[Wydaeghe, 2001a].

PacoSuite

142

7 The Exam Construction Kit

PacoSuite

143

7.1 Introduction
The application we illustrate here is a simple distributed exam service. The exam service

provides a teacher with the possibility to set up an exam server that provides a set of

multiple-choice questions and handles the interaction with the students during the exam.

The exam client application provides a login to a student and connects to the exam server.

After login, the student receives the first question from the server. The student selects an

answer and sends it back to the exam server. The exam server stores the answer in a

database and sends the next question. Once all questions are answered, the exam server

produces a report for the teacher that gives an overview of the performance of the student.

During the exam, the teacher can follow the progress of all examinees.

The next section introduces the usage scenarios and the composition pattern used in this

example.

We show that there exist a spectrum of usage scenarios and composition patterns ranging

from on the one hand: “very basic and simple, but very generic” and on the other hand:

“very complex but application specific” and everything in between.

We then show how we use these components and composition patterns in our PacoSuite

prototype to build the distributed exam service.

PacoSuite

144

7.2 Documentation
In this section, we introduce the usage scenarios and the composition patterns needed to

build the distributed exam service.

7.2.1 Components
7.2.1.1 Client side components
7.2.1.1.1 The Client User Interface

First, the components on the client side of the exam service are described. The first

component we document is the user interface component. A typical usage scenario for

such a component is that is launched first. After this launch, it loops forever waiting for

new input and throwing events whenever the user answers a question. This is a very

general usage scenario that can be used for a multiple choice exam user interface, an exam

with or without pictures, sound, video and for a plain text exam. In this case, it is used to

document the DrivingExamGUI component. This Java Bean has the following API and

events.

// API
• public void Launch()
• public void submitAnswer(Object answer)
• public void doCommand(String signal)
• public void setProgressBarVisible(boolean b)
• public boolean isProgressBarVisible()
• public String getLookAndFeel()
• public void setLookAndFeel(String lf)
• public void setLanguage(String language)
• public void setFont(String font)

// listener management
• public void addUserExamListener(UserExamListener l)
• public void removeUserExamListener(UserExamListener l)

// events
• private void notifyReadyToChooseSession()
• private void notifyAnswer(String answer)
• private void notifyQuestion()
• private void notifySessionSelected(String sessionName)
• private void notifySessionJoined(String name)

The documentation for this component is depicted in Figure 57. The START primitive is

mapped on the Launch API call. The generic super type DATA is used to indicate that any

DATA handling code is expected to handle the answer event. All other events are not

PacoSuite

145

mapped on any primitive. This means that all other events thrown by this component are

ignored as far as this usage scenario is used. The same goes for all property setting API

calls. This indicates how the usage scenario captures typical uses. I.e. it shows that the

properties setting API and many events can be ignored. It captures the knowledge of the

developer of the component on how this component is used in practice.

LOOP

Env:Launcher

START

ALT

DrivingExamGUI Env:UserExamListener

Launch

PERFORM

doCommand

answer
DATA

Figure 57: DrivingExamGUI usage scenario

7.2.1.1.2 A Standard Java Button

To launch the application a standard Java Button (JButton) is used. This is a good example

to show the problems with plain API documentation. The following is a copy from the

standard API documentation (JavaDoc) for the JButton component. Neither constructors,

nor super class methods are mentioned.

• void configurePropertiesFromAction(Action a)
Factory method which sets the AbstractButton's properties according to values
from the Action instance.

• AccessibleContext getAccessibleContext()
Gets the AccessibleContext associated with this JButton.

• String getUIClassID()
Returns a string that specifies the name of the L&F class that renders this
component.

• boolean isDefaultButton()
Returns whether or not this button is the default button on the RootPane.

• boolean isDefaultCapable()
Returns whether or not this button is capable of being the default button on the
RootPane.

• protected String paramString()
Returns a string representation of this JButton.

• void removeNotify()
Overrides JComponent.removeNotify to check if this button is currently set as the
default button on the RootPane, and if so, sets the RootPane's default button to
null to ensure the RootPane doesn't hold onto an invalid button reference.

PacoSuite

146

• void setDefaultCapable(boolean defaultCapable)
Sets whether or not this button is capable of being the default button on the
RootPane.

• void updateUI()
Notification from the UIFactory that the L&F has changed

The most typical use of a JButton is to throw an event if it is clicked. However there is no
indication in the previous list on how this can be achieved. Going up one level in the
inheritance hierarchy of the JButton gives the following, rather impressive, list of methods:

addActionListener, addChangeListener, addItemListener,

checkHorizontalKey, checkVerticalKey, createActionListener,

createActionPropertyChangeListener, createChangeListener,

createItemListener, doClick, doClick, fireActionPerformed,

fireItemStateChanged, fireStateChanged, getAction, getActionCommand,

getDisabledIcon, getDisabledSelectedIcon, getHorizontalAlignment,

getHorizontalTextPosition, getIcon, getLabel, getMargin, getMnemonic,

getModel, getPressedIcon, getRolloverIcon, getRolloverSelectedIcon,

getSelectedIcon, getSelectedObjects, getText, getUI, getVerticalAlignment,

getVerticalTextPosition, imageUpdate, init, isBorderPainted,

isContentAreaFilled, isFocusPainted, isFocusTraversable,

isRolloverEnabled, isSelected, paintBorder, removeActionListener,

removeChangeListener, removeItemListener, setAction,

setActionCommand, setBorderPainted, setContentAreaFilled,

setDisabledIcon, setDisabledSelectedIcon, setEnabled, setFocusPainted,

setHorizontalAlignment, setHorizontalTextPosition, setIcon, setLabel,

setMargin, setMnemonic, setMnemonic, setModel, setPressedIcon,

setRolloverEnabled, setRolloverIcon, setRolloverSelectedIcon,

setSelected, setSelectedIcon, setText, setUI, setVerticalAlignment,

setVerticalTextPosition

This list contains a method: “addActionListener”. Reading the Swing tutorial (the

documentation of the method self only mentions that an actionListener is added to the

button) reveals that actionlisteners are notified whenever the button is pressed.

Providing the usage scenario depicted in Figure 58 summarizes this information.

PacoSuite

147

JButton Env: Observer

SIGNAL
LOOP

actionPerformed

Figure 58: Typical use of a standard JButton Component

7.2.1.1.3 The Network Component

The last component we need on the client side is a network client component. This

component sends strings over a TCP/IP connection and throws events when a string is

received or when the connection is established or destroyed. It has a little user interface

that allows the end user (thus not the developer) to specify a host name and a port number

and a connect button. If the connect button is hit, the component tries to set up a

connection. If it succeeds it throws the “rcvConnect” event, if it fails it throws the

“rcvClose” event. The default behavior of this component is therefore to throw first the

“rcvConnect” event, then to receive and send data until a disconnect is received, when it is

ready to make a new connection and start all over. This is depicted in Figure 59.

LOOP

Env:NetworkUser3

ALT

Network

SEND
send

PERFORM
rcv

CONNECT
rcvConnect

DISCONNECT
rcvClose

LOOP

Env:NetworkUser4Env:NetworkUser2Env:NetworkUser1

Figure 59: Usage scenario for the network client component

Note that four different environment participants are used. This allows us to use four

different components to provide each one of the environments expected by the network

component. In addition, because it is allowed to map one role on many environment

participants (see section 4.9.1), this documentation also allows one component to provide

all these environments.

PacoSuite

148

7.2.1.2 Server side

At the server side, we also use a standard Java Button and a network client component.

The components differing from the client side are the exam server component and a

generic network server component.

7.2.1.2.1 The ExamServer Component

The ExamServer component supports a lot of different usage scenarios, but the most basic

one is that it is launched and starts throwing events and listening for commands. At the

level of primitives, it behaves exactly the same as the user interface component at the client

side. The only difference is its implementation mapping. The usage scenario for the

ExamServer component is described in Figure 60.

LOOP

Env:Launcher

START

ALT

ExamServer Env:ExamServerListener

Launch

PERFORM
signalReceived

examSessionStarted|examSessionStopped|exam
SetId|examListSessions|examNextQuestion|exam
Result|examSessionSelected|examSessionJoined
|examFeedback

DATA

Figure 60: Documentation of the driving exam server
component

7.2.1.2.2 The NetworkServer Component

The NetworkServer component opens a port where it listens for connections. It support

sending broadcast messages and point to point messages. Its use is very simple however.

Or you simply launch it listening on the port set in its properties, or you launch it in GUI

mode, where it pops up a window where you can specify the server port and hit a button

to start the server. This is depicted in Figure 61.

PacoSuite

149

Env:NewtorkInitiator

ALT

NetworkServer

SHOW
enableGUI

START
listen

Figure 61: Description of a generic network server component

7.2.2 Composition Patterns
There are many possibilities for the composition patterns. We could have one composition

pattern for the client side and one for the server side, but these composition patterns

would be very specific. One of the ideas behind composition patterns is that they should

be generic and reusable. The spectrum of composition patterns ranges from the simplest

pattern describing one message between two roles, to composition patterns describing a

full application. In practice, we use a mix of application specific (and in general more

complex and less reusable) composition patterns together with a set of very basic (and in

general simple and highly reusable) composition patterns. In the example application, only

three distinct composition patterns are used: one application specific composition pattern

and two basic patterns.

7.2.2.1.1 Application Specific Pattern

The first composition pattern describes the interaction between a launcher to start a

network-based application, the network based application itself and a network role. This

composition pattern is shown in Figure 62.

PacoSuite

150

LOOP

Launcher

DATA

Network

START

ALT

PERFORM

Client

Figure 62: LaunchClientNetwork Composition Pattern describing the interactions between a launcher, a client and a
network role

This composition pattern is in fact an example of a composition pattern between the two

extremes of the spectrum. This composition pattern proved to be reusable for several

other distributed applications, but it is not reusable outside the scope of network

applications.

7.2.2.1.2 Basic Composition Patterns

We use two basic composition patterns: one to make something visible and one to start

something. These are shown in Figure 63.

Shower

SHOW

ToShow Starter

START

ToStart

Figure 63: Two basic composition patterns.

PacoSuite

151

7.3 The Composition Process

Figure 64: Snapshot of the development of an exam application using the exam construction toolkit.

Figure 64 show a snapshot taken during the development process of the exam application.

The application uses three composition patterns. At the client side the

LaunchClientNetwork (see Figure 62) composition pattern is used. The roles of this

composition pattern are filled with a Network component, a standard JButton and an

Exam User Interface component. The user already filled all the roles, except for the

launcher role of the LaunchClientNetwork composition pattern. He is about to drag the

JButton component onto this role (indicated by the circle). Using the local checking

algorithm, we check whether the JButton component is compatible with the corresponding

role. The drag is refused in case of a mismatch. In this case, the drag is accepted, but for

example dragging a Network component onto Launcher role will be refused. The

composition pattern at the top represents the client side of the exam and the composition

pattern at the bottom is the administrator or teacher side of the application. Notice that the

second button is used in two composition patterns, i.e. when the button is pressed it will

start both the network server and the administrator interface. When the user initiates the

glue-code generation, all filled composition patterns are checked as a whole using the

PacoSuite

152

global checking algorithm and glue-code to is generated. The resulting application is then

launched. Figure 65 shows a compilation of screenshots of the resulting application.

Figure 65: Compilation of screenshots of the exam service application.

To illustrate the power of our approach we show how chat functionality is added to the

exam (see Figure 68). Therefore, two instances of the Console component are added. The

usage scenario for this Console component is depicted in Figure 66.

LOOP

Env:Launcher

SHOW

ALT

Console Env:ConsoleListener

Launch

PERFORM
appendReceivedText

textToSend
DATA

Figure 66: Usage scenario for a Console component

PacoSuite

153

Both Console components are used as chat window. To use them one extra composition

pattern is required. This composition pattern describes the interaction between a network

and a network user. This pattern is depicted in Figure 67.

LOOP

ALT

NetworkUser Network

PERFORM

DATA

Figure 67: UseNetwork composition pattern

Chat functionality is added by filling the network user role of this composition pattern with

the Console component and the network role with the Network component we already

have in the LaunchClientNetwork composition pattern at the client side. We also use the

Show composition pattern to make the Console window visible if the launch button at the

client side is pressed. The same operation is done at the server side. The resulting

composition is shown in Figure 68. Note that the same composition patterns are used both

at the client side and at the server side indicating that these composition patterns are

reusable.

PacoSuite

154

Figure 68: Extending the exam application with chat functionality.

PacoSuite

155

7.4 Conclusions
This small example indicates that the concept of composition patterns allows us to

improve on state of the art visual component composition tools by lifting the abstraction

level of the wiring. It allows users to concentrate on the application rather than on

technical details. This leads to a construction kit that is easy to use without sacrificing

flexibility.

The exam construction kit was demonstrated both for our industrial partner Alcatel and

during the final review of the Advanced Internet Access (AIA) project. The tool and the

demonstration were very well received on both occasions.

PacoSuite

156

8 Conclusions
“Enough research will tend to support your conclusions.”

- Arthur Bloch In "Quotable Business," ed. Louis E. Boone, 1992
-

"C'est le temps que tu a perdu pour ta rose qui fait ta rose si importante."

- Antoine de Saint-Exupéry, Le Petit Prince

PacoSuite

157

8.1 Contributions
In section 1.3, we mention five main contributions of this thesis. Our first claim is that we

improve current visual component composition environments using the concept of

composition patterns. To support this claim we argue first why using composition pattern

is at least as good as current component composition environments. Current state of the

art component composition environment allow you to connect any event with any method.

We obtain the same kind of wiring by documenting every component with the usage

scenario (left hand side of the picture) and the composition pattern (right hand side of the

picture) as shown in Figure 69.

Component Environment

LOOP

SIGNAL
ALT

SIGNAL

… all events …

… all methods …

Role1 Role2

LOOP

SIGNAL
ALT

SIGNAL

Figure 69: Generic usage scenario and composition pattern

This usage scenario specifies that a component can throw any event at any given moment.

It also specifies that any method can be called at any given time. Documenting

components with this kind of usage scenarios and subsequentially composing these

components using this kind of composition pattern in our prototype tool launches a dialog

box where links between events and their corresponding API call can be specified. This is

the same as what current visual component composition environments provide.

Composition patterns improve on this scheme as they allow a developer to specify the

order of events and method calls. They also support the specification of multi party

composition patterns whereas current tools are limited to binary relationships.

Composition patterns further support the reuse of wiring information (wiring in current

commercial tools cannot be stored and reused independently of an application. It needs to

be redone for every new application) and they make compatibility checking possible. This

leads us to our second claim.

We claim that we can do an automatic compatibility check using a compatibility definition

that allows components to offer more than what the composition pattern asks for and

allows composition patterns to be more general than what the components offer. To this

PacoSuite

158

end, we developed checking algorithms based on finite automata theory using the

intersection of automata rather than the difference. To avoid problems at runtime for calls

outside this intersection, we generate a special kind of glue code. This leads us to our third

claim.

We claim that glue code can be generated that both forces components to follow only

compatible traces and restricts the composition pattern to what the components can offer.

This allows us to use more generic and more reusable composition patterns than what is

proposed by current architectural description languages. This is done by implementing the

resulting state machine of our compatibility check. As this state machine only contains

valid traces, it is able to blocks all other traces resulting in the wanted runtime behavior.

The fourth contribution is improved feedback during the component composition process.

We not only add usage protocol checking to the composition process, but also a check if

the specified composition pattern can be used with the selected set of components. None

of these checks exists in current tools. In case a mismatch is detected, we provide a flexible

adapter generator that can be used to search for possible adaptations of the components,

composition patterns, or glue code, to cure the mismatch. We noticed the similarities

between algorithms used in the adaptive programming field [Lieberherr, 1997] and the

algorithm used by Reussner to generate adapters [Reussner, 1999]. Applying the adaptive

programming algorithm to adapter generation leads to a more flexible and efficient adapter

generator process.

The last claim we made is that we provide support for “composition based” construction

of component-based applications. This means that instead of selecting a set of components

and trying to hack them together, we can search for a set of composition patterns first and

select the components based on their compatibility with these composition patterns. As

composition patterns are documented using a kind of sequence diagram, they correspond

very well with use cases built to specify the requirements.

With the small distributed exam application, we indicated how this work could be used to

build very flexible construction kits. It allows the developers of such a kit to provide

standard composition patterns together with their set of components without touching the

ability of the users of these construction kits to build very complex applications that were

not foreseen by the developers.

PacoSuite

159

8.2 Applicability
8.2.1 Influence on Visual Component Composition
It would be very naive to think that the prototype tool we developed in this work will be

the component composition tool of the future. The most we can hope is that some of the

ideas will make it to future commercial component composition environments.

A tool that shows a lot of efforts in this direction is Visual Age for Java. Recently IBM has

introduced the concept of “helpfull beans” in their Visual Age for Java product. A

“helpfull bean” is a component with built in documentation describing typical wiring

schemes. To a certain extent, these can be seen as usage scenarios. It specifies no order of

events or method calls but it does indicate the events and method calls that are most often

used to compose this component. Until now, this documentation is passive. I.e. it is not

possible to instantiate a typical wiring and to fill in the blanks. However there are rumors

that this will be possible in further versions.

The same tool also allows to “swap” components in existing wiring. I.e. it is possible to

update a given component with another component. If the new component has another

set of events and/or method calls the tool allows the user to reroute the wiring that is not

“compatible” anymore.

Many tools also support a kind of ordering of events on their components. If an event

needs to invoke several method calls on several components, it is possible to specify in

what order these methods are called.

These are all indications that current tools search for ways to improve the wiring process

and the usage documentation of their components. This work provides a set of ideas that

are very useful in this context.

8.2.2 Scalability
An important issue in the application of these ideas is scalability. Even small experiments

prove that the checking algorithms start to take to much time when composition patterns

reach more than ten participants. There is no real limit to the use of multiple composition

patterns though. Current visual composition tools only support binary composition

patterns and large applications are built using many components and many composition

patterns. We can take the same approach. I.e. we compose large applications using a large

set of composition patterns and a large set of components. However, this means that we

use the results of this work only locally. There is no possibility to define high-level

synchronization between subsystems this way. The obvious approach to cure this problem

PacoSuite

160

is to make a composition of a set of components using one composition pattern and to

pack the result into a new component. This new component needs a new set of usage

scenarios. This can be done manually or semi automatic. Current visual composition

environments all ask user input to provide the new interface of the composed component.

One possibility to provide this set of usage scenarios automatically is to take the union of

all usage scenarios of the constituent components, but this leads to a huge set of usage

scenario for components that are made from a large collection of other components. We

also experimented with composition patterns that are only partially filled where we

consider the interaction between the empty roles and the filled roles as the usage scenario

for the new component. However, this leads quickly into problems when using multiple

composition patterns to build a new component. In general, we state that a new

component needs to be documented manually, but we can support this documentation

process with automatic tools.

As current visual composition environments proved to be scalable enough to be used in

industrial strength applications, we do not foresee scalability problems with he improved

approach presented in this work.

8.2.3 Influence on Other Research
This work mainly uses the results of finite state machines, architectural description

languages, adapter generation and the adaptive programming library. We think that many

of the results in this work could be used in these areas to improve the current results.

We use an algorithm based on dynamic programming to find contradicting

role/component mappings in a state machine resulting from a global check between a set

of components and a composition pattern. In general, this algorithm is a very efficient

implementation to find all traces constrained by all its values along the trace. I.e. constraints

like “find all traces where the label “a” occurs at most n times”. These are very common

constraints for regular languages.

In the area of architectural description languages, we think that the algorithms explained in

this text could be used to improve the efficiency of the compatibility check as proposed by

[Allen, 1994b]. At the moment they use a theorem prover to do this. A small adaptation to

our global check algorithm would be a more efficient solution. The only adaptation we

need to do is to take the difference rather than the intersection between the composition

pattern and the components (and calculating the intersection and difference automaton is

very similar in automata theory). In their work, they prove that a composition is deadlock

PacoSuite

161

free if, among others, their glue code is conservative (for a definition see [Allen, 1997]).

Our glue code generation generates conservative glue code. It could be interesting to apply

our ideas to their research to force glue code to be conservative instead of just assuming it.

We further explained how our adapter generation algorithm improves the adapter

generation algorithms we found in literature.

We also indicated the mapping between the parallel composition operator () as defined

in CSP and the calculation of a traversal graph as defined by [Lieberherr, 1997]. This can

only help in improving the understanding and the implementation of these algorithms.

PacoSuite

162

8.3 Future Work
No work is ever finished and this one is no exception. On the first place, there are

improvements to the efficiency of our algorithms. One idea that is worth looking at is to

do the global check in a tree like fashion rather than incrementally. As the operator is

associative, we can place the brackets anywhere we like with the same result. Another

interesting idea is to use state machine minimization. This should speed up our algorithms,

but it is far from trivial to keep track of the implementation mappings.

Support for automatic documentation generation for a new component made from a

composition of other components is another item on the wish list. We have done a set of

experiments, but especially multiple composition patterns and the conversion from state

machines to MSC’s gave us troubles. There exists a well-known conversion algorithm

[Hopcroft, 2001] to do the latter, but it results in very strange MSC’s. The conversion can

be done in many different ways and the standard algorithm does not necessarily result in

the more intuitive one. It would be interesting to try to guide the conversion based on the

original MSC’s.

My colleague Wim Vanderperren takes a more ambitious direction. He tries to build on

the aspectual component and AOP research to add aspect weaving to the component

composition process. The idea is to have a special kind of composition patterns that adapt

other composition patterns. Figure 70 gives an example of an adapter composition.

Logger

CONTEXT

Source Dest

ADAPTER

SEND

SEND

Source Dest

SEND

Figure 70: Composition Adapter: CONTEXT specifies where to apply and ADAPTER specifies what to do.

In this example, the adapter composition will re-route every occurrence of a SEND from

role Source to role Dest through a Logger role. The composition pattern shown at the left

hand side of Figure 71 shows the result of applying the composition adapter of Figure 70

to the composition pattern shown at the right hand side of the picture.

PacoSuite

163

SEND

Logger

SEND

LOOP

Launcher Netw ork/Dest

ALT

Client/Source

START

PERFORM

SEND

LOOP

Launcher Netw ork/Dest

ALT

Client/Source

START

PERFORM

Figure 71: Applying the composition pattern adapter to the original composition pattern on the left hand side results in
the composition pattern at the right hand side.

I.e. we construct a new composition pattern by first combining composition patterns with

a set of adapting patterns. Benefits do not only arise in the development of the

component-based application, but also in evolutionary changes to the application. New

requirements often lead to concerns that crosscut the existing component composition.

Instead of having to re-wire all the components, the existing composition patterns are

altered using adapter compositions.

There are plenty of other possibilities left to build onto our current results and further

improve the component based development process.

PacoSuite

164

9 Products and Specifications
ADA, "ADA Reference Manual", http://www.ada-auth.org/arm.html

BeanBox, "Java BeanBox (SUN)",
http://java.sun.com/products/javabeans/docs/spec.html

COM, "Component Object Model (COM)",
http://www.microsoft.com/com/tech/com.asp

CORBA, "The Common Object Request Broker: Architecture and Specification- Revision
1.2", http://www.omg.org/technology/documents/formal/corbaiiop.htm

DCOM, "Distributed Component Object Model (DCOM) - Downloads, Specifications,
Samples, Papers, and Resources for Microsoft DCOM",
http://www.microsoft.com/com/tech/DCOM.asp

Delphi, "Borland Delphi", http://www.inprise.com/delphi/

EJB, "Enterprise JavaBeans Specification",
http://www.javasoft.com/products/ejb/docs.html

IDL, "CORBA 2.4.2 OMG IDL Syntax and Semantics chapter",
http://www.omg.org/cgi-bin/doc?formal/01-02-07

MSC. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). 1993. Geneva.

NetBeans, "Net Beans", http://www.netbeans.org/index.html

UML, "UML 1.3 Documentation",
http://www.rational.com/uml/resources/documentation/index.jsp

VisualAge, "IBM Software : Application Development : VisualAge Developer Domain",
http://www7.software.ibm.com/vad.nsf/

VisualBasic, "Microsoft Visual Basic Home Page", http://msdn.microsoft.com/vbasic/

VisualJava, "Microsoft Visual J++ Home Page", http://msdn.microsoft.com/visualj/

ActiveX, "ActiveX Controls - Microsoft Papers, Presentations, Web Sites, and Books, for
ActiveX Controls", http://www.microsoft.com/com/tech/activex.asp

PacoSuite

165

10 References
Aho, A. V., Sethi, R., and Ullman, J. D., Compilers Principles, Techniques and Tools. 1985.

Allen, R. and Garlan, D. Formal Connectors. CMU-CS-94-115. 1994a.

Allen, R. and Garlan, D. Formalizing Architectural Connection. 71-80. 1994b.

Allen, R. and Garlan, D., "A Formal Basis for Architectural Connection," ACM Transactions
on Software Engineering and Methodology, vol. 6, no. 3, pp. 213-249, 1997.

Alpert, S. R., Brown, K., and Woolf, B., The Design Patterns Smalltalk Companion Addison-
Wesley, 1998.

Bach, M. J., "The Design of the UNIX Operating System," Software Series Prentice-Hall,
1986, pp. 111-119.

BeanActiveXBridge,
"http://java.sun.com/products/javabeans/software/bridge/index.html,".

Beugnard, A., Jézéquel, J.-M., Plouzeau, N., and Watkins, D., "Making Components
Contract Aware," IEEE Computer, pp. 38-44, 1999.

Booch, G., Object-Oriented Analysis and Design with Applications Santa Clara, California: The
Benjamin/Cummings Publishing Company, Inc., 2001.

Brand, D. and Zafiropulo, P., "On Communicating Finite-State Machines," Journal of the
ACM, vol. 30, no. 2, pp. 323-342, 1983.

Campbell, R. and Habermann, A. The specification of process synchronisation by path
expressions. 89-102. 1974. Springer-Verlag.

Christopher Alexander, The Timeless Way of Building 1979.

Clarke, S. and Walker, R. Composition Patterns: An Approach to Designing Reusable
Aspects. 2001. ACM Press.

Compare, D., Inverardi, P., and Wolf, A. L., "Uncovering architectural mismatch in
component behavior," Science of Computer Programming, vol. 33, no. 2, pp.
101-131, 1999.

Coplien, Jim, "Why Patterns Are Different",
http://www.linuxcare.com.au/mirrors/c2wiki/WikiPagesAboutWhatAreP
atterns/WhyPatternsAreDifferent.html

PacoSuite

166

DeRemer, F. and Kron, H., "Programming-in-the-Large Versus Programming-in-the-
Small," IEEE Transactions on Software Engineering, vol. 2 pp. 321-327, 1976.

Ducasse, S. and Tamar, R. Executable Connectors: Towards Reusable Design Elements.
Jazayeri, M. and Schauer, H. 483-499. 1997. Springer-Verlag. Proceedings
of the Sixth European Software Engineering Conference (ESEC/FSE
97)".

Ellsberger, J., Hogrefe, D., and Saram, A., SDL, Formal Object-Oriented Language for
Communicating Systems London: Prentice Hall, 1997.

Esparza, J. and Nielsen, M., "Decidability Issues for Petri Nets - A Survey,"
J.Inform.Process.Cybernet., vol. 3, no. 30, pp. 143-160, 1994.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns: Elements of Reusable
Object-Oriented Software Addison-Wesley, 1995.

Garlan, D., Allen, R., and Ockerbloom, J. Architectural Mismatch or Why it’s hard to build
systems out of existing parts. 1995.

Garlan, D. and Shaw, M., "An Introduction to Software Architecture," in Ambriola, V. and
Tortora, G. (eds.) Advances in Software Engineering and Knowledge Engineering
World Scientific Publishing Company, 1993, pp. 1-40.

Genesereth, M. R. and Fikes, F. E. Knowledge Interchange Format, Version 3.0 Reference
Manual. Logic-92-1. 1992. Stanford University.

Harel, D. Statecharts: A Visual Formalism for Complex Systems. Science of Computer
Programming 8[3], 231-274. 1987.

Harrison, W. and Ossher, H. Subject-Oriented Programming (A Critique of Pure Objects).
411-428. 1993. ACM Press.

Helm, R., Holland, I. M., and D., G. Contracts: Specifying behavioural compositions in
object-oriented systems. 169-180. 1990.

Hoare, C. A. R., Communicating Sequential Processes Prentice Hall, 1985.

Hopcroft, J. E., Motwani, R., and Ullman, J. D., Introduction to Automata Theory, Languages and
Computation, Second ed. 2001.

INMOS, Occam 2 Reference Manual Prentice Hall, 1988.

Jacobson, Ivar, Christerson, Magnus, Jonsson, Patrik, and Övergaard, Gunnar, "Object-
Oriented Software Engineering. A Use Case Driven Approach." 1992.

PacoSuite

167

KIF, "Knowledge Sharing Web Site", http://logic.stanford.edu/sharing/knowledge.html

Kramer, R. iContract—The Java Design by Contract Tool. 295-307. 1998. Los Alamitos,
California, USA, IEEE CS Press.

Krasner, E. G. and Pope, T. S. A Cookbook for Using the Model-View-Controller User
Interface Paradigm in Smalltalk-80. Journal of Object-Oriented
Programming 1[3], 26-49. 1988.

Lajoie, R. and Keller, R. Design and Reuse in Object Oriented Frameworks: Patterns,
Contracts, and Motifs in Concert. 1994. Montreal, QC, Canada.

Lamping, J. Typing the Specialization Interface. 201-214. 1993. ACM Press.

Lieberherr, K., Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns
PWS Publishing Company, 1996.

Lieberherr, K., "NFA algorithms and AP algorithms",
http://www.ccs.neu.edu/research/demeter/papers/boaz-jacm/NFA/

Lieberherr, K. J. and Patt-Shamir, B. Traversals of Object Structures: Specification and
Efficient Implementation. NU-CCS-97-15. 1997. College of Computer
Science, Northeastern University, Boston, MA.

Lopez, Christina, "D - A language famework for distributed programming." 1997.

Luckham, D., Kenney, J., Augustin, L., Vera, D., Bryan, D., and Mann, W., "Specification
and analysis of system architecture using RAPIDE," IEEE Transactions on
Software Engineering, vol. 21 1995.

Mairson, H. On Axiomatic Characterizations of CSP. 02254. 1989. Department of
Computer Science, Brandeis Univerity, Waltham, Massachusetts.

Marshall, A. D. Programming in C, UNIX System Calls and Subroutines using C. 1999.

Martin, Jeremy. Malcolm. Randolph, "The Design and Construction of Deadlock-Free
Concurrent Systems." University of Buckingham, 1996.

Mclennan , S. G., Roesler, A. W., Tempest, J. T., and Spinuzzi, C. I., "Building More
Usable APIs," IEEE Software, pp. 78-86, 1998.

Meyer, B., "Applying Design by Contract," Computer, pp. 40-52, 1992.

Mikkonen, T. Formalizing Design Patterns. 115-124. 1998. Kyoto, Japan.

PacoSuite

168

Nierstrasz, O. and Dami, L., "Component-oriented software technology," Object Oriented
Software Composition Prentice Hall, 1995, pp. 3-28.

Parnas, D. L., "On the Criteria To Be Used in Decomposing Systems into Modules,"
Communications of the ACM, vol. 15, no. 12, pp. 1053-1058, 1972.

Petri, C. A., "Kommunikation mit Automaten," Schriften des IIM, vol. 2 1962.

Pintado, X. and Junod, B., "Gluons: Support for software component cooperation," Object
Frameworks, pp. 311-346, 1992.

Reussner, R. Dynamic types for software components. 1999.

Reussner, R. An Enhanced Model for Component Interfaces to Support Dynamic
Adaption. 2000. Cannes, France.

Riehle, D. A Role-Based Design Pattern Catalog of Atomic and Composite Patterns
Structured by Pattern Purpose. 97-1-1. 1997. Zürich, Union Bank of
Switzerland.

Rudolph, E., Graubmann, P., and Grabowski, J. Tutorial on Message Sequence Charts
(MSC'96). 1996.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W., Object-Oriented
Modeling and Design Prentice-Hall, 991.

Schank, R. C., Identification of Conceptualization Underlying Natural Language Freeman, San
Francisco: 1973.

Schmidt, H. and Reussner, R. Automatic Component Adaptation by Concurrent State
Machine Retrofitting. 25/2000. 2000. Karlsruhe, Universität Karlsruhe,
Department of Informatics.

Shaw, A. C., "Software descriptions with flow expressions.," IEEE Transactions on Software
Engineering, vol. 4, no. 3, pp. 242-254, 1978.

Short, K. Component Based Development and Object Modeling. 1997. Texas
Instruments Software.

Shu, J. and Liu, M. A synchronization model for protocol conversion. 1989.

SUN, "Java Tutorial", http://java.sun.com/docs/books/tutorial/index.html

Szyperski, C., Component Software; beyond Object-Oriented Programming Addison-Wesley, 1997.

PacoSuite

169

Taylor, R. N., Medvidovic, N., Anderson, M. K., Whitehead, E. J., and Robbins, E. J. A
Component- and Message-Based Architectural Style for GUI Software.
295-304. 1995. Seattle WA.

Taylor, R. N., Medvidovic, N., Anderson, K. M., Whitehead, J. E., Robbins, J. E., Nies, K.
A., Oreizy, P., and Dubrow, D. L., "A Component- and Message-Based
Architectural Style for GUI Software," IEEE Transactions on Software
Engineering, vol. 22, no. 6, pp. 390-406, 1996.

Thatte, S. Automated synthesis of interface adapters for reusable classes. 174-487. 1994.

Tiberghien, J. Course: Personal Communication. VUB Press.

Warmer, B. J. and Kleppe, G. A., The Object Constraint Language : Precise Modeling With UML
Adison-Wesley, 1999.

Weaver, L. and Robertson, L., Java Studio by Example 1998.

Weber Systems Inc., dBASEIII Users' Handbook New York: Ballantine Books, 1985.

Wells, L. K. and Travis, J., LabVIEW for Everyone: Graphical Programming Made Even Easier
New Jersey: Upper Saddle River, NJ :Prentice Hall PTR, 1997.

Wydaeghe, B. and Vanderperren, W., "PacoSuite",
http://ssel.vub.ac.be/Members/BartWydaeghe/member_pacosuite.htm

Wydaeghe, B., Verschaeve, K., Westerhuis, F., and De Moerloose, J. Multi-level
Component Oriented Methodology for Service Creation. IS&N. 2000.
Athens, Greece.

Wydaeghe, B. and Westerhuis, F. Evaluation of state-of-the-art component composition
tools. AIA-WP3.3T1D1. 29-12-2001b.

Yellin, D. and Strom, R. Interfaces, protocols and the semiautomatic construction of
software adapteors. 10, 176-190. 1994a.

Yellin, D. and Strom, R., "Protocol specifications and component adaptors," ACM
Transactions on Programming Languages and Systems, vol. 19, no. 2, pp. 292-333,
1994b.

Zaremski, A. M. and Wing, J. M., "Specification Matching of Software Components,"
ACM Transactions on Software Engineering and Methodology, vol. 6, no. 4, pp.
333-369, 1997.

