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Abstract 

Components come in a variety of formats, designs and implementations. Components can 

be designed to work together or their designs can be totally incompatible. This influences 

greatly the amount and kind of composition work that is to be done. In this work, we build 

on the work of architectural description languages to improve current visual component 

composition environments.  

This is done using the concept of composition patterns. A composition pattern describes 

an interaction between a set of roles using an extended sequence chart. It serves as a bridge 

between the design and the implementation. We further propose a component 

documentation using the same kind of extended sequence charts. The concept of 

composition patterns lifts the abstraction level of current composition techniques to the 

same level of the components. I.e. composition patterns are first class objects that can be 

defined, stored and reused independently of the components.  

We further develop and implement algorithms to perform automatic compatibility 

checking based on finite automata theory. We also developed tool support that gives 

feedback in case of a mismatch. This includes a visualization of the matching process and 

the generation of adaptors. The latter is a new technique based on the adaptive 

programming library and the results of Reussner. Finally, we describe how glue code can be 

generated that constrains incompatible and unwanted behaviors of components based on 

the constraints specified by the composition pattern. This glue code allows us to use a 

more flexible compatibility check that leads to more generic and more reusable 

composition patterns.  

We implemented these checks and mismatch feedback in our prototype of a visual 

component composition environment. This tool shows how the formal checks can be 

hidden for the user to provide an intuitive and easy to use component composition 

process. We demonstrate this by showing how a small exam construction kit is provided 

and used in this prototype. 

This work is mainly useful to build very flexible construction kits. It allows the developers 

of such a kit to provide default composition patterns together with their set of components 

without touching the ability of the users of these construction kits to build very complex 

compositions that were not foreseen by the developers. 
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1 Introduction 
“I don't have a solution, but I certainly admire the problem”

- Ashleigh Brilliant 
 

“For every problem, there is one solution which is simple, neat and wrong.”

- Henry Louis Mencken (1880-1956)  
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1.1 Problem Statement  
Component technology becomes increasingly important in the software industry. A large 

community believes that components and associated component models help in reducing 

the cost and the development time of new applications. The following quote is prototypical 

for this way of thinking: 

“Component Based Development is an approach to application development in which prefabricated, pre-

tested and reusable pieces of software are assembled together thereby enabling very flexible applications to be 

built rapidly.  It all sounds engagingly simple, to the extent that often the child's toy Lego is used as a 

metaphor, appropriate right down to the need for standardization - visualize those neat little plugs and 

sockets each brick has, irrespective of size and shape.  If an application designer can draw upon a pool of 

software objects, each plug-compatible with another, and whose form and function are as obvious as Lego 

bricks, then the vision has been realized.  A change in the requirements? No problem, just snap out one 

brick or sub-assembly, and snap-in another” 

[Short, 1997]  

Components come in a variety of formats, designs and implementations. Components can 

be designed to work together or they can be obtained from very different sources. Bringing 

these building blocks together results in an application. Needless to say, that just bringing 

components together is not enough to obtain a working application. In the real world, 

application programmers write a lot of glue code to make components work together. 

Today the cooperation between components is mainly defined at the implementation level. 

At that level there exists standards so that programs written in different programming 

languages and on different platforms can understand and use each other (e.g.[COM, 

1999;CORBA, 2000;DCOM, 1998]). These technical possibilities provide component 

connectivity. Connectivity on its own does not imply interoperability. The following 

analogy of a "plain old telephone service" shows clearly the difference. 

 “Thanks to a worldwide numbering scheme and the interconnection of all the national telephone networks, 

it is fairly easy to establish a telephone connection between two arbitrary points in the world to carry sounds 

between these two points. This is worldwide connectivity. If, however, people want to interoperate (do 

meaningful things) through the telephone, they should not only be able to exchange sounds, but also to 

understands each others sounds, i.e. to use a common language.”  

[Tiberghien] 

We believe that just as in the telephone example current approaches to component 

technology and component composition have a serious problem in assuring component 
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interoperability i.e. "the components plug, but they don't play". We need documentation 

on how to implement a typical cooperation between components i.e. what interaction 

scheme is needed between a given set of components to obtain a wanted application with a 

given design. Today this is solved using experienced developers.  

Current component documentation techniques enable humans to determine functionality. 

However, the documentation provided to use a component is very weak in most cases. It is 

common practice that developers start experimenting with a component to find out how it 

should be used. This means that composing components requires a lot of technical 

knowledge and a lot of effort. This stands in sharp contrast with the selection of suitable 

components for your application. It is usually not necessary to know all the technical 

details to identify a component as a possible candidate for your application. Just browsing a 

catalogue with natural text descriptions will do in most cases. The knowledge needed to 

select suitable components is knowledge about the application domain. We state that the 

main reason of this situation lies in the lack of abstraction at the composition level. Even 

the latest tools to compose components, force you to really code (be it manually or 

visually) every connection between a set of components. Composition code is spread 

around in your application and cannot be reused or considered to be black box. 

This work tries to lift the abstraction level of the compositions to the same level as the 

components. I.e. we want it to be as easy to select and apply a suitable component 

composition, as it is to select and use a suitable component.   
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1.2 Approach 
Our approach is based on four concepts: composition patterns, component usage 

scenarios, compatibility checking algorithms and glue code generation. A composition 

pattern formally specifies how a set of roles interacts, while a component usage scenario 

specifies how a component interacts with a set of environments. We use a special kind of 

Message Sequence Charts (MSC's) [MSC, 1993] [Rudolph, 1996]to do this. Each 

component is documented with a set of MSC's. Each MSC describes a scenario for one of 

the functionalities supported by this component. The main difference with standard MSC's 

lies in the kind of signals sent. We developed a compact set of primitives with a predefined 

meaning. Instead of using API calls we use these primitives to model the components 

behavior thus avoiding the confusion that stems from the use of API calls for the signal 

labels. The syntax is mainly the MSC syntax. It contains a set of participants, a set of signal 

sends between these participants and a set of control blocks and structuring mechanisms.  

 

Figure 1: PacoDoc Screenshot 

The idea is to document how components should be used. Composition patterns are 

documented in a similar way using the same compact set of primitives. We developed a 

prototype editor called PacoDoc (Figure 1) to browse and edit this kind of documentation. 
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As the composition pattern and the component documentation are expressed in the same 

formalism it becomes possible to check compatibility between the protocol offered by the 

components and the protocol as specified by the composition pattern. 

We developed algorithms to check compatibility based on finite automata theory. Our 

compatibility definition allows components to offer more functionality than what the 

composition pattern asks for, as is the case in most compatibility definitions found today in 

literature. However, we view the composition patterns as first class reusable entities, 

implying that also composition patterns can be more general than what the component 

offers. A good example is an observer composition pattern specifying both polling 

behavior as well as notification behavior. This composition pattern thus describes in 

general that two roles should be connected using some kind of observing scheme. We do 

not want to force any component using this composition pattern to implement both 

possibilities. Restricting the composition pattern to only one option, on the other hand, 

would render a less generic and less reusable composition pattern. In short, we declare a set 

of components and a composition pattern to be compatible if there exists at least one 

common trace (that reaches an end state) over all components that is also specified by the 

composition pattern.  Technically, we calculate the intersection between the protocols as 

specified by the parallel composition of all components with the protocol specified by the 

composition pattern. The result is a new state machine describing the “compatible” 

behavior between this set of components, constrained by the protocol specified by the 

composition pattern. If this automaton is not empty, we generate the source code that 

implements this result automaton. This code is then used as the glue code between the 

components. This is necessary as our compatibility definition only assures that there is a 

common trace. It does not guarantee that it is the only trace, or that the components 

follow this trace at runtime. The generated glue code ignores all non-valid behavior of the 

components and allows only the common traces between the components and the 

composition pattern. The details of this process are further explained in chapters 4 and 6.  

If our compatibility checks returns a mismatch we offer the developer several possibilities 

to analyze the incompatibility. This includes tools that mark the compatible behavior and 

indicate were the compatibility check fails, as well as a tool that suggest “fixing” scenarios 

for both components and composition patterns.   

All these technical matters are transparent for the user. During component composition, a 

user works with a visual composition editor that contains a palette of components and a 
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palette of composition patterns. We developed a prototype of such a tool called PacoWire. 

This tool allows dragging a component on a role of a composition pattern. The drag is 

refused when the component does not match with the selected role. It is possible to drag a 

component on more than one role, so that the same component can be shared among 

different composition patterns. When all the roles of a composition pattern are filled, this 

tool checks the components against the composition pattern and vice versa. If the check 

succeeds, glue-code is generated. 

 

Figure 2:PacoWire prototype visual composition tool 

This implies that we have a new way to start the development of component-based 

applications. In current visual composition tools, the developer selects a set of components 

first and tries to implement this design afterwards using these components. There is no 

feedback whether these components fit in the design or not. Composition patterns can be 

selected based on a design document (typically use cases) and search for compatible 

components based on these composition patterns. 

 



PacoSuite 

17 

1.3 A Motivating Example 
As a kind of “quick preview”, we describe here a small example that indicates the problem 

and shows how we try to solve it. Our work is mainly targeted towards Java Beans. One of 

the tutorials for the Java Bean Box describes how to build a Juggler application so that a 

click on one button starts the juggling on the Juggler component and a click on a second 

button stops the juggling on the Juggler component. The construction of this application 

only requires visual wiring. We show how we use our approach to build a similar 

application but instead of one start button and one stop button, we try to use the same 

button component as a “toggle” button. This is not possible in the Bean Box (nor in any 

other commercial visual wiring tool I know) without manual adaptation of the code, 

because current tools only generate code for fixed event/action pairs. I.e. one event always 

results in the same API call. 

 
 

Toggler ToBeToggled

LOOP

STOP

START

 
Figure 3: Toggling Composition Pattern. 

 

Env:ControlJuggler

ALT

STOP

START

startJuggling()

stopJuggling()

LOOP

 

Figure 4: Typical use of a Juggler Component 

JButton Env: Observer

SIGNAL
LOOP

actionPerformed

 

Figure 5: Typical use of a standard JButton 
Component 
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In our approach, we add a pallet of standard composition patterns on top of the pallet of 

components found in current tools. The documentation for a typical usage scenario for a 

standard Java Button and for the Juggler component is shown in Figure 4 and Figure 5. 

The documentation for a toggle composition pattern is depicted in Figure 3. This 

documentation is made by the developer of the construction kit and is transparent for the 

user. The user uses a tool as shown in Figure 6. He or she selects the toggle composition 

pattern from the palette with composition patterns and he or she fills the Toggle role with 

the Button component and the ToBeToggled role with the Juggler component. Our tool 

then checks compatibility of the components with the composition pattern. If the check 

succeeds it generates all code necessary to build the application. In case the check fails  

gives mismatch feedback. In this small example, the documentation of the JButton 

component is checked against the Toggler role. This is done based on the primitives 

(START, STOP, SIGNAL…) and the sequence diagrams. We define a basic hierarchy on 

the primitives where SIGNAL matches with any other primitive. It is easy to see that the 

JButton component matches with the Toggler role and that the Juggler component 

matches with the ToBeToggled role (for an exact definition of our compatibility definition 

see section 4.5) 

 

 

Figure 6: Composition Tool 
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In this case, the tool performs the compatibility check and generates a main application 

that instantiates a button and a juggler. It also generates a small state machine component 

listening for JButton “actionPerformed” events and calling the “startJuggling()” and 

“stopJuggling()” methods on the Juggler component alternately. This means that all the 

necessary glue code is generated and that the tool does not require any programming 

knowledge from the user. 

It is clear that this approach is not limited to binary composition patterns only, nor is it 

limited to a single composition pattern. However, this very simple example already 

indicates the main principles and benefits of the approach. This research improves the 

code generation process found in current commercial visual component composition tools 

by generating full protocols between components instead of mere event/action pairs. The 

main advantage of this approach lies in the reuse of the composition patterns, the shift of 

expert knowledge from the application developer towards the component and construction 

kit builder and in the introduction of compatibility checking algorithms.  

 

 

 

 

 

 



PacoSuite 

20 

1.4 Contributions 
The main contributions of this dissertation are: 

1. Improvement of current visual component composition environments. This is 

done using the concept of composition patterns. This concept lifts the abstraction 

level of current composition techniques to the same level as that of the 

components. I.e. composition patterns are first class objects that can be defined, 

stored and reused. 

2. Automatic compatibility checking based on finite automata theory using a 

compatibility definition that allows components to offer more than what the 

composition pattern asks for and allows composition patterns to be more general 

than what the components offer. 

3. Glue code generation that both forces components to follow only compatible 

traces and restricts the composition pattern to what the components can offer. 

This allows us to use more generic and more reusable composition patterns than 

what is currently available. 

4. Improved feedback at composition time allowing the composer to find out 

mismatches and suggesting fixing scenarios. 

5. Support for “composition based” construction of component based applications 

because components can now be selected on their compatibility with a 

composition pattern. 

This work is mainly useful to build very flexible construction kits. It allows the 

developers of such a kit to provide standard composition patterns together with their 

set of components without touching the ability of the users of these construction kits 

to build very complex compositions that were not foreseen by the developers. 
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1.5 Overview of the Dissertation 
The next chapter (Chapter 2) defines the context of this work. It describes the state of the 

art of current component composition techniques and deals with the important issue of the 

component model. It further elaborates on our motivation and view on components. The 

questions: “Why do I propose to do component based development?”, “What is a 

component in this dissertation?” are answered in this chapter. Finally, it gives the 

background behind the concept of composition patterns. 

Chapters 3 till 6 discuss the technical details of our approach. The documentation to define 

usage protocols for components and interaction protocols for composition patterns is 

introduced in chapter 3. To do this we first make some observations about the nature of 

this kind of documentation. This leads us to a set of requirements that we want to be 

satisfied by this documentation. This is followed by an overview of how existing 

documentation techniques perform in view of these requirements. Finally, we present the 

details of the documentation itself. 

The next chapter (Chapter 4) describes the matching process. It starts with our view on 

compatibility. It mainly describes two different situations. A local matching process that 

checks a component against a role in a composition pattern and a global matching process 

that checks if there exists cooperation between a set of components and a specified 

composition pattern. It further describes algorithms to perform automatic matching of 

components and roles. I.e. during the normal component composition process the 

developer drags the right component on the right role of the composition pattern. We 

devised an algorithm that searches the most likely role for a given component based on 

compatibility. Finally, we go into more detail on how we handle environments and sub-

typing.  

Chapter 5 describes techniques and tools to provide feedback in case of incompatibility. 

This varies from tools that annotate partial compatibility to tools that hint at possible fixing 

scenarios. The technical part stops with a discussion on the code generation process 

(Chapter 6) itself. This is followed by a small example where a driving exam construction 

kit is built (Chapter 7) to illustrate our approach. 

At the end of this dissertation, we state our conclusions. 
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2 Context 
“When you steal from one author, it's plagiarism; if you steal from many, it's research.”

- Wilson Minzer (1876-1933) 
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2.1 State of the Art 
Component composition is a long-standing issue in software engineering. Many, quite 

different sub-fields of software engineering research are applicable to this problem. For this 

work, we use the results and the ideas from very different areas such as visual 

programming, documentation techniques, patterns, API definitions and formal 

compatibility checks. We also use ideas and terms coming from the separation of concerns 

research. In this chapter, we try to give an overview of the relevant state of the art in these 

domains.  

2.1.1 Visual Programming Environments 
Current visual programming environments offer a variety of component composition 

possibilities. Today we see three main classes of visual component composition schemes: 

1. The Intelligent Network Approach (LabVIEW [Wells, 1997], Java Studio [Weaver, 

1998]) 

2. Overwriting Event Handlers (Visual Basic [VisualBasic, 2001], Delphi [Delphi, 

2001], Visual Java [VisualJava, 2001],….) 

3. Visual Wiring (NetBeans [NetBeans, 2001], Visual Age [VisualAge, 2001], BeanBox 

[BeanBox, 2001],….) 

Here the intelligent network approach is the eldest composition scheme and visual wiring 

constitutes the most recent addition. However, this does not mean that the older 

approaches are outdated. In fact, all these approaches are heavily used today and have all 

found their own share of the market.  

2.1.1.1 Intelligent Networks 

This approach allows to visually script components together. Every component has a very 

strict interface. A component can be started and throws a (set of) event(s) when finished. 

Output events of one component can be connected with the start API call of another 

component. This renders a system that is a close visual representation of a normal 

programming language. Every wire can be viewed as one instruction. All this means that 

the wiring is a local process. It is not possible to define global behavior over a set of 

components. The wiring is certainly not a first class object. It needs to be done over and 

over again. There is no possibility to store typical wiring except in combination with a set 

of components. 
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2.1.1.2 Overwriting Event Handlers 

This is the approach found in the highly popular visual development environments such as 

Visual Basic, Visual C++, Visual Delphi, etc. These environments allow drag and drop 

facilities of components on a form and let the interaction between these components be 

defined by “overriding” the event handlers with free code. I.e. for every component, the 

programmer has the possibility to select an event and to provide code for it. A button 

component for example allows the “overriding” of the “onClick” event or the 

“onMouseOver” event. Typically, code that is written for such events involves calls to 

other components methods (API). This means that the programmer has to know which 

methods to call, what these methods do and in what order these methods should be called 

to accomplish the task at hand. The glue code also tends to be scattered around and is 

therefore difficult to maintain. 

2.1.1.3 Visual Wiring 

With the advent of Java Beans and more precisely with the Java Bean Box [BeanBox, 

2001], a higher abstraction level was introduced. This environment allows the same drag 

and drop facilities as the classic environments but is extended with a code generation 

wizard for the basic interactions. These tools allow to drag and drop components on a 

form and to connect them. Connecting two components pops up a dialog box where an 

event of the source component can be selected and connected with a method call of the 

target component. The corresponding code is then automatically generated by the 

environment. This is the first step towards a higher abstraction level for the glue code. 

However, even very little experiments show that the user still needs to know how the 

component API needs to be used to obtain the wanted behavior. It is also very hard to 

introduce global synchronization. 

2.1.1.4 Conclusion 

Visual component composition tools improved a lot in the last decade. The abstraction 

level raised and they became very user friendly. However, composition information is still 

spread around in the resulting applications and cannot be reused, nor saved independently. 

This forces the developer to rewrite the glue code over and over again and to know in 

detail how the components should be combined in new application 

2.1.2 Documentation 
In [Beugnard, 1999] a good overview of state of the art component documentation is 

presented. In this paper, the authors introduce four different abstraction layers to describe 
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contracts for components. These four layers are shown in Figure 7. The first level, basic, or 

syntactic, contracts, is required simply to make the system work. It typically contains the 

API of the components, possibly with the definition of the data passed between the 

components. The second level, behavioral contracts, deals with the effect of one call on the 

component. It typically describes in what context a given call produces valid results. The 

third level, synchronization contracts, improves confidence in distributed or concurrency 

contexts. This level typically describes protocols between components and their 

environments and synchronization issues. The fourth level, quality-of-service contracts, 

quantifies quality of service. 

 

Level 4: Quality-of-service level

Level 3: Synchronization level
service object synchronization, path expression,
synchronization counters

Level 2: Behavioral level
pre- and postcondition,
Eiffel, Blue, Sather,
UML/OCL, iContract for Java

Level 1:Syntactic level
interface definition language, usual
programming language syntax

 

Figure 7: Levels of documentation 

Together with the raise of the abstraction level, suitable documentation becomes less and 

less obvious.  

2.1.2.1 The Syntactical Level (Level 1) 

At the syntactical level, there are plenty of possibilities. Standard programming languages 

are typically used to describe the method signatures. More recently we the Interface 

Description Language (IDL) [IDL, 2001] was introduced to abstract away from specific 

programming languages. This documentation is also backed by plenty of checking tools 

(typically performed by the compiler or the interpreter). 
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2.1.2.2 The Behavioral Level (Level 2)  

At this level we find more recent efforts such as design by contract [Meyer, 1992] (Eiffel), 

contracts by Helm [Helm, 1990], contractual obligation by Lamping[Lamping, 1993], OCL 

[Warmer, 1999], iContract for Java [Kramer, 1998], etc…. These all try to describe the 

effect of one operation. I.e. at this level, a procedure or a method call is considered to be a 

transaction. These contracts are typically added to the programming language (using asserts 

or pre and post conditions) and are therefore checked automatically. The checking now 

typically occurs at runtime. 

2.1.2.3 The Synchronization Level (Level 3)  

At his level, we find more formal approaches that are typically checked in a separate 

environment. Campbell and Habermann’s [Campbell, 1974] introduced the idea of 

augmenting interface descriptions with sequence constraints already in 1974 (using path 

expressions). In the following years much work was done to capture this kind of 

constraints. Most of these approaches build on a formal base such as Communicating 

Sequential Processes [Hoare, 1985] (see for example the architectural description languages 

Wright [Allen, 1997] and C2 [Taylor, 1995]) or state machines [Harel, 1987](see for 

example work of Yellin and Strom [Yellin, 1994a;Yellin, 1994b] and Zaremski [Zaremski, 

1997]). This documentation has still not reached the same level of acceptance as the 

documentation techniques found on level 1 and level 2.  

2.1.2.4 The Quality of Service level (level 4) 

This level is typically not covered today. If it exists it is typically a natural text description 

that describes the parameters that influence the quality of service, together with some test 

results. Recent work at this level of documentation includes the CORBA 2.4 specification 

by the OMG group (see following quote).  

“CORBA 2.4 includes several Quality of Service specifications, which are intended for managing and 

selecting various underlying transport choices based on application needs. Specifically, this version contains 

the Asynchronous Messaging, Minimum CORBA, and Real-Time CORBA specifications as well as 

revisions made by several RTFs and FTFs, including those responsible for the Interoperable Name Service, 

Components, Notification Service, and Firewall specifications.”  

Excerpt from the OMG web page at [CORBA, 2000] 

2.1.2.5 Conclusions 

In our work, we try to express compatibility constraints on the usage protocol of 

components. This clearly asks for documentation at level 3. Current documentation 
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techniques at this level are not in wide spread use today. We believe that this is mainly 

caused by the formal notations. Therefore, we try to use a notation that is already accepted 

to make the acceptance less difficult. The documentation introduced in this work 

complements other documentation and is only used to perform automatic compatibility 

checks and glue code generation. It is not suited to find out neither what a component 

does nor what quality of service it delivers. It only describes how the component should be 

used.  

A more specific and focused overview of possible documentation techniques is given in 

section 3.3. There we focus specifically on existing documentation techniques to specify 

interactions between software artifacts. 

2.1.3 Compatibility  
Research related to compatibility checks and definitions is mainly found in the field of 

architectural description languages. The architectural mismatch problem was first 

recognized and described by Garlan and co. in [Garlan, 1995]. This launched a whole new 

research field around Architecture Description Languages [Allen, 1997;Luckham, 

1995;Taylor, 1996] (building on Module Interconnection Languages [DeRemer, 

1976;Parnas, 1972]). An architecture in this context is generally considered to consist of 

components and the connectors (interactions) between them. As the existing architectural 

descriptions are often informal and ad hoc, this research tries to formalize this 

documentation. We too try to formalize cooperation between components.  

These approaches nearly all define compatibility between a composition specification and a 

set of component. However, most of this works defines compatibility in a different context 

than ours.  

The RAPIDE system [Luckham, 1995] differs from our approach in their use of 

unidirectional protocols only. I.e. components are used as a class library where functions 

are called and output is never actively sent. In RAPIDE, compatibility is deduced from a 

simulation. I.e. the system is simulated to see whether the components work together as 

specified.  

Yellin and Strom [Yellin, 1994a;Yellin, 1994b] use state machine descriptions to define 

component compatibility. Their approach is however restricted to two parties. The 

component composition model used in their approach allows an interface in one 

component to be bound to an interface in a second component. It does not allow an 

interface in one component to be bound to multiple interfaces (in several components) or 
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to check a component against a role in a composition specification, as our system does. 

They define components to be compatible if they are deadlock free and agree on the 

followed trace. Note that this does not mean that the components may not be able to 

follow different traces in general. As long as divergent behavior never occurs in the 

specified composition specification, the components are declared compatible.  

The architectural language Wright [Allen, 1997] uses the same concepts as we do. I.e. they 

have components, composition specifications and roles. Informally they define 

compatibility as follows: “A component may offer more than what the composition 

specification asks for but it forces the components to implement at least all the behavior 

that is specified in the composition specification.”  We argue in section 4.5 that our 

definition is more generic. 

Other interesting work regarding compatibility checking can be found in protocol 

conversion literature [Reussner, 2000] and the interface adaptors of Thatte [Thatte, 1994]. 

In this work, protocols are used to specify interfaces and an algorithm is described that 

synthesizes a converter given the protocols and the specification. However, the goal of this 

work is to generate converters from one protocol to another rather than checking 

compatibility. 

Reussner also uses finite automata theory in his “Coconut” project [Reussner, 1999] to 

perform component matching. His work is very similar to ours as far as the local check is 

involved. At the moment, he does not perform a global check. He uses the incremental 

algorithm to generate adapters for mismatching components. We also share another the 

asymmetric cross-product algorithm (see section 4.7.2). It is used by Reussner to calculate 

adapters to combine two non-compatible components. The problem is indeed similar. He 

needs to follow a common trace as long as possible, once he reaches a point where one 

component no longer implements the same behavior he keeps the behavior of the first 

component until he reaches a point where the behavior is compatible again. We do the 

same where we just keep the traces of the composition pattern for those parts that are not 

concerned with the component at hand.  

2.1.3.1 Conclusion 

All work we know adopts a similar definition of compatibility. That is: 

• The system is simulated to deduce compatibility or, 

• Compatibility is defined for exactly two parties as having common behavior or, 
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• A component needs to be a refinement of the role it is playing in a composition 

pattern.  

We already argued that it is better to allow both a component to offer more than what the 

composition pattern asks for and a composition pattern to be more general than what the 

component offers. 

2.1.4 Design Patterns 
Around 1995 research on reusable software solutions for recurring problems gained a lot 

of attention. This research is known in literature as the pattern research [Alpert, 

1998;Gamma, 1995;Lajoie, 1994;Riehle, 1997].  Depending on granularity they are 

respectively called: Idioms, Cliches, Design Patterns and Architectures. Design Patterns 

and Architectures both launched a new research field. As they both greatly influenced our 

proposal, we discuss these in further detail. 

The design pattern research was launched by the publication of the so-called Gang-of-Four 

Book [Gamma, 1995] in 1995. The authors were inspired by the book “A timeless way of 

building” [Christopher Alexander, 1979] the architect Cristopher Alexander tried to write 

down his knowledge about architectural problems in a fixed format. The GOF book 

describes twenty recurring design problems with their solution. All twenty problems are 

written down in the same format (called a Design Pattern Language). This format contains 

a combination of informal text, UML sketches and implementation snippets. The 

description is informal but proves to be of great value for developers. A lot of the design 

patterns are concerned with the cooperation of two or more “participants” in an 

application. The GOF book [Gamma, 1995] for example contains the observer pattern 

(cooperation data-view), the visitor pattern (cooperation data-traversal function), the chain 

of responsibility pattern (typically event cooperation between interface elements), the 

bridge pattern (kind of indirect cooperation between sender and receiver of a message), the 

factory pattern (another kind of indirect cooperation between sender and receiver of a 

message) and many others. Therefore, patterns are good candidates as specification on how 

components work together in a component based development approach.  

The success of these patterns proves that the same kind of compositions is used over and 

over again. With our usage scenarios and composition patterns, we try to capture this 

“composition” information. However, as we try to build automatic tool support based on 

this information, we need to use a more formal notation. Formalizing design patterns tends 

to diminish the power of it as it usually restricts its generality. It is still an open question in 
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the research community if formalizing is the way to go or not [Coplien, 1996]. We do not 

have the answer to this question, however we think that formalizing a specific 

interpretation of a pattern brings many virtues. Components are built with a certain 

composition scenario in mind. This scenario is not at all general. It involves a very specific 

order of API calls.  We state that formalizing such protocols brings many advantages 

without the loss of generality that occurs in formalizing design pattern. 

2.1.5 Architectures 
The architectural mismatch problem was first recognized and described by Garlan and co. 

in [Garlan, 1995]. This launched a whole new research field around Architecture 

Description Languages [Allen, 1994b] [Luckham, 1995] [Shaw, 1978] (building on Module 

Interconnection Languages [DeRemer, 1976]). An architecture in this context is generally 

considered to consist of components and the connectors (interactions) between them. As 

the existing architectural descriptions are often informal and ad hoc this research tries to 

formalize this documentation. These ADL’s seek to increase the understandability and 

reusability of architectural designs, and enable greater degrees of analysis. We too try to 

formalize cooperation between components. However, most of the architectural 

description languages today specify component composition in the context of the 

component model rather than the application context. We start from the assumption that 

the component model is already chosen and stable.  We consider the component model as 

a necessary precondition before we start specifying our composition patterns. Another 

known problem with a formal approach like architectural description languages is that they 

are difficult to learn and to use and suffer from scalability problems. We believe that 

choosing a set of primitives is a promising approach to bridge the gap between the lack of 

any semantics and a full-fledged formal specification as in architectural description 

languages. Closely related work can be found in both Allen and Garlan’s work [Allen, 

1994b] as well as in the work on contracts by Helm et al [Helm, 1990]. 

In both models, components may have one or more interfaces, each with its own formal 

specification based on finite state protocols. Their connectors are first-class, reusable 

components in their own right and can support n-party interactions. They use a stronger 

compatibility rule that allows them to deduce deadlock and livelock freedom using the local 

checks alone. We extended this work with glue code generation that allows a more flexible 

compatibility check leading to more generic and more reusable composition patterns. 

Using a compact set of known terms to document components and composition patterns 

also improves the reusability of our connectors.  
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2.1.6 Formal Specifications 
2.1.6.1 Description 

There also exists significant work in specifying the behavioral constraints on components. 

Assertion languages, pre- and post condition specification, design-by-contract (from 

Eiffel), Contracts, [Helm, 1990] [Meyer, 1992] [Beugnard, 1999], have all been focused on 

ensuring behavioral match between a system using a component and the component itself. 

The main topic is how components can be trusted and what can be done if a component 

behaves unexpectedly. The proposed solution is to provide every component with a 

contract that specifies what the component does. 

2.1.6.2 Relation with This Work 

There exist clear similarities in our work with this approach. Our usage scenarios explicitly 

define constraints on the interaction scheme between components. The difference between 

this work and our approach mainly lies in the concept of composition patterns.  In our 

approach, we not only check compatibility of a set of components but also whether there 

exist a common trace in the combined behavior of the components with a wanted usage 

scenario.  Another difference is the usage of abstract primitives rather than specific API 

calls. 

2.1.7 Higher Level API’s 
Interesting related work for the construction of our set of primitives is found in  “The 

DARPA Knowledge Sharing Initiative” [Genesereth, 1992;KIF, 2001]. This project defines 

the Knowledge Interchange Format (KIF). Currently this language is used (among others) 

as a communication language for agents. To do this they propose a set of “performatives”.  

These “performatives” are similar to our primitives. We add a sequence diagram and a 

mapping to the API to show the behavioral aspect and a possible implementation but the 

basic idea is similar. I.e. defining a set of predefined terms to specify how parts of an 

application work together. 

Another interesting reference in this context is [Mclennan , 1998]. The Austin Product 

Center in Texas develops oilfield systems and application libraries that are used all over the 

world in different offices and field units. By performing API usability tests (how easy the 

API is to learn, what misconceptions or errors programmers make using the API, etc.…), 

they show that providing code examples successfully supported a deep understanding of 

the libraries. The code examples give a better understanding of the purpose of the library, 
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the usage protocols and the usage context. We believe that usage scenarios (see section 

3.4.7) can bring similar benefits while being more general than examples. 

 

2.1.8 Separation of Concerns 
Aspect Oriented Programming, Subject Oriented Programming, Generative Programming, 

Adaptive Programming, Composition Filters and many others are all research topics that 

try to solve the separation of concerns problem. This research is under constant evolution, 

but important milestones in this research include the Law of Demeter, the technical report 

on separation of concerns by Christina Lopez and Walter Huersch, the PhD thesis by 

Christina Lopez: "D - A language framework for distributed programming” [Lopez, 1997], 

GenVoca by Don Battory, the paper “Subject-Oriented Programming (A Critique of Pure 

Objects)” by William Harrison and Harold Ossher [Harrison, 1993], the position paper 

“Composition-Filters Based Real-Time Programming” by J. Bosch and M. Aksit and the 

book: “Adaptive Object-Oriented Software: The Demeter Method with Propagation 

Patterns” by Prof. Dr. Karl Lieberherr [Lieberherr, 1996]. 

The goal of this research is fundamentally different from what we try to do. “Separation of 

Concerns” is about building programs by using a specific tailored aspect language for every 

concern in an application and to weave these aspects or concerns together afterwards. In 

that sense, it has nothing to do with component composition. However, as attempts were 

made to introduce aspects in component based applications, as this research also needs to 

generate “glue code” and as it often uses similar terminology as we do, we discuss a couple 

of papers out of this research to avoid confusion. 

The term composition filters suggests that this research could be relevant for our 

composition patterns. After all, we try to compose components.  However, composition 

filters should be viewed as “adapters” or “wrappers”. I.e. all interactions between a set of 

components or objects go through a (set of) composition filter(s). These filters can be 

defined and programmed independently of the application. This allows the developer to 

localize and modularize crosscutting concerns. Composition filters do not define 

interactions as our composition patterns do, but they adapt interactions. 

The term composition pattern is also used in the Subject-Oriented Programming 

community. See the paper by Clarke and Walker at ICSE 2001 [Clarke, 2001].  However, 

the goal of their composition patterns is different. We use composition patterns to describe 

reusable compositions of components and use them to check if the components match 
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with the corresponding roles described in the composition pattern. They want to use 

composition patterns to specify crosscutting requirements or aspects independently of a 

given design. So their goal is separation of concerns, my goal is component composition. 

So why do we use the same term? It seems to be very hard to come up with a name that is 

not "taken" yet. We have used many names to indicate composition patterns (micro-

architectures, role cooperation, usage patterns, etc.) but nearly all terms have so many co-

notations today that none of them really suits our needs. Therefore, we just decided to stick 

to the term composition patterns and usage scenarios. 

Another related term that needs clarification is AP&PC (Adaptive Plug-and-Play 

Components) and Aspectual Collaborations. The terms contain the words collaborations 

and components, but the idea here is that aspects should be treated as components. These 

components are then woven automatically in the application. The focus is again on 

separation of concerns and aspect weaving but this time in the context of components. 

However, this is an interesting idea and a colleague of mine currently tries to apply these 

ideas to our work. 

2.1.9 Conclusion 
There exists much relevant work to build on. However, at this point in the text it is difficult 

to discuss the relevance of this work for our research. Therefore, a lot of the related work 

discussion is spread over this work. A short overview: 

In section 2.2.1 we give an overview of existing component models and the architectural 

mismatch issue. Section 3.3 gives an overview of existing specification and documentation 

techniques specifically focused on interactions. The introduction of section 4.5 further 

discusses related approaches to compatibility specifications and compliance checking. In 

section 5.1.2 we discuss existing approaches to generate mismatch feedback. Section 5.3.1 

and 5.3.2 describe the most relevant algorithms in detail. These sections are mainly focused 

on adapter generation techniques and adaptive programming research. The latter is not 

directly research meant to generate mismatch feedback, but we indicate how results 

obtained in this very different research area can be applied to mismatch feedback. 
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2.2 Component Model 
2.2.1 Introduction 
A brainstorm session with people of the industry about the exact nature of components 

produced very confusing results. It seems that the word “component” covers nearly 

anything ranging from 2 bytes of memory with some bit manipulation in embedded 

systems, over XML documents describing large sets of medical images to full blown 

applications consisting of million lines of code. The real problem however is that all these 

definitions are valid in their own context. To avoid confusion in this work we give a 

definition of components for our context. 

Szyperski and Pfister [Szyperski, 1997] proposed the following definition at the 1996 

ECOOP conference: 

Component definition 

“A software component is a unit of composition with contractually specified interfaces and 

explicit context dependencies only. A software component can be deployed independently 

and is subject to composition by third parties” 

Formulated at the ECOOP 1996 conference. 

This definition describes the kind of components we use in this work. We do not state that 

this definition is the only right one. In our view, the main property that distinguishes 

components from other concepts as class libraries is the composability property. A 

component needs to provide “hooks” to combine the component with other components. 

This is where the component model comes in. A component model describes the exact 

way that is used by components to interact. There are plenty of possibilities. A very well 

known model is “pipes and filters”. This technique is known from the Unix world [Bach, 

1986]. Unix provides operators in its command line window to pipe Unix applications 

together. This makes these programs real components in the sense of the definition above. 

They are independent (you can run them stand alone), they are configurable (most Unix 

programs have a bunch of command line arguments), they are black box (they are binaries) 

and provide a number of tasks and services and they provide a standard means to connect 

them with other components. It is clear that one needs to specify how this is accomplished. 

Unix programs that are going to be used in pipes and filters connections need to explicitly 

open pipes, send data to pipes and close pipes using a predefined library (for an 

introduction to programming pipes in C see for example [Marshall, 1999]).  
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Java Beans [EJB, 2001] is a more recent example of a component model. This model 

adheres to the principles as proposed by the Model-View-Control [Krasner, 1988] pattern. 

Java Beans implement this architecture by providing “addListeners”, “removeListeners” 

and “notifyListeners” methods. This allows them to fire events (call methods) on all 

subscribed listeners. This is clearly a different composition scheme than the pipes and 

filters of the Unix components.  

We can extend this list with call backs, shared data resources, blackboard systems, layers 

and many others (see [Garlan, 1993] for a good overview) all having different standards on 

how components interact. It is not difficult to see that it would be very hard to combine 

components that are written for different component models (the problems are related 

both with technical as semantic properties of the different component models). Allen and 

co. made a similar observation when they tried to build their Aesop system (a tool to 

support architectural design and analysis [Allen, 1994b]). In [Garlan, 1995] they explain the 

idea of architectural mismatch or why it is so hard to build systems out of existing parts. 

They propose four ways to improve this situation: make architectural assumptions explicit, 

construct large pieces of software using orthogonal subcomponents, provide techniques 

for bridging mismatches, develop sources of architectural design guidance.  

2.2.2 Our Opinion 
At the technical level, there exists a wealth of research that tackles the problem of bridging 

the gaps between several component models, platforms and languages (see for example the 

ActiveX to Java Bean bridge [BeanActiveXBridge]). These tend to work only for 

component models that have related semantics (as Active X [ActiveX, 1999] and Java 

Beans [EJB, 2001]). However, we are confident that this problem is going to be dealt with 

in a more pragmatic way. More precisely, the first company that constructs a set of “killer” 

components will not only sell its components but also the associated component model. 

Indications of this process can be found in the set of component models that exists today. 

The best known component models all have a background of very successful software 

companies (or consortiums), like Unix with pipes and filters, Microsoft with ActiveX 

[ActiveX, 1999], Sun with Java Beans [EJB, 2001], etc… I.e. component models without a 

very wide background stand no chance to become adopted. Therefore, we think that this 

issue will be solved one day, either by an international standard or by a defacto standard.  

Even when this turns out to be more difficult than expected we can still apply our research 

in a context where we work within the same component model. This work is mainly useful 

to build construction kits for a given domain. I.e. one component builder provides a set of 
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components and a set of typical composition patterns. It is possible that the component 

builder reuses a third party component but he will bring these in the same component 

model and provide a suitable documentation. The user is only confronted with a set of 

components using the same component model and a consistent documentation. 

Therefore, the research presented here ignores component model issues and starts from a 

world were there exists only one component model. In practice, we use the Java Bean 

component model throughout this text. We have chosen this component model just for 

practical reasons. There is no fundamental reason why we could not apply the concepts of 

this work on other component models that allow complex interactions between 

components. 

The previous explained why we neglect the component model issues in this work.  

However, the architectural mismatch problem as described in [Garlan, 1995] also exists 

within the same component model and even in the same construction kit. In the last five 

years, we saw the advent of many solutions for the mismatch problem. Among them 

Architectural Description Languages [Allen, 1997;Luckham, 1995;Taylor, 1996], Mismatch 

detection [Compare, 1999], Design and Architectural Patterns [Alpert, 1998;Gamma, 1995] 

and Adapter Generation [Reussner, 1999;Shu, 1989;Yellin, 1994a;Yellin, 1994b;Zaremski, 

1997].  

In this work, we build on this research to provide automatic compatibility checks, 

mismatch detection of components and roles, and to suggest adapters to overcome the 

mismatches. 
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2.3 Why Components? 
At the time, I started my computer science studies we saw the advent of the first program 

generators. I remember me to use Dbase III+ [Weber Systems Inc., 1985] to construct a 

simple program to keep track of the members of the women organization my mother was 

leading at that time. It had a simple wizard that constructed a database application with a 

bunch of input screens, a set of reports and a set of tables and queries. No programming 

knowledge at all was needed to construct an application that was capable of browsing, 

editing, printing and displaying a set of records. I naively believed that it would take only a 

couple of years before the first "generic" program generators would be constructed and 

that plain programming would disappear. At that time, there was a lot of research in this 

area but none of the results made the same quantum leap as I noticed in the database 

world. The problem turned out to be far more complex than expected. 

This inspired me to take a look at the reuse community. If it was not possible to get rid of 

the programming effort, why not try to reuse somebody else’s work? I learned that reuse 

mostly existed at the implementation level and that it was quite difficult to lift the 

abstraction level because of the weak link between analysis and design documents and their 

corresponding implementation.  

Object Orientation was expected to come to the rescue. We know now that this technique 

only partially lived up to this claim [Szyperski, 1997]. The main contribution offered by 

object orientation for reuse is its introduction of modularity in the implementation that 

corresponds with the modular elements found in the analysis and design models. The main 

issues why it did not solve the reuse problems are dependencies and granularity. Select a 

class in an object oriented application that you can reuse elsewhere and you often end up 

with many other classes to support this class if not the complete application.  

These observations lead to the component concept. A component is typically self-

contained and specifically designed for reuse. This makes it easier to reuse a component 

than a class or an object. However, this improved reusability came at a price. The price was 

adaptability and extensibility. You can either use a component or not, there is no way to 

"patch" it to work (at least not with the same flexibility as classes and objects can be 

adapted).  

What convinced me to use components is that I found back "non programmers" tools 

again. Components inspired tool vendors to build visual programming environments. 

These environments were in the beginning mainly successful for GUI building, but 
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recently visual "wiring" was added to these tools. This allows you to construct applications 

without writing any line of code. However, this does not mean that a "non programmer" is 

able to use these tools. The wiring is in fact just the visual counterpart of a line of code and 

it involves exactly the same knowledge to program the code as to draw the right 

connections. 

It is clear however that components offer the potential to lift the abstraction level of the 

current programming effort and this work tries to be a little part in this process. 
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2.4 Why Composition Patterns? 
As I explained in the previous section, visual wiring of components still involves a lot of 

knowledge. I already indicated that you need to be a programmer to use these tools, but 

things are even worse. It also forces the developer to go into the details on how to use the 

component. Does the component need to be initialized?  What API should be called to get 

the wanted functionality? To answer these kinds of questions, the developer needs to 

browse trough piles of documentation and needs a clear understanding of standard 

programming concepts. 

Note that the knowledge on how to use components comes on top of the knowledge 

needed to know the functionality of a component. There exists a clear difference between 

knowledge needed to select components and the knowledge needed to construct an 

application with them. Selecting components for an application can be done by anyone 

that reads the requirements and reads the documentation of the available components. 

However, building an application with them involves programming knowledge. 

With this work, we want to make the wiring process as simple as the component selection 

process. It should be enough for a developer to understand the relation introduced by a 

given wiring on a conceptual level to select and use the right wiring to construct the wanted 

application. 

Several other people in the research community also noticed this problem. Most of the 

research effort was invested in the promotion of wiring to a first class object. I.e. it must be 

possible to define, save and reuse wiring independently from the components. However, it 

was unclear how this could be achieved. One of the promising solutions was the 

introduction of connectors [Ducasse, 1997;Pintado, 1992]. In very rough terms: "package 

the glue code in a component to make it reusable". However, this solution tends to shift 

the problem to connecting connectors with components.  

While we were searching for a better solution for the wiring problem, design patterns 

[Alpert, 1998;Gamma, 1995;Lajoie, 1994;Mikkonen, 1998;Riehle, 1997] came into view. 

Many design patterns contain exactly the kind of information you would expect in reusable 

wiring schemes. An observer pattern not only explains that it is a good idea to split a view 

from its model, but also indicates how these roles should work together to obtain this split. 

What's more, it does so independently of a specific implementation. This was exactly what 

we were searching for. However, design patterns have one main problem to make them 

useful for our problem. Design patterns are not formally defined. They contain natural 
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language descriptions, sketchy UML [UML, 2001] diagrams and implementation examples. 

To build automatic tool support based on these patterns involves a formalization phase. 

The question whether this is desirable or not is still an open discussion (see [Coplien, 1996] 

for a typical discussion between the main players in the field). The main argument of the 

group against formalization (including the inventors of patterns) is that formalizing 

patterns make them less reusable. The group in favor of formalization claims that design 

patterns need to be formalized to define what they are and to build tool support on top of 

it.  

We agree with both points of view. Therefore, we propose to combine both approaches. 

Informal design patterns are a great way to learn developers how they should design an 

application. Formally, described design patterns are better to describe the situation in a 

given application. I.e. to pass experience one should use the informal version, to document 

existing software artifacts it is better to use a more formal flavor because it allows 

automatic tool support. As components already exist, it is natural to use a more formal 

description to document them. 

We are only interested in the formalization of the interaction between roles in a design 

pattern. We are not trying to formalize what the component does, only how the 

component is used. A formalization of role interactions is what we call a "composition 

pattern". A composition pattern thus formally describes the interaction between a set of 

roles. A role can be considered as a “placeholder” for a component. I.e. a composition 

pattern describes the interaction between an abstract set of roles and these roles can be 

filled by different components for every other application.  

In this view, a role can be considered as an abstract component that is mapped on a real 

component at composition time. It is clear that the interactions between these abstract 

roles are also abstract interactions.  This means that at composition time not only the roles 

of a composition pattern are mapped on real components but also the interactions between 

these roles are mapped on real component interactions.  
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3 Documentation 
“What do you mean? Do you wish me a good morning, or mean that it is a good morning

whether I want it or not; or that you feel good on this morning; or that it is a morning to be good

on?”

- Gandalf (J.R.R. Tolkien – Lord of the Rings) 
 

“The trouble was that he was talking in philosophy, but they were listening in gibberish.”

- Terry Pratchett, Small Gods 
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3.1 Introduction  
In this chapter, we introduce the kind of documentation we use. As explained earlier we 

want documentation that supports the combination of components based on typical 

composition patterns and we want this process to be supported with automatic 

compatibility checking and automatic glue code generation. We first make four 

observations to aid in the definition of the set of requirements for our component and 

composition documentation. These requirements are then used to check existing 

documentation techniques for their suitability. Finally, in the last section of this chapter we 

present our documentation.  

3.1.1 Observation 1: Usage Differs from Functionality 
Today most function libraries are documented with a description of the syntax and a 

natural language description of every API call (this is documentation on level 1 and level 2 

in [Beugnard, 1999]). It seems natural to use the same kind of documentation to document 

components. However, a component differs fundamentally from such a function library as 

it maintains state. This introduces the need to document the dependencies between the 

various methods that can be called on a component (this argument also holds for a class in 

OO languages). To use a component one needs to know the protocol it uses to interact 

with its environment to accomplish the desired behavior1. This new dichotomy was nicely 

summarized by Allen and Garlan in [Allen, 1994a] were they distinguish between 

implementation relationships and interaction relationships of software modules or 

components:  

"Whereas the implementation relationship is concerned with how a component achieves its computation, the 

interaction relationship is used to understand how that computation is combined with others in the overall 

system". 

A typical example of this situation can be found in the client network component we use in 

our exam construction kit. Table 1 describes the interface of this component. 

                                                 
1 In general one needs to know a lot more than the interaction protocol and the functionality of a component alone, to use 

it. Typical extra information includes platform requirements, performance, dependencies, version information, etc. In 
this section, we concentrate on the difference between usage, functionality and implementation only. 
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API Events
SetHost(host) connected
SetPort(port) disconnected

Connect() connectionFailed
Send() dataReceived(String aString)

DisConnect() dataSent(String aString)
Table 1: API of the NetworkClient component 

Describing the effect of every call gives the user a good idea of what this component does. 

To use this component on the other hand we also need to know that before we call the 

“connect” method, we need to call “setHost” and “setPort” to specify where we want to 

connect. After the connect call we need to wait for the “connected” event before we can 

call the “send” method and so on. A developer typically uses his or her domain knowledge 

to deduce this kind of usage information. However, we need to document this protocol 

explicitly to allow automatic composition checks. In general, we need both kinds of 

documentation to do a meaningful composition. In this work, we focus on the usage 

aspects. 

3.1.2 Observation 2: Components Have More Than One Use 
This observation is not about the fact that a component can be used in many different 

occasions in many different places, but rather that there exist a different usage protocol for 

each behavior that is supported by a component. A good example is provided by a generic 

network component we use in our experiments.  This component can be used both as 

network server and as a network client, it supports sending strings or streaming video, it 

further supports the management of its clients (it allows to add, delete and get info of all 

network clients). It supports both point-to-point communications and broadcast 

communication.  It is clear that setting up such a component as a client for example differs 

fundamentally from its set-up as a server. Therefore, good usage documentation should 

document all kind of uses for the given component. This is clearly impossible. The 

developer of a component cannot foresee all the uses that are going to be made of this 

component. However, we believe that providing the most typical scenarios already covers a 

huge range of uses. Take for example a look at the simple JButton component in the Java 

Development Kit. The API of such a component is large (11 API calls on its own and 

more than 150 inherited from its ancestors). The use of such a component however is 

nearly always the instantiation of the button with a given label, followed by the 

subscription of the interested components on its “actionPerformed” event.  
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3.1.3 Observation 3: Not Everything Is In A Name 
Relying on the semantics derived intuitively from the name of an API call or its natural 

language documentation works surprisingly well (it is by far the most often used technique 

today), but it is clear that there remains a lot to be wished for. A simple search in the JDK 

class library on the word “update” results in 52 hits. Comparing the real meaning of these 

API calls reveals that the use of the “update” API covers very different meanings. In 

graphical components, this call typically results in an update of the user interface, while in 

security components; update is usually used to recalculate the security certificate. In 

general, natural language descriptions work fairly well for interpretation by humans, but it 

is very hard to create automatic support and tools for component composition. 

3.1.4 Observation 4: Composition Patterns Need to be First Class 
Even with a very good documentation on how to use one component, it still remains 

difficult to know how to compose a set of components. The success of design patterns 

[Alpert, 1998;Gamma, 1995;Lajoie, 1994] proves this point for standard program 

constructs. Even when a developer masters a given class library and programming 

language, he still needs to know standard compositions. Take for example the visitor 

pattern. Suppose a given class supports a way to accept a visitor and that this behavior is 

clearly documented.  Another class is a visitor and also describes clearly how it behaves. 

Without a generic introduction on how a visitor communication works, it will be very 

difficult to compose these classes in the right way.  

This means that composition documentation is more than a mere aggregate of the 

interaction protocols of the components it composes. This view is not new. It was already 

recognized in [Ducasse, 1997].  

“Describing software architectures in terms of interaction relationships between components brings us closer 

to a compositional view, and hence a more flexible or open view of an application [Nierstrasz, 1995]. First-

class connectors allow us to view an application's architecture as a composition of independent components. 

We gain in flexibility, since each component could engage in a number of different agreements, increasing the 

reuse potential of individual components. Separating connectors from the components also promotes reuse and 

refinement of typical interaction relationships. It opens the possibility of the refinement of connectors and the 

construction of complex connectors out of simpler ones.” 

However, while the need for first class compositions was recognized at that time, this idea 

is still not used in the current practice of component composition and documentation.  
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3.2 Requirements 
In the previous section, we made four observations about current component and 

composition documentation. In the first two observations, we explain that “usage” or 

“interaction” documentation for a component differs from documentation on what the 

component does. We also note that components typically have more than one way of 

interacting with other components. In the fourth observation, we recognize the need to 

consider compositions as first class objects. Based on these observations we search for 

documentation to specify: 

• The sound or typical “usage(s)” of a component. 

• Known and generic composition patterns. 

As we already mentioned we are searching for component and composition 

documentation to support automatic compatibility checking and automatic glue code 

generation. More precisely, we search for documentation that allows us to: 

• Check compatibility automatically in the sense that the interaction protocol 

between a set of components complies with a given composition pattern (see 

further for a more exact definition). 

• Generate glue code automatically to obtain a working composition of components 

as specified by a composition pattern. 

This leads us to documentation techniques that specifically describe interactions between 

software modules or components. Examples of this kind of documentation are found in 

protocol checking literature. This literature also provides typical compatibility checks. An 

interesting check in this context is a check for deadlock freedom. We explain further in this 

work how we distinguish between two different versions of deadlock freedom. A local 

check where a component is checked against its corresponding role in the composition 

pattern and a global one where a set of components is matched against a composition 

pattern. In the following section, we review some of the documentation techniques that are 

used in the context of protocol checking and interaction specifications. We reflect on how 

these techniques can be used to document component usage scenarios and composition 

patterns. We also check if these techniques are suitable to perform the compatibility 

checking and the automatic glue code generation. Finally, as we believe that many of these 

techniques are not used because of their formal nature, we also assess the acceptance of the 

technique as a measure for its ease of use.  
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3.3 Existing Documentation Techniques 
In this section we review some of the documentation techniques that are used in the 

context of protocol checking and interaction specifications. We reflect on how these 

techniques can be used to document component usage scenarios and composition 

patterns. We also check if these techniques are suitable to perform the compatibility 

checking and the automatic glue code generation. Finally, as we believe that many of these 

techniques are not used because of their formal nature, we also assess the acceptance of the 

technique as a measure for its ease of use. 

3.3.1 Communicating Sequential Processes (CSP) 
The Communicating Sequential Processes (CSP) language [Hoare, 1985] was introduced by 

C. A. R. Hoare to describe patterns of communication between parallel processes using 

algebraic expressions. These may be manipulated and transformed according to various 

laws in order to establish important properties of the system being described. Behind CSP 

lies a mathematical theory of traces, failures and divergences. Traces define the operational 

model of CSP, while failures and divergences define abstract sets representing 

circumstances under which a process might be observed to go wrong. The model supplies 

a precise mathematical meaning to CSP processes, and is consistent with the algebraic laws 

that govern them.  

In the standard operational model of CSP, processes are represented by transition systems. 

There is a close relationship between the operational model of CSP and the Failures-

Divergences model, which means that the former may be used to prove properties of a 

system, phrased in terms of the latter.  

CSP is a mathematical notation. However there are a number of concurrent programming 

languages based on CSP, such as OCCAM [INMOS, 1988] and ADA [ADA, 2001]. Thus, 

theoretical results derived using this model are applicable to real programming. 

CSP is a very general model to describe communication between processes. The price for 

its expressive power is that many interesting properties (as deadlock freedom) are not 

decidable in general.   

“The problem of determining whether any given concurrent system can ever deadlock is similar to the famous 

halting problem of Turing machines – it is undecidable. This means that there can never be an algorithmic 

method for proving deadlock freedom which will work in the general case.” [Mairson, 1989] 

Deadlock freedom is proven for many special cases and for many restrictions of the 

general model. However, this mainly reduces the model to a less general formalism. A 
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promising approach in this field is the work done by Jeremy Martin where the formal basis 

of CSP is used to prove and construct “rules of thumbs” (or design patterns) for 

developers and designers to construct deadlock free systems [Martin, 1996].  

Thus, while it is easy to specify a system in terms of CSP specifications (using ADA or 

OCCAM for example), it is not easy to perform a compatibility check based on these 

specifications. These restrictions always render a system with the expressive power of finite 

state processes. In that case, it seems natural to use state diagrams as notation rather than 

these restricted versions of CSP. 

3.3.2 Petri Nets 
Petri Nets is a formal and graphical appealing language, which is appropriate for modeling 

systems with concurrency. Petri Nets has been under development since the beginning of 

the 60'ies, where Prof. Dr. Carl Adam Petri defined the language [Petri, 1962]. It was the 

first time a general theory for discrete parallel systems was formulated. The language is a 

generalization of automata theory such that the concept of concurrently occurring events 

can be expressed. It has since then been the subject of extensive study in the academic 

world.   

This model is widely used as a research tool and is backed by a considerable amount of 

theory. Important properties for our research as deadlock freedom and liveness are at least 

for standard Petri Nets decidable [Esparza, 1994] although they often require exponential 

time. There also exists a lot of tool support to analyze Petri nets. This makes it an 

interesting choice. The only disadvantage is the academic nature of this model. It is very 

hard to convince developers to document their systems using Petri nets.  

3.3.3 State Diagrams 
State transition diagrams have been used right from the beginning in object-oriented 

modeling. The basic idea is to define a machine that has a number of states (hence the term 

finite state machine). The machine receives events from the outside world, and each event 

can cause the machine to transition from one state to another.  

State transition diagrams were around long before object modeling. They give an explicit, 

even a formal definition of behavior. A disadvantage of them is that you have to define all 

the possible states of a system. While this is all right for small systems, it soon breaks down 

in larger systems, as there is an exponential growth in the number of states. This state 

explosion problem leads to state transition diagrams becoming far too complex for much 

practical use. To combat this state explosion problem, object-oriented methods define 
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separate state-transition diagrams for each class. This pretty much eliminates the explosion 

problem since each class is simple enough to have a comprehensible state transition 

diagram. (It does, however, raise a problem in that it is difficult to visualize the behavior of 

the whole system from a number of diagrams of individual classes - which leads people to 

interaction diagrams). 

The most popular variety of state-transition diagram in object-oriented methods is the 

Harel Statechart [Harel, 1987]. This was introduced in OO modeling by 

Rumbaugh[Rumbaugh, 991], taken up by Booch [Booch, 2001] and adopted in the UML 

[UML, 2001]. It is one of the more powerful and flexible forms of state transition diagram. 

A particularly valuable feature of the approach at the analysis phase is its ability to 

generalize states, which allows you to factor out common transitions. They also include 

concurrent state diagrams, allowing objects to have more than one diagram to describe 

their behavior. 

State diagrams have a firm formal basis in finite state machines. This theory provides us 

with algorithms for equivalence checks, intersection and difference calculation (product 

automaton) and the calculation of a parallel composition (shuffle automaton) [Hopcroft, 

2001]. 

The weak point of state diagrams to describe compositions of components is it lack of 

addressing. In general, a state machine receives events and broadcasts events from and to 

an “environment”. They do not support further identification of this environment or of 

the communication channels used. 

This issue is addressed in many extensions on state machines. Among these, SDL 

[Ellsberger, 1997] is one of the best-known formalisms. The theory to deal with these 

addressing issues is also very well covered in the protocol checking, conversion and 

adaptation literature. One of the best descriptions on how state machines can be extended 

with addressing and used to check interactions between components can be found in 

[Brand, 1983]. This work is extended and improved by Zaremski [Zaremski, 1997], 

Reussner [Reussner, 1999]and Yellin and Strom [Yellin, 1994a;Yellin, 1994b]. 

State charts comply very well with our requirements except maybe for there ease of use.  

3.3.4 Sequence diagrams 
A sequence diagram shows a typical interaction between a number of parties over time. It 

shows the parties participating in the interaction and the messages that they exchange. 

These messages describe a communication between parties and the receipt of a message is 
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normally considered as an event. Parties can be abstract entities as roles or implementation 

entities as software modules, objects and components.  

Sequence diagrams where first popularized by Jacobson [Jacobson, 1992] but by far the 

best-known sequence diagram notation is the UML sequence diagram [UML, 2001]. The 

latter is not the most expressive notation though. The most serious limitation is it lack of 

support for loops and optional parts and its awkward definition of alternative constructs 

(this is done by specifying conditions on a message per message base). 

A more complete and expressive version of sequence diagrams is Method Sequence Charts 

(MCS’s). These sequence diagrams are typically used for the formal specification of 

telecommunication protocols (often in combination with SDL [Ellsberger, 1997]). The first 

formal version called MSC’92 was standardized by the ITU as Z. 120 [MSC, 1993]. MSC’92 

had more or less the same expressive power as the UML sequence charts. This version 

evolved in MSC’96. As this new version supports basic messages, loops and alternatives it 

has at least the power of regular expressions and improves considerable on the “single 

trace” semantics of the UML sequence diagram.  

This kind of documentation is widely used and fulfils most of our requirements. Sequence 

diagrams in UML are typically used to define use cases [Jacobson, 1992] and are thus very 

well suited to describe “usage information”. Their correspondence with regular expressions 

means that we have algorithms to translate sequence diagrams to state machines and vice 

versa (see [Hopcroft, 2001] pp 91-104). This allows us to use sequence diagrams as 

notation and use state machine theory to do the compatibility checks. 

3.3.5 Collaboration diagrams 
In collaboration diagrams example objects are shown as icons. Arrows indicate the 

messages sent in the use case. A sequence is indicated by a numbering scheme. Simple 

collaboration diagrams simply number the messages in sequence. More complex schemes 

use a decimal numbering approach to indicate if messages are sent as part of the 

implementation of another message. In addition, a character can be used to show 

concurrent threads. The UML notation guide describes the relation between a sequence 

diagram and a collaboration diagram as follows: 

“A pattern of interaction among instances is shown on an interaction diagram. Interaction diagrams come 

in two forms based on the same underlying information, specified by an interaction, but each form 

emphasizing a particular aspect of it. The two forms are: sequence diagrams and collaboration diagrams. 

Sequence diagrams show the explicit sequence of stimuli and are better for real-time specifications and for 
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complex scenarios. Collaboration diagrams show the relationships among instances and are better for 

understanding all of the effects on a given instance and for procedural design.” [UML, 2001] 

This quote tells us that collaboration diagrams and sequence diagrams have the same 

expressive power and that the choice between them depends on the context or even 

personal preference. As both presentations have the same underlying model, it is easy to 

translate one representation in another. 

3.3.6 Summary 
The most general of the models described above is CSP. CSP describes protocols as 

interacting concurrent processes. In this framework, one can specify all protocols and most 

of their properties. The cost of this generality is the undecidability of most properties 

[Mairson, 1989]. Therefore, existing methods of analysis use human assistance or take 

advantage of the fact that many protocol features do not use all the generality available (as 

is done in Wright [Allen, 1994b] for example). This allows a protocol to be analyzed as if it 

were described in a less general formalism.  A Petri net is a less general model. In this 

formalism, protocols are more easily analyzable, and most of the properties we need for 

our research are decidable for Petri nets. However, Petri nets are not easy to use and are 

therefore mainly used as theoretical background or in very specific domains. 

The least powerful model is that of a single finite-state machine describing the system 

including all the component processes and interconnecting channels. In this model, only 

certain protocols can be described. (For example, a protocol allowing an arbitrary number 

of messages in transit cannot be described.) Nevertheless, describable protocols are 

relatively easy to analyze in the sense that all properties are decidable by exhaustive analysis.  

Therefore extending this model to use one finite state machine for each component and 

adding addressing information to define the component interactions combines the best of 

both worlds.  As state diagrams can be converted in regular expressions (and hence in 

sequence diagrams or collaboration diagrams) and vice versa, we have the option to use 

sequence diagrams or collaboration diagrams as notation and use state machine theory to 

perform the compatibility checks. 
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3.4 Our Documentation 
3.4.1 Introduction 
In the previous sections, we introduced a set of requirements describing what we want to 

document and we described in very general terms what we want to do with it. As the 

documentation we are searching for is mainly interaction documentation (be it typical 

composition patterns or typical “usage” scenarios of components) we now turn to the 

question how exactly we are going to document this information. 

Based on the little survey in the previous section we propose to use a special kind of 

Message Sequence Charts (MSC's) [MSC, 1993] for this goal. Each component is 

documented with a set of MSC's. Each MSC describes a typical “usage” scenario supported 

by the component. The main difference with standard MSC's lies in the signal labels. We 

have chosen a compact set of primitives with a predefined meaning. The use of this 

standard set of labels avoids the confusion that stems from the interpretation of the 

meaning of a set of API calls from its intuitive semantics. Using a standard set of labels 

also allows the reuse of documentation. As the usage scenario is no longer bound to one 

specific interface, the same scenario can be used to document two different components 

that have the same behavior but use other interfaces. We explain later in this work how 

these labels are mapped on real API calls and output events. This “interface mapping” 

allows us to generate code afterwards.  

3.4.2 Scenarios 
Figure 8 summarizes our scenario syntax. Our syntax is mainly a subset of the MSC syntax 

containing a set of participants, a set of signal sends between these participants and a set of 

control. This section describes these syntax elements and their meaning. 
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primitive

primitive

ALT

primitive
OPT

LOOP

primitive

Component Env1 Env2

primitive

 
Figure 8: Summary of the scenario syntax 

 
3.4.3 Participants  
Sequence charts describe interactions between a number of participants. We want to use 

this documentation to document both components and composition patterns. A 

component usage scenario describes the interaction for one “main” role (the component 

itself) and a set of environment roles. A composition pattern on the other hand describes 

the interaction between a set of roles. This introduces a small difference in the way we 

document components and composition patterns.  

Participants for Components 

For components, we introduce "environment" participants. An environment participant 

stands for any other cooperating component or glue code. The sequence diagram specifies 

a contract for any component or glue code that plays the role of this participant. It 

specifies what kind of messages the component expects from its environment and in what 

order.  

As can be seen a scenario contains exactly one "component" participant. All other 

participants are "environment" participants. An "environment" participant is labeled ENVi. 

A "component" participant is labeled with the component name. It is important to split up 

the behavior to as many environments as possible. If a message could be sent to or 

received from a different environment, this should be documented. The reason why is 

discussed in detail in section 4.10.  

Participants for Composition Patterns 
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For composition patterns, every participant stands for a role that will be filled by a 

component at composition time. A composition pattern specifies a contract that describes 

a typical interaction between a set of roles. Thus, composition patterns are described 

independently of specific components. This makes these patterns reusable in many 

different contexts. 

3.4.4 Messages 
3.4.4.1 Introduction 

Our documentation uses the standard MSC graphical symbols, but the labels for the signal 

sends are taken from a compact set of terms with an agreed meaning. Those terms are then 

mapped on the API of the component. This stands in contrast with standard MSC's 

messages that are expressed directly in terms of API calls. Building automatic tool support 

based on concrete API calls is very difficult. The "update" API call in a GUI component 

for example has not the same meaning as the "update" API call found in a database 

component. It takes a human and a lot of documentation to distinguish the two. This 

makes it very difficult to construct automatic tool support. The primitives we propose are 

used to map API calls from very different sources. Mapping a set of API calls from one 

component on for example the primitive "CONNECT" indicates that these API calls 

correspond with a set of other API calls on another component that are also mapped on 

the primitive "CONNECT". 

The idea to use a small set of primitives was inspired by the natural language research done 

by Schank [Schank, 1973]. The exact nature of the language representation used by Shank 

is beyond the scope of this work. Suffices it to say that he provides a small set of primitives 

with a known meaning together with additional syntax to express any natural language 

phrase in a language independent manner. An example of such a translated sentence is 

given in Figure 9. “PROPEL” is one of the primitive actions with an agreed meaning. The 

additional syntax shows that “John” initiates the “PROPEL” action and that “Ball” is the 

object of the action. 

John PROPEL Ball
O

“John throws the ball”

 

Figure 9: Research by Shank for a minimal set of primitives to 
bring natural language to a canonical form 
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The important concept behind this research is the difference between the associative 

theory of meaning and the constructive theory of meaning. The associative theory of 

meaning tries to define the meaning of concepts by relating it to other concepts. An often-

used analogy is to try to learn a foreign language by tracing the explanation of a word in a 

dictionary. Many analysis techniques are implicitly based on the associative approach. Take 

for example an association between two classes in a UML static structure diagram. This 

diagram implies that there exists a relation between these two classes without defining the 

meaning of the classes. This diagram informs the developers that the system contains two 

entities that are related. Without further information, the developer could extract the main 

structure of the system, but it is doubtful that the same technique can be used to describe 

the meaning of every entity. 

The constructive approach on the other hand starts with a set of known concepts and 

relates all other concepts to these. The latter approach is the basis of the research of Shank. 

In many formal systems this approach is used were meaning is based on mathematical 

concepts. While it is possible to document the meaning of every API call in these formal 

systems, this is often overkill for the properties we want to check. Therefore, we try to 

bridge the gap between these full-fledged formal systems and informal documentation, by 

introducing concepts in between by definition and relate the meaning of API calls to these 

concepts. 

Figure 10 shows the set of primitives we use in our experiments. These primitives are 

classified in a simple hierarchy. This hierarchy is used during the matching process 

described further in this text in the sense that we allow subtypes to map on super types and 

vice versa. 

Important note: 
This set of primitives is just a proof of concept. We do not claim that this is the only set of 

primitives or even that it is a good set of primitives. We use this set for our experiments 

only. However, it gives indications on how such a set should look like and how it can be 

organized.  

 
From our limited experience in building a set of primitives for our experiments, we learned 

that it is very hard to come up with a general set that is usable for all kinds of domains. 

One should rather construct a set of primitives for a specific application domain. 

Therefore, we state that this approach is especially useful to build "construction kits". It 

gives developers the opportunity to build a set of components and to document for that 
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set how they should be used and combined. Part of this research is done for the Advanced 

Internet Access (AIA) project [Wydaeghe, 2000] were we try to build construction kits for 

Internet services. For this project, we built a construction kit that allows us to build all 

kinds of distributed exams for the Internet (real time, offline, multiple choice, open 

questions, authorized, non authorized, with or without multimedia, etc.).  

The set we present in Figure 10 proved to be sufficient to document all components and 

composition patterns in this construction kit. This set was constructed during an iterative 

process of several months. We started with a basic set of primitives that simply seemed to 

be reasonable and adapted it based on the feedback from people documenting the exam 

components and composition patterns. 

 

Reference

Connect

Disconnect

Subscribe

Unsubscribe

Link

Create

Destroy

Start

Stop

Suspend

Resume

Control

Get

Set

Stream

Send

Notify

Data

Signal

 
Figure 10: Set of Primitives 

The agreed meaning for this set of primitives is given in Table 2. The meaning for the 

higher order primitives is defined by the aggregate of the meaning of its children. The 

meaning is given from the viewpoint of the initiator. If a message is labeled with SEND 

going from party one tot party two, it is clear that one party actually sends data, but the 

other party receives this data. The latter is not indicated in the table. 

LINK PRIMITIVES
Reference Acquire an explicit link to another participant
Connect Initialize a communication link with another participant
Disconnect Stop a communication link with another participant
Subscribe Register with another participant.
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Unsubscribe The unsubscribing participant expects that “Notify” messages be no
longer sent to him from the other participant.

CONTROL Primitives
Create The participant creates a participant.
Destroy The participant destroys a participant.
Start Request to start a service on a participant
Stop Request to stop a previously started service on a participant
Suspend Request to suspend a service on another participant
Resume Request to resume a previously suspended service on another participant

DATA primitives
Get Fetch data from another participant
Set Set data on another participant
Stream Continuously receiving or sending data from or to another participant.
Send Instantaneously receiving or sending data from or to another participant.
Notify Inform an other participant

Table 2: Agreed meaning of primitives 

The previous table only gives an intuition for the meaning of these primitives. In practice, 

the meaning and the differences between these primitives are established during multiple 

iterations and during actual use. It is just a set of agreements between people providing a 

set of component usage scenarios and their typical composition patterns. 

3.4.4.2 Hierarchy of Primitives 

As can be seen in the set of primitives presented in Figure 10, we introduced a hierarchy in 

our messages. The signal primitive is the most general one. We want this primitive to match 

with any other primitive. We recognized the need for this kind of hierarchy while modeling 

very general components. A typical example is the JButton Java Bean included in the Java 

Development Kit. This very standard button sends out an event each time it is pressed. Of 

course, this button also supports a list of other behavior (setting its caption, size, icon, 

events for mouse clicked and mouse released, etc…), but we restrict ourselves to the 

typical use of this button: sending out an event whenever it is pressed. 
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JButton Env: aListener

LOOP

SIGNAL

Env: anInitiator aComponent

CREATE

Env: anInitiator aComponent

START

Env: anInitiator aComponent

SEND

 
Figure 11: Why a hierarchy in primitives is needed. 

Without hierarchy we would document this button with a loop over the NOTIFY 

primitive. This would mean that a button could only be combined with another 

component that waits for a NOTIFY message (see section 4.5 for a definition of 

compatibility). This is not what we want. We want to be able to express that whenever the 

button is pressed it needs to start another component or that it needs to send a string over 

a network, or anything we can imagine. The problem is that anything can happen because 

of pressing a button. Therefore, we model a button as a loop over the SIGNAL primitive 

(Figure 11). Now the button defined in the left part can be matched with any of the 

components on the right side of the picture.  

The same argument does not hold for messages that are called on a component. While an 

output event can result in all kinds of actions, a method call always means the same thing. 

Specifying both the output events and these message calls in generic terms reduces the 

value of the compatibility check. This leads us to the following rule of thumb: 

In general one should document output events of components (outgoing messages from 

the component participant) using the most general primitive that is applicable, while 

messages that are called on a component should be documented as specific as possible. 

 
3.4.5 Control Blocks 
We use the OPT, ALT and LOOP keywords from the MSC syntax. The OPT keyword 

means an optional block and the ALT keyword indicates alternatives. The LOOP keyword 

indicates iteration over a part of the scenario (i.e. zero or more times).  
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3.4.6 Mapping 
For components only, we also provide the mapping between the set of primitives we use in 

the MSC’s and the real API calls and output events. This gives the possibility to deduct 

how a given component implements a required behavior. To be complete, two different 

mappings should be provided: one to map participants in the composition pattern to 

components and one to map primitives to API’s. 

Every participant of a composition pattern should be linked with an existing component. 

The “environment” participants are mapped later to other components automatically (see 

the matching process in chapter 4).  

The mappings allowed for primitives on API calls are different for outgoing messages as 

for incoming messages. 

We allow every outgoing primitive to be mapped to one event or to a set of alternative 

events.  We allow the latter because it provides a better alternative for non-deterministic 

documentation. A little example makes this clear. A typical interaction between a user 

interface and a FTP component is a request to make a connection to a given host followed 

by a notification of “success” or “failure”. If we do not allow the “success” and the 

“failure” event to be mapped on the same NOTIFY primitive we would obtain non-

deterministic behavior at the primitive level. Indeed, we would need to document this 

interaction as a REQUEST followed by an alternative where both options contain a 

NOTIFY primitive with the first one mapped to “success” and the second one to 

“failure”. This leads to serious problems in compatibility checking and for the code 

generation (For a discussion on this kind of non determinism see section 4.11). Now, 

suppose that the user interface component only wants to print the result of the connect 

request. In that case, we want to specify that, whatever event is thrown as result we want to 

invoke some kind of display method on the user interface (if we do feel the need to specify 

different traces, this means that the set of primitives is not specific enough). Allowing an 

outgoing primitive to be mapped on several output events allows us to do just that, making 

the documentation of components much more natural. 

We allow incoming primitives to be mapped to one API call or to a sequence of API calls. 

Allowing incoming primitives to be mapped on a set of alternative API calls makes it 

impossible to generate code automatically. (In practice, we also allow this option in our 

tool and we rely on user input during the code generation process to make the choice). 

Finally, if a primitive term is contained in a LOOP block this term is mapped only once. 
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3.4.7 Documenting Components and Composition Patterns 
The documentation introduced in the previous sections is used to document both 

components and composition patterns. The documentation for components is 

straightforward. For every component a usage scenario describes the interaction of the 

component with its environment. Thus, our component documentation contains exactly 

one main participant and a set of environment participants. It also contains an 

implementation mapping for every message used in this usage diagram. In Figure 12 we 

depict the documentation for our UserExamControl component. This component 

provides a user interface for multiple-choice exams. This component is launched by a 

“setVisible” call. From then, it starts to receive commands and it sends the selections done 

by the user to an environment.  

LOOP

Env:Launcher

START

ALT

UserExamControl Env:UserExamListener

setVisible

PERFORM
doCommand

answerSelected|...
DATA

 

Figure 12: Documentation of the driving exam client interface 

Composition patterns are documented in a very similar way. I.e. a composition is also 

documented using a scenario that uses the fixed set of primitives we introduced. A 

composition pattern describes the interaction between a set of role and can thus be viewed 

as a kind of use case for (a part of an) application. As a composition pattern describes an 

interaction between roles, it does not contain environment participants or implementation 

mappings. A composition pattern is a high level description of the cooperation between 

several roles without any indication on how this cooperation will be implemented. Figure 

13 depicts a composition pattern describing the interactions between a network role (i.e. a 

role that provides access to a network) and a role using this. As you can see, the only 

difference with the component documentation is that the primitives are not mapped on 

concrete API calls and there is no longer a “main” role depicting a specific component. 
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LOOP

NetworkUser

ALT

Network

SEND

PERFORM

CONNECT

DISCONNECT

 

Figure 13: Network Interaction Composition Pattern 
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4 Matching 
“Wherever there is modularity there is the potential for misunderstanding: Hiding information

implies a need to check communication.”

- SIGPLAN Notices Vol. 17, No. 9, September 1982, pages 7 – 13 
 

 
"It is easier to change the specification to fit the program than vice versa."

- SIGPLAN Notices Vol. 17, No. 9, September 1982, pages 7 – 13 
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4.1 Introduction 
This section is about compatibility checking. In the previous chapter, we introduced our 

proposal for documenting components and composition patterns. The goal of this 

documentation is to facilitate the component composition process. More specific, we 

envision a tool were a set of components and composition patterns are selected to build a 

component-based application. Once the composition pattern and the components are 

chosen, the developer indicates which components map on which roles in the composition 

pattern.  

The next step is to check the compatibility between this set of components and the 

composition pattern. This is the focus of this chapter. To do this we use automata theory. 

This involves transformations from usage scenarios and composition patterns to automata. 

The resulting automata of these transformations are called component automata and 

composition automata respectively. On these automata, we then define our notion of 

compatibility. We distinguish between the compatibility of a component with a role and the 

compatibility of a set of cooperating components as specified by the composition pattern.  

Part of the ideas in this chapter are based on existing theory but an important other part is 

the result of explorative research. This means that every idea was implemented in our 

prototype implementation and tested. These tests then inspired improved algorithms 

and/or new theory. This means that the algorithms and definitions in this chapter present 

the current status of our research. We only present the latest version and we do not 

describe the intermediate solutions that lead to the current algorithms and definitions. 

There are some exceptions however. We present for example two algorithms to perform 

global compatibility checking. The second version was inspired by the performance 

problems with the first algorithm. However, we do discuss both versions here because they 

both have their virtues. The first algorithm is intuitive and easy to implement, while the 

second alternative is more efficient. 

The structure of this chapter is as follows. First, we define the transformation of usage 

scenarios and composition patterns to automata. Next, we introduce a set of operators on 

these automata. Using these definitions and operators we then define our notion of 

compatibility. After that, we present first an algorithm to check local compatibility and an 

algorithm to check global compatibility. For this global check, we provide two alternatives. 

In the final sections of this chapter we describe in more detail how the component/role 

mapping is used and we describe algorithms to search for suitable role/component 
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mappings automatically. We also describe an additional compatibility check, to check the 

mapping of environment participants on roles. Finally, we explain the effect of the message 

hierarchy we introduced in section 3.4.4.2 and we discuss the issue of non-determinism. 



PacoSuite 

64 

4.2 Mapping MSC’s on Automata 
In the previous chapter, we introduced a special kind of sequence charts to document 

usage scenarios and composition patterns. We want to use this documentation to perform 

compatibility checking. While MSC’s are easy to use for the end user, it is better to work 

with automata for the actual compatibility checks. In this section, we describe how we 

translate component usage scenarios and composition patterns to component automata 

and composition automata. These automata are defined further in this section. 

As the scenarios we use are directly compatible with regular expressions, the conversion to 

a DFA seems to be straightforward. The interested reader can find proves of equivalence 

between regular expressions and automata in [Hopcroft, 2001]. A summary of the 

conversion is depicted in Figure 14. 

x

A*
LOOP

A

ALT
A

B

(A | B)

x

ALT
A

OPT
A

x

εεεεεεεε

εεεε

εεεε
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εεεεεεεε

εεεεεεεε

εεεε
A B

A

Sequence Chart Regular Expression State Machine

(A | εεεε)

A

A

B

A

A BB

(I.e. connect the end state of A with
the start state of B)  

Figure 14: Converting sequence charts to automata 

If we do not want to lose information during this transition, we need to label the 

transitions of the resulting component and compositions automata with more than the 

message label alone. Especially the direction of the messages is important. Therefore, we 

add “Out” or “In” to the transitions of a component automaton to indicate incoming and 

outgoing messages from the viewpoint of the component. An example of this conversion 

is depicted in Figure 15.  
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Env1 Env2 C

A

A

1 2 3

A, In, C A, Out, C

 

Figure 15: Adding "relative" direction for component usage 
scenarios. 

In this conversion, we loose the environment mapping information. I.e. we do not 

distinguish anymore between a message A coming from Env1 and a message A coming 

from Env2. We come back on this issue in section 4.9. For now suffices to say that we 

ignore environment mappings in our compatibility checking algorithms and that we 

perform an additional check afterwards to deal with them. 

To convert composition automata we need to do one extra step. Note that every transition 

in a component automaton is either an incoming message or an outgoing message. 

However, if we use again the standard conversion algorithm [Hopcroft, 2001] on 

composition automata we end up with transitions that specify the sending and receiving of 

a message in one transition. Therefore, we split every message of the composition 

automaton in a sending and a receiving part. Thus, every message in a composition 

scenario results in a sequence of two transitions. The first transition is labeled with the 

message going out of a role and the second transition is labeled with the message going in a 

given role. The result is depicted in Figure 16. 

1

A, Role1, Role2

2

1

A, Out, Role1

2 3

A, In, Role2

Role2Role1

A

 

Figure 16: Splitting messages in the composition pattern into a 
sending and a receiving part 
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4.3 Definitions: Component Automata and Composition Automata. 
The results of the mapping described in the previous section are component and 

composition automata. These automata are defined as follows:  
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DEFINITION: Component and Composition Automaton 

Component and composition automata are both standard deterministic automata. 

They are defined by the well known five tuple (S, q0, F, succ, Σ) where  

• S =  set of states 
• q0 =  initial state ∈ S 
• F =  set of final states ⊆ S 
• Σ  =  a set of labels 
• succ is a partial function mapping S x Σ → S. succ(s,α) is the state entered 

after the label α is accepted in state s.  
 
The difference between the composition automata and the component automata lies 

in the structure of their labels.  

A label of a component automaton corresponds with a message in the component 

usage scenario. It is a four tuple (name, direction, component, implementation). For 

a component usage scenario of a component c with a set of environment 

participants E, this five tuple is defined as follows: 

• name ∈ {signal, notify, set,…} the set of primitive messages for the 
application domain 

• direction ∈ {In, Out} 
• component = c 
• implementation is the actual implementation in terms of the interface 

of the component. This is a set of output events if direction = Out 
and a list of API calls if direction = In 

 
It is important to note that all component automata need to be complete. Complete 

here means that the alphabet of a component automaton always contains all possible 

labels corresponding with a message received or sent by its corresponding 

component c. Thus ∀ name ∈ {signal, notify, set,…}: ∀ direction ∈ { In, Out}: 

(name, direction, c) ∈ Σ 

 

Likewise, a label of a composition automaton corresponds with a message in the 

corresponding composition pattern. It is a four tuple (name, direction, source, 

destination) expressed in terms of the set of roles R of this composition pattern 

where: 

• name ∈ {signal, notify, set,…} the set of primitive messages for the 
application domain 

• direction ∈ { In, Out}  
• role ∈ R (r is the role that sends the message if direction = Out and r is 

the role that receives the message if direction = In) 
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4.4 Operations on Component and Composition Automata 
In the following, we often use a set of operations on the component and composition 

automata defined above. These are introduced here. 

4.4.1 Projection of a composition pattern automaton 
The projection of a composition pattern CP to a role R is the restriction of this 

composition pattern to the interactions that have role R as source or destination. 

DEFINITION: Projection of a composition pattern to a role 

We denote the projection of a composition pattern CP to a role R as: 

PR(CP) 

It can easily be constructed from the full composition pattern by replacing all 

transitions that are labeled with a message that does not interact with role R (source 

and destination ≠ R) with an epsilon transition. Calculating the epsilon closure of this 

automaton calculates the projection. The set of messages of the projection is the 

original set without these non-interacting messages. The set of roles of the 

projection is the original set of roles without the roles that are not the source or the 

destination of any message in the new set of messages.  

 

4.4.2 Applying the role map function 
In the following, we often need to replace every occurrence of a role name in the messages 

of a composition automaton with its corresponding component name. Labels of a 

composition automaton are four tuples containing source and destination roles. To allow 

us to compare composition automata and component automata we translate these role 

names in the component names based on the mapping given by the user. This operation is 

defined here. 



PacoSuite 

69 

Applying Role/Component Map Function  

Let CP = (S, q0, F, succ, Σ) be a composition automaton  

Let MAP be a total function that maps role names on component names if the role 

is mapped on a component and is the identity function if the role has not been 

mapped on a component. 

Then CPMAP = (S, q0, F, succ, Σ’) denotes the composition automaton after applying 

the MAP function to CP  

⇔ 

Σ’={m = (name, direction, component) |∃ m = (name, direction, role) ∈ Σ: 

MAP(role) = component) 

 
4.4.3 Parallel Composition 
To provide a more formal basis to our algorithms we introduce the parallel composition 

operator for component and composition automata in analogy with the parallel 

composition operator of CSP. We use this operator later to prove equivalence of our 

compatibility checking algorithms. It describes both the independent execution of each of 

the components as well as the performance of a joint step. 

We define the parallel composition for component and composition automata as follows: 
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Definition: the parallel composition operator  

A parallel combination of two component or composition automata P1={S1, q1, F1, 

succ1, Σ1) and P2 =(S2, q2, F2, succ2, Σ2) is described as: 

21 21
PP ΣΣ  

In this combination, P1 can perform events only in Σ1, P2 can perform events only in 

Σ2, and they must simultaneously engage in events in the intersection of Σ1 and Σ2. 

There are two rules that define the possible transitions of a parallel combination. 

One rule describes the independent execution of each of the components, and the 

other describes the performance of a joint step.  
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This corresponds with a new automaton  

(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2) with 

succ’: (S1 x S2) x (Σ1 ∪ Σ2) → S:  

• succ’([s1,s2],α) = [t1,t2] ⇔ α ∈ Σ1 ∩ Σ2 and succ1(s1, α) =  t1 and 

succ2(s2, α) =  t2 

• succ’([s1,s2],α) = [t1,s2] ⇔ α ∈ ( )21 \ ΣΣ  and succ1(s1, α) =  t1 

• succ’([s1,s2],α) = [s1,t2] ⇔ α ∈  ( )12 \ ΣΣ  and succ2(s2, α) =  t2  

 

In our definition, we define the result of the parallel composition as a new automaton 

where the new set of states is the cross product of the set of states of the component and 

composition automata under composition. This is not obvious. If we allow the component 

and composition automata to be non-deterministic we need to take the power set of states 
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and we need to define the transition function in terms of state sets (i.e. we need to define 

the result as the cross product of two non-deterministic automata. See [Hopcroft, 2001] for 

a definition). Our definition implies that the automata under composition need to be 

deterministic. This topic is described in detail in section 4.11. 

An intuitive view on the parallel composition is that it allows component or composition 

automata to perform their own transitions as long as no synchronization is required. 

However, they need to perform a joint step for labels in the intersection of their alphabets. 

I.e. they need to agree on common steps, but can go along with their own transitions. 

This definition implies that the result of the parallel composition of P1 and P2 with totally 

disjoint alphabets results in the shuffle automaton of these two automata. If P1 and P2 have 

exactly the same alphabet, this operation corresponds to the intersection of these automata. 

4.4.4 Laws for the Parallel Composition Operator. 
We need to prove two properties of this parallel composition operator. These properties 

are later used to prove equivalence of two algorithms. 

Laws for parallel composition

( ) ( )
commPPPP

assocPPPPPP

ABBA

CBABACBCBA

−=

−=
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1221

321321
 

(The operator is associative and commutative) (see p.70 [Hoare, 1985]). 
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4.5 Compatibility 
In this section, we define our notion of compatibility for a set of components. The 

compatibility definition that is typically found in literature is that every component needs to 

be a refinement of the role it is going to play in the composition [Hoare, 1985]. An intuitive 

interpretation means that the set of traces of the component is a superset of the set of 

traces of the composition automaton (the interested reader is referred to [Hoare, 1985] for 

a stronger definition of refinement in terms of failures and divergences). In automata 

terminology, this means that the language accepted by the composition automaton is part 

of the language accepted by the component automaton. Informally this means that the 

component at least offers what the role in the composition pattern asks for, but it allows 

components to offer more than what was asked for. 

This seems to be reasonable. Indeed components are explicitly built to be reusable and this 

implies some level of generality. Components typically offer more services than what is 

needed in a given application. Our exam construction kit for example contains a generic 

network component that can be used as server or as client. A given application will nearly 

never use both functionalities at once. This definition also has the advantage that it is 

possible to prove deadlock freedom if the property holds that every component is a 

refinement of its corresponding role. I.e. a local check of every component suffices to 

know that the global system will not deadlock [Allen, 1997]. 

However, we also consider composition patterns to be reusable entities. This means that a 

generic composition pattern often specifies more than what the components offer. Figure 

17 shows a typical composition pattern expressing generic observer behavior. This 

composition patterns tries to specify that two roles should be connected using some kind 

of observing behavior. It does not care if the observation is done using an active polling 

scenario or using a notification scenario. Even if the observation is done, by notification 

the observer role can refresh its own data by getting the new data or it can ignore the new 

value (an example of the latter is a notification of a simple button press).  
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LOOP

Observable Observer

GET

SUBSCRIBE

NOTIFY

OPT

UNSUBSCRIBE

GET

LOOP

ALT

 
Figure 17: Generic observer behavior supporting both polling and notification style 

It is clear that we do not want every component that is used in this composition pattern to 

implement both possibilities.  

However, defining compatibility based on refinement returns a mismatch if a component is 

used that does not implement everything that the composition pattern asks for. We think 

that this is too restrictive. Based on this observation we introduce our notion of 

compatibility in the following sections. 

4.5.1 Local Compatibility 
Figure 18 depicts a snapshot during the development process of a component-based 

application using our approach. At this point a composition pattern with three roles is 

dragged on the canvas (see the “use case” notation consisting of an oval with three 

connected boxes) and three components are selected to be used in this composition. 

By dragging the network component to the "Network" role in the pattern, the developer 

indicates that this component should fulfill this role in the composition. The provided 

documentation is used to perform a compatibility check between the component and the 

composition pattern.  
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Figure 18: Snapshot of the component composition process 

This is a “local” check. I.e. at this point, we can only check the compatibility of one 

component with a role in the composition pattern. As we explain later in this text, it is 

possible that all components match with their role in the composition pattern, but fail to 

match with each other. Therefore, the checking process at this point differs from the global 

checking process. We now define our notion of local compatibility.  

Definition: Local Compatibility  

Let C be a component and R be a role of the composition pattern CP. Further let 

L(C) be the language accepted by the component automaton and let L(PR(CP)) be 

the language accepted by the automata defined by PR(CP) 

Then C is local compatible with R ⇔ L(C) ∩ L(PR(CP)) ≠ ∅ 

 

Informally this means that a component is defined to be compatible with a role if they 

agree upon at least one trace. This allows a component to offer more than what the 

composition pattern (the corresponding role) asks for and it also allows the composition 

pattern (the corresponding role) to specify more than what the component offers.  
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4.5.2 Global Compatibility 
The local compatibility definition however looses the nice property that deadlock freedom 

follows from the fact that every component is locally compatible with its corresponding 

roles. The local compatibility definition only guarantees that there is a common trace 

shared by the composition pattern role and the component, but this trace can be different 

for every component. An example makes this clear. 

Figure 19 depicts a theoretical situation where all the local compatibility checks for the 

three components at the left hand side succeed but where there is clearly no trace in the 

three components together that matches with the required trace of the composition 

pattern. Matching component "C1" with the projection of the composition pattern to role 

"R1" renders a non-empty intersection. Both the projection and the component send out 

the message "A" and terminate after that. Matching component "C3" with the projection 

of the composition pattern around role "R3" also renders a non-empty intersection. Both 

scenarios accept a message "B" and terminate. The same goes for component "C2" and the 

projection of the composition pattern to role "R2". The component matches with the 

second alternative rendering again a non-empty intersection. However, if component "C1" 

sends the message "A" to component "C2", component "C2" sends out the message "C" 

to component “C3” this component does not accept this message "C".  

The local compatibility check only searches for a non-empty intersection between the 

component and the role. In this case, the intersections of the components mapped on 

interacting roles are disjoint (more precisely the intersection of C2 with R2 and the 

intersection of C3 with R3 are disjoint). Informally this means that it is possible for 

different components to "select" different traces through the composition pattern that are 

not necessarily compatible. 
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Figure 19: Why a global check is needed. 

From the previous, it follows that we need to take all the components into account to 

check a full composition. We show that the parallel composition operator does exactly that.  

Let C1,…,Cn be a set of components and let  CA1,…,CAn be the corresponding 

component automata (i.e. ∀i∈[1..n]:CAi is the component automaton of Ci) 

Let CP be a composition pattern with roles R1,…,Rn. Let CPA be the 

corresponding composition automaton. 

Let MAP be a total function such that ∀i∈[1..n]:MAP(Ci) = Ri  

Then ( )nCACA L1  describes the concurrent execution of the components, 

because the alphabets of these components are totally disjoint. 

We want to constrain the set of traces in ( )nCACA L1  to the traces as specified by the 

composition pattern. We also want to constrain the traces of the composition automaton 

to the traces supported by ( )nCACA L1 . This means that we need to take the 

intersection of these automata. I.e. we need to calculate: 

CPA ∩( )nCACA L1  

However, the alphabet of the composition pattern automaton is totally disjoint from the 

alphabet of ( )nCACA L1  (which is U
n

i
iCAalph

1

)(
=

) as every label contains a role name 
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and every label in U
n

i
iCAalph

1

)(
=

contains a component name. Therefore we apply the 

role/component mapping first giving a new calculation: 

CPAMAP ∩( )nCACA L1  

The intersection is however only a special case of the  operator. It is the parallel 

composition of two automata having the same alphabet. Therefore, we extend the 

composition pattern with U
n

i
iCAalph

1

)(
=

. Let us denote the extension of the alphabet of 

the automaton P with the alphabet of the automaton B as P+alph(B). It is easy to show that 

)(
1 iCAalph

i

nMAP
CPA

=
∪+

has exactly the same alphabet as ( )nCACA L1 .  

Remember that we made the alphabet of the component automata complete. Thus 

U
n

i
iCAalph

1

)(
=

contains all labels describing messages that are sent from, or received in, 

component C1 to Cn. As we applied the role/component mapping to the composition 

automaton, the alphabet of this automaton only contains labels describing messages that 

are sent from, or received in, the same set of components2. Thus alph(CPAMAP) ⊆ 

U
n

i
iCAalph

1

)(
=

and because we extended the alphabet of CPAMAP with U
n

i
iCAalph

1

)(
=

 it 

follows that 
















=
∪+ )(

1 iCAalph
i

nMAP
CPAalph  = U

n

i
iCAalph

1

)(
=

and thus 

















=
∪+

n

iCAalph
i

nMAP
CACACPA L1

)(
1

= CPAMAP ∩( )nCACA L1 .  

All this leads to the following definition of global compatibility: 

                                                 
2 This assumes that all roles are mapped. Our compatibility check fails if this is not the case. 
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Definition: Global Compatibility  

Let C1,…,Cn be a set of components. Let  CA1,…,CAn be the corresponding 

component automata (i.e. ∀i∈[1..n]:CAi is the component automaton of Ci) 

Let CP be a composition pattern with roles R1,…,Rn. Let CPA be the 

corresponding composition automaton. 

Let MAP be a total function such that ∀i∈[1..n]:MAP(Ci) = Ri  

Then CP is global compatible with C1,…,Cn  

⇔  

















=
∪+

n

iCAalph
i

nMAP
CACACPAL L1

)(
1

≠ ∅ 

 

Informally this means that we define a set of components to be compatible with a 

composition pattern if the composition pattern specifies at least one trace that is part of the 

set of possible traces resulting from the parallel interleaving of these components.  
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4.6 Local Check 
We introduced our notion of local compatibility in the previous section. This section deals 

with the practical implementation of this check. The local check is a straightforward 

implementation of our compatibility definition. The local compatibility check involves four 

steps: 

1. Convert the usage scenario of the component and the composition pattern to a 

component automaton and a composition automaton.   

2. Take the projection of the corresponding role in the composition automaton 

3. Calculate the intersection (or the difference) between the projected composition 

automaton and the component automaton. 

4. Check for a start-stop path in the intersection 

The first two steps are already explained in the previous sections. Here we take a closer 

look at step 3 and 4. 

4.6.1 Calculating the Intersection 
The calculation of the intersection automaton is straightforward using the algorithms 

described in [Aho, 1985]. This is a standard intersection of two deterministic automata (the 

component automaton and the composition automaton after the projection to the role 

corresponding with that component). It is interesting however to discuss the difference 

between taking the intersection and taking the difference between the component and the 

projection of the composition pattern.  

To check local compatibility as we defined it in section 4.5.1 we need to take the 

intersection. However, as we discussed above, we often find a more stringent compatibility 

definition in literature, namely that components need to offer at least everything what the 

role asks for. It is easy to implement this more stringent constraint in our local 

compatibility-checking algorithm. To achieve this we need to calculate the difference rather 

than the intersection in this stage of the algorithm.  As this is a simple thing to do, we leave 

it as an option in our prototype. This indicates how the architectural description as 

described by Garlan and co. [Allen, 1997] can be checked using automata algorithms 

instead of using a full-fledged theorem prover.  

4.6.2 Check for a Start-Stop Path in the Intersection 
Theoretically, a match is found if the product automaton is not empty. However, it is 

possible for a product automaton to render a result where the start-state is also a stop-state 
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and where this "path" of length zero is the only start-stop path in the intersection. This is 

obviously not a valid solution in practice because it means that the component fits in the 

pattern as long as no events take place at all. This raises the question how long a start-stop 

path should be before we consider the solution to be valid. In the basic version of our 

prototype, we take a very pragmatic approach and check whether there exists a path of 

length 1 or more.  

LOOP

Observable Observer
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SUBSCRIBE

NOTIFY

OPT

UNSUBSCRIBE
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LOOP

ALT

POLLING ENABLED

NOTIFICATION ENABLED

 

Figure 20: Adding termination properties 

A better solution is under implementation. We will annotate the composition pattern with 

special labels indicating the state of the application if this label is reached. This is illustrated 

in Figure 20. This composition scenario describes two different observer styles. One based 

on polling, the other based on notification. If we take these labels with us during the 

compatibility check, we can check what properties still hold in the resulting automaton. We 

could then present a list of states that are guaranteed to be reachable to the user.  



PacoSuite 

81 

4.7 Global Check 
4.7.1  Classic 
We defined global compatibility as:  

















=
∪+

n

iCAalph
i

nMAP
CACACPAL L1

)(
1

≠ ∅ 

In our implementation, we split this calculation in two stages. We first calculate the parallel 

composition of all the components, i.e. ( )nCACA L1 . We then calculate the parallel 

composition of the result with MAPCP . The last step is the intersection of the composition 

pattern and the parallel composition of the components. Thus, our implementation of the 

compatibility check involves the following steps: 

1. Convert the usage scenario of the components to component automata 

(CA1…CAn).   

2. Convert the composition scenario to a composition automaton CPA 

3. Calculate ( )nCACA L1  

4. Apply the role component mapping function MAP to CP to obtain CPMAP 

5. Calculate the parallel composition of 
iC

i

nMAPCP
α

1=
∪+

and 



























 ++ MAPCPAalph

n

MAPCPAalph

CACA L1  

6. Check for a start-stop path in the resulting automaton of step 5. 

Steps one and two are already explained in section 4.2. Step 4 is explained in section 4.4.2. 

The remaining steps are now further explained. 

4.7.1.1 Calculate the parallel composition of the components 

We now calculate ( )nCACA L1 . As every label on a transition in a component 

automaton contains the component identification, the alphabets of all component 

automata are totally disjoint3. In that case, the parallel composition operator results in the 

shuffle automaton of all these components. For performance reasons we implemented the 

                                                 
3 We do not allow the same instance of a component to be mapped on more than one role.  
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shuffle automaton algorithm rather than using the more generic parallel composition 

operation. 

Calculating the shuffle automaton itself is a well-known process. It corresponds to the total 

interleaving of the automata that are shuffled. Figure 9 gives an example for two 

components with one single message “A”. Figure 21 gives an example for two components 

with one single message “A”. 

C1 Env

C2 Env

A

A

Components

1 2

A, Out, C1

3 4

A, In, C2

13 23

A, Out, C1

14 24

A, In, C2

Shuffle Automata

A, Out, C1

A, In, C2

 

Figure 21: Calculating the shuffle automaton 

The result is obtained by advancing in one automaton at the time. For example if we are in 

the combined state (1,3) we can advance with “A, In, C2” to the combined state (1,4) and 

we can advance with “A, Out, C1” to the combined state (2,3). Formally: 

 

A shuffle automaton of two automata P1=(S1, q1, F1, succ1, Σ1) and P2 =(S2, q2, 

F2, succ2, Σ2)  is a new automaton: 

(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2) with 

succ’: (S1 x S2) x (Σ1 ∪ Σ2) → S:  

• succ’([s1,s2],α) = [t1,s2] ⇔ succ1(s1, α) =  t1 

• succ’([s1,s2],α) = [s1,t2] ⇔ succ2(s2, α) =  t2  
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4.7.1.2 Calculate the parallel composition of the composition pattern and the components 

In this step we calculate the parallel composition of MAPCP and ( )nCC L1 . However, 

we extend the alphabet of CPMAP with the alphabet of (C1  …  Cn) to remove all 

transitions in the resulting automaton of the components that are not compatible with the 

composition pattern. We also extend the alphabet of every component with the alphabet of 

the composition pattern to remove all transitions in the resulting automaton of the 

composition pattern that are not compatible with that particular component. The result is 

that the parallel composition operator now corresponds with the intersection operator (the 

alphabets of both automata are equal). Therefore our prototype implements the 

intersection algorithm directly rather than the generic parallel composition operation. This 

step is equivalent with the calculation of the intersection during the local check.  

4.7.1.3 Check for a start-stop path in the result 

Remember that we split every transition in the composition pattern automaton in two 

separate transitions specifying the send and the receiving of messages. The calculation of 

(CA1  …  CAn) also results in an automaton where every transition corresponds with 

sending or receiving a message. Thus, the result of the intersection of these automata also 

contains separate transitions for sending and receiving messages. To check if the system 

contains traces that terminate we need to find a trace where every outgoing transition 

labeled (name, Out, component1) is followed by an incoming transition labeled 

(name,In,component2). Thus the two subsequent transitions need to have the same name 

and the first transition needs to be outgoing and the second transition needs to be 

incoming. Figure 22 shows the general template for such an Out/In pair of transitions. 

1

A, Out, Component1

2 3

A, In, Component2

 

Figure 22: Template for a single message in the intersection 
automaton going from component 1 to component 2 

This template indicates that a component first sends a message and this message is 

immediately accepted by another component. All traces that send a message out first and 

receive another message afterwards and all traces that receive a message first and send it 

afterwards are traces that have nothing to do with component interactions.  
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Therefore, we search for a start stop path where every two subsequent transitions follow 

the template as specified by Figure 22. If such a path is found, we declare the set of 

components global compatible with the composition pattern. 

4.7.2 Optimization using Asymmetric Cross Products 
The previous algorithm is very expensive due to the calculation of the shuffle automaton as 

this is an exponential process. Now make the following observation. 

As the global checking process ends with the calculation of the intersection between the 

shuffle of all the component automata and the composition automaton, it is clear that 

the result needs to be a restricted version of the composition automaton. (Mind that 

restricted here means accepting a smaller language and not necessarily that the resulting 

automaton is smaller) 

 

This observation inspired us to the construction of a new algorithm. The idea is to skip the 

calculation of the shuffle automaton and restrict the composition automaton incrementally 

with the component automaton. Theoretically, this corresponds to: 

( ) ( ) ( ) 
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Thus, the only difference with the previous algorithm is the place of the brackets and 

where we extend the alphabets. From the associativity and commutativity laws it follows 

that this renders the same results as the first algorithm. However as the first algorithm first 

calculates the parallel composition of all components, it will construct a total shuffle first 

(as the alphabets of the components are totally disjoint) and only restrict this result in the 

very last step. This leads to a huge intermediate automaton and many useless transitions. 

The new algorithm on the other hand restricts its result already from the first calculation. 

The implementation of this process can be done efficiently using a kind of asymmetric 

cross product. It involves the calculation of the intersection for all related transitions only 

(i.e. all transitions that are part of the projection of the composition pattern to the role 

mapped on the component we are intersecting with) and simply adding transitions that are 

not part of this projection to the result. It is asymmetric in the sense that component 

transitions are only added when there exists a matching transition in the composition 

pattern, while transitions of the composition pattern are always added to the result except if 
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they are part of the projection to the role mapped on the component and when they are 

not compatible with the transitions as specified by the component. 

Figure 23 gives an example for a very simple component (named “C1”) and a composition 

pattern. We calculate the asymmetric cross product between this component automaton 

and the composition automaton. The result contains the transitions “A, Out, C5” and  “A, 

In, C6” because this transition is not part of the alphabet of the component C1. It is thus 

left intact. It also contains a transition “B, Out, C1” because this transition is related to the 

component but occurs in both automatons and a transition “B, In, C3” as this transition is 

not part of the alphabet of the component C1. The transition “C, Out, C1” of the 

composition automaton is pruned because it is part of the (extended) alphabet of the 

composition pattern but component “C1” has no corresponding transition and transition 

“C, In, C2” is kept because it is not part of the alphabet of the component C1. 

1 2 4

6

a b

A,Out,C5 B,Out,C1

C,Out,C1

B,Out,C1

Composition automaton after role-component substitution Result after the asymmetric product calculation

Component automaton for C1

3

A,In,C6

5

B,In,C3

7C,In,C2

1 2 4b

6

A,Out,C5 B,Out,C1

3a

A,In,C6

5

B,In,C3

7C,In,C2

 

Figure 23: The asymmetric cross product. 

Another advantage of this algorithm is its incremental nature. This algorithm renders an 

automaton for partially filled composition patterns. This makes it very well suited for 

“component generation”. I.e. it is possible to take a composition pattern, fill it in partially 

and use the unfilled roles as new environments for a super component.  
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4.8 Role/Component Mapping 
Before we calculate the parallel composition of a set of component automata with a 

composition automaton, we use the role/component mapping provided by the user. We 

use this mapping to bring both automata in the same alphabet. However, if we adapt our 

equality definition of messages so that we declare two messages to be equal if only their 

names are equal we obtain a match or a mismatch without using the mapping information 

from components to roles in the composition. 

This means that the global check process finds a suitable position for the components 

automatically.  

This makes the presented approach very easy to use. It means that a developer just has to 

select a composition pattern and a set of components to obtain a working application. He 

or she does not have to read the composition scenario to find out where every component 

should be placed.  

There are two problems with this approach.  

Problem 1: Ambiguous situations occur 

One problem occurs for example when a composition pattern specifies two standard 

button components to launch two different windows. While it does not matter 

theoretically which button instance is used for which window, it does so in practice. In 

nearly every component based development tool you are able you to set properties on 

component instances. A typical property for the button is its caption. Swapping the 

buttons now renders a very confusion application where the captions of the buttons do 

not match with the expected behavior. This situation also occurs with two components 

that have the same usage scenario but different behavior (remember that a usage 

scenario only describes how to use a component in terms of abstract primitives and not 

what the component does).  

Problem 2: The direction information is not used. 

If we do not provide role component mapping information a message send by one 

component and received by another component can be mapped on a message with the 

same label going from role X to role Y as well on the same message going from role Y 

to role X. Thus, the same set of components is compatible with both a composition 

pattern and the mirrored version of this composition pattern. The situation is even 

worse because this set of components will also match with the same composition 
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pattern where only some of the messages are mirrored. Without any further checking, 

our components will happily switch roles during the compatibility check.  

We developed an algorithm that deals with these problems. It calculates all “valid” 

mappings for a set of components and a composition pattern (i.e. all mappings such that all 

components fit on their mapped role). 

The basis of our new algorithm is the first global checking algorithm that calculates the 

shuffle automaton of the components first and calculates the intersection afterwards 

described in section 4.7.1 (thus not the asymmetric algorithm). This algorithm uses an 

explicit role-component mapping to bring the composition automaton and the shuffle 

automaton in the same alphabet before the calculation of the intersection.  

The straightforward algorithm to find these mappings automatically is to calculate the 

intersection for all permutations of role-component mappings and keep all permutations 

that render a non-empty product automaton. This algorithm is clearly too expensive. We 

developed an algorithm based on dynamic programming to circumvent this performance 

problem.  

4.8.1 Overview of the process 
We try to obtain all role/component mappings for a given set of components and one 

composition pattern. This process takes three steps. The first step is already explained in 

the previous chapters. The second step is the calculation of the intersection with a slightly 

different equality rule than in the previous. The last step is the proposed algorithm based 

on dynamic programming. The overview of the full algorithm is thus: 

Step 1: Calculate the shuffle automaton of all components as described in section 4.7.1.1 

Step 2: Calculate the intersection regardless of the role/component mapping 

Step 3: Select all traces in this cross product that have non-contradicting component/role 

mappings 

We will now explain step three and four in more detail. 

4.8.2 Calculating the intersection without role/component mapping 
In this step, we need to calculate the cross product between the shuffle automaton of all 

the components and the composition pattern. As we do not have a role/component 

mapping, we ignore role and component names. I.e. we check only the name and the 

direction of message to decide if they are equal. As the alphabet of the shuffle automaton 

contains labels expressed in terms of components and the alphabet of the composition 
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automaton contains labels expressed in terms of roles, a joint step in the resulting 

automaton is a combination of a label of the form (name, direction, component) and a 

label of the form (name, direction, role). We define the new label for such a step as (name, 

direction, component/role). The rest of the intersection calculation proceeds as usual. This 

clearly constructs an automaton with many invalid traces as we allow components to 

switch roles as they like. In the next step, we remove these invalid traces. 

4.8.3 Select All Traces That Have Non-Contradicting Comp/Role Mappings 
The labels in the automaton created in the previous step have the form (name, direction, 

component/role). The semantics of a transition with such a label is that if that transition is 

followed, we assume that “component” should be mapped on “role”. With this 

observation, we start searching for any path that has non-contradicting mappings.  

1 2

A, Out, C1/R3

3

A, In, C2/R2

4

B, Out, C3/R3

5

B, In, C2/R2

6

7

B, Out, C1/R3

B, In, C2/R2

 

Figure 24: Searching contradicting traces 

Figure 24 shows a very small example of the kind of automata we obtain after step 3. The 

only valid trace in this automaton is from state 1 to state 7 using message “A” and from 

state 2 to state 3 using message “B”. The reason is that following message “A” from state 1 

to state 2 implicitly implies that component “C1” is mapped on role “R3”. Following 

message “A” from state 2 to state 3 implies that component “C2” is mapped on role “R2”. 

If we now further follow the trace from state 3 to state 4 using message “B”, we read that 

component “C3” is also mapped on role “R3” and this is not allowed.  

We explain further how the resulting automaton is used as a specification for the glue code 

needed to connect the components. In this context it is acceptable that one component 

plays multiple roles, but it is not acceptable that one role is played by multiple components 

(the semantics of the latter are not defined). Therefore, we need to reject the transition 
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from state 3 to state 4 if we first followed state 1 to state 2. This renders the trace: (state1, 

state2, state3, state 6, state 7) as the only possible trace in this automaton that goes from a 

start state to a stop state. 

To perform an automatic role/component mapping we need to find all traces without 

contradicting mappings in this automaton. It is possible that there exist multiple sets of 

role/components mappings that render valid traces in the automaton (an example of such 

a situation is where we use two identical buttons in one composition).  In this case, the user 

should be confronted with the options and he or she has the final choice. 

There are a number of possibilities to perform this search. In short: 

1. Try all permutations of role/component mappings  

2. Perform a breath-first search with history 

3. Use a dynamic programming technique 

 These are now discussed in more detail. 

4.8.3.1 Try All Permutations of Role/Component Mappings 

While this alternative seems prohibitively expensive, this option still remains open with the 

observation that we only need to take the permutations of mappings already found in the 

resulting automaton. Remind that this result automaton is a cross product between the 

shuffle automaton and the composition automaton based on equality of the messages 

regardless of their source and destination. If we now enumerate all transitions found in this 

automaton and read the role/component mappings we will not have that much 

contradicting mappings. Every mapping will appear in two directions (i.e. if there is a 

message “A” going from Component 1 to Component 3 and there exists a mapping from 

Role 2 to Role 4 we will have one mapping Component 1/Role 2, Component 3/Role 4 

and one mapping Component1/Role 4, Component 3/Role 2), but chances are low that 

these roles are also mapped on other components. As mappings that are not included in 

this list are certain to lead to a dead end, we do not need to consider them. This means that 

we only need to search for at least one trace in the automata for each permutation of this 

limited set of mappings. This boils down to enumerating all transitions in the automaton 

and removing all the transitions that have a mapping that is not included in the 

permutation we are testing. This is followed by a search for at least one start-stop trace. 

Any mapping tested this way that returns such a trace is a possible role/component 

mapping. 
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4.8.3.2 Perform A Breath First Search with History 

This algorithm initially sets out as a normal breath first algorithm. From the start state all 

outgoing transitions are followed and the destination states are added to the “to do” queue. 

To avoid that we go round in circles we remember all histories of transitions we took to 

reach a given state. To proceed we follow all outgoing transitions from the states in the “to 

do” queue but only if this transition is not yet a part of this transition history.  

If the mapping we add to a mapping history contradicts with one of the mappings in there 

already, we stop following that trace. If a trace comes to a dead end (i.e. all possible 

continuations follow transitions that are already included in the trace) we check if the trace 

contains an end state. If so, this trace is a valid solution. In any case, we stop further 

processing this trace. 

The example in Figure 25 shows a possible automaton were we need to resolve the 

role/component mapping. We will go trough this automaton using the algorithm described 

above to clarify its working. 

 

1

2 4

3

6

A(R1/C1)

B(R1/C1)

C(R2/C3)

D(R1/C3)

E(R3/C4)

F(R1/C1)

 

Figure 25: Example state diagram for role/component resolving 

In the following we use the symbol Q for the “to do” queue at any given moment. An 

element in the “to do” queue is a state that needs to be visited and the trace of transitions 

(together with its corresponding role/component mapping) that has been followed already.  

Q={1 (trace: null)}
Pop state 1 and expand.

Q={2 (trace:(A(R1/C1))), 3 (trace:(D(R1/C3)))}
Pop state 2 and expand.

Q={3 (trace:(D(R1/C3))), 4 (trace:(A(R1/C1),B(R1/C1)))}
Pop state 3 and expand.
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Q={4 (trace:(A(R1/C1),B(R1/C1))), 4 (trace:(D(R1/C3),E(R3/C4))}
Pop the first state 4 and expand.

Q={4 (trace:(D(R1/C3),E(R3/C4)), 6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3))}
As state 6 is a stop state mark this trace as a solution (6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3)))
Pop the state 4 and expand.

Q={6 (trace:(A(R1/C1),B(R1/C1),C(R2/C3)), 6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3))}
Add a second solution (6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3)))
Pop first state 6 and expand

Q={6 (trace:(D(R1/C3),E(R3/C4),C(R2/C3)), 4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1))}
Pop state 6 and expand.

Q={4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1)), 4 (trace:(D(R1/C3),E(R3/C4),C(R2/C3),F(R1/C1))}
We just added state 4 with a trace that contains an incompatible mapping. More precisely R1 is mapped on C3
(A(R1/C1)) and on C1 (F(R1/C1)). As this is not allowed we stop processing this trace any further. I.e. this
mapping is just removed from the queue.

Q={4 (trace:(A(R1/C1),B(R1/C1),C(R2/C3),F(R1/C1))}
Now we reach a dead end. If we pop state 4 and try to expand we obtain: 4 (trace: (A(R1/C1) B(R1/C1),
C(R2/C3), F(R1/C1), C(R2/C3))
Note that this trace contains a transition that is already included in the trace (C(R2/C3)), but we are not in a end
state. At this point, we check if the history contains at least one end state (as is the case in this example). In that
case, we add this trace as a solution. We stop processing it any further.

4.8.3.3 Dynamic Programming Algorithm 

The basic idea of this algorithm is to consider every state in the finite automaton as a 

parallel process. Every process asks all its neighbors (i.e. all states that are connected with 

this state with an outgoing transition) for a set of mappings such that they can reach a stop 

state without contradiction. It then checks if the extra mapping needed to reach that 

neighbor contradicts with that set of mappings. Every mapping that has no contradiction is 

added to its own set of mappings to reach a stop state. This process iterates until no state 

receives a new mapping. 

In practice, this process is done sequentially instead of parallel. During one iteration, we 

update every state once. Observe that we only need to update those states that have 

neighbors who received a new mapping in the previous iteration. As we know that in the 

first step only those states that have a stop state as neighbor can be updated, we start 

pushing all stop states on the “to do” queue.  

The algorithm then proceeds as follows: 
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while ToDoQueue not empty {
s = ToDoQueue.pop()
for every state x that has a transition to s {

if (isUpdated(x,mappings(s))) ToDoQueue.push(x);
}

}

boolean isUpdated(State x, State s){
boolean updated = false;
Mappings m = s.getMappings();
for every transition t going from x to s {

if t.mappings() compatible with at least one element of m {
Updated = true;
… update own mapping table …

}
}
return updated;

}
Figure 26: Finding all role/component mappings using dynamic programming ideas

This algorithm ends when no state received a new mapping. At this point, the set of 

possible mappings to reach an end state can be read from the start state.  
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4.9 Role/Env Mapping 
Until now, we only dealt with role/component mappings. These mappings are done 

manually or automatically, but the “env” participants of a component are always ignored.  

Figure 27 and Figure 28 give an example where the “env” participant/role mapping is not 

one on one. It is easy to see that in both situations the network component on the left 

hand side of the picture is compatible with the network role in the composition pattern on 

the right hand side. In the translation of the usage scenario of the network component to a 

state diagram all information about environment participants is dropped (both in the local 

as well as in the global check). This means that in Figure 27 implicitly both environment 

participants of the Network component are mapped on the same “NetworkUser” role in 

the composition pattern, while in Figure 28 one “env” participant is mapped on the 

“Initiator” and the “User” role of the composition pattern. 

All these examples seem to be acceptable at first sight. We want it to be possible that the 

network component is started by a different component than the one that is going to use 

the network, but we accept that in some cases the same component creates and uses the 

network. 

Network Env: Initiator Env: User

Create

Send

NetworkUser Network

Create

Send

Composition PatternComponent Usage Scenario

 

Figure 27: Mapping multiple “env” participants on one role 
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Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

Initiator

 

Figure 28: Mapping one "env" participant on multiple roles 

Figure 29 shows a situation that is not acceptable. The component has two “env” 

participants. It expects one “env” participant to give a create message, waits until another 

environment uses the network to send something and then notifies the sender (for example 

to tell that the send worked).  The composition pattern gives a different interpretation. 

Here the notification after the first send is given to the initiator (for example to tell the 

initiator that the connection was used for the first time). However, the current checking 

algorithms will not complain. 

Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

InitiatorEnv: Initiator

Notify
Notify

 

Figure 29: Illegal mapping of "env" participants 

4.9.1 Mapping Rules for the “ENV” Participant 
It is hard to come up with a rule that accepts the mapping of multiple roles on one “env” 

participant (as in Figure 28) and the mapping of multiple “env” participants on one role (as 

in Figure 27), but rejects the situation in Figure 29. The reason is that we expect some kind 

of identity in the example of Figure 29. We want the same “env” participant that initiated the 

send on the network component to receive the notification. 
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A closer look at the example in Figure 28 learns that we also give up this identity property 

of the “env” participant in this example. A simple extension of the example makes this 

clear. 

Network Env: User

Create

Send

User Network

Create

Send

Composition PatternComponent Usage Scenario

Initiator

Notify

Notify

Notify?
 

Figure 30: Mapping one "env" participant on multiple roles. 

Figure 30 is an exact copy of Figure 28 where we added a notification message in the 

component usage scenario. The composition pattern uses two different roles to model the 

behavior of the “env: user” participant. Now we see that it is not well defined where we 

expect the “notify” message to map. We want it to return to the same role that issued the 

CREATE and the SEND messages, but this role has split in two different roles in the 

composition pattern.  

These observations led us to the following mapping rule: 

Mapping “env” participants 

One “env” participant is mapped to exactly one role.  

One role can be mapped on many “env” participants. 

4.9.2 Checking the “ENV” participant mappings 
The algorithms to check local compatibility and global compatibility ignore all information 

concerning “env” participants. In section 4.9.1 we defined the valid mappings for 

environment participants. These mappings need to be checked. This is very similar to the 

problem of finding all non-contradicting mappings in the automatic role mapping process 

(4.8.3). Thus, we can ignore all environment information and calculate the resulting glue 

code first. In a next step, we use any of the proposed algorithms for finding non-
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contradicting mappings (try all permutations, breath first search and dynamic 

programming) to check the environment mappings. The only difference is that we 

maintain a list of “env” participant/role mappings instead of role/component mappings. 

We throw away all traces that imply a mapping of one “env” participant on multiple roles. 
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4.10 Message Hierarchy 
In section 3.4.4.2 we introduced a hierarchy of primitives for the composition patterns and 

component usage scenarios. While we ignored this in the previous, we need to take a closer 

look at the impact of this decision on our definition of equality of messages and on their 

combination. In the following, we call the parent primitive of any sub tree in our hierarchy 

a “super type” and its descendants a “sub type”. It is clear that we want super types to 

match with sub types and vice versa. Thus in all the previous algorithm we consider two 

names of different messages to be equal if they are identical or if the first name is the super 

type of the second name or vice versa. 

This has an impact on the construction of the intersection automaton. If we consider two 

names n1 and n2 to be equal if n1 is a super type of n2 or if n2 is a super type of n1, we need 

to specify the resulting label in the intersection automaton. Figure 31 gives an example. 

1 2

1 21 2

1

SIGNAL, Out, Comp X, Imp

2

START, Out, Role Y, Imp

START, Out,Comp X / RoleY, Imp SIGNAL, Out,Comp X / RoleY, Imp

 

Figure 31: Combining two equal messages with hierarchy 

We take the subtype as the new label because the subtype constrains the super type.  
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4.11 Non-Determinism 
As we explain further in this text we use the resulting automaton of the global check as the 

intermediate glue code that is generated between a set of components. It can be argued that 

there is no problem if this glue code behaves in a non-deterministic way (in CSP for 

example non-determinism is built-in). However, as we show in the following, non-

determinism is sometimes introduced as a side effect resulting in unexpected non-

deterministic behavior. In this section, we handle these cases in a bit more detail. 

4.11.1 When Does Non-Determinism Occur? 
There are two possibilities to introduce non-determinism. The first one is by having the 

same implementation mapping for different primitives. Figure 32 shows a small part of the 

resulting automaton that will be used during the code generation. This automaton is 

deterministic at the level of the primitives but it renders a non-deterministic behavior when 

implemented. This automaton means that if component C2 sends an “actionPerformed” 

event it can either call the “Init()” on component C1 or the “Quit()” method on 

component C3. The only basis we have to make the decision is the primitive. However, 

this primitive is only part of the documentation. At runtime, a component only sends the 

“actionPerformed” event and we no longer know whether this was meant to be START or 

STOP. This is what we call implementation non-determinism. 

1

2

3

START
C2.actionPerformed / C1.Init()

STOP
C2.actionPerformed / C3.Quit()

 

Figure 32: Implementation non-determinism 

The other possibility to introduce non-determinism is in the documentation itself. It is 

possible to draw non-deterministic scenarios using the MSC syntax. Figure 33 gives an 

example of such non-deterministic documentation.    
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Chat Interface Env: User

SHOW

PERFORM

DATA

ALT

OPT

1

2

3

SHOW

SHOW

Launcher Env: ToLaunch

SHOW

Non-deterministic documentation of a chat component A simple launcher component

Result automaton after taking the intersection  

Figure 33:Example of scenario non-determinism 

As the first SHOW message of the chat interface component (upper left corner in Figure 

33) is optional it supports both a SHOW and a PERFORM message as it first message. 

Now suppose that this component is combined with a simple component that only sends a 

SHOW message (upper right corner in Figure 33). As SHOW is a subtype of PERFORM, 

the SHOW of this component will be matched with both the SHOW and the PERFORM 

message of the chat interface component. We explained higher that if a subtype is matched 

with a super type we label the resulting transition with the more specific one. This results in 

the automaton depicted in the lower part of Figure 33. This automaton is clearly non-

deterministic. This is in fact not surprising as the documentation of the chat interface 

component was non-deterministic to begin with. However, the example also indicates that 

it is not always easy to recognize these situations. We call this kind of non-determinism 

scenario non-determinism. 

4.11.2 How to Treat Implementation Non-Determinism? 
Before we go into further detail on how to treat implementation non-determinism, we take 

a closer look at the cause of this non-determinism. We consider components to be black 

box entities. I.e. we do not have an understanding on their inner working. We have no way 

to predict what choice will be taken based on the documentation alone. Therefore, any 

choice is non-deterministic for us. Figure 34 shows a component that sends either a 
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START message or a STOP message. These messages are mapped on the same output 

event “actionPerformed” (this seems strange but this is the way one would typically 

indicate that the same event could result in either a START of another component or a 

STOP). In that sense an ALT block in our MSC documentation, behaves just as the CSP 

guarded command.  

Thus, if this component sends the “actionPerformed” event it is unclear if this was meant 

to be a “START” or a “STOP” message. One possibility would be to add an adapter to 

every component that labels every output event of a component with the right primitive 

message based on the state of the component. However, once a component reaches an 

alternative block where all alternatives have the same implementation mapping; there is no 

way to know for the component what alternative corresponds to the output event sent by 

the component. 

Component Env: anEnvironment

START
actionPerformed

STOP
actionPerformed

ALT

 

Figure 34: In black box components, ALT blocks represent non-deterministic behavior 

This leaves very little room to handle these situations. We have no automatic means to 

make the decision.  

One could also argue that this kind of documentation is wrong. As indicated higher this 

documentation is how one typically indicates that the same event could be mapped on 

several primitives. This is an indication that the hierarchy of the primitives is not well 

defined. It should be possible to find a super type that combines these primitives. This 

would solve the problem. In case we do not want to alter the documentation, we can only 

resort to user intervention. As these situations are easy to detect (the generated code 

contains a state with different actions based on the same event), we can do this just before 

the code for these states is generated. 
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4.11.3 How to Treat Scenario Non-Determinism? 
Scenario non-determinism can occur when a component contains a state with several 

alternatives that have a common super-type. This means that there is a chance on this kind 

of non-determinism in every alternative as all primitives are a sub-type of the SIGNAL 

primitive. This does not mean that this is a very common situation. If the alternatives that 

would result in non-determinism deal with different environments, there is no problem. As 

we check that any environment is mapped on exactly one role (see 4.9.1), we know that 

two different environment will be matched on two different components. In that case 

adding the source of the message makes the state-machine deterministic again. 

To check this at runtime we need to be able to check the source of an event. This is easily 

done by adding adapters to every component that adds a pointer to the source of every 

event (or when we have access to the components, by introducing a super-class for all 

output events that supports a “getSource()” method as it is done in for example in Visual 

Age for Java (IBM)). Our prototype tool uses the wrapper solution. 

Nevertheless, we have no automatic solution if two messages come from the same 

component with one message a super type of the other. In that case, we require user 

intervention.  
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5 Mismatch Feedback 
“Feedback is the breakfast of champions. “

- Kenneth Blanchard - In the Ultimate Success Quotations Library, 1997 
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5.1 Introduction 
5.1.1 Problem Statement 
What if a compatibility check fails? The idea of this work was to guide the developer as 

much as possible during the composition process. Therefore we want to give feedback on 

where the mismatch occurred and if possible how to cure it. There are two main problems 

here.  

The first problem is to define the kind of feedback we want. It can be argued that in the 

most general case it makes no sense to provide mismatch feedback except for a simple 

warning “total mismatch”. Suppose we try to match a component with a role in the 

composition pattern that does not fit at all. Do we really want feedback saying that we need 

to adapt the component such and such to make it work or do we want the algorithm to 

come back with an error saying that this component is not compatible with the selected 

role? And if so where do we draw the line? In Figure 35 we give an example of such a 

mismatch.  

Component Env

A

C

Role1 Role2

A

B

A

D

C

 

Figure 35:Indicating the mismatch? 

How do we decide in this example if the message “A” of the component matches with the 

first or the second “A” of the composition pattern? Moreover, suppose it matches with the 

first “A”. Do we really want the program to show that everything between this first “A” 

and the message “C” is incompatible? Do we want feedback that is centered on the 

component or rather around the composition pattern? I.e. do want to adapt the 

component to the composition pattern or the composition pattern to the component? It is 

clear that there are no straight answers to this kind of questions.  
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The second problem is the conversion of MSC’s to automata. A mismatch is detected 

during operations on automata. The documentation is provided in the form of MSC’s. It 

seems reasonable to provide the mismatch information as annotations on MSC’s. This 

involves a conversion from automata to MSC’s. As an MSC corresponds to a regular 

expression, we can use the well-known algorithm based on the elimination of states 

[Hopcroft, 2001]. However, the result of this conversion is not always clear. In general, it 

turns out to be difficult to see the link between the generated MSC’s and the original 

MSC’s used in the compatibility check. 

5.1.2 Approach 
Therefore, we take the pragmatic approach. We provide a number of tools that can be used 

by the developer to find out what is going wrong when the algorithms detect a mismatch 

and to help the developer to find a solution. We developed two classes of tool support. 

The first class consists of tools to indicate the mismatch. More precisely, we annotate on 

the component MSC how far the scenario matches with the composition pattern and this 

both starting from the first message as starting from the last message. We just present the 

first possible match (i.e. we do not try to skip messages to find better matches). The tool is 

used as a feedback tool only and needs human interpretation to judge the results. We also 

developed a similar tool to annotate on the composition pattern how far it matches with 

the set of components used in this composition pattern, again both starting from the first 

message as well as starting with the last message.  

By far the more interesting approach is the generation of adapters. Adapters are automata 

that can be used to adapt the protocol specified by one automaton to the protocol 

specified by another. There exist a whole field of research about adapter generation for 

finite automata [Schmidt, 2000;Yellin, 1994a;Zaremski, 1997]. Building on this research, we 

propose two different solutions for the problem. First, we describe the results of Reussner 

as his solution is prototypical for the field and because the asymmetric cross product is 

used to calculate the result, which indicates a similarity to our approach to compatibility 

checking.  

Next, we introduce the traversal strategies research done by Lieberherr and co. [Lieberherr, 

1997]. The latter has nothing to do with adapter generation. The goal of this work is to 

check a given class graph (i.e. a dependency graph of classes and objects for a given 

application) against a traversal specification. A traversal specification describes a path in the 

class graph possibly with more intermediate classes or objects. We noticed that the 
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proposed algorithm to check a traversal specification (called a strategy) against a class graph 

has many similarities with the algorithm proposed by Reussner. A closer look reveals that 

the traversal strategy algorithm can be used as a more flexible and more efficient adapter 

generator than the algorithm proposed by Reussner. We show how this can be achieved.  
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5.2 Annotating Compatibility on MSC’s 
A mismatch is detected in an automaton. We would like to show this mismatch on the 

original MSC’s. The most obvious approach is to trace the automaton and convert this 

automaton back in a MSC. However, this conversion is difficult and ill defined. There are 

many ways to convert one automaton to a MSC and it could be very hard to see that the 

generated MSC is in fact the same MSC you started form. 

5.2.1 From Automata to MSC’s 
To cope with the automata-MSC conversion problem, we skip the conversion and we 

simply maintain the link between a transition in the automaton and the original message in 

the component or composition scenario. As we are calculating cross products and perform 

all kind of other operations, we end up with one transition that is linked to a number of 

messages (for example one transition in the result is linked to at least the message in the 

component and its corresponding message in the composition pattern). We implemented 

this for all operations on our automata. A simple traversal over the automaton now allows 

us to show all messages that are reachable from the start state and all states from where the 

stop state can be reached. Mind that we need to calculate a full cross product to indicate 

states and transition reachable from a stop state. In our optimized algorithms we calculate 

the cross product starting with the two start states until we are stuck. This way we never 

generate other traces. Therefore, we regenerate the cross product with a non-optimized 

algorithm (add the cross product of states and add transitions for every state in this cross 

product) before we start tracing the result. The whole process is depicted in Figure 36. 
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Build links between the original MSC’s and their corresponding automata

Calculate the intersection automata and combine the links

Anotate traces in the intersection by backtracking the links
Once for traces reachable from the common start state

Once for traces that reach the common end state

 

Figure 36: Feedback process by anotating MSC's 

 

5.2.2 Discussion 
The disadvantage of this approach is that the user has to distinguish him or herself 

between real incompatible traces and traces that are “optional”. I.e. only compatible traces 

are marked, but as we calculate the intersection, this does not mean that all non-marked 

traces are incompatible. In Figure 37 we try to map the component on the left hand side 

on role1 of the composition pattern.  
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Component Env

A

D

Role1 Role2

A

B

C

OPT

 

Figure 37: Marking incompatible traces? 

As this component is not compatible with this role, this generates a mismatch. The 

mismatch feedback described above now marks all traces that are compatible. In this case, 

only the message “A” is compatible (indicated by the double line).  

However, it could be argued that the optional part (with the message “B”) in the 

composition pattern is also compatible. Changing anything inside the optional part will not 

make the composition pattern compatible or incompatible. If we remove message “D” in 

the component scenario and message “C” in the composition scenario, we have two 

compatible scenarios, but the same check of compatible traces will still only highlight the 

message “A”.  
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5.3 Adapter Generation 
5.3.1 Reussner Adapter Generation 
5.3.1.1 Introduction 

In this section, we discuss the algorithm introduced by Reussner. We notice that the 

asymmetric cross product (see section 4.7.2) is used to calculate: “a changing protocol 

adapter”. In [Reussner, 1999] Reussner presents the example depicted in Figure 38. 

 

1 2 3

4

play stop

pauseplay

3 4 5

6

play stop

pauseplay

1 2

init selectCD

selectCD

 

Figure 38: Adapting a simple CD player. 

This example describes the usage behavior of the GUI interface of two Compact Disc 

players. The first player is a more sophisticated player supporting multiple disc play, while 

the second player describes a standard CD player allowing only one CD to be played. Now 

suppose our composition pattern specifies the behavior of the multiple disc player and our 

GUI component specifies a usage scenario corresponding with a single disc player. It is 

clear that we need to prefix the simple component usage scenario with the “init” and 

“selectCD” transition to make it work. Reussner explains how he uses the asymmetric 

cross product to generate these prefixes. 

5.3.1.2 Adapter Generation 

The main step to compute these adaptations is to create the asymmetric cross product 

automaton. This algorithm starts with one “master” automaton and one “slave” automaton 

that will be adapted to the “master” automaton (in our case one “slave” component 

automaton that needs to be adapted to the “master” composition automaton). The set of 

states in the resulting automaton is a subset of the Cartesian product of the states of the 
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“master” automaton and the states of the “slave” automaton. The general idea is that the 

result contains two kinds of transitions: marked and unmarked transitions.  

Marked transitions go from a state pair (sm, sl) containing one state from the “master” and 

one state from the “slave” with an input “i”, where in the “main” the input “i” is handled 

in state sm and the “slave” automaton handles input “i” in state sl. 

In an unmarked transition the input “i” is only handled in state sm (i.e. in the main 

automaton) 

This algorithm is asymmetric in nature. Transitions with labels accepted in the “master” 

but not in the “slave” are added to the result automation, while transition with labels 

accepted in the “slave” but not in the “master” are not added to the result automaton. 

Figure 39 shows the result for the CD example. For more details on this process see 

[Schmidt, 2000].  

3 4 5

6

Play(M) Stop(M)

Pause(M)Play (M)

1 2

init selectCD

 

Figure 39: The generated adapter. Transitions that are not 
marked with (M) are needed adaptations. 

This algorithm thus generates a solution on how to adapt a component to a role in the 

composition pattern. Using the component automaton as “master” and the composition 

automaton as “slave” on the other hand renders a suggestion on how to adapt the 

composition pattern to the component. This does not mean that this algorithm is only 

useful to generate an adapter between one component and a composition role. We also use 

this adapter generation technique to generate an adapter for the global case. To do this we 

consider the composition automaton as the “master” automaton and the automaton 

resulting from the parallel composition of the components as the “slave” automaton. This 

way an adapter is calculated for a given set of components against a given composition 

pattern. 

As a last step, we need to convert the resulting adapter back to MSC’s. We face again all 

the problems mentioned in section 5.2.1. Therefore, we go for the same solution. I.e. rather 

than converting the resulting adapter automaton back to a MSC, we keep track of the links 
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with the original automata. Simulating the generated adapter on the MSC’s shows when 

messages of the composition pattern need to be inserted for given scenarios or vice versa. 

5.3.1.3 Conclusion 

This algorithm comes up with only one solution. It favors early matches over later matches 

(in Figure 35 this solutions assumes that the component matches with the first A in the 

composition pattern) and adapts one party to the other instead of adapting both parties. 

However, it gives a good indication on what is missing to make them compatible and is 

thus useful as a feedback mechanism. 

5.3.2 The Adaptive Programming Library 
5.3.2.1 Introduction 

In this section, we show the connection between the traversal strategies research described 

in [Lieberherr, 1997] and adapter generation. The following example is used in [Lieberherr, 

1997].  

Consider the class graph depicted in Figure 40, which defines a data structure describing a 

bus route. A bus route object consists of two lists: a list of bus objects, each containing a 

list of passengers; and a list of bus stop objects, each containing a list of people waiting. 

Suppose that as a part of the simulation, we would like to determine the set of person 

objects corresponding to people waiting at any bus stop on a given bus route. The group of 

collaborating classes that is needed for this task is shaded in Figure 40. To carry out the 

simulation, an object-oriented program should contain a method for each of these shaded 

classes.  

The idea of traversal strategies is that this could be solved in a much more elegant way. 

Below are two possible traversal specifications (called traversal strategies) that choose the 

desired set of classes: 

(1) from BusRoute through BusStop to Person; 

(2) from BusRoute bypassing Bus to Person; 



PacoSuite 

112 

 

Figure 40: Bus simulation class graph. Squares and hexagons denote classes (concrete and abstract, respectively), regular 
arrows denote fields and are labeled by the field name, and bold arrows (labeled with ◊) denote the subclass relation (for 
the shading, see text) 

Suppose now that the bus route class has been modified so that the bus stops are grouped 

by villages. The revised class graph is depicted in Figure 45. To implement the same 

requirement of finding all people waiting for a bus, an object-oriented program must now 

contain one method for each of the classes shaded in Figure 45, and thus the previous 

object-oriented implementation becomes invalid. The traversal strategies (1) and (2), 

however, are up-to-date and do not require any rewriting. 

 

Figure 41: Evolved bus simulation class graph. 

The basic idea of traversal strategies is that under a name map N (mapping concepts of the 

traversal strategy on concepts in the class graph), a path in the strategy graph is an 

abstraction of a set of paths in the class graph. This is done by viewing each strategy-graph 

edge a → b as representing the set of paths in the class graph starting with node N(a) and 
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ending at node N(b). An example of such a strategy graph is depicted in Figure 42. To be 

complete every edge in the strategy graph can have a set of traversal constraints attached to 

it. These are typically used to express bypassing constraints. I.e. if we need to specify that 

we go from BusRoute to Person bypassing BusStop we construct a strategy graph with two 

nodes BusRoute and Person and an edge going from BusRoute to Person with an attached 

constraint that BusStop should be bypassed. For the formal definition of these constraints 

and strategy graphs the user is again referred to [Lieberherr, 1997].   

BusRoute BusStop Person

 

Figure 42: Strategy graph corresponding with the "From Busroute through BusStop to Person" strategy. 

Their work presents an algorithm to construct a traversal graph from a given strategy graph 

and a given class graph. This algorithm is called algorithm 1 in their paper [Lieberherr, 

1997]. This graph is in fact an expanded version of the strategy graph using nodes from the 

class graph such that the resulting graph contains only paths that comply with the given 

traversal strategy. 

In the next section, we explain in a bit more detail the inner workings of this traversal 

graph construction algorithm.  

5.3.2.2 The Traversal Graph Algorithm 

In this section, we give an informal definition of the algorithm using a running example 

used in [Lieberherr, 1997]. For the formal definition of the algorithm, we refer to the same 

paper. Suppose we want to calculate the traversal graph for the class graph and the strategy 

graph depicted in Figure 43.  

A B C

D EY Z

A

source

D

Z

E

target

e1

e2 e3

e4

Class Graph Strategy

 

Figure 43: Example class graph and strategy graph used for the calculation of a traversal graph. In this example e1 and e2 
have no attached constraints, the constraint attached to e3 specifies that the edge going from A to D should be 
bypassed and the constraint attached to e4 specifies that A and all incident edges to A should by bypassed. 
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The general idea is to expand the strategy graph by inserting a copy of the full class graph 

for every edge in the strategy graph. Informally the algorithm proceeds as follows: 

1. Copy the class graph as many times as there exist edges in the strategy graph 

2. Apply any constraints attached to an edge in the strategy graph to the 

corresponding class graph. I.e. in the copy of the class graph corresponding to e4 in 

the example, remove class A and all incident edges (the result of step 1 and 2 is 

depicted in Figure 44 square 1). 

3. Connect these copies as specified by the strategy graph. In the example, edges e1 

and e2 are connected by node D. In this step we connect the copy corresponding 

to e1 with the copy corresponding with e2 by inserting an edge from class D in the 

first copy to class D in the second copy (the result this step is depicted in Figure 44 

square 2). As this results in class D showing up twice in the traversal of the 

connected graph we replace this new interconnection edge with a set of edges 

connecting all classes that are directly connected to D in the first copy with class D 

in the second copy (the result this step is depicted in Figure 44 square 3). 

4. Finally mark all classes in the class graph copies corresponding with edges in the 

strategy graph that are connected with the initial node as start classes and mark all 

classes in the class graph copies corresponding with edges in the strategy graph that 

are connected with the final node as final classes. (the result of this step is depicted 

in Figure 44 square 4, where the little arrows indicate a start class and the doubled 

bordered classes indicate final classes). 
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Figure 44: Applying the traversal graph algorithm on the example in the previous picture 

5.3.2.3 Generating Adapters 

In our research, the local check verifies if a given component C can be used to implement a 

given role R. Both the component and the role are documented with an automaton that 

represents the state transitions of the component and the role. The component is 

compatible with the role if the component and the composition pattern share at least one 

trace from a start state to a stop state. Typical mismatches occur when the component does 

have such a trace except that it sends one or more message in between (so it has one or 

more transitions that are not found in the role description, but it does have all the 

transitions as specified by the role). The traversal graph algorithm called algorithm 1 in 

[Lieberherr, 1997] recognizes all these situations and builds an automaton describing all 

possible adaptations for the component so that it becomes compatible with the role or 

renders an empty automaton if it cannot be done.  To do this we consider the component 

automaton as the strategy graph and the role automaton as the class graph. The traversal 

graph is empty if there is no adaptation possible to make the component compatible. 

Otherwise, the traversal graph contains all possible adaptations. To fully understand the 

analogy we need to go into more detail on the connection between NDFA intersection and 

the calculation of a traversal graph. 
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5.3.2.4 Connection Calculation Traversal Graph with the  Intersection of NDFA’s 

During a discussion at ICSE 2000, Prof. Dr. Karl Lieberherr mentioned the connection 

between the calculation of the traversal graph and the intersection of two NDFA’s. A slide 

show explaining this connection can be found at [Lieberherr, 2001]. 

The idea behind calculating the traversal graph is to check if a start-stop path specified by 

the strategy graph also exists in the class graph, allowing the class graph to use more 

internal transitions. I.e. a strategy specifies where to start, where to stop and what 

transitions should certainly be passed going from start to stop. This corresponds to 

traversal specifications following the template: FROM x1 VIA x2…xn-1 TO xn. Note that 

this is a restriction of the general traversal specification as defined by Lieberherr et al. They 

also allow specifying what transitions are not allowed. For now, we stick to this restriction 

for simplicity reasons. It is easier to see the connection with the intersection of NDFA’s 

with this restriction. We come back to this later because adding constraints as to what 

transitions are not allowed makes it possible to constructs adaptation views (see section 

5.3.4.4 for details).  

This analogy indicates that after each transition as specified by the strategy graph, we can 

have any number and any kind of transitions in the class graph as long as we go on with 

the transitions as specified by the strategy. An example makes this clear. Take the class 

graph and the strategy as specified in the left hand side of Figure 45 (and assume the name 

map to be identity). The strategy graph means: Traverse FROM a VIA c TO e. It is clear 

that the class graph supports this strategy. The resulting traversal graph is identical with the 

class graph.  

A B C D E 

1 2 3 4 5 A B C D 6E 

A C  E    

1  2    3    4    A C E 

Class Graph

Strategy Graph 1 2 3 4A C E

εεεε   εεεε     

Strategy State Machine

 

Figure 45: Class Graph and Strategy Graph with Corresponding 
Automaton 
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To illustrate the connection with NDFA intersection the corresponding automaton for the 

class graph and the strategy graph is shown just below them in Figure 45 (the 

correspondence is easy to see if you compare the strategy automaton with the specification 

FROM a VIA c TO e).  Calculating the intersection between the class graph automaton 

and the strategy graph automaton as specified on the left hand side of Figure 45 returns an 

empty automaton. Remind now that the strategy graph allows more internal transitions in 

the class graph. This means that during the calculation of the intersection we should be 

able to proceed at wish in the class graph automaton until we find a common transition 

again. This is easily accomplished by adding epsilon transitions loops after every internal 

transition in the strategy graph automaton. The result is depicted at the right hand side of 

Figure 45.  

It is important to note here that the traversal graph calculation algorithm does not perform 

a general intersection of two NDFA’s. The correspondence works the other way round. 

I.e. it is possible to translate the traversal graph and the class graph (for the restricted class 

of strategies defined above) to NDFA’s where the intersection of these NDFA’s 

corresponds with the traversal graph obtained by the algorithm as defined in the Adaptive 

Programming library. It is in general not proven that two NDFA’s can be converted to a 

class graph and a strategy graph so that their traversal graph corresponds with the 

intersection of these NDFA’s. 

5.3.2.5 Connection Calculation Traversal Graph with Parallel Composition 

A closer look at the special kind of NDFA intersection introduced above reveals that we 

obtain the same result using the parallel composition operator. To see this we first define 

this special kind of NDFA intersection formally: 

Definition: Asymmetric NDFA Intersection  

An asymmetric NDFA intersection of two component or composition automata 

P1=(S1, q1, F1, succ1, Σ1) and P2 =(S2, q2, F2, succ2, Σ2) is described as: 

P1 ∩A P2=(S1 x S2, [q1, q2], F1 x F1, succ’, Σ1 ∪ Σ2)  

where 

• succ’([s1,s2],α) = [t1,t2] ⇔ α ∈ Σ1 ∩ Σ2 and succ1(s1, α) =  t1 and 

succ2(s2, α) =  t2 

• succ’([s1,s2],α) = [t1,s2] ⇔ α ∈ ( )21 \ ΣΣ  and succ1(s1, α) =  t1 
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A quick comparison between this definition and the definition of the parallel composition 

operator shows that the only difference between them lies in the definition of the transition 

function.  The asymmetric NDFA intersection defines a result for transitions labeled with a 

label that is part of the alphabet of the first automaton only and for joint steps. The parallel 

composition operator additionally defines a result for transitions labeled with a label that is 

part of the alphabet of the second automaton only. I.e. the parallel composition operator 

allows both automata to proceed for transitions that are labeled with a label that is not part 

of the other’s automaton alphabet, while the asymmetric NDFA intersection only allows 

this for one of the automata. 

Thus to get the same result from the parallel composition operator we need to prevent that 

there exist labels that are part of the alphabet of the second automaton and that are not 

part of the alphabet of the first automaton. 

This is easily accomplished by extending the alphabet of the first automaton with the 

alphabet of the second automaton. 

All this means that the traversal graph can also be calculated using the parallel composition 

operator (using the conversion of class graphs and strategy graphs as explained in section 

5.3.4.1). 

Using the Parallel Composition to Calculate Traversal Graphs   

Let CGA be the automaton corresponding to a given class graph CG 

Let SGA be the automaton corresponding to a given strategy graph SG 

Then TG = CGA+αSGA  SGA is an automaton that has the same start-stop paths as the 

traversal graph resulting from the traversal graph calculation for the class graph CG and 

the strategy graph SG as specified in [Lieberherr, 1997] 
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5.3.3 Link Adapter Generation and Adaptive Programming 
We state that the asymmetric cross product used by Reussner and the Traversal Graph 

Generation Algorithm as defined by Lieberherr are closely related. In the previous we 

indicate that extending the strategy graph with epsilon transition loops in every state and 

performing a standard NDFA intersection between the thus extended strategy graph with 

the class graph has the same result as applying the traversal graph algorithm directly to the 

traversal graph and the class graph. Yannis Smaragdakis first indicated this link. We also 

indicated that the asymmetric cross product used by Reussner to generate what he calls “a 

changing protocol adapter” could also be obtained by performing a standard NDFA 

intersection where the “slave” automaton is extended in the same way as the strategy graph 

in the traversal graph algorithm. I.e. by adding epsilon transition loops in every state. As 

the result of both algorithms can be obtained by the same process (i.e. adding transitions 

and calculating the NFA intersection) we feel that both algorithms are essentially the same, 

although used for very different purposes. Hence, our intuition that the traversal graph 

algorithm can be used as an adapter generator. 

The next section explains in detail how we use the traversal graph generation algorithm to 

generate adapters. This result is not formally proven, but at least the new algorithm works 

for all the examples we tried. 

5.3.4 Calculating Adapters 
It is clear from the previous that the traversal graph algorithm calculates the intersection 

between a specific subset of NDFA’s. So, what does it mean if we just convert the role 

automaton to a strategy graph and the component specification to a class graph? The 

traversal graph algorithm first inserts ε-transition loops after every internal transition in the 

class graph automaton (now corresponding with the role specification). This allows the 

component to proceed until it finds a compatible transition in the role specification. The 

traversal graph shows how the role R1 can be traversed as specified by the component in 

Figure 46. Indeed, considering the role specification as the strategy means that we go from 

A via B to D. Our component specification allows this with an intermediate transition C. 
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Figure 46: Applying the traversal graph algorithm to the component at the left hand side and role R1 of the 
composition pattern at the right hand side, results in a traversal graph specifying that the component fits with the role if 
message C is inserted between B and D 

All this means that we only need to convert the automata of the component to a class 

graph, the role specification to a strategy graph and that the traversal graph algorithm then 

calculates a traversal graph that corresponds with a automaton describing all traces that 

renders the component to be compatible with the role. Any trace that is found in the 

traversal graph corresponds with a solution of how we can adapt the component to the 

role. Switching the inputs returns all possible adaptations of the role to the component. 

To explain the technical details of the adapter generation using the traversal graph 

approach we start with a small example. In Figure 47 we show a component usage scenario 

and a composition pattern. It is clear that the intersection of these scenarios is empty. They 

both engage in A, but fail to proceed any further as the composition pattern expects B 

while the component only offers F or C. 
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Figure 47: Example for Adapter Generation 

Now we apply the traversal graph algorithm to generate an adapter for the component to 

make it compatible with the composition pattern.  

5.3.4.1 Converting to a Class Graph and a Strategy Graph 

To achieve this we convert the composition pattern to a class graph. We do this by 

constructing a class for every transition in the state diagram and adding dependency arcs 

for every incoming transition to every outgoing transition. State 3 of the composition 

pattern for example has an incoming transition B and outgoing transitions F and D. 

Therefore we add dependency arcs from the class B to class F and class D. The classes are 

labeled with the label of the transitions. 

Next, we convert the component to a strategy graph. The process is exactly the same as the 

conversion to a class graph, except that we construct labeled nodes instead of classes. 

The result of both conversions is depicted in Figure 48. 
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Figure 48: Converting the Component and Composition 
Pattern specified in Figure 47 to a Class Graph and a Strategy 

Graph 

An alternative approach is to use the equivalence of NFA intersection and the traversal 

graph algorithm. To do this we add epsilon transitions to every state of the composition 

automaton and calculate the intersection of this new automaton and the component 

automaton. However, as an efficient implementation of the traversal graph algorithm is 

readily available in the AP library [Lieberherr, 1997] we stick to this version. 

5.3.4.2 Marking the Traversal Graph 

Now we calculate the traversal graph. We need to do something extra to distinguish the 

“adaptations”. If we calculate the traversal graph directly, the result does not distinguish 

between “intermediate” classes in the class graph and the classes that correspond directly 

with the strategy (technically this correspondence is defined by the name map function in 

[Lieberherr, 1997]). We show that it is easy to adapt the traversal graph algorithm so that it 

marks the classes that correspond with the strategy.  

Remind that the traversal graph algorithm “replaces” every arc in the strategy graph with a 

copy of the class graph. The idea behind this is that we can traverse any link in the class 

graph to proceed from the source to the destination of one as specified by the strategy 

graph. Cast in our terminology this means that we can traverse any message in the 

composition pattern between the messages specified by the source and the destination in 

the strategy graph. I.e. the source and the destination of the strategy graph are the 

“common” messages. All other messages traversed in the class graph are “adaptations”. 

Therefore, we mark the classes that correspond with the source and the destination of the 

strategy graph in every copy of the class graph. The result is depicted in Figure 49. Here 

“marked” states can be recognized by their double border. 
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Figure 49: Marking the Traversal Graph for the example depicted Figure 47 

5.3.4.3 Calculating the result 

Proceeding with the algorithm as described in [Lieberherr, 1997] renders the result depicted 

in Figure 50. 
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D C Z
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Figure 50: Resulting Traversal Graph for the example in Figure 47 

Any traversal in this graph now gives a possible adaptation of the component to comply 

with the composition pattern. In this case we can add the message B and D between A and 

C in the component or we can add B between A and F. 
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5.3.4.4 Constraints as Adaptation Views 

The traversal graph algorithm supports the concept of constraints. These constraints allow 

the specification of classes in the class graph that should be skipped or on the contrary 

classes that should be part of the traversal. This is specified with the keywords: “bypassing” 

and “via” in the traversal specification. 

These constraints can be easily used to obtain a sub view of all adaptations by the 

specification of transitions that must be part of the solution or by specifying transitions 

that may not be used. Figure 51 shows a component and a composition pattern that are 

not compatible. If we want to adapt the component at the left hand side to role 1 specified 

by the composition pattern at the right hand side we have several possibilities. 

The difference between the component scenario and the composition pattern are two 

notification messages: one after the “send” message and one after the “receive” message. 

To obtain a compatible component it suffices to provide only one of these notifications. 

Now suppose that the developer knows that he is going to use the component as a 

monitoring component and that this component never needs to send anything. Adding the 

constraint: “ BYPASSING receive” (or in this case the equivalent phrase “VIA send” to 

the traversal graph algorithm, returns only the adaptations needed to use the component in 

“receive” mode.  
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Figure 51: The usage scenario of the component at the left hand side is not compatible with role R1 of the composition 
pattern at the right hand side. 

With the right kind of tool support, this can be done very naturally for the developer. One 

possibility is to run the adapter algorithm first without any constraints and present a list of 
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messages that need to be added to the component to the developer. The developer then 

selects the messages he or she wants to add or vice versa the messages that he or she thinks 

are not needed for the application to work and we convert these in VIA and BYPASSING 

constraints. We then rerun the adapter algorithm to see if there exists a solution with these 

extra constraints. 

To give an idea on how this works we look again at the correspondence with NDFA 

intersection. Remember that the component usage scenario is converted to an automaton 

where epsilon loops are added between every transition. During the intersection operation, 

these epsilon transitions are allowed to match with any transition specified by strategy 

graph (= the automaton corresponding with the composition pattern). Constraints are 

easily added by constraining this match. “BYPASSING” constraints are introduced by 

disallowing an epsilon transition to match with the specified transition. “VIA” constraints, 

on the other hand result in the specification of another node in the strategy graph. The 

interested reader is referred to [Lieberherr, 1997] for the details. 

5.3.4.5 Handling Equal Named Messages Using Name Map 

The traversal graph algorithm also offers a possibility to deal with one of the problems 

specified earlier. The problem is depicted again in Figure 52. Do we want the B message of 

the component to match with the first B in the composition pattern or with the second 

one? In this case, one could argue that it does not matter theoretically, but it often does 

matter when the implementation mapping is taken into account. 

As we argued before this problem cannot be solved automatically. However the traversal 

graph algorithm allows the developer to specify which solution he prefers. This is done 

using the name map function. 

Comp Env Role 1 Role 2
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B

C

C

 

Figure 52: How to Adapt? Inserting the first B or the second? 
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The name map function maps names of the strategy graph (thus in our case the 

composition pattern) to names of the class graph (in our case the component usage 

scenario). The default value is identity. Of course, this assumes that every name in the class 

graph and the strategy graph is unique. Thus, in case a given transition occurs twice in the 

composition pattern or the usage scenario we give them a unique index. To specify the 

preferred solution we now specify a name map function that maps a transition to one of 

these indexed transitions. This way the traversal graph algorithm constructs the preferred 

adapters as it assumes that transitions with another index are totally different from the 

transition we are matching with. In terms of the traversal graph algorithm the name map 

function is used to construct the intercopy edges. Figure 53 shows the result of identifying 

message B with message B1 or message B2 on the intercopy edges. 

Two Possibilities to Draw the Intercopy Edges

B1 to B1 Favours first message
B2 to B2 Favours second message

Use name map B-> B1 to favour the first
Use name map B-> B2 to favour the second

B1 B2

C

A B1 B2

C

A

 

Figure 53: Using the Name Map function to select the adapter. 

For the developer this mapping is again very natural to do. The component usage scenario 

and the composition pattern are first analyzed to see if they contain several possibilities. 

The tool then presents a simple dialog box with a message of the composition pattern at 

one hand side and a set of component calls on the other side. The developer is then asked 

to identify the best possible match (for example based on the implementation mapping and 

the state of the component at that point). Once this identification is done, the traversal 

graph algorithm generates the adapter. 

5.3.5 Conclusion 
While the algorithm of Reussner returns one clear solution, it can be argued that this is not 

always a sensible solution. It has however the virtue of being easy to use. The algorithm 



PacoSuite 

127 

using the adaptive programming library is as far as we know a new idea and has the 

advantage of generating all possible adaptations. However a lot more user intervention is 

needed, making this tool a bit harder to use.  
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6 Code Generation 
"Automatic simply means that you can't repair it yourself.”

-  Mary H. Waldrip 
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6.1 Introduction 
In section 2.2.2 we explained why we use the Java Bean component model throughout this 

text. Therefore, we need to take a closer look to this component model before we can start 

generating code.  

The Java Bean component model defines two different external interfaces for a Java Bean 

[EJB, 2001]: API calls and events. This means that there exist two fundamentally different 

implementation mappings in a component usage scenario. Outgoing messages are mapped 

on (a set of) events, while incoming messages are mapped on a set of API calls. The most 

basic communication between Java Beans is that a method is called on one Java Bean in 

reaction to an event thrown by another component. This is what standard visual 

composition environments support. They allow you to connect an output event on one 

component with a method call on another component. 

We improve on this model in several ways. First, we allow the reaction to be state 

dependant. I.e. the same event can cause different methods to be called based on state 

information. As the glue code we generate knows what events could be received in a given 

state, it also notices unexpected events. These events can then be ignored to avoid a 

disruption of the wanted behavior and/or a warning can be issued to the user. Because of 

our compatibility definition that allows components to offer more than what is asked for, it 

is possible that a component sends an event that is not supported by the other 

components. The glue code needs to recognize this. Finally, we allow the same event to 

cause a sequence of API calls on another component or several events to cause the same 

API call. 

In short, our solution is characterized by the following properties: 

•The composition pattern is an active part of the constitutive solution 

•The composition pattern is simulated with a state machine 

•Communication is via API / event translation from the source component to the 

right API on the destination component 

The automaton resulting from the global checking process contains the information 

needed for the simulation of the composition pattern. This automaton contains compatible 

traces only, so it “knows” if a component sends an unexpected event. Therefore, we 

simulate this automaton to serve as the glue code between the components. It translates 

outgoing events of one component to incoming calls on another component based on the 



PacoSuite 

130 

current state. However, before we can simulate this automaton we need to perform two 

pre-processing steps. In the first step, we remove all non-valid traces and in the second 

step, we combine transitions corresponding with sending a message with their subsequent 

transition corresponding with the reception of this message. These steps are now further 

explained. 
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6.2 Preprocessing the Glue Code Automaton. 
6.2.1 Remove Non-Valid Traces 
Remember that the resulting automaton of the global checking process contains separate 

transitions for sending and receiving messages. A valid trace needs to comply with the 

template as shown in Figure 54. 

 

1

A, Out, C1,“event1,event2”

2 3

A, In, C2, “call1,call2”

 

Figure 54: Template for messages with their implementation mapping in the resulting global check automaton. 

This template indicates that a component first sends a message and this message is 

immediately accepted by another component. All traces that send a message out first and 

receive another message afterwards and all traces that receive a message first and send it 

afterwards are traces that have nothing to do with component interactions. It is trivial to 

remove all traces that do not comply with this template.  

6.2.2 Collapsing Out/In pairs. 
In the current automaton every transition is labeled with either a set of events, or a set of 

API calls. During the simulation, we need to have transitions that link a set of events with a 

set of API calls. More precisely: in the resulting automaton we want to have the following 

information on every transition: 

1. The source component 

2. The destination component 

3. The (set of) outgoing event from the source component 

4. The (set of) incoming API calls for the destination component 

In the previous step, we removed all traces that do not comply with the template depicted 

in Figure 54. In this step, we construct a new automaton by “collapsing” these Out/In 

pairs.  

During this “collapse” operation, we combine the full implementation mappings 

corresponding with the outgoing message with the implementation mapping 
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corresponding with the incoming transition. Every transition now contains the wanted 

information. The process is depicted in Figure 55. 

1

A, Out, C1, “event1,event2”

2 3

A, In, C2, “call1,call2”

1 2

C1,C2, “event1,event2”/”call1,call2”

 

Figure 55: "Collapsing" Out/In pairs. 

Technically the collapse operation constructs a Mealy automaton [Hopcroft, 2001]. I.e. we 

produce an automaton that takes events as inputs and generate API calls as output. As the 

output depends on the transition rather than on the state, this is a Mealy machine. It is this 

machine that will be used as our glue code.  

6.2.3 Parameter Mappings 
Using the documentation, we know which events should be mapped on which methods. 

The documentation only defines the parameters that can be found in the event and the 

parameters that are needed for the methods. There is no indication how these parameters 

should be translated. Take for example a database component that throws an 

"addressRead" event every time it reads an address record. Take another component that 

wants to display this address. Using our documentation, we know that on the 

"addressRead" event the "displayAddress" method should be called on the other 

component. Now say that “addressRead” contains one string describing this address, while 

the "displayAddress" method needs a street parameter, a house number parameter, a city 

parameter and a zip code parameter. The utopian perfect code generator would then insert 

code that parses the string of the address into the four strings and integers expected by the 

target component. This is clearly impossible. The current tool therefore checks the type of 

the input parameter and the output parameter and passes the data along if these types are 

the same. If the number of parameters differs or if the type of the parameters differ it pops 

up a dialog box and asks the user to insert the needed conversion code. Figure 56 shows a 

screenshot of such a parameter-mapping dialog. 
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Figure 56: Parameter mapping dialog 

It specifies the method that is going to be called (in this case “doCommand”), the event 

that is received (in this case “rcv”) and it specifies the type of the parameters (in this case 

doCommand has one parameter with type String and the rcv event has one parameter with 

type PacoEvent). The user can then write a piece of Java code to translate the event 

parameter(s) in the method parameter(s). He can also accept the default mapping.  
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6.3 Generating Java Event Handling Code 
Before we go into more detail on the actual glue code generation we need to explain the 

event model of Java Beans. The event model of Java Beans has had a major revision 

between version 1.0.2 and version 1.3 of the Java Development Kit (JDK). Instead of 

events percolating up to parents as they did in JDK 1.0.2, any object or component can 

register itself as a Listener, interested in hearing about a type of events originating in some 

other component. When the event arises, the source component processes the event by 

dispatching it to each of the registered Listeners. Dispatching is synchronous, i.e. the 

Listener handler routines are called directly while the calling dispatcher waits for the 

handler to complete. According to the specification, the Listeners may be informed in any 

order, but the usual implementation is a queue, with Listeners informed in the same order 

they were added.  

There are many ways to implement this. We use a little example to show the possibilities 

and to indicate the problems. We present the code for two Java Beans: “Thrower” and 

“Receiver” and we describe how the Thrower bean sends an event to the Receiver bean. In 

a first iteration, we show the most straightforward implementation of the Java Bean event 

model. 

We start with the code for the “Thrower” Java Bean.  

public class Thrower {
private Vector listeners = null;

public Thrower() {
listeners = new Vector();

}

public void addThrowerListener(ThrowerListener listener) {
listeners.add(listener);

}
public void removeThrowerListener(ThrowerListener listener) {

listeners.remove(listener);
}
public void doSomething(){

System.out.println(“The method doSomething is called.”);
notifyListeners();

}
private void notifyListeners() {

for(Enumeration e=listeners.elements(); e.hasMoreElements();) {
ThrowerListener listener = (ThrowerListener) e.nextElement();
ActionEvent e = new ActionEvent(this,0,"Thrower Event");
listener.handleThrowerEvent(e);

}
}

}
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The constructor of this class allocates room for a list of objects. The methods 

addThrowerListener and removeThrowerListener simply add and remove ThrowerListener 

objects to this list of listeners. ThrowerListener objects are objects that implement the 

ThrowerListener interface. The ThrowerListener interface is defined as follows: 

public interface ThrowerListener {
public void handleThrowerEvent(ActionEvent e);

}
 

This means that any object implementing the ThrowerListener interface needs to have a 

method:  

public void handleThrowerEvent(ActionEvent e);

This method contains the code that gets executed when the event is received. The 

notifyListeners method creates an event (we use a standard actionEvent in this example) 

and calls the handleThrowerEvent method on every object in its list of listeners. 

We now turn to the implementation of the “Receiver” bean. 

public class Receiver implements ThrowerListener {

public Receiver () {
listeners = new Vector();

}

public void handleThrowerEvent(ActionEvent e);
System.out.println(“Event received!”);

}
}

This bean is used as a listener for events of the Thrower bean. Therefore, this bean 

implements the ThrowerListener interface. We now build an application that instantiates 

one Thrower and one Receiver bean. We then add the Receiver as listener to the Thrower. 

The result is that any time the doSomething method in the Thrower is called; the 

Receiver’s handleThrowerEvent is invoked. I.e. the Thrower instance sends an event to the 

receiver instance. The code to do this is typically something as: 

public static void main(String args[]){
Thrower t = new Thrower();
Receiver r = new Receiver();
t.addThrowerListener(r);
t.doSomething();

}

The result of the previous method would be: 

>The method doSomething is called. Informing listeners.
>Event received!



PacoSuite 

136 

The problem with this naïve implementation is that it hard wires event senders and event 

receivers. I.e. only those components that implement the right event interface can be used 

as listeners. In our example, the Receiver bean needs to implement ThrowerListener to add 

it as a listener to the Thrower bean. To support a more flexible composition, visual 

component composition tools generate “a class in the middle”. This class implements the 

interface needed to receive events and it calls any method on any other component as 

specified by the developer. 

Suppose for example that we want to use the JTextArea class that is built in, in the Java 

Development Kit to react on events thrown by our Thrower class. More precisely we want 

to call the method setText(“Event Received”) on JTextArea any time the Thrower throws 

an event. To do this we need to generate the following code: 

public class GlueCode implements ThrowerListener {
JTextArea toInform;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
this.toInform = toInform;

}

public void handleThrowerEvent(ActionEvent e){
toInform.setText(“Event received!”);

}
}
 

The application now becomes: 

public static void main(String args[]){
Thrower t = new Thrower();
JTextArea j = new JTextArea ();
GlueCode c = new GlueCode(j);

t.addThrowerListener(c);
t.doSomething();

}

Thus, instead of adapting the JTextArea component to implement the ThrowerListener 

interface we generate a dummy component that listens to the events and calls the method 

we want on the receiving component. This solution also allows calling any method as a 

result of an event rather than only the method described by the listener interface. This is 

the standard solution found in all visual composition tools I know (including Visual Age 

for Java, Symantec Cafe, NetBeans, Forte for Java, Borland JBuilder, Visual J++,… see 

[Wydaeghe, 2001b] for a detailed overview) 
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It could be argued that the semantics of the previous solution is somewhat strange. In this 

implementation, the event handling is synchronous instead of asynchronous. I.e. the 

component sending the event is blocked while the event is handled. It is the responsibility 

of the receiving component to return as quickly as possible. Many Java tutorials suggest 

that components implement an event queue themselves and handle the events in their own 

thread. The following quote comes from the online version of the Java Tutorial in the 

chapter about threads [SUN, 2001]. 

“Here is an example of using a “SwingWorker” to move a time-consuming 
task from an action event handler into a background thread, so that the GUI 
remains responsive.  

//OLD CODE:
public void actionPerformed(ActionEvent e) {

...
//...code that might take a while to execute is

here...
...

}

//BETTER CODE:
public void actionPerformed(ActionEvent e) {

...
final SwingWorker worker = new SwingWorker() {

public Object construct() {
//...code that might take a while to

execute is here...
return someValue;

}
};
worker.start(); //required for SwingWorker 3
...

}

The value that “���������� returns can be any object. If you need to get the value, 

you can do so by invoking the “	
�� method on your ���	����
� object. Be careful 

about using “	
��. Because it blocks, it can cause deadlock. If necessary, you can 

interrupt the thread (causing 	
� to return) by invoking “��
������ on the 

���	����
�.” 

The author here suggests that the actionPerformed event is handled in a separate thread 

and provides a default class (called SwingWorker) that can be subclassed to do this. Note 

that this SwingWorker class is not part of the standard Java Development Kit. I.e. 

programmers are forced to program asynchronous event handling themselves.  

Even in small experiments, this synchronous event handling leads to stack overflow 

problems. Stack overflow occurs whenever an API called in response to a certain event 
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generates the same event, because the API call only finishes as the new event is handled an 

that one only finishes when its new event is handled and so on. Therefore, instead of an 

endless loop, we get endless recursion.   

It is easy to generate glue code that handles events asynchronously. To do this we have two 

options: do the event dispatching asynchronously or handle every event asynchronously. 

The first solution implements an event queue that accepts events and uses its own thread 

to poll this queue and handle the event. The glue code of the example now becomes: 

public class GlueCode extends Thread implements ThrowerListener {
JTextArea toInform;
Queue eventQueue;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
eventQueue = new Queue();
this.toInform = toInform;
start();

}

public void handleThrowerEvent(ActionEvent e){
eventQueue.push(e);

}

private void run(){
while(true){

ActionEvent e = eventQueue.pop();
if (e != null) toInform.setText(“Event received!”);

}
}

}

This solution could be improved using the built in system event queue, but the idea is clear. 

The second solution uses the solution as explained in the Java Tutorial quote. I.e. the glue 

code becomes: 

public class GlueCode extends Thread implements ThrowerListener {
JTextArea toInform;

public GlueCode(JTextArea toInform) {
listeners = new Vector();
this.toInform = toInform;

}

public void handleThrowerEvent(ActionEvent e);
final SwingWorker worker = new SwingWorker() {

public Object construct() {
return toInform.setText(“Event received!”);

}
};
worker.start();

}
}
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The second solution is very expensive as it creates a thread for every event. Tests with 

these possibilities revealed that even the first solution is very expensive (to use it we need 

to insert at least a delay in the event polling loop). This performance penalty explains why 

our prototype implements the synchronous solution rather than the more natural 

asynchronous solution. 
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6.4 Generating Code 
We now turn to the problem of generating glue code that considers state information. 

More precisely, we want our glue code to implement the resulting Mealy automaton from 

the global compatibility check after the pre-processing. There exists a lot of literature on 

the implementation of automata (see for example [Aho, 1985]). The glue code to combine 

three components A, B and C using a state machine with 2 states now becomes: 

public class GlueCode implements Alistener, Blistener, CListener {
StateMachine stateMachine;
A a;
B b;
C c;

public GlueCode(StateMachine stateMachine, A a, B b, C c) {
listeners = new Vector();
this.stateMachine = stateMachine;
this.a = a;
this.b = b;
this.c = c;

}

public void handleAEvent(ActionEvent e){
processEvent(e, stateMachine.getCurrentState());

}
public void handleBEvent(ActionEvent e){

processEvent(e, stateMachine.getCurrentState());
}
public void handleCEvent(ActionEvent e){

processEvent(e, stateMachine.getCurrentState());
}

public void processEvent(ActionEvent e, PacoSuite currentState){
String name = e.getMessage();
PacoState nextState = stateMachine.doTransition(name);
If (nextState == null) return;
switch((int) currentState.getId()) {

case STATE_1: {
if (name.equals("actionPerformed") && (src == a)){

b.Launch();
}
break;

}
case STATE_2: {

if (name.equals("rcv") && (src == b)){
c.signalReceived();

}
else if (name.equals("readyToChooseSession") && (src == c)){

a.send();
}
break;

}
default: {

System.out.println("Illegal event received: " + name);
break;

}
}
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}
}

Thus, when an event is received, we first check if we find a transition labeled with this 

event that allows us to advance one step in the automata. Next, we execute depending on 

the state the right API call. We further generate a main method were the Mealy automata 

corresponding with the composition patterns in our application and all cooperating 

components are instantiated. This class also subscribes the Mealy automata 

implementations to receive the events of every component that is a member of its 

corresponding composition. All Mealy automata are started in their own thread.  

Solving the odds and ends like handling multiple events in one state and user interaction 

for the parameter mapping is trivial. The full code of our prototype can be downloaded at 

[Wydaeghe, 2001a]. 
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7 The Exam Construction Kit  
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7.1 Introduction 
The application we illustrate here is a simple distributed exam service. The exam service 

provides a teacher with the possibility to set up an exam server that provides a set of 

multiple-choice questions and handles the interaction with the students during the exam. 

The exam client application provides a login to a student and connects to the exam server. 

After login, the student receives the first question from the server. The student selects an 

answer and sends it back to the exam server. The exam server stores the answer in a 

database and sends the next question. Once all questions are answered, the exam server 

produces a report for the teacher that gives an overview of the performance of the student. 

During the exam, the teacher can follow the progress of all examinees. 

The next section introduces the usage scenarios and the composition pattern used in this 

example.  

We show that there exist a spectrum of usage scenarios and composition patterns ranging 

from on the one hand: “very basic and simple, but very generic” and on the other hand: 

“very complex but application specific” and everything in between. 

We then show how we use these components and composition patterns in our PacoSuite 

prototype to build the distributed exam service. 
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7.2 Documentation 
In this section, we introduce the usage scenarios and the composition patterns needed to 

build the distributed exam service. 

7.2.1 Components 
7.2.1.1 Client side components 
7.2.1.1.1 The Client User Interface 

First, the components on the client side of the exam service are described. The first 

component we document is the user interface component. A typical usage scenario for 

such a component is that is launched first. After this launch, it loops forever waiting for 

new input and throwing events whenever the user answers a question. This is a very 

general usage scenario that can be used for a multiple choice exam user interface, an exam 

with or without pictures, sound, video and for a plain text exam. In this case, it is used to 

document the DrivingExamGUI component. This Java Bean has the following API and 

events.  

// API 
• public void Launch()  
• public void submitAnswer(Object answer)  
• public void doCommand(String signal)    
•  public void setProgressBarVisible(boolean b)  
• public boolean isProgressBarVisible()  
• public String getLookAndFeel() 
• public void setLookAndFeel(String lf)  
• public void setLanguage(String language)  
• public void setFont(String font)  

 
// listener management 
• public void addUserExamListener(UserExamListener l)  
• public void removeUserExamListener(UserExamListener l)  
 
// events 
• private void notifyReadyToChooseSession()  
• private void notifyAnswer(String answer)  
• private void notifyQuestion()  
• private void notifySessionSelected(String sessionName)  
• private void notifySessionJoined(String name)  

 

The documentation for this component is depicted in Figure 57. The START primitive is 

mapped on the Launch API call. The generic super type DATA is used to indicate that any 

DATA handling code is expected to handle the answer event. All other events are not 



PacoSuite 

145 

mapped on any primitive. This means that all other events thrown by this component are 

ignored as far as this usage scenario is used. The same goes for all property setting API 

calls. This indicates how the usage scenario captures typical uses. I.e. it shows that the 

properties setting API and many events can be ignored. It captures the knowledge of the 

developer of the component on how this component is used in practice.   

LOOP

Env:Launcher

START

ALT

DrivingExamGUI Env:UserExamListener

Launch

PERFORM

doCommand

answer
DATA

 

Figure 57: DrivingExamGUI usage scenario 

7.2.1.1.2 A Standard Java Button 

To launch the application a standard Java Button (JButton) is used. This is a good example 

to show the problems with plain API documentation. The following is a copy from the 

standard API documentation (JavaDoc) for the JButton component. Neither constructors, 

nor super class methods are mentioned.  

• void configurePropertiesFromAction(Action a) 
Factory method which sets the AbstractButton's properties according to values  
from the Action instance.   

• AccessibleContext getAccessibleContext()            
Gets the AccessibleContext associated with this JButton.   

• String getUIClassID()            
Returns a string that specifies the name of the L&F class that renders this 
component.   

• boolean isDefaultButton()            
Returns whether or not this button is the default button on the RootPane.   

• boolean isDefaultCapable()            
Returns whether or not this button is capable of being the default button on the 
RootPane.  

• protected  String paramString()            
Returns a string representation of this JButton.   

• void removeNotify()            
Overrides JComponent.removeNotify to check if this button is currently set as the  
default button on the RootPane, and if so, sets the RootPane's default button to 
null to ensure the RootPane doesn't hold onto an invalid button reference.   
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• void setDefaultCapable(boolean defaultCapable)            
Sets whether or not this button is capable of being the default button on the 
RootPane.   

• void updateUI()           
Notification from the UIFactory that the L&F has changed 

 
The most typical use of a JButton is to throw an event if it is clicked. However there is no 
indication in the previous list on how this can be achieved. Going up one level in the 
inheritance hierarchy of the JButton gives the following, rather impressive, list of methods: 
 

addActionListener, addChangeListener, addItemListener, 

checkHorizontalKey, checkVerticalKey, createActionListener, 

createActionPropertyChangeListener, createChangeListener, 

createItemListener, doClick, doClick, fireActionPerformed, 

fireItemStateChanged, fireStateChanged, getAction, getActionCommand, 

getDisabledIcon, getDisabledSelectedIcon, getHorizontalAlignment, 

getHorizontalTextPosition, getIcon, getLabel, getMargin, getMnemonic, 

getModel, getPressedIcon, getRolloverIcon, getRolloverSelectedIcon, 

getSelectedIcon, getSelectedObjects, getText, getUI, getVerticalAlignment, 

getVerticalTextPosition, imageUpdate, init, isBorderPainted, 

isContentAreaFilled, isFocusPainted, isFocusTraversable, 

isRolloverEnabled, isSelected, paintBorder, removeActionListener, 

removeChangeListener, removeItemListener, setAction, 

setActionCommand, setBorderPainted, setContentAreaFilled, 

setDisabledIcon, setDisabledSelectedIcon, setEnabled, setFocusPainted, 

setHorizontalAlignment, setHorizontalTextPosition, setIcon, setLabel, 

setMargin, setMnemonic, setMnemonic, setModel, setPressedIcon, 

setRolloverEnabled, setRolloverIcon, setRolloverSelectedIcon, 

setSelected, setSelectedIcon, setText, setUI, setVerticalAlignment, 

setVerticalTextPosition 

This list contains a method: “addActionListener”. Reading the Swing tutorial (the 

documentation of the method self only mentions that an actionListener is added to the 

button) reveals that actionlisteners are notified whenever the button is pressed. 

Providing the usage scenario depicted in Figure 58 summarizes this information. 
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JButton Env: Observer

SIGNAL
LOOP

actionPerformed

 

Figure 58: Typical use of a standard JButton Component 

7.2.1.1.3 The Network Component 

The last component we need on the client side is a network client component. This 

component sends strings over a TCP/IP connection and throws events when a string is 

received or when the connection is established or destroyed. It has a little user interface 

that allows the end user (thus not the developer) to specify a host name and a port number 

and a connect button. If the connect button is hit, the component tries to set up a 

connection. If it succeeds it throws the “rcvConnect” event, if it fails it throws the 

“rcvClose” event. The default behavior of this component is therefore to throw first the 

“rcvConnect” event, then to receive and send data until a disconnect is received, when it is 

ready to make a new connection and start all over.  This is depicted in Figure 59.  

LOOP

Env:NetworkUser3

ALT

Network

SEND
send

PERFORM
rcv

CONNECT
rcvConnect

DISCONNECT
rcvClose

LOOP

Env:NetworkUser4Env:NetworkUser2Env:NetworkUser1

 

Figure 59: Usage scenario for the network client component 

Note that four different environment participants are used. This allows us to use four 

different components to provide each one of the environments expected by the network 

component. In addition, because it is allowed to map one role on many environment 

participants (see section 4.9.1), this documentation also allows one component to provide 

all these environments. 
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7.2.1.2 Server side 

At the server side, we also use a standard Java Button and a network client component. 

The components differing from the client side are the exam server component and a 

generic network server component.  

7.2.1.2.1 The ExamServer Component 

The ExamServer component supports a lot of different usage scenarios, but the most basic 

one is that it is launched and starts throwing events and listening for commands. At the 

level of primitives, it behaves exactly the same as the user interface component at the client 

side. The only difference is its implementation mapping. The usage scenario for the 

ExamServer component is described in Figure 60. 

LOOP

Env:Launcher

START

ALT

ExamServer Env:ExamServerListener

Launch

PERFORM
signalReceived

examSessionStarted|examSessionStopped|exam
SetId|examListSessions|examNextQuestion|exam
Result|examSessionSelected|examSessionJoined
|examFeedback

DATA

 

Figure 60: Documentation of the driving exam server 
component 

7.2.1.2.2 The NetworkServer Component 

The NetworkServer component opens a port where it listens for connections. It support 

sending broadcast messages and point to point messages. Its use is very simple however. 

Or you simply launch it listening on the port set in its properties, or you launch it in GUI 

mode, where it pops up a window where you can specify the server port and hit a button 

to start the server. This is depicted in Figure 61. 
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Env:NewtorkInitiator

ALT

NetworkServer

SHOW
enableGUI

START
listen

 

Figure 61: Description of a generic network server component 

7.2.2 Composition Patterns 
There are many possibilities for the composition patterns. We could have one composition 

pattern for the client side and one for the server side, but these composition patterns 

would be very specific. One of the ideas behind composition patterns is that they should 

be generic and reusable. The spectrum of composition patterns ranges from the simplest 

pattern describing one message between two roles, to composition patterns describing a 

full application. In practice, we use a mix of application specific (and in general more 

complex and less reusable) composition patterns together with a set of very basic (and in 

general simple and highly reusable) composition patterns. In the example application, only 

three distinct composition patterns are used: one application specific composition pattern 

and two basic patterns. 

7.2.2.1.1 Application Specific Pattern 

The first composition pattern describes the interaction between a launcher to start a 

network-based application, the network based application itself and a network role. This 

composition pattern is shown in Figure 62. 
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LOOP

Launcher

DATA

Network

START

ALT

PERFORM

Client

 

Figure 62: LaunchClientNetwork Composition Pattern describing the interactions between a launcher, a client and a 
network role 

This composition pattern is in fact an example of a composition pattern between the two 

extremes of the spectrum. This composition pattern proved to be reusable for several 

other distributed applications, but it is not reusable outside the scope of network 

applications. 

7.2.2.1.2 Basic Composition Patterns 

We use two basic composition patterns: one to make something visible and one to start 

something. These are shown in Figure 63. 

Shower

SHOW

ToShow Starter

START

ToStart

 

Figure 63: Two basic composition patterns. 
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7.3 The Composition Process 

 

Figure 64: Snapshot of the development of an exam application using the exam construction toolkit. 

Figure 64 show a snapshot taken during the development process of the exam application. 

The application uses three composition patterns. At the client side the 

LaunchClientNetwork (see Figure 62) composition pattern is used. The roles of this 

composition pattern are filled with a Network component, a standard JButton and an 

Exam User Interface component. The user already filled all the roles, except for the 

launcher role of the LaunchClientNetwork composition pattern. He is about to drag the 

JButton component onto this role (indicated by the circle). Using the local checking 

algorithm, we check whether the JButton component is compatible with the corresponding 

role. The drag is refused in case of a mismatch. In this case, the drag is accepted, but for 

example dragging a Network component onto Launcher role will be refused. The 

composition pattern at the top represents the client side of the exam and the composition 

pattern at the bottom is the administrator or teacher side of the application. Notice that the 

second button is used in two composition patterns, i.e. when the button is pressed it will 

start both the network server and the administrator interface. When the user initiates the 

glue-code generation, all filled composition patterns are checked as a whole using the 
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global checking algorithm and glue-code to is generated. The resulting application is then 

launched. Figure 65 shows a compilation of screenshots of the resulting application. 

 

Figure 65: Compilation of screenshots of the exam service application. 

To illustrate the power of our approach we show how chat functionality is added to the 

exam (see Figure 68). Therefore, two instances of the Console component are added. The 

usage scenario for this Console component is depicted in Figure 66. 

LOOP

Env:Launcher

SHOW

ALT

Console Env:ConsoleListener

Launch

PERFORM
appendReceivedText

textToSend
DATA

 

Figure 66: Usage scenario for a Console component 
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Both Console components are used as chat window. To use them one extra composition 

pattern is required. This composition pattern describes the interaction between a network 

and a network user. This pattern is depicted in Figure 67. 

LOOP

ALT

NetworkUser Network

PERFORM

DATA

 

Figure 67: UseNetwork composition pattern  

Chat functionality is added by filling the network user role of this composition pattern with 

the Console component and the network role with the Network component we already 

have in the LaunchClientNetwork composition pattern at the client side. We also use the 

Show composition pattern to make the Console window visible if the launch button at the 

client side is pressed. The same operation is done at the server side. The resulting 

composition is shown in Figure 68. Note that the same composition patterns are used both 

at the client side and at the server side indicating that these composition patterns are 

reusable. 
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Figure 68: Extending the exam application with chat functionality. 
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7.4 Conclusions 
This small example indicates that the concept of composition patterns allows us to 

improve on state of the art visual component composition tools by lifting the abstraction 

level of the wiring. It allows users to concentrate on the application rather than on 

technical details. This leads to a construction kit that is easy to use without sacrificing 

flexibility. 

The exam construction kit was demonstrated both for our industrial partner Alcatel and 

during the final review of the Advanced Internet Access (AIA) project. The tool and the 

demonstration were very well received on both occasions.  
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8 Conclusions 
“Enough research will tend to support your conclusions.”

- Arthur Bloch In "Quotable Business," ed. Louis E. Boone, 1992 
-   

"C'est le temps que tu a perdu pour ta rose qui fait ta rose si importante."

- Antoine de Saint-Exupéry, Le Petit Prince 
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8.1 Contributions 
In section 1.3, we mention five main contributions of this thesis. Our first claim is that we 

improve current visual component composition environments using the concept of 

composition patterns. To support this claim we argue first why using composition pattern 

is at least as good as current component composition environments. Current state of the 

art component composition environment allow you to connect any event with any method. 

We obtain the same kind of wiring by documenting every component with the usage 

scenario (left hand side of the picture) and the composition pattern (right hand side of the 

picture) as shown in Figure 69.  

Component Environment

LOOP

SIGNAL
ALT

SIGNAL

… all events …

… all methods …

Role1 Role2

LOOP

SIGNAL
ALT

SIGNAL

 

Figure 69: Generic usage scenario and composition pattern 

This usage scenario specifies that a component can throw any event at any given moment. 

It also specifies that any method can be called at any given time. Documenting 

components with this kind of usage scenarios and subsequentially composing these 

components using this kind of composition pattern in our prototype tool launches a dialog 

box where links between events and their corresponding API call can be specified. This is 

the same as what current visual component composition environments provide. 

Composition patterns improve on this scheme as they allow a developer to specify the 

order of events and method calls. They also support the specification of multi party 

composition patterns whereas current tools are limited to binary relationships. 

Composition patterns further support the reuse of wiring information (wiring in current 

commercial tools cannot be stored and reused independently of an application. It needs to 

be redone for every new application) and they make compatibility checking possible. This 

leads us to our second claim. 

We claim that we can do an automatic compatibility check using a compatibility definition 

that allows components to offer more than what the composition pattern asks for and 

allows composition patterns to be more general than what the components offer. To this 
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end, we developed checking algorithms based on finite automata theory using the 

intersection of automata rather than the difference. To avoid problems at runtime for calls 

outside this intersection, we generate a special kind of glue code. This leads us to our third 

claim. 

We claim that glue code can be generated that both forces components to follow only 

compatible traces and restricts the composition pattern to what the components can offer. 

This allows us to use more generic and more reusable composition patterns than what is 

proposed by current architectural description languages. This is done by implementing the 

resulting state machine of our compatibility check. As this state machine only contains 

valid traces, it is able to blocks all other traces resulting in the wanted runtime behavior. 

The fourth contribution is improved feedback during the component composition process. 

We not only add usage protocol checking to the composition process, but also a check if 

the specified composition pattern can be used with the selected set of components. None 

of these checks exists in current tools. In case a mismatch is detected, we provide a flexible 

adapter generator that can be used to search for possible adaptations of the components, 

composition patterns, or glue code, to cure the mismatch. We noticed the similarities 

between algorithms used in the adaptive programming field [Lieberherr, 1997] and the 

algorithm used by Reussner to generate adapters [Reussner, 1999]. Applying the adaptive 

programming algorithm to adapter generation leads to a more flexible and efficient adapter 

generator process.  

The last claim we made is that we provide support for “composition based” construction 

of component-based applications. This means that instead of selecting a set of components 

and trying to hack them together, we can search for a set of composition patterns first and 

select the components based on their compatibility with these composition patterns. As 

composition patterns are documented using a kind of sequence diagram, they correspond 

very well with use cases built to specify the requirements. 

With the small distributed exam application, we indicated how this work could be used to 

build very flexible construction kits. It allows the developers of such a kit to provide 

standard composition patterns together with their set of components without touching the 

ability of the users of these construction kits to build very complex applications that were 

not foreseen by the developers. 
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8.2 Applicability 
8.2.1 Influence on Visual Component Composition 
It would be very naive to think that the prototype tool we developed in this work will be 

the component composition tool of the future. The most we can hope is that some of the 

ideas will make it to future commercial component composition environments.  

A tool that shows a lot of efforts in this direction is Visual Age for Java. Recently IBM has 

introduced the concept of “helpfull beans” in their Visual Age for Java product. A 

“helpfull bean” is a component with built in documentation describing typical wiring 

schemes. To a certain extent, these can be seen as usage scenarios. It specifies no order of 

events or method calls but it does indicate the events and method calls that are most often 

used to compose this component. Until now, this documentation is passive. I.e. it is not 

possible to instantiate a typical wiring and to fill in the blanks. However there are rumors 

that this will be possible in further versions. 

The same tool also allows to “swap” components in existing wiring. I.e. it is possible to 

update a given component with another component. If the new component has another 

set of events and/or method calls the tool allows the user to reroute the wiring that is not 

“compatible” anymore. 

Many tools also support a kind of ordering of events on their components. If an event 

needs to invoke several method calls on several components, it is possible to specify in 

what order these methods are called. 

These are all indications that current tools search for ways to improve the wiring process 

and the usage documentation of their components. This work provides a set of ideas that 

are very useful in this context. 

8.2.2 Scalability 
An important issue in the application of these ideas is scalability. Even small experiments 

prove that the checking algorithms start to take to much time when composition patterns 

reach more than ten participants. There is no real limit to the use of multiple composition 

patterns though. Current visual composition tools only support binary composition 

patterns and large applications are built using many components and many composition 

patterns. We can take the same approach. I.e. we compose large applications using a large 

set of composition patterns and a large set of components. However, this means that we 

use the results of this work only locally. There is no possibility to define high-level 

synchronization between subsystems this way. The obvious approach to cure this problem 
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is to make a composition of a set of components using one composition pattern and to 

pack the result into a new component. This new component needs a new set of usage 

scenarios. This can be done manually or semi automatic. Current visual composition 

environments all ask user input to provide the new interface of the composed component. 

One possibility to provide this set of usage scenarios automatically is to take the union of 

all usage scenarios of the constituent components, but this leads to a huge set of usage 

scenario for components that are made from a large collection of other components. We 

also experimented with composition patterns that are only partially filled where we 

consider the interaction between the empty roles and the filled roles as the usage scenario 

for the new component. However, this leads quickly into problems when using multiple 

composition patterns to build a new component. In general, we state that a new 

component needs to be documented manually, but we can support this documentation 

process with automatic tools.  

As current visual composition environments proved to be scalable enough to be used in 

industrial strength applications, we do not foresee scalability problems with he improved 

approach presented in this work. 

8.2.3 Influence on Other Research 
This work mainly uses the results of finite state machines, architectural description 

languages, adapter generation and the adaptive programming library. We think that many 

of the results in this work could be used in these areas to improve the current results.  

We use an algorithm based on dynamic programming to find contradicting 

role/component mappings in a state machine resulting from a global check between a set 

of components and a composition pattern. In general, this algorithm is a very efficient 

implementation to find all traces constrained by all its values along the trace. I.e. constraints 

like “find all traces where the label “a” occurs at most n times”. These are very common 

constraints for regular languages.  

In the area of architectural description languages, we think that the algorithms explained in 

this text could be used to improve the efficiency of the compatibility check as proposed by 

[Allen, 1994b]. At the moment they use a theorem prover to do this. A small adaptation to 

our global check algorithm would be a more efficient solution. The only adaptation we 

need to do is to take the difference rather than the intersection between the composition 

pattern and the components (and calculating the intersection and difference automaton is 

very similar in automata theory). In their work, they prove that a composition is deadlock 
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free if, among others, their glue code is conservative (for a definition see [Allen, 1997]). 

Our glue code generation generates conservative glue code. It could be interesting to apply 

our ideas to their research to force glue code to be conservative instead of just assuming it.  

We further explained how our adapter generation algorithm improves the adapter 

generation algorithms we found in literature.  

We also indicated the mapping between the parallel composition operator (  ) as defined 

in CSP and the calculation of a traversal graph as defined by [Lieberherr, 1997]. This can 

only help in improving the understanding and the implementation of these algorithms. 
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8.3 Future Work 
No work is ever finished and this one is no exception. On the first place, there are 

improvements to the efficiency of our algorithms. One idea that is worth looking at is to 

do the global check in a tree like fashion rather than incrementally. As the  operator is 

associative, we can place the brackets anywhere we like with the same result. Another 

interesting idea is to use state machine minimization. This should speed up our algorithms, 

but it is far from trivial to keep track of the implementation mappings.  

Support for automatic documentation generation for a new component made from a 

composition of other components is another item on the wish list. We have done a set of 

experiments, but especially multiple composition patterns and the conversion from state 

machines to MSC’s gave us troubles. There exists a well-known conversion algorithm 

[Hopcroft, 2001] to do the latter, but it results in very strange MSC’s. The conversion can 

be done in many different ways and the standard algorithm does not necessarily result in 

the more intuitive one. It would be interesting to try to guide the conversion based on the 

original MSC’s. 

My colleague Wim Vanderperren takes a more ambitious direction.  He tries to build on 

the aspectual component and AOP research to add aspect weaving to the component 

composition process. The idea is to have a special kind of composition patterns that adapt 

other composition patterns.  Figure 70 gives an example of an adapter composition. 

Logger

CONTEXT 

Source Dest

ADAPTER 

SEND

SEND

Source Dest

SEND

 

Figure 70: Composition Adapter: CONTEXT specifies where to apply and ADAPTER specifies what to do. 

In this example, the adapter composition will re-route every occurrence of a SEND from 

role Source to role Dest through a Logger role. The composition pattern shown at the left 

hand side of Figure 71 shows the result of applying the composition adapter of Figure 70 

to the composition pattern shown at the right hand side of the picture.  
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SEND

Logger

SEND

LOOP

Launcher Netw ork/Dest

ALT

Client/Source

START

PERFORM

SEND

LOOP

Launcher Netw ork/Dest

ALT

Client/Source

START

PERFORM

 

Figure 71: Applying the composition pattern adapter to the original composition pattern on the left hand side results in 
the composition pattern at the right hand side. 

I.e. we construct a new composition pattern by first combining composition patterns with 

a set of adapting patterns. Benefits do not only arise in the development of the 

component-based application, but also in evolutionary changes to the application. New 

requirements often lead to concerns that crosscut the existing component composition. 

Instead of having to re-wire all the components, the existing composition patterns are 

altered using adapter compositions.  

There are plenty of other possibilities left to build onto our current results and further 

improve the component based development process. 
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9 Products and Specifications 
ADA, "ADA Reference Manual", http://www.ada-auth.org/arm.html 

BeanBox, "Java BeanBox (SUN)", 
http://java.sun.com/products/javabeans/docs/spec.html 

COM, "Component Object Model (COM)", 
http://www.microsoft.com/com/tech/com.asp 

CORBA, "The Common Object Request Broker: Architecture and Specification- Revision 
1.2", http://www.omg.org/technology/documents/formal/corbaiiop.htm 

DCOM, "Distributed Component Object Model (DCOM) - Downloads, Specifications, 
Samples, Papers, and Resources for Microsoft DCOM", 
http://www.microsoft.com/com/tech/DCOM.asp 

Delphi, "Borland Delphi", http://www.inprise.com/delphi/ 

EJB, "Enterprise JavaBeans Specification", 
http://www.javasoft.com/products/ejb/docs.html 

IDL, "CORBA 2.4.2 OMG IDL Syntax and Semantics chapter", 
http://www.omg.org/cgi-bin/doc?formal/01-02-07 

MSC. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).  1993. Geneva.  

NetBeans, "Net Beans", http://www.netbeans.org/index.html 

UML, "UML 1.3 Documentation", 
http://www.rational.com/uml/resources/documentation/index.jsp 

VisualAge, "IBM Software : Application Development : VisualAge Developer Domain", 
http://www7.software.ibm.com/vad.nsf/ 

VisualBasic, "Microsoft Visual Basic Home Page", http://msdn.microsoft.com/vbasic/ 

VisualJava, "Microsoft Visual J++ Home Page", http://msdn.microsoft.com/visualj/ 

ActiveX, "ActiveX Controls - Microsoft Papers, Presentations, Web Sites, and Books, for 
ActiveX Controls", http://www.microsoft.com/com/tech/activex.asp 
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