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ABSTRACT
One of the problems in Aspect-Oriented Software Develop-
ment is specifying pointcuts that are robust with respect to
evolution of the base program. We propose to use Inductive
Logic Programming, and more specifically the FOIL algo-
rithm, to automatically discover intensional pattern-based
pointcuts. In this paper we demonstrate this approach using
several experiments in Java, where we successfully induce
a pointcut from a given set of joinpoints. Furthermore, we
present the tool chain and IDE that supports our approach.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) aims to pro-
vide a better separation of concerns than possible using tra-
ditional programming paradigms [17]. To this end, AOSD
introduces an additional module construct, called an aspect.
Traditional aspects consist of two main parts: a pointcut
and an advice. Points in the program’s execution where an
aspect can be applied are called joinpoints. Pointcuts are
expressions in a pointcut language which describe a set of
joinpoints where the aspect should be applied. The advice
is the concrete behavior that is to be executed at a certain
joinpoint, typically before, after or around the original be-
havior at the joinpoint.

Since existing software systems can benefit from the advan-
tages of AOSD as well, a number of techniques have been
proposed to identify crosscutting concerns in existing source
code (aspect mining) [4, 5, 6] and transform these concerns
into aspects (aspect refactoring) [21, 20]. When refactoring
a concern to an aspect, a pointcut must be written for this
aspect. Pointcut languages like for instance the CARMA
pointcut language allow specifying pattern-based pointcuts,
so that the pointcut does not easily break when the base
code is changed [9, 18]. While existing aspect refactoring
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techniques also automatically generate a pointcut, they typ-
ically only provide an enumerative pointcut, which is fragile
with respect to evolution of the base program. Turning this
pointcut into a pattern-based pointcut is left to be done
manually by the developer.

In this paper we propose to exploit Inductive Logic Program-
ming techniques to automatically induce a pattern-based
pointcut from a given set of joinpoints. The next section
details the problem of uncovering pattern-based pointcuts
and introduces the running example used throughout this
paper. Section 3 introduces Inductive Logic Programming
and the concrete algorithm used and in section 4 we apply
ILP for automatically generating pattern-based pointcuts
and report on several successful experiments in Java. After-
wards, we present the tools created to support our approach,
compare with related work and state our conclusions.

2. MOTIVATION AND BACKGROUND
The main problem in maintaining aspect-oriented code is
the so-called fragile pointcut problem [19]. Pointcuts are
deemed fragile when seemingly innocent changes to a pro-
gram result in the pointcut no longer capturing the intended
joinpoints. Taking the code of figure 1 for example, a point-
cut for capturing message invocations on Point objects that
change the state of the object could simply say “capture
setX and setY messages”. Changing the name of setX to
changeX or adding a method setZ would break this point-
cut. The pointcut is obviously fragile because it is simply
an enumeration of methods.

Using an advanced pointcut language that gives access to
the full static joinpoint model of a program, it is possible
to exploit a more robust pattern [9]. Figure 2 illustrates a
pointcut that expresses that all the state changing methods
contain an assignment to an instance variable of an object.

The area of aspect refactoring and aspect mining is a par-
ticularly interesting research area within AOSD that is cur-
rently being explored. In performing aspect mining and
refactoring, the problem crops up of finding a pointcut for
the newly created aspect. Also, as with object-oriented
refactoring, research is being performed on how to automate
these refactorings using tool support. In such tools, it would
be interesting to be able to automate the step of generating
a pattern-based pointcut as well. Currently, most proposals
for automating aspect refactoring simply generate an enu-
merative pointcut, which is of course too fragile. In related



1 public class Point {
2

3 private int x,y;
4

5 public void setX(int a) {
6 this.x=a;
7 }
8 public void setY(int a) {
9 this.y=a;

10 }
11 public int getX() {
12 return x;
13 }
14 public int getY() {
15 return y;
16 }
17 }

Figure 1: A simple Point class

1 stateChanges(Jpvar):
2 execution(Jpvar,MethodName),
3 inMethod(AssignmentJP,MethodName),
4 isAssignment(AssignmentJP,AssignmentTarget),
5 instanceVariable(AssignmentTarget,ClassName)

Figure 2: A pointcut for the observer

work, section 6, we discuss a number of these approaches.

In this paper, we therefore propose the use of Inductive Logic
Programming for automatically generating a pattern-based
pointcut. We restrict ourselves to a pointcut language with a
static joinpoint model. We in particular use a logic pointcut
language similar to CARMA, but restricted to a static join-
point model, which means that run-time values and cflow
constructs are not supported.

3. INDUCTIVE LOGIC PROGRAMMING
The technique of logic induction returns a logic query that,
by using conditions drawn from background information on
a set of examples, satisfies all positive examples while not
including any negative examples. In this paper we use the
FOIL ILP algorithm [23]. Informally, the way ILP works and
how it can be applied to generate a pattern-based pointcut
is as follows:

positive examples: ILP takes as input a number of posi-
tive examples, in our setting of deriving pattern-based
pointcuts these are joinpoints that the pointcut should
capture.

negative examples: ILP also takes as input a number of
negative examples, the rules that are derived during
the iterative induction should never cover negative ex-
amples. Negative examples effectively force the algo-
rithm to use other information of the background in
the induced rules.

background information: Another input to ILP is back-
ground information on the examples. In our setting,
these would be the result of predicates in the pointcut
language that are true for the joinpoints, or in other
words, the data associated with the joinpoints. Such
as the name of the message of the joinpoint, the type

of the joinpoint (message, assignment, . . . ), in which
method or class the joinpoint occurs, . . .

induction: ILP follows an iterative process for construct-
ing a logic rule based on the positive examples. Start-
ing from an empty rule, in each step of the process,
the rule is extended with a condition drawn from the
background information which decreases the number
of negative examples covered by the rule. This is
repeated until the rule describes all positive but no
negative examples. The added conditions are gen-
eralizations of facts in the background information,
by adding logic variables (a more powerful version of
wildcards). For example, if the background informa-
tion contains the fact instanceVariable(‘Point.x’,

‘int’) one possible condition used could be instance-
Variable(X, ‘int’).

4. ILP FOR POINTCUT ABSTRACTION
In this section, we perform a number of experiments in or-
der to demonstrate how we use the FOIL algorithm to in-
duce pattern-based pointcuts. The joinpoints required as
positive examples for the ILP algorithm can be selected au-
tomatically using for example an aspect mining technique,
though in these experiments we selected them manually. All
other joinpoints are defined as negative examples for the
ILP algorithm. As background information, we construct
a logic database consisting of the information that is nor-
mally available in the pointcut language on these joinpoints
and structural information about the program, such as the
relationship between classes etc. Because the pointcut lan-
guage uses a purely static joinpoint model, these solutions
can be determined using only the program’s source or com-
piled representation, i.e. compiled Java classes. Examples
of these facts are given in figure 3.

The algorithm will induce a pointcut that captures exactly
the joinpoints currently in the program that should be cap-
tured (the positive examples), and none of the others (the
negative examples). This is guaranteed by the algorithm. It
is reasonable to expect, though not guaranteed, that the
induced pointcut also is a non-fragile or robust pointcut
because the induction process generalizes the conditions it
adds to rules. In general we will not have a specific point-
cut in mind that the algorithm should derive (otherwise the
application of ILP would be rather pointless), though in
these experiments we can use the robust pointcut from fig-
ure 2 as a benchmark for comparison. We do not discuss
the performance of our tools, but an analysis is included in
an extended version of this paper [3].

4.1 Basic Point class
As an example of our approach, take the simple Point class
from figure 1. In a first step we derive the static joinpoints
from this code, and derive the information on all of these
that is given by the predicates of the pointcut language.
This forms the background information for the logic induc-
tion algorithm, part of this generated background informa-
tion is shown in figure 3.

The methods that are state changing on this simple Point
class are the methods setX and setY only. We identify
these two joinpoints as positive examples of our desired



returnStatement(jp1).
returnStatement(jp6).
returnStatement(jp11).
returnStatement(jp14).
returnStatement(jp17).
inMethod(jp1,‘Point.setX(I)I’).
inMethod(jp2,‘Point.setX(I)I’).
inMethod(jp3,‘Point.setX(I)I’).
inMethod(jp4,‘Point.setX(I)I’).
inMethod(jp6,‘Point.setY(I)I’).
inMethod(jp7,‘Point.setY(I)I’).
inMethod(jp8,‘Point.setY(I)I’).
inMethod(jp9,‘Point.setY(I)I’).
inMethod(jp11,‘Point.getX()I’).
inMethod(jp12,‘Point.getX()I’).
inMethod(jp14,‘Point.getY()I’).
inMethod(jp15,‘Point.getY()I’).
inMethod(jp17,‘Point.Point()V’).
isRead(jp3,‘l0’).
isRead(jp4,‘l1’).
isRead(jp8,‘l2’).
isRead(jp9,‘l3’).

isRead(jp12,‘Point.x’).
isRead(jp15,‘Point.y’).
methodInClass(‘Point.setX(I)I’,‘Point’).
methodInClass(‘Point.setY(I)I’,‘Point’).
methodInClass(‘Point.getX()I’,‘Point’).
methodInClass(‘Point.getY()I’,‘Point’).
methodInClass(‘Point.Point()V’,‘Point’).
classExtends(‘Point’,‘java.lang.Object’).
methodReturns(‘Point.setX(I)I’,‘int’).
methodReturns(‘Point.setY(I)I’,‘int’).
methodReturns(‘Point.getX()I’,‘int’).
methodReturns(‘Point.getY()I’,‘int’).
isAssignment(jp2,‘Point.x’).
isAssignment(jp7,‘Point.y’).
instanceVariable(‘Point.x’,‘Point,int’).
instanceVariable(‘Point.y’,‘Point,int’).
classInPackage(‘java.lang.Object’,‘java.lang’).
execution(jp0,‘Point.setX(I)I’).
execution(jp5,‘Point.setY(I)I’).
execution(jp10,‘Point.getX()I’).
execution(jp13,‘Point.getY()I’).
execution(jp16,‘Point.Point()V’).

Figure 3: Part of the background information for the Point class of figure 1.

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D).

Figure 4: Induced stateChanges pointcut.

stateChanges pointcut, which are the joinpoints jp0 and
jp5 respectively. The pointcut should not cover the other
joinpoints: the joinpoints jp10 and jp13, for instance, de-
note the execution of the getX and getY method. Clearly,
these methods are not state changing. So these and all other
joinpoints besides jp0 and jp5 are marked as negative ex-
amples. We give the FOIL algorithm the positive examples
stateChanges(jp0) and stateChanges(jp5). The resulting
rule is shown in figure 4. The pointcut selects all executions
of methods that contain an assignment.

The resulting pointcut is clearly not very robust. An evolu-
tion that easily breaks the pointcut would be to have a getX

method that does an assignment to a local variable which
does not mean that that method changes the state of an
object, yet its execution would be captured by the pointcut.
This result is however not very surprising: the Point class is
small and does not include non-state changing methods that
do assignments to local variables which would have served
as a negative example for the FOIL algorithm. As the in-
duced pointcut covers all positive examples and no negative
ones, the induction stops and no further predicates from the
background information are used to limit the rule to only
the positive examples. The ILP algorithm works better on
larger programs, so that more negative examples are avail-
able to avoid oversimplified pattern-based pointcuts.

In order to have a more realistic example, we apply our
experiment to the Point class bundled with Java. We do

Table 1: Generated facts statistics
# Classes # Facts # Joinpoints

Toy example 1 71 10
AWT Point class 1 364 70
Full AWT library 362 276863 65060

1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E).

Figure 5: Resulting pointcut when applying our ap-
proach to the AWT Point class.

not include a full listing of the generated background, but
instead we give some statistics about the generated facts.
Table 1 compares the number of facts found in the AWT
Point class to the number of facts from the basic Point ex-
ample. We notice a rapid increase in the number of facts
with larger input. However, since the generated informa-
tion is based on a static joinpoint model, this number only
grows lineary, in function of the size of the classes and the
size of the methods.

We identify four execution joinpoints in the AWT Point class
where a state changing method is invoked and input them
as positive examples to the algorithm. The remaining 66
joinpoints are defined as negative examples. The resulting
pointcut is shown in figure 5. In this case, the algorithm
generates a pointcut that is sufficiently robust for evolution:
it is in fact the same pointcut we defined in figure 2.

4.2 Extended experiments



1 stateChanges(A):
2 execution(A,B),
3 inMethod(C,B),
4 isAssignment(C,D),
5 instanceVariable(D,E),
6 not(isTransient(D)).

Figure 6: Resulting pointcut for non-transient field
assignments in Java AWT.

In order to provide a limited evaluation of our approach,
we conduct two more involved experiments using the state-
changes example on the Java AWT framework.

4.2.1 Large fact database:
We apply our approach to the complete Java AWT library
in order to evaluate whether it still returns a useful result
when the number of facts is very large. This library contains
approximately 362 classes and generates more than 250000
facts. The result for the algorithm is the same as for the Java
AWT Point class alone: the same pointcut as we defined in
figure 2 is induced.

4.2.2 Negation:
One of the distinguishing features of the FOIL algorithm in
comparison to other ILP algorithms is its ability to induce
rules containing negations. As a variation of the state chang-
ing methods example, we need a pointcut for the executions
of methods that change the observable representation of an
object. This means the method does assignments to instance
variables that are not declared transient using the modifier
transient in Java: conceptually, these fields are not part
of the object’s persistent state and are not retained in the
object’s serialization. This is used for example when a class
defines a cache in order to optimize some parts of its oper-
ations. As such, observers do not need to be notified when
transient fields are altered. When applying this experiment
to the Java AWT library, our algorithm induces the rule
shown in figure 6, which in comparison to the pointcuts in-
duced above adds exactly the properties in the background
to distinguish these joinpoints from the negative examples
that we would expect it to add, i.e. the fact that the instance
variables being assigned to are not declared transient.

5. TOOL SUPPORT
5.1 Tool Chain
Our approach is supported by a fully automatic tool chain,
consisting of the following tools (see figure 7):

• FactGen: This tool translates a range of Java class
files and/or jar files to a set of facts representing these
classes. The tool uses the javassist library [7] to pro-
cess the binary class files. The javassist library pro-
vides a high-level reflective API that allows to inspect
the full Java byte code, including method bodies. The
output of the FactGen tool is the fact representation
in XML format.

• JFacts: This tool allows to translate logic predicates
from one syntax into another. Currently, the tool
supports the FactGen’s XML syntax, QFoil’s syntax,
CARMA’s syntax and the Prolog syntax.

Fact
Gen

Java Classes

XML Facts

JFacts

QFoil Facts

QFoil

Induced Query

JFacts

Pointcut

Figure 7: The tool chain for inducing pointcuts from
Java classes.

Figure 8: Screenshot of the Eclipse CME plugin that
allows automatic concern extraction to JAsCo.

• QFoil: This tool is the implementation of the FOIL
ILP algorithm by Ross Quinlan [24]. It takes a set of
facts and a set of positive examples as input (negative
examples are implicitly assumed) and tries to induce a
logic rule that covers all of the positive examples and
rejects all of the negative examples.

5.2 IDE Integration
Although our current tool chain works fully automatic, it is
a stand-alone command-line tool that is not integrated in
an IDE. In previous work, we have developed an AO refac-
toring extension to the Eclipse Concern Manipulation En-
vironment [26]. Figure 8 shows a screenshot of this tool.
This visual tool allows to navigate through applications via
a powerful and extensible query language. As such, cross-
cutting concerns can be identified and isolated in a concern
model. Afterwards, the concern can be automatically refac-
tored to an aspect in the JAsCo language [27]. However,
the generated pointcut is simply an enumeration of join-
points. Because JAsCo also supports the pointcut language
presented in this paper, integrating our tool chain in this
visual IDE is trivial. As such, a fully automatic refactoring
tool can be realized that generates evolution-robust point-
cuts instead of plain enumerations.

6. RELATED WORK



To our knowledge, there exist no other approaches which try
to automatically generate pattern-based pointcuts. In previ-
ous work [10] we already report on a first attempt for using
Inductive Logic Programming in order to derive pattern-
based pointcuts. In this work we employ Relative Least
General Generalisation [22], an alternative ILP algorithm,
instead of the FOIL algorithm. Using RLGG, we are able to
derive correct pointcuts for some specific crosscutting con-
cerns in a Smalltalk image. However, due to the limitations
of both our implementation as well as the applied ILP algo-
rithm (for instance, the algorithm does not support negated
literals), our RLGG-based technique often results in point-
cuts that suffer from some fragility: the resulting pointcuts
for example frequently contain redundant literals referring
to the names of specific methods or classes, which of course
easily breaks the pointcut when these names are changed.
Furthermore, our earlier work suffers from serious scalability
issues.

As mentioned earlier, the major area of application of our
technique lies in the automated refactoring of crosscutting
concerns in pre-AOP code into aspects. Quite a number of
techniques exist [11, 21, 20, 13] which propose refactorings
in order to turn object-oriented applications into aspect-
oriented ones. However, these techniques do not consider the
generation of pattern-based pointcuts. Instead they propose
to automatically generate an enumeration-based pointcut
which, optionally, can be manually turned into a pattern-
based pointcut by the developer. As is pointed out by Bink-
ley et al. [2], our technique is complementary with these
approaches as it can be used to both improve the level of
automation of the refactoring, as well as the evolvability of
the refactored aspects.

In the context of aspect mining, which is closely related
to object-to-aspect refactorings, a wealth of approaches are
available that allow for the identification of crosscutting con-
cerns in an existing code base. The result of such a tech-
nique is typically an enumeration of joinpoints where the
concern is located. Ceccato et al. [6] provide a comparison
of three different aspect mining techniques: identifier anal-
ysis, fan-in analysis and analysis of execution traces. Breu
and Krinke propose an approach based on analyzing event
traces for concern identification [4]. Bruntink et al. [5]
make use of clone detection techniques in order to isolate
idiomatically implemented crosscutting concerns. Further-
more, several tools exist that support aspect mining activi-
ties by allowing developers to manually explore crosscutting
concerns in source code, such as the aspect mining tool [12],
FEAT [25], JQuery [15] and the Concern Manipulation En-
vironment [14]. These approaches are complementary with
our approach in that the joinpoints they identify can serve
as positive examples for our ILP algorithm.

7. CONCLUSIONS AND FUTURE WORK
In this paper we present our approach using Inductive Logic
Programming for generating a concise and robust pointcut
from a given enumeration of joinpoints. We report on a
number of successful experiments that apply our approach
to a realistic and medium-scale case study.

In future work we will consider tackling full CARMA which
requires taking into account in the background information

that joinpoints and joinpoint shadows are not equated as in
the more restricted pointcut language used here. Our ap-
proach can easily be applied to for example AspectJ [16] as
well by translating the induced pointcuts to AspectJ point-
cuts. However, the FOIL algorithm must then be restricted
to not generate pointcuts using features that can not be
translated to AspectJ: variables can only be used once in a
pointcut (except when using the “if” restrictor in AspectJ),
recursive named pointcuts are not possible, and only some
uses of the structural predicates can be translated. Other
points left for future work are:

• Other Algorithms: There exist several algorithms for
Inductive Logic Programming. In previous work, we
conduct several small-scale experiments with the Rel-
ative Least General Generalization (RLGG) [22] algo-
rithm in an aspect mining context [10]. Having several
algorithms might improve the quality of the selected
results to the end-user. For example, solutions that are
induced by more than one algorithm might be better.

• Multiple Results: Our current tools only generate one
pointcut for a given set of joinpoints. In some cases,
most notably when there is little background infor-
mation (i.e. a small number of little classes), several
alternative pointcuts are possible. Therefore, it would
be useful to allow presenting multiple pointcut results.

• Run-Time Information: Our current approach only
analyzes the static program information to induce point-
cuts. Pointcuts that require run-time program infor-
mation, such as stateful aspects [8], cannot be induced.
For this, facts representing the run-time behavior of
the program are necessary.

• Refactor existing pointcuts: The FOIL ILP algorithm
could refactor pointcuts given by an aspect-mining tech-
nique. This can be easily done by simply taking all the
joinpoints covered by that pointcut and using them as
the positive examples.
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pages 60–69.

[10] Kris Gybels and Andy Kellens. An experiment in
using inductive logic programming to uncover
pointcuts. In First European Interactive Workshop on
Aspects in Software, September 2004.

[11] Stefan Hanenberg, Christian Oberschulte, and Rainer
Unland. Refactoring of aspect-oriented software. In 4th
Annual International Conference on Object-Oriented
and Internet-based Technologies,Concepts, and
Applications for a Networked World, 2003.

[12] J. Hannemann. The Aspect Mining Tool web site.
http://www.cs.ubc.ca/labs/spl/ projects/amt.html.

[13] Jan Hannemann, Gail Murphy, and Gregor Kiczales.
Role-based refactoring of crosscutting concerns. In
Peri Tarr, editor, Proc. 4rd Int’ Conf. on
Aspect-Oriented Software Development (AOSD-2005),
pages 135–146. ACM Press, March 2005.

[14] William Harrison, Harold Ossher, Stanley M. Sutton
Jr., and Peri Tarr. Concern modeling in the concern
manipulation environment. IBM Research Report
RC23344, IBM Thomas J. Watson Research Center,
Yorktown Heights, NY, September 2004.

[15] Doug Janzen and Kris De Volder. Navigating and
querying code without getting lost. In Akşit [1], pages
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