
History-based aspect weaving for WS-BPEL using Padus

Mathieu Braem and Dimitri Gheysels
System and Software Engineering Lab

Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussels, Belgium

{mbraem,dgheysel}@vub.ac.be

Abstract

Workflow languages provide a natural way to express
business processes, and therefore they are preferred over
general-purpose programming languages to specify such
processes. However, current workflow languages offer no
support for separating crosscutting concerns which results
in workflows that are hard to maintain and evolve. Re-
cent research introduces aspect-oriented extensions to these
languages, but many advanced features of aspect-oriented
programming technology are still unavailable for workflow
languages. In this paper we present the implementation of
one such advanced feature: “stateful aspects”. We intro-
duce a high-level, logic-based pointcut language to express
aspect activation depending on past and current state of the
workflow execution. We propose a weaving strategy based
on finite state automata in order to transparently weave his-
tory tracking code in the workflow. Our approach is im-
plemented as an extension of the Padus AOP language for
WS-BPEL.

1. Introduction

The Service Oriented Architecture (SOA) promotes flex-
ible, transparent and maintainable distributed software sys-
tems by treating the collaborating software components as
independent services. One of the success stories of SOAs
are the web services [3]. Web services expose an interface
to a software system on a network, by means of standard-
ized protocols. These services work together and commu-
nicate information to each other to implement some pro-
cess or task. The specification of these collaborations was
originally expressed in general purpose languages, but it be-
came clear that that dedicated workflow languages are more
suited to express these compositions.

The Business Process Execution Language for Web Ser-
vices (WS-BPEL) [4] is such a workflow language for web
services, and can be considered as the de-facto standard for

expressing web service compositions.
However, it has been shown that these compositions suf-

fer from crosscutting concerns that are not easily separated
from the main process description [5]. This problem mani-
fests itself by code that occurs scattered in the process and
entangled with the code of other concerns. This crosscut-
ting adds complexity and makes it difficult to add, modify
and remove such concerns.

An accepted solution to deal with this problem in object-
oriented programming is by applying techniques from
aspect-oriented programming (AOP) [12]. And while initial
research on AOP has concentrated on this area of software
development, research has already extended the application
domain to that of web services [7, 9, 17]. Limiting the scope
to aspect-oriented language extensions for WS-BPEL we
find two notable approaches: AO4BPEL [7] and Padus [6].
Padus is an aspect-oriented extension to WS-BPEL that em-
ploys source code transformation and features a logic based
pointcut language.

The support for advanced aspect-oriented techniques in
these approaches is however quite basic. Some of the cur-
rent research topics in AOSD are left untouched. One of
these topics is that of “stateful aspects” [11, 15]. This tech-
nique allows the activation condition of aspects to be based
on the current and past state of the program execution. This
is an issue that is frequently encountered in business pro-
cesses. Consider the example where some additional be-
havior must be invoked after a particular sequence of events
has been executed. In order to match this sequence, the his-
tory of the program state must be traced. This is an extra
concern in its own and without language support, will be
tangled with the base process and the concern that depends
on this history tracking.

In this paper we present our solution for expressing
crosscutting concerns that depend on the history of the pro-
gram state. We extend the aspect language Padus by intro-
ducing new predicates that describe protocols in the point-
cut language. We also modify the weaving engine to gen-
erate code that traces the current state of the process execu-

tion.
The remainder of this paper is organized as follows. Sec-

tion 2 further details stateful aspects and shows two ap-
proaches that implement this concept. Section 3 then shows
the new language constructs introduced in the Padus lan-
guage to support such a solution and describes its imple-
mentation in the Padus weaver. Some related work is pre-
sented in section 4. Finally, section 6 closes the paper
with our conclusions and provides some directions for fu-
ture work on this subject.

2. Stateful aspects

Aspects introduce new behavior in the execution of the
program, when a certain condition in the base program is
met. In the traditional sense, this means that when the exe-
cution flow of the program meets a certain point, described
by the aspect, the additional behavior is to be executed. The
expression that denotes which points in the base program
are to be selected is called a pointcut. Those points that
are exposed by the aspect model and can be described by
pointcuts are called joinpoints.

However, these pointcuts are usually restricted to de-
scribing joinpoints and conditions that relate to the current
action. There is also a technique that allow aspects to de-
pend on the history of the program execution. Aspects that
depend on this past state of the program execution are called
stateful aspects. This technique is available in the JAsCo
aspect language, and has been recently introduced in an ex-
tension to AspectJ, the so-called tracematches. Other ap-
proaches that allow state-based joinpoint selection are not
discussed here (e.g. [13]).

2.1 Stateful aspects in JAsCo

JAsCo [14] aims to combine techniques from AOP and
component-based software development. Since protocols
are frequently encountered in these components, JAsCo has
been extended to support stateful aspects [15]. The exten-
sion consists of a way to specify protocols as a pointcut de-
scription. Transitions in the protocol correspond to particu-
lar runtime events and are determined by a standard point-
cut. When the pointcut is matched at run-time, the transition
is fired. JAsCo allows the programmer to attach advice to all
transitions in the protocol and the advice will be executed
as soon as that part of the protocol has been reached.

Extra features that are supported by the stateful aspects
in JAsCo are strict protocols, which only match if no other
joinpoints can be matched between the activations of the
transitions in the protocol. Protocols can also be defined in
terms of the complement of a number of transitions. Which
means that the advice will be executed, if the protocol is
not matched. Thirdly, extra conditions can be set on the

firing of a transition by means of the implementation of an
isApplicable method.

2.2 Tracematches

Tracematches [1] is an extension of the abc frame-
work [2] for defining stateful aspects. This extension uses
regular expressions to define the protocol of a stateful as-
pect. When the regular expression is matched, advice is
executed. It is however not possible to execute advice at the
intermediate points of the protocol. One of the compelling
features of tracematches is that it allows to keep traces based
on variable bindings. For a single regular expression, differ-
ent traces are kept depending on the different variable bind-
ings. When a new joinpoint is encountered, only the trace
that corresponds to variables of the joinpoint is updated. As
such, tracematches allows several instances of each proto-
col depending on the variables captured by the protocol.

Furthermore, tracematches allows to define the symbols
(i.e. joinpoints) that are relevant for matching the regular
expression. Symbols that are not defined are simply ig-
nored. This allows to define strict or non-strict aspects as
is possible in JAsCo.

2.3 Example in workflow

To illustrate how this is relevant to workflow languages,
consider the following example. An international travel
agent has a head brach office that offers a service for ob-
taining information for traveling destinations and register-
ing bookings. This service is implemented by means of a
workflow that performs several steps. Various methods of
transportation to the destination are looked up, books with
information on the region are searched for, a weather ser-
vice is queried to show what temperatures can be expected.

However, the use of all these external services cost the
traveling agent quite a bit of resources and they want to urge
their branches to not rely on this too much. They will charge
for each service used if in the end, no travel package is reg-
istered with them. If the branches do book a travel package,
they get a bonus which is to be settled later.

The accounting of the services used and how much is
to be charged is not part of the main functionality of this
workflow, and should be separated in an aspect. We can
implement this with an aspect that selects all the invoca-
tions of the external services and adds a cost to the bill for
the current branch, executing the service. When the travel
package is eventually booked, this bill is waved and a bonus
is registered. A way of describing this protocol is shown in
a following section.

2

<pointcut name="invocations(Jp, Operation)"
pointcut="invoking(Jp, ’booking’,

’bookingPT’, Operation)" />

Listing 1. Padus pointcut definition

3. Introducing stateful aspects for Padus

To implement stateful aspects for WS-BPEL, we extend
the aspect language Padus. Padus is an aspect-oriented ex-
tension to WS-BPEL that employs static source code trans-
formation as a weaving strategy. The weaver introduces the
advice and the activation conditions, and this resulting pro-
cess can be executed on a standard WS-BPEL execution en-
gine. However, as a result on this, we cannot rely on the
execution engine to provide information of the history of
the process. More on the Padus weaver can be found in [6].
The following section further explains the basic language
constructs of Padus, and we follow with the extension we
propose to support stateful aspects.

3.1 The Padus aspect language

The joinpoint model of Padus exposes every activity in
a WS-BPEL process. Those joinpoints vary from structural
joinpoints such as for instance sequencing and looping ac-
tivities, to behavioral joinpoints such as e.g. invoking activ-
ities and assigning activities.

Pointcuts that select these joinpoints are expressed in a
logic-based language. Each type of joinpoint has a corre-
sponding predicate. The parameters to these predicates can
restrict the number of selected joinpoints, or can expose
context information that is available at those points in the
execution of the workflow. The code in listing 1 shows a
named pointcut definition that selects all invocations of ser-
vices on the partnerlink booking with the bookingPT
port type. The name of the operation that is executed is
made available in the Operation variable.

Padus also has a deployment construct, which details
what aspects are to be woven with which processes and
which aspects take precedence when multiple aspects can
activate on the same joinpoint.

3.2 Language constructs

In order to be able to declaratively describe protocols
in Padus, some new language constructs and keywords are
needed. Our extension describes a protocol with a regular
language.

Regular expressions are often used to define a regular
language because it provides a concise way for writing the
grammar of the language. Three basic operations and an al-
phabet of symbols is needed for writing regular expressions.

The operations are: concatenation, union and Kleene’s star.
The set of defined pointcuts in the aspects can be consid-
ered as the alphabet of symbols. By writing down a regular
expression with the standard operations and this alphabet,
a particular protocol is defined. To keep the description of
protocols in Padus as simple as possible, only these three
basic operations are supported.

An extra predicate “sequence” is added to the pointcut
language. The sequence predicate takes one parameter that
describes a protocol by means of three other predicates. For
concatenations “concat”; for unions “choice”, and for the
Kleene’s star operation “loop”. Each of these predicates
again takes a regular expression denoting a (sub) protocol.

Listing 2 shows the definition of a pointcut that is based
on the history of the process execution. The first three lines
of this example define named pointcut definitions, which
will be reused in the last line. This last pointcut describes
a the actual protocol. Here we want to match on a number
of activities that occur in order (concat keyword). First
a login occurs, followed by a number of external service
invocation (loop keyword), followed by the invocation of
the booking service.

The advice language is not changed. It is still possible
to attach advice to any joinpoint selected by the pointcut.
In the example in listing 2, we can execute advice at Jp1
and at Jp2. Because it is unknown at the intermediate join-
points whether the full protocol will be matched, advice at
these points is executed if the partial protocol matches up to
this point.

3.3 Finite state automata

One of the key issues for implementing stateful aspects,
is that the history of the execution of events has to be
tracked. Each execution of an event can be seen as a change
of the current state of the application. Matching a protocol
during the execution of a process means that the right state
changes occur in the right order. The aspect is executed,
only when the protocol matches the history of state changes
in the process.

A protocol is expressed by means of a regular expres-
sion. To implement protocol matching, we translate this
regular expression to a finite state automaton (FSA). We do
this, because with FSAs we can check efficiently whether a
given string is generated by a particular regular language.

Informally, a FSA can be defined as graph in which each
node represents a state, and of which the set of labeled tran-
sitions are defined to move from one state to another. There
is also a designated start-state and a set of end-states. A
transition is fired if its label matches with the first symbol
of the string.

By reading a string symbol by symbol, and check if the
transitions can be followed in such a way that the end state is

3

<pointcut name="externalService(Jp)" pointcut="invoking(Jp, Partnerlink, Porttype, Operation)" />
<pointcut name="doBooking(Jp)" pointcut="invoking(Jp, ’booking’ , ’bookingPT’, ’doBooking’)" />
<pointcut name="externalNotBooking(Jp)" pointcut="externalService(Jp), not(doBooking(Jp))" />

<!-- advice can be attached to Jp1 and to Jp2 -->
<pointcut name="aProtocol(Jp1, Jp2)"

pointcut="sequence(concat(login(Jp), loop(externalNotBooking(Jp1)), doBooking(Jp2)))" />

Listing 2. Protocol definition

invoke I1

assign A1

switch

assign A2assign A4 invoke I2

assign A3

reply

Figure 1. Obtaining a string from a process
execution

.

0 1

22

23

invoke I1

assign A2

assign A3

concat([’invoke I1’,
choice([’assign A2’, ’Assign A3’])])

Figure 2. Finite state automaton for a given
protocol

reached at the end of the string, we can say that the string is
recognized by the FSA. It also satisfies the regular language
the automaton corresponds to.

The same principle can be applied in order to match pro-
tocols [11]. The protocol specification, which is expressed
in a regular language, is translated to a FSA. The string that
has to be validated by this automaton is a particular execu-
tion flow of the process. If one of those flows is accepted by
the automaton, the protocol is matched and the correspond-
ing advice can be executed.

Figure 2 shows the FSA that represents the proto-
col concat([’invoke I1’, choice([’assign
A2’, ’Assign A3’])]). In this protoc specification,
the keyword concat denotes that the following activies
should occur in order, and the keyword choice denotes
that either of its arguments will be accepted. As a result,
this FSA accepts the strings ’invoke I1 assignA2’ and ’in-
voke I1 assign A3’. It would not accept the string ’assign
A2 invoke I1’. Section 3.5 contains a discussion how we
can match a sequence of events, irregardless of the order
they are encountered in.

How such a string is obtained from a particular execu-
tion of a WS-BPEL process is shown in figure 1. The dot-
ted lines represent a particular execution flow. The flow on
the left generates a string “’invoke I1’ ’assign A1’ assign
A4’ ”, while the flow in the middle of the figure generates

4

the string “’invoke I1’ ’assign A1’ ’assign A2’ ”. The flow
on the right generates the string “’invoke I1’ ’assign A1’
’invoke I2’ ’assign A3’ ”.

If such a string is obtained and is matched by the FSA,
we know that the specified protocol has been matched, and
the advice specified in the aspect may be applied. It is clear
that the flow on the left does not match the given protocol,
while the one in the middle does.

By default, this implementation accepts protocols in a
non-strict way. This means that other activities may be ex-
ecuted in the meantime which are not part of the protocol
specification. This is sensible because otherwise every ac-
tivity, which is possibly executed during the protocol but
makes no part of it, should be added to the protocol spec-
ification. This could be very cumbersome, due to the rich
joinpoint model of Padus. Every activity is represented in
this joinpoint model, even if it doesn’t provide any real be-
havior. For instance, the “sequence” activity on its own does
not provide any logic, but is available in the joinpoint model
and can be described with the pointcut language.

We see this in figure 1. The flow on the right contains the
execution of a activity during the protocol (’invoke I2’). In
the non-strict sense, this string is still valid for the automa-
ton and as such will trigger the aspect.

3.4 Weaving history tracking code

As indicated, finite-state automata come in handy for im-
plementing stateful aspects. However, the FSAs only de-
scribe the protocol. The history of the execution of the pro-
cess has to be checked against this FSA. This section shows
how the history of the execution of the application is traced.
Some instrumentation code is needed for this and is woven
by the weaver at weave-time.

The logic which traces the process history is added by
injecting small pieces of advice into the process. How
the FSA is traversed is controlled by these advices which
perform some bookkeeping on the state of the process by
employing process variables to store this state information.
These advice also include the advice code if it is to be exe-
cuted at that time in the process execution. Because a tran-
sition of the FSA is fired when the corresponding pointcut is
executed, all these instrumentation advice blocks are added
after that pointcut. When the current state of the process
is an end-state of the FSA, the aspect advice is executed.
An extra variable is also woven into the process to store the
current state of the FSA.

The protocol tracing advices are generated as ordinary
“switch” activities. Figure 3 illustrates how these “switch”
activities are formed and where they are placed in the pro-
cess. Listing 3 shows the tracking advice that is inserted.
At the very beginning of the protocol matching, the state-
variable which holds the current state of the FSA is initially

1

2

3

assign A1

assign A2

24
invoke I1

invoke I1

switch

assign A2assign A1 assign A3

invoke I1

invoke I1

reply

1a
1b

2a
2b

3

Figure 3. Tracking the FSA state

set to the start-state of the FSA, which is always [0]. This
initialization is woven in by a before advice, at each point
where the protocol might start. In other words, before each
transition which starts from the start-state (arrows 1a and 1b
on figure 3, fragment 1a/1b in listing 3).

Furthermore, after the pointcuts that represent transi-
tions, advice is woven to update the state of the FSA (ar-
rows and code fragments 2a and 2b). When more than one
transitions exist with the same label, a separate branch is
made in the “switch” activity for every such transition. The
state is updated in theses branches according to the transi-
tion. Similar tracing advice is generated for the transitions
which do lead to an end-state, but the original aspect advice
is injected directly into the branches. Arrow 3 on figure 3
illustrates this. Two transitions exist with the same label ’in-
voke I1’. Consider therefore the two branches in the tracing
advice which changes the state.

This implementation of stateful aspects in Padus offers
two ways for attaching advices to a protocol specification.
One way is by specifying that behavior should be executed
after the whole protocol is matched with the execution flow
of the process. The other possibility is to execute behav-
ior while matching the protocol. In other words, consider
the protocol encoded as a FSA, advice is then attached to
a transition. Weaving advice for this situation is similar to
weaving advice after a whole protocol is matched. Instead

5

<assign> 1a / 1b
<copy><from expression="’[1]’" />

<to variable="protocol" /></copy>
</assign>

<switch> 2a / 2b
<case condition=’protocol = [1]’>
... set protocol to [2] (or [3]) ...

</case>
</switch>

<switch> 3
<case condition=’protocol = [2]’>
... set protocol to [1] ...
... execute aspect advice ...

</case>
<case condition=’protocol = [3]’>
... set protocol to [4] ...
... execute aspect advice ...

</case>
</switch>

Listing 3. FSA updating advice

<pointcut name="parallelProtocol(Jp1, Jp2, Jp3)"
pointcut="sequence(concat([getInformation(Jp1),

parallel([bookHotel(Jp2),
bookFlight(Jp3)])]))" />

Listing 4. Pointcut description inconsiderate
about the order of certain events

of injecting the aspect advice in the tracing advices for tran-
sitions leading to an end-state, the aspect behavior should
now be added to the tracing advice of the corresponding
transition. The advice should only be executed if the proto-
col has matched up to this point. We can safely assume that
this is the case, since the advice is inserted right at the point
where the state of the FSA is updated.

3.5 Shuffled protocol

WS-BPEL, and workflow languages in general, have the
capability of executing parts of the process concurrently.
For WS-BPEL, the “flow” activity handles the concurrent
execution of activities and shields the developer from fur-
ther details. Multiple sequences of activities can be speci-
fied in separate branches in this flow activity, and are then
executed concurrently. The WS-BPEL execution engine
translates the flow activity into a set of separate threads, one
thread for each branch of the split.

Irregarding the underlaying reason, we can not reason-
ably predict the order in which parallel activities will be
executed. And this leads to a complication with regard to
expressing protocols for stateful aspects. Often it not im-
portant in which order certain events are encountered, but
we cannot simply write this down with the available lan-

guage primitives. Consider for instance the protocol ’A B
C’, but the order in which B and C are encountered is not
important. We want to accept the executions traces ’A B C’
and ’A C B’. In order to achieve this, we add a new predicate
“parallel” to the language extension for Padus. This pred-
icate takes as its single parameter a list of pointcuts which
have to be encountered, but not necessarily in that order.

To implement this, we combine the automata that repre-
sent the pointcuts given to the parallel predicate, and con-
struct the “shuffle product” (as shown in [18]). This shuffle
product is obtained by sparsely inserting one FSA into the
other, and thus obtaining a combined automaton that keeps
track of all possible combinations of states. Figure 4 shows
how a new FSA is obtained from the shuffle product of two
other automata. Listing 4 shows the definition of such a pro-
tocol. The pointcut in this examples describes a sequence
that should be matched when getInformation is fol-
lowed by both bookFlight and bookHotel. However,
the order in which these booking services are encountered
is not relevant. In other words, this pointcut matches when
getInformation is followed by bookHotel and then
bookFlight, or when getInformation is followed
by bookFlight and then bookHotel.

Applying the shuffle product leads to a combinatorial ex-
plosion of states in the resulting automaton. The weaver has
to take these additional states into account and include them
in the “switch” activities that are formed at the selected join-
points. The process in itself has not become more complex,
but now includes much more tracing code.

4. Related work

Two approaches that implement stateful aspects are al-
ready discussed in section 2, and we will not repeat this
here. As far as we know, no other approaches support
stateful aspects in workflow languages. We do however ac-
knowledge the work on introducing AOP in workflow lan-
guages in the following approaches.

The Web Services Management Layer (WSML) [8] uses
aspects implemented in JAsCo to capture client-side web
service management concerns such as billing, transactions,
selection and caching. Compositions of web services are
handled by traditional approaches such as WS-BPEL. This
management layer employs aspects to store communication
details and conversational context of the web services [16].
The WSML uses custom JAsCo aspect factories to define a
instantiation strategy that ties stateful aspects to a specific
conversation.

AO4BPEL [7] is an aspect-oriented extension to WS-
BPEL that allows for more modular and dynamically adapt-
able web service compositions. Each WS-BPEL activity is
a potential join point. In contrast to Padus, AO4BPEL uses
the lower-level XPath pointcut language. As a consequence,

6

2

Sa 1 Sa 2 2Sa 3
invoke I1 invoke I2

Sb 1 Sb 2
invoke I3

(Sa 1,
Sb 1)

(Sa 2,
Sb 1)

invoke I1

(Sa 1,
Sb 2)

invoke I3

(Sa 3,
Sb 1)

(Sa 2,
Sb 2)invoke I1

invoke I3

invoke I2

2(Sa 3,
Sb 2)

invoke I3

invoke I2

Figure 4. Computing a shuffled state machine

pointcuts are low-level and refer directly to paths in the doc-
ument tree, which limits their reusability and makes them
fragile with respect to evolution of the base process. Fur-
thermore, the approach does not support an explicit aspect
deployment construct nor does it allow aspect reuse. While
AO4BPEL allows for aspect addition and removal while
processes are running, supporting this requires a custom-
made WS-BPEL engine.

Courbis and Finkelstein [10] present an aspect-oriented
language extension very similar to AO4BPEL. They also
use XPath as a pointcut language and use a custom WS-
BPEL engine for allowing dynamic aspect addition and re-
moval. In contrast to AO4BPEL and Padus, however, the
advice language is Java.

Further discussion on the approach that is followed in
Padus and on the logic pointcut language it features is avail-
able in previous work [6].

5. Discussion

About the performance of the stateful aspect extension in
Padus, it can be easily stated that the protocol weaving is not
as optimal as possible. Both the performance of the weaving
process and the run-time performance are discussed. First,
we take a closer look at the performance of the weaving
process itself.

By generating a deterministic finite-state automaton
from the protocol specification, many efforts are made to
make the weaving process as efficient as possible. With
a deterministic FSA, no backtracking is needed during the

weaving of the protocol in the process which makes it more
performant. However, it is very time consuming to compute
a shuffled machine. Each argument to the “parallel” predi-
cate requires the generation of a separate deterministic FSA
from which the shuffled machine is generated afterwards.

Another issue is that some instrumentation advice that
is added to the process will never be executed, because it
is in a branch of the process that is not reached. This can
be optimized by performing a graph-analysis on the proto-
col to exclude the weaving of unreachable and unexecutable
protocol trace advices in the process.

Padus is implemented as a static weaver. The idea behind
this decision was on one side to maintain efficient runtime
performance, and on the other side to deliver woven WS-
BPEL processes that can be executed on standard execution
engines. With stateful aspects however, many pieces of in-
strumentation code that trace the process state are woven in,
and this poses some additional runtime overhead. Currently
these advices are always inserted, even when the advice is
in an unreachable branch of the process. A smarter weaver
could anticipate such cases and avoid weaving in these lo-
cations. The advice is also always executed. In the occa-
sion that a protocol can no longer match against the state of
the process, the tracing code is still executed. A dynamic
weaver can in this case temporarily disable the aspect, so
the state of the process no longer needs to be traced.

The fact that Padus is implemented with a static weaver
also imposes some run-time performance deficiencies. Dur-
ing weave-time, many instrumentation pieces of code are
injected into the process and generate run-time overhead.

7

Even when it is not possible to match the protocol during the
execution, these protocol trace advices are still executed. A
dynamic weaver would avoid this problem and only insert
the trace advice when needed.

6. Conclusions and future work

In this paper we introduce history-based aspects to the
existing language Padus. We added a number of new predi-
cates to the Padus pointcut language, and also modified the
weaver to include history tracking in the process. The point-
cut that describes the protocol is translated in a finite-state
automaton. The state of this FSA is tracked in the process
execution, and when it reaches its final state, the advice is
executed.

This proof-of-concept implementation is a first step for
further research in this particular domain of aspect-oriented
programming and workflow languages. In future work, we
plan to investigate support for strict protocols. These proto-
cols do not match an execution trace when additional join-
points are encountered between those that are defined in the
protocol. This can prove to be a problem, because of the
rich joinpoint model of Padus. Tracematches provide an in-
teresting clue to only take those joinpoints in account that
are described, but not included in the protocol definition [2].

Likewise, we can include support for protocol comple-
ments, where advice is to be executed when a protocol is
not matched (can not be matched). These two features are
available in the stateful aspect extension of JAsCo and have
been proven to be very useful.

Regular expressions are used for the specification of pro-
tocols because they are rather easy to understand, but they
restrict the way how protocols can be described. For ex-
ample, with regular expressions it is not possible to de-
scribe recursive protocols. This issue can be solved by us-
ing a context-free language instead of a regular language.
Whether these advanced languages and which specific con-
structs of theirs are required is also topic for future re-
search.

References

[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,
S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittam-
palam, and J. Tibble. Adding trace matching with free vari-
ables to AspectJ. In OOPSLA ’05: Proceedings of the 20th
annual ACM SIGPLAN conference on Object oriented pro-
gramming systems languages and applications, pages 345–
364. ACM Press, 2005.

[2] C. Allan, P. Avgustinov, A. S. Christensen, L. J. Hendren,
S. Kuzins, J. Lhoták, O. Lhoták, O. de Moor, D. Sereni,
G. Sittampalam, and J. Tibble. abc: The AspectBench com-
piler for AspectJ. In R. Glück and M. R. Lowry, editors,

Generative Programming and Component Engineering, 4th
International Conference (GPCE), volume 3676 of Lecture
Notes in Computer Science, pages 10–16. Springer, Sept.
2005.

[3] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, editors.
Web Services: Concepts, Architectures and Applications.
Springer-Verlag, Heidelberg, Germany, 2004.

[4] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, version 1.1, May 2003.

[5] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr. Web
services: Promises and compromises. Queue, 1(1):48–58,
2003.

[6] M. Braem, K. Verlaenen, N. Joncheere, W. Vanderperren,
R. Van Der Straeten, E. Truyen, W. Joosen, and V. Jonck-
ers. Isolating process-level concerns using Padus, 2006. Ac-
cepted at the 4th International Conference on Business Pro-
cess Management (BPM 2006).

[7] A. Charfi and M. Mezini. Aspect-oriented web service
composition with AO4BPEL. In L.-J. Zhang, editor, Pro-
ceedings of the 2nd European Conference on Web Services
(ECOWS 2004), pages 168–182, Erfurt, Germany, Sept.
2004. Springer-Verlag.

[8] M. A. Cibrán, B. Verheecke, and V. Jonckers. Aspect-
oriented programming for dynamic web service monitoring
and selection. In L.-J. Zhang, editor, Proceedings of the 2nd
European Conference on Web Services (ECOWS 2004), Er-
furt, Germany, Sept. 2004. Springer-Verlag.

[9] T. Cottenier and T. Elrad. Dynamic and decentralized
service composition with Contextual Aspect-Sensitive Ser-
vices. In Proceedings of the 1st International Conference on
Web Information Systems and Technologies (WEBIST 2005),
pages 56–63, Miami, FL, USA, May 2005.

[10] C. Courbis and A. Finkelstein. Towards aspect weaving
applications. In ICSE ’05: Proceedings of the 27th inter-
national conference on Software engineering, pages 69–77,
New York, 2005. ACM Press.

[11] R. Douence, P. Fradet, and M. Südholt. Composition, reuse
and interaction analysis of stateful aspects. In K. Lieberherr,
editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software De-
velopment (AOSD-2004), pages 141–150. ACM Press, Mar.
2004.

[12] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, 11th Eu-
ropeen Conf. Object-Oriented Programming, volume 1241
of LNCS, pages 220–242. Springer Verlag, 1997.

[13] D. Stein, S. Hanenberg, and R. Unland. Expressing different
conceptual models of join point selections in aspect-oriented
design. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages
15–26, New York, NY, USA, 2006. ACM Press.

[14] D. Suvée and W. Vanderperren. JAsCo: An aspect-oriented
approach tailored for component based software develop-
ment. In M. Akşit, editor, Proc. 2nd Int’ Conf. on Aspect-
Oriented Software Development (AOSD-2003), pages 21–
29. ACM Press, Mar. 2003.

8

[15] W. Vanderperren, D. Suvée, M. A. Cibrán, and B. De Fraine.
Stateful aspects in JAsCo. In T. Gschwind, U. Aßmann,
and O. Nierstrasz, editors, Proc. 4th Int’l Workshop on Soft-
ware Composition (SC 2005) , Revised Selected Papers, vol-
ume 3628 of lncs, pages 167–181, Edinburgh, UK, 2005.
Springer-Verlag.

[16] B. Verheecke and V. Jonckers. Stateful aspects for conver-
sational messaging with stateful web services. In NWESP
’05: Proceedings of the International Conference on Next
Generation Web Services Practices, page 363, Washington,
DC, USA, 2005. IEEE Computer Society.

[17] B. Verheecke, W. Vanderperren, and V. Jonckers. Unravel-
ing crosscutting concerns in web services middleware. IEEE
Software, 23(1):42–50, Jan. 2006.

[18] A. Wombacher, P. Fankhauser, and E. J. Neuhold. Trans-
forming bpel into annotated deterministic finite state au-
tomata for service discovery. In ICWS, pages 316–323. IEEE
Computer Society, 2004.

9

