
Dynamic Business Rules for Web Service Composition
María Agustina Cibrán

Vrije Universiteit Brussel
Pleinlaan 2

1050 Elsene
++32(2)629.29.64

mcibran@vub.ac.be

Bart Verheecke
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene

++32(2)629.38.13

Bart.Verheecke@vub.ac.be

1. INTRODUCTION
The domains of many software applications are inherently
knowledge-intensive. Examples of such domains are e-commerce,
the financial industry, television and radio broadcasting, hospital
management and rental business. Part of this knowledge is rule-
based, typically representing knowledge about policies,
preferences, decisions, advice and recommendations. The current
software engineering practices result in software applications that
contain implicit rule-based knowledge, which is tangled with the
object-oriented core functionality. Nowadays, rule-based
knowledge has become a hot topic and is also referred to as
business rules [8, 12, 17].

On one hand we have conducted previous work in the field of
business rules [5, 6] in which we observe the crosscutting nature
of business rules connectors and the suitability of AOP for their
implementation.

On the other hand, we are working on the design and development
of the Web Services Management Layer (WSML) [7, 16],
management middleware in between client applications and the
web services. Such a management layer allows the definition of
web services compositions to provide the functionality requested
by client applications. Service compositions are expressed using a
process-based language. An example of such a process-based
language is WS-BPEL [2], a service choreography and
orchestration language that allows the definition of business
processes as interactions between web services in order to achieve
a certain goal.

In this paper we focus on business rules present in the domain of
web services compositions. We observe that composition business
rules govern different aspects of the composition: how services
need to be composed together, how suitable services can be
discovered to fill in the roles of the composition, which services
should be chosen at deployment time to carry out the activities of
the process, and how the composition should adapt to the
changing business environment. In this paper we only focus on
the last kind of composition business rules.

We observe that support for explicitly defining business rules is
inexistent or hardly supported in current business processes
languages. Business rules are only implicitly expressed and their
implementation is tangled with the core business process. As a
consequence it is difficult to reason about and to evolve both parts
independently, the core composition and the business rules. WS-
BPEL, as a representative example of process-based languages,
fails at providing support for explicitly representing the business
rules in a clean and decoupled way.

Building on top of our previous work on business rules and AOP,
we observe that composition business rules crosscut the service
compositions and thus AOP can contribute to achieve their
decoupling.

In the rest of the paper, we identify different categories of
business rules that govern how the compositions should adapt to
the changing business environment. In particular we focus on
dynamic business rules, rules that take decisions on how to
modify the core composition based on advanced patterns of
execution history. We analyze the different kinds of AOP features
needed for the realization of such rules. The JAsCo AOP
language [13] is used as an example AOP technology. In
particular, this paper shows how JAsCo stateful aspects [15] are
suitable for realizing the identified dynamic business rules.

This paper aims to contribute by providing useful examples of
dynamic aspect behavior, meaning in this context, the invocation
or change of aspect behavior based on the dynamics of program
execution.

2. BUSINESS RULES
The Business Rules Group defines a business rule as a statement
that defines or constrains some aspect of a business. It is intended
to assert business structure or to control the behavior of the
business [14]. A significant characteristic of business rules is that
they tend to change whenever the business policies they embody
change, which is more often than the core application
functionality does [1][11][17]. Examples of business rules are “If
a customer has purchased more than 20 books, then he or she
becomes a frequent customer” and “If a customer is a frequent
customer, then he or she gets a 10% discount”. Business rules are
applied at events which are well-defined point in the execution of
the core application functionality. Example events are “before the
price of a product is retrieved” and “after the customer has
checked out”, at which the two examples rules are applied.

As business domains become more and more complex, it is
fundamental to explicitly capture business processes and policies
as business rules. The Business Rules Approach [17] states that it
is crucial to implement them adhering to four objectives: separate
business rules from the core application, trace business rules to
business policies and decisions, externalize business rules for a
business audience, and position business rules for change.

3. PROBLEM STATEMENT
Using a process-based language, a business process can be
realized by specifying how different services interact to carry out
a certain goal. In the definition of a business process a set of
activities is identified. Each activity is associated with a role,

which is mapped to a concrete web service or web services
composition at deployment time in order to perform the
functionality of the business process.
Currently, WS-BPEL [2] is one of the most promising process-
based languages, candidate for standardization. WS-BPEL
(Business Process Execution Language) for Web services is an
XML-based language designed to enable task-sharing for a
distributed computing - even across multiple organizations - using
a combination of web services. Using BPEL, a programmer
describes a business process that will take place across the Web in
such a way that any cooperating entity can perform one or more
steps in the process the same way. In a supply chain process, for
example, a BPEL program might describe a business protocol that
formalizes what pieces of information a product order consists of,
and what exceptions may have to be handled. The BPEL program
would not, however, specify how a concrete web service should
process a given order internally.
We observe that the problems encountered when implementing
business rules in object-oriented languages [6, 10] also arise in
process-oriented languages. These problems occur due to the
impossibility of achieving the following objectives in an oblivious
way, i.e. without having to manually change the core application:
(1) connect business rules to core application events which
depend on run-time properties, (2) retrieve the needed information
and make it available at those events when the rules are applied,
(3) reuse the rules by connecting them at different events, (4)
combine, prioritize and resolve rule interferences and (5) achieve
all this preferably dynamically. The reason of this impossibility is
that the rules are implicitly represented as if-then statements, and
as result they appear tangled and scattered in the core application.
A business process written in WS-BPEL is one monolithic
specification. It does not support the definition of business rules
in a clean, modularized and reusable way and the specification of
the rules gets tangled with the main process itself. Changes in the
workflow due to changes in business requirements need to be
done manually and invasively. The only support WS-BPEL offers
is a limited kind of rules such as alternatives between tasks and
repetitions based on business logic. Only limited workarounds or
no support at all is provided for certain business rules such as time
or order constraints between activities.

4. OUR APPROACH
We aim at defining service composition driven by explicit
business rules. It is important to explicitly represent them since
they tend to change faster than the core business processes. They
are very volatile since they need to adapt to business requirements
and thus should be decoupled. In order to achieve highly flexible
service compositions we observe the need for defining rules
explicitly and decoupled from the service composition itself. In
the remainder of this section, we will illustrate how aspects are
useful in this regard.
As mentioned before, in this paper we focus on composition rules
that govern how the core composition needs to be adapted
according to changing business knowledge. These rules will
decide whether to add, replace, change or remove activities that
are present in the core composition. In particular we consider
dynamic business rules, rules whose triggering events and/or
conditions are based on the dynamics of the execution of the core
application. To illustrate this kind of composition business rules,

consider the following example application. It describes the
business process of buying books online. In this context,
customers of the shop can send in a quote request. If the customer
is a valid customer then a quote is sent back and remains valid for
a two-day period in which the customer can purchase an item. On
the contrary, if the customer is not registered in the shop, then an
error message is returned. During the time the quote is valid, the
customers can place orders for buying books which are accepted
by the shop. The next step in the business process is the payment
of the ordered books. Depending on the results of this activity, the
workflow continues with the shipping of the goods or with the
refusal of the order, if the card payment is not authorized for
instance.

In the following sections we identify different categories of
dynamic business rules in the domain of service compositions.
Examples of these categories are provided based on the
introduced scenario. These rules are triggered depending on the
dynamics of core compositions execution flow. Note that we are
not presenting an exhaustive categorization, but the intention is to
provide significantly different example categories of service
compositions business rules that serve as a basis for the
identification of AOP solutions.

Examples of a possible implementation in JAsCo will be
presented for each category. JAsCo is an AOP language tailored
for the component based context. JAsCo builds on top of Java and
introduces two additional entities: aspect beans and connectors.
An aspect bean is an extended version of a regular Java bean and
allows describing crosscutting behaviour by means of a special
kind of inner class, called a hook. Aspect beans are specified
independently of concrete component types and API’s, making
them highly reusable. A connector on the other hand, is used for
deploying one or more aspect beans within a concrete component
context. In addition, connectors are able to specify explicit
precedence and combination strategies in order to manage the
cooperation among several aspects that are applicable onto the
same join point. In addition, the JAsCo technology provides an
extensive run-time infrastructure. Using this infrastructure,
aspects remain first-class entities at run-time and dynamic aspect
addition and removal becomes possible.

Sections 4.1, 4.2 and 4.3 discuss different example categories of
dynamic business rules.

4.1 Category 1
Condition: occurrence of behaviors in a specific sequence.
Additionally, checks on properties of business objects can be
specified on the identified sequence

Action: addition of extra activity to the core process

This category of rules is considered when certain activities can be
executed in different orders in the core composition. For instance,
consider the case where activities a, b and c are part of the
workflow, and the execution sequences a b c, b c a and
c b a can occur in the core composition. The rule checks
whether a particular path is followed, for instance the path
a b c. The condition can additionally define extra checks on
properties of business objects to be done at any of the points in
the identified path. As an action the rule defines the insertion of
an extra activity in the core composition, which needs to be added

at an execution point posterior to the identified path on which the
condition is checked.

Note that the activities a, b and c can be either consecutive (they
occur one after the other) or not (other behaviors can be
interleaved in between the identified activities in the path).
Moreover, they can occur within the control flow of each other or
outside. The path a b means that the execution of activity b
should be triggered after the execution of a is triggered, either
within the control flow of a or after the execution of a is
completed.

Example: suppose that the payment of the books can be done
electronically by credit card or by cash. Consider a business rule
that specifies that “if not trustworthy customer and cash payment
selected then check whether the payment has been received before
shipping the products”. Then, before the actual shipping we first
need to check whether the money was effectively received before
dispatching the items. This extra check will determine whether to
continue or not with the original workflow. This check is not done
if the electronic payment branch was followed instead. Moreover,
we only want to add this extra checking if the customer is
registered in the system as not trustworthy.

In this example, the condition needs to check whether the
sequence a:login b:cashPayment is executed and check the
trustworthiness of the customer when a:login is performed. The
action identifies the addition of an activity that would verify the
reception of the cash and act accordingly. This activity is added
before c:shipping.

Solution: A naïve solution using current process-based languages
would opt for adding variables in the core composition to keep
track of whether the customer is trustful and the execution path
that was taken (either the electronic payment or the cash one).
Next, before allowing the shipment of the purchased products,
those variables would need to be consulted in order to decide
whether the extra checking for receiving the money is needed.
However, this solution implies tangling the core composition with
code for the implementation of the business rule. Moreover, the
business rule results scattered in the composition and its identity
is lost. Aspects help to avoid tangling the core composition as the
variables and extra checking code would be encapsulated in a
single module, the aspect, outside the main composition.
However, keeping track of these variables inside the aspect code
might be tedious and unclean.
class UnknownPaymentAspect {

 hook UnknownPaymentHook {

 UnknownPaymentHook(

 logIn(String username, String password),
 cashPayment(Order order),
 shippingOrder(Order order)) {

 start > logInCustomer;
 logInCustomer: execute(logIn) > payment;
 payment: execute(cashPayment) > shipping;
 shipping: execute(shippingOrder);
 }

 isApplicable logInCustomer(){

 return !store.trustworthyCustomer
 (username, password);
 }

 replace shipping() {

 if (PurchaseDepartment.cashReceived(order))
 then proceed();
 else System.out.println
 (“Shipping cannot proceed”);
 }
 }
}

Code fragment 1 – Stateful aspect for payment check
JAsCo supports the definition of stateful aspects [15], aspects that
are triggered on protocol history conditions. Stateful aspects allow
achieving a cleaner implementation of this business rule, it is
possible to specify the desired execution path of interest and plug
in the crosscutting functionality at any time in the execution of
the identified path. In this case, the path of interest is the
execution of the sequence of activities a:log-in b:cashPayment

 c:shipping. The crosscutting code is the extra check for
receiving the money that needs to be done before allowing the
actual shipping of the purchased goods. The JAsCo stateful aspect
is shown in code fragment 1.

Note that this aspect should be instantiated perThread to avoid
inconsistencies when concurrent access.

This solution based on aspects that are triggered on protocol
history conditions is much cleaner since the execution path of
interest for the pluggability of the aspect behavior is explicitly
captured. Conditions can be checked at the different transitions in
the path as well as the extra/replacing behavior can be plugged at
each transition. This solution is illustrated in Figure 1.

Figure 1 – Stateful aspect for adding additional payment

checking to e-commerce business process

4.2 Category 2
Condition: checks on properties of business objects at a
specific point in time during the process execution

Action: addition of extra activity in the process that needs to
be applied on the execution of behaviors that occur in a
specific sequence

At a certain point in the execution of the composition a condition
that involves checking a certain property of a business object is
checked. Based on the result of this checking, it is decided
whether to add an extra crosscutting behavior. In order to execute,
this behavior operates on different execution points of a defined

OrderBook

ShipBook

LogIn
Customer

IsTrustworthy
Customer

Cash
Payment

or

 noyes

Terminate

CheckCashReceived

Electronic
Payment

Stateful aspect

sequence of events that occur later on, when future tasks in the
execution path are executed.

Example: This example represents a conditional time constraint:
“If a purchase order is received and labeled as urgent then the
whole process payment-shipping-delivery should occur within a
maximum of 3 days. Otherwise, the customer is not charged for
the purchase”.

Solution: In this example, the condition of the rule is checked at a
certain point in time, which is the event a:orderBook. The result
of this check will determine the pluggability of the
monitoringTime activity. This extra behavior is applied on a
sequence of events, b:payment c:shipping, since it needs to
measure the execution time of these two activities.

The solution using stateful aspect in JAsCo looks as follows:
class ConditionalTimeConstraintAspect {

 hook ConditionalTimeConstraintHook {

 ConditionalTimeConstraintHook(

 orderBook(CustomerId customer, BookId book,
 Priority priority),
 paymentOrder(Order order),
 shippingOrder(Order order)) {

 start > placeOrder;
 placeOrder: execute(orderBook) > payment;
 payment: execute(paymentOrder) > shipping;
 shipping: execute(shippingOrder);
 }

 isApplicable orderBook(){

 return priority.isUrgent();
 }

 before payment() {

 timestampbefore=System.currentTimeMillis();
 }

 after shipping() {

 timestampafter=System.currentTimeMillis();
 if (//time difference not OK)
 store.reimbourseCustomerOfOrder(order);
 }
 }
}

Code fragment 2 – Stateful aspect for timing constraint
Figure 2 illustrates this example.

Figure 2 – Stateful aspect for adding additional time

monitoring to payment-shipping activities in e-commerce
workflow

4.3 Category 3
Condition: execution of behaviors in a sequence that is not
allowed

Action: perform extra behavior

When parallel threads of tasks executions are possible in core
composition, it might be desirable to restrict certain paths
depending on a certain condition. A constraint rule restricts which
paths are allowed, filtering out the not desired ones.

Example: An execution order constraint between tasks is enforced
by a business rule. Imagine a scenario where the shipment and
payment activities belong to different execution threads of
parallel activities. Suppose a business rule that states that “goods
can only be shipped after payment has been received”. If the
opposite occurs, then notify the manager of the shop.

Solution: JAsCo stateful aspects support triggering crosscutting
behavior on the opposite of a protocol using the complement
keyword. In this example such a feature is useful since the
manager needs to be notified whenever the protocol is not
respected. The solution looks as follows:

class ExecutionOrderAspect {
 hook ExecutionOrderConstraintHook {

 ExecutionOrderConstraintHook(
 paymentOrder(Order order),
 shippingOrder(Order order),
 methodsContext(..args)) {

 complement[execute(methodsContext)]:
 start > payment;
 payment: execute(paymentOrder) > shipping;
 shipping: execute(shippingOrder);
 }

 replace complement() {
 Manager.notify
 ("Shipping done before payment");

 }
 }
}

Code fragment 3 – Stateful aspect for payment execution
order

static connector ExecutionOrderConnector {

 ExecutionOrderAspect.ExecutionOrderHook checker
 = new ExecutionOrderAspect.ExecutionOrderHook (

 void paymentService.pay(Order order),
 void shippingService.ship(Order order), {

 void paymentService.pay(Order order),
 void shippingService.ship(Order order)
 }
);
}

Code fragment 4 – Connector for payment execution order
The ExecutionOrderAspect in code fragment 3 states that if
the specified protocol is not followed (e.g. the shipping is done
before the payment) the original behavior of the core application
is replaced by a notification which is sent to the manager. By
using the complement keyword, the specified advice is only
executed when the protocol is not followed.

OrderBook

ShipBook

Reimbourse
Customer

MonitorTime

Not OK

…

PayBook

CheckPriority

Stateful aspect

Figure 3 – Stateful aspect for triggering notification when a

certain path is not respected in e-commerce workflow

5. Related work
Previous research focused on the applicability of AOP for
business rules. Experiments have been done in AspectJ and
JAsCo illustrating the connection of business rules with the core
object-oriented application [5][6]. Other related previous research
focused more deeply on the implementation level, more specific
on the integration between the object-oriented paradigm and rule-
based languages as a rule-based approach is a more suitable
paradigm to implement business rules in [9]. Hybrid aspects were
proposed to achieve an oblivious integration at the language and
programming level.

However, in some situations, applications cannot afford to use a
rule-based programming language for implementing their
business rules since it might be too costly to incorporate support
for a rule engine for the kind and amount of rules under
consideration. Rule engines are proprietary, expensive products
and the learning curve can be steep and unaffordable for small
projects. Thus, a more lightweight approach is needed for the
definition and implementation of the business rules. In this
context, ongoing work is being carried out that envisions the
definition of a high level business rule language for the
specification of the rules, very close to natural language. This
language allows the definition of business rules independently of
any implementation detail. This way, business rules are defined
using the concepts defined in a business model. A business model
contains the different elements of the domain under consideration.
We are investigating the definition of a very configurable and
extensible business model in order to be extended with different
terms present in different domains such as, in this case, the web
service composition context. An automatic translation of the rules
defined in this high level language to a possible object-oriented
representation is under development as well as the transparent and
automatic generation of the connectivity JAsCo aspects for their
integration with the core application.
In [3], an AOP extension for BPEL is proposed. Examples of
business rules written in AO4BPEL are given in [4], illustrating
the use of AOP for decoupling business rules. This approach is
dynamic in the sense that it is possible to plug-in and out the
aspects at run-time. As it is an interpretation based approach,
aspects can be plugged in at run-time and triggered when the
interpreter reaches their pointcut definition. Pointcuts in
AO4BPEL are based on Aspect’s pointcut model. As most current
mainstream AOP languages, AspectJ’s pointcuts (with the
exception of cflow()) cannot refer to the history of previously
matched pointcuts in their specification. Thus, AO4BPEL does

not allow the triggering of aspects depending on protocol history
conditions.

6. CONCLUSION
In this paper we have presented different example categories of
business rules that are applicable in the web service composition
context. Business rules that are based on the dynamics of the core
composition are addressed meaning that either the triggering of
the rules, their conditions or actions are based on protocol history.
As a consequence of their application, crosscutting behavior is
plugged in which results in the addition, change or removal of
activities in the base composition. We provide example categories
of dynamic business rules in web services compositions. To
illustrate our results, examples of a possible implementation in the
JAsCo AOP language are given. JAsCo supports stateful aspects
which allow the definition of stateful pointcut expressions. The
use of JAsCo stateful aspects allows a more seamless integration
of the identified dynamic business rules in web service
compositions.
The business rules presented in this work are examples of rules
that guide how the composition should adapt to the changing
business environment. In order to fully cover the whole domain of
service composition business rules this work can be continued by
addressing the other kinds of composition rules already identified
in these paper.
To enhance the specification and implementation of business
rules, our current line of research focuses on creating a high-level
business rules language. This language allows specifying rules in
a very declarative way, without having to be aware of specific
AOP constructs. AOP is used as an underlying layer to realize the
connection of the business rules with the core applications in an
oblivious way.

7. REFERENCES
[1] Arsanjani, A.. Rule object 2001: A pattern language for
adaptive and scalable business rule construction.
[2] Business Process Execution Language for Web Services (WS-
BPEL), Specification Version 1.1, www-
128.ibm.com/developerworks/library/ws-bpel/
[3] Charfi, A., Mezini, M., Aspect-Oriented Web Service
Composition with AO4BPEL, LNCS 3250 , 2004
[4] Charfi, A., Mezini, M., Hybrid Web Service Composition:
Business Processes Meet Business Rules, 2nd International
Conference on Service Oriented Computing, New York City,
USA, November 2004
[5] Cibrán M. A., D'Hondt M., Jonckers V.: Aspect-Oriented
Programming for Connecting Business Rules. In Proceedings BIS,
Colorado Springs, USA (2003)
[6] Cibrán M. A., D'Hondt M., Suvée D., Vanderperren W.,
Jonckers V.: JAsCo for Linking Business Rules to Object-
Oriented Software. In Proceedings CSITeA, Rio de Janeiro,
Brazil (2003)
[7] Cibrán, M. A., Verheecke, B. and Jonckers, V. Modularizing
Client-Side Web Service Management Aspects. In Proceedings of
the second Nordic Conference on Web Services. Vaxjo, Sweden,
November 2003.

2

VerifyPayment

Status

OrderBook

ReportPurchase

NotifyManager

Stateful aspect

PayBook

VerifyTranspor
tCia

ShipBook

1

parallel

…

[8] Date C.: What not How: The Business Rules Approach to
Application Development. Addison-Wesley Publishing Company
(2000)
[9] D'Hondt M., Jonckers V.: Hybrid Aspects for Weaving
Object-Oriented Functionality and Rule-Based Knowledge. In
Proceedings of AOSD, Lancaster, UK (2004)
[10] M. D’hondt: Hybrid Aspects for integrating Rule-based
Knowledge and Object-Oriented Functionality, Phd Thesis, Vrije
Universiteit Brussel, May 2004.
[11] Kappel, G., Rausch-Schott, S., Retschitzegger, W. and
Sakkinen, M., From rules to rule patterns. In Conference on
Advanced Information Systems Engineering, pages 99--115,
1996.
[12] Ross R. G.: Principles of the Business Rule Approach.
Addison-Wesley (2003)
[13] Suvée, D. and Vanderperren, W. “JAsCo: an Aspect-
Oriented approach tailored for Component Based Software
Development,” in Proc of Second International Conference on
Aspect-Oriented Software Development, Boston, USA, March
2003.
[14] The Business Rules Group. Defining Business Rules: What
Are They Really?, July 2000. http://www.businessrulesgroup.org/
[15] Vanderperren, W., Suvee, D., Cibrán, M. A. and De Fraine,
B. Stateful Aspects in JAsCo. To be published at the Software
Composition Workshop (LNCS), ETAPS 2005, Edinburgh,
Scotland, April 2005.
[16] Verheecke, B., Cibrán, M. A. and Jonckers, V. AOP for
Dynamic Configuration and Management of Web services in
Client-Applications. In Proceedings of 2003 International
Conference on Web Services. Erfurt, Germany, September 2003.
[17] Von Halle B.: Business Rules Applied. Wiley (2001)

