
Dynamic Aspects in Large Scale Distributed Applications
An Experience report

Bart Verheecke
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene

++32(2)629.38.13

Bart.Verheecke@vub.ac.be

María Agustina Cibrán
Vrije Universiteit Brussel

Pleinlaan 2
1050 Elsene

++32(2)629. 29.64

mcibran@vub.ac.be

ABSTRACT
To realize a high flexibility in service-oriented applications, we
propose the Web Services Management Layer (WSML), serving
as a middleware layer between client applications and the web
services they integrate. To realize the core functionality of the
WSML, JAsCo was adopted as a dynamic AOP technology. In
this paper, we describe the experiences acquired during the
realization of the WSML and its integration with the Service
Enabling Platform (SEP) of Alcatel Bell, an open telecom
platform for broadband service delivery. In particular, this paper
focuses on some of the JAsCo key features that contributed to the
realization of the WSML and analyze them in terms of desired
software engineering properties. In addition, our experience in
developing such a management layer led to various improvements
to the JAsCo language and runtime environment, which are
discussed in this article as well.

1. INTRODUCTION
This paper describes the experiences acquired on the use of an
AOP technology in the context of the research project MOSAIC.
This project, carried out in collaboration with Alcatel Bell,
focuses on the development of a Web Services Management
Layer (WSML), a layer in between the client applications and the
web services. The WSML realizes hot-swapping between
semantically equivalent services, advanced selection of services
based on non-functional properties and client-side management.
The WSML is a complex example of the application of dynamic
AOP. Its architecture and implementation heavily relies on the
use of dynamic aspects. In particular, the JAsCo dynamic AOP
language is adopted for the realization of this layer.

The WSML research project serves as a useful, complex and
dynamic testing environment for the different features of JAsCo.
Also, the need for enhancements is motivated during the
development of this layer. The experiences during the realization
of the WSML led the incorporation of new features and
modifications to the JAsCo language and runtime environment.

In this paper, we present examples of how certain AOP features
offered by JAsCo successfully contribute to achieving a solution
that put into practice good software engineering properties, such
as modularity, expressivity and comprehensibility. In addition, we
report on key conflicts among these desired software engineering
properties encountered during the development of the WSML.
Moreover, we focus as well on the new features that were
envisioned during the realization of the WSML and incorporated
in the latest releases of JAsCo.

2. TECHNOLOGIES
The distributed testing environment for the several demonstrators
we developed combines a wide range of innovative and state-of-
the art technologies. This section provides an overview of these
technologies and introduces JAsCo, the dynamic AOP language
used in this setup.

2.1 Web Services Management Layer
Web services and Service Oriented Application Development
(SOAD) have the ability to change fundamentally the way
distributed applications are being developed. Web services are
modular applications that are described, published, localized and
invoked over a network. The aim of Web Service technology is to
facilitate integration of different business processes regardless of
the software and hardware used. By using a wide range of XML-
based standards such SOAP, WSDL and UDDI, web service
technology allows to overcome platform and language
dependency. Therefore, Web services are a promising technology
to design and integrate complex inter-enterprise business
applications.

In service-oriented applications a high flexibility is desired to be
able to quickly adapt and respond to changes in the environment,
such us network problems or failure and unavailability of
services, without having to stop the application. The Web
Services Management Layer (WSML) [9][3] is proposed as a
platform, that allows easy integration and client-side management
of web services in client applications. Figure 1 shows the role of
the WSML in a service-oriented application. To realize the high
flexibility required in the WSML and to cleanly modularize all
service related code in the WSML, we observe the need for
dynamic Aspect-Oriented Programming (AOP). The following
objectives are realized in the WSML using dynamic aspects:

• The ability to select dynamically the services to integrate:
multiple services, and even service compositions, can be
integrated in the WSML to deliver the functionality
requested by a client application. To decouple the client from
specific services, the notion of Service Type is introduced: a
generic specification of the required functionality without
references to specific web services. Concrete services can be
registered to provide the functionality specified in a service
type. Requests coming from clients can be easily redirected
to any of the registered services. This hot swapping
mechanism relies on redirection aspects, which define the
logic of intercepting client application requests and replacing
them with concrete web service invocations. As such, they

encapsulate all communication details for a specific service
or service composition.

• The consideration of non-functional properties in the
selection of services: Non-functional properties and Quality
of Service constraints (QoS) can guide the selection of the
most appropriate services. Selection criteria can be based on
properties defined in the services descriptions and that can be
retrieved and checked at the moment the criteria are applied
(e.g. price, distance). Another possibility is that the
properties involved in the selection criteria are not
anticipated and defined in the services. These properties
depend on the behavior of the service at run-time. Examples
of such properties are average response time, number of
successful invocations, etc. In the WSML, aspects are used
to modularize selection policies. As selection criteria are
based on business knowledge, they tend to change faster than
the core application. Therefore, the selection aspects need to
be dynamically pluggable to cope with this volatility.

• Client-side web service management: The WSML
encapsulates the implementation of different client-side
management concerns. Examples of such concerns are
caching, billing, accounting, security, transaction, etc.
Ideally, these concerns need to be plugged-in and out at run-
time according to the application requirements. To decouple
and cleanly modularize client-side management code in the
WSML, management aspects are used. For instance, all code
that deals with client-side billing of a service resides in a
billing aspect. Management aspects can also be used to
monitor services. For instance, if a client application requires
the fastest service, the performance of the involved services
needs to be monitored. It is essential to insert and remove
this monitoring functionality on demand, as the desired
properties can dynamically change.

Dealing with these issues in the WSML allows weakening the link
between the client application and the specific web services as all
web service related code is taken out from the client application
and placed in the WSML. As a result, applications become more
robust and adaptable to changes in the environment. For more
details on the architecture and implementation of the WSML, we
refer the user to [9][3][11]. A fully implemented version of the
WSML was realized in the context of the MOSAIC1 project and is
available at [10]. This prototype is implemented in Java and
JAsCo.

2.2 JAsCo
JAsCo is introduced in [6] as an aspect-oriented programming
language tailored for the component based context. JAsCo builds
on top of Java and introduces two additional entities: aspect beans
and connectors. An aspect bean is an extended version of a
regular Java bean and allows describing crosscutting behavior by
means of a special kind of inner class, called a hook. Aspect
beans are specified independently of concrete component types
and APIs, making them highly reusable. A connector on the other

1 Funded by the IWT (Instituut voor de aanmoediging van Innovatie door
Wetenschap en Technologie in Vlaanderen), Mosaic Project, Flanders
(Belgium)

hand, is used for deploying one or more aspect beans within a
concrete component context. In addition, connectors are able to
specify explicit precedence and combination strategies in order to
manage the cooperation among several aspects that are applicable
onto the same join point. In addition, the JAsCo technology
provides an extensive run-time infrastructure. Using this
infrastructure, aspects remain first-class entities at run-time and
dynamic aspect addition and removal becomes possible. For more
information about JAsCo the interested reader is referred to [10].

2.3 Case Study
The Service Enabling Platform (SEP) of Alcatel is an operational
architecture and open third-party-ready development environment
that enables telecom operators to offer converged communication
services to end-users. Web service technology is used to realize
the collaboration of several internal and third party network
services that handle network–user interactions, user connectivity,
information delivery and network resource optimization. Several
experiments have been done to integrate the WSML with the SEP
in order to realize a platform that:

• is flexible to adapt to changes in the business environment

• supports reusability and configurability of service capabilities

• allows customization and rapidly fine-tuning of service
offerings

• provides added value in the provisioning of services

One of the realized SEP-WSML scenarios is the realization of
various payment schemas in a Video on Demand system (VoD).
Examples include flat fee payment, one phase and two phase pre-
payment, micro payments, post-paid and subscription payment
based on the customer rating. For each payment schema, a billing
aspect was instantiated that intercepts the call to the network
provider when demanding a bandwidth upgrade (in order to
stream the movie) and executes the actual billing on the rating
engine of the service provider. Next to these fixed payment
schemas, additional promotional actions, expressed as business
rules, were implemented. For instance, variations exist where
every 10th call to the rating engine was blocked, resulting in a free
bandwidth upgrade every 10th time. By using dynamic aspects,
the fast changing business policies can be easily enforced in the
distributed environment, even if they were unanticipated. By
representing them explicitly as dynamic aspects, they can be
easily added, changed or removed.

3. EXPERIENCES
The WSML research project serves as a useful complex and
dynamic testing environment for the different JAsCo features.
The following section presents some of the features offered by
JAsCo that are useful for the realization of the WSML and
analyze them with respect to desired software engineering
properties such as modularity, expressivity and comprehensibility.
Analogously, new features whose need was identified during the
realization of the WSML and that were or are planning to be
incorporated in JAsCo are also presented.

3.1 Aspects on aspects
The redirection mechanism in the WSML allows forwarding the
functional requests originated in the client applications to
concrete semantically equivalent web services. In order to achieve
a high degree of flexibility and configurability in the WSML, one
of the objectives during its implementation was the decoupling of
the different service concerns in different aspects. Examples are
the redirection concern and the fallback management concern.
Thus, we encapsulated each concern in a different aspect a
RedirectionAspect including the forwarding of a request to a
concrete web service that tackles that functionality and a
FallbackAspect implementing a concrete strategy for dealing with
failure while addressing that particular web service. This
decoupling allows dynamically taking the decision of which
fallback strategy is more appropriate for each service.

A different instance of the aspects redirection and fallback exists
per each concrete web service. This combination of redirection
and fallback concerns realizes hot-swapping in the WSML. In
order these two aspects to work together in the correct way, the
fallback needs to hook when the redirection aspect is executed,
more specifically the fallback replaces the redirection. Specifying
aspects on other aspects is hardly ever supported in current
aspect-oriented approaches (except for EAOP [4]). JAsCo
supports the definition of aspects that hook on other aspects:
connectors can be instantiated on joinpoints that identified the
execution of hooks. Using this feature the fallback mechanism is
implemented by hooking on the replace of the redirection aspect
as follows:
static connector FallbackConnector {
 FallbackAspect.FallbackHook fallback =
 new FallbackAspect.FallbackHook
 (* RedirectionAspect.RedirectionHook.replace());
}

Code fragment 1 – Fallback connector: example of a JAsCo
aspect that hooks on another aspect

At the moment the fallback is triggered, first it needs to proceed
with the original behavior, i.e., the service redirection. In case an
exception is raised during the web service invocation, the fallback
aspect notifies the WSML so that a new service is tried out. To
realize this, a new redirection aspect that invokes a different web
service is activated and the whole redirection-fallback process
starts again, now attempting to communicate with the new web
service. This means that the original request originated in the
client application should now be redirected to this different
concrete web service through this newly activated redirection
aspect. However, in order to achieve this, an invocation to
proceed() is not adequate since it would continue with the
interrupted redirection aspect execution and not trigger the
execution of the original request again, as pursued in this case.

A new feature is needed that allows a new invocation of the
original method that triggered the aspect chaining. Using this
argument as motivation, the JAsCo language was extended with
the new method invokeAgain, in order to allow the invocation
of the original method that triggered the aspect chain all over
again (available from version 0.5.12). AspectWerkz has recently
identified the need for such a feature and added the

invokeOriginalMethod construct, which allows skipping the
rest of the advices and calling the original method directly [2].

Having the possibility of hooking aspects on other aspects is
useful in certain situations as illustrated with the redirection and
fallback concerns. However, one disadvantage when using the
invokeAgain feature is that it is not always clear to understand
its effect, i.e., which method will be the one invoked again. When
looking in isolation to the fallback aspect, it is not straightforward
to identify the method that originated the aspect chaining. Thus,
analyzability of aspects is reduced since knowledge about
“where” the aspects are hooking is needed to understand the
behavior of the aspect itself.

3.2 “Complement” stateful aspect feature
Stateful aspects proposed by Douence et al. [5] constitute a formal
model for aspects that are triggered on protocol history
conditions. JAsCo provides stateful aspects expressions based on
this model (available from version 0.5), allowing aspects to be
triggered based on conditions that depend on the execution history
of an application. For more information on stateful aspects in
JAsCo, the interested reader is referred to [8].

From our experience in Service-Oriented Software Development,
and more generally Component-Based Software Development, we
observe that it is often interesting to trigger aspects whenever a
sequence of not allowed communications is attempted. For
instance, suppose a booking web service that exposes two
operations in order to login and book a flight: login(String
userName,String password) and book(String flightNo,
String customerID) respectively. Imagine that the service
provider is interested in checking that users of this web service
invoke the operation book only after the operation login is
invoked first. That is, if the operations are invoked in a different
order than the allowed one, then an exception should be thrown or
a notification should be sent, for instance. This motivates the need
for having a language feature that would allow the specification
of the triggering of aspects on the complement of a protocol. By
complement we mean every joinpoint sequence outside the
allowed defined protocol. In order to achieve this, JAsCo stateful
aspects were extended with the complement construct, which
allows executing crosscutting behavior whenever a certain
invocation that does not follow the allowed protocol is executed
(available from version 0.8). The stateful aspect implementing the
introduced example is shown in code fragment 2. In this example,
the first allowed operation is the login. Once the user has logged
in, he/she is allowed to invoke the book operation. That means
that only the sequence login > book is allowed. If these
operations are invoked in another order, then the complement
behavior will be executed, in this case, a notification that a not-
allowed communication was attempted.

class ProtocolCheckerAspect{
 hook ProtocolCheckerHook{
 ProtocolCheckerHook(login(..arg),book(..arg),
 methodsContext(..arg)) {
 complement[execute(methodsContext)]:
 firstOperation:execute(login)>secondOperation;
 secondOperation:execute(book);
 }

 replace complement () {
 notify(“Not allowed invocation attempted”);
 }
 }
}

Code fragment 2 – ProtocolCheckerAspect: JAsCo stateful
aspect that checks that the web service protocol is respected

A connector instantiating the ProtocolCheckerAspect is
shown in code fragment 3. As parameters, the two pertinent
operations are provided as well as a set containing the operations
that are considered to calculate the complement, in this case the
set containing the two operation login and book. Therefore, the
sequence login > book is allowed whereas the sequence book >
login falls into the complement and thus it is not rejected.

static connector ProtocolCheckerConnector{
 ProtocolCheckerAspect.ProtocolChecker checker =
 new ProtocolChecker.ProtocolChecker (
 void webService1.login(String, String),
 void webService1.book(String, String), {
 void webService1.login(String, String),
 void webService1.book(String, String)
 });
}
Code fragment 3 – ProtocolCheckerConnector: deploying of
ProtocolCheckerAspect using login and book operations of

Web Service1
The complement feature allows for instance the easy
implementation of run-time contract checking logic for web
services and security concerns in web services communications.

Without stateful aspects, workarounds would need to be
implemented to keep track of the execution history of a system.
The addition of stateful aspects in JAsCo improves on
expressivity since they allow explicitly capturing the desired
execution paths upon which to trigger aspects. The complement
feature improves expressivity of AOP languages since it is
possible to specify explicitly which the desired communications
are, and trigger aspects whenever they are not respected.
Modularity of aspect behavior is improved since the desired
protocols are nicely encapsulated in a single place in the aspect
definition and not scattered in the aspect code, for instance
keeping track of the executed path using boolean variables.
Finally, analyzability and understandability of the aspect code are
also improved.

3.3 “After throwing” language construct
Normally, a JAsCo after advice is not executed when the
joinpoint it is specified on throws an exception. While this is the
desired behavior in most cases, it might also be required to
specify some after advice in case an exception is thrown. For
instance, consider a monitoring aspect that calculates the number
of successful and failed invocations of a web service method and
the time needed to complete the invocation. Typically, the aspect
has a before advice starting a counter when the service is invoked,
and after advice stopping the counter, calculating the time and
registering the invocation as a success or a failure. However,
when the service invocation fails due to network conditions or

service failure, the after advice is never executed. A workaround
that would realize this behavior consists of the definition of a
replace() advice with a try/catch block. To count the number of
failures, the following advice would be specified:
replace() {
 try {
 proceed();
 }
 catch (ServiceInvocationFailureException error){
 service.numberOfFailures++;
 throw error;
 }
}

Code fragment 4 – Workaround for counting the number of
failures of a WS invocation

The proceed() specifies to continue the chain of replace()
behaviors or to execute the original behavior in case there is no
other replace advice specified. As a result, the code specified in
the catch block is only executed when an exception of type
ServiceInvocationFailureException is thrown. However,
this replace() advice is rather counter-intuitive and its
behavior is not clear to understand when analyzing it in isolation.
To enhance comprehensibility and expressivity of the JAsCo
aspects, a richer after advice semantics has been added in JAsCo
version 0.8: a new after throwing advice is only executed
when an exception is thrown. Our example to count the number of
service invocation failures can then be easily expressed as
follows:
after throwing (ServiceInvocationFailureException
 error) {
 service.numberOfFailures++;
}
Code fragment 5 – After throwing advice to count the number

of failures when invoking web services
Multiple after throwing advices for capturing different types of
exceptions can be declared. Similar to AspectJ [1], the after
throwing advice always rethrows the exception.

In the new version of JAsCo, version 0.8, after advices are
executed even if the joinpoint it is specified upon, throws an
exception. To specify an advice that only executes when the
joinpoint does not throw an exception, a new construct after
returning has been added, as the complement of after
throwing. The new version of AspectWerkz [2], version 2.0,
recently introduced a similar feature.

Note that it can also be desirable to specify an after throwing
advice that does not rethrow the exception. Consider the example
of the fallback aspect discussed in section 3.1. In this case, the
exception thrown by the redirection aspect (caused by a failure of
a service invocation), should be captured and not rethrown by a
fallback aspect. The next version of JAsCo, version 0.9, envisions
the introduction of such a feature. Although it is very expressive
to have different language contructs to distinguish between all
these different semantics, it might affect the understandability of
the AOP language, since the programmer needs to understand the
difference between many similar features to decide which one is
the most appropriate in each situation.

3.4 Advanced event handling for aspects
In JAsCo, the reusable crosscutting concerns are written down in
aspects, while the runtime deployment details of the aspect are put
in connectors. These connectors can be easily enabled and
disabled to stop temporarily the execution of the advices specified
in the aspect. However, several scenarios were encountered where
enabling, disabling and even removing an aspect required some
additional behavior to be executed. For example, the monitoring
aspect from the previous section, adds new properties, which
represent the runtime behavior of the web services (e.g. number of
failures, response time, etc). These properties are added to the
appropriate WebService object. However, when the monitoring
aspect is removed, these properties need to be removed too. In
addition, when the aspect is temporarily disabled, the properties
need to reflect this status. For this purpose, the JAsCo runtime
environment now throws an event whenever an aspect is added,
removed, enabled or disabled. Inside the aspect, additional
behavior can be specified that needs to be executed in these cases.
Inside the service monitoring aspect, the following code has been
added:
public void globalPropertyChangeEvent
 (PropertyChangeEvent event) {

 if(event == HookPropertyChangeEvent.IS_ENABLED)
 service.enableMonitoredProperties();
 else if
 (event == HookPropertyChangeEvent.IS_DISABLED)
 service.disableMonitoredProperties();
 else if
 (event == HookPropertyChangeEvent.IS_REMOVED)
 service.removeMonitoredProperties();
}

Code fragment 6 – Advanced Event handling for
JAsCo aspects

This simple example illustrates the need for more advanced
control over the enabling, disabling and removal of aspects. A
workaround for this feature would consist of the specification of
an aspect that specifies advices that hook at the moment the
aspect is enabled, disabled or removed in the JAsCo runtime
environment. Clearly, this solution would be awkward since the
aspect would need to hook on a joinpoint outside the core
application. On the contrary, the code in fragment 6 is much
cleaner and easier to understand. As such, this feature has
contributed to the expressivity of the JAsCo aspects.

3.5 Feature Interaction Solutions
When multiple advices are specified to be executed on a single
joinpoint, their order of execution can be explicitly specified in a
single JAsCo connector:
Hook1.before();
Hook2.before();
Hook2.replace();
Hook1.replace();

Code fragment 7 – Specifying explicit order in a JAsCo
connector

This allows having a tight control over the execution of the aspect
behavior. It also provides a partial solution for the feature
interaction problem [7]. While this approach proves to be
sufficient in most cases, it also has the drawback that removing or
adding an aspect involves rewriting and recompiling the
connector. In some situations, this expressive way of specifying

aspect execution order is not required: a simple ordering of the
connectors in the internal JAsCo connector registry is enough.
Furthermore, in some cases it is more important to instantiate
aspects in separate connectors in order to allow a fast addition,
removal, enabling and disabling of individual aspect instances. To
facilitate the management of these connectors, connector
priorities and connector combination strategies were added.

Connector priorities allow controlling the execution order of
advices that are instantiated in separate connectors and defined on
the same joinpoint. The higher the value, the higher the priority.
Through the JAsCo connector registry API, the priority of
connectors can be dynamically altered, resulting in a dynamic
reordering of the connectors. This feature is particularly useful to
implement service selection guidelines [11]. A guideline specifies
the preference of one service over another one based on some
non-functional property, e.g. prefer the use of the cheapest service
when possible. This can be achieved straightforwardly by
assigning specific priorities to the connectors of the redirection
aspects that reflect the order implied by the guideline. More
advanced control is introduced by connector combination
strategies. Likewise to normal combination strategies, connector
combination strategies can be implemented in plain Java and
allow filtering the list of all connectors at each encountered
joinpoint.

These features are included in the JAsCo language in order to
improve modularity of crosscutting concerns and evolvability of
the overall solution. They allow the addition and removal of
aspects independently of each other in a much easier way while it
is still possible to express aspect interactions in a modular way.

3.6 Jasco runtime improvements
By default, the JAsCo connector registry looks for new
connectors with specified intervals, allowing for easy loading and
removal of aspects at runtime. However, in the context of the
WSML, a tighter control on the addition and removal of
connectors is needed. The WSML is an aspect-oriented layer on
top of the JAsCo runtime environment that controls the
compilation and instantiation of aspects and the automatic
generation and compilation of the connectors. Therefore, we
decided to disable the hot-deployment of connectors and replace it
by a mechanism that delegates the control of loading and
unloading connectors to the WSML by means of the use of the
Connector Registry API. This mechanism also had the advantage
that it avoids the possibility of loading illegitimate connectors and
aspects into the system. Before, it was possible to load malicious
aspects that were not fully tested and that could crash the whole
system. With the new mechanism, only aspects that were
thoroughly tested and registered in the WSML could be
instantiated.

An aspect causing a crash of the system had far-reaching
consequences. Not only did this result in downtime of the server,
but it also took a long time to reboot the system and to recompile
and reload all aspects and connectors. In a small scenario with 10
connectors instantiating 7 aspects, the loading time of the WSML
was more than 3 minutes on a Pentium 4 with 1GB of RAM.
Therefore, a caching mechanism is provided as part of the WSML
in order to reuse already compiled connector and aspect classes.
This reduced the loading time by a factor of 10. To avoid aspects
that could crash the whole system, all aspects were implemented

following a coding convention. This allows detecting the aspects
that cause exceptions and immediately removing them from the
runtime environment. The code fragment 8 illustrates this with a
replace advice:
replace() {
 try {
 //do something
 }
 catch (Exception e) {
 WSML.unloadConnector(name);
 }
}

Code fragment 8 – Coding convention for aspect advices
The incorporation of these improvements to the JAsCo runtime
environment contributed to achieving a more robust
implementation of the WSML and enhancing evolvability of the
overall solution.

4. CONCLUSIONS
In this paper, we present our experiences gained during the
MOSAIC research project. We report on the integration of the
WSML, a platform for client-side web services management, and
the SEP, an open architecture for telecom operators that delivers
added value services to end users. The result of this integration is
a highly-flexible architecture for multi-service provisioning. In
this paper, we discussed the use of the dynamic AOP language
JAsCo in this environment in terms of desirable software
engineering properties such as expressivity, analyzability and
comprehensibility. It is clear that a complex distributed
application such as the SEP-WSML is a good case study to learn
about the advantages of dynamic AOP in a real-world application.
It also shows that interaction towards the AOP community is
necessary in order to incorporate new desirable language and
runtime environment features. In this particular case, bidirectional
communication proofed to be useful for both the developers of
JAsCo as the SEP-WSML was a very interesting testing platform,
as well as for Alcatel Bell as this was a good opportunity to learn
about the advantages of AOSD for service delivery. A new
project will start in 2005, focusing on the use of dynamic AOP for
service creation.

5. REFERENCES
[1] AspectJ, http://eclipse.org/aspectj/

[2] AspectWerkz, http://aspectwerkz.codehaus.org/

[3] Cibrán M. A, Verheecke B. and Jonckers, V., “Modularizing
Client-Side Web Service Management Aspects”, in Proceedings
of the 2nd Nordic Conference on Web Services, Växjö, Sweden,
November 2003.

[4] Douence, R., Fradet, P. and Südholt, M. A, “Framework for
the detection and resolution of aspect interactions”, in
Proceedings of the ACMSIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (GPCE),
October 2002.

[5] Douence, R., Fradet, P. and Südholt, M., “Composition,
Reuse and Interaction Analysis of Stateful Aspects”, in
Proceedings of the 3th International Conference on Aspect-
Oriented Software Development”, Lancaster, UK, March 2004.

[6] Suvée, D. and Vanderperren, W., “JAsCo: an Aspect-Oriented
approach tailored for Component Based Software Development,”
in Proceedings of Second International Conference on Aspect-
Oriented Software Development, Boston, USA, March 2003.

[7] Pulvermüller, E., Speck, A., Coplien, J.O., D'Hondt, M. and
De Meuter, W., “Proceedings of the Workshop on Feature
Interaction In Composed Systems”, European Conference on
Object-Oriented Programming, Budapest, Hungary, 2001.

[8] Vanderperren W., Suvee, D., Cibrán M. A. and De Fraine B.,
“Stateful Aspects in JAsCo”, submitted to the Workshop on
Software Composition, ETAPS 2005, April 2005 Edinburgh,
Scotland.

[9] Verheecke, B. and Cibrán, M. A., “AOP for Dynamic
Configuration and Management of Web services in Client-
Applications”, Published in the International Journal on Web
Services Research (JWSR): Volume 1, Issue 3, July-Sept 2004

[10] Verheecke, B. and Cibrán, M. A., “Web Services
Management Layer (WSML)”, http://ssel.vub.ac.be/wsml/

[11] Verheecke, B., Cibrán M. A. and Jonckers V., “Aspect-
Oriented Programming for Dynamic Web Service Monitoring and
Selection”, Proceedings of the European Conference on Web
Services 2004 (ECOWS'04), Erfurt, Germany, September 2004.

[10] JAsCo, http://ssel.vub.ac.be/jasco/

