
 
Towards Automatic Integration of High-Level Business Rules Using 

Aspect-Oriented Programming 
 

María Agustina Cibrán - Maja D'Hondt 
System and Software Engineering Lab 

Vrije Universiteit Brussel 
Belgium 

 
{mcibran, mjdhondt}@vub.ac.be 

1. Context 

The real-world domains of many software applications are inherently knowledge intensive. Part of this 
knowledge is rule-based, representing knowledge about policies, recommendations and decisions based 
on business information. For instance, e-commerce applications contain discount and personalization 
policies, medical applications contain health care decisions, etc. Typically, rule-based knowledge is 
represented implicitly and thus tangled in the application's code, with negative effects on reusability and 
maintainability. Nowadays rule-based knowledge is gaining more and more importance and it is also 
referred as business rules [1, 2, 3]. A business rule is a statement that defines or constraints some aspect 
of the business, either structure or behavior [4]. The main characteristic of business rules is that they tend 
to evolve more frequently than the core application functionality. Therefore, it is becoming more 
important to consider business rules explicitly and decoupled from the core applications. Moreover, 
besides writing separate and explicit rules, it is desired to do so using an expressive lightweight language: 
full-fledged rule-based languages imply a technological overhead and require the business analysts to 
have low-level programming language skills to write the rules, which may result overkill for some 
applications. Other approaches suggest the use of object-oriented patterns [5], which are not a declarative 
format and thus not very suitable for the expression of the rules. 
Moreover, we observe that even though some approaches allow rules to be defined separately at the 
implementation level, they fail to separate and encapsulate their connection, i.e. the code that links the 
business rules to the core application. This code still results crosscutting in the core application, as 
identified in previous work [6, 7]. 
A third problem appears as a consequence of evolution: domains evolve, new rules are defined that talk 
about domain concepts that were unforeseen in the current application. It is desired to allow the definition 
of new domain vocabulary and to transparently adapt the current implementation in order to realize it. 

2. Our approach 

In order to overcome the identified problems, we propose the definition of a high-level lightweight rule 
language. This would allow us to express the rules and the details of their connection with the core 
application in a language that is closer to the domain, independent of implementation details. Our 
approach proposes: a) the definition of a domain model b) the automatic translation of the domain model 
to the implementation. 

2.1. Definition of a Domain Model 

We propose a domain model that consists of three components: the domain entities, the high level rules 
and the specification of the connection of the rules with the core application. The proposed model is a) 
high-level and declarative; b) loosely coupled from implementation. 
The domain entities represent the vocabulary of the domain of interest. They constitute the building 
blocks used in the definition of the high-level rules and their connection. Considering an application 
already developed using an object-oriented (OO) approach, the domain entities are used for: a) extracting 
the domain knowledge present in the current implementation; b) defining new domain vocabulary which 
is unanticipated in the current implementation. 
The high-level rules express relations between domain entities in the domain model. They have the form 
of an if condition then action statement, meaning that the condition has to evaluate to true in order the 
action to be performed. They are defined in terms of domain entities and thus are independent of 
implementation details. 



 
The connection of the rules specifies how the rules need to be integrated with the core application. The 
connection typically denotes an event which defines when the application of the rule needs to be 
triggered. In case the application of the rule requires information unavailable at that event, the connection 
also specifies how to capture it and make it available to the rule. 
The high-level nature of this domain model allows the reusability of the business logic among different 
applications on the same domain or among different versions of an evolving application. 

2.2. Realization of the Domain Model: suitability of AOP 

The ultimate goal is the automatic translation from the domain model to the implementation. This 
translation has two characteristics: (1) it is transparent for the business analysts who define the domain 
vocabulary and the business rules (2) it happens non-invasively for the core application where the rules 
are to be integrated. 
We analyze how each component of the domain model can be mapped to the implementation. Consider 
the core application developed in OO. Given a domain entity that represents a domain term, two situations 
can occur: the domain entity is anticipated in the core OO software application, in which case it is 
mapped to the existing OO entities that implement it; for instance, the domain entity “customer” maps to 
the OO class “Customer” present in the current implementation. The other possibility is that the domain 
entity is unanticipated in the current implementation, and thus adaptations or extensions to the core 
application might be needed. For instance, a domain term that refers to the “average amount spent by a 
customer in the last month” might not be anticipated in the current implementation. Moreover, the 
implementation of such a domain term might even result crosscutting in the core application. We want to 
non-invasively adapt the core application, since it is not desired to invasively modify the implementation 
each time the domain vocabulary changes. Thus AOP seems ideal in this regard and its use is being 
explored. 
Business rules are implemented using OO entities. Each rule is represented by a class that defines two 
methods, for the condition and action of the rule. 
As the connection of the rules crosscuts the core application [8], Aspect-Oriented Programming (AOP) is 
suitable for its implementation, as identified in previous work [6, 7, 9]. The specification of the 
connection of the rules involves different parts, namely the specification of the application time, the 
information needed for its application, how to combine the rules that are applied at the same time, etc. 
Thus the translation of the connection to implementation might result in a different AOP pattern solution, 
as the ones identified in [8]. 
To conclude, we are working on the definition of this domain model and its automatic translation to 
implementation. In doing so we are analyzing the usefulness of AOP, in particular for: obliviously 
achieving the implementation of unanticipated domain entities; non-invasively implement the connection 
of the rules with the core application. 

3. References 

 
[1] Date C.: What not How: The Business Rules Approach to Application Development. Addison-Wesley Publishing 

Company (2000) 
[2] Ross R. G.: Principles of the Business Rule Approach. Addison-Wesley (2003) 
[3] Von Halle B.: Business Rules Applied. Wiley (2001) 
[4] The Business Rules Group. Defining Business Rules: What Are They Really? 

http://www.businessrulesgroup.org/, July 2000. 
[5] Arsanjani A.: Rule object 2001: A Pattern Language for Adaptive and Scalable Business Rule Construction 

(2001) 
[6] Cibrán M. A., D'Hondt M., Jonckers V.: Aspect-Oriented Programming for Connecting Business Rules. In 

Proceedings BIS, Colorado Springs, USA (2003) 
[7] Cibrán M. A., D'Hondt M., Suvée D., Vanderperren W., Jonckers V.: JAsCo for Linking Business Rules to 

Object-Oriented Software. In Proceedings CSITeA, Rio de Janeiro, Brazil (2003) 
[8] Cibrán M. A., "Using aspect-oriented programming for connecting and configuring decoupled business rules in 

object-oriented applications", Master Thesis, Vrije Universiteit Brussel, Belgium, 2002. 
[9] Cibrán M. A., Suvée D., D'Hondt M., Vanderperren W. and Jonckers V., "Integrating Rules with Object-Oriented 

Software Applications using Aspect-Oriented Programming", Proceedings of ASSE'04, Argentine Conference on 
Computer Science anbd Operational Research, Córdoba, Argentina, September 2004. 


