Integrating Rules with Object-Oriented Software
Applications using Aspect-Oriented Programming

Marfa Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel (VUB)
Pleinlaan 2
1050 Brussels
Belgium
{mcibran,dsuvee,mjdhondt,wvdperre} @vub.ac.be, vejoncke@info.vub.ac.be

Abstract. Literature on developing software applications with rule-based
knowledge, or business rules, advocates separating rules from the object-
oriented core functionality. Many technologies exist that pursue this goal,
although they take radically different approaches to physically separating rule
definitions from object-oriented programs. However, we observe that the
integration code is still tangled in the programs themselves. Separating and
encapsulating the integration code is not straightforward: we identify a number
of issues that need to be addressed. This paper reviews these issues and
determines a number of features, both at the language and the technological
level, which — according to us — are required to address these issues. Since the
principle of Aspect-Oriented Programming (AOP) advocates the encapsulation
of tangled code, we examine several state-of-the-art AOP approaches. This
paper discusses, for each of the identified issues, the different kinds of features
provided by these approaches.

KEYWORDS: Object-Oriented Software Engineering, Business Rules, Aspect-Oriented
Programming

1 Introduction

The real-world domains of many software applications, such as e-commerce, the
financial industry, television and radio broadcasting, hospital management and rental
business, are inherently knowledge-intensive. Part of this knowledge is rule-based,
which typically represents knowledge about policies, preferences, decisions, advice
and recommendations, to name just a few. Current software engineering practices
result in software applications that contain implicit rule-based knowledge, which is
tangled with the object-oriented core functionality. Nowadays, rule-based knowledge
has become a hot topic and is also referred to as business rules [8, 21, 26].

When considering literature on developing software applications with rule-based
knowledge, or business rules, we find that all advocate making rules explicit and
separating them from the object-oriented core functionality [8, 21, 26]. Moreover,

2 Marfa Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

many technologies exist that are targeted towards these goals, although they take
radically different approaches.

This abundant choice of approaches notwithstanding, we observe that the actual
tangling of rules and object-oriented functionality is not resolved by any of them.
Although the rule definitions — in whichever format or language — are physically
separated from the object-oriented program, the code that integrates them is still
tangled in the programs themselves. In order to truly separate them, the integration
code should be encapsulated. This enables the development of alternative integrations
when either rules or core functionality changes due to maintenance, reuse or
evolution.

Encapsulating the integration code is not straightforward: we identify a number of
issues that need to be addressed. This paper reviews these issues and determines a
number of features, both at the language and the technological level, which —
according to us — are required to address these issues. Since the principle of Aspect-
Oriented Programming (AOP) [7, 16] advocates the encapsulation of tangled code, we
examine several state-of-the-art AOP approaches. This paper discusses, for each of
the identified issues, the different kinds of features provided by the approaches.

The next section briefly introduces business rules using some straightforward
examples. Section 3 presents the set of requirements which are essential in order to
successfully encapsulate the rule integration code. Section four introduces the ideas
and concepts behind AOP and demonstrates how its features are ideal to be used in
the context of encapsulating rule integration. This is achieved by investigating several
state-of-the-art AOP approaches, such as Aspect] [2], Hyper]J [19], JAsCo [24], JAC
[20], AspectWerkz [3] and JBoss/AOP [11]. Finally, we present some related work
and end with the conclusions.

2 Business Rules Example

In order to introduce business rules, consider a simple e-commerce application which
allows buying books online. This shop defines a price personalization policy with the
following discount rules:

— Rulel: If today is Christmas, then a customer gets a 5% discount.

— Rule2: If a customer has purchased more than 20 books, then he or she becomes a
frequent customer.

— Rule3: If a customer is a frequent customer, then he or she gets a 10% discount.

Typically rules are applied at events, which denote well-defined points in the
execution of the core functionality. Example events are the following:

— Eventl: Before the price of a product is retrieved.

— Event2: After the customer has checked out.

— Event3: Before the price of a product is retrieved while the customer is checking
out.

Integrating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming 3

Thus, Rulel, Rule2 and Rule3 can be respectively applied at Eventl, Event2 and
Event3, for instance.

A rule is applicable when its condition is satisfied. When a rule is applicable, its
action can be performed. Moreover, performing the action of a rule might depend on
the applicability of other rules. Suppose Rulel and Rule3 mutually exclude each other
and that whenever Rulel and Rule3 are applicable, only the action specified by Rulel
will be performed, i.e. the Rulel’s discount will be applied and not Rule3’s discount.

3 Requirements for encapsulating rule integration

In this section, we describe and motivate the set of requirements that are essential for
a technology to be suitable to cleanly encapsulate the rule integration code and
achieve high flexibility in the integration of rules. These requirements are described
independently from concrete implementation languages and/or technologies.

Encapsulation of crosscutting behaviour

Typically, rules are applied at different points in the core functionality. Many times,
the concrete integration code is identical at all these points. Using current approaches
that separate rules however, the core program needs to be adapted manually each time
rules have to be integrated. In addition, extra code is needed to capture the required
information for the deployment of the rules. For instance, it might be needed to add
additional parameters to existent operations in order to pass and make available the
required information for the application of the rules. This causes tangled and scattered
code. As a consequence, rule integration results tangled and scattered and thus,
crosscuts the core functionality. Consequently, the clean encapsulation of this
crosscutting code in separate modules is required.

Run-time identification of dynamic events

The events at which rules need to be deployed usually represent dynamic points in the
core functionality such as method invocations and property accesses. These events are
scattered among many places in the core functionality and depend on properties only
available at run-time, such as the control flow in the case of Event3. Moreover, since
rules change often and others are added or removed regularly, it is generally not
possible to anticipate the events at which they would need to be applied. Hence, a
mechanism is required that allows the run-time specification of dynamic events,
without having to change the source code manually.

Capturing and exposing data at dynamic events

Some rules only need global information directly available in the system, such as the
current system date. In this case, this information is directly accessible by the rules.
Other rules need data from objects that are in the scope of the event that activates the
rules. In this case, these objects are available at those points but not directly
accessible by the rules. Thus, a mechanism is needed to capture and pass them to the
rules. Moreover, there are rules that require information from specific objects that are
outside the scope of the event which activates the rules. Rule3 for instance, depends

4 Marfa Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

on properties of the customer that might not be directly accessible at the moment the
rule is applied at Event3, when the price of a product is retrieved. Consequently, a
mechanism is required, which allows identification of the points in the core
functionality where these objects are available, and which captures and exposes these
objects to be used by the rules.

Introduction of unanticipated data and behaviour

Like mentioned in the previous requirement, rules need specific information in order
to be applied correctly. Some rules however, require information that was not
foreseen at the moment the core functionality was designed and implemented. Rule2
for instance, expects the class Customer to have a frequent customer attribute and a
method, e.g. is frequent, to consult the value of this attribute. This property and
method, however, may not be anticipated in the original core functionality with which
this rule is integrated. When the need for unanticipated data and behaviour arises, a
mechanism is required for introducing new objects, attributes and operations in the
core functionality, without having to alter the original source code manually. In
addition, these new additions should be encapsulated so that they can be reused and
removed easily.

Sharing of context information

Once the required data for the activation of the rules is obtained, it needs to be passed
along to the events at which the rules are applied. This implies the need for a
communication/interaction mechanism between the different modules that
encapsulate the rule integration such that these can share and pass along the required
information to the rule.

Controlling instantiation and initialization

It should be possible to control the instantiation of rules so that initializing a rule with
specific properties for a particular rule integration is enabled. Considering the
volatility of rules, this is a vital requirement, as it allows customizing application-
independent rules to conform to a specific integration.

Specifying precedence, combination and execution strategies

Some rules deployed within a software application may state policies that interfere
with other rules. To avoid rule interference, the collaboration among rules needs to be
managed. In addition, some rules can have precedence over others or should not be
applied when others are deployed. In the example, Rulel excludes Rule3. As such
when both rules are applicable (both conditions are satisfied), only Rulel’s discount
has to be applied. In order to address these complex interdependencies among rules,
combining and prioritizing the modules that encapsulate the rule integrations is
required. Moreover, we need to be able to explicitly control the application of the
rules.

Dynamic pluggability of crosscutting behaviour
New rules might be considered that were not identified at development time. Others
might become obsolete after a particular period and should be removed. At the end of

Integrating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming 5

a season for instance, the sales period starts and shops consider new price discount
rules. Rules such as Rule2 might be considered only during the sales period and not
during the rest of the year. As a result, it should be possible to deploy a rule at run-
time and to remove it when it is not longer desired. To reflect this volatility, a
technology that allows the dynamic addition and removal of data and behaviour is
required.

Dynamic customization

Rule-based knowledge tends to change independently of the core functionality. The
frequent customer discount assigned by Rule3 could for instance be subject to change
over time. As a result, it should not only be possible to add and remove rule
integration code at run-time, but also to adapt their properties and behaviour
dynamically, such that these are able reflect the changes in rule-based knowledge of a
company.

4 AOP for encapsulating rule integration

4.1 Introduction to AOP

Aspect-Oriented Programming (AOP) is a new development paradigm that aims at
achieving a better separation of concerns than possible using standard object-oriented
software engineering methodologies. AOP claims that some concerns of an
application cannot be cleanly modularized as they are scattered over or tangled with
the different modules of the system [16]. Similar logic is thus repeated in different
modules and due to this code duplication, it becomes very hard to add, edit and
remove such a crosscutting concern in the system. AOP proposes to capture such a
crosscutting concern in a new kind of module construct, called an aspect. An aspect
typically consists of a set of points in the base program where the aspect is applicable
(called joinpoints) and the concrete behaviour that needs to be executed at those
points (called advice). Aspect weaving consists of merging the aspects with the base
implementation of the system. Nowadays, several mature AOP approaches are
available and aspect-oriented programming starts getting worldwide industrial
acceptance [1]. Examples of AOP approaches are Aspect] [2], JAC [20], JBoss/AOP
[11], JAsCo [24], AspectWerkz [3], and HyperJ [19].

4.2 Discussion

The aspect-oriented idea seems to be ideal to encapsulate the inherently crosscutting
and extremely volatile rule integration code. We investigate whether the current
aspect-oriented approaches offer the required features we identified in section 3. This
section assesses state-of-the-art AOP approaches against these requirements.

6 Marfa Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

Encapsulation of crosscutting behaviour

As identified in section, rule integration crosscuts the core functionality. Aspects are
meant to encapsulate the implementation of crosscutting concerns and as such appear
suited to modularize the crosscutting rule integration. Aspects in the approaches
JAsCo, JAC, AspectWerkz and JBoss/AOP are implemented as fully independent
modules. They are completely independent and reusable entities. Even at run-time,
the aspects remain first-class entities independent from the core functionality. In
HyperJ and Aspect], the aspects are physically woven into the core functionality,
embedding the advices in the base behaviour. This makes the aspect again
crosscutting at run-time. As such, aspects loose their identity at run-time and it is in
principle impossible to refer to the aspect entity directly [17]. In Aspect], it is even
impossible to separately compile an aspect. As such, when developing an aspect
library for third-parties, the aspects are necessary open source. In addition, when the
aspect logic has to be altered, the complete application has to be rewoven; this gives
raise to scalability issues when a multitude of aspects are present in large scale
applications. In JAsCo, JAC, AspectWerkz and JBoss/AOP, aspects can change
independently and reflect those changes directly in the core functionality, without the
need to be reintegrated; it suffices to recompile the aspects.

Identification of dynamic events

The identification of dynamic events in the core functionality where the rules have to
be activated is a feature supported by almost all the approaches except for HyperJ in
which the weaving of aspects is fundamentally different than the other approaches.
All other approaches achieve the identification of dynamic events in a non-invasive
way, i.e. the programmer does not have to change the source code manually in
different places. Aspect]’s joinpoint language is the most expressive one, since it
allows capturing very sophisticated dynamic events including control flows and
execution of exception handlers.

Capturing and exposing data at dynamic events

Rules often require information which is dependent on the dynamic context.
Therefore, it should be possible for a rule to obtain and analyze the context of the
event that triggered its execution. All investigated AOP approaches allow to analyze
the context of the joinpoint that triggered the execution of the aspect behaviour. For
instance, one can query the name of the method invocation, the supplied arguments
and the object on which the method was called. In many cases this expressive power
suffices for providing the business logic with the necessary information. If the data
objects required by the rules are outside the scope of the joinpoint that triggered the
rule, other aspects can be employed in order to capture those data objects. In the
example, Rule3 requires the customer object that is checking out in order to verify
whether he or she is a frequent customer. However, this customer object is not
directly accessible when the price of a product is retrieved. Thus another aspect can
be defined which defines a joinpoint to capture the moment when the method for
checking out is invoked and the customer object is still available. At this joinpoint,
the customer object can be retrieved and passed to the rule. Note that two different
aspects need to collaborate in order the rule to be successfully applied.

Integrating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming 7

Introduction of unanticipated data

Some rules require the introduction of new business objects and behaviour in order to
execute their business logic appropriately. Introducing new methods and attributes is
sometimes required when crosscutting concerns need to be encapsulated. Several
AOP approaches support the concept of introduction. The open classes feature
(previously named “static crosscutting”) provided by Aspect] allows the insertion of
fields and methods. It also allows extending classes from specific superclasses and
interfaces from specific superinterfaces. JBoss/AOP also supports the concept of
introductions. New behaviour can be added to the context of an aspect by forcing it to
implement an interface. A mix-in class is provided that handles the new interface and
is automatically attached to the concerned classes. Dynamic AOP approaches such as
JAsCo and JAC however do not provide introductions.

Sharing of context information

Once the required information for the activation of the rules is captured by aspects, it
has to be made available at the events where the rules are applied. To this end,
support for sharing the aspect context information is needed. JAsCo enables this by
specifying aspect beans. An aspect bean is able to contain several modular “aspects”
and allows sharing information between the contained aspects. This information can
include both structure and behaviour. In Aspect], AspectWerkz and JBoss/AOP,
sharing information between several aspects is not so straightforward to achieve.
JBoss/AOP does however allow explicit control over aspect instantiation by
employing aspect factories. As such, related aspects can easily receive references to
each other. In AspectWerkz and AspectJ, aspect instantiation happens implicitly by
the aspect framework, and as a result, it is not possible to influence this.

Controlled instantiation and initialization

As the rules themselves are defined as reusable as possible, it is required to customise
the rules towards the specific environment in which they are being applied. Most
aspect-oriented technologies however do not allow sophisticated control for
initializing aspects applications, as the aspect instantiation is done implicitly when the
aspect is woven into the core functionality. JAsCo and JBoss/AOP are the only two
reviewed approaches that allow to explicitly instantiate and initialize aspects. JAsCo
employs a separate connector construct where aspects are instantiated upon a concrete
context. The connector also allows customising the instantiated aspects and supports
the full expressiveness of the Java language for this end. In addition, connectors are
also able to specify more expressive combination strategies in order to manage the
cooperation among several aspects that are applicable onto the same joinpoint. Using
combination strategies it is even possible to customise the aspects on a per joinpoint
basis. JBoss/AOP introduces the novel concept of aspect factories, allowing fine-
grained control over aspect instantiation. Aspect customisation happens through an
XML connector that describes the deployment details. This XML file allows
specifying a set of properties that are passed as input for aspect initialization. The
aspect itself is responsible for parsing the XML tree, which makes it somewhat more

8 Marfa Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

cumbersome. In contrast to JAsCo connectors, no static type checking is possible for
these XML property definitions.

Specifying precedence, combination and execution

The rule integration needs to specify the combined behaviour of several rules
explicitly if they are applicable at the same joinpoints. If this is not possible, the
different rules might interfere and cause incorrect results. This problem is a well-
known issue in AOP, and is identified as the feature interaction problem [25]. Most
approaches support a limited form of managing the combined aspectual behaviour by
specifying the aspect sequence. Approaches such as JAC, JBoss/AOP and
AspectWerkz allow specifying explicit sequences of aspect deployments by means of
stacks. Whenever a joinpoint is encountered, the deployed aspects are executed in the
order specified by the stack. JAsCo allows arranging the execution of a set of rules
by explicitly specifying the desired sequence in the connector. In addition, JAsCo
provides combination strategies, which allow, in comparison to mere precedence, a
more fine-grained programmatic control over the combined aspectual behaviour.

Dynamic pluggability of crosscutting behaviour

Rules constantly evolve to cope with changes in the business requirements, other rules
become obsolete and new ones are added. Thus, the aspects that encapsulate their
links should be pluggable at run-time to reflect that volatility. Approaches like JAC
and JAsCo allow adding and removing aspects at run-time in a very straightforward
way. Aspects can be attached as well as removed from any joinpoint at run-time.
Approaches like AspectWerkz and JBoss/AOP provide support for adding and
removing aspects at load-time and some support for their addition and removal at run-
time. In both these approaches, an XML “connector” is employed for connecting the
aspects to concrete joinpoints. Dynamically however, this XML connector cannot be
employed any longer and aspects have to be attached and removed programmatically.
Because both approaches rely on traps at every joinpoint for aspect execution, aspects
can only be added at joinpoints where traps are placed. In AspectWerkz, these traps
are only inserted at joinpoints where aspects are applied at start-up time of the
application. As such, only at those joinpoints, aspects can be attached and removed. In
JBoss/AQP, it is possible to declare joinpoints as advisable in the XML connector.
Even though no aspects are applied, a trap is still installed and aspects can be
dynamically attached at those advisable joinpoints.

Some AOP approaches such as Aspect] and HyperJ only allow static pluggability of
aspects, i.e. aspects can only be added at compile-time and it is not possible to plug
them in or out at run-time.

Dynamic customization

Likewise, to adding and removing aspects, altering properties of aspects at run-time is
also a desired feature when they represent volatile rule integration code. Altering
properties is in most approaches as simple as invoking methods defined in the aspects.
However, in order to be able to invoke methods, the aspects have to be found! In
Aspect], it is only possible to fetch an aspect by name. AspectWerkz allows fetching
aspects on a per joinpoint basis, but however requires obtaining every joinpoint by

Integrating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming 9

name. Fetching all aspects disregarding the concrete joinpoint they are attached to is
not possible. JAsCo and JBoss/AOP do allow fetching all aspects in the system.

5 Related work

Our work is an original combination of two areas, more specifically aspect-oriented
programming and separating rule-based knowledge in object-oriented software
applications. We have contributed previously to this line of research. First of all, in
[5] and [6] we discuss similar but more elaborate experiments with Aspect] and
JAsCo, respectively. Secondly, we developed aspect-oriented techniques for
encapsulating the rule integration code in the context of hybrid systems, which
combine an object-oriented language and a full-fledged rule-based language for
representing rules. These aspect-oriented techniques are based on HyperJ [9] and
Aspect] [10]. In these papers we do not consider advanced aspect-oriented features as
described in this paper, but we have to deal with the additional challenge of
combining two languages of different programming paradigms. To our knowledge,
there have been no other efforts that apply aspect-oriented programming to improve
the separation of rules from object-oriented software.

Furthermore, we consider related work in the areas separately. First of all, the main
body of this paper provides a thorough overview of the relevant work in the field of
aspect-oriented programming. Secondly, there exist many technologies that represent
rules explicitly and separately from core functionality in object-oriented software
applications. We observe that they take radically different approaches:

* Rule-based knowledge can be represented separately in the object-oriented
programming language itself. An extension to this approach is representing rule-
based knowledge explicitly using object-oriented design patterns, such as the Rule
Object Pattern [4], Patterns for Personalisation [22] and Rule Patterns [15].

* Other approaches focus on externalising explicit rules, such as Business Rule
Beans, which store rules as XML fragments [23].

* There are dozens of both commercial and academic hybrid systems, which support
explicit and separate representation of rules in a rule-based language. Due to space
limitation we do not list them here. The results of a survey of hybrid systems is
presented in [9]. A few examples are OPSJ [12], JRules [14], SOUL [18] and Jinni
[13].

However, since none of these approaches support the encapsulation of tangled or
crosscutting code, we find that they are not able to separate the rule integration code
fully.

Note that we do not consider information systems, although some database
management systems offer support for business rules. The reason is that they
implement a data-change-oriented approach, activating rules when data changes.
However, when rules are not bound to a particular object or data but are “free-
floating™, a service-oriented approach is warranted [26]. Moreover, even C. J. Date

10 Maria Agustina Cibran, Davy Suvée, Maja D’Hondt, Wim Vanderperren, Viviane
Jonckers

states that not all rules can be implemented in the database layer, but have to be
considered in the application layer [8].

6 Conclusions

State-of-the-art business rules approaches mainly aim at physically separating the rule
definitions from object-oriented applications. The integration code for a rule however,
still remains tangled in the core functionality itself. In this paper, we identify a set of
requirements, which we believe are essential in order to successfully encapsulate the
rule integration code. In addition, we show how Aspect-Oriented Programming in
particular is ideal for describing this rule integration, as AOP advocates the
encapsulation of tangled code. To this end, several state-of-the-art AOP approaches
are analyzed and tested towards the requirements that we identified early on.

We conclude that Aspect-Oriented Programming in general is able to satisfy all of
the requirements that we identified for cleanly encapsulating the rule integration.
However, none of the analyzed approaches provides full support for all of the
requirements. Dynamic AOP approaches, such as AspectWerkz, JAsCo and
JBoss/AOP allow dynamically adding and removing rules integration code when
needed. This is in a lot of cases an essential requirement, as rules tend to change
independently of the rest of the application. In addition, these approaches make use of
a separate connector concept, which allows separating the identification of an event
and the application of rules upon those events. As a result, rules can be instantiated
explicitly, customized towards the context upon which they are being applied and
their mutual interaction can be managed. Some dynamic AOP approaches however
might induce a rather big performance penalty at run-time and their joinpoint model is
at the moment less expressive than the ones provided by their static counterparts.
Although static AOP approaches, such as Aspect], do not allow the dynamic
pluggability of rule integration code, they provide a more fine-grained description of
the events upon which rules can be applied. In addition, these approaches allow
introducing unanticipated data required by rules quite easily in the application at
hand.

This paper contributes in identifying the requirements that are necessary for
encapsulating the rule integration code and that need to be satisfied by any suitable
AOP approach. At the moment, even though AOP concepts are suitable to
encapsulate the business rule integration code, no ideal AOP approach is available
which covers all identified requirements for the clean encapsulating of the rule
integration. One needs to make a choice between the expressive joinpoint model
offered by static AOP approaches and the dynamic pluggability offered by dynamic
AOP approaches. However, the obstacles for achieving the contributions of both static
and dynamic AOP approaches are mainly of technical nature. Dynamic approaches
are introducing more and more features which are supported by their static
counterparts. For example, the latest JAsCo release includes a run-time weaver that
even improves Aspect] performance-wise. Hence, as AOP research is evolving, we
foresee an increasing number of AOP approaches which combine those static and
dynamic characteristics.

Integrating Rules with Object-Oriented Software Applications using Aspect-Oriented
Programming 11

References

. Aspect-Oriented Software Development website: http://www.aosd.net

. Aspect] Website: http://eclipse.org/aspectj

. AspectWerkz Website http://aspectwerkz.codehaus.org

. Arsanjani A.: Rule object 2001: A Pattern Language for Adaptive and Scalable Business

Rule Construction (2001)

5. Cibran M. A., D'Hondt M., Jonckers V.: Aspect-Oriented Programming for Connecting
Business Rules. In Proceedings BIS, Colorado Springs, USA (2003)

6. Cibran M. A., D'Hondt M., Suvée D., Vanderperren W., Jonckers V.: JAsCo for Linking
Business Rules to Object-Oriented Software. In Proceedings CSITeA, Rio de Janeiro, Brazil
(2003)

7. Communications of the ACM: Aspect-Oriented Software Development. October (2001)

8. Date C.: What not How: The Business Rules Approach to Application Development.
Addison-Wesley Publishing Company (2000)

9. D'Hondt M., Gybels K., Jonckers V.: Seamless Integration of Rule-Based Knowledge and
Object-Oriented Functionality with Linguistic Symbiosis. In Proceedings of ACM SAC,
Nicosia, Cyprus (2004)

10. D'Hondt M., Jonckers V.: Hybrid Aspects for Weaving Object-Oriented Functionality and
Rule-Based Knowledge. In Proceedings of AOSD, Lancaster, UK (2004)

11. Fleury M., Reverbel F.: The JBoss Extensible Server. In Proceedings of Middleware, Rio
de Janeiro, Brazil (2003)

12. Forgy C. L.: OPSJ 4.1 Manual. Production Systems Technologies Inc. (2001)

13. Jinni: Jinni 2004 Prolog Compiler: A High Performance Java and .NET-based Prolog for
Object and Agent-Oriented Internet Programming, User Guide. BinNet Corp. (2003)

14. JRules: JRules 4.0, Technical White Paper. ILOG (2002)

15. Kappel G., Rausch-Schott S., Retschitzegger W., Sakkinen M.: From Rules to Rule
Patterns. In Proceedings of Advanced Information Systems Engineering (1996)

16. Kiczales G., Lamping J., Mendhekar A., Maeda C., Lopes C., Loingtier, J., Irwin J.:
Aspect-oriented programming. In Proceedings of ECOOP, Finland (1997)

17. Matthijs F., Joosen W., Vanhaute B., Robben B., Verbaeten P.: Aspects Should Not Die.
Aspect-Oriented Programming Workshop (ECOOP’97), Enschede, The Netherlands (1997)
18. Mens K., Michiels 1., Wuyts R.: Supporting Software Development through Declaratively
Codified Programming Patterns. In Proceedings of SEKE, Buenos Aires, Argentina (2001)
19. Ossher H., Tarr P.: Using Multidimensional Separation of Concerns to (Re)Shape Evolving

Software. In Communications of the ACM (2001)

20. Pawlak E., Seinturier L., Duchien L., Florin G.: JAC: A Flexible Solution for Aspect-
Oriented Programming in Java. In Proceedings of Reflection. Kyoto, Japan (2001)

21. Ross R. G.: Principles of the Business Rule Approach. Addison-Wesley (2003)

22. Rossi G., Schwabe D., Guimaraes R.: Designing Personalized Web Applications. In World
Wide Web (2001) 275-284

23. Rouvellou I., Degenaro L., Rasmus K., Ehnebuske D., McKee B.: Extending Business
Objects with Business Rules. In Proceedings of TOOLS, St-Malo, France (2000)

24. Suvee D., Vanderperren W., Jonckers V.: JAsCo: An Aspect-Oriented Approach Tailored
for Component Based Software Development. In Proceedings of AOSD, Boston, USA
(2003)

25. Tarr P., D’Hondt M., Bergmans L., Lopes C.: Report from the ECOOP2000 Workshop on
Aspects and Dimensions of Concern: Requirements on, and Challenge Problems for,
Advanced Separation of Concerns. In Workshop Reader of ECOOP, Cannes, France (2000)

26. Von Halle B.: Business Rules Applied. Wiley (2001)

LN =

