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ABSTRACT 
In this paper we propose an extension to JAsCo for supporting 
Adaptive Programming in a Component-Based Software 
Development context. JAsCo is an aspect-oriented programming 
language targeted at Component-Based Software Development 
and allows encapsulating crosscutting concerns using highly 
reusable aspect beans. Adaptive Programming on the other hand, 
allows capturing crosscutting concerns by structure-shy adaptive 
visitors. We propose to implement an adaptive visitor as a regular 
JAsCo aspect bean. As such, the reusability of an adaptive visitor 
is improved because the same visitor can be reused within 
different component contexts. We introduce JAsCo traversal 
connectors to deploy adaptive visitors, implemented as JAsCo 
aspect beans, upon a concrete component traversal.  In addition, 
these traversal connectors allow to explicitly specify how the 
behavior of several adaptive visitors, instantiated onto the same 
component traversal, needs to be combined by making use of the 
JAsCo precedence and combination strategies. A prototype 
implementation of the JAsCo Adaptive Programming extension, 
which employs the DJ library, is available. As a proof of concept, 
we present an extended case study in the context of the Web 
Service Management Layer (WSML) project. In this case study, a 
set of visitors implemented in JAsCo is reused to accomplish 
multiple tasks. 

Keywords 
Aspect-Oriented Software Development, Component-Based 
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1. INTRODUCTION 
Aspect-Oriented Software Development (AOSD) is a novel 
software development paradigm that aims at improving the 
separation of concerns in Object-Oriented Software Development 
(OOSD) [2]. Typical aspect-oriented approaches, such as AspectJ 
[5], introduce an explicit aspect construct to capture concerns that 
crosscut the regular decomposition of the system. Afterwards, the 
aspect is weaved together with the base application and as such 
the aspect behavior is triggered at all points the aspect is 

applicable upon. Adaptive Programming (AP) [14] aims at 
providing support for a very different kind of crosscutting 
concerns than the ones tackled by typical aspect-oriented 
approaches. When an operation involves a set of cooperating 
classes, one can either localize this operation in one class or split 
the operation over the set of associated classes. Localizing the 
operation in one class causes hard-coded information about the 
structural relationships between these classes and is as such a 
violation of the well-known Law of Demeter [11]. The other 
alternative, namely distributing the operation over the set of 
involved classes, conforms to the Law of Demeter, but causes the 
logic of the desired behavior to be spread over different classes 
making evolution very difficult. To capture an operation that 
involves several cooperating classes, AP introduces adaptive 
visitors, which allow visiting the objects contained within an 
application without explicitly describing the structural 
relationships among these objects. Traversal strategies are 
responsible for specifying the abstract visiting process for an 
adaptive visitor. As such, AP allows separating the collaboration 
concerns (WhenAndWhatToDo), the traversal concerns 
(WhereToGo) and the object structure concerns (classGraph and 
objectGraph) [10]. 
Although AP is originally conceived for OOSD, its ideas are also 
applicable to Component-Based Software Development (CBSD). 
The main goal of CBSD is achieving highly reusable, 
independently deployable components [24]. The current adaptive 
programming realizations however, such as DJ [18], DemeterJ 
[13] or DAJ [12,22], do not straightforwardly support the 
specification of adaptive visitors that are sufficiently reusable to 
be employed in a component-based context. Recently, the JAsCo 
aspect-oriented programming language has been proposed to 
capture crosscutting concerns in a component-based context [23]. 
JAsCo allows specifying aspect beans that are completely 
independent of concrete component types and APIs. Aspect beans 
are deployed onto a concrete context using a separate connector 
construct. As such, employing a JAsCo aspect bean as a reusable 
adaptive visitor makes AP more suitable to be employed in a 
component-based context.  
Another drawback of current AP approaches is that there is only 
limited support for describing combinations of adaptive visitors. 
The ability to manage combinations of visitors explicitly is 
however crucial for realizing independent visitors. JAsCo 
supports an expressive mechanism for combining independent 
aspects through combination strategies. Therefore, introducing a 
combination strategy concept and as such enhancing the 
expressivity of the combination mechanism for adaptive visitors, 
also contributes to AP.   
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As a proof of concept of JAsCoAP, we present an extended case 
study in the context of the Web Service Management Layer 
(WSML) project [26,27]. The WSML allows, among other 
management actions, the automatic selection and dynamic 
integration of the most appropriate web services, depending on 
non-functional properties such as price, reliability and response 
time. We show how adaptive visitors, implemented as regular 
JAsCo aspect beans, are ideal to cleanly encapsulate the visiting 
process of the web service property data-structure in order to 
facilitate the automatic web service selection process.  
In the next section, we show how the ideas of AP and JAsCo can 
be combined in order to make AP more appropriate to be used in 
a component-based context. Section 3 introduces the key ideas 
and concepts of the JAsCo aspect-oriented language. Section 4 
illustrates how adaptive visitors can be implemented by means of 
JAsCo aspect beans in order to improve their reusability. In 
addition, the traversal connector language is introduced. Section 5 
illustrates how the behavior of several adaptive visitors can be 
combined by employing JAsCo combination strategies. Section 6 
elaborates on the implementation of the JAsCoAP extension and 
section 7 compares JAsCoAP with current state-of-the-art 
research. Finally, section 8 discusses the WSML case study and 
afterwards we present our conclusions.       

2. PROBLEM STATEMENT/MOTIVATION 
One of the main principles of CBSD is to keep one component 
independent deployable from other concrete components [15]. As 
such, a component should never explicitly rely onto other specific 
components in order to execute its behavior [24]. Translating this 
requirement towards AP means that an adaptive visitor should be 
completely independent from the components it visits. By the 
very nature of AP, adaptive visitors are already structure-shy of 
the application at hand. However, adaptive visitors typically still 
refer to specific components and APIs, rendering a visitor not as 
reusable as required by CBSD. 

 
Figure 1: Example class diagram 

Consider for instance the class diagram of Figure 1, onto which an 
incremental backup concern should be deployed that stores the 
data contained in each DataStore object. In order to backup the 
contents of all DataStore objects reachable from an instance of 
the System.Root class, dedicated methods need to be added to 
almost every class. When the application evolves and new classes 
are added to the system, these dedicated methods need to be 
adapted and the backup logic needs to be refactored in order to 
deal with the new class structure. 
When employing AP, this backup concern is encapsulated in a 
structure-shy manner using an adaptive visitor. Figure 2 illustrates 

the DataStorePersistence adaptive visitor, implemented 
using DJ [18], which is a Java library that supports AP. Using DJ, 
adaptive visitors are implemented as plain Java classes. The 
DataStorePersistence visitor allows capturing an incremental 
backup of the data contained within each DataStore object. In 
this case, the behavior of the visitor is implemented using a before 
advice (lines 5-14). If the state of the DataStore object changed 
since it was last visited (line 6), the data contained within the 
DataStore object is serialized to file (lines 7-12). When this 
adaptive visitor is applied onto an application, the entire data 
structure of the application is traversed. Whenever an object of 
type DataStore is encountered, and its state changed since the 
last backup, its data is written to file before it is visited. This 
visitor allows carrying out an effective, incremental backup of all 
DataStore objects contained within an application. 
1  class DataStorePersistence extends Visitor {     
2     
3    int i = 0; 
4     
5    public void before(DataStore store) { 
6      if(changedPV(store)) { 
7        FileOutputStream fw = new  
8            FileOutputStream(“state”+i++); 
9        ObjectOutStream writer= new  
10            ObjectOutputStream(fw); 
11       writer.writeObject(store.getData()); 
12       writer.close(); 
13     } 
14   } 
15   public boolean changedPV(DataStore s) { 
16     //true if changed since last visit 
17   } 
18 } 

Figure 2: DataStorePersistence Adaptive Visitor in DJ that 
allows serializing each visited data store on file. 

Figure 3 demonstrates how this adaptive visitor is deployed in 
order to backup all DataStore objects starting from the root 
system object of an application (lines 3-4). Notice that, because of 
the use of an adaptive visitor, the backup method does not need to 
hard-code the relations among the components it visits. As a 
result, the DataStorePersistence visitor remains applicable 
even when additional DataStore objects are added to the system 
or when the structural relationships between the system 
components are changed. 
1  void backup(system.Root mySystemRoot) { 
2    ClassGraph cg = new ClassGraph(“system”); 
3    Strategy sg = new  
4      Strategy(“from system.Root to *”); 
5    TraversalGraph tg = new  
6      TraversalGraph(sg, cg); 
7    tg.traverse(mySystemRoot, 
8       new DataStorePersistence()); 
9  } 

Figure 3: Instantiating the DataStorePersistence adaptive 
visitor in order to traverse the system for taking a backup of 

the state of the application (using DJ). 

2.1 Improving the reusability of AP visitors 
Although the DataStorePersistence visitor of Figure 2 is 
independent from the structural relationships within the 
application, it still hard-codes the DataStore type and the 
getData method within its implementation. As a result, it is not 



possible to reuse the DataStorePersistence visitor within a 
different component context than the one that was foreseen. 

By making use of design patterns such as Abstract Factory [3], it 
is possible to realize more reusable, component-independent 
adaptive visitors. This solution nevertheless requires writing a lot 
of infrastructural code and merely provides an ad-hoc solution to 
prevent context-dependent visitors.  The novel Java 1.5 generics 
feature provides a more straightforward solution to abstract over 
types and is already extensively used in the implementation of 
generic containers. Figure 4 illustrates the refactored 
implementation of the DataStorePersistence adaptive visitor 
by employing Java 1.5 generics.   
1  class Persistence<T> extends Visitor {        
2    public void before(T store) { 
3      ... 
4        writer.writeObject(store.toString()); 
5      ... 
6    } 
7  }      

Figure 4: Generic adaptive persistence visitor. 
The implementation of this generic adaptive is quite similar to the 
one illustrated in Figure 2, except for the store.getData() 
statement (Figure 2, line 11) that is renamed into the 
store.toString() statement (Figure 4, line 4). This refactoring 
is mandatory, as the formal type parameter T is only able to 
understand methods declared by type Object. As a result, the 
expressiveness of the internal behavior of the Persistence 
adaptive visitor is quite restricted, as only those methods 
understood by type Object can be called on store. To resolve 
this problem, the Java generics feature introduces bounded formal 
type parameters. Figure 5 illustrates this concept by specifying 
that the concrete parameter type, which replaces the formal 
parameter type T, needs to implement the IDataStore interface 
or one of its declared subinterfaces. As such, it remains possible 
to call the getData method, specified by the IDataStore 
interface, on object store. Although the use of bounded 
parameters improves the expressiveness of a visitor, it still 
requires the objects to be visited to implement a dedicated 
interface. As a result, it is not possible to deploy and reuse this 
adaptive visitor upon off-the-shelf third-party components. Notice 
that this limitation is not a deficiency in the concrete realization 
of generics in Java 1.5, but is rather a more profound problem 
with generics in object-oriented languages. 
1  class Persistence<T extends IDataStore>  
2    extends Visitor {     
3      public void before(T store) { 
4        ... 
5          writer.writeObject(store.getData()); 
6        ... 
7      } 
8 }      

Figure 5: Generic adaptive persistence visitor using bounded 
formal type parameters. 

2.2 Combining JAsCo and AP 
JAsCo aspect beans are abstract and reusable entities which do 
not rely onto specific component types and APIs. Therefore, in 
order to increase the reusability and achieve context-independent 
and expressive adaptive visitors, we propose to implement 
adaptive visitors as JAsCo aspect beans. As such, integrating this 
aspect independence idea into AP contributes to achieving a 

higher reusability and flexibility for adaptive visitors in a 
component-based context.  
Another area where the JAsCo ideas are able to contribute to the 
AP research, consists of describing expressive combinations 
among aspects in order to provide a solution to the feature 
interaction phenomenon [19]. Suppose for instance that in 
addition to the persistence behavior, a log needs to be maintained 
for every object that is saved to file. Using the current AP 
implementations, this can only be achieved by appending some 
logging code to the DataStorePersistence adaptive visitor 
itself. However, doing so causes the logging concern to be tangled 
with the backup concern. A tangled “backup-logging” concern 
can nevertheless be avoided if a strong combination mechanism is 
provided that allows specifying that the TraceVisitor (standard 
logging visitor in DJ library) and the DataStorePersistence 
visitor visit the same traversal simultaneously in such a way that 
the behavior of TraceVisitor is only triggered whenever the 
DataStorePersistence visitor saves a visited object to file. As 
such, the JAsCo ideas concerning expressive combinations of 
aspects using precedence and combination strategies also 
contribute to AP. 

3. INTRODUCTION TO JASCO 
JAsCo is a dynamic AOP approach originally aiming at 
combining the ideas of Aspect-Oriented and Component-Based 
Software Development. The JAsCo language is an aspect-oriented 
extension for Java that intends to stay as close as possible to the 
original Java syntax and concepts and introduces only two 
additional entities: aspect beans and connectors. An aspect bean 
is responsible for capturing crosscutting behavior in a context-
independent manner and a connector allows instantiating aspect 
beans onto a concrete component context. The next paragraphs 
shortly present the JAsCo aspect bean and connector language. 
For more detailed information about JAsCo, the interested reader 
is referred to [23]. 
1  class DataStorePersistence { 
2      
3    hook Backup { 
4       
5      int i = 0; 
6       
7      Backup(triggeringmethod(..args)) { 
8        execute(triggeringmethod); 
9      } 
10 
11     isApplicable() {  
12       //true when changed since last visit 
13     } 
14 
15     before() {  
16       FileOutputStream fw =  
17         new FileOutputStream (“state”+i++); 
18       ObjectOutputStream writer = new  
19         ObjectOutputStream(fw);        
20       writer.writeObject(getDataMethod()); 
21       writer.close(); 
22     } 
23 
24     refinable Object getDataMethod(); 
25   } 
26 } 

Figure 6: JAsCo DataStorePersistence aspect bean that 
implements a reusable backup concern. 



An aspect bean is an extended version of a regular Java bean [21] 
and is specified independent of concrete components and APIs, 
making it a highly reusable entity. An aspect bean usually 
contains one or more logically related hooks that describe the 
crosscutting behavior itself. Figure 6 illustrates the 
implementation of the DataStorePersistence aspect bean. 
The behavior of this aspect bean is similar to the behavior of the 
DataStorePersistence visitor of Figure 2. The aspect bean 
contains one hook, the Backup hook (lines 3-26), which 
implements the crosscutting backup behavior. The constructor of 
a hook specifies a kind of abstract pointcut and takes one or more 
abstract method parameters as input. These abstract method 
parameters are bound to concrete methods in a connector.  In this 
case, the constructor (lines 7-9) specifies that the behavior of the 
hook is only triggered when the concrete method(s) bound to the 
triggeringmethod abstract method parameter are executed 
(line 8).  

The isApplicable method is able to specify an additional 
triggering condition for the hook and employs the expressiveness 
of full Java. In this case the isApplicable method (lines 11-13) 
returns true if the state of the object, on which triggingmethod 
is executed, changed since it was last visited. This can either be 
checked by using the equals method, supported by all Java 
objects, if the previous backup is still available or by employing a 
refinable method.  

JAsCo supports before, around and after advices for specifying 
the behavior that needs to be performed when the hook triggers. 
The semantics of these advices are identical to the AspectJ 
counterparts. The DataStorePersistence aspect bean 
implements one before advice (lines 15-22) that serializes the 
visited object to file.  

Hooks are able to postpone the implementation of certain 
behavior in order to remain type independent. For example, in 
order to fetch the concrete data from the executing object, the 
refinable method getDataMethod is used (line 24). As such, the 
hook does not hard-code how the data is fetched and remains 
reusable. On the contrary, the visitor of Figure 2 relies on the 
getData method of the DataStore type, making it less reusable. 
Refinable methods are implemented using type-specific 
refinements for the hooks.  Figure 7 illustrates an example 
refinement of the Backup hook for objects of class DataStore. 
Here, the implementation of the getDataMethod returns the 
object that is retrieved by executing the getData method of class 
DataStore (lines 3-6). When a refinable method is executed at 
run-time, late binding is applied, i.e. the most specific refinement 
for the current object is searched for and executed. If no 
appropriate refinement has been defined, the refinement needs to 
be implemented inline when instantiating an aspect bean in the 
connector. When both an inline refinement and an external 
refinement are available, the inline refinement has precedence. 

1  refining DataStorePersistence.Backup for 
2    DataStore { 
3      public Object getDataMethod() { 
4        DataStore store = thisJoinPointObject;  
5        return store.getData(); 
6      } 
7  } 

Figure 7: Specific refinement for objects of class DataStore. 

In order to deploy the DataStorePersistence aspect bean 
within an application, a JAsCo connector is employed. Figure 8 
illustrates the deployment of this aspect bean upon each setter 
method defined within the DataStore class. This is achieved by 
instantiating the Backup hook (lines 2-4) on each method defined 
within the DataStore class whose name starts with set. This 
binds the triggeringmethod abstract method parameter from 
the Backup hook constructor to each setter method of the 
DataStore class. Hence, whenever the state of a DataStore 
object is altered using a method whose name starts with set, the 
before behavior of the Backup hook is triggered and the backup 
action is performed.  

1  connector PersistenceConnector {     
2    DataStorePersistence.Backup hook = new  
3      DataStorePersistence.Backup( 
4        * DataStore.set*(*));  
5  } 

Figure 8: JAsCo Backup Connector. 

4. ASPECT BEANS AS AP VISITORS 
An adaptive visitor is similar to a set of related advices as it 
groups several before, after and around methods together that 
need to be executed whenever a corresponding component type is 
visited. Therefore, it seems natural to employ a regular JAsCo 
aspect bean as a reusable and loosely coupled adaptive visitor. As 
such, aspect beans are able to be deployed in both a traditional 
and a traversal oriented context, increasing their reusability even 
more. The first part of this section illustrates how aspect beans 
can be deployed as being adaptive visitors. The second part 
discusses how the aspect bean model is mapped upon the adaptive 
visitor model. 

4.1 Deploy Aspect beans as adaptive visitors 
In order to deploy an aspect bean as an adaptive visitor, a new 
kind of connector is introduced, namely a traversal connector. A 
traversal connector instantiates one or more hooks as adaptive 
visitors onto a specified traversal strategy.  

1  traversalconnector BackupTraversal 
2    (“from system.Root to *”) { 
3      
4    DataStorePersistence.Backup hook = new  
5      DataStorePersistence.Backup( 
6         visiting DataStore); 
7  
8    hook.before(); 
9 
10  } 

Figure 9: JAsCo BackupTraversal traversal connector. 

Figure 9 illustrates an example traversal connector that 
instantiates the DataStorePersistence aspect bean (lines 4-6) 
upon the “from system.Root to *” traversal strategy (lines 1-
2). The visiting keyword allows declaring on which specific 
type of objects, encountered during the traversal, the behavior of 
the hook needs to be triggered. In this particular case, the 
behavior of the Backup hook is triggered whenever DataStore 
objects are encountered. The traversal connector also specifies 
that whenever the hook is triggered, the before advice has to be 
executed (line 8). To sum up, the BackupTraversal traversal 
connector has the following semantics: the object structure of an 
application is traversed as specified by the traversal strategy 
“from system.Root to *” and the before advice of the 



Backup hook is triggered each time a DataStore object is 
encountered.  
By declaring which advices to execute, it is possible to explicitly 
specify precedence of the advices in case multiple hooks are 
instantiated in the same traversal connector. These precedence 
strategies are instance-based, which allows changing the 
precedence over different instantiations of the same hook. 
The major difference between mainstream aspect-oriented 
approaches, such as AspectJ, and AP is the way their crosscutting 
behavior is invoked. The behavior of traditional aspects is 
invoked implicitly whenever the current joinpoint matches the 
pointcut specification of the aspects. Traversal strategies however, 
need to be invoked explicitly in order to start the traversal. Figure 
10 illustrates how the traversal specified in the 
BackupTraversal connector is explicitly invoked (line 5). In 
this particular case, the starting point for the traversal is the object 
SystemRoot, which is an instance of the system.Root class. 
1  public void backup(system.Root systemRoot) { 
2 
3    BackupTraversal myBackup =   
4      BackupTraversal.getInstance(); 
5    myBackup.traverse(systemRoot); 
6 } 

Figure 10: Invoking the JAsCo BackupTraversal connector.  

4.2 Deployment discussion  
One might wonder which specific methods are bound to an 
abstract method parameter of a hook when an aspect bean is 
deployed as an adaptive visitor. In case of the BackupTraversal 
connector illustrated in Figure 9, the triggeringmethod 
parameter of the backup hook is bound to the “visiting 
DataStore” declaration, which is not a concrete method 
signature. The resulting effect of this “visiting DataStore” 
declaration is that all DataStore objects encountered during the 
traversal are visited by the DataStorePersistence aspect 
bean. It is possible to perceive this visiting behavior as a method 
execution and it is even implemented as such when the DJ library 
is employed. As a result, the method bound to the 
triggeringmethod parameter corresponds to the implicit 
method that implements the visiting behavior. This allows an 
aspect bean to effectively manage its visiting process in a hook. If 
a hook implements an around method, the hook itself might 
decide to continue or stop the visiting process by invoking or not 
invoking the proceed method. This concept is illustrated in the 
SearchBean aspect bean, from which the implementation is 
shown in Figure 11. 

The SearchBean aspect bean is able to search for a specific 
object within an application and builds a path of all objects that 
are visited while the application structure is traversed (Note that 
this path is not necessarily the shortest path). The BuildPath 
hook implements a constructor (lines 12-14), which takes one 
abstract method parameter, visitingmethod as input. The hook 
implements an around advice (lines 16-21) that is responsible for 
building up a list of visited nodes. Whenever the object to search 
for has been reached, the traversal stops, as the method bound to 
the abstract method parameter visitingmethod is not invoked 
any longer. In the other case, the current visited object is added to 
the list of visited nodes (line 18) and the traversal continues by 
explicitly invoking the proceed method (lines 19). Notice that 
thisJoinPointObject, which in a traditional aspect bean 

context refers to the object on which the method was called, now 
refers to the object that is currently being visited. This mapping 
can easily be understood: if the traversal behavior itself is 
perceived as a method, the visiting of an object can be perceived 
as the execution of that method on that object. 
Figure 12 illustrates a traversal connector that instantiates the 
BuildPath hook on all classes in the system using a wildcard 
(lines 4-5). The resulting traversal starts at an instance of the class 
system.Root and visits all reachable objects from that instance 
onwards (lines 1-2). When the object that needs to be found is 
located, the traversal is halted. 
1  class SearchBean { 
2    
3    Object target; 
4    List visitednodes = new List(); 
5 
6    List getResultingPath() { 
7      return visitednodes; 
8    } 
9 
10   hook BuildPath { 
11 
12     BuildPath(visitingmethod(..args)) { 
13       execute(visitingmethod); 
14     } 
15      
16     around() { 
17       if(!thisJoinPointObject.equals(target)) { 
18          visitednodes.add(thisJoinPointObject); 
19          proceed(); 
20       } 
21     } 
22   } 
23 } 

Figure 11: Search aspect bean that allows building a path of 
objects visited in order to reach a specific object. 

Note that this point of view is compatible with the JoinPoint 
Model (JPM) for adaptive programming that Wu et al. [30] 
describe and identify as parallel to the JPM of traditional aspect-
oriented approaches such as AspectJ. Additionally, they propose 
employing around advices with non-void return types as a means 
to express functional visitors. These visitors provide a natural and 
convenient way of expressing computation along the traversal 
over recursive object structures, similar to traditional recursive 
functions. While we expect that their extension to DJ can also be 
applied to JAsCoAP in a straightforward manner, the feasibility 
of advices with non-void return types that apply in both 
traditional and traversal-oriented contexts remains to be 
investigated. 
1  traversalconnector SearchTraversal( 
2    “from system.Root to *”) { 
3      
4    SearchBean.BuildPath builder = new  
5      SearchBean.BuildPath(visiting *); 
6    
7    builder.around(); 
8 } 

Figure 12: Instantiating the BuildPath hook on all the classes 
within the system in a JAsCo traversal connector. 

4.3 Traversal language 
The traversal strategies employed in JAsCo traversal connectors 
are an extension of the traversal language supported by the DJ 
library [18]. Figure 13 provides a set of examples which 



illustrates the use of more advanced keywords that allow 
specifying sophisticated traversal strategies.  

The bypassing keyword allows to denote classes that may not be 
visited during the traversal.  For example, in the traversal strategy 
at line 1, an instance of the class C can not be visited in order to 
traverse starting from an instance of class A and reaching an 
instance of class B. In other words, when considering the class 
hierarchy as a class graph, all paths from class A to B that contain 
the class C are not visited. An exception is thrown if such a 
traversal is not possible.  

The via keyword denotes the opposite of bypassing, namely that a 
certain type must be visited during the traversal. The traversal 
strategy at line 2 specifies that at least one object of type C or a 
subtype of C has to be visited when traversing from A to B. 
Notice the + operator to specify all subtypes of a type.   

It is also possible to specify a concrete edge in the class graph 
(denoting a method or field) that has to be followed or bypassed. 
The traversal strategy at line 3 denotes a traversal starting at an 
object of class A that has to pass through this field z of class B. 
The field z can be of any type as specified by the wildcard. 
1  from A bypassing C to B  
2  from A via C+ to B 
3  from A via ->B,z,* to C  

Figure 13: More sophisticated JAsCo Traversal Strategies. 

4.4 Pointcut language 
In addition to the execute pointcut designator, the JAsCo aspect 
bean language also supports other frequently employed pointcut 
designators, such as cflow and withincode. Similar to 
execute, these designators also have a semantics in the adaptive 
programming context. The cflow keyword allows making sure 
that the advices of the hook are only executed when an object of a 
certain type has been visited before reaching the current object. 
The cflow construct captures the concrete object of the declared 
type and thus allows for reflection about the history of the visiting 
process. The withincode keyword makes sure that the advices 
of the hook are only executed when an object of a specific type 
has been encountered just before reaching the current object. In 
other words, when considering the class hierarchy as a class 
graph, the visiting process has followed an edge from an object of 
the type denoted by the withincode keyword until the current 
object. Similar to cflow, the concrete object of withincode is 
captured and can be used for reflection.  
Notice that the traversal strategy keyword via has a different 
semantics than the cflow keyword in a hook’s constructor. The 
via keyword allows selecting specific paths that the adaptive 
visitors have to follow while the cflow keyword delimits specific 
nodes in the traversal graph where the hook is triggered. 
Furthermore, the cflow and withincode keywords allows 
capturing the relevant nodes for reflection. 

5. COMBINING ADAPTIVE VISITORS 
As already mentioned in the problem statement of section 2, 
current implementations of AP only offer limited support for 
combining several adaptive visitors in a single traversal 
simultaneously. These approaches are only able to statically 
define precedence of a combination of visitors. Aspect beans are 
also able to statically specify precedence on a per advice type 

basis. In a JAsCo traversal connector, precedence strategies allow 
to specify the sequence in which the advices of the instantiated 
hooks need to be executed. In order to support more expressive 
combinations of visitors, JAsCoAP employs the concept of 
combination strategies. 

5.1 JAsCo Combination Strategies 
A combination strategy is able to influence the aspectual behavior 
at a certain traversal joinpoint by filtering the list of applicable 
hooks at that traversal joinpoint. An applicable hook at a traversal 
joinpoint is a hook that triggers on that specific type of node in 
the classgraph associated with the traversal joinpoint and where 
the isApplicable condition evaluates to true. Per default, all 
applicable hooks defined in a traversal connector are triggered. A 
combination strategy however, is capable to influence this set of 
hooks and as such able to limit the advices that are executed.  
Combination strategies are regular Java classes that implement the 
CombinationStrategy interface. This interface, illustrated in 
Figure 14, specifies one method named validateCombinations 
(line 2) that takes as input a list of applicable hooks at the current 
traversal joinpoint. This method filters this list of applicable 
hooks in order to influence the aspectual behavior of the traversal 
joinpoint at hand. A combination strategy can be observed as a 
function that takes as input a set of hooks and which has as result 
another set of hooks. As such, a combination strategy always 
returns the same set of hooks given a particular input set. This 
allows optimizing combination strategies performance wise by 
caching their result and as such avoiding the execution of a 
combination strategy for every encountered traversal joinpoint. 
This optimization is valuable, as it is very likely that the same set 
of hooks is encountered frequently during a traversal because of 
the crosscutting nature of the modularized concern. 
1  interface CombinationStrategy {                            
2    HookList validateCombinations(HookList l);               
3  } 

Figure 14: Combination Strategy Interface. 
It is also possible to implement reflective combination strategies 
which are not functions. The main difference with a regular 
combination strategy is twofold: 1) they are always executed for 
each encountered traversal joinpoint and 2) they are able to access 
reflective information about the current encountered traversal 
joinpoint. Figure 15 illustrates the reflective combination strategy 
interface. Notice the additional TraversalJoinPoint argument 
(line 3) for the validateCombinations method, which can be 
used for performing reflection about the current traversal 
joinpoint at hand (node in the classgraph). The 
TraversalJoinPoint class provides an extensive reflective 
API for obtaining the currently visited object, the type of this 
object, the employed traversal strategy, … 
1  interface ReflectiveCombinationStrategy {                  
2    HookList validateCombinations(Hooklist l,                
3      TraversalJoinPoint jp);                                
4  } 

Figure 15: Reflective Combination Strategy Interface. 
Figure 16 illustrates an example combination strategy, named 
Twins. The strategy’s constructor takes two hooks as input (lines 
5-8). The validateCombinations method (lines 10-14) 
specifies that the behavior of the first hook needs to be triggered 
in order to trigger the behavior of the second hook. This is 



implemented by checking whether the list of applicable hooks 
contains hook1 (line 11). When this is not the case, hook2 is 
removed from the list of applicable hooks as well (line 12). 
Notice that the relationship between both input hooks is 
asymmetric: when the behavior of the second hook is not 
triggered, it is still possible to trigger the behavior of the first 
hook. 
1  class Twins implements CombinationStrategy {  
2      
3    Hook hook1, hook2; 
4 
5    Twins(Hook hook1,Hook hook2) {  
6        this.hook1 = hook1; 
7        this.hook2 = hook2; 
8    }   
9 
10   HookList validateCombinations(HookList l) {  
11     if(!l.contains(hook1)) 
12        l.remove(hook2); 
13     return l;  
14   } 
15 } 

Figure 16: Twins combination strategy ensuring that hook2 is 
only triggered when hook1 is triggered. 

The Twin combination strategy can now be employed to 
implement the desired combined logging-backup behavior as 
outlined in section 2. This combined behavior has as purpose 
creating a log that contains the list of all objects that are 
effectively stored. Remember that the Backup hook of Figure 6 
takes an incremental backup. Its behavior is only triggered when 
the visited object is altered since it was last visited. As such, the 
behavior of the logging concern can only be triggered if the 
behavior of the backup hook is triggered as well. This behavior is 
realized by employing the traversal connector illustrated in Figure 
17.  
The Backup hook is instantiated as before (line 4). Imagine that 
also an OutputLogging hook is available, which is instantiated 
on visiting all types (line 5-6). The Twins combination strategy is 
instantiated using the backup and logging hook instances as 
arguments. Afterwards, the Twins combination strategy is added 
to the traversal connector by employing the 
addCombinationStrategy keyword (line 8-9). The resulting 
visiting behavior is the following: both hooks visit objects along 
the described traversal strategy “from System.Root to *” 
and for objects of 

 types different from DataStore: the behavior of the 
backup hook is not triggered and as such the 
combination strategy makes sure that the behavior of 
the logging hook is not triggered as well. 

 type DataStore with changed state: the behavior of the 
backup hook is triggered. The logging hook is kept in 
the list of applicable hooks and its behavior is triggered 
as well. 

 type DataStore with same state: the behavior of the 
backup hook is not triggered. The combination strategy 
removes the logging hook from the list of applicable 
hooks and as such the logging behavior is not triggered. 

It is also possible to define multiple combination strategies in the 
same traversal connector. All defined combination strategies are 
merged using an approach similar to UNIX pipes. The sequence 

in which they are specified corresponds to the order in which they 
are employed in the pipeline. The first combination strategy 
receives the list of applicable hooks and filters them. The second 
combination strategy then receives this filtered list of hooks as 
input, performs its own filtering logic and passes the result on to 
the next combination strategy and so on. The hook list returned by 
the last combination strategy is then the list of hooks that have to 
be triggered at the current traversal joinpoint. 

1 traversalconnector BackupLDetect( 
2   “from System.Root to *”) {  
3     
4     DataStorePersistence.BackupHook backup = … 
5     Logging.OutputLogging logging = new  
6       Logging.ReportLogging(visiting *); 
7     
8     addCombinationStrategy(new 
9       Twins(backup,logging)); 
10 } 
Figure 17: Traversal connector that instantiates the Twins 
combination strategy on the backup and logging hooks. 

5.2 Reusing JAsCo Combination Strategies 
A common issue in AP applications is avoiding visiting the same 
object instance more than once. In current AP realizations, it is 
the responsibility of the adaptive visitor itself to verify whether a 
certain node in the classgraph has already been visited and to stop 
the visiting process accordingly. As a consequence, this detection 
code is scattered over all adaptive visitors that require it.  
JAsCoAP provides a more elegant solution by reusing the Twins 
combination strategy and a generic loop detection aspect bean. 
The LoopDetect aspect bean, illustrated in Figure 18, makes 
sure that it is only applicable when the current node in the 
classgraph was not visited before. To this end, the 
LoopDetection hook implements an isApplicable method 
(line 11-18), which checks whether the currently visited object 
has already been encountered (line 12). If this is the case, the 
isApplicable method returns false (line 13). When the 
currently visited object has not been encountered before, it is 
added to the set of visited objects (line 15) and returns true (line 
16). As such, this hook only triggers when the currently visited 
object was not encountered before. 
1  class LoopDetect { 
2    
3    hook LoopDetection { 
4      
5      Set visited = new TreeSet(); 
6 
7      LoopDetection(visitingmethod(..args)) { 
8        execute(visitingmethod); 
9      } 
10      
11     isApplicable() { 
12       if(visited.contains(thisJoinPointObject)) 
13         return false; //loop detected! 
14       else { 
15         visited.add(thisJoinPointObject); 
16         return true; 
17       } 
18     } 
19   } 
20 } 

Figure 18: Loop Detection aspect bean. 



In order to make sure that the persistence aspect bean avoids 
visiting the same objects more than once, the LoopDetect 
aspect bean is combined with the DataPersistence aspect bean 
in such a way that the behavior of the DataPersistence aspect 
bean is only triggered if the behavior of the LoopDetect aspect 
bean is triggered. This is achieved by reusing the Twins 
combination strategy of Figure 16. Figure 19 illustrates the 
instantiation of this Twins combination strategy with an instance 
of the loop detection and persistence hook (lines 4-5). As a result, 
the persistence hook does not visit the same object more than 
once. The JAsCoAP solution allows for a better separation of 
concerns as other aspect beans remain completely oblivious of 
whether this loop detection mechanism is deployed or not. 
1 traversalconnector BackupLDetect( 
2   “from System.Root to *”) {  
3     
4     DataStorePersistence.Backup backup = …    
5     LoopDetect.LoopDetection detect = … 
6     
7     addCombinationStrategy(new 
8       Twins(detect,backup)); 
9 } 

Figure 19: Traversal connector that instantiates the Twins 
combination strategy for avoiding visiting the same object 

more than once. 

5.3 Reflective Combination Strategies 
The above example shows how a combination of several hooks 
can be described using a combination strategy. Combination 
strategies are similar to combinators employed in Strategic 
Programming (SP) [29]. The main difference is that SP 
combinators are specified declaratively, which has several 
advantages regarding understandability, automatic optimizations 
and analysis. In JAsCo however, we explicitly choose for an 
imperative approach as this allows employing the full 
expressiveness of Java. Reflective combination strategies for 
instance, are able to alter the properties of the encountered aspects 
depending on the concrete combination of hooks. Properties can 
be changed by invoking the appropriate method on the hooks 
themselves. It is also possible to change properties depending on 
the traversal joinpoint at hand. In a reflective combination 
strategy, the traversal joinpoint information is available through 
the TraversalJoinPoint argument of the 
validateCombinations method. Because a combination 
strategy has full control over the list of applicable hooks, it is 
even possible to change the precedence of the hooks dynamically.  
 

 
Figure 20: Class Graph of a weather information system.  

Consider the class graph of Figure 20 that is part of a weather 
information system. The application contains various weather 
related information for several cities throughout the world 
categorized by dates. In order to generate a report containing 
useful statistical information, such as average temperature, a 
visitor is employed. Depending on the city or region, different 
weather related information can be more important. For example, 

for cities in the Sahara region, rainfall information is essential 
while for cities in a touristic coastal region in Spain, average 
water temperature is more interesting. It would be appealing to 
have the most interesting data for each region at the top of the 
report. As such, the sequence of visitors that log weather related 
data to file needs to be altered dynamically depending on the 
interest of the region, which is in this case related to the type of 
visited data.  
This kind of visiting behavior is cleanly captured using a 
reflective combination strategy, as it has full control over the 
returned list of hooks and is also able to access the currently 
executed traversal joinpoint. Figure 21 illustrates this 
DynamicPrecedence combination strategy. The constructor of 
this hook (lines 8-12) receives one hook as input. This hook is an 
instance of the ContextFetcher hook that is able to retain 
selected objects during the traversal. The combination strategy 
contains a field defining comparators for specific context objects 
(line 4). These comparators are used to reorder the list of 
applicable hooks depending on the object stored by the context 
fetcher hook (lines 21-29).  
1 class DynamicPrecedence implements   
2   ReflectiveCombinationStrategy {  
3     
4     Map<Object,Comparator> comparators;   
5     ContextFetcher context; 
6  
7     DynamicPrecedence(ContextFetcher aContext){ 
8        context = aContext; 
9     }   
10  
11     HookList validateCombinations(HookList       
12       List, TraversalJoinPoint jp) {  
13         Object context = context.getContext(); 
14         list = reorder(context,list); 
15         return list;  
16     } 
17  
18     HookList reorder(Object context,         
19       HookList list) { 
20       Comparator c = comparators.get(context); 
21       if(c==null) 
22         throw new IllegalArgumentException( 
23            “illegal context object “+context); 
24       Collections.sort(list,c); 
25       return list; 
26     } 
27 } 

Figure 21: DynamicPrecedence Combination Strategy. 

The traversal connector shown in Figure 22 illustrates how to 
apply this dynamic precedence combination strategy. The context 
fetcher hook is instantiated on objects of type Region (lines 4-5). 
As such, the ContextFetcher hook stores the last Region 
instance encountered during the traversal. Two report generating 
visitors are instantiated, one for generating water temperature 
reports (line 7) and one for generating rainfall reports (line 8). 
The context fetcher hook is passed as input for the dynamic 
precedence combination strategy (lines 10-11). Furthermore, the 
map of comparators of the dynamic precedence combination 
strategy is initialized (line 12). As such, the context fetcher hook 
remembers the last visited region and depending on this region, 
the hooks are dynamically reordered.  
The dynamic precedence combination strategy illustrated in 
Figure 21 does not rely on the specific component types 
encountered during the traversal, nor does it rely on specific types 



of hooks apart from the necessary context fetcher hook. As such, 
it is reusable for all class graphs where a set of visiting hooks 
needs to be dynamically reordered depending on the specific 
objects encountered during the traversal. A similar strategy could 
also be implemented for dynamically reordering hooks depending 
on for example the encountered traversal joinpoint.  
The solution for fetching previously encountered objects during 
the traversal is currently somewhat ad-hoc as a new aspect bean 
has to be implemented for retaining a specific type of object 
during the traversal. When a more complicated history needs to be 
maintained, another aspect bean should be manually 
implemented. The DJ library supports a cleaner solution for 
capturing context information through a special kind of visitor, 
called ContextVisitor. Subclasses of a ContextVisitor 
automatically gather the visited objects and support an extensive 
API for querying the visiting context. Integrating a similar feature 
in JAsCo is anticipated in the future. 

1 traversalconnector GenWeatherReport ( 
2   “from Country via Region to WeatherData+) {  
3     
4     Context.ContextFetcher context = new  
5      Context.ContextFetcher(visiting Region);   
6    
7     ReportGen.Temperature watertemp = … 
8     ReportGen.Humidity rainfall = …  
9         
10     DynamicPrecedence prec = new  
11         DynamicPrecedence(context); 
12     prec.comparators = …  
13      
14     addCombinationStrategy(prec); 
15 } 
Figure 22: traversal connector for generating reports using a 

dynamic precedence combination strategy.   

6. IMPLEMENTATION 
In order to implement JAsCo traversal connectors, a proof-of-
concept implementation is provided which is made available 
through the regular JAsCo distribution [4]. The compileTraversal 
tool is supplied which allows compiling a traversal connector into 
its binary Java class representation. Each traversal connector is 
first translated into a Java class which implements the traversal 
connector logic. Afterwards it is compiled using the standard Java 
compiler. Compiled traversal connectors employ the DJ library in 
order to perform the traversals themselves. Each generated Java 
traversal connector class contains an inner class that implements 
the DJ visitor interface. This inner class takes care of executing 
the correct hooks whenever an object instance is visited. The 
applicable hooks are computed by dynamically invoking the 
isApplicable method for each hook. Afterwards, all applicable 
hooks are filtered by applying each combination strategy 
instantiated in the traversal connector. Finally, the advices of the 
hooks that are left are triggered using the precedence sequence 
defined in the traversal connector. When invoking the traversal 
connector, the DJ adaptive visitor is instantiated onto the traversal 
strategy specified in the traversal connector. 
In addition to the command-line compileTraversal tool, an IDE 
for JAsCoAP is provided as plugin of the Eclipse framework.  
The IDE provides a dedicated editor with syntax coloring for both 
aspect beans and traversal connectors and also includes support 
for creating aspect beans and traversal connectors by employing 

intuitive visual wizards. A traversal connector can be 
automatically generated using the visual wizard. The only 
exception is the implementation of the refinable methods that has 
to be provided later on. The IDE employs the built-in eclipse Java 
compiler for compiling the generated Java files which has several 
advantages regarding compilation speed and consistency of 
errors. 

7. DISCUSSION OF RELATED WORK 
DAJ is an extension of AspectJ that aims at providing Adaptive 
Programming support for Java using an extension of the AspectJ 
language [12,22]. As such, DAJ pursues the same goal as JAsCo, 
namely realizing a unified language for both Adaptive and 
Aspect-Oriented programming. In DAJ, traversal strategies are 
declared in an AspectJ aspect. In addition, adaptive visitors are 
applied to a traversal strategy in an aspect declaration. Adaptive 
Visitors are however still implemented as a regular java class. As 
such, it is not possible to reuse an aspect as both a traditional 
AspectJ aspect and an adaptive visitor. DAJ also offers weaker 
support for specifying aspect combinations in comparison to the 
expressive combination strategies offered by JAsCo. On the other 
hand, because DAJ is a statically weaved approach, it is possible 
to analyze whether certain traversals are possible or not. In 
addition, the concrete traversal graph can already be computed 
beforehand. The JAsCo implementation employs run-time 
reflection to compute and execute the traversals, which induces a 
significantly larger run-time overhead.  
XAspects is an original plugin based language for supporting 
domain specific concern languages [20]. The XAspects system 
delegates the concrete compilation of the domain specific aspects 
to the correct plugins. XAspects is built on top of AspectJ. As 
such, domain specific languages are translated into AspectJ code 
during compilation. XAspects already contains a plugin to allow 
Adaptive Programming and aspect-oriented programming using 
AspectJ. As such, XAspects also combines regular aspect-
oriented programming with Adaptive Programming. In 
comparison to JAsCo however, XAspects suffers from the same 
limitations as DAJ, namely adaptive visitors are not reusable as 
regular aspects and it provides a weaker aspect combination 
mechanism. However, introducing more powerful aspect 
compositions is possible using the extensible plugin mechanism. 
Strategic programming (SP) [7] is a generic programming idiom 
for processing compound data, such as parse trees of 
programming languages. It was initiated in the context of term 
rewriting (using Stratego [28]), but has been transposed to other 
programming paradigms such as functional programming (based 
on Strafunski [9]) and object-oriented programming [29] (based 
on JJTraveler/JJForester[6]). SP allows programmer-definable 
generic traversal schemes (strategies) that, unlike AP, offer full 
control over the traversal. The definition of these strategies relies 
on traversal primitives and combinators that take other strategies 
as arguments. As such, building on a small suite of combinators, a 
wide and expressive variety of traversals can be defined in a 
declarative way. In [8] for example, an AP domain specific 
language is built on top of SP. An actual traversal is then 
synthesized by passing problem-specific basic computations as 
arguments to the appropriate traversal scheme. This corresponds 
to the separation of the traversal specifications and code behavior 
in AP, although SP employs the same type of entity for both of 
these functions. This specific property of SP additionally allows 



employing strategy combinators on problem-specific basic 
computations. As such, these strategy combinators serve as 
reusable combination operators that, in the case of object-oriented 
incarnations of SP [29], bear a large resemblance to the 
combination strategies of JAsCoAP. For example, [8] features a 
visitor for cycle detection very similar to the Loop Detection 
aspect bean of Figure 18, which can also be generally used to 
prevent node processors from visiting the same node twice, 
without scattering the code of the processor with this concern. 
Note however that JAsCoAP uses a very different approach than 
unifying these functions in one type of entity. In SP, both the 
navigation specification (traversal strategy in AP) and the visitor 
composition are combined, which makes it difficult to evolve 
them separately. On the contrary, in JAsCoAP, the visitor 
behavior, the visitor composition and the navigation logic are 
independent, reusable and first-class entities, which allows for a 
cleaner separation of concerns. Additionally, a remaining 
weakness of SP compared to approaches tailored for object 
structures such as AP, is that it does not employ static meta-
information on the class graph to limit the traversal to those 
branches in the given object graph that can possibly lead to a 
target node [8]. Furthermore, SP does not allow to check 
compatibility of a traversal strategy with a given class graph, as 
AP does allow. 
Adaptive Plug-and-Play Components (APPC) [16] aims at making 
AP not only structure-shy, but also independent from the concrete 
class graph it visits. To this end, every APPC describes its visiting 
behavior in terms of an interface class graph. This interface 
defines a set of participants and their mutual relationships. In 
addition, for each participant an explicit set of expected 
operations is provided. An APPC is instantiated by mapping each 
abstract participant upon a concrete class. As such, it is possible 
to deploy the behavior of an APPC upon various component 
contexts. This solution however, still expects the concrete 
components to match a particular operation interface, and is as 
such subjected to the same limitations as adaptive visitors 
implemented using Java 1.5 generics (section 2.1).       
Caesar [17] describes aspects in terms of Aspect Collaboration 
Interfaces (ACI). Each concrete aspect implements the required 
methods specified by a corresponding ACI. Aspect bindings are 
responsible for connecting these aspect implementations to 
different concrete component contexts. One of the major 
contributions of the Caesar approach is the introduction of 
aspectual polymorphism, a notion similar to the late binding 
concept found in object-oriented languages. Aspectual 
polymorphism allows deferring the decision of which concrete 
binding to employ until run-time. In this perspective, it is similar 
to JAsCo refinable methods and their corresponding refinements. 
In JAsCo, the concrete refinements to use are automatically 
resolved at run-time while in Caesar, it is the responsibility of the 
programmer to manually select the concrete binding between the 
available alternatives.  

8. CASE STUDY: THE WEBSERVICE 
MANAGEMENT LAYER (WSML) 
We present an extensive case study where JAsCoAP is employed 
in the context of the Web Service Management Layer (WSML). 
The first part of this section shortly introduces the architecture 
and functionalities offered by the WSML. The second part of this 

section illustrates how adaptive visitors, implemented as regular 
JAsCo aspect beans, can be employed to facilitate the automatic 
web service selection process.      

8.1 Overview of the WSML 
Web Services are a new and increasingly popular standard of the 
World Wide Web Consortium. The promise of Web Services is to 
enable a distributed environment in which any number of 
applications, or application components, can interoperate 
seamlessly among and between organizations in a platform-
neutral, language-neutral fashion [1]. Current approaches for the 
integration of web services [25] however, hard-wire web services 
into the client applications themselves, affecting adaptability and 
reusability. To enable the development of more flexible and 
robust applications, the Web Services Management Layer 
(WSML) is proposed [26,27], which is placed in between the 
application and the web services as a transparent layer. The 
WSML is developed in the context of the MOSAIC1 project and a 
prototype implementation is already available. The current 
implementation of the WSML consists of more than 400 Java 
classes and about 22000 LOC. Figure 23 shows a schematic 
overview of the architecture and the functionalities offered by the 
WSML. 

 
Figure 23: General architecture of the WSML. 

8.2 Automatic selection of Web Services by 
employing JAsCoAP  
The WSML offers, among other functionalities, support for the 
automatic selection, integration and composition of web services. 
Depending on the specific requirements described by an 
application manager at run-time, the WSML is able to 
automatically switch to the most appropriate web services or web 
service compositions. To this end, a set of non-functional 
properties, such as price, reliability and response time, are 
available for each web service separately. This information is 
stored into an extensive data-structure, from which the 
architecture is illustrated in Figure 24. Semantically equivalent 
web services are referenced by employing a ServiceType, which 
offers a unified interface of the service for the application in 
which it is integrated. Each ServiceType is realized by one or 

                                                                 
1 MOSAIC is partly funded by the IWT, Flanders (Belgium), 

partners are the University of Brussels (VUB) and Alcatel 
Belgium. 



more ServiceTypeImplementations. A ServiceTypeImplementation 
provides a WebServiceComposition which encapsulates one or 
more concrete WebService representations that implement the 
functionality offered by their corresponding ServiceType. Each 
WebService separately specifies a dedicated set of properties, 
which are presented using primitive type encapsulations, such as 
WebServiceIntProperty and WebServiceStringProperty. 

Depending on the requirements specified by an application 
manager, the most appropriate ServiceTypeImplementation is 
chosen for a particular kind of ServiceType. If an application 
manager is for instance interested in the cheapest solution, all 
possible ServiceTypeImplementations for a particular ServiceType 
are visited and for each ServiceTypeImplementation separately the 
total price of their incorporating web services is calculated and 
compared. Depending on the results of these calculations, the 
cheapest service type implementation is chosen and deployed 
within the application. 

 
Figure 24: Architecture of the web service property data-

structure of the WSML. 
Prior to the use of JasCoAP, the implementation of this visiting 
and comparing process was hard-wired within the implementation 
of the WSML. For each non-functional requirement defined by a 
web service, a separate visitor was required to for instance 
calculate the sum, average, minimum or maximum value for a 
particular web service type implementation. This resulted in a 
huge amount of visitor classes, which in many cases contained 
duplicated processing logic. In addition, the implementation of 
these visitors has to be manually adapted whenever the property 
data structure is altered.  
In order to keep the implementation of the visiting and comparing 
process reusable and structure-shy, adaptive visitors, implemented 
as JAsCo aspect beans, are employed. JAsCoAP allows reusing a 
very small set of adaptive visitors for automatically selecting the 
most appropriate web service, as these generic visitors can easily 
be tailored towards the functional properties they need to visit. 
Currently, a set of reusable adaptive visitors are implemented 
which allow calculating the sum, average, minimum and 
maximum value of all non-functional properties employed within 
the WSML. These generic aspect beans are resistant to structural 
changes in the property data structure of the WSML. It is for 
instance envisioned to also provide ServiceTypeCompositions 
next to concrete WebServiceCompositions in order to describe 
web service compositions that rely on service types. Regular AP 

could also have been employed in this case study in order to 
separate the visiting process from the concrete web service 
property data structure. JAsCoAP has the advantage over regular 
AP as it is able to reuse only one visitor to for instance calculate 
the sum of int, float, and double web service properties, while 
with regular AP, dedicated visitors are required for each kind of 
property type. Furthermore, the combination strategy solution for 
avoiding visiting the same object more than once outlined in 
section 5 is also employed. 
A disadvantage of the current application of JAsCoAP within the 
WSML is the performance penalty at run-time. The current 
implementation incorporates the DJ library which employs run-
time reflection to compute and perform traversals. As a result, 
selecting the most appropriate web service at run-time using 
JAsCoAP is about four times slower than the original WSML 
implementation where the visiting behaviour of the web service 
property data-structure is hard coded. However, this performance 
hit will be reduced in the near the future as it is envisioned to 
either incorporate a custom-made traversal compiler for JAsCoAP 
or to employ one of the available adaptive programming 
approaches. 

9. CONCLUSIONS 
This paper illustrates how the ideas behind Adaptive 
Programming and JAsCo can be combined to make Adaptive 
Programming fit into the component-based software development 
world. Adaptive visitors are described by means of traditional, 
context-independent JAsCo aspect beans which are deployed 
making use of JAsCo traversal connectors. Adaptive visitors 
implemented as aspect beans are now truly reusable as no context 
information is hard coded. This opens the possibility of reusing an 
aspect bean both as an aspect instantiated in a regular JAsCo 
connector and as an adaptive visitor instantiated in a traversal 
connector. By having the same language syntax, it is also easier to 
write AOP aspects once AP aspects are learned and vice versa. 
This makes the JAsCo language very suitable for teaching.  
Adaptive visitors implemented as aspect beans can easily be 
combined in traversal connectors in order to visit the same 
traversal as specified by the common traversal strategy. JAsCo 
precedence and combination strategies can be employed in order 
to describe complex interactions between several adaptive visitors 
applied upon the same traversal strategy. Furthermore, a case 
study is presented where JAsCoAP is applied to a real-life and 
non-trivial application in order to validate the proposed approach. 
A drawback of utilizing the same syntax for AP aspects and AOP 
aspects is that the semantics is different depending on the 
deployment context. Although the semantics of JAsCo specific 
keywords is not altered drastically, for example the 
thisJoinPointObject keyword refers either to the object where a 
method is invoked upon or the object that is currently visited, this 
could cause confusion and make aspect beans somewhat less 
readable and maintainable. Another drawback of the approach is 
that combination strategies are not specified declaratively. While 
this allows very expressive combination strategies, the basic 
strategies are not that easy to understand because of the 
imperative implementation.  
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