
Adaptive Programming in JAsCo

ABSTRACT
In this paper we propose an extension to JAsCo for supporting
Adaptive Programming in a Component-Based Software
Development context. JAsCo is an aspect-oriented programming
language targeted at Component-Based Software Development
and allows encapsulating crosscutting concerns using highly
reusable aspect beans. Adaptive Programming on the other hand,
allows capturing crosscutting concerns by structure-shy adaptive
visitors. We propose to implement an adaptive visitor as a regular
JAsCo aspect bean. As such, the reusability of an adaptive visitor
is improved because the same visitor can be reused within
different component contexts. We introduce JAsCo traversal
connectors to deploy adaptive visitors, implemented as JAsCo
aspect beans, upon a concrete component traversal. In addition,
these traversal connectors allow to explicitly specify how the
behavior of several adaptive visitors, instantiated onto the same
component traversal, needs to be combined by making use of the
JAsCo precedence and combination strategies. A prototype
implementation of the JAsCo Adaptive Programming extension,
which employs the DJ library, is available. As a proof of concept,
we present an extended case study in the context of the Web
Service Management Layer (WSML) project. In this case study, a
set of visitors implemented in JAsCo is reused to accomplish
multiple tasks.

Keywords
Aspect-Oriented Software Development, Component-Based
Software Development, Adaptive Programming, JAsCo.

1. INTRODUCTION
Aspect-Oriented Software Development (AOSD) is a novel
software development paradigm that aims at improving the
separation of concerns in Object-Oriented Software Development
(OOSD) [2]. Typical aspect-oriented approaches, such as AspectJ
[5], introduce an explicit aspect construct to capture concerns that
crosscut the regular decomposition of the system. Afterwards, the
aspect is weaved together with the base application and as such
the aspect behavior is triggered at all points the aspect is

applicable upon. Adaptive Programming (AP) [14] aims at
providing support for a very different kind of crosscutting
concerns than the ones tackled by typical aspect-oriented
approaches. When an operation involves a set of cooperating
classes, one can either localize this operation in one class or split
the operation over the set of associated classes. Localizing the
operation in one class causes hard-coded information about the
structural relationships between these classes and is as such a
violation of the well-known Law of Demeter [11]. The other
alternative, namely distributing the operation over the set of
involved classes, conforms to the Law of Demeter, but causes the
logic of the desired behavior to be spread over different classes
making evolution very difficult. To capture an operation that
involves several cooperating classes, AP introduces adaptive
visitors, which allow visiting the objects contained within an
application without explicitly describing the structural
relationships among these objects. Traversal strategies are
responsible for specifying the abstract visiting process for an
adaptive visitor. As such, AP allows separating the collaboration
concerns (WhenAndWhatToDo), the traversal concerns
(WhereToGo) and the object structure concerns (classGraph and
objectGraph) [10].
Although AP is originally conceived for OOSD, its ideas are also
applicable to Component-Based Software Development (CBSD).
The main goal of CBSD is achieving highly reusable,
independently deployable components [24]. The current adaptive
programming realizations however, such as DJ [18], DemeterJ
[13] or DAJ [12,22], do not straightforwardly support the
specification of adaptive visitors that are sufficiently reusable to
be employed in a component-based context. Recently, the JAsCo
aspect-oriented programming language has been proposed to
capture crosscutting concerns in a component-based context [23].
JAsCo allows specifying aspect beans that are completely
independent of concrete component types and APIs. Aspect beans
are deployed onto a concrete context using a separate connector
construct. As such, employing a JAsCo aspect bean as a reusable
adaptive visitor makes AP more suitable to be employed in a
component-based context.
Another drawback of current AP approaches is that there is only
limited support for describing combinations of adaptive visitors.
The ability to manage combinations of visitors explicitly is
however crucial for realizing independent visitors. JAsCo
supports an expressive mechanism for combining independent
aspects through combination strategies. Therefore, introducing a
combination strategy concept and as such enhancing the
expressivity of the combination mechanism for adaptive visitors,
also contributes to AP.

Wim Vanderperren, Davy Suvée, Bart Verheecke, María Agustina Cibrán, Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

{wvdperre,dsuvee,bverheecke,mcibran}@vub.ac.be , viviane@info.vub.ac.be

As a proof of concept of JAsCoAP, we present an extended case
study in the context of the Web Service Management Layer
(WSML) project [26,27]. The WSML allows, among other
management actions, the automatic selection and dynamic
integration of the most appropriate web services, depending on
non-functional properties such as price, reliability and response
time. We show how adaptive visitors, implemented as regular
JAsCo aspect beans, are ideal to cleanly encapsulate the visiting
process of the web service property data-structure in order to
facilitate the automatic web service selection process.
In the next section, we show how the ideas of AP and JAsCo can
be combined in order to make AP more appropriate to be used in
a component-based context. Section 3 introduces the key ideas
and concepts of the JAsCo aspect-oriented language. Section 4
illustrates how adaptive visitors can be implemented by means of
JAsCo aspect beans in order to improve their reusability. In
addition, the traversal connector language is introduced. Section 5
illustrates how the behavior of several adaptive visitors can be
combined by employing JAsCo combination strategies. Section 6
elaborates on the implementation of the JAsCoAP extension and
section 7 compares JAsCoAP with current state-of-the-art
research. Finally, section 8 discusses the WSML case study and
afterwards we present our conclusions.

2. PROBLEM STATEMENT/MOTIVATION
One of the main principles of CBSD is to keep one component
independent deployable from other concrete components [15]. As
such, a component should never explicitly rely onto other specific
components in order to execute its behavior [24]. Translating this
requirement towards AP means that an adaptive visitor should be
completely independent from the components it visits. By the
very nature of AP, adaptive visitors are already structure-shy of
the application at hand. However, adaptive visitors typically still
refer to specific components and APIs, rendering a visitor not as
reusable as required by CBSD.

Figure 1: Example class diagram

Consider for instance the class diagram of Figure 1, onto which an
incremental backup concern should be deployed that stores the
data contained in each DataStore object. In order to backup the
contents of all DataStore objects reachable from an instance of
the System.Root class, dedicated methods need to be added to
almost every class. When the application evolves and new classes
are added to the system, these dedicated methods need to be
adapted and the backup logic needs to be refactored in order to
deal with the new class structure.
When employing AP, this backup concern is encapsulated in a
structure-shy manner using an adaptive visitor. Figure 2 illustrates

the DataStorePersistence adaptive visitor, implemented
using DJ [18], which is a Java library that supports AP. Using DJ,
adaptive visitors are implemented as plain Java classes. The
DataStorePersistence visitor allows capturing an incremental
backup of the data contained within each DataStore object. In
this case, the behavior of the visitor is implemented using a before
advice (lines 5-14). If the state of the DataStore object changed
since it was last visited (line 6), the data contained within the
DataStore object is serialized to file (lines 7-12). When this
adaptive visitor is applied onto an application, the entire data
structure of the application is traversed. Whenever an object of
type DataStore is encountered, and its state changed since the
last backup, its data is written to file before it is visited. This
visitor allows carrying out an effective, incremental backup of all
DataStore objects contained within an application.
1 class DataStorePersistence extends Visitor {
2
3 int i = 0;
4
5 public void before(DataStore store) {
6 if(changedPV(store)) {
7 FileOutputStream fw = new
8 FileOutputStream(“state”+i++);
9 ObjectOutStream writer= new
10 ObjectOutputStream(fw);
11 writer.writeObject(store.getData());
12 writer.close();
13 }
14 }
15 public boolean changedPV(DataStore s) {
16 //true if changed since last visit
17 }
18 }

Figure 2: DataStorePersistence Adaptive Visitor in DJ that
allows serializing each visited data store on file.

Figure 3 demonstrates how this adaptive visitor is deployed in
order to backup all DataStore objects starting from the root
system object of an application (lines 3-4). Notice that, because of
the use of an adaptive visitor, the backup method does not need to
hard-code the relations among the components it visits. As a
result, the DataStorePersistence visitor remains applicable
even when additional DataStore objects are added to the system
or when the structural relationships between the system
components are changed.
1 void backup(system.Root mySystemRoot) {
2 ClassGraph cg = new ClassGraph(“system”);
3 Strategy sg = new
4 Strategy(“from system.Root to *”);
5 TraversalGraph tg = new
6 TraversalGraph(sg, cg);
7 tg.traverse(mySystemRoot,
8 new DataStorePersistence());
9 }

Figure 3: Instantiating the DataStorePersistence adaptive
visitor in order to traverse the system for taking a backup of

the state of the application (using DJ).

2.1 Improving the reusability of AP visitors
Although the DataStorePersistence visitor of Figure 2 is
independent from the structural relationships within the
application, it still hard-codes the DataStore type and the
getData method within its implementation. As a result, it is not

possible to reuse the DataStorePersistence visitor within a
different component context than the one that was foreseen.

By making use of design patterns such as Abstract Factory [3], it
is possible to realize more reusable, component-independent
adaptive visitors. This solution nevertheless requires writing a lot
of infrastructural code and merely provides an ad-hoc solution to
prevent context-dependent visitors. The novel Java 1.5 generics
feature provides a more straightforward solution to abstract over
types and is already extensively used in the implementation of
generic containers. Figure 4 illustrates the refactored
implementation of the DataStorePersistence adaptive visitor
by employing Java 1.5 generics.
1 class Persistence<T> extends Visitor {
2 public void before(T store) {
3 ...
4 writer.writeObject(store.toString());
5 ...
6 }
7 }

Figure 4: Generic adaptive persistence visitor.
The implementation of this generic adaptive is quite similar to the
one illustrated in Figure 2, except for the store.getData()
statement (Figure 2, line 11) that is renamed into the
store.toString() statement (Figure 4, line 4). This refactoring
is mandatory, as the formal type parameter T is only able to
understand methods declared by type Object. As a result, the
expressiveness of the internal behavior of the Persistence
adaptive visitor is quite restricted, as only those methods
understood by type Object can be called on store. To resolve
this problem, the Java generics feature introduces bounded formal
type parameters. Figure 5 illustrates this concept by specifying
that the concrete parameter type, which replaces the formal
parameter type T, needs to implement the IDataStore interface
or one of its declared subinterfaces. As such, it remains possible
to call the getData method, specified by the IDataStore
interface, on object store. Although the use of bounded
parameters improves the expressiveness of a visitor, it still
requires the objects to be visited to implement a dedicated
interface. As a result, it is not possible to deploy and reuse this
adaptive visitor upon off-the-shelf third-party components. Notice
that this limitation is not a deficiency in the concrete realization
of generics in Java 1.5, but is rather a more profound problem
with generics in object-oriented languages.
1 class Persistence<T extends IDataStore>
2 extends Visitor {
3 public void before(T store) {
4 ...
5 writer.writeObject(store.getData());
6 ...
7 }
8 }

Figure 5: Generic adaptive persistence visitor using bounded
formal type parameters.

2.2 Combining JAsCo and AP
JAsCo aspect beans are abstract and reusable entities which do
not rely onto specific component types and APIs. Therefore, in
order to increase the reusability and achieve context-independent
and expressive adaptive visitors, we propose to implement
adaptive visitors as JAsCo aspect beans. As such, integrating this
aspect independence idea into AP contributes to achieving a

higher reusability and flexibility for adaptive visitors in a
component-based context.
Another area where the JAsCo ideas are able to contribute to the
AP research, consists of describing expressive combinations
among aspects in order to provide a solution to the feature
interaction phenomenon [19]. Suppose for instance that in
addition to the persistence behavior, a log needs to be maintained
for every object that is saved to file. Using the current AP
implementations, this can only be achieved by appending some
logging code to the DataStorePersistence adaptive visitor
itself. However, doing so causes the logging concern to be tangled
with the backup concern. A tangled “backup-logging” concern
can nevertheless be avoided if a strong combination mechanism is
provided that allows specifying that the TraceVisitor (standard
logging visitor in DJ library) and the DataStorePersistence
visitor visit the same traversal simultaneously in such a way that
the behavior of TraceVisitor is only triggered whenever the
DataStorePersistence visitor saves a visited object to file. As
such, the JAsCo ideas concerning expressive combinations of
aspects using precedence and combination strategies also
contribute to AP.

3. INTRODUCTION TO JASCO
JAsCo is a dynamic AOP approach originally aiming at
combining the ideas of Aspect-Oriented and Component-Based
Software Development. The JAsCo language is an aspect-oriented
extension for Java that intends to stay as close as possible to the
original Java syntax and concepts and introduces only two
additional entities: aspect beans and connectors. An aspect bean
is responsible for capturing crosscutting behavior in a context-
independent manner and a connector allows instantiating aspect
beans onto a concrete component context. The next paragraphs
shortly present the JAsCo aspect bean and connector language.
For more detailed information about JAsCo, the interested reader
is referred to [23].
1 class DataStorePersistence {
2
3 hook Backup {
4
5 int i = 0;
6
7 Backup(triggeringmethod(..args)) {
8 execute(triggeringmethod);
9 }
10
11 isApplicable() {
12 //true when changed since last visit
13 }
14
15 before() {
16 FileOutputStream fw =
17 new FileOutputStream (“state”+i++);
18 ObjectOutputStream writer = new
19 ObjectOutputStream(fw);
20 writer.writeObject(getDataMethod());
21 writer.close();
22 }
23
24 refinable Object getDataMethod();
25 }
26 }

Figure 6: JAsCo DataStorePersistence aspect bean that
implements a reusable backup concern.

An aspect bean is an extended version of a regular Java bean [21]
and is specified independent of concrete components and APIs,
making it a highly reusable entity. An aspect bean usually
contains one or more logically related hooks that describe the
crosscutting behavior itself. Figure 6 illustrates the
implementation of the DataStorePersistence aspect bean.
The behavior of this aspect bean is similar to the behavior of the
DataStorePersistence visitor of Figure 2. The aspect bean
contains one hook, the Backup hook (lines 3-26), which
implements the crosscutting backup behavior. The constructor of
a hook specifies a kind of abstract pointcut and takes one or more
abstract method parameters as input. These abstract method
parameters are bound to concrete methods in a connector. In this
case, the constructor (lines 7-9) specifies that the behavior of the
hook is only triggered when the concrete method(s) bound to the
triggeringmethod abstract method parameter are executed
(line 8).

The isApplicable method is able to specify an additional
triggering condition for the hook and employs the expressiveness
of full Java. In this case the isApplicable method (lines 11-13)
returns true if the state of the object, on which triggingmethod
is executed, changed since it was last visited. This can either be
checked by using the equals method, supported by all Java
objects, if the previous backup is still available or by employing a
refinable method.

JAsCo supports before, around and after advices for specifying
the behavior that needs to be performed when the hook triggers.
The semantics of these advices are identical to the AspectJ
counterparts. The DataStorePersistence aspect bean
implements one before advice (lines 15-22) that serializes the
visited object to file.

Hooks are able to postpone the implementation of certain
behavior in order to remain type independent. For example, in
order to fetch the concrete data from the executing object, the
refinable method getDataMethod is used (line 24). As such, the
hook does not hard-code how the data is fetched and remains
reusable. On the contrary, the visitor of Figure 2 relies on the
getData method of the DataStore type, making it less reusable.
Refinable methods are implemented using type-specific
refinements for the hooks. Figure 7 illustrates an example
refinement of the Backup hook for objects of class DataStore.
Here, the implementation of the getDataMethod returns the
object that is retrieved by executing the getData method of class
DataStore (lines 3-6). When a refinable method is executed at
run-time, late binding is applied, i.e. the most specific refinement
for the current object is searched for and executed. If no
appropriate refinement has been defined, the refinement needs to
be implemented inline when instantiating an aspect bean in the
connector. When both an inline refinement and an external
refinement are available, the inline refinement has precedence.

1 refining DataStorePersistence.Backup for
2 DataStore {
3 public Object getDataMethod() {
4 DataStore store = thisJoinPointObject;
5 return store.getData();
6 }
7 }

Figure 7: Specific refinement for objects of class DataStore.

In order to deploy the DataStorePersistence aspect bean
within an application, a JAsCo connector is employed. Figure 8
illustrates the deployment of this aspect bean upon each setter
method defined within the DataStore class. This is achieved by
instantiating the Backup hook (lines 2-4) on each method defined
within the DataStore class whose name starts with set. This
binds the triggeringmethod abstract method parameter from
the Backup hook constructor to each setter method of the
DataStore class. Hence, whenever the state of a DataStore
object is altered using a method whose name starts with set, the
before behavior of the Backup hook is triggered and the backup
action is performed.

1 connector PersistenceConnector {
2 DataStorePersistence.Backup hook = new
3 DataStorePersistence.Backup(
4 * DataStore.set*(*));
5 }

Figure 8: JAsCo Backup Connector.

4. ASPECT BEANS AS AP VISITORS
An adaptive visitor is similar to a set of related advices as it
groups several before, after and around methods together that
need to be executed whenever a corresponding component type is
visited. Therefore, it seems natural to employ a regular JAsCo
aspect bean as a reusable and loosely coupled adaptive visitor. As
such, aspect beans are able to be deployed in both a traditional
and a traversal oriented context, increasing their reusability even
more. The first part of this section illustrates how aspect beans
can be deployed as being adaptive visitors. The second part
discusses how the aspect bean model is mapped upon the adaptive
visitor model.

4.1 Deploy Aspect beans as adaptive visitors
In order to deploy an aspect bean as an adaptive visitor, a new
kind of connector is introduced, namely a traversal connector. A
traversal connector instantiates one or more hooks as adaptive
visitors onto a specified traversal strategy.

1 traversalconnector BackupTraversal
2 (“from system.Root to *”) {
3
4 DataStorePersistence.Backup hook = new
5 DataStorePersistence.Backup(
6 visiting DataStore);
7
8 hook.before();
9
10 }

Figure 9: JAsCo BackupTraversal traversal connector.

Figure 9 illustrates an example traversal connector that
instantiates the DataStorePersistence aspect bean (lines 4-6)
upon the “from system.Root to *” traversal strategy (lines 1-
2). The visiting keyword allows declaring on which specific
type of objects, encountered during the traversal, the behavior of
the hook needs to be triggered. In this particular case, the
behavior of the Backup hook is triggered whenever DataStore
objects are encountered. The traversal connector also specifies
that whenever the hook is triggered, the before advice has to be
executed (line 8). To sum up, the BackupTraversal traversal
connector has the following semantics: the object structure of an
application is traversed as specified by the traversal strategy
“from system.Root to *” and the before advice of the

Backup hook is triggered each time a DataStore object is
encountered.
By declaring which advices to execute, it is possible to explicitly
specify precedence of the advices in case multiple hooks are
instantiated in the same traversal connector. These precedence
strategies are instance-based, which allows changing the
precedence over different instantiations of the same hook.
The major difference between mainstream aspect-oriented
approaches, such as AspectJ, and AP is the way their crosscutting
behavior is invoked. The behavior of traditional aspects is
invoked implicitly whenever the current joinpoint matches the
pointcut specification of the aspects. Traversal strategies however,
need to be invoked explicitly in order to start the traversal. Figure
10 illustrates how the traversal specified in the
BackupTraversal connector is explicitly invoked (line 5). In
this particular case, the starting point for the traversal is the object
SystemRoot, which is an instance of the system.Root class.
1 public void backup(system.Root systemRoot) {
2
3 BackupTraversal myBackup =
4 BackupTraversal.getInstance();
5 myBackup.traverse(systemRoot);
6 }

Figure 10: Invoking the JAsCo BackupTraversal connector.

4.2 Deployment discussion
One might wonder which specific methods are bound to an
abstract method parameter of a hook when an aspect bean is
deployed as an adaptive visitor. In case of the BackupTraversal
connector illustrated in Figure 9, the triggeringmethod
parameter of the backup hook is bound to the “visiting
DataStore” declaration, which is not a concrete method
signature. The resulting effect of this “visiting DataStore”
declaration is that all DataStore objects encountered during the
traversal are visited by the DataStorePersistence aspect
bean. It is possible to perceive this visiting behavior as a method
execution and it is even implemented as such when the DJ library
is employed. As a result, the method bound to the
triggeringmethod parameter corresponds to the implicit
method that implements the visiting behavior. This allows an
aspect bean to effectively manage its visiting process in a hook. If
a hook implements an around method, the hook itself might
decide to continue or stop the visiting process by invoking or not
invoking the proceed method. This concept is illustrated in the
SearchBean aspect bean, from which the implementation is
shown in Figure 11.

The SearchBean aspect bean is able to search for a specific
object within an application and builds a path of all objects that
are visited while the application structure is traversed (Note that
this path is not necessarily the shortest path). The BuildPath
hook implements a constructor (lines 12-14), which takes one
abstract method parameter, visitingmethod as input. The hook
implements an around advice (lines 16-21) that is responsible for
building up a list of visited nodes. Whenever the object to search
for has been reached, the traversal stops, as the method bound to
the abstract method parameter visitingmethod is not invoked
any longer. In the other case, the current visited object is added to
the list of visited nodes (line 18) and the traversal continues by
explicitly invoking the proceed method (lines 19). Notice that
thisJoinPointObject, which in a traditional aspect bean

context refers to the object on which the method was called, now
refers to the object that is currently being visited. This mapping
can easily be understood: if the traversal behavior itself is
perceived as a method, the visiting of an object can be perceived
as the execution of that method on that object.
Figure 12 illustrates a traversal connector that instantiates the
BuildPath hook on all classes in the system using a wildcard
(lines 4-5). The resulting traversal starts at an instance of the class
system.Root and visits all reachable objects from that instance
onwards (lines 1-2). When the object that needs to be found is
located, the traversal is halted.
1 class SearchBean {
2
3 Object target;
4 List visitednodes = new List();
5
6 List getResultingPath() {
7 return visitednodes;
8 }
9
10 hook BuildPath {
11
12 BuildPath(visitingmethod(..args)) {
13 execute(visitingmethod);
14 }
15
16 around() {
17 if(!thisJoinPointObject.equals(target)) {
18 visitednodes.add(thisJoinPointObject);
19 proceed();
20 }
21 }
22 }
23 }

Figure 11: Search aspect bean that allows building a path of
objects visited in order to reach a specific object.

Note that this point of view is compatible with the JoinPoint
Model (JPM) for adaptive programming that Wu et al. [30]
describe and identify as parallel to the JPM of traditional aspect-
oriented approaches such as AspectJ. Additionally, they propose
employing around advices with non-void return types as a means
to express functional visitors. These visitors provide a natural and
convenient way of expressing computation along the traversal
over recursive object structures, similar to traditional recursive
functions. While we expect that their extension to DJ can also be
applied to JAsCoAP in a straightforward manner, the feasibility
of advices with non-void return types that apply in both
traditional and traversal-oriented contexts remains to be
investigated.
1 traversalconnector SearchTraversal(
2 “from system.Root to *”) {
3
4 SearchBean.BuildPath builder = new
5 SearchBean.BuildPath(visiting *);
6
7 builder.around();
8 }

Figure 12: Instantiating the BuildPath hook on all the classes
within the system in a JAsCo traversal connector.

4.3 Traversal language
The traversal strategies employed in JAsCo traversal connectors
are an extension of the traversal language supported by the DJ
library [18]. Figure 13 provides a set of examples which

illustrates the use of more advanced keywords that allow
specifying sophisticated traversal strategies.

The bypassing keyword allows to denote classes that may not be
visited during the traversal. For example, in the traversal strategy
at line 1, an instance of the class C can not be visited in order to
traverse starting from an instance of class A and reaching an
instance of class B. In other words, when considering the class
hierarchy as a class graph, all paths from class A to B that contain
the class C are not visited. An exception is thrown if such a
traversal is not possible.

The via keyword denotes the opposite of bypassing, namely that a
certain type must be visited during the traversal. The traversal
strategy at line 2 specifies that at least one object of type C or a
subtype of C has to be visited when traversing from A to B.
Notice the + operator to specify all subtypes of a type.

It is also possible to specify a concrete edge in the class graph
(denoting a method or field) that has to be followed or bypassed.
The traversal strategy at line 3 denotes a traversal starting at an
object of class A that has to pass through this field z of class B.
The field z can be of any type as specified by the wildcard.
1 from A bypassing C to B
2 from A via C+ to B
3 from A via ->B,z,* to C

Figure 13: More sophisticated JAsCo Traversal Strategies.

4.4 Pointcut language
In addition to the execute pointcut designator, the JAsCo aspect
bean language also supports other frequently employed pointcut
designators, such as cflow and withincode. Similar to
execute, these designators also have a semantics in the adaptive
programming context. The cflow keyword allows making sure
that the advices of the hook are only executed when an object of a
certain type has been visited before reaching the current object.
The cflow construct captures the concrete object of the declared
type and thus allows for reflection about the history of the visiting
process. The withincode keyword makes sure that the advices
of the hook are only executed when an object of a specific type
has been encountered just before reaching the current object. In
other words, when considering the class hierarchy as a class
graph, the visiting process has followed an edge from an object of
the type denoted by the withincode keyword until the current
object. Similar to cflow, the concrete object of withincode is
captured and can be used for reflection.
Notice that the traversal strategy keyword via has a different
semantics than the cflow keyword in a hook’s constructor. The
via keyword allows selecting specific paths that the adaptive
visitors have to follow while the cflow keyword delimits specific
nodes in the traversal graph where the hook is triggered.
Furthermore, the cflow and withincode keywords allows
capturing the relevant nodes for reflection.

5. COMBINING ADAPTIVE VISITORS
As already mentioned in the problem statement of section 2,
current implementations of AP only offer limited support for
combining several adaptive visitors in a single traversal
simultaneously. These approaches are only able to statically
define precedence of a combination of visitors. Aspect beans are
also able to statically specify precedence on a per advice type

basis. In a JAsCo traversal connector, precedence strategies allow
to specify the sequence in which the advices of the instantiated
hooks need to be executed. In order to support more expressive
combinations of visitors, JAsCoAP employs the concept of
combination strategies.

5.1 JAsCo Combination Strategies
A combination strategy is able to influence the aspectual behavior
at a certain traversal joinpoint by filtering the list of applicable
hooks at that traversal joinpoint. An applicable hook at a traversal
joinpoint is a hook that triggers on that specific type of node in
the classgraph associated with the traversal joinpoint and where
the isApplicable condition evaluates to true. Per default, all
applicable hooks defined in a traversal connector are triggered. A
combination strategy however, is capable to influence this set of
hooks and as such able to limit the advices that are executed.
Combination strategies are regular Java classes that implement the
CombinationStrategy interface. This interface, illustrated in
Figure 14, specifies one method named validateCombinations
(line 2) that takes as input a list of applicable hooks at the current
traversal joinpoint. This method filters this list of applicable
hooks in order to influence the aspectual behavior of the traversal
joinpoint at hand. A combination strategy can be observed as a
function that takes as input a set of hooks and which has as result
another set of hooks. As such, a combination strategy always
returns the same set of hooks given a particular input set. This
allows optimizing combination strategies performance wise by
caching their result and as such avoiding the execution of a
combination strategy for every encountered traversal joinpoint.
This optimization is valuable, as it is very likely that the same set
of hooks is encountered frequently during a traversal because of
the crosscutting nature of the modularized concern.
1 interface CombinationStrategy {
2 HookList validateCombinations(HookList l);
3 }

Figure 14: Combination Strategy Interface.
It is also possible to implement reflective combination strategies
which are not functions. The main difference with a regular
combination strategy is twofold: 1) they are always executed for
each encountered traversal joinpoint and 2) they are able to access
reflective information about the current encountered traversal
joinpoint. Figure 15 illustrates the reflective combination strategy
interface. Notice the additional TraversalJoinPoint argument
(line 3) for the validateCombinations method, which can be
used for performing reflection about the current traversal
joinpoint at hand (node in the classgraph). The
TraversalJoinPoint class provides an extensive reflective
API for obtaining the currently visited object, the type of this
object, the employed traversal strategy, …
1 interface ReflectiveCombinationStrategy {
2 HookList validateCombinations(Hooklist l,
3 TraversalJoinPoint jp);
4 }

Figure 15: Reflective Combination Strategy Interface.
Figure 16 illustrates an example combination strategy, named
Twins. The strategy’s constructor takes two hooks as input (lines
5-8). The validateCombinations method (lines 10-14)
specifies that the behavior of the first hook needs to be triggered
in order to trigger the behavior of the second hook. This is

implemented by checking whether the list of applicable hooks
contains hook1 (line 11). When this is not the case, hook2 is
removed from the list of applicable hooks as well (line 12).
Notice that the relationship between both input hooks is
asymmetric: when the behavior of the second hook is not
triggered, it is still possible to trigger the behavior of the first
hook.
1 class Twins implements CombinationStrategy {
2
3 Hook hook1, hook2;
4
5 Twins(Hook hook1,Hook hook2) {
6 this.hook1 = hook1;
7 this.hook2 = hook2;
8 }
9
10 HookList validateCombinations(HookList l) {
11 if(!l.contains(hook1))
12 l.remove(hook2);
13 return l;
14 }
15 }

Figure 16: Twins combination strategy ensuring that hook2 is
only triggered when hook1 is triggered.

The Twin combination strategy can now be employed to
implement the desired combined logging-backup behavior as
outlined in section 2. This combined behavior has as purpose
creating a log that contains the list of all objects that are
effectively stored. Remember that the Backup hook of Figure 6
takes an incremental backup. Its behavior is only triggered when
the visited object is altered since it was last visited. As such, the
behavior of the logging concern can only be triggered if the
behavior of the backup hook is triggered as well. This behavior is
realized by employing the traversal connector illustrated in Figure
17.
The Backup hook is instantiated as before (line 4). Imagine that
also an OutputLogging hook is available, which is instantiated
on visiting all types (line 5-6). The Twins combination strategy is
instantiated using the backup and logging hook instances as
arguments. Afterwards, the Twins combination strategy is added
to the traversal connector by employing the
addCombinationStrategy keyword (line 8-9). The resulting
visiting behavior is the following: both hooks visit objects along
the described traversal strategy “from System.Root to *”
and for objects of

 types different from DataStore: the behavior of the
backup hook is not triggered and as such the
combination strategy makes sure that the behavior of
the logging hook is not triggered as well.

 type DataStore with changed state: the behavior of the
backup hook is triggered. The logging hook is kept in
the list of applicable hooks and its behavior is triggered
as well.

 type DataStore with same state: the behavior of the
backup hook is not triggered. The combination strategy
removes the logging hook from the list of applicable
hooks and as such the logging behavior is not triggered.

It is also possible to define multiple combination strategies in the
same traversal connector. All defined combination strategies are
merged using an approach similar to UNIX pipes. The sequence

in which they are specified corresponds to the order in which they
are employed in the pipeline. The first combination strategy
receives the list of applicable hooks and filters them. The second
combination strategy then receives this filtered list of hooks as
input, performs its own filtering logic and passes the result on to
the next combination strategy and so on. The hook list returned by
the last combination strategy is then the list of hooks that have to
be triggered at the current traversal joinpoint.

1 traversalconnector BackupLDetect(
2 “from System.Root to *”) {
3
4 DataStorePersistence.BackupHook backup = …
5 Logging.OutputLogging logging = new
6 Logging.ReportLogging(visiting *);
7
8 addCombinationStrategy(new
9 Twins(backup,logging));
10 }
Figure 17: Traversal connector that instantiates the Twins
combination strategy on the backup and logging hooks.

5.2 Reusing JAsCo Combination Strategies
A common issue in AP applications is avoiding visiting the same
object instance more than once. In current AP realizations, it is
the responsibility of the adaptive visitor itself to verify whether a
certain node in the classgraph has already been visited and to stop
the visiting process accordingly. As a consequence, this detection
code is scattered over all adaptive visitors that require it.
JAsCoAP provides a more elegant solution by reusing the Twins
combination strategy and a generic loop detection aspect bean.
The LoopDetect aspect bean, illustrated in Figure 18, makes
sure that it is only applicable when the current node in the
classgraph was not visited before. To this end, the
LoopDetection hook implements an isApplicable method
(line 11-18), which checks whether the currently visited object
has already been encountered (line 12). If this is the case, the
isApplicable method returns false (line 13). When the
currently visited object has not been encountered before, it is
added to the set of visited objects (line 15) and returns true (line
16). As such, this hook only triggers when the currently visited
object was not encountered before.
1 class LoopDetect {
2
3 hook LoopDetection {
4
5 Set visited = new TreeSet();
6
7 LoopDetection(visitingmethod(..args)) {
8 execute(visitingmethod);
9 }
10
11 isApplicable() {
12 if(visited.contains(thisJoinPointObject))
13 return false; //loop detected!
14 else {
15 visited.add(thisJoinPointObject);
16 return true;
17 }
18 }
19 }
20 }

Figure 18: Loop Detection aspect bean.

In order to make sure that the persistence aspect bean avoids
visiting the same objects more than once, the LoopDetect
aspect bean is combined with the DataPersistence aspect bean
in such a way that the behavior of the DataPersistence aspect
bean is only triggered if the behavior of the LoopDetect aspect
bean is triggered. This is achieved by reusing the Twins
combination strategy of Figure 16. Figure 19 illustrates the
instantiation of this Twins combination strategy with an instance
of the loop detection and persistence hook (lines 4-5). As a result,
the persistence hook does not visit the same object more than
once. The JAsCoAP solution allows for a better separation of
concerns as other aspect beans remain completely oblivious of
whether this loop detection mechanism is deployed or not.
1 traversalconnector BackupLDetect(
2 “from System.Root to *”) {
3
4 DataStorePersistence.Backup backup = …
5 LoopDetect.LoopDetection detect = …
6
7 addCombinationStrategy(new
8 Twins(detect,backup));
9 }

Figure 19: Traversal connector that instantiates the Twins
combination strategy for avoiding visiting the same object

more than once.

5.3 Reflective Combination Strategies
The above example shows how a combination of several hooks
can be described using a combination strategy. Combination
strategies are similar to combinators employed in Strategic
Programming (SP) [29]. The main difference is that SP
combinators are specified declaratively, which has several
advantages regarding understandability, automatic optimizations
and analysis. In JAsCo however, we explicitly choose for an
imperative approach as this allows employing the full
expressiveness of Java. Reflective combination strategies for
instance, are able to alter the properties of the encountered aspects
depending on the concrete combination of hooks. Properties can
be changed by invoking the appropriate method on the hooks
themselves. It is also possible to change properties depending on
the traversal joinpoint at hand. In a reflective combination
strategy, the traversal joinpoint information is available through
the TraversalJoinPoint argument of the
validateCombinations method. Because a combination
strategy has full control over the list of applicable hooks, it is
even possible to change the precedence of the hooks dynamically.

Figure 20: Class Graph of a weather information system.

Consider the class graph of Figure 20 that is part of a weather
information system. The application contains various weather
related information for several cities throughout the world
categorized by dates. In order to generate a report containing
useful statistical information, such as average temperature, a
visitor is employed. Depending on the city or region, different
weather related information can be more important. For example,

for cities in the Sahara region, rainfall information is essential
while for cities in a touristic coastal region in Spain, average
water temperature is more interesting. It would be appealing to
have the most interesting data for each region at the top of the
report. As such, the sequence of visitors that log weather related
data to file needs to be altered dynamically depending on the
interest of the region, which is in this case related to the type of
visited data.
This kind of visiting behavior is cleanly captured using a
reflective combination strategy, as it has full control over the
returned list of hooks and is also able to access the currently
executed traversal joinpoint. Figure 21 illustrates this
DynamicPrecedence combination strategy. The constructor of
this hook (lines 8-12) receives one hook as input. This hook is an
instance of the ContextFetcher hook that is able to retain
selected objects during the traversal. The combination strategy
contains a field defining comparators for specific context objects
(line 4). These comparators are used to reorder the list of
applicable hooks depending on the object stored by the context
fetcher hook (lines 21-29).
1 class DynamicPrecedence implements
2 ReflectiveCombinationStrategy {
3
4 Map<Object,Comparator> comparators;
5 ContextFetcher context;
6
7 DynamicPrecedence(ContextFetcher aContext){
8 context = aContext;
9 }
10
11 HookList validateCombinations(HookList
12 List, TraversalJoinPoint jp) {
13 Object context = context.getContext();
14 list = reorder(context,list);
15 return list;
16 }
17
18 HookList reorder(Object context,
19 HookList list) {
20 Comparator c = comparators.get(context);
21 if(c==null)
22 throw new IllegalArgumentException(
23 “illegal context object “+context);
24 Collections.sort(list,c);
25 return list;
26 }
27 }

Figure 21: DynamicPrecedence Combination Strategy.

The traversal connector shown in Figure 22 illustrates how to
apply this dynamic precedence combination strategy. The context
fetcher hook is instantiated on objects of type Region (lines 4-5).
As such, the ContextFetcher hook stores the last Region
instance encountered during the traversal. Two report generating
visitors are instantiated, one for generating water temperature
reports (line 7) and one for generating rainfall reports (line 8).
The context fetcher hook is passed as input for the dynamic
precedence combination strategy (lines 10-11). Furthermore, the
map of comparators of the dynamic precedence combination
strategy is initialized (line 12). As such, the context fetcher hook
remembers the last visited region and depending on this region,
the hooks are dynamically reordered.
The dynamic precedence combination strategy illustrated in
Figure 21 does not rely on the specific component types
encountered during the traversal, nor does it rely on specific types

of hooks apart from the necessary context fetcher hook. As such,
it is reusable for all class graphs where a set of visiting hooks
needs to be dynamically reordered depending on the specific
objects encountered during the traversal. A similar strategy could
also be implemented for dynamically reordering hooks depending
on for example the encountered traversal joinpoint.
The solution for fetching previously encountered objects during
the traversal is currently somewhat ad-hoc as a new aspect bean
has to be implemented for retaining a specific type of object
during the traversal. When a more complicated history needs to be
maintained, another aspect bean should be manually
implemented. The DJ library supports a cleaner solution for
capturing context information through a special kind of visitor,
called ContextVisitor. Subclasses of a ContextVisitor
automatically gather the visited objects and support an extensive
API for querying the visiting context. Integrating a similar feature
in JAsCo is anticipated in the future.

1 traversalconnector GenWeatherReport (
2 “from Country via Region to WeatherData+) {
3
4 Context.ContextFetcher context = new
5 Context.ContextFetcher(visiting Region);
6
7 ReportGen.Temperature watertemp = …
8 ReportGen.Humidity rainfall = …
9
10 DynamicPrecedence prec = new
11 DynamicPrecedence(context);
12 prec.comparators = …
13
14 addCombinationStrategy(prec);
15 }
Figure 22: traversal connector for generating reports using a

dynamic precedence combination strategy.

6. IMPLEMENTATION
In order to implement JAsCo traversal connectors, a proof-of-
concept implementation is provided which is made available
through the regular JAsCo distribution [4]. The compileTraversal
tool is supplied which allows compiling a traversal connector into
its binary Java class representation. Each traversal connector is
first translated into a Java class which implements the traversal
connector logic. Afterwards it is compiled using the standard Java
compiler. Compiled traversal connectors employ the DJ library in
order to perform the traversals themselves. Each generated Java
traversal connector class contains an inner class that implements
the DJ visitor interface. This inner class takes care of executing
the correct hooks whenever an object instance is visited. The
applicable hooks are computed by dynamically invoking the
isApplicable method for each hook. Afterwards, all applicable
hooks are filtered by applying each combination strategy
instantiated in the traversal connector. Finally, the advices of the
hooks that are left are triggered using the precedence sequence
defined in the traversal connector. When invoking the traversal
connector, the DJ adaptive visitor is instantiated onto the traversal
strategy specified in the traversal connector.
In addition to the command-line compileTraversal tool, an IDE
for JAsCoAP is provided as plugin of the Eclipse framework.
The IDE provides a dedicated editor with syntax coloring for both
aspect beans and traversal connectors and also includes support
for creating aspect beans and traversal connectors by employing

intuitive visual wizards. A traversal connector can be
automatically generated using the visual wizard. The only
exception is the implementation of the refinable methods that has
to be provided later on. The IDE employs the built-in eclipse Java
compiler for compiling the generated Java files which has several
advantages regarding compilation speed and consistency of
errors.

7. DISCUSSION OF RELATED WORK
DAJ is an extension of AspectJ that aims at providing Adaptive
Programming support for Java using an extension of the AspectJ
language [12,22]. As such, DAJ pursues the same goal as JAsCo,
namely realizing a unified language for both Adaptive and
Aspect-Oriented programming. In DAJ, traversal strategies are
declared in an AspectJ aspect. In addition, adaptive visitors are
applied to a traversal strategy in an aspect declaration. Adaptive
Visitors are however still implemented as a regular java class. As
such, it is not possible to reuse an aspect as both a traditional
AspectJ aspect and an adaptive visitor. DAJ also offers weaker
support for specifying aspect combinations in comparison to the
expressive combination strategies offered by JAsCo. On the other
hand, because DAJ is a statically weaved approach, it is possible
to analyze whether certain traversals are possible or not. In
addition, the concrete traversal graph can already be computed
beforehand. The JAsCo implementation employs run-time
reflection to compute and execute the traversals, which induces a
significantly larger run-time overhead.
XAspects is an original plugin based language for supporting
domain specific concern languages [20]. The XAspects system
delegates the concrete compilation of the domain specific aspects
to the correct plugins. XAspects is built on top of AspectJ. As
such, domain specific languages are translated into AspectJ code
during compilation. XAspects already contains a plugin to allow
Adaptive Programming and aspect-oriented programming using
AspectJ. As such, XAspects also combines regular aspect-
oriented programming with Adaptive Programming. In
comparison to JAsCo however, XAspects suffers from the same
limitations as DAJ, namely adaptive visitors are not reusable as
regular aspects and it provides a weaker aspect combination
mechanism. However, introducing more powerful aspect
compositions is possible using the extensible plugin mechanism.
Strategic programming (SP) [7] is a generic programming idiom
for processing compound data, such as parse trees of
programming languages. It was initiated in the context of term
rewriting (using Stratego [28]), but has been transposed to other
programming paradigms such as functional programming (based
on Strafunski [9]) and object-oriented programming [29] (based
on JJTraveler/JJForester[6]). SP allows programmer-definable
generic traversal schemes (strategies) that, unlike AP, offer full
control over the traversal. The definition of these strategies relies
on traversal primitives and combinators that take other strategies
as arguments. As such, building on a small suite of combinators, a
wide and expressive variety of traversals can be defined in a
declarative way. In [8] for example, an AP domain specific
language is built on top of SP. An actual traversal is then
synthesized by passing problem-specific basic computations as
arguments to the appropriate traversal scheme. This corresponds
to the separation of the traversal specifications and code behavior
in AP, although SP employs the same type of entity for both of
these functions. This specific property of SP additionally allows

employing strategy combinators on problem-specific basic
computations. As such, these strategy combinators serve as
reusable combination operators that, in the case of object-oriented
incarnations of SP [29], bear a large resemblance to the
combination strategies of JAsCoAP. For example, [8] features a
visitor for cycle detection very similar to the Loop Detection
aspect bean of Figure 18, which can also be generally used to
prevent node processors from visiting the same node twice,
without scattering the code of the processor with this concern.
Note however that JAsCoAP uses a very different approach than
unifying these functions in one type of entity. In SP, both the
navigation specification (traversal strategy in AP) and the visitor
composition are combined, which makes it difficult to evolve
them separately. On the contrary, in JAsCoAP, the visitor
behavior, the visitor composition and the navigation logic are
independent, reusable and first-class entities, which allows for a
cleaner separation of concerns. Additionally, a remaining
weakness of SP compared to approaches tailored for object
structures such as AP, is that it does not employ static meta-
information on the class graph to limit the traversal to those
branches in the given object graph that can possibly lead to a
target node [8]. Furthermore, SP does not allow to check
compatibility of a traversal strategy with a given class graph, as
AP does allow.
Adaptive Plug-and-Play Components (APPC) [16] aims at making
AP not only structure-shy, but also independent from the concrete
class graph it visits. To this end, every APPC describes its visiting
behavior in terms of an interface class graph. This interface
defines a set of participants and their mutual relationships. In
addition, for each participant an explicit set of expected
operations is provided. An APPC is instantiated by mapping each
abstract participant upon a concrete class. As such, it is possible
to deploy the behavior of an APPC upon various component
contexts. This solution however, still expects the concrete
components to match a particular operation interface, and is as
such subjected to the same limitations as adaptive visitors
implemented using Java 1.5 generics (section 2.1).
Caesar [17] describes aspects in terms of Aspect Collaboration
Interfaces (ACI). Each concrete aspect implements the required
methods specified by a corresponding ACI. Aspect bindings are
responsible for connecting these aspect implementations to
different concrete component contexts. One of the major
contributions of the Caesar approach is the introduction of
aspectual polymorphism, a notion similar to the late binding
concept found in object-oriented languages. Aspectual
polymorphism allows deferring the decision of which concrete
binding to employ until run-time. In this perspective, it is similar
to JAsCo refinable methods and their corresponding refinements.
In JAsCo, the concrete refinements to use are automatically
resolved at run-time while in Caesar, it is the responsibility of the
programmer to manually select the concrete binding between the
available alternatives.

8. CASE STUDY: THE WEBSERVICE
MANAGEMENT LAYER (WSML)
We present an extensive case study where JAsCoAP is employed
in the context of the Web Service Management Layer (WSML).
The first part of this section shortly introduces the architecture
and functionalities offered by the WSML. The second part of this

section illustrates how adaptive visitors, implemented as regular
JAsCo aspect beans, can be employed to facilitate the automatic
web service selection process.

8.1 Overview of the WSML
Web Services are a new and increasingly popular standard of the
World Wide Web Consortium. The promise of Web Services is to
enable a distributed environment in which any number of
applications, or application components, can interoperate
seamlessly among and between organizations in a platform-
neutral, language-neutral fashion [1]. Current approaches for the
integration of web services [25] however, hard-wire web services
into the client applications themselves, affecting adaptability and
reusability. To enable the development of more flexible and
robust applications, the Web Services Management Layer
(WSML) is proposed [26,27], which is placed in between the
application and the web services as a transparent layer. The
WSML is developed in the context of the MOSAIC1 project and a
prototype implementation is already available. The current
implementation of the WSML consists of more than 400 Java
classes and about 22000 LOC. Figure 23 shows a schematic
overview of the architecture and the functionalities offered by the
WSML.

Figure 23: General architecture of the WSML.

8.2 Automatic selection of Web Services by
employing JAsCoAP
The WSML offers, among other functionalities, support for the
automatic selection, integration and composition of web services.
Depending on the specific requirements described by an
application manager at run-time, the WSML is able to
automatically switch to the most appropriate web services or web
service compositions. To this end, a set of non-functional
properties, such as price, reliability and response time, are
available for each web service separately. This information is
stored into an extensive data-structure, from which the
architecture is illustrated in Figure 24. Semantically equivalent
web services are referenced by employing a ServiceType, which
offers a unified interface of the service for the application in
which it is integrated. Each ServiceType is realized by one or

1 MOSAIC is partly funded by the IWT, Flanders (Belgium),

partners are the University of Brussels (VUB) and Alcatel
Belgium.

more ServiceTypeImplementations. A ServiceTypeImplementation
provides a WebServiceComposition which encapsulates one or
more concrete WebService representations that implement the
functionality offered by their corresponding ServiceType. Each
WebService separately specifies a dedicated set of properties,
which are presented using primitive type encapsulations, such as
WebServiceIntProperty and WebServiceStringProperty.

Depending on the requirements specified by an application
manager, the most appropriate ServiceTypeImplementation is
chosen for a particular kind of ServiceType. If an application
manager is for instance interested in the cheapest solution, all
possible ServiceTypeImplementations for a particular ServiceType
are visited and for each ServiceTypeImplementation separately the
total price of their incorporating web services is calculated and
compared. Depending on the results of these calculations, the
cheapest service type implementation is chosen and deployed
within the application.

Figure 24: Architecture of the web service property data-

structure of the WSML.
Prior to the use of JasCoAP, the implementation of this visiting
and comparing process was hard-wired within the implementation
of the WSML. For each non-functional requirement defined by a
web service, a separate visitor was required to for instance
calculate the sum, average, minimum or maximum value for a
particular web service type implementation. This resulted in a
huge amount of visitor classes, which in many cases contained
duplicated processing logic. In addition, the implementation of
these visitors has to be manually adapted whenever the property
data structure is altered.
In order to keep the implementation of the visiting and comparing
process reusable and structure-shy, adaptive visitors, implemented
as JAsCo aspect beans, are employed. JAsCoAP allows reusing a
very small set of adaptive visitors for automatically selecting the
most appropriate web service, as these generic visitors can easily
be tailored towards the functional properties they need to visit.
Currently, a set of reusable adaptive visitors are implemented
which allow calculating the sum, average, minimum and
maximum value of all non-functional properties employed within
the WSML. These generic aspect beans are resistant to structural
changes in the property data structure of the WSML. It is for
instance envisioned to also provide ServiceTypeCompositions
next to concrete WebServiceCompositions in order to describe
web service compositions that rely on service types. Regular AP

could also have been employed in this case study in order to
separate the visiting process from the concrete web service
property data structure. JAsCoAP has the advantage over regular
AP as it is able to reuse only one visitor to for instance calculate
the sum of int, float, and double web service properties, while
with regular AP, dedicated visitors are required for each kind of
property type. Furthermore, the combination strategy solution for
avoiding visiting the same object more than once outlined in
section 5 is also employed.
A disadvantage of the current application of JAsCoAP within the
WSML is the performance penalty at run-time. The current
implementation incorporates the DJ library which employs run-
time reflection to compute and perform traversals. As a result,
selecting the most appropriate web service at run-time using
JAsCoAP is about four times slower than the original WSML
implementation where the visiting behaviour of the web service
property data-structure is hard coded. However, this performance
hit will be reduced in the near the future as it is envisioned to
either incorporate a custom-made traversal compiler for JAsCoAP
or to employ one of the available adaptive programming
approaches.

9. CONCLUSIONS
This paper illustrates how the ideas behind Adaptive
Programming and JAsCo can be combined to make Adaptive
Programming fit into the component-based software development
world. Adaptive visitors are described by means of traditional,
context-independent JAsCo aspect beans which are deployed
making use of JAsCo traversal connectors. Adaptive visitors
implemented as aspect beans are now truly reusable as no context
information is hard coded. This opens the possibility of reusing an
aspect bean both as an aspect instantiated in a regular JAsCo
connector and as an adaptive visitor instantiated in a traversal
connector. By having the same language syntax, it is also easier to
write AOP aspects once AP aspects are learned and vice versa.
This makes the JAsCo language very suitable for teaching.
Adaptive visitors implemented as aspect beans can easily be
combined in traversal connectors in order to visit the same
traversal as specified by the common traversal strategy. JAsCo
precedence and combination strategies can be employed in order
to describe complex interactions between several adaptive visitors
applied upon the same traversal strategy. Furthermore, a case
study is presented where JAsCoAP is applied to a real-life and
non-trivial application in order to validate the proposed approach.
A drawback of utilizing the same syntax for AP aspects and AOP
aspects is that the semantics is different depending on the
deployment context. Although the semantics of JAsCo specific
keywords is not altered drastically, for example the
thisJoinPointObject keyword refers either to the object where a
method is invoked upon or the object that is currently visited, this
could cause confusion and make aspect beans somewhat less
readable and maintainable. Another drawback of the approach is
that combination strategies are not specified declaratively. While
this allows very expressive combination strategies, the basic
strategies are not that easy to understand because of the
imperative implementation.

10. ACKNOWLEDGEMENTS
First of all, we would like to thank the anonymous reviewers for
reviewing or paper in depth and providing us with interesting
feedback. We also would like to thank Bruno De Fraine and
Therapon Skotiniotis for proof reading the paper. Special thanks
to Karl Lieberherr for his feedback on this work. Davy Suvée is
supported by a doctoral scholarship from the Flemish Institute for
the Improvement of the Scientifical-Technological Research in
the Industry (IWT).

11. REFERENCES
[1] Chappell, D. and Jewell, T. Using Java in Service-Oriented

Architectures: Java Web Services. O’Reilly, 2002.
[2] Elrad, T., Filman, R. and Bader, A. (Eds). Aspect-Oriented

Programming. Communications of the ACM, 44(10):28-97,
2001.

[3] Gamma, E., Helm, R., Johnson, R. and Vlisside, J. Design
Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[4] JAsCo including JAsCoAP extension available at:
http://ssel.vub.ac.be/jasco

[5] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.
and Griswold, W., G. An overview of AspectJ. In
Proceedings of ECOOP’2000, SpringerVerlag, 2000.

[6] Kuipers, T. and Visser, J. Object-oriented tree traversal with
JJForester. In ENTCS, volume 44, Elsevier Science, 2001.

[7] Lämmel, R. Typed Generic Traversal With Term Rewriting
Strategies. Journal of Logic and Algebraic Programming,
54:1.64, September 2002.

[8] Lämmel, R., Visser, E. and Visser, J. Strategic Programming
Meets Adaptive Programming. In Proceedings of the second
International Conference on Aspect-Oriented Software
Development. Boston, USA, March 2003.

[9] Lämmel, R. and Visser, J. Typed Combinators for Generic
Traversal. In Proc.of Practical Aspects of Declarative
Programming (PADL), LNCS 2257, January 2002.

[10] Lieberherr, K. Towards a Theory of Design. In proceedings
of ICSE 2004 (keynote paper), Edinburgh, UK, May 2004.

[11] Lieberherr, K. and Holland, I. Assuring Good Style for
Object-Oriented Programs. IEEE Software, pages 38-48.,
September 1989.

[12] Lieberherr, K. and Lorenz, D. Coupling Aspect-Oriented and
Adaptive Programming. Aspect-Oriented Software
Development. Addison Wesley, 2004.

[13] Lieberherr, K and Orleans, D. Preventive Program
Maintenance in Demeter/Java. In Proceedings of
International Conference of Software Engineering (ICSE),
pp. 604-605, 1997.

[14] Lieberherr, K., Orleans, D. and Ovlinger, J. Aspect-Oriented
Programming with Adaptive Methods. Communications of
the ACM, Vol. 44, No. 10, October 2001.

[15] Meyer, B. Onto components. In IEEE Computer, Volume 32,
January 1999.

[16] Mezini, M. and Lieberherr. Adaptive Plug-and-Play
Components for Evolutionary Software Development. In

Proceedings of OOPSLA’98. Vancouver, Canada, October
1998.

[17] Mezini, M. and Ostermann, K. Conquering Aspects with
Caesar. In Proceedings of the second international
conference on Aspect-Oriented Software Development.
Boston, USA, March 2003.

[18] Orleans, D. and Lieberherr, K. DJ: Dynamic Adaptive
Programming in Java. In Proceedings of Reflection 2001:
Meta-level Architectures and Separation of Crosscutting
Concerns, Kyoto, Japan, September 2001.

[19] Pulvermüller, E., Speck, A., Coplien, J.O., D'Hondt, M. and
De Meuter, W. Proceedings of Workshop on “feature
interaction in composed systems” at ECOOP 2001. Available
at: http://www.info.uni-
karlsruhe.de/~pulvermu/workshops/ecoop2001/

[20] Shonle, M., Lieberherr, K. and Shah, A. XAspects: An
Extensible System for Domain Specific Aspect Languages. In
Proceedings of OOPSLA international conference (ACM),
Anaheim, USA, October 2003.

[21] Sun, JavaBeans(TM) Specification 1.01. Available at:
http://java.sun.com/products/javabeans/docs/spec.html

[22] Sung J. and Lieberherr, K. DAJ: A Case Study of Extending
AspectJ. Northeastern University Technical Report NU-
CCS-02-16, 2002. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/DAJ1.html

[23] Suvée, D., Vanderperren, W. and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. In Proceedings of the second
International Conference on Aspect-Oriented Software
Development. Boston, USA, March 2003.

[24] Szyperski, C. Component Software - Beyond Object-
Oriented Programming. Addison-Wesley / ACM Press,
ISBN 0-201-17888-5, 1998.

[25] Szyperski, C. Components and Web Services. Beyond
Objects column, Software Development, Vol. 9, No. 8,
August 2001.

[26] Verheecke, B., Cibran, M. A. and Jonckers, V. AOP for
Dynamic Configuration and Management of Web services in
Client-Applications. In Proceedings of 2003 International
Conference on Web Services. Erfurt, Germany, September
2003.

[27] Verheecke, B., Cibran, M. A. and Jonckers, V. WSML.
available at: http://ssel.vub.ac.be/wsml

[28] Visser, E., Benaissa, Z.-e.-A. and Tolmach, A. Building
program optimizers with rewriting strategies. In Proceedings
of the 3rd International Conference on Functional
Programming. Baltimore, USA, September 1998.

[29] Visser, J. Visitor combination and traversal control. In
Proceedings of the OOPSLA 2001 International Conference.
Tampa Bay, USA, November 2001.

[30] Wu, P., Krishnamurthi, S. and Lieberherr, K. Traversing
Recursive Object Structures: The Functional Visitor in
Demeter. In Proc. of Software Engineering Properties of
Languages for Aspect Technologies (SPLAT) Workshop of
AOSD'03, Boston, USA, March 2003.

