
Stateful Aspects in JAsCo

Wim Vanderperren, Davy Suvée, Maŕıa Agustina Cibrán, and Bruno De Fraine

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{wvdperre, dsuvee, mcibran, bdefrain}@vub.ac.be

http://ssel.vub.ac.be

Abstract. Aspects that trigger on a sequence of join points instead
of on a single join point are not explicitly supported in current Aspect-
Oriented approaches. Explicit protocols are however frequently employed
in Component-Based Software Development and business processes and
are as such valid targets for aspect application. In this paper, we pro-
pose an extension of the JAsCo aspect-oriented programming language
for declaratively specifying a protocol fragment. The proposed pointcut
language is equivalent to a finite state machine. Advices can be attached
to every transition specified in the pointcut protocol. Furthermore, the
complement of a protocol can also be used for triggering aspects. The
JAsCo tools support the stateful aspects language and implement it very
efficiently by employing the JAsCo run-time weaver. As a validation of
the approach, we present a case study in the context of reaction busi-
ness rules.

1 Introduction

Aspect-Oriented Programming (AOP) [15] is a recent software programming
paradigm that aims at providing a better separation of concerns. At its root is the
observation that some concerns cannot be cleanly modularized using traditional
abstraction mechanisms such as class hierarchies. These so-called crosscutting
concerns will therefore inevitably appear scattered across different modules of the
system, making them difficult to comprehend and maintain. Typical examples
of such concerns are tracing, synchronization and transaction management.

In order to enable a clean modularization of crosscutting concerns, AOP
techniques such as AspectJ [16] introduce the concept of an aspect, in addition
to the use of regular classes. An aspect defines a set of join points in the target
application where advices alter the regular execution. The set of joint points is
declaratively specified through a pointcut. The aspect logic is then automatically
woven into the target application.

Although AOP research originally focused on a model where aspects are in-
voked on static locations in the compile-time structure of the program, it was
early on argued that the applicability of certain so-called jumping aspects [3]
can only be expressed in terms of dynamic conditions. Most of the current ap-
proaches therefore feature a dynamic join point model, i.e. a model where the
join points are run-time events of the program execution. As such, it becomes
possible to invoke aspect behavior based on run-time types, call-stack context
(e.g. AspectJ’s cflow() pointcut), dynamically evaluated expressions,. . .

F. Gschwind, U. Aßmann, and O. Nierstrasz (Eds.): SC 2005, LNCS 3628, pp. 167–181, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

168 W. Vanderperren et al.

Describing the applicability of aspects in terms of a sequence or protocol of
run-time events however, is generally not supported. With the exception of the
cflow() pointcut, the pointcuts of current mainstream AOP languages cannot
refer to the history of previously matched pointcuts in their specification. In
order to trigger an aspect on a protocol sequence of join points, one is obliged to
program code for maintaining a state regarding the occurrence of relevant join
points, as such implementing the protocol by hand. Not only is this a cumber-
some task, but it is also conceptually undesirable, because it involves mixing the
aspect-applicability control-mechanism with the advice code itself.

Explicit protocols are nevertheless frequently encountered in a wide range of
fields such as Component-Based Software Development [25,10], data communi-
cations [19] and business processes [1]. We therefore believe that protocols are
valid targets for aspect application, and argue that it is desirable to support them
in the pointcut language itself; delegating the actual control-mechanism imple-
mentation to the weaver. This paper proposes an extension of the JAsCo [18]
programming language for stateful aspects that can declaratively specify a pro-
tocol of expected pointcuts.

The paper is structured as follows. Section 2 introduces the JAsCo language
and illustrates the need for explicit support of protocols. The JAsCo extension
for supporting stateful aspects is discussed in section 3. Section 4 focuses on the
implementation details of our approach, while section 5 validates it by presenting
a case study. Finally, we discuss related work in section 6 and end up with
conclusions in section 7.

2 Introduction to JAsCo

The JAsCo [18] AOP approach is an aspect-oriented extension for Java that
allows for a clean modularization of crosscutting concerns. The JAsCo language
stays as close as possible to the original Java syntax and concepts and introduces
two new entities, namely Aspect Beans and Connectors. An aspect bean is an
extended version of a regular Java Bean that allows describing crosscutting con-
cerns independently of concrete component types and APIs. JAsCo connectors
on the other hand are used for deploying one or more reusable aspect beans
within a concrete component context and provide support for describing their
mutual interactions.

A typical example of a crosscutting concern is the run-time checking of timing
contracts [21]. Instead of inserting the logic behind these contracts at various
places within the base code, one can modularize this behavior into a single entity
by employing a JAsCo aspect bean. Figure 1 illustrates the implementation of
the dynamic timer aspect bean.

Typically, an aspect bean contains one or more hook definitions that im-
plement the crosscutting behavior and usually a number of ordinary Java class
members which are shared among all hooks. The DynamicTimer aspect bean of
figure 1 describes a TimeStamp hook (lines 18-29) and the notification system
for its listeners (lines 3-16). The TimeStamp hook is responsible for capturing

Stateful Aspects in JAsCo 169

1 class DynamicTimer {
2
3 private Vector<TimeListener> listeners = new Vector<TimeListener>();
4 private long timestampbefore, timestampafter;
5
6 void addTimeListener(TimeListener aListener) {
7 listeners.add(aListener);
8 }
9 void removeTimeListener(TimeListener aListener) {
10 listeners.remove(aListener);
11 }
12 void notifyTimeListeners(Method method, long time) {
13 for (TimeListener listener : listeners) {
14 listener.timeStampTaken(method,time);
15 }
16 }
17
18 hook TimeStamp {
19 TimeStamp(timedmethod(..args)) {
20 execute(timedmethod);
21 }
22 before {
23 timestampbefore = System.currentTimeMillis();
24 }
25 after {
26 timestampafter = System.currentTimeMillis();
27 notifyListeners(thisJointPoint,timestampafter-timestampbefore);
28 }
29 }
30 }

Fig. 1. The JAsCo-aspect for dynamic timing

a timestamp and notifying its listeners whenever some functionality of a com-
ponent is executed. To this end, the TimeStamp hook describes a constructor
(lines 19-21), which specifies in an abstract way when the normal execution of
a method should be interrupted in order to trigger the aspect behavior. Each
constructor receives several abstract method parameters as inputs which are
bound to one or more concrete method signatures whenever the hook is explic-
itly deployed using a connector. The constructor body (line 20) outlines when
the behavior of the hook should be triggered. In case of the TimeStamp hook,
the crosscutting behavior is performed whenever one of the methods bound to
the abstract method parameter timedmethod is executed. The advices of a hook,
namely before, replace, after, after throwing and after returning, are
employed for specifying the various actions a hook needs to perform whenever
its behavior is triggered. The implementation of an advice is able to refer to
the arguments of the abstract method parameters and accesses the currently
visited joinpoint and its reflective information by employing the thisJoinPoint
keyword. In the aspect bean of figure 1, the before advice describes that a times-
tamp should be taken prior to the execution of timedmethod (lines 22-24). The
after advice calculates the time that was required to execute the timedmethod
method and announces it to all registered listeners (lines 25-28)1.

1 Notice that the aspect bean implements a very simplistic timestamping mechanism
in order to keep the example simple and easy to understand. The provided imple-
mentation is not thread-safe and does not work for recursive methods.

170 W. Vanderperren et al.

1 connector TimeConnector {
2 DynamicTimer.TimeStamp timer =
3 new DynamicTimer.TimeStamp (void ComponentX.a());
4 timer.before();
5 timer.after();
6 }

Fig. 2. The JAsCo connector for dynamic timing

Abstract and reusable aspect beans are deployed onto a concrete component
context by making use of connectors. Each connector allows to explicitly in-
stantiate and initialize one or more logically related hooks. Figure 2 illustrates a
connector that instantiates the TimeStamp hook of Figure 1 onto the a() method
of the ComponentX component (lines 2-3). As a result, the abstract method pa-
rameter timedmethod of the TimeStamp hook constructor is bound to this given
method. Additionally, it is specified that the before and after advices need
to be executed whenever a join point of the newly instantiated hook timer is
encountered (lines 4-5). To sum up, this connector specifies that whenever the
a() method of the ComponentX component is executed, a timestamp is taken and
the corresponding listeners are notified afterwards in order to verify whether the
a() method satisfies the specified timing contracts.

The DynamicTimer aspect bean is suitable to perform time contract verifica-
tion on a single method. It can however not be reused to verify timing contracts
on a full component protocol. Imagine one wants to check whether a particular
component protocol methodA-methodB-methodC is executed within a predefined
time period. These methods can occur in any sequence, so it does not suffice
to just add a before advice to methodA and an after advice to methodC in
order to time this protocol. One has to explicitly keep track of the protocol.
The ProtocolDynamicTimer aspect bean, illustrated in figure 3, presents an
ad-hoc solution to implement the time contract verification of this particular
protocol. It extends the basic DynamicTimer aspect bean, this way inheriting
the listener notification system. For each step in the protocol, a dedicated hook
is introduced, which implements the associated actions. When methodA of hook
ProtocolMethodA is executed (lines 7-9), a timestamp is taken (line 11) and
the boolean value methodAExecuted associated with that step of the protocol is
set (line 12). This before advice is only performed the very first time protocol
methodA-methodB-methodC is executed. This behavior is enforced through the
isApplicable method (line 14). This additional JAsCo language construct is a
method that allows to describe a run-time condition which ensures that the ad-
vices of an aspect bean are only performed when its body evaluates to true (sim-
ilar to the if pointcut designator in AspectJ). By employing the isApplicable
method, the advices associated with hook ProtocolMethodCwill not be executed
as long as the boolean value associated with ProtocolMethodB is not set to true
(line 36). As such, the three hooks defined within the ProtocolDynamicTimer
aspect bean ensure that the associated listeners are only notified when a full
methodA-methodB-methodC protocol is encountered.

Although the aspect bean illustrated in Figure 3 can be used to verify whether
the particular component protocol is performed within a specified time period,

Stateful Aspects in JAsCo 171

1 class ProtocolDynamicTimer extends DynamicTimer {
2
3 boolean methodaexecuted, methodbexecuted = false;
4
5 hook ProtocolMethodA {
7 ProtocolMethodA(methodA(..args)) {
8 execute(methodA);
9 }
10 before {
11 timestampbefore = System.currentTimeMillis();
12 methodaexecuted = true;
13 }
14 isApplicable() { return !methodaexecuted; }
15 }
16
17 hook ProtocolMethodB {
18 ProtocolMethodB(methodB(..args)) {
19 execute(methodB);
20 }
21 before {
22 methodbexecuted = true;
23 }
24 isApplicable() { return methodaexecuted; }
25 }
26
27 hook ProtocolMethodC {
28 ProtocolMethodC(methodC(..args)) {
29 execute(methodC);
30 }
31 after {
32 timestampafter = System.currentTimeMillis();
33 notifyListeners(method,timestampafter-timestampbefore);
34 methodaexecuted = false; methodbexecuted = false;
35 }
36 isApplicable() { return methodbexecuted; }
37 }
38
39 }

Fig. 3. The JAsCo-aspect for dynamic timing of a component protocol

it requires to explicitly capture each possible state of the protocol in a separate
hook. As such, one is obliged to describe and implement the full protocol by hand,
as a protocol sequence of join points is not explicitly supported using regular
JAsCo and other state-of-the-art aspect-oriented approaches. This also involves
tangling the description of the applicability of the aspect with its behavior. In the
next section, an extension to the JAsCo language is proposed, which allows to
declaratively specify a protocol of expected pointcuts. Advices can be attached
to each step of the pointcut protocol, allowing to describe the time contract
verification of a component protocol in a more declarative way.

3 Stateful Aspects Language

Mainstream aspect-oriented approaches rarely support protocol history condi-
tions. In many cases, it is only possible to refer to previous join points when
they still have an activation record on the stack (i.e. using the cflow() key-
word in AspectJ). In order solve this limitation, Douence et al. [6,7] propose
a formal model for aspects with general protocol based triggering conditions,

172 W. Vanderperren et al.

named stateful aspects. In this section, we illustrate how the JAsCo language is
extended with stateful pointcut expressions, based on this formal model.

1 class ProtocolDynamicTimer extends DynamicTimer {
2
3 hook StatefulProtocolTimer {
4
5 long timestamp;
6
7 StatefulProtocolTimer(methodA(..args),methodB(..args),methodC(..args)) {
8 ATrans: execute(methodA) > BTrans;
9 BTrans: execute(methodB) > CTrans;
10 CTrans: execute(methodC) > ATrans;
11 }
12
13 before ATrans() {
14 timestamp=System.currentTimeMillis();
15 }
16 after CTrans() {
17 long resultingtime = System.currentTimeMillis();
18 notifyListeners(calledmethod,resultingtime-timestamp);
19 }
20
21 }
22 }

Fig. 4. The JAsCo stateful aspect for dynamically checking a timing contract of a
component protocol

In figure 3, an ad-hoc solution was presented for implementing time contract
verification of a protocol methodA-methodB-methodC. Figure 4 illustrates how
the same protocol can be declaratively described by making use of the JAsCo
stateful aspect language. The constructor of the hook StatefulProtocolTimer
(line 7-11) describes a protocol-based pointcut expression. Every line in the con-
structor defines a new transition within the protocol. Each transition is labeled
with a name (e.g. ATrans), defines a JAsCo compatible pointcut expression (e.g.
execute(methodA)) and specifies one or more destination transitions that are
matched after the current transition is fired. A transition fires when its pointcut
expression evaluates to true. For example, the ATrans transition only fires when-
ever the concrete method(s) bound to the abstract method parameter methodA
are executed. In that case, transition BTrans is activated and will be evaluated
for the subsequent join points encountered in the application.

A stateful aspect always starts by evaluating the first defined transition.
As a result, a protocol methodA-methodB-methodC is described. In between the
fired transitions, other join points can also be encountered. As such, a sequence
of events methodA-methodX-methodC-methodB-methodC is also a valid instance
for the defined protocol and will trigger the associated transitions. Notice that
the JAsCo stateful aspect pointcut does not have to specify the full protocol of
the application; a protocol fragment is sufficient.

On every transition defined in the stateful constructor, advices can be at-
tached which are executed whenever the transition is fired. For example, the
before ATrans advice (line 13-15) is only triggered whenever the transition

Stateful Aspects in JAsCo 173

ATrans is fired. In other words, the advice is executed whenever the concrete
method(s) bound to the abstract method parameter methodA are executed in
that state of the stateful aspect. To sum up, the StatefulProtocolTimer hook
will take a timestamp before the protocol methodA-methodB-methodC is exe-
cuted and will notify all interested listeners after the full protocol is performed.

3.1 Advanced Language Features

In addition to attaching advices on each transition separately, it is also possi-
ble to describe global advices that are triggered for all fired transitions. In this
case, the advice is specified as usual, but the transition label is omitted. It is
also possible to attach a specific isApplicable method to a particular transi-
tion in the protocol. As such, the transition will only be fired when both the
pointcut expression and the isApplicable condition evaluate to true. Likewise
to advices, a global isApplicable condition can be specified which is applied
to all transitions. In that case, transitions are only fired when they satisfy their
pointcut expression and both the global and local isApplicable conditions. The
following code fragment shows both a global and local isApplicable condition.
1 isApplicable() { //global condition for all transitions
2 // returns true if advices should be executed
3 }
4 isApplicable XTrans() { //local condition only relevant for the transition XTrans
5 // returns true if advices should be executed for the XTrans transition
6 }

The JAsCo stateful aspects constructor can also specify multiple destination
transitions for a given transition. The syntax is illustrated in the code fragment
below. After firing the XTrans transition, both the YTrans and QTrans transi-
tions are evaluated for subsequent encountered join points (line 2). Note that the
destination transitions are evaluated in the sequence defined in the destination
expression. As such, when both the YTrans and QTrans transitions are applica-
ble for a given join point, only the YTrans transition will be fired and only the
YTrans destination transitions will be evaluated for subsequent encountered join
points. This allows to keep the protocol deterministic and efficient to execute. It
is also possible to omit a destination transition for a certain transition. In that
case, when the transition fires, no more transitions need to be evaluated and the
aspect dies. This concept is illustrated by the QTrans transition (line 3). Also
notice that this transition describes a more involved pointcut designator using
the cflow keyword.

In case the stateful aspect requires to start by evaluating more than one
transition, the start keyword can be employed. This keyword is followed by a
list of starting transitions for matching join points when the aspect is deployed.
Multiple start transitions are specified similarly to multiple destination transi-
tions, by using || as delimiters. When no start transition is specified, the first
defined transition is used as the starting one.
1 start > XTrans || QTrans; //starting with two transitions
2 XTrans: execute(methodA) > YTrans || QTrans; //two destination transitions
3 QTrans: execute(methodB) && !cflow(methodC); //no destination transition
4 YTrans: execute(methodC) > YTrans;

174 W. Vanderperren et al.

The syntax proposed in the previous paragraphs provides a way for specifying
powerful protocols but might be tedious in case of simple protocols. Therefore
JAsCo also supports a simpler syntax for protocols that do not require multiple
destination transitions for a given transition. The following code fragment shows
a constructor that is equivalent to the constructor of figure 4. Labeling transitions
is still possible in order to be able to attach local advices to specific transitions.
Notice that the label start automatically refers to the first transition.

1 StatefulProtocolTimer(methodA(..args),methodB(..args),methodC(..args)) {
2 ATrans: execute(methodA) > execute(methodB) > CTrans: execute(methodC) > start;
3 }

Normally, aspects are instantiated explicitly in a connector and this instance
is used for all encountered join points. In case of protocol checking stateful
aspects, it is sometimes desirable to have a unique instance of the stateful as-
pect for every execution thread in the application as every thread is typically
related to a different interaction. JAsCo allows automatically instantiating mul-
tiple instances for a single hook instantiation expression by using specialized
keywords in front of the instantiation expression in the connector. The following
keywords are supported: perobject, perclass, permethod, perall, percflow
and perthread. Thus, in order to obtain a unique aspect instance per execution
thread, the perthread keyword can be used. The JAsCo run-time system will
automatically manage the aspect instances for every thread. This is illustrated
by the following code fragment:

1 static connector PerThreadConnector {
2 perthread ProtocolDynamicTimer.StatefulProtocolTimer timer =
3 new ProtocolDynamicTimer.StatefulProtocolTimer(void ComponentX.a(),
4 void ComponentX.b(), void ComponentX.c());
5 }

3.2 Protocol Complement

The JAsCo stateful aspects language currently supports triggering aspects on
a protocol fragment. However, the opposite, namely triggering aspects on ev-
ery join point besides the defined protocol, can also be useful in many cases.
For example, Farias et al. [10] identify that in the context of checking security
policies of Enterprise Java Beans (EJBs), explicit protocols are necessary. The
current EJB specification only allows to describe that particular methods need
to adhere to a given security policy. It is however often required that only the
protocol methodA-methodB-methodC on a given component X is allowed for cer-
tain users. Farias et al. propose a formal model to specify the allowed protocol
of a component, based on finite state machines [12]. As already identified in lit-
erature [23], security concerns are typical examples of crosscutting concerns and
thus good targets for AOP.

JAsCo supports triggering aspects on the opposite of a protocol using the
complement keyword. Figure 5 illustrates a contract checking aspect that makes
sure that all invocations on a certain component, besides the defined proto-
col, are blocked. The stateful aspect defines the same protocol as the one in

Stateful Aspects in JAsCo 175

1 class ProtocolChecker {
2
3 hook StatefulProtocolCheck {
4
5 StatefulProtocolCheck(methodA(..arg),methodB(..arg),methodC(..arg),methodsContext(..arg)) {
6 complement[execute(methodsContext)]:
7 ATrans: execute(methodA) > BTrans;
8 BTrans: execute(methodB) > CTrans;
9 CTrans: execute(methodC) > ATrans;
10 }
11
12 replace complement() {
13 throw new SecurityException(
14 "This protocol on component"+thisJoinPoint.getClassName()+" is not allowed!");
15 }
16 }
17 }

Fig. 5. The JAsCo stateful aspect for checking a security contract

figure 4, namely a protocol methodA-methodB-methodC. The additional comple-
ment definition states that the aspect is interested in the complement of the
protocol. The complement expression is also able to specify a JAsCo compat-
ible pointcut designator in order to limit the complement to a certain set of
join points. This is often required in the context of checking security contracts
of a component. It is not very useful to trigger the aspect on every possible
protocol fragment outside the given protocol, because this would also include
methods on other components. Therefore, JAsCo allows to limit the set of join
points to which the complement of the protocol is computed. For example, the
StatefulProtocolCheck, illustrated in figure 5, defines that the complement is
only triggered when methods bound to methodsContext (line 5) are executed
and not exactly following the defined protocol. Advices can be attached to the
complement of a protocol by specifying the complement keyword after the advice
name. In this case, a replace complement advice is specified (lines 12-15) that
replaces the original behavior and throws a security exception instead. More-
over, it is still possible to attach advices to transitions in the allowed protocol
by using the syntax introduced before.

Figure 6 illustrates the connector that deploys the security protocol checking
aspect bean onto the a-b-c protocol of the componentX component (lines 3-4).
The methodsContext abstract method parameter of the aspect bean is bound
to all methods of componentX. As a result, whenever a method is executed
on componentX that falls outside the defined protocol a-b-c, like for example
a-b-d-c, a security exception is thrown.

1 static connector SecurityConnector {
2
3 ProtocolChecker.StatefulProtocolCheck checker = new ProtocolChecker.StatefulProtocolCheck(
4 void componentX.a(), void componentX.b(), void componentX.c(), void componentX.*());
5 }

Fig. 6. Connector for deploying the security protocol contract checking aspect

176 W. Vanderperren et al.

4 Implementation Discussion

The JAsCo stateful aspects language is equivalent to a Deterministic Final Au-
tomaton (DFA) [12] because every expression defines one DFA transition, two
DFA states and possibly several connection DFA transitions for the destinations.
Therefore, the JAsCo compiler compiles a stateful aspect constructor to a DFA
that is interpreted at run-time. Every transition of a DFA contains a representa-
tion of the pointcut definition and possibly an isApplicable condition. When
a join point is encountered, the outgoing transitions of the current state are
evaluated with the given join point and when a match is encountered, the state
machine moves to the destination state. When this event occurs, all associated
advices are executed. Because of this implementation strategy, a stateful aspect
can be executed very efficiently. It suffices to check only the transitions of the
current state, as JAsCo stateful aspect protocols are regular and can be inter-
preted by a regular DFA. When non-regular protocols are allowed, a history of
all relevant encountered events should be maintained, which is very expensive.

A naive approach for integrating the stateful aspect would be weaving it
at all possible join points defined within the protocol. However, this induces
a performance overhead at all these join points, while the stateful aspect is
only interested in a limited set of join points corresponding to the subsequent
transitions that are to be evaluated. JAsCo is a dynamic AOP language and
features a genuine run-time weaver that is able to weave and unweave aspects
at run-time [20]. The run-time performance of JAsCo is even able to compete
with AspectJ’s, which is a statically woven AOP approach [13]. Because of this
run-time weaver, the JAsCo stateful aspect language induces only a minimal
performance overhead. The JAsCo run-time weaver only weaves the stateful
aspect at those join points where the aspect is currently interested in. When a
transition is fired, the weaver unweaves the aspect at the join points associated
with the current transition and weaves it back in at the join points relevant for
the subsequent transitions. As such, a real jumping aspect is realized. Notice
that when the aspect dies because no subsequent transitions are defined, it is
completely unwoven. As a result, no performance overhead for the aspect is
endured any longer.

The weaving process itself does however also require a significant overhead.
Therefore, when a given protocol is encountered many times in a short time
interval, it might be more efficient to weave the aspect at all possible join points
of the protocol instead of weaving and unweaving it on-the-fly. This can be
configured in JAsCo by using the novel Java 1.5 annotations (meta-data). When
the @jasco.runtime.aspect.WeaveAll annotation is supplied to the hook, as
illustrated by the code fragment below, the run-time weaver weaves the aspect at
all join points and never unweaves it unless the aspect itself is manually removed
or dies.
1 @jasco.runtime.aspect.WeaveAll
2 hook StatefulHook { ...

A proof-of-concept implementation for the JAsCo stateful aspect extension
is made available through the regular JAsCo distribution [14].

Stateful Aspects in JAsCo 177

5 Case Study

To illustrate the usefulness of stateful aspects, an example of reaction business
rules is presented. Business rules are volatile and tend to change faster than the
core application functionality. Therefore, and due to the crosscutting nature of
their integration with the core application [17,5,11], it is recommended to keep
them decoupled from the rest of the application. In previous work [4], aspects
were successfully employed for integrating business rules that are triggered at
single events that denote dynamic points within the core application. In this
case study however, business rules that depend on complex behavioral states of
the system are considered.

The presented case study is based on an application used in the context of the
ADAPSIS2 (Adaptation of IP Services based on Profiles) project [24]. One of the
research topics of this project is the development of an approach that allows to
mine end-user profiles, building on existing component-based applications. The
main problem is that these applications are generally not designed to allow end-
user profile mining. As a concrete research artifact, an e-commerce application
is developed that allows customers to buy different products online, such as
books, music and movies. This application is an adaptive web application as it
incorporates data mining strategies in order to analyze the purchasing behavior
of the customers. The Data4s data mining engine is employed to react according
to the customer’s behavior in an intelligent way. AOP is used to capture all
relevant data for the data mining engine and influencing the behavior of the
original application depending on the mined information and the user profile. For
gathering application events, it is often required to keep track of the history of the
user’s interactions with the web application. When regular aspects are employed,
this historical information results hard-coded in the aspects themselves, making
them difficult to comprehend and evolve. With the advent of JAsCo stateful
aspects, this problem can be tackled in a more declarative way.

Consider for instance a set of business rules that define a categorization of
the customers, depending on their susceptibility to promotions. These rules allow
understanding the interests of the different customers to better accommodate to
their needs and goals. Promotions can be viewed and purchased from different
product-specific web pages as well as from the home page of the shop. Normally,
different customers react to the advertisement of promotions in different ways.
Some customers for instance tend to browse to the promotions as a first reaction
when accessing the shop’s home page. Others might prefer to browse the available
books, music or videos first and later on decide whether to choose a promotion.
The following business rules determine the different degrees of sensitivity to
promotions:

1. High promotion-prone customer : The customer browses the promotions as
his/her first action

2 ADAPSIS is partly funded by the IWT, Flanders (Belgium), partners are the Uni-
versity of Brussels (VUB), Alcatel Belgium and Data4s Future Technologies.

178 W. Vanderperren et al.

1 class MediumPromotionProneCustomerAspect {
2
3 hook MediumPromotionProneCustomerHook {
4
5 MediumPromotionProneCustomerHook(
6 browseProducts(Category category),accessPromotions(CustomerID customer)) {
7 start > browseProdTrans;
8 browseProdTrans : execute(browseProducts) > browseProdTrans || browsePromTrans;
9 browsePromTrans : execute(accessPromotions);
10 }
11
12 after browsePromTrans () {
13 CustomerManager.classifyCustomer(customer, MediumPromotionProneCustomer);
14 }
15 }

Fig. 7. Medium promotion-prone customer business rule

2. Medium promotion-prone customer : The customer browses first either the
books, the music or the videos and only then he/she accesses the promotions

3. Low promotion-prone customer : The customer first browses the books and
the music and the videos and then he/she accesses the promotions

4. Promotion-insensitive customer : The customer never follows the promotions
links

In this example a single action, such as the browsing of the promotions, can-
not be analyzed in isolation. In order to classify a customer in different categories,
it is required to know which actions the customer already performed. In order to
keep track of the customer history and trigger the customer classification, state-
ful aspects are employed. Figure 7 illustrates a stateful aspect implementing the
medium promotion-prone customer business rule. In this example, the customer
starts by browsing a catalog of products (line 8) and checks out the promo-
tions afterwards (line 9). Figure 8 illustrates how the medium promotion-prone
customer business rule is deployed within the e-commerce application.

Stateful aspects can also be employed to implement more complex patterns
of behavior such as the following action sequence which could be performed by
a customer:

1 getPromotions > browseBooks > browseCDs > browseVideos > getPromotions

Without stateful aspects, it would not be straightforward to detect this path
of execution. We can imagine making the distinction between the place in the sys-
tem where the promotions and the products are retrieved. However, this change
would not be sufficient to distinguish the contextual difference between the first

1 static connector MediumPromotionProneCustomerConnector{
2
3 MediumPromotionProneCustomerHook hook1 =
4 new MediumPromotionProneCustomerHook(
5 * ProductManager.browse*(*), * PromotionManager.getPromotions(CustomerID));
6
7 }

Fig. 8. Connector for deploying the medium promotion-prone customer business rule

Stateful Aspects in JAsCo 179

and second invocation of the getPromotions and would imply tangling of code to
manually keep track of the states. Stateful aspects avoid this problem, allowing
the expression of complex contextual scenarios in a natural and non-invasive way.

6 Related Work

Douence et al. propose a model for supporting stateful aspects [6,7,8] as a part
of their formal aspect model. The advantage of this formal model is that it
allows to automatically deduce possible malicious interactions between aspects.
Furthermore, the model supports composition of stateful aspects using well-
defined composition operators. A proof of concept implementation of this model
is also available [9]. This implementation is however based on static program
transformations and as such it requires to advice all possible join points defined
within the protocol. The JAsCo implementation improves on this because only
a subset of the join points are actually advised.

Walker et al. introduce declarative event patterns (DEPs) [22] as a means to
specify protocols as patterns of multiple events. They augment AspectJ aspects
with special DEP constructs (called tracecuts) that can be advised similarly to
pointcuts. Their approach is based on context-free grammars, and involves a
transformation of the DEP constructs into standard AspectJ aspects containing
an event parser, similar to the transformation realized by parser generators in
compiler technology. While DEPs can recognize properly nested events and thus
possess an even higher degree of declarative expressibility than the JAsCo ap-
proach, they only provide for the ability to attach advice code to entire protocols.
Separate transitions of the protocol cannot be advised, and several overlapping
protocols (realized through several independent event parsers) would have to be
employed to mimic this possibility of JAsCo. Furthermore, the fact that DEPs
lose their identity in a preprocessing step that reduces them to standard as-
pects, rules out the possibility for optimizations by a weaver that analyzes the
feasible transitions of the protocol. Also, there are some unresolved issues in
the current implementation of DEPs regarding optimal conservation of relevant
execution traces.

7 Conclusions

In this paper we introduce an extension of the JAsCo language that enables
triggering aspects on a sequence of join points. The JAsCo stateful aspects ex-
tension allows to declaratively specify a regular protocol. Advices can be attached
to each transition in the protocol. JAsCo also allows to trigger aspects on the
complement of a protocol given a set of join points. Because of the declara-
tive specification, the stateful aspect is easier to understand and evolve than a
manual implementation using singular join points. In addition, the declarative
specification allows to optimize the execution of the stateful aspect. By employ-
ing dynamic AOP, the stateful aspect behavior is only woven at those join points
the aspect is currently interested in.

180 W. Vanderperren et al.

A limitation of the current approach is that JAsCo stateful aspects can only
specify regular protocols. Protocols that require a non-regular language (like for
example n times A; B; n times A, where n can be a different number in every
occurance of the protocol), cannot be represented. The advantage of keeping the
protocols regular is that they can be efficiently evaluated using a DFA. A naive
implementation of a non-regular protocol would require to keep the complete
history of all encountered join points in memory, which is not very practical. In
literature, several domain-specific optimization techniques for interpreting non-
regular languages have been proposed [2]. Extending the JAsCo stateful aspects
language to non-regular protocols while still allowing an efficient implementation
is subject for future work.

Acknowledgements

Davy Suvée and Bruno De Fraine are supported by a doctoral scholarship from
the Institute for the promotion of Innovation by Science and Technology in
Flanders in the Industry (IWT).

References

1. T. Andrews et al. Business Process Execution Language for Web Services Specifi-
cation, May 2003. http://www.ibm.com/developerworks/library/ws-bpel/.

2. J. Aycock and N. Horspool. Schrodinger’s token. Software Practice and Experience,
31(8), 2001.

3. J. Brichau, W. De Meuter, and K. De Volder. Jumping Aspects. In Workshop on
Aspects and Dimensions of Concerns (ECOOP 2000), June 2000.

4. M. A. Cibrán, M. D’Hondt, and V. Jonckers. Aspect-Oriented Programming for
Connecting Business Rules. In Proceedings of BIS International Conference, Col-
orado Springs, USA, June 2003.

5. C. Date. What not How: The Business Rules Approach to Application Development.
Addison Wesley, 1st edition, 2000.

6. R. Douence, P. Fradet, and M. Südholt. A framework for the detection and res-
olution of aspect interactions. In Proceedings of the ACM SIGPLAN/SIGSOFT
Conference on Generative Programming and Component Engineering, Pittsburgh,
USA, October 2002.

7. R. Douence, P. Fradet, and M. Südholt. Composition, Reuse and Interaction Anal-
ysis of Stateful Aspects. In Proceedings of the 3th International Conference on
Aspect-Oriented Software Development, Lancaster, UK, March 2004.

8. R. Douence, P. Fradet, and M. Südholt. Trace-based Aspects. Aspect-Oriented
Software Development, September 2004.

9. R. Douence and M. Südholt. A model and a tool for event-based aspect-oriented
programming (EAOP). Technical Report 02/11/INFO, Ecole des Mines de Nantes,
2002.

10. A. Farias and M. Südholt. On components with explicit protocols satisfying a
notion of correctness by construction. In Distributed Objects and Applications
2002, Irvine, USA, October 2002.

11. B. Von Halle. Business Rules Applied. Wiley, 1st edition, 2001.

Stateful Aspects in JAsCo 181

12. J.E. Hopcroft, R. Motwani, and J.D. Ullman. Introduction to Automata Theory.
Addison Wesley, 2st edition, 2001.

13. JAsCo. JAsCo Run-Time Weaver. http://ssel.vub.ac.be/jasco/documentation:ruw.
14. JAsCo. JAsCo website. http://ssel.vub.ac.be/jasco/.
15. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and G.W. Griswold.

An overview of AspectJ. In Proceedings European Conference on Object-Oriented
Programming, Budapest, Hungary, June 2001.

16. G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J-M. Loingtier,
and J. Irwin. Aspect-Oriented Programming. In Mehmet Akşit and Satoshi Mat-
suoka, editors, Proceedings European Conference on Object-Oriented Programming,
volume 1241, pages 220–242. Springer-Verlag, Berlin, Heidelberg, and New York,
1997.

17. R. G. Ross. Principles of the Business Rule Approach. Addison Wesley, 1st edition,
2003.

18. D. Suvée, W. Vanderperren, and V. Jonckers. JAsCo: an Aspect-Oriented approach
tailored for Component Based Software Development. In Proceedings of the 2nd
International Conference on Aspect-Oriented Software Development, Boston, USA,
March 2003.

19. A. S. Tanenbaum. Computer Networks. Prentice Hall Professional Technical Ref-
erence, 4th edition, 2002.

20. W. Vanderperren and D. Suvée. Optimizing JAsCo dynamic AOP through
HotSwap and Jutta. In Proceedings of Dynamic Aspects Workshop, Lancaster,
UK, March 2004.

21. W. Vanderperren, D. Suvée, and V. Jonckers. Combining AOSD and CBSD in
PacoSuite through Invasive Composition Adapters and JAsCo. In Proceedings of
Node 2003 International Conference, Erfurt, Germany, September 2003.

22. R.J. Walker and K. Viggers. Implementing Protocols via Declarative Event Pat-
terns. In Proceedings of the ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering, Newport Beach, USA, November 2004.

23. B. De Win, B. Vanhaute, and B. De Decker. How aspect-oriented programming
can help to build secure software. Informatica, 26(2), 2002.

24. B. Wydaeghe, W. Vanderperren, T. Pijpons, and F. Westerhuis. Adapsis: Adap-
tation of IP Services Based on Profiles. In SSEL Technical Report, May 2002.

25. D. Yellin and R. Strom. Protocol Specifications and Component Adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292–333, 1997.

	Introduction
	Introduction to JAsCo
	Stateful Aspects Language
	Advanced Language Features
	Protocol Complement

	Implementation Discussion
	Case Study
	Related Work
	Conclusions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

