
Optimizing JAsCo dynamic AOP through HotSwap and Jutta

ABSTRACT
The main drawback of all dynamic AOP technologies
available today is the rather high performance overhead in
comparison to static weaving approaches. In this paper, we
propose an approach to improve the performance of both
the interception mechanism and the aspect interpreter of a
dynamic AOP system. The interception of the base
application is optimized by employing the Java HotSwap
technology in such a way that only those joinpoints where
aspects are applied upon are trapped. When new aspects
are added, all corresponding joinpoints are hotswapped for
a trapped version. Likewise, when aspects are removed, the
corresponding traps are removed, if no other aspect is
applicable at the given trap. In order to improve the aspect
interpreter, we propose the Jutta system that allows
generating and caching a highly optimized code fragment
for each joinpoint. This code fragment contains the
combined aspectual behavior for the joinpoint at hand. We
integrate HotSwap and Jutta in the JAsCo dynamic AOP
system and perform extensive benchmarks to evaluate the
performance gain of this approach. In addition, the
enhanced JAsCo performance is compared to a selection of
current state-of-the-art dynamic AOP approaches. These
benchmarks indicate that JAsCo, enhanced with HotSwap
and Jutta, is able to improve on the current state-of-the-art
performance-wise.

1. INTRODUCTION
AspectJ is undoubtly one of the most well-known and
mature aspect-oriented approaches available today [1].
AspectJ employs static weaving in order to combine the
base program and the aspects. As such, aspects cannot be
added or removed at run-time; the application needs to be
stopped, compiled and restarted in order to change the
aspectual behavior. Aspects however often represent
concerns that have to be enabled, altered and disabled quite
frequently. Typical examples of such crosscutting concerns
are debugging concerns such as logging [12] and contract
verification [22], security concerns [23] such as
confidentiality and access control, management concerns
[24] such as accounting and billing, and business rules
[5,15] that describe business-specific logic.
During the last years, a wealth of approaches have been
proposed to increase the dynamicity of aspect-oriented

programming. Examples include PROSE1&2 [18,17],
WOOL [19], JAC [16], EAOP [6], OIF [7], AspectWerkz
[3], JBoss/AOP [8], HandiWrap [2], AspectS [9], Caeser
[14] and JAsCo [21]. The main drawback of most of these
approaches is the rather high performance overhead
required for applying aspects dynamically in comparison to
statically weaved languages like AspectJ. This overhead
stems from 1) the interception system employed to interfere
with the regular application execution and 2) the aspect
interpreter that evaluates which aspects are available at a
certain joinpoint and which executes the appropriate
advices. In this paper, we investigate how these two
mechanisms can be optimized. In order to improve the
interception system, we propose to employ the novel Java
HotSwap technology that allows replacing the byte code of
a class at run-time. In order to improve the second phase,
namely the aspect interpretation part, we propose a generic
dynamic AOP optimizer, named Jutta. Jutta enables to
generate highly optimized code fragments that contain the
combined aspectual behavior for each joinpoint. As a proof
of concept, we integrate Jutta and HotSwap in the JAsCo
dynamic aspect-oriented programming language.
The next section introduces the JAsCo aspect-oriented
approach and elucidates the dynamic AOP features offered
by this approach. Section 3 presents the Jutta approach and
section 4 illustrates JAsCo HotSwap. In section 5, a
detailed performance evaluation is performed that
compares the enhanced JAsCo implementation with the
original JAsCo implementation and a selection of current
state-of-the-art dynamic AOP approaches. Finally, section
6 discusses related work and section 7 states our
conclusions.

2. INTRODUCTION TO JASCO
JAsCo is a dynamic AOP approach originally aimed at
combining ideas of aspect-oriented and component-based
software engineering. The next sections shortly present the
JAsCo approach and discuss the main dynamic features of
JAsCo. For more detailed information about JAsCo, the
interested reader is referred to [21].

2.1 JAsCo language
JAsCo is mainly based upon two existing approaches:
AspectJ and Aspectual Components [13]. The JAsCo
language is an aspect-oriented extension of Java that stays

 Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

as close as possible to the original Java syntax and
concepts and introduces two additional entities: aspect
beans and connectors.
An aspect bean is an extended version of a regular Java
bean and is specified independent of concrete component
types and APIs, making it highly reusable. An aspect bean
contains one or more logically related hooks that describe
the crosscutting behavior itself. Hooks are able to define
three types of advice, namely before, replace and after,
which are equivalent to the before, around and after
advices known from AspectJ. Figure 1 illustrates an aspect
bean that captures a caching concern. The crosscutting
behavior, namely intercepting the invocation and returning
a cached result instead, is captured in the CacheControl
hook. Also notice the special constructor of a hook, which
specifies a kind of abstract pointcut (line 8 till 10).
1 class CachingManager {
2 Cache cache = new Cache();
3 void setRecyclingRate(int sec) {
4 cache.recylingRate(sec);
5 }
6
7 hook CacheControl {
8 CacheControl(method(..args)) {
9 execute(method);
10 }
11
12 replace() {
13 if(cache.isCached(method,args) {
14 return cache.getCached(method,args);
15 }
16 else {
17 Object result = method(method,args);
18 cache.cache(method,args,result);
19 return result;
20 }
21 }
22 }
23 }
Figure 1: A JAsCo aspect bean for caching.
A connector on the other hand, is used for deploying one or
more aspect beans within a concrete component context As
such, a connector allows to explicitly instantiate and
initialize hooks. In addition, connectors are able to specify
explicit precedence and combination strategies in order to
manage the cooperation among several aspects that are
applicable onto the same joinpoint. Figure 2 shows a
connector that instantiates the CacheControl hook of
Figure 1 onto the getHotels method of a BookHotel
component.
1 static connector CachingConnector {
2
3 CachingManager.CacheControl ca =
4 new CachingManager.CacheControl (
5 List BookHotel.getHotels(String)
6);
7
8 ca.setRecylingRate(60);
9 ca.replace();
10 }

Figure 2: A JAsCo connector deploying the caching
aspect bean of Figure 1.

2.2 JAsCo technology
In order to implement the JAsCo language, we propose a
new component model where traps that enable aspect
interaction are already built-in. Ideally, new components
are shipped employing this new component model. This
way, attaching and removing aspects to components
implemented in the new component model does not require
any adaptation whatsoever to the target beans. Of course,
expecting all components to be developed using this new
component model is rather utopic. Therefore, it is also
possible to automatically transform a regular Java bean into
a JAsCo bean by employing a preprocessor that inserts the
traps using byte-code adaptations.
Each trap refers to the JAsCo run-time infrastructure that
manages the registered connectors and aspect beans. Figure
3 illustrates the run-time infrastructure schematically. The
central connector registry serves as the main addressing
point for all JAsCo entities and contains a registry of
connectors and instantiated hooks. The connector registry
is notified when a trap is reached or when a connector is
loaded. As such, the database of registered connectors and
hooks is updated dynamically. The left-hand side of Figure
3 shows the JAsCo bean comp1. All methods of comp1 are
equipped with traps. As a result, whenever a method is
called, its execution is deferred to the connector registry.
The main method of communication of Java Beans is event
posting, so firing an event also reschedules execution to the
connector registry. When a trap is reached, the connector
registry looks up all connectors that registered for that
particular method or event. The connector on its turn
dispatches to the hooks that have been instantiated with the
corresponding method or event.

Figure 3: JAsCo run-time architecture.
The main advantage of this trapped component model
consists of the portability of the approach. JAsCo does not
depend on a specialized virtual machine nor on some
custom interfaces only available at certain systems. For
example, a run-time environment optimized for embedded
systems (JAsCoME) and an implementation of JAsCo for
the .NET platform have been recently proposed [25]. The
drawback is of course that a performance overhead is
experienced for all these traps, even if no aspects are
applied.

2.3 JAsCo dynamic AOP
JAsCo is a dynamic aspect-oriented approach, meaning that
new connectors can be added dynamically and obsolete
connectors can be removed. When adding or removing a
connector, all instantiated hooks are added or removed.
JAsCo is one of the most dynamic approaches currently
available and offers the following features:

2.3.1 Central connector registry
JAsCo employs a central connector registry that contains
all connectors and aspect beans. Without such a central
registry, dynamically adding or removing aspects is not
flexible at all as one has to iterate over all applicable object
instances.

2.3.2 Remotely adding/removing aspects
JAsCo includes a very easy system for remotely (from
outside the application) adding a connector. At regular time
intervals, JAsCo scans the classpath1 for new connectors.
When a new connector has been found, it is automatically
loaded in the system. As such, activating a connector in an
application simply means placing the connector in the
classpath of the application. Likewise, the removal of a
connector is detected by the JAsCo run-time infrastructure
and the connector and its instantiated aspect hooks are
automatically removed from the system.

2.3.3 Precedence Strategies
Connectors are able to specify precedence strategies that
define the priority between advices. In addition, the
precedence is able to vary for the different advice types.
Figure 4 illustrates a connector that instantiates two hooks:
logger and lock. For the before advices, the behavior of
lock needs to be triggered first, while for the replace
advices, logger needs to be triggered first.
1 connector Precedence {
2 // hook instantiations...
3
4 lock.before();
5 logger.before();
6 logger.replace();
7 lock.replace ();
8 }

Figure 4: Precedence strategy in a connector.

2.3.4 Combination Strategies
Precedence strategies are a solution to some feature
interaction problems [26], however other combinations of
aspects require a more expressive way of declaring how
they cooperate. Therefore, extensible combination
strategies are introduced. Combination strategies are
implemented using regular Java and are instantiated in a
connector. They are able to filter the list of applicable
hooks of this connector on a per joinpoint basis. In
addition, combination strategies are able to alter the

1 It is also possible to specify a connector loadpath where JAsCo

has to search for connectors.

priority and properties of the applicable hooks.
Combination strategies are invoked for each execution of
the applicable joinpoints. As such, they are able to
dynamically influence the combined aspectual behavior.
Suppose that an e-commerce system contains two discount
aspects, a Birthday discount and a Frequent Customer
Discount. Both discounts can however not be accumulated.
A combination strategy is able to specify such behavior by
removing one of the two discounts when they are both
applicable for the joinpoint at hand. Figure 5 illustrates the
instantiation of this exclusion combination strategy in a
connector and the combination strategy itself.
1 connector DiscountConnector {
2 Discounts.Birthday birthday = new ...
3 Discounts.Frequent frequent = new ...
4
5 addCombinationStrategy(new
6 ExcludeCombinationStrategy(birthday,
7 frequent));
8 }

1 class ExcludeCombinationStrategy implements
2 CombinationStrategy {
3 private Object hookA, hookB;
4 ExcludeCombinationStrategy(Object a,Object b) {
5 hookA = a; hookB = b;
6 }
7 HookList validateCombinations(Hooklist list) {
8 if (list.contains(hookA)) {
9 list.remove(hookB);
10 }
11 return list;
12 }
13 }

Figure 5: An exclusion combination strategy.

2.3.5 Applying aspects on instances
It is possible to attach hooks onto specific object instances
only, instead of all instances of a particular component
type. The concrete instances that are subject of aspect
application can be dynamically altered by employing the
connector API.

2.3.6 Dynamic wildcard matching
JAsCo also supports the instantiation of a hook on
expressions that contain wildcards. These limited regular
expressions are matched at run-time. Consequently, when
a new component is added to an application, it is
automatically affected by all aspects that are instantiated
using wildcards.

3. JUTTA
3.1 Motivation
All dynamic features offered by JAsCo however induce a
substantial run-time overhead. The overhead of JAsCo in
real-life applications is often more than 1000% in
comparison to hard-coding the advices, which is
unacceptable. Notice that JAsCo is still in a prototype
phase and therefore not a lot of attention has been paid to
performance optimizations. The high overhead is mainly

caused by the fact that the entire JAsCo run-time
infrastructure is an aspect interpreter. For each joinpoint,
JAsCo evaluates which hooks are applicable. When no
connectors are added or removed, the set of applicable
hooks remains unchanged for every joinpoint. As such,
when the same joinpoint is encountered several times, the
same logic for finding the appropriate hooks and executing
their behavior is computed over and over again. Therefore,
a huge performance gain can be realized when the
combined aspectual behavior could somehow be compiled
and cached for joinpoints that are encountered often. Of
course, this compilation process requires some time, but
when a joinpoint is encountered a lot, this pays off. In fact,
this strategy is similar to just-in-time compilers used in
modern virtual machines and therefore our approach is
named Jutta (Just-in-time combined aspect compilation).

3.2 Jutta basics
The Jutta system allows generating and caching a highly
optimized code fragment for a given joinpoint. This code
fragment directly executes the appropriate advices on the
applicable hooks in the sequence defined in the connector.
As such, the system avoids iterating over all connectors and
its hooks in order to find out which aspectual behavior is
applicable. Rearranging the sequence of all applicable
hooks for different advice types in order to implement
precedence strategies is also avoided. Figure 6 illustrates
the simplified Java counterpart of an example cached
joinpoint behavior execution. The code fragment first
initializes all applicable hooks with the current joinpoint
and then executes only those advices that are defined in the
connector in the correct sequence.
1 public void executeJoinpoint(Joinpoint jp) {
2 hook0._Jasco_initialize(jp);
3 hook1._Jasco_initialize(jp);
4 hook2._Jasco_initialize(jp);
5 hook1.before();
6 hook2.before();
7 hook0.replace();
8 }

Figure 6: Simplified Java counterpart of the cached
combined aspectual behavior at a joinpoint.
The current implementation employs the Javassist [4] byte-
code manipulation library in order to generate a combined
hook behavior code fragment. Using Javassist, a java byte
code class representation is generated on the fly, without
requiring a compilation step. The overhead of generating a
combined hook behavior code fragment is around 10ms on
out test system2. The optimized code fragment is however
only generated when the joinpoint is encountered the first
time. As such, for joinpoints that are not executed, no
overhead is experienced. The Jutta system also stores all
code fragments generated for a given hook combination.
As such, when the same hook combination is applicable to

2 Pentium4 2GHz, 256MB RAM, Mandrake Linux 9.2, Java 1.4.2

a different joinpoint, the overhead for generating the
combined hook behavior code fragment is avoided. In
addition, the Jutta system includes a set of pre-defined
typical combined aspect behaviors. For those combined
aspectual behaviors, the generation overhead is also
avoided.
The JAsCo approach is however a dynamic AOP approach.
As such, the cached behavior for a given joinpoint might
become invalid. This happens when a connector is added
that instantiates a hook that is applicable on the joinpoint or
when a connector is removed that contains an applicable
hook for the joinpoint. In addition, it is possible to change
some properties of a connector dynamically so that the
applicable context of the instantiated hooks is altered. The
Jutta system has to be able to cope with these issues.

3.3 Hooks depending on dynamic values
Caching combined aspect behavior is not always
achievable because it is possible that whether a hook is
applicable or not, has to be re-evaluated for every
execution of a given joinpoint. For example, when a hook
defines a cflow condition in its constructor, this constructor
has to be re-evaluated for every execution of a joinpoint.
However, the entire constructor does not have to be re-
evaluated. In this case, only the result of the cflow
condition is able to change for different executions of the
joinpoint. As such, partial evaluation techniques can be
used to cache a partially evaluated constructor. In addition,
for the particular cflow construct, it is sometimes possible
to statically analyze whether the condition might ever be
true or not by examining the call graph of an application.
This technique is elucidated in [20].

3.4 Combination strategies
In general, caching the result of the combined behavior of
all combination strategies for a given joinpoint is not
possible. A combination strategy might depend on dynamic
values in order to compute the list of applicable hooks. As
such, combination strategies have to be recomputed for
each execution of a given joinpoint. Some combination
strategies do however not depend on dynamic values and
always render the same result for a given input set of
hooks. As such, these combination strategies do not need to
be recomputed for every execution of a joinpoint. There is
however no way to automatically find out whether a
combination strategy depends on dynamic values or not.
Therefore, the empty interface DoNotCache is introduced.
When a combination strategy does not implement this
interface, it is defined to always return the same set of
hooks in the same sequence for a given input set of hooks.
As such, the combination strategy only needs to be
executed once for every input set of hooks. When a
combination strategy does implement the DoNotCache
interface, it is never cached and thus always executed for
each applicable joinpoint.

4. JASCO HOTSWAP
The Jutta system allows optimizing the aspect
interpretation part of JAsCo dynamic AOP. The
interception part however is still very slow. Inserting traps
at all methods causes a performance overhead for all those
methods, even no aspects are applied. In order to optimize
this interception system, we propose to employ the
HotSwap technology of Java. HotSwap is introduced since
Java 1.4 and allows to dynamically replace the byte code of
a loaded class. As such, it is possible to install traps just-in-
time when a new aspect is added to the system.

4.1 Approach
The JAsCo hotswap implementation allows installing traps
in only those methods that are subject to aspect application.
When a new aspect is added, all the methods where the
added aspect is applied upon, are hotswapped at run-time
with a trapped version. Because HotSwap does not allow to
replace single methods, the complete class byte code is
replaced with a version where the applicable methods are
trapped. All other methods of the class however remain
untouched. Likewise, the original method byte code is
installed when the aspect is removed again and if no other
aspect is applicable at the method at hand.
The JAsCo HotSwap system does not exclude the regular
preprocessing approach for installing traps. Classes that are
already equipped with traps using the preprocessor are
never altered. As such, when certain classes are definitely
affected by aspects, they can be preprocessed to avoid the
hotswap overhead at run-time. Furthermore, on platforms
where no hotswap virtual machine is available, the
preprocessing approach can still be used. JAsCo thus
combines the best of both worlds, highly portable through
the preprocessing approach and very little overhead when
HotSwap is available.
The main drawback of the HotSwap system is that the
virtual machine needs to run in debugging mode. As such,
a global overhead is experienced depending on the virtual
machine implementation. With the introduction of full
speed debugging by the newest Sun virtual machines, this
overhead is neglectable. However, it appears that on our
current Linux virtual machine (Sun JDK 1.4.2_03), a
substantial overhead for debugging is still experienced,
whereas on the same virtual machine for Windows
practically no difference is noticeable.

4.2 Implementation Issues
Implementing a HotSwap system for AOP is technically
quite challenging. The first problem is that typical
HotSwap implementations do not allow altering anything
of a class besides the method bodies. In order to implement
an efficient AOP system, several fields containing
reflective data about the joinpoints contained in the class
are however required. Therefore, a separate class
containing all those fields is generated each time new traps

are installed. As such, the JAsCo HotSwap implementation
requires somewhat more memory at run-time than when
traps are installed using the traditional preprocesser.
Another problem is that HotSwap only allows replacing
classes that are already loaded. As such, when new classes
are loaded, the JAsCo run-time infrastructure needs to be
notified in order to insert traps at those methods where
aspects are applied. The obvious way to realize this is by
employing the Java Debugging Interface (JDI) as the
virtual machine is already running in debugging mode
anyway. Using JDI, an event is received each time a new
class is loaded and JAsCo is able to add traps to the
methods of this class if necessary. However, by merely
setting this “class prepared” breakpoint, the complete
application is slowed down by up to 40%! In order to avoid
this overhead, another solution is required to receive class
loading events. Therefore, JAsCo employs the Java
HotSwap facility to hotswap the system class loader by an
enhanced class loader that notifies the JAsCo run-time
infrastructure whenever a new class is loaded. As such, the
overhead for the “class prepared” breakpoint is avoided.
Hotswapping the class loader can however cause problems
when dedicated class loaders are employed. Typical J2EE
application servers [10] depend on a custom class loader
system and interfering with this system might cause the
application to fail. Therefore, the current JAsCo
implementation offers both class loading interception
strategies.

5. PERFORMANCE EVALUATION
In order to evaluate the performance of the JAsCo
approach enhanced with HotSwap and Jutta, we compare it
to several state-of-the-art dynamic AOP approaches. Apart
from JAsCo, the following dynamic AOP approaches are
tested and compared: JBoss/AOP [8], PROSE [18], JAC
[16] and AspectWerkz [3]. Notice that this selection is not
meant as a comprehensive overview of all existing dynamic
AOP systems. We merely selected those systems because
they are publically available and seemed stable enough in
our opinion. Nevertheless, this selection is a good overview
of current dynamic AOP approaches.
We employ two benchmark applications: a benchmark
shipped with the JAC distribution and the PacoSuite
benchmark [27]. The JAC benchmark application is a
synthetic benchmark that invokes a set of public methods
with different method signatures and empty method body
implementations. This benchmark allows to precisely
measure the overhead per method execution for applying
aspects. The PacoSuite benchmark is meant as an
evaluation of the performance in a realistic and non-trivial
application. PacoSuite is a visual component composition
environment, which is composed out of 1202 classes
containing 34465 lines of code. The PacoSuite benchmark
reads an XML composition description from file, validates

the composition using a set of finite automata algorithms
and finally displays the composition.
The next section shortly discusses the ideas and underlying
implementations of the AOP approaches that are used in
our experiments. Afterwards, section 5.2 discusses the
benchmark results when no aspects are applied. Finally,
section 5.3 presents the benchmark results when aspects are
applied.

5.1 Employed dynamic AOP approaches
When comparing their underlying implementation, JAC
and JBoss/AOP are rather similar AOP-technologies. Both
approaches make use of traps which are automatically
inserted at load-time of the application making use of byte-
code transformations. Although both AOP-technologies
are quit similar, JBoss /AOP is primarily intended as an
aspect-oriented extension for the JBOSS J2EE application
server [11], whereas JAC is developed as an AOP-
framework which can be used as an alternative for a J2EE
application server.
AspectWerkz is meant as a lightweight dynamic AOP
framework and also inserts traps at load-time. In addition to
employing a customized classloader like JBoss/AOP and
JAC, AspectWerkz allows to employ the Java HotSwap
functionality in order to hotwsap the system classloader for
a classloader that inserts traps. All three approaches
however insert traps at load-time. JAC always inserts traps
at all methods, while JBoss/AOP and AspectWerkz do only
insert traps at classes where aspects are already applied. As
such, these approaches are not very dynamic because
aspects can only be inserted and removed at trapped
methods. Luckily, JBoss/AOP allows specifying a range of
classes that have to be trapped, regardless of whether there
are aspects applied or not. Unfortunately, for AspectWerkz,
this is not possible.
PROSE employs a very different approach to intercept the
program’s execution than the previous technologies.
PROSE exploits the Java Virtual Machine Debugging
Interface (JVMDI). A dedicated execution monitor is
deployed on top of the JVMDI, which allows capturing
relevant execution events. Whenever an event is
encountered where an aspect is applied upon, the
corresponding advice is executed.

5.2 Benchmarks without aspects
For the first experiment, both the JAC and PacoSuite
benchmark application are run on our test system3 making
use of the AOP technologies mentioned above, but without
any aspects being applied. This allows observing the pure
overhead of running the benchmark applications making
use the AOP technologies. Notice that both benchmarks
first run their application a couple of times in order to

3Pentium4 2 GHz, 256MB RAM, Mandrake Linux 9.2, Java 1.4.2

allow the Java virtual machine to optimize the code. This
also allows some of the approaches to install their
corresponding traps (JAC, JBOSS/AOP, JAsCo and
AspectWerkz) or to perform some additional
optimalisations themselves. The execution times of these
warm-up runs are not considered in our benchmark results.
For each AOP approach, the experiments are performed at
least ten times such that the standard deviation was less
than 1% for the JAC benchmark application and less than
5% for the PacoSuite benchmark application.
Table 1: Benchmarks without any aspects applied.

Without Aspects JAC benchmark PacoSuite benchmark

No AOP/AspectJ 14 ms 590 ms

JAsCo 0.4.5 14 ms 684 ms

JAC 0.11 154689 ms -

PROSE 1.1.2 14 ms 708 ms

JBOSS/AOP 4.0 507 ms 657 ms

AspectWerkz 0.9 RC1 2651 ms -

Table 1 illustrates the result of the first experiment. For the
JAC benchmark, one million “direct” iterations are
performed. For the PacoSuite benchmark, three “visual”
iterations are executed. For JBoss/AOP and AspectWerkz,
we made sure that traps are inserted at all methods because
otherwise, they are not dynamic at all, as no aspects can be
added onto methods that are not trapped. When no traps are
inserted, the performance of JBoss/AOP and AspectWerkz
is the same as the original application. As explained before,
AspectWerkz does not allow specifying that traps have to
be inserted, even if there are no aspects. Therefore, we
apply an empty aspect to all methods and remove it before
the benchmark starts. This way only the overhead of the
traps remains. Because removing aspects in AspectWerkz
means fetching all possible joinpoints by name, this is not
straightforwardly achievable for the PacoSuite benchmark
(1202 classes).
At first glance, JAC appears to have a rather big overhead
for its own benchmark in comparison to the other AOP
approaches. Its low performance is however mainly caused
by the slowness of the Java Reflective API which is
employed within the JAC implementation. Unfortunately,
no JAC results are available for the PacoSuite benchmark,
as we were not able to run this application correctly
because of JAC code generation errors. Both PROSE and
JAsCo perform best in the JAC benchmark as they do not
require traps for every method. For the PacoSuite
benchmark, the overhead of employing the debugging
interface seems to be higher than the overhead of inserting
traps at all methods, since JBoss/AOP outperforms PROSE
and JAsCo. As already mentioned in section 4.1, this is
probably due to less optimal debugging interface
implementation on Linux. Nevertheless, inserting traps at

all methods is a feasible approach as the performance
overhead in a realistic application scenario is only around
10%.

5.3 Benchmarks with aspects
As a second experiment, one simple aspect is applied upon
each public method defined within the JAC and PacoSuite
benchmark application. This aspect describes an around
advice that increases a counter each time it is executed.
For this experiment, 100000 “direct” iterations are
performed for the JAC benchmark and three “visual”
iterations for the PacoSuite benchmark. This results in
respectively 800000 encountered joinpoints for the JAC
benchmark and 210400 encountered joinpoints for the
PacoSuite benchmark application. AspectJ is employed as
utopic performance reference. In addition, the performance
of JAsCo without the Jutta system being activated is
measured. Table 2 illustrates the results. Notice that for the
JAC benchmark, only one tenth of the iterations are
performed in comparison to the previous experiment
(100000 vs 1000000), so the timings for the JAC
benchmark of Table 1 and Table 2 cannot be directly
compared.
Table 2: Benchmarks with one around advice applied.

One Around Aspect
on all public methods

JAC benchmark
(800 000 joint points)

PacoSuite bench
(210 400 joint points)

AspectJ 1.1 29 ms 645 ms

JAsCo 0.4.5; no Jutta 424928 ms 473665 ms

JAsCo 0.4.5 279 ms 753 ms

JAC 0.11 17198 ms -

PROSE 1.1.2 946112 ms4 -

JBOSS/AOP 4.0 956 ms 949 ms5

AspectWerkz 0.9 RC1 487 ms 3698 ms5

In this experiment, JAsCo clearly outperforms the other
approaches. This is mainly the contribution of the Jutta
system, which is able to cache the application of aspects
such that this information does not need to be calculated
each time a joint point is encountered. If the Jutta system
is disabled, the performance of JAsCo is very slow and is
easily outperformed by all other AOP approaches. Again
we observe that JAC, and this time also PROSE, have a

4 PROSE does not support an around advice, so we employ a

before advice instead.
5 The actual results for JBOSS/AOP and AspectWerkz are 1093

ms and 4859 ms. Both approaches however also trap private
methods. This leads to a higher performance overhead
Therefore, the performance of public methods is computed from
the overhead per around execution times the number of public
methods. Notice that this is not an issue in the JAC benchmark
because it only consists of public methods.

rather big overhead in comparison to the other AOP
approaches. For PROSE, this big overhead can probably
be contributed to the lack of an efficient implementation
which is able to cache which aspects are applied on which
specific joint points.
In a third experiment, three around aspects are applied
upon each public method defined within the JAC bench.
As the JAC benchmark application contains 8 public
methods, 24 aspect instances are active in the system at the
same time. This experiment is mainly performed because
caching combined aspect executions is one of the main
strengths of the Jutta approach. Table 3 displays the results
of this experiment. JAsCo again outperforms the other
tested dynamic AOP approaches. However, it seems that
JBoss/AOP scales better because adding 23 aspects only
increases the execution time for JBoss/AOP with 12%
whereas for JAsCo a 35% performance hit is experienced.
Table 3: Benchmarks with three around aspects.

Three Around Aspects
on all public methods

JAC benchmark
(800 000 joint points)

Overhead per advice
execution.

AspectJ 1.1 93 ms 0.032 ns

JasCo 0.4.5 395 ms 0.159 ns

JBOSS/AOP 4.0 1075 ms 0.442 ns

AspectWerkz 0.9 RC1 927 ms 0.380 ns

In order to assess the performance gain of the JAsCo
HotSwap implementation, a last experiment is conducted.
One single around aspect is applied upon one specific
method defined within the JAC benchmark application. In
addition, each method of the JAC bench is made advisable
for JBoss/AOP and AspectWerkz such that aspects can be
added at run-time. Notice that this is not required for
JAsCo as JAsCo is still able to insert traps in these methods
using HotSwap. As illustrated by Table 4, the JAsCo
HotSwap implementation improves greatly over the other
dynamic AOP approaches as traps are only added at one of
the eight methods. Also notice that even the optimized
JAsCo system is more than 1000% slower that AspectJ. As
such, dynamic AOP is still far behind statically weaved
approaches performance-wise.
Table 4: Benchmark with one around aspect applied
upon one specific method.

One Around Aspect JAC benchmark
(100 000 joint points)

AspectJ 1.1 2 ms

JAsCo 0.4.5 29 ms

JBOSS/AOP 4.0 891 ms

AspectWerkz 0.9 RC1 275 ms

As a final note, it should be mentioned that the last three
experiments employ an aspect which is described making
use of an around advice, as this is the only kind of advice
that is supported by each AOP approach that was used
within this performance assessment, except for PROSE.
Similar to AspectJ however, JAsCo also provides an
explicit before and after advice. Apart from the conceptual
benefit of an explicit before/after construct, such an advice
can be executed faster, as no around advice chain needs to
be built up. In case of experiment two for instance, the
performance of JAsCo for the JAC-benchmark application
is improved by 15% if before advices are applied instead of
around advices.

6. RELATED WORK
Apart form the approaches employed in our benchmarks,
several other AOP approaches are introduced for enabling
dynamic AOP. Event based aspect oriented programming
(EAOP) allows specifying crosscutting concerns by
employing event patterns which are described using a
formal language [6]. Because of this formal model,
advanced detection and resolution of aspect interactions
becomes possible. On the implementation level, EAOP
inserts traps that query a central execution monitor, similar
to the JAsCo connector registry. The execution monitor has
a global view of the executing application and contains all
active EAOP artifacts. In contrast to JAsCo, EAOP inserts
traps by source-code transformations.
Using Caesar [14], an aspect is described in terms of an
Aspect Collaboration Interface (ACI). Each concrete aspect
needs to implement the required methods specified by its
corresponding ACI. Aspect bindings connect the aspect
implementations to different concrete deployment contexts.
One of the major contributions of the Caesar approach is
the introduction of aspectual polymorphism. Aspect
bindings are able to implement a binding for different types
and the concrete binding is resolved dynamically using the
type of the object at hand. In this viewpoint, aspectual
polymorphism is similar to the concept of late binding
found in object oriented languages.
Filman [7] proposes dynamic injectors in order to introduce
aspects within an application. These dynamic injectors are
incorporated into the OIF (Object Infrastructure
Framework), a CORBA centered aspect-oriented system
for distributed applications. Dynamic injectors are first
class objects that can be added and adapted at run-time. At
the implementation level, a wrapping approach is employed
for injecting the logic of an aspect within a component
communication channel.
Wool [19] is a dynamic AOP framework that supports two
different dynamic weaving strategies. The Wool system
employs the Java Debugging Interface to intercept the
execution of the base program. In this respect, Wool is
similar to the PROSE approach. However, aspects can also

be inserted into the target joinpoints directly by employing
Java HotSwap. The original contribution of Wool is that
aspects are able to implement their own heuristics for
deciding whether they are invasively inserted or not. The
difference with the JAsCo hotswap implementation is that
JAsCo only insert traps, not full advices. In Wool however,
aspects lose their identity at run-time. In addition, Wool
requires to hotswap more as for each additional aspect, the
classes containing the applicable joinpoints need to be
hotswapped again.
Finally, AspectS [9] introduces dynamic AOP support
within the Squeak/Smalltalk environment. Pointcuts and
their corresponding advices are described making use of
plain Smalltalk. By sending the install and uninstall
message to an instance of such an aspect, aspects are
activated and deactivated within the application at run-
time. At the implementation level, AspectS makes use of
the dynamic properties of Smalltalk itself. In this case,
Method wrappers are used which are placed around a
compiled method by replacing its entry in the method
dictionary of a class. This way, it is possible to easily add
behavior, in this case aspect advices, to method
invocations.

7. CONCLUSIONS AND FUTURE WORK
This paper presents the HotSwap and Jutta systems in order
to improve the performance of JAsCo dynamic AOP. The
performance evaluation clearly indicates that the JAsCo
implementation enhanced with Jutta and HotSwap
improves current state-of-the-art dynamic AOP. However,
the overhead is still a lot larger than when statically weaved
languages like AspectJ are employed.
The Jutta system is not only applicable to JAsCo. The ideas
can be recuperated in any other dynamic AOP approach
regardless of which technology is used for intercepting the
program execution. Therefore, we plan to decouple the
Jutta system from JAsCo and as such achieve a general
dynamic AOP optimizer.
The HotSwap system is however only a short and medium
term solution for intercepting the program execution. In the
long term, the best approach to support dynamic AOP or
even regular AOP consists of dedicated aspect-oriented
virtual machines as for example proposed by PROSE2
[17]. Indeed, preprocessing, load-time trap insertion or
employing the debugging interface of a virtual machine are
all solutions that are feasible on the short-term, but are
quite cumbersome and error-prone in comparison with a
dedicated execution environment. The Jutta system and
ideas are however still applicable for such dedicated virtual
machines.

8. REFERENCES
[1] AspectJ Website.

http://www.aspectj.org
[2] Baker, J. and Hsieh, W. Runtime aspect weaving through

metaprogramming. In Proceedings of the first International
Conference on Aspect-Oriented Software Development.
Enschede, The Netherlands, April 2002.

[3] Bonér, J. and Vasseur A. AspectWerkz: a dynamic,
lightweight and high-performant AOP/AOSD framework for
Java. Available at: http://aspectwerkz.codehaus.org

[4] Chiba, S. and Nishizawa, M. An Easy-to-Use Toolkit for
Efficient Java Bytecode Translators. In Proceedings of the
second International Conference on Generative
Programming and Component Engineering. Erfurt,
Germany, September 2003.

[5] Cibran, M., D'Hondt, M. and Jonckers, V. Aspect-Oriented
Programming for Connecting Business Rules. In Proceedings
of the 6th International Conference on Business Information
Systems. Colorado Springs, USA, June 2003.

[6] Douence, R., Motelet, O. and Südholt, M. A formal
definition of crosscuts. In Proceedings of the 3rd
International Conference on Reflection. Kyoto, Japan,
September 2001.

[7] Filman, R.E. Applying aspect-oriented programming to
intelligent systems. Position paper at the ECOOP 2000
workshop on Aspects and Dimensions of Concerns. Cannes,
France, June 2000.

[8] Fleury, M and Reverbel, F. The JBoss Extensible Server. In
Proceedings of Middleware 2003 Int Conference, Rio de
Janeiro, Brazil, LNCS(2672), January 2003.

[9] Hirschfeld, R. AspectS – Aspect-Oriented Programming with
Squeak. Objects, Components, Architectures, Services, and
Applications for a Networked World, pp. 216-232, LNCS
2591, Springer, 2003.

[10] Java J2EE website.
http://java.sun.com/j2ee/

[11] JBOSS J2EE Application Server Website.
http://www.jboss.org/

[12] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes,
C., Loingtier, J. and Irwin J. Aspect-oriented programming.
In Proceedings of European Conference for Object-Oriented
Programming. Jyväskylä, Finland, June 1997.

[13] Lieberherr, K., Lorenz, D. And Mezini, M. Programming
with Aspectual Components. Technical Report, NU-CSS-99-
01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html.

[14] Mezini, M. and Ostermann, K. Conquering Aspects with
Caesar. In Proceedings of the second International
Conference on Aspect-Oriented Software Development.
Boston, USA, March 2003.

[15] Ossher, H. and P. Tarr, Using multidimensional separation of
concerns to (re)shape evolving software. Communications of
the ACM 44 (2001), pp. 43–50.

[16] Pawlak, R., Seinturier, L., Duchien, L. and Florin, G. JAC:
A flexible solution for aspect-oriented programming in Java.
In Proceedings of the third International Conference on
Reflection. Kyoto, Japan, September 2001.

[17] Popovici, A., Alonso, G. and Gross, T. Just-in-time aspects:
efficient dynamic weaving for Java. In Proceedings of the
second International Conference on Aspect-Oriented
Software Development. Boston, USA, March 2003.

[18] Popovici, A., Gross, T. and Alonso, G. Dynamic Weaving for
Aspect-Oriented Programming. In Proceedings of the 1st
International Conference on Aspect-Oriented Software
Development. Enschede, The Netherlands, April 2002.

[19] Sato, Y., Chiba, S. and Michiaki, T. A Selective, Just-in-Time
Aspect Weaver. In Proceedings of the second International
Conference on Generative Programming and Component
Engineering. Erfurt, Germany, September 2003.

[20] Serini, D. and De Moor, O. Static analysis of aspects. In
Proceedings of the second International Conference on
Aspect-Oriented Software Development. Boston, USA,
March 2003.

[21] Suvee, D., Vanderperren, W. and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for Component Based
Software Development. In Proceedings of the second
International Conference on Aspect-Oriented Software
Development. Boston, USA, March 2003.

[22] Vanderperren, W. A pattern based approach to separate
tangled concerns in component based development. In
Proceedings of ACP4IS workshop at AOSD 2002. Enschede,
The Netherlands, April 2002.

[23] Vanhaute, B., De Win, B. and De Decker B. Building
Frameworks in AspectJ. Workshop on Advanced Separation
of Concerns.

[24] Verheecke, B., Cibran, M. A. and Jonckers, V. AOP for
Dynamic Configuration and Management of Web services in
Client-Applications. In Proceedings of 2003 International
Conference on Web Services. Erfurt, Germany, September
2003.

[25] Verspecht, D., Vanderperren, W., Suvee, D. and Jonckers, V.
JAsCo.NET: Unraveling Crosscutting Concerns in .NET
Web Services. In Proceedings of Second Nordic Conference
on Web Services NCWS'03. Vaxjo, Sweden, Novermber
2003.

[26] Workshop on “feature interaction in composed systems” at
ECOOP 2001. Program available at http://www.info.uni-
karlsruhe.de/pulvermu~/workshops/ecoop2001.

[27] Wydaeghe, B. and Vanderperren, W. Visual Component
Composition Using Composition Patterns. In Proceedings of
Tools 2001. Santa Barbara, USA , July 2001.

