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Abstract. In this paper, the JAsCo aspect-oriented programming lan-
guage is introduced. JAsCo is tailored for component-based software
development and introduces two new concepts: aspect beans and con-
nectors. An aspect bean is highly reusable because it allows describing
crosscutting concerns independently of concrete component types and
APIs. A connector on the other hand, deploys one or more aspect beans
within a concrete component context and allows specifying an explicit
combination of their aspectual behavior. The JAsCo technology intro-
duces a genuine run-time weaver that flexibly weaves, reweaves and un-
weaves aspects at run-time. By comparing the run-time performance of
this weaver with other state-of-the-art dynamic AOP approaches, it is
shown how JAsCo is able to significantly outperform most of these ap-
proaches.

1 Introduction

Component-Based Software Development (CBSD) and more recently Aspect-
Oriented Software Development (AOSD) have been proposed to tackle problems
experienced during the software engineering process. When applying CBSD, a
full-fledged software-system is developed by assembling a set of pre-manufactured
components. Each component is a black-box entity that can be deployed inde-
pendently and that delivers one or more specific services to the system [1, 2]. The
deployment of this paradigm drastically improves the speed of development and
the quality of the produced software. AOSD on the other hand, aims at improv-
ing the separation of concerns in current software engineering methodologies, by
providing an extra separation dimension for decomposing a software system [3,
4].

Originally, aspect-oriented research and practice mainly focused on the object-
oriented paradigm, where it claims that the class hierarchy is insufficient for the
clean modularization of all possible concerns (a problem dubbed “the tyranny
of the dominant decomposition” in [4]). Component-based software development
however also suffers greatly from crosscutting concerns and tangled code, since
it advocates low coupling between components and high cohesion of single com-
ponents in order to make components reusable and independently deployable [2].
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As a result, a lot of functionalities are spread and repeated over different com-
ponents making them difficult to comprehend and maintain. Hence, integrat-
ing the aspect-oriented ideas into the component-based world, significantly con-
tributes to the component-based paradigm as it allows increasing the modularity
of component-based applications.

The other way around, namely the adoption of component-based ideas within
AOSD, is a valuable concept as well, and we claim that current mainstream
aspect-oriented approaches such as AspectJ [5] can tremendously benefit from
this integration. In previous work [6], we introduced the JAsCo approach, an
aspect-oriented language tailored for component-based software development
in a Java setting. JAsCo is inspired by the integrated Aspectual Components
approach [7], and features reusable and independent aspect entities that are
deployed upon a base application employing a separate composition process.
However, JAsCo also combines this design with the straightforwardness of the
AspectJ model, where aspects describe pointcuts and advice code that must
be applied at their resolved joinpoints. We believe that the JAsCo approach is
therefore particularly well-suited to illustrate how the adoption of component-
based ideas contributes back to the AOSD field, and we present its design and
implementation from this perspective in this paper.

The concrete improvements that JAsCo brings about by applying component-
based concepts are diverse. Aspect beans, JAsCo’s aspect entities, are modeled
after Java Bean components and are deployed upon a concrete base application
through separate connectors. This design enables a higher degree of reuse and
consequently entails faster development. Furthermore, by equipping connectors
with flexible precedence and combinations strategies, JAsCo also allows specify-
ing how deployed aspects should be combined in case of feature interaction [8],
i.e. when multiple aspects advise the same joinpoint. Component-based software
development emphasizes the need for run-time reconfiguration, which means that
individual components as well as complete component compositions can be al-
tered or replaced at run-time. This is in sheer contrast to AOSD’s original focus
on statically deployed aspects with limited instantiation and static joinpoints
(i.e. aspects that advise points in the compile-time structure of the program).
More dynamism for aspects has been long argued for however [9–11], and the
dynamic joinpoint model, where advices are triggered by run-time events, has
become commonplace. JAsCo further improves on this by providing flexible as-
pect factories, run-time deployment of aspects and so-called stateful pointcuts
that match complete sequences of events rather than singular events. Parallel
innovations in the JAsCo implementation, such as run-time (re)weaving, make
these dynamic features possible while retaining performance characteristics com-
parable to static approaches.

This paper is structured as follows. The following section introduces the main
JAsCo concepts and presents the language elements. It also compares these con-
cepts with the current state of the well-known AspectJ approach. Section 3
presents the JAsCo technology and discusses several approaches to improve this
technology performance-wise. In section 4, the performance of this enhanced



Aspect-Oriented Programming using JAsCo 3

JAsCo technology is compared with other state-of-the-art AOP approaches. Af-
terwards, research that is related to this work is summarized. Finally, we state
our conclusions and describe future research directions.

2 The JAsCo Model

In this section, we present the concepts and features introduced by the JAsCo
aspect-oriented programming model. Similar to AspectJ, JAsCo proposes an
asymmetric AOP model, where crosscutting concerns are modularized as dedi-
cated entities, called Aspect Beans. The JAsCo aspect bean implementation does
however not refer to concrete component types and APIs, as such making aspect
beans reusable amongst multiple applications. In order to deploy an aspect bean,
we employ a Connector construct, as proposed by Aspectual Components, which
instantiates a reusable JAsCo aspect bean definition within a concrete compo-
nent context. In order to illustrate the JAsCo AOP model, we employ a small
case study that introduces a basic security concern that ensures that a user has
the required credentials for accessing particular functionalities offered by a soft-
ware system. Access control is a typical example of a crosscutting concern [12]
as its implementation logic is tangled and spread amongst various components
of the system that requires authentication. The next two subsections introduce
the concepts of the JAsCo aspect/connector model and its language in more
detail. Afterwards, we illustrate the JAsCo solution for combining the behavior
of separately specified aspects which are applicable at the same points within
the application. Finally, we propose an extension of the JAsCo model that sup-
ports the specification of stateful aspects, which describe pointcuts in terms of
a sequence of events instead of single events.

2.1 JAsCo Aspect Beans

In order to modularize a crosscutting concern, JAsCo introduces the Aspect
Bean construct. In essence, an aspect bean can be considered as an extension of
a regular Java Bean. As such, its syntax and concepts remain close to the ones
introduced by regular Java. A JAsCo aspect bean contains two parts:

– Any number of ordinary Java class members, such as data fields, meth-
ods and inner classes.

– One or more hook definitions, which are responsible for capturing the
crosscutting behavior.

Listing 1 illustrates the aspect bean modularization of the crosscutting access
control concern. The aim of this concern is to validate whether a user possesses
the required credentials to access particular functionalities offered by a software
system. The AccessManager aspect bean declares two ordinary Java data fields:
one provides access to the permissions database (line 3) and one contains the
current system user (line 4). All data fields and methods declared by an aspect
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bean are shared amongst the contained hooks. For implementing the crosscutting
behavior, an aspect bean groups together one or more logically related hook def-
initions. A hook1 can be considered as a special kind of inner class and contains
the following three parts:

– A hook triggering condition specification, build up out of:
• A constructor, specifying a declarative abstract pointcut definition.
• An isApplicable method, specifying an additional triggering condition

employing full Java.
– One or more advice methods.
– Any number of ordinary Java class members, which are local to the

hook.

Instead of hard-wiring the concrete deployment context within the aspect
bean implementation itself, we propose a special constructor that describes a
pointcut in a more abstract way. Each constructor takes several abstract method
parameters as input, which serve as placeholders for concrete method signa-
tures that are provided when a hook is instantiated within a specific component
context. These abstract method parameters are employed within the construc-
tor body that outlines how the joinpoints of an instantiated hook should be
computed. The purpose of the AccessControl hook (lines 6-29) is to throw an
exception whenever the current system user accesses some functionality without
possessing the required permissions. The constructor of this hook (lines 10-12)
declares one abstract method parameter, method, that takes zero or more ar-
guments as input. The scope of these method arguments extends the entire
hook. Hence, arguments can be immediately employed within the hook advice
methods, while other AOP approaches requires to explicitly capture them. The
constructor body (line 11) specifies that the behavior of the hook should be
triggered when the method bound to the abstract method parameter method is
executed. Hence, when a hook is instantiated using concrete method signatures
later on, the joinpoints of the hook are resolved to the execution of these concrete
methods. Similar to AspectJ, JAsCo is able to specify more elaborated pointcut
definitions in the constructor body, for instance control flow conditions that are
combined using logical operators. In some cases, the triggering of the hook be-
havior requires additional logic which can not be expressed in standard declar-
ative pointcut conditions. The authentication behavior of the AccessControl
hook for instance, should only be triggered if the current user is not the root
user. To this end, JAsCo provides the isApplicable method, similar to the if
construct in AspectJ, that allows to describe an additional triggering condition
by employing the full expressiveness of Java. The isApplicable method of the
AccessControl hook (lines 14-16) evaluates to true if the current user is not the
root user.

1 The term “hook” is overloaded, as in an AOP-context, “hooks” are generally con-
sidered to be shadow joinpoint decorators. The term “hook” was however adopted
early on, making it difficult to change it now.
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1 class AccessManager {
2

3 PermissionDb pdb = new PermissionDb();
4 User currentuser = null;
5

6 hook AccessControl {
7

8 String exceptionmessage = "General Access Exception";
9

10 AccessControl(method(..args)) {
11 execution(method);
12 }
13

14 isApplicable() {
15 return !pdb.isRoot(currentuser);
16 }
17

18 around() {
19 if(pdb.check(currentuser,thisJoinPointObject))
20 return proceed();
21 else

22 throw new AccessException(exceptionmessage);
23 }
24

25 void setExceptionMessage(String aMessage) {
26 exceptionmessage = aMessage;
27 }
28

29 }
30 }

Listing 1. The JAsCo access control aspect bean

Hook advice methods are employed for implementing the various actions
a hook needs to perform whenever one of its computed joinpoints is encoun-
tered. JAsCo supports several types of advices, including before, around, after,
after throwing and after returning, from which the semantics match their
AspectJ counterparts. Hook advice methods are implemented using the full Java
expressiveness and only one implementation for each advice type can be pro-
vided. The AccessControl hook defines an around advice that implements
the access control behavior. An around advice wraps the original execution
of a joinpoint and allows to explicitly specify whether the behavior of the en-
countered joinpoint should still be executed. The around advice method of the
AccessControl hook (lines 18-23) makes sure a user possesses the required cre-
dentials, by checking whether the object associated with the current joinpoint
(referenced by thisJoinPointObject) can be accessed by the user of the sys-
tem. If this is not the case, an exception is thrown, from which the messages
can be customized by employing the setExceptionMessage method (lines 25-
27). In the other case, the original joinpoint execution is continued by explicitly
invoking the proceed method. When multiple hooks are applicable at the same
joinpoint, the proceed method continues by invoking the around advice of the
the next hook, this way building up a chain of around advices.

The AccessManager aspect bean does not hard-wire specific deployment in-
formation (i.e. component types and APIs) within its implementation. Hence,
this concern can be reused within various applications that require authentica-
tion. Next to making an aspect reusable, the abstract method parameters of
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1 class AccessManagerErrorPolicy extends AccessManager {
2

3 hook AccessControlErrorPolicy extends AccessControl {
4

5 around() {
6 if(pdb.check(currentuser,thisJoinPointObject)) {
7 return proceed();
8 } else {
9 performErrorPolicy(currentuser,thisJoinPointObject);

10 }
11 }
12

13 refinable void performErrorPolicy(User user, Object object);
14

15 }
16 }

Listing 2. The JAsCo access control aspect bean with refinable error policy
method

a hook constructor also make it possible for JAsCo to guarantee type safety
for arguments and return values of abstract method parameters. Consider a
hook constructor with an abstract method parameter that expects an object
of type Integer as first argument. When this hook is instantiated with a con-
crete method signature, this method is type checked against the abstract method
parameter by employing the regular Java typing rules. This allows to identify
possible type incompatibilities that would otherwise lead to run-time errors. This
kind of type safety is not provided by typical framework-based AOP approaches,
such as JBoss/AOP [13] and Spring/AOP [14] where connections are specified
in XML descriptors and advices need to include possible type unsafe casts in
order to implement context specific behavior.

By default, the AccessControl hook throws an exception when a user ac-
cesses some component functionality without possessing the required permis-
sions. Sometimes however, a deployer of the access control aspect could envi-
sion a custom access error policy, for instance mailing the system administrator
or logging the access error to file. In order to preserve the reusable nature of
the access control aspect, but at the same time support custom access error
policies, refinable methods can be employed. A refinable method, which is sim-
ilar to an abstract method in Java, allows to postpone the implementation of
certain aspect behavior in order to remain context independent. Listing 2 il-
lustrates an extended version of the AccessManager aspect bean that supports
custom error policy handling. JAsCo inheritance is employed to extend and
override the behavior of the AccessManager aspect bean and its correspond-
ing hooks: the AccessManagerErrorPolicy hook inherits the behavior of the
AccessControl hook (line 3), but overrides the original around advice (lines
5-11) so that it invokes the refinable performErrorPolicy method (line 13) for
handling access errors. A context-specific implementation should be provided for
the performErrorPolicy method when the AccessManagerErrorPolicy hook
is deployed within a concrete component context, this by in-lining the method
implementation within the JAsCo connector.
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1 connector PrintAccessControl {
2

3 AccessManager.AccessControl control =
4 new AccessManager.AccessControl(void Printer.printFile(File));
5

6 control.setExceptionMessage("Printer Access Exception");
7 control.around();
8 }

Listing 3. The JAsCo connector for print access control

2.2 JAsCo Connectors

In order to deploy abstract and reusable aspects beans within a concrete com-
ponent context, JAsCo introduces the connector construct. The purpose of a
connector is threefold:

– Instantiate one or more logically related aspect bean hooks (defined amongst
multiple aspect beans).

– Initialize aspect bean hook instantiations with context-specific properties.
– Define precedence for advice method executions and deploy combination

strategies to resolve conflicting aspect interactions.

Similar to instantiating regular Java classes, aspect bean hooks are instan-
tiated by making use of their corresponding constructors. Reconsider the pre-
viously introduced case-study: a Printer component should only be accessed
by users who have the appropriate printing permissions. Listing 3 illustrates
a connector that instantiates the AccessControl hook of the AccessManager
aspect bean with the printFile method signature of the Printer component
(lines 3-4). As a result, the printFile method of the Printer component gets
bound to the method abstract method parameter of the AccessControl hook.
Hence, the abstract pointcut described by the AccessControl hook constructor
body is resolved to one specific joinpoint, namely the execution of this printFile
method. The exception message thrown in case of access violations is customized
by invoking the setExceptionMessage method on the control hook instance
(line 6). Additionally, a connector can specify the advice methods to execute
whenever a resolved joinpoint is encountered. The PrintAccessControl con-
nector declares the execution of the around advice method (line 7). By default,
if no advice method executions are specified for a particular hook instance, all
advice methods implemented within the hook are executed. The deployment of
the PrintAccessControl connector has following implication upon the system:
whenever the printFile method of the Printer component is executed by a
user who does not possess root permissions, his/her credentials are verified and
an access exception is thrown accordingly.

Listing 4 illustrates the instantiation of the AccessControlErrorPolicy
hook, which supports custom error handling implemented as a refinable method.
Hooks that declare refinable methods are instantiated like regular hooks (lines 3-
5), but a concrete implementation for their refinable methods is in-lined within
their instantiation. The in-lined implementation for the performErrorPolicy
method, informs the administrator about access violations of its system users
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1 connector PrintFaxAccessControlWithErrorPolicy {
2

3 AccessManagerErrorPolicy.AccessControlErrorPolicy control =
4 new AccessManagerErrorPolicy.AccessControlErrorPolicy (
5 { * Printer.*(*) , * Fax.*(*) } )
6 {
7 void performErrorPolicy(User user, Object object) {
8 Mailer.mailAdmin("Error: " + user + " - " + object);
9 }

10 }
11

12 control.around();
13 }

Listing 4. The JAsCo connector for print access control with custom error
handling policy

by mail (lines 7-9). When instantiating a hook, it is possible to bind multi-
ple method signatures with the same abstract method parameter by inserting
them between braces. Additionally, wild-cards can be employed to easily select
all methods defined within multiple components without having to enumerate
them. Hence, the same instance of the AccessControlErrorPolicy hook is em-
ployed to enforce access control upon all functionalities offered by the Printer
and Fax components.

JAsCo Aspect Factories Although the pointcut expression described by a
hook constructor can be resolved to multiple joinpoints, only one instance of a
hook is instantiated by its constructor. If one requires a hook instance for each
resolved joinpoint, separate hook instantiations are required. In order to support
the automatic generation of multiple hook instances within a single instantiation
expression, JAsCo provides a set of aspect factory constructs, such as perall,
permethod, perclass, perinstance and perthread, which are declared in front
of a hook instantiation. The perall factory generates a unique hook instance
for each resolved joinpoint execution. The permethod factory generates a unique
hook instance for each method that is resolved as joinpoint shadow. In the con-
text of our case-study, the perclass factory could be employed to generate a
separate access control hook instance for each resolved component type that re-
quires authentication. Several aspect factories can be combined to obtain more
expressive hook instantiations. Combining aspect factories generates the union
of the instances generated by the factories separately. For instance, combining
perinstance and perthread generates a unique hook instance for every object
instance and executing thread. If the expressive power of the predefined facto-
ries is not sufficient, one can define custom aspect factories by implementing the
IAspectFactory interface. These custom aspect factories are modular plugins
for the JAsCo weaver and are defined in front of a hook instantiation using the
per keyword.

2.3 Aspect Combinations

JAsCo aspect beans do not only allow to describe crosscutting concerns inde-
pendent from a specific deployment context, but also independent from other
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1 connector PrintLockAccessControl {
2

3 AccessManager.AccessControl acontrol =
4 new AccessManager.AccessControl(* Printer.*(*));
5

6 LockingManager.LockControl lcontrol =
7 new LockingManager.LockControl(@ThreadUnsafe * Printer.*(*));
8

9 lcontrol.around();
10 acontrol.around();
11 }

Listing 5. Connector that controls the precedence of hooks. Also notice the use
of the novel Java 1.5 meta-data feature for limiting the set of joinpoints for the
LockControl hook instance.

aspects that are deployed within the same application. In some cases however,
it should still remain possible to describe how several aspects should cooperate
when they are applicable at the same joinpoint. This kind of feature interaction
is common to several engineering disciplines, such as telecommunication sys-
tems [15], and has already been identified as a recurring problem in AOP [8]. To
allow the specification of a resolution for possible aspect interactions, JAsCo in-
troduces an expressive aspect combination mechanism based on precedence and
combination strategies.

JAsCo Precedence Strategies Using JAsCo, it is possible to instantiate mul-
tiple hooks within the same connector. When no advice method executions are
specified within this connector, the advice methods are triggered in the order
in which their hooks were instantiated. JAsCo however also allows defining an
explicit execution sequence by employing precedence strategies. Listing 5 illus-
trates the simultaneous deployment of a lock and access control aspect upon all
methods defined within the Printer component. The lock aspect implements a
primitive synchronization concern that is able to set an exclusive lock onto the
some functionality offered by a component. Whenever mutual joinpoints of the
acontrol and lcontrol hook instances are encountered, the precedence strat-
egy, specified using the advice method executions, is applied. In this case, the
access to the Printer component is to be locked first: this is specified by the
execution of the around advice method of the lcontrol hook (line 9). When
an exclusive lock is obtained, the around advice method of the acontrol hook
instance is executed to verify whether the system user possesses the required
permissions to use the Printer component (line 10). Note that JAsCo prece-
dence strategies are instance based, i.e. it remains possible to specify a different
precedence strategy for other instantiations of the same hooks.

Similar to defining precedence for advice method executions within a connec-
tor, JAsCo also provides a solution for defining precedence amongst connectors.
In general, connectors should instantiate one or more hooks which together com-
pose a logically related unit. If one however wants to define precedence amongst
hooks which are not logically related, he/she is forced to instantiate these hooks
in a single connector. In order to preserve clean modularization, JAsCo allows
to attribute priorities to connectors, which assure that the behavior of hooks,
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1 interface ICombinationStrategy {
2

3 public HookList validateCombinations(HookList);
4

5 }

Listing 6. The interface for combination strategies

contained within a connector attributed with a higher priority, are executed first.
Furthermore, these priorities can be dynamically adapted in order to adhere to
the changing requirements of an application.

JAsCo Combination Strategies Precedence strategies provide a solution for
a limited set of feature interaction problems, as some complex aspect combi-
nations require a more expressive way of declaring how their behavior should
cooperate. One might for instance be interested in excluding the behavior of as-
pect B, if the behavior of aspect A is also applicable at the same joinpoint. This
interaction could be described by introducing an additional connector keyword
excludes, which specifies that aspect A excludes the behavior of aspect B. Other
aspect combinations however, require additional keywords and it is impossible to
envision all possible aspect combinations in advance. Therefore, JAsCo proposes
a more flexible and extensible system that allows defining custom combination
strategies implemented using the full Java expressiveness. Each concrete com-
bination strategy implements the ICombinationStrategy interface shown in
Listing 6. In general, a JAsCo combination strategy can be considered as a filter
that acts on the list of applicable hooks (hooks where both the constructor and
the isApplicable method evaluate to true).

Consider a change in requirements within our case-study: all accesses to com-
ponent functionalities need to be logged for future reference. This logging should
however not be triggered for actions performed by the root user. Hence, the log-
ging aspect should only be triggered if the access control aspect is active at
the same joinpoint. The TwinCombinationStrategy of Listing 7 illustrates the
implementation of this aspect combination. Each concrete combination strat-
egy implements the validateCombinations method that filters the list of ap-
plicable hooks and possibly modifies their internal behavior. The constructor
of the TwinCombinationStrategy instantiates this strategy with two hook in-
stances (lines 5-8). The validateCombinations method implements the removal
of hookB if hookA is not encountered in the list of applicable hooks (lines 10-15).
As a result, the advice methods of hookB are never executed if hookA is not
found in the list of applicable hooks.

Listing 8 illustrates the deployment of the TwinCombinationStrategy. The
LoggingAccessControl connector instantiates both the AccessControl and
FileLogger hooks with all methods defined by the Printer component (lines
3-7). Both hook instances are used as input for the TwinCombinationStrategy
instance (lines 9-10), which is added to the list of combination strategies by em-
ploying the addCombinationStrategy method. Hence, the logging behavior of
the FileLogger hook is only applied if the behavior of the AccessControl hook
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1 class TwinCombinationStrategy implements ICombinationStrategy {
2

3 private Object hookA, hookB;
4

5 TwinCombinationStrategy(Object a,Object b) {
6 hookA = a;
7 hookB = b;
8 }
9

10 HookList verifyCombinations(HookList hlist) {
11 if (!hlist.contains(hookA)) {
12 hlist.remove(hookB);
13 }
14 return hlist;
15 }
16

17 }

Listing 7. The twin combination strategy

1 connector LoggingAccessControl {
2

3 AccessManager.AccessControl control =
4 new AccessManager.AccessControl(* Printer.*(*));
5

6 Logging.FileLogger logger =
7 new Logging.FileLogger(* Printer.*(*));
8

9 addCombinationStrategy(new
10 TwinCombinationStrategy(control,logger));
11

12 }

Listing 8. Connector deploying the twin combination strategy

is also applicable. Multiple combination strategies can be added to the same
connector: the filtered list of applicable hooks of the first combination strategy
is then passed on as input to the second combination strategy and so on.

2.4 JAsCo Stateful Aspects

Most aspect-oriented approaches offer facilities to express aspects in terms of dy-
namic joinpoints, such as run-time types, call-stack contexts (e.g. the cflow()
pointcut) and dynamically evaluated expressions. Describing the applicability
of aspects in terms of a sequence or protocol of joinpoints is generally not sup-
ported. With the exception of the cflow pointcut, pointcuts cannot refer to
the history of previously matched pointcuts in their implementation. Douence
et al. [16–18] propose a formal model for aspects with general protocol-based
triggering conditions, called stateful aspects. In this section, we illustrate how
JAsCo supports the specification of stateful pointcuts.

Reconsider the previously introduced case-study. At the moment, the access
control aspect monitors all system activity, even if no specific user is logged in
into the system. This however induces a certain run-time overhead which should
be avoided. The implementation of the access control aspect, introduced in List-
ing 1, needs to be extended in such a way that its behavior is only triggered when
a user is actually logged in. Hence, the access control aspect should start check-
ing access permissions when a user logs in and stop checking access permissions
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1 class StatefulAccessManager extends AccessManager {
2

3 hook StatefulAccessControl {
4

5 StatefulAccessControl(starttrigger(..a1),method(..a2),stoptrigger(..a3))) {
6 start>p1;
7 p1: execution(starttrigger) > p3||p2;
8 p2: execution(method) > p3||p2;
9 p3: execution(stoptrigger) > p1;

10 }
11

12 isApplicable p2() {
13 return !pdb.isRoot(currentUser);
14 }
15

16 around p2() {
17 if(pdb.check(currentuser,thisJoinPointObject)) {
18 return proceed(); }
19 else { throw new AccessException(); }
20 }
21 }
22 }

Listing 9. The stateful access control aspect bean

when the user logs out again. To implement this particular behavior, a stateful
triggering condition is required. Listing 9 illustrates the improved implementa-
tion of the access control aspect bean which takes a start and stop condition
into account.

The implementation of the StatefulAccessControl hook has many similar-
ities with the original implementation of the access control aspect. The construc-
tor (lines 5-10) takes three abstract method parameters as input (starttrigger,
method and stoptrigger). The constructor body describes a protocol-based
pointcut expression by enumerating a set of transitions from which the first one is
highlighted with the start keyword. Each transition is labeled with a name (e.g.
p1), defines a JAsCo compatible pointcut (e.g. execution(starttrigger)) and
specifies one or more destination transitions that are matched after the current
transition is fired. A transition fires when its corresponding pointcut expression
evaluates to true. For example, the p1 transition is only fired when one of the
concrete method(s) bound to the abstract method parameter starttrigger are
executed. In that case, transitions p3 and p2 are activated and evaluated for
subsequent joinpoints encountered during the application execution. Note that
the destination transitions are evaluated in the sequence defined in the desti-
nation expression. As such, when both the p3 and p2 transitions are applicable
for a given joinpoint, only the p3 transition is fired and only the p3 destination
transitions are evaluated for subsequent encountered joinpoints. This allows to
keep the protocol deterministic and efficient to execute. In total, the constructor
of the StatefulAccessControl hook describes the following stateful pointcut:
the protocol commences in transition p1, where it waits for one of the concrete
methods bound to the abstract method parameter starttrigger to be exe-
cuted. When this event takes place, the stateful pointcut moves on to transition
p2 (line 7). The stateful pointcut remains in transition p2 (line 8) while the
concrete methods bound to the method abstract method parameter are being
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1 connector SessionPrintAccessControl {
2

3 perthread StatefulAccessManager.StatefulAccessControl control =
4 new StatefulAccessManager.StatefulAccessControl(
5 void System.Login(User), * *.*(*), void System.Logout(User)
6 );
7

8 }

Listing 10. The JAsCo connector for stateful access control

executed and only moves on to transition p3 if a concrete method bound to the
stoptrigger abstract method parameter is executed (line 9). At that moment,
the stateful pointcut returns to transition p1.

Similar to regular aspect beans hooks, stateful hooks are able to describe
isApplicable methods that again specify an additional triggering condition.
This method can either be applied upon all transitions or can be delimited to
specific ones. In this case, an isApplicable method is specified for transition p2,
as the condition whether a user is root should only be verified at the moment
a user is actually logged in. Likewise, the scope of advices can be valid for
all transitions or limited to specific ones. The around advice is applicable for
transition p2 and its behavior is only triggered if transition p2 is triggered.

Listing 10 illustrates the deployment of the StatefulAccessControl hook.
The Login and Logout methods of the System component are bound to the
starttrigger and stoptrigger abstract method parameters of the access con-
trol hook. Hence, access control starts at the moment a user logs in and stops at
the moment a user logs out again. At that moment, the hook is idle and waits for
the execution of the Login method to restart its access control behavior. Also
notice the perthread factory instantiation to make sure that every executing
thread is associated with a unique access control hook. Otherwise, when multiple
users are present in the system, the access control aspect fails2.

JAsCo hook constructors allow to cleanly encapsulate stateful pointcuts.
When state-based triggering conditions are not natively supported, state in-
formation is maintained within the advices, polluting the main aspect logic. In
addition, explicitly specifying stateful triggering conditions allows to optimize
the aspects performance-wise, as the run-time platform has knowledge about
which joinpoints the aspect is currently interested in.

2.5 Comparison with AspectJ

In this section, we validate the claimed improvements of the JAsCo approach
through a comparison with the AspectJ model in its current state. As one of the
first and best-known aspect-oriented approaches, AspectJ is a suitable reference
point for both the academic and industrial poles of the AOSD-field. We carry
out this comparison by developing a small tracing example in AspectJ, while
focusing on the aforementioned features such as aspect reuse, dynamism and the
resolution of aspect interactions. We show that JAsCo offers certain benefits in
these areas that cannot be achieved by AspectJ’s model.
2 Assuming that every new session or at least every user runs its own execution thread.
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1 public abstract aspect AbstractTrace {
2 abstract pointcut TracePoint(Object obj);
3

4 abstract void record(String action, Object obj);
5

6 before(Object obj): TracePoint(obj) {
7 record("Entering",obj);
8 }
9

10 after(Object obj): TracePoint(obj) {
11 record("Leaving",obj);
12 }
13 }

Listing 11. AspectJ abstract tracing aspect

1 import java.io.PrintStream;
2

3 public abstract aspect PrintStreamTrace extends AbstractTrace {
4 protected PrintStream output;
5

6 public void setOutput(PrintStream p) {
7 this.output = p;
8 }
9

10 public void record(String action, Object obj) {
11 output.println(action + " on " + obj.toString());
12 }
13

14 abstract pointcut FlushPoint();
15

16 after(): FlushPoint() {
17 output.flush();
18 }
19 }

Listing 12. AspectJ implementation of tracing on PrintStream output

AspectJ offers the concepts of abstract pointcuts and aspect inheritance as
its means for aspect reuse. Listing 11 illustrates an abstract aspect that captures
very general tracing behavior: at certain points exposing an object, we record
the entering and leaving of that point. Several implementations of the recording
behavior are possible. In Listing 12, we extend the abstract aspect with an im-
plementation that records the tracing events on a PrintStream output. In this
case, the inheritance relationship is very similar to inheritance between JAsCo
aspect beans, as both are clearly modeled after standard Java inheritance for
classes: new members can be introduced, and abstract members can be imple-
mented or existing members can be overridden. Since we want to be able to
use the PrintStream implementation of Listing 12 in several contexts, we do
not bind the TracePoint pointcut in terms of a concrete API yet, and AspectJ
therefore requires the aspect to remain abstract. Also note that besides adding
new methods and fields, the specialization can include additional aspectual be-
havior, as is the case with aspect bean specialization in JAsCo. In our example,
we might want to control the flushing of the output explicitly. To this end, the
aspect in Listing 12 defines a new pointcut FlushPoint, together with an advice
that specifies to flush the output after joinpoints are encountered that match
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1 public aspect TraceDeploy extends PrintStreamTrace {
2 pointcut TracePoint(Object o): execution(* MyClass.*(..)) && this(o);
3

4 pointcut FlushPoint(): execution(* MyClass.majorMethod(..));
5

6 TraceDeploy() {
7 setOutput(Application.logStream);
8 }
9 }

Listing 13. AspectJ deployment of tracing behavior

this pointcut. Again, the pointcut is kept abstract to allow the deployment of
the aspect in different contexts.

Whereas the usage of aspect inheritance appeared natural in the previous
case because of the strong similarity with standard Java inheritance, this is no
longer the case in Listing 13, where we deploy the PrintStreamAspect in a con-
crete application context. Firstly, this deployment takes place through the same
concept (i.e. inheritance) in AspectJ, leaving no immediate or explicit distinc-
tion between deployment and specialization. As a matter of fact, the separation
between these two phases is entirely the programmer’s responsibility. In many
cases this distinction is not made and aspects are implemented straight away
with concrete pointcuts in mind that refer to a concrete deployment context.
JAsCo is entirely different in this respect: by employing a separate connector
construct for deployment, it automatically enforces all aspects to be indepen-
dent of a concrete context, as they cannot define concrete pointcuts. Secondly, it
seems at least awkward in the case of the TraceDeploy aspect to use the concept
of inheritance for the deployment of an aspect, as opposed to e.g. instantiation.
In AspectJ, aspects are not directly instantiated, but aspect instances are auto-
matically created. As a result, an important variation point is lost in comparison
to OO programming, namely the ability to customize an instance and thus vary
among instances of the instantiated class. Inheritance is used to compensate for
this loss in variation, or, put differently, the AspectJ model discourages hav-
ing different instances of the same aspect, in favor of having different subaspects
with one instance each. To set the output stream of our application in Listing 13,
we are consequently forced to use the parameterless constructor of a subaspect3.
We argue that JAsCo offers a model that is closer to existing OO concepts: as
the hook instance is available for customization in the connector, it is possi-
ble to variate among aspects by calling the setOutput method on this instance,
without the need for the introduction of a subtype. More generally, the entire de-
ployment is performed through instantiation and reference in a connector rather
than through specialization of aspect beans. This is because JAsCo models the

3 Alternatively, for configuring aspect instances, it is possible in AspectJ not to create
a subtype and to set the output from outside of the aspect instead by fetching the
aspect instance through the static aspectOf method. It is however unclear where this
code should be placed in the absence of a separate deployment construct. Placing it
in the base code of the application is undesirable as AOSD advocates that the base
application should be oblivious to aspects [19].
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binding of the abstract pointcut to concrete context APIs as an instantiation of
a hook.

We note another structural problem with the AspectJ model when we con-
sider the resolution of feature interactions. The only resolution mechanism pro-
vided by AspectJ is the ability to influence the execution order of advices that
apply at the same join point. This order is derived from a precedence concept
between advices, which can in turn be influenced by the relative place in the
aspect hierarchy or in the aspect definition, or by an explicit declaration of the
precedence order between aspects. JAsCo provides several improvements over
this setup. The resolution includes the flexibility of combination strategies in
addition to ordering, and the ordering mechanism of AspectJ has been criti-
cized [20] as complex and unintuitive, whereas JAsCo allows a straightforward
specification in one place (the connector). Furthermore, the specification of the
resolution is entirely part of the deployment, and can vary among different de-
ployments, which improves the reuse possibilities of the aspect beans. This is
not possible in AspectJ, as a precedence declaration couples the aspects and
imposes the same resolution order for all deployments of the aspect. We observe
another benefit of having a separate deployment construct: in AspectJ, since an
abstract aspect must be extended in order to deploy it, a subaspect can only
deploy one abstract aspect, at least in the absence of multiple inheritance. By
allowing multiple logically related aspects to be deployed at the same time in
a separate entity, JAsCo provides a well-suited place for the specification of
resolution strategies between these aspects.

3 JAsCo technology

As stated in the introduction, the technology that realizes JAsCo has to be able
to flexibly add and remove aspects at run-time. Furthermore, this technology
has to be as portable as possible to support a wide range of possible application
domains. To make this possible, we propose to equip every possible joinpoint
with a trap4 that enables the execution of aspect behavior. This way, attaching
and removing aspects to trapped components does not require any adaptation
whatsoever to the target components. A preprocessor tool is available that in-
serts these traps using the byte-code adaptation library Javassist [21]. Javassist
supports both a very high level API, that allows inserting plain Java code, and a
low level API, that manipulates byte-code directly. As such, using the high level
API, rapid prototyping is possible but when necessary, performance critical parts
can be replaced with low-level byte code manipulations.

Each trap refers to the JAsCo run-time infrastructure that manages the reg-
istered connectors and aspect beans. Fig. 1 illustrates this run-time infrastruc-
ture schematically. The central connector registry serves as the main addressing
point for all JAsCo entities and contains a registry of connectors and instan-
tiated hooks. Whenever a connector is loaded or removed from the system at
4 The term trap is often called hook in other AOP approaches. We use trap to avoid

confusion with the hook language construct.
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run-time, the connector registry is notified and its database of registered connec-
tors and hooks is updated dynamically. The left-hand side of Fig. 1 illustrates a
JAsCo-enabled component from which the methods are equipped with traps. As
a result, whenever a method is called, its execution is deferred to the connector
registry. The main method of communication of Java Beans is event posting, so
firing an event also reschedules execution to the connector registry. When a trap
is encountered, the connector registry looks up all connectors that are registered
for that particular method or event. The connector on its turn dispatches to the
hooks that have been instantiated with the corresponding method or event.

Fig. 1. JAsCo run-time architecture

Our approach is very flexible to support unanticipated run-time changes.
When a new component is added at run-time, it is automatically affected by all
aspects that are instantiated using the appropriate pointcut description. Con-
nectors can also be easily loaded and un-loaded at run-time by using the JAsCo
run-time infrastructure API. In addition, JAsCo includes a very flexible system
for remotely (from outside the application) adding a connector. At regular time
intervals, JAsCo scans the classpath5 for new connectors. When a new connector
has been found, it is automatically loaded in the system. As such, activating a
connector in an application simply means placing the connector in the classpath
of the application. Likewise, the removal of a connector is detected by the JAsCo
run-time infrastructure and the connector and its instantiated hooks are auto-
matically removed from the system. Obviously, this system can be disabled if
the performance penalty of scanning the classpath is considered too high.

The main advantage of this trapped model consists of the portability of the
approach. JAsCo does not depend on a specialized virtual machine nor on custom
interfaces only available at certain systems. For example, a run-time environment
optimized for embedded systems (JAsCoME) and an implementation of JAsCo
for the .NET platform [22] have been proposed. Of course, the drawback of
this approach is the experienced performance overhead for all traps, even if no
aspects are applicable.

5 It is also possible to specify a separate connector loadpath where JAsCo has to search
for connectors.
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1 public void executeJoinpoint(Joinpoint jp) {
2 hook1.before(jp);
3 hook2.before(jp);
4 hook0.around(jp);
5 hook1.after(jp);
6 }

Listing 14. Simplified Java counterpart of the cached combined aspectual be-
havior at a joinpoint. The hook0-2 variables are initialized with the correct
hooks when creating the class

3.1 Jutta

It is no surprise that the dynamic features offered by JAsCo induce a substan-
tial run-time overhead. The overhead induced by JAsCo in real-life applications
is unacceptably high in comparison to hard-coding the advices in the base pro-
gram. This high overhead is mainly caused by the JAsCo run-time infrastructure
which acts as an aspect interpreter. For each joinpoint, JAsCo evaluates which
hooks are applicable. When no connectors are added or removed, the set of ap-
plicable hooks remains unchanged for every joinpoint. As such, when the same
joinpoint is encountered several times, the algorithm for finding the appropriate
hooks and executing their behavior is executed over and over again. Therefore, a
huge performance gain can be achieved by compiling and caching the combined
aspectual behavior for often encountered joinpoints. Although this compilation
process requires some overhead, this optimization pays off when when a join-
point is frequently encountered. In fact, this strategy is similar to just-in-time
compilers [23] used in modern virtual machines and therefore our approach is
named Jutta (Just-in-time combined aspect compilation).

The Jutta system allows generating and caching a highly optimized code
fragment for a given joinpoint. This code fragment directly executes the appro-
priate advices on the applicable hooks, employing the sequence defined in the
connector. As such, the system avoids iterating all connectors in order to retrieve
the applicable aspectual behavior. Furthermore, rearranging the sequence of all
applicable hooks for different advice types in order to implement precedence
strategies, is also avoided. Listing 14 illustrates the simplified Java counterpart
of a cached combined aspectual behavior fragment. This fragment implements
the execution of four advice methods on three different hooks.

The current JAsCo implementation employs the Javassist byte-code manip-
ulation library in order to generate a combined hook behavior code fragment.
Using Javassist, a Java byte code class representation is generated on the fly,
without requiring an additional compilation step. The overhead of generating a
combined hook behavior code fragment is around 10ms on our test system6. The
optimized code fragment is only generated when the joinpoint is encountered
for the first time. Hence, no overhead is experience for joinpoints that are not
executed. The Jutta system stores all code fragments generated for a given hook
combination. As such, when the same hook combination is applicable to different
joinpoints, which is typically the case, the overhead for generating the combined

6 Pentium4 2 GHz, 256MB RAM, Ubuntu Linux 5.04, Java 1.5.0 update 1



Aspect-Oriented Programming using JAsCo 19

hook behavior code fragment is avoided. In addition, the Jutta system includes
a set of pre-defined typical combined aspectual behaviors. For those combined
aspectual behaviors, the generation overhead is also avoided.

The JAsCo approach is a dynamic AOP approach. As such, the cached be-
havior for a given joinpoint might become invalid. This event occurs when a
connector is added that instantiates a hook that is applicable on a joinpoint
where aspects are already attached or when a connector is removed that con-
tains an applicable hook for such a joinpoint. In addition, it is possible to change
some properties of a connector dynamically so that the applicable context of the
instantiated hooks is altered. The Jutta system is able to cope with these issues.

Caching combined aspect behavior is not always achievable, as sometimes,
the applicability of a hook needs to be re-evaluated for every execution of a given
joinpoint. For example, when a hook defines a cflow condition in its construc-
tor, this constructor has to be re-evaluated for every execution of a joinpoint.
However, the entire constructor does not have to be re-evaluated. In this case,
only the result of the cflow condition is able to change for different executions
of the joinpoint. As such, partial evaluation techniques can be used to cache a
partially evaluated constructor. In addition, for the particular cflow construct,
it is sometimes possible to statically analyze whether the condition is ever appli-
cable by examining the call graph of an application. This technique is elucidated
in [24].

3.2 HotSwap

The Jutta system allows optimizing the aspect interpretation part of the JAsCo
run-time environment. The interception part however, is still very slow. Inserting
traps at all methods causes a performance overhead, even if no aspects are appli-
cable. In order to optimize this interception system, we present a custom-made
byte-code instrumentation framework, called HotSwap. This framework allows
altering the byte code of a class, even if it is already loaded into the virtual
machine. As such, it is possible to install traps just-in-time when a new aspect is
added to the system. JAsCo HotSwap has two different implementations which
depend on the virtual machine version. For Java 1.4, HotSwap employs the Java
Debugging Interface (JDI) to dynamically replace classes. When a 1.5 compati-
ble virtual machine is detected, HotSwap employs the novel Java Programming
Language Instrumentation Services API (JPLIS), which avoids running the vir-
tual machine in debugging mode.

Both libraries make sure that the byte-code replacement does not leave the
application in an inconsistent state: methods that are being executed at the mo-
ment of a replacement request keep employing the old byte-code and only for
new invocations, the newly introduced byte-code is used. The byte-code manip-
ulation themselves are again implemented using the Javassist library. Both JDI
and JPLIS do not allow to alter the schema of a class and only make it possible
to re-implement method bodies. As a result, the resulting application’s state
remains consistent because it is impossible to e.g. remove data fields.
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Using the HotSwap framework, the JAsCo run-time infrastructure is able to
install traps at only those methods that are subject to aspect application. When
a new aspect is added, the applicable methods are hot-swapped at run-time with
a trapped equivalent. Because HotSwap does not allow replacing single methods,
the complete class byte code is replaced with a version where the methods, upon
which aspects are applied, are trapped. All other methods of the class remain
untouched. Likewise, the original method byte code is reinstalled when an aspect
is removed again and if no other aspects are applicable on the method at hand.

The JAsCo HotSwap system does not exclude the regular preprocessing ap-
proach for installing traps. Classes that are already equipped with traps using
the preprocessor are never altered. As such, when certain classes are always af-
fected by aspects, they can be preprocessed to avoid the HotSwap overhead at
run-time. Furthermore, on platforms where no HotSwap compliant virtual ma-
chine is available, like e.g. embedded devices, the preprocessing approach can
still be employed.

3.3 Towards a genuine run-time weaver

By combining the JAsCo HotSwap and Jutta systems, a genuine run-time weaver
can be realized. Instead of inserting traps, the Jutta optimized code fragments
are directly injected into the target joinpoints. The JAsCo run-time weaver thus
further optimizes the advice execution time as the indirection to the Jutta code
fragments is avoided. Furthermore, the run-time weaver generates a unique code
fragment for each joinpoint shadow instead of a shared code fragment for several
joinpoints in case of Jutta. This allows to generate a very specific joinpoint
implementation that can e.g. use the concrete argument types and thus avoids
expensive casts. The precedence of the advices is computed as defined in the
corresponding connectors and thus induces no additional run-time overhead.
Listing 15 illustrates the Java counterpart of the inserted code at a certain
method execution joinpoint. The advice invocations are directly inserted into
the joinpoints.

The run-time weaver works on a per-class basis: it processes all advised
joinpoints of a certain class at once. Because HotSwap does not allow schema
changes, a helper class is generated that contains external information, like e.g.
the joinpoints representation or the aspect instances in case of cachable factory
instantiations. The main motivation for this strategy is that the HotSwap frame-
work only allows to replace byte code of complete classes. Generating the new
byte code for a given class at once thus helps to reduce the HotSwap overhead.

Implementing Joinpoint Contextual Access One major optimization con-
sists of detecting which static and dynamic reflective joinpoint information the
aspects might require. Suppose for instance that an aspect only requires the
method name of the current joinpoint. Most AOP implementations still cap-
ture all actual arguments in an array, which is a very expensive operation, even
though they are not required. Because JAsCo has its own aspect compiler, ana-
lyzing the required context for each advice is possible. If an aspect only requires
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1 public String myMethod(int arg1, Vector arg2) {
2 IJoinPoint jp = JPContainer.initJoinpoint73637(this);
3 MyHook hook1 = MyConnector.hook35;
4 MyOtherHook hook2 = AspectContainer536.hook40;
5

6 hook1.before();
7 String result = hook2.around(jp,arg1);
8 hook1.after(this,arg2);
9

10 return result;
11 }

Listing 15. Simplified Java counterpart of the inserted code at a certain join-
point

the method name, only that static information is provided. Obviously, because
this detection happens at compile-time, it has to be conservative and thus might
still capture too much. For example, if a logging advice contains a dynamic test
for selecting whether it logs only the method name or also the arguments, the
advice is analyzed to require the actual arguments, while in some cases it only
requires the method name. However, in many cases, this analysis allows for a
major optimization. For example, in listing 15, the only reflective information
required is the target object, so only this information is passed onto the object
representing the current joinpoint (line 2).

In the JAsCo language, advices do not have to declare which arguments they
require, as the arguments of abstract method parameters have a scope that ex-
tends all over the hook. Under the hood however, advices do have arguments,
namely those that are detected to be effectively used by the advice. This is also
reflected in listing 15 where the different advices are invoked by supplying only
those arguments effectively required. The thisJoinPoint and thisJoinPointOb-
ject keywords are also handled as arguments and only supplied when they are
effectively required. For example, the around advice of hook2 possibly employs
the thisJoinPoint keyword, so the object representing this joinpoint is passed on
as an argument.

Implementing Around Advices Around advices are able to invoke the origi-
nal behavior of the wrapped joinpoint or the behavior of the next around advice
in the advice chain, by employing the proceed keyword. Originally, proceed is
implemented by invoking a special callback object that maintains the list of re-
maining around advices and also allows to invoke the original behavior. This
is however quite costly because, apart from the additional indirection, the next
around advice needs to be popped from this list for each proceed invocation.
Therefore, the JAsCo run-time weaver employs around advice in-lining, which is
a technique that is first introduced by AspectJ’s weaver [25]. In short, around ad-
vice in-lining generates a copy of every around advice at a joinpoint. All proceed
statements in these copies are transformed into the direct invocation of either
the next around advice or the original behavior, depending on the position of
the around advice in the around advice chain.
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Implementing Hook Instance Management Per default, hook instances
are kept as static final members of the connector class representation generated
by the JAsCo connector compiler. For instance, listing 15 retrieves the correct
instance of the MyHook hook type using the MyConnector class. JAsCo however
allows to use both predefined and custom aspect factories that generate new
hook instances depending on specific joinpoint information. In case the factory
is cachable (e.g. perclass or by not implementing the DoNotCache interface for a
custom factory), the aspect instance is constant given the static joinpoint shadow
and the factory result can thus be optimized. This optimization consists of the
on-the-fly generation of an aspect container class that keeps the hook instances
for specific joinpoints as static final members. For instance, the MyOtherHook
hook type has been instantiated using the perclass keyword and is thus retrieved
by accessing the AspectContainer536 class which has been generated to keep
all hook instances for all joinpoints of the current class.

In case a hook is instantiated using a non-cachable factory, there is no other
option than invoking the factory’s logic for retrieving the correct hook instance
given a particular joinpoint. The perinstance and perthread predefined aspect
factories are however optimized. The former is implemented by adding a field
that contains the hook instance for a given object. As such, the perinstance
factory only requires a single field access for retrieving the correct instance. The
perthread factory is implemented using a ThreadLocal variable, which is a Java
specific mechanism to create variables that can have a different value depending
on the executing thread that accesses the variable.

Implementing Combination Strategies Likewise to aspect factories, com-
bination strategies can be cachable or non cachable. A cachable combination
strategy always returns the same result given a certain input set. This means
that the result of a cachable combination strategy is fixed for every execution
of a given joinpoint. The result of the combination strategy can thus be used
for generating the weaved code fragment for the current joinpoint. As such, no
additional run-time overhead is experienced for a cachable combination strategy.
A non-cachable combination strategy has to be executed for every execution of
a joinpoint. The JAsCo run-time weaver optimizes non-cachable combination
strategies by internally representing the list of hooks as an array of booleans.
Each element in the array represents whether a given hook should be triggered.
When removing or adding7 hooks from the list, the appropriate boolean is al-
tered. After executing all combination strategies, all the advices execute condi-
tionally depending on the corresponding value in the boolean array.

7 Notice that in a combination strategy one can only add hooks that are possibly
triggered at that joinpoint. Hooks that based on their pointcut definition can never
be triggered at that joinpoint can also not be added by the combination strategy.
This limitation allows to keep the length of the boolean array decidable at weave-
time.
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Implementing Stateful Aspects The JAsCo run-time weaver implements
stateful aspects by simulating a Deterministic Finite Automaton for every hook
instance. When a joinpoint is encountered, the automaton is used to query a)
whether the hook is applicable and b) which advice should be executed. All
hooks’ advices execute conditionally depending on the query’s result. The con-
crete advice to execute is determined by executing a switch statement over the
possible transition identifiers. The automaton’s internal state is updated simul-
taneously with the querying.

Instead of statically weaving code at any possible joinpoint that might be
required for the execution of the stateful aspect, the aspect is only woven at
the applicable joinpoints at run-time. In essence, when a stateful aspect changes
state (because an event expressed in the protocol has occurred), the run-time
weaver unweaves the code at those joinpoints in which the aspect is no longer
interested and reweaves it at the appropriate joinpoints. This realizes a real
jumping aspect [9] that literally jumps from joinpoint(s) to joinpoint(s). As a
result, no unnecessary woven code is left at inapplicable joinpoints. Also notice
that when the aspect is no longer applicable because the triggered transition
does not define destination transitions, it is completely unwoven and thus does
not cause a performance overhead any longer. Previous work by Costanza [26]
also motivates that aspects should be able to vanish.

Discussion The main drawback of the run-time weaver is the increased run-
time overhead for adding and removing aspects. In the trapped approach, adding
a new aspect does not require any HotSwap overhead whatsoever, if a trap is
already placed. In order to address this overhead, JAsCo is still able to combine
the regular preprocessing approach with the run-time weaver and even with the
trapped HotSwap approach. Classes that are preprocessed to include traps are
never subject to run-time weaving. In addition, it is possible to define a global
function that dynamically decides whether a trap is inserted or whether the
run-time weaver is employed. This function has the following signature:

boolean inlineCompile(IJoinPoint jp, Vector hooks)

When the method returns true, the run-time weaver is employed, otherwise
a trap is inserted. Both reflective information about the joinpoint and the list of
applicable hooks are available for deciding whether run-time weaving is appro-
priate. As such, a heuristic function can be implemented that for example only
activates the run-time weaver for joinpoints that are executed more than twenty
times in the past second. JAsCo thus effectively combines and integrates three
alternative aspect weavers.

By removing aspects dynamically, it is possible that the application is left
in an inconsistent state. This can happen when e.g. the aspect alters a part of
the base application that is erroneous when the aspect is not present anymore.
Therefore, aspects are able to receive state property change events that notify
the aspect instance when the instantiating connector is added, removed, enabled
or disabled.
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4 Performance Evaluation

In this section, we present the results of several benchmarks evaluating different
facets of JAsCo run-time weaver’s performance. If possible, we compare the re-
sults of JAsCo with several other AOP approaches. The following two sections
present two micro-benchmarks that respectively measure the joinpoint execu-
tion time and weaving time. Section 4.3 discusses the performance of JAsCo in
three realistic application scenarios. Finally, we present several benchmarks that
measure the performance of JAsCo specific features.

4.1 AWBench run-time benchmarks

As a first benchmark, we employ the independent AWBench [27] benchmark.
This benchmark is a project of the AspectWerkz team and is especially designed
to compare the performance of AOP systems. AWBench is a micro benchmark
and consists of thirteen tests, all advising a single method in a different way.
Every test is executed two million times and the average execution time of the
method is recorded. When a certain test is not directly supported by the AOP
approach, it is simulated using the best available alternative (e.g. when no af-
ter throwing advice is available, it is simulated using around advice). We com-
pare the performance of JAsCo with the following AOP approaches: AspectJ
1.2 [5], JBoss/AOP 1.0 [13], AspectWerkz 2.0 [28], Spring/AOP 1.1.1 [14]. All
approaches, which the exception of AspectJ, allow some form of run-time aspect
application and removal, although this is limited in most cases. The next para-
graph shortly introduces the technologies employed in each of these approaches.
Notice that this selection is not meant as a comprehensive overview of dynamic
AOP approaches. Nevertheless it includes a significant portion of the practically
used dynamic AOP systems.

AspectJ uses a traditional weaver that invasively weaves the aspects into
the target classes at compile-time and as such does not allow dynamic aspect
application and removal. The AspectWerkz technology is based on our Jutta
system, which has been significantly improved by the AW team. For example,
every joinpoint has its unique on-the-fly generated class which invokes the cor-
rect advices instead of a shared jutta class. By cleverly exploiting common JIT’s
in-lining strategies, AspectWerkz is able to reduce the joinpoint execution over-
head significantly. AspectWerkz allows the application and removal of aspects at
joinpoints where there are already aspects applied. Other joinpoints cannot be
subject of dynamic aspect application or removal. JBoss/AOP uses an approach
similar to the original JAsCo technology, namely inserting traps to all advised
joinpoints. Contrary to JAsCo, the traps are installed at load-time and can never
be removed. As such, at joinpoints where no traps are attached, dynamic aspect
application is impossible. Spring/AOP is a proxy-based approach that employs
the Java Dynamic Proxies feature to dynamically attach advices to objects.
Similar to JAsCo, Spring/AOP fully supports dynamic addition and removal
of aspects, even at previously unadvised joinpoints. However, Spring/AOP only
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supports method execution joinpoints and endures a relatively large performance
overhead because of the use of Dynamic Proxies.

Table 1 illustrates the results of running the AWBench using the introduced
approaches on our test system6. The performance of JAsCo using traps combined
with the Jutta system is also recorded. The performance of the deprecated JAsCo
interpreter is also shown in order to indicate the cost of such an interpreted
approach. In all benchmarks AspectJ, AspectWerkz and the novel JAsCo run-
time weaver perform significantly better than the others. In the most simple
before advice for example, JAsCo executes more than a hundred times faster than
Spring/AOP. The trapped approaches (JBoss/AOP and JAsCo Jutta) perform
worse than weaving, but still execute considerably faster than the proxy-based
approaches (Spring/AOP).

JAsCo
RT

Weaver
As-

pectJ
Aspect-
Werkz

JBOSS/
AOP

Spring/
AOP

JAsCo
Jutta

JAsCo
Inter-
preter

before 15 17 15 305 493 206 244×105

before refl stat 10 11 34 296 446 195 256×105

before refl dyn 13 94 116 298 455 195 255×105

before decl args 11 12 10 412 607 264 338×105

before decl args2 11 12 10 369 553 221 388×105

before decl all 12 13 10 433 620 262 336×105

around 10 11 152 291 431 211 246×105

around refl stat 10 12 175 279 433 209 258×105

around refl dyn 11 97 155 296 419 207 253×105

after returning 10 11 12 299 437 170 363×105

after throwing 5221 5159 5655 10782 n/a 8697 295×105

before+after 16 23 25 367 681 171 270×105

aroundx2 17 82 189 551 697 344 364×105

Table 1. AWBench benchmark results. The values show the overhead per joinpoint
in ns. Differences of five nanoseconds or less are not significant because they are too
close to the duration of a clock cycle. Static reflective context (refl stat) access con-
sists of reflectively accessing information (method name in this case) that does not
have to be computed at run-time, but remains constant for every execution of the
joinpoint shadow. Dynamic reflective context access (refl dyn) consists of fetching dy-
namic contextual values (target object in this case) of the joinpoint reflectively using
the thisJoinPoint keyword. Declaratively fetching joinpoint contextual information
(decl * ) means explicitly defining the dependence on that information in the pointcut
description

For before advices where the run-time context is fetched declaratively, As-
pectJ, AspectWerkz and JAsCo perform equally well. All three optimize the
joinpoint interception to only fetch that data that is requested. When reflection
is used however, JAsCo is able to improve on both AspectWerkz and AspectJ.
This is because JAsCo has a fine-grained required context detection, also when it
is reflectively queried. thisJoinPoint vs. thisJoinPointStaticPart is the only
difference accounted for by AspectJ and AspectWerkz. When thisJoinPoint is
employed, all possible run-time context information (target object and type,
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caller object and type, actual arguments and types, etc...) is stored, whereas
only a fraction of this dynamic information might be effectively required.

In addition, when several advices are combined or when an around advice
is employed, JAsCo seems to improve more significantly on AspectJ and cer-
tainly on AspectWerkz. In all the other tests, the results of JAsCo, AspectJ and
AspectWerkz are very close. As such, it seems that the performance of compile-
time and run-time weaving approaches converges and probably a boundary of
traditional weaving has been reached.

4.2 Weave-time benchmarks

The AWBench benchmark allows to precisely measure the overhead for advice
execution per joinpoint. The weaving cost itself is not included in the perfor-
mance results of the AWBench project. In a Java context, the run-time execution
cost is generally the most important performance criterion. Java is mainly used
for server applications where the virtual machine ideally runs for a very long
period. However, in some cases, the time required for weaving aspects, cannot
be ignored. For example, when developing and testing applications, the virtual
machine is typically restarted quite often. Furthermore, because JAsCo employs
run-time instrumentation, adding and removing aspects frequently might also
cause an unacceptable overhead for the complete application. Therefore, we em-
ploy a custom benchmark application to measure the run-time weaving overhead.
The benchmarks measures the cost for weaving 1000 method execution joinpoints
and executing all these methods once. Executing the methods is mandatory be-
cause some AOP approaches (like AspectWerkz and JAsCo Jutta) use a form
of lazy weaving where parts of the weaving process are postponed until the first
execution of the joinpoint shadow.

JAsCo RT
Weaver

Aspect-
Werkz

JBOSS/
AOP

SPRING/
AOP

JAsCo
Jutta

before advice 15 15 36 26 19
around advice 21 15 36 26 19

Table 2. Time required for weaving in ms per joinpoint

Table 2 illustrates the results for the weaving benchmarks on a per joinpoint
basis. We compare the weaving cost of the JAsCo run-time weaver with three
other approaches that only weave aspects while running the application. As ex-
plained before, AspectJ weaves aspects at compile-time and as such does not
endure a run-time performance overhead for the weaving. The JAsCo run-time
weaver performs equally well as AspectWerkz in case of before advices. The over-
head for around advice in-lining as explained in section 3.3 causes an additional
weaving cost of 40 % in comparison to the before advice. Contrary to what one
might expect, the cost of weaving a before advice in the trapped JAsCo/Jutta
approach is higher than invasive weaving. This is explained by the fact that the
trapped approach inserts a trap independent of the concrete aspects applied. As
such, for every trap, a callback class for implementing the around advice closure
[25] has to be generated. The run-time weaver generates a code fragment unique
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for the joinpoint and given advices and is able to omit the generation of this
callback object in case no around advices are present.

4.3 Realistic Application Benchmarks

In this section, we assess the performance of the JAsCo run-time weaver in a
realistic application setting rather than micro benchmarks as performed in the
previous sections. We use two benchmark applications, PacoSuite a component
composition environment [29] and sim a discrete event simulator for certificate
revocation simulation [30]. The PacoSuite benchmark loads and model-checks a
component composition. One before advice is applied that updates a counter for
every method execution. The sim benchmark is presented in [31] and defines an
aspect that checks whether the returned output is null for every method execu-
tion. The sim benchmark consists of 20 classes while the PacoSuite benchmark
consists of over 500 classes. As a third benchmark, we reuse the sim application
but apply five after advices to all public method execution joinpoints.

Time s Memory kb
Unad-
viced

JAsCo
RT AJ AW

Unad-
viced

JAsCo
RT AJ AW

Sim1400 6.244 7.705 6.376 8.804 14012 7367 14078 8713
Sim3500 122.1 132.8 130.9 134.4 17698 11015 17825 12207
Paco10 14.58 24.41 14.89 28.74 18598 30138 18585 37673

Paco100 107.4 110.7 108.2 115.2 19178 32283 19495 43686
Paco1000 9763 9767 9764 9770 21377 36108 21213 48452
5Sim1400 6.244 8.588 7.603 10.91 14012 7558 14091 9423
5Sim3500 122.1 151.2 152.6 163.2 17698 11166 17697 12744

Table 3. Two realistic application scenarios run using JAsCo, AspectJ and As-
pectWerkz. Sim defines a checking aspect for null pointer returns, PacoSuite defines a
counter aspect using a before advice and 5Sim defines five after advices. The number
suffix of each benchmark name refers to the number of iterations in case of PacoSuite
and the startup parameters in case of sim. The resulting values are the total execution
time in seconds and the maximum allocated memory in kilobytes

The overhead for weaving the classes at run-time is high in case the appli-
cation runs for only a short period of time. Both Paco10 and Sim1400 endure
an overhead of respectively 20 % and 60 % over the execution time of AspectJ.
The difference is explained by the small code base of sim in comparison to Pa-
coSuite. As such, weaving PacoSuite is a lot more costly than weaving the sim
application. When the application runs for a longer time, the difference in perfor-
mance becomes a lot smaller. In fact, for Paco500 and Sim3500, JAsCo executes
less than two percent slower than the equivalent AspectJ application. When the
application is run for an even longer time like the Paco1000 benchmark, the
difference between AspectJ, JAsCo and AspectWerkz is negligible.

In case of the 5sim benchmark, which applies five after advices for every
method execution, JAsCo is able to catch up with AspectJ when the application
is run long enough. This is also confirmed by the AWBench results when several
advices are applicable to the same joinpoint (before+after and around×2), where
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JAsCo is able to improve over AspectJ’s joinpoint execution time. At first sight,
five advices per public method execution joinpoint might be unrealistic, but this
might very well be the case in an application that relies heavily on AOP for
several crosscutting concerns like Transaction Management, Security, Tracing,
etc.... In any case, the JAsCo run-time weaver is able to compete with AspectJ
performance-wise as soon as the application runs long enough (which is typically
the case in a Java application server scenario) and thus our goal has been realized:
the JAsCo run-time weaver combines the flexibility of run-time weaving with the
performance of a static weaver.

Contrary to what one might expect, JAsCo requires less memory for the Sim
benchmarks than running the benchmark with AspectJ. In fact, running the
benchmark with both JAsCo and AspectWerkz requires even less memory than
running the benchmark without AOP. This strange result is probably explained
by the use of the JPLIS VM plugin, which apparently causes the VM to optimize
memory usage in case of small applications. In the larger Paco benchmark appli-
cation, the JAsCo run-time infrastructure requires more memory (around 50%)
than the equivalent AspectJ program. This overhead is caused by the additional
run-time infrastructure for weaving and unweaving joinpoints at run-time. No-
tice that JAsCo is not yet optimized memory-wise and we expect that we can
reduce this overhead significantly. However, due to the required weaving infras-
tructure, JAsCo normally requires more memory than compile-time weavers like
AspectJ.

4.4 JAsCo specific benchmarks

We also conduct several benchmarks that measure the cost for specific JAsCo
features in order to motivate these additional JAsCo language features from
a performance point of view. The specific JAsCo language features that are
benchmarked are: predefined and custom aspect factories, combination strategies
and stateful aspects.

Aspect Factories Table 4 illustrates the results of a custom benchmark that
deploys aspects using aspect factories. The aspect defines one simple before
advice. Some of the factories are also supported in other approaches, so we in-
cluded the performance of these approaches as well for comparison. The result of
perclass is constant for every shadow joinpoint, so no performance overhead is
visible. Likewise, custom factories that are cachable induce no additional over-
head. JAsCo executes perinstance significantly faster than e.g. AspectWerkz,
which requires a hash-table access for implementing this feature.

Custom non-cachable factories require a larger overhead due to a) the com-
putation cost for fetching the correct instance (a hash-table access in this case)
and b) the overhead for fetching all joinpoint contextual information because the
JAsCo system does not know which information the factory might require. The
latter overhead might be reduced by implementing a lower-level factory inter-
face, which is still completely modular and does not require adaptations to the
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JAsCo weavers. However, implementing a low-level factory requires knowledge
of the byte-code manipulation library Javassist and is thus not so user-friendly
as the standard factory implementation.

Perall induces a very large performance overhead for instantiating and ini-
tializing a hook for every joinpoint execution. As such, it seems that in most
cases it is better to use a workaround in order to avoid using this factory.

JAsCo RT
Weaver AspectJ AspectWerkz JBoss/AOP

simple before 11 10 10 301
perclass 11 n/a 11 354

perinstance 22 77 137 467
perthread 88 n/a n/a n/a

perall 38705 n/a n/a n/a
custom cachable 11 n/a n/a n/a

custom non-cachable 311 (181) n/a n/a n/a
Table 4. Aspect factory benchmarks measures the overhead per joinpoint in ns

before
+ Cachable

combination strategy
+ Non-cachable

combination strategy

11 11 109
Table 5. Combination strategy benchmark measures the overhead per joinpoint in ns

Combination Strategies Table 5 illustrates the result on the joinpoint exe-
cution time when combination strategies are present. The benchmark executes
one before advice that has to be filtered by one combination strategy. When
the combination strategy is cachable, the result is determined at weaving time,
and no overhead with respect to the before advice execution in AWBench can
be observed. In case of a non-cachable combination strategy, the joinpoint ex-
ecutes about 10 times slower. This is the overhead required for initializing the
internal boolean array representation, executing the combination strategy and
conditionally executing the before advice.

manual
stateful
before stateful 1 stateful 2 stateful 3 stateful 4 stateful 5

27 136 135 141 143 147
Table 6. Stateful Aspects benchmark measures the overhead per joinpoint in ns. De-
pending of the number of outgoing transitions, the overhead increases slightly

Stateful Aspects Stateful aspects are implemented by simulating a deter-
ministic finite automaton at run-time. The automaton is implemented using a
dictionary, which means that finding the matching transition for a given state
costs O(log n) with n the number of outgoing transitions at that state. Table
6 shows the performance for executing a stateful aspect that defines a before
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advice for every transition. Depending on the number of outgoing transitions
(i.e. transitions to follow next after firing a transition pointcut), the cost for
executing a stateful aspect’s advice increases slightly.

In comparison with a highly optimal manual hard-coded implementation, the
JAsCo implementation executes around six times slower. This is due to the ex-
plicit simulation of a state machine at run-time. Realizing a performance similar
to the hard-coded implementation is feasible and subject for future work. No-
tice however, that even the non-optimal JAsCo stateful aspect implementation
executes a lot faster than a simple before advice in e.g. JBoss/AOP.

5 Related Work

Nowadays, several both static and dynamic aspect-oriented technologies are
available. When JAsCo was originally conceived, AOP was less popular and
only a handful of approaches existed. The JAsCo language is inspired by two
of those pioneer AOP approaches: AspectJ [5] and Aspectual Components [7].
Aspectual Components motivates that in order to increase the reusability of
aspects, a separate deployment phase is required. Therefore, Aspectual Compo-
nents introduces the connector concept also known in JAsCo. JAsCo combines
this idea with the expressive pointcut language and the asymmetric base-aspect
model of AspectJ. Furthermore, JAsCo extends both approaches, with at the
one hand more expressive connectors that support precedence and combination
strategies and at the other hand support for dynamic pointcut conditions such
as stateful pointcuts. Also on the technical level, JAsCo is quite different sup-
porting efficient run-time weaving where both the Aspectual Components model
and AspectJ make use of static byte code weaving.

Caesar [32] describes aspects in terms of an Aspect Collaboration Interfaces
(ACI). Each concrete aspect needs to implement the required methods specified
by its corresponding ACI. Aspect bindings connect the aspect implementations
to different concrete component contexts. One of the major contributions of the
Caesar approach is the introduction of aspectual polymorphism. Aspect bindings
are able to implement a binding for different types and the concrete binding
is resolved dynamically using the type of the object at hand. In this viewpoint,
aspectual polymorphism is similar to the concept of late binding found in object-
oriented languages. We are working on an extension of the JAsCo language that
allows to refine refinable methods based on the joinpoint’s target type. These
type-specific refinements are completely modular and are lately and automati-
cally bound.

Event-based aspect-oriented programming (EAOP) allows specifying cross-
cutting concerns by employing event patterns which are described using a formal
language [33]. Because of this formal model, advanced detection and resolution of
aspect interactions becomes feasible. At the implementation level, EAOP inserts
traps that query a central execution monitor, similar to the JAsCo connector
registry. The execution monitor has a global view of the executing application
and contains all active EAOP artifacts. EAOP however relies on the availabil-
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ity of the source-code of the complete application as it inserts traps by using
source-code transformations.

In the benchmark section, AspectWerkz, JBoss/AOP and Spring/AOP are
introduced as current practice aspect-oriented approaches. AspectWerkz is a
stand-alone framework while JBoss and Spring are J2EE application servers with
AOP support. These three approaches describe reusable aspects as regular Java
classes. Aspects are deployed within the system using a deployment descriptor
which is expressed using XML. All three approaches however lack support for
aspect instantiation control, stateful pointcuts and aspect combination control.
Also, JBoss/AOP and Spring/AOP do not support strong aspectual typing, i.e.
arguments of joinpoints for instance need to be fetched from an array and casted
to the appropriate types at run-time.

Steamloom [34] is another dynamic AOP approach that supports the run-
time weaving of aspects. Similar to PROSE2 [35], Steamloom aims at achieving
an aspect-aware Java Virtual Machine in order to boost the run-time AOP per-
formance, this in contrast to most other AOP technologies which implement their
AOP facilities on top of the JVM. Steamloom is implemented as an extension
of IBM’s Jikes Research Virtual Machine [36] and extends the Java byte code
language with AOP specific instructions. This strategy has two main benefits.
First of all, traditional weaving is not really necessary anymore, at most some
additional instructions have to be inserted. This makes the aspect application
and removal process a lot easier to implement. A second advantage is that these
specific instructions can be implemented very efficiently at the VM level. The
main drawback however is that the approach loses compliance with the Java
standards by extending the Java byte code language. As such, a custom virtual
machine needs to be employed. The JAsCo run-time weaver is implemented as
a plugin into the VM and uses only standardized interfaces and is thus portable
over all recent JDK compliant virtual machines.

JAC, DAOP and OIF are three approaches that target component-based sys-
tems and allow dynamic AOP. JAC [37] employs load-time trap insertion, which
are similar to the traps inserted by the JAsCo preprocessor. As a result, JAC
suffers from high run-time advice execution cost as well. The Dynamic Aspect-
Oriented Platform (DAOP) [38] is another approach that targets component-
based systems. DAOP introduces a distributed platform, where a middleware
layer stores all composition information. In this respect, it is similar to the con-
nector registry employed in JAsCo. Filman [39] proposes dynamic injectors in or-
der to introduce aspects within a component-based application. These dynamic
injectors are incorporated into the OIF (Object Infrastructure Framework), a
CORBA centered aspect-oriented system for distributed applications. At the
implementation level, a wrapping approach is employed for injecting the logic of
an aspect within a component communication channel.

Wool [40] is another dynamic AOP approach that supports two types of
dynamic weaving strategies. Similar to PROSE [41], the Wool system is able
to employ the Java Debugging Interface to intercept the execution of the base
application. However, aspects can also be inserted invasively into the target
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joinpoints by employing the Java Debugging Interface (JDI). Both the Wool
language and weavers are however quite basic and only support simple advices
like a before/after advice. The original contribution of Wool is that aspects are
able to implement their own heuristics for deciding whether they are invasively
inserted or not. The Wool heuristics improve on JAsCo as they can be customized
on a per-aspect basis whereas in JAsCo only one global heuristic function can
be specified.

Strategic programming (SP) [42] is a generic programming idiom for process-
ing compound data, such as parse trees of programming languages. It was initi-
ated in the context of term rewriting (using Stratego [43]), but has been trans-
posed to other programming paradigms such as functional programming (based
on Strafunski [44]) and object-oriented programming [45]. Similar to JAsCo’s
combination strategies, SP allows programmer-definable combinators. The defi-
nition of these combinations relies on primitives and lower-level combinators. As
such, by building on a small suite of combinators, a wide and expressive variety
of combinations can be defined in a declarative way. The main difference with
JAsCo combination strategies is that SP combinators are specified declaratively,
which has several advantages regarding understandability, automatic optimiza-
tions and analysis. In JAsCo however, we explicitly choose for an imperative
approach as this allows employing the full expressiveness of Java.

Walker et al. introduce declarative event patterns (DEPs) [46] as a means
to specify protocols as patterns of multiple events. Here, AspectJ aspects are
augmented with special DEP constructs that can be advised. Their approach
is based on context-free grammars, and involves a transformation of the DEP
constructs into regular AspectJ aspects that contain an event parser. While
DEPs can recognize properly nested events and thus possess an even higher
degree of declarative expressibility than the JAsCo approach, they only provide
the ability to attach advice code to the entire protocol. Separate transitions of
the protocol can as such not be advised, and several overlapping protocols are
required to mimic JAsCo stateful aspect behavior. Furthermore, the fact that
DEPs lose their identity in a preprocessing step that reduces them to standard
aspects, rules out the possibility for optimizations by a weaver that analyzes
the feasible transitions of the protocol. The current proposal also suffers from
performance issues due to the grammar-based approach.

Recently, another implementation of protocol-matching pointcuts for As-
pectJ has been proposed [47] in the context of the AspectBench Compiler frame-
work. The abc proposal is similar to DEPs, but protocols are specified as regular
expressions of expected events. Additionally, this implementation emphasizes the
importance of crosscut variables (as introduced by Douence et al. in [17]). These
are variables that can be bound and matched against as the protocol progresses.
Abc does however neither support attaching advices to specific transitions during
the protocol.
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6 Conclusions and Future Work

In this paper, we introduce the JAsCo approach that aims at tackling several
problems encountered in current practice AOP. Aspects described using JAsCo
are context-independent and first-class entities while still providing aspectual
type safety. A separate connector construct is used to deploy an aspect onto
target components. Connectors allow explicit control over aspect instantiation
and initialization. JAsCo partly addresses the feature interaction problem by
allowing the ordering of conflicting aspect behaviors and by introducing explicit
and reusable combination strategies. Although JAsCo combination strategies are
very expressive, they are quite ad-hoc and often complicated. We are currently
working on a dedicated aspect combination language that makes the combination
itself more explicit.

To make the JAsCo language operational, we propose the Jutta aspectual
just-in-time compiler and the HotSwap run-time byte-code instrumentation frame-
work. By combining both the HotSwap and Jutta technologies, a run-time weaver
is realized. As such, JAsCo supports three types of weaving: pre-processed trap
insertion, run-time trap insertion and run-time aspect weaving. The three weav-
ing alternatives can be used simultaneously and thus allow for detailed perfor-
mance fine-tuning.

Although JAsCo is currently still under development, several research and
industrial projects are currently employing JAsCo. In the context of the MO-
SAIC project in collaboration with a large telecom company, a Web Services
Management Layer [48] (WSML) is developed. The WSML captures several
crosscutting concerns such as security, load balancing, caching, WS selection,
pre-fetching and fault tolerance as reusable dynamic JAsCo aspect beans. In
the MOSAIC follow-up project, the deployment of JAsCo is to be evaluated in
the context of asynchronous telecommunications platforms, such as supported
by JAIN SLEE [49]. The ASPECTLAB project in collaboration with two other
universities and twelve Flemish based companies (ranging from SMEs to multi-
nationals and large governmental departments) evaluates JAsCo among other
technologies for several industrial pilots. JAsCo is also used for teaching at sev-
eral universities world-wide. The fact that JAsCo stays very close to the original
Java syntax, while supporting a wide range of AOP concepts, makes it an at-
tractive language for teaching AOP.

At a more conceptual level, we are investigating the advantages of a full
unification between aspects and components. Most AOP approaches available
today propose an asymmetric aspect model where aspects are treated and im-
plemented as different kind of entities. In our opinion, a symmetric model is
more appropriate as only the interaction of an aspect with other components
requires special treatment. Therefore, we propose a unified component frame-
work, called FuseJ [50], which provides an expressive component composition
mechanism that allows describing aspect-oriented as well as component-based
interactions between components.
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