
A Symmetric and Unified Approach Towards
Combining Aspect-Oriented and

Component-Based Software Development

Davy Suvée, Bruno De Fraine, and Wim Vanderperren

System and Software Engineering Lab (SSEL)
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

{dsuvee,bdefrain,wvdperre}@vub.ac.be

Abstract. In this paper, we propose a novel approach towards inte-
grating the ideas behind Aspect-Oriented and Component-Based Soft-
ware Development. Our approach aims at achieving a symmetric, unified
component architecture that treats aspects and components as uniform
entities. To this end, a novel component model is introduced that does
not employ specialized aspect constructs for modularizing crosscutting
concerns. Instead, an expressive configuration language is provided that
allows to describe both regular and aspect-oriented interactions amongst
components. This paper presents the ongoing FuseJ research, a first ex-
periment for realizing this symmetric and unified aspect/component ar-
chitecture.

1 Introduction

Aspect-Oriented Software Development (AOSD) [11] is a recent software engi-
neering paradigm that aims at improving the separation of concerns offered by
present-day software engineering methodologies. A proper separation of con-
cerns is crucial for implementing comprehensible, reusable and maintainable
software applications [15]. AOSD research argues that by employing classic
software engineering approaches, including Component-Based Software Devel-
opment (CBSD) [5], the implementation of certain concerns, such as logging,
security and caching, cannot be confined into a single logical module. These
concerns are called crosscutting as their implementation virtually crosscuts the
traditional decomposition of an software application. AOSD provides a solution
for modularizing these crosscutting concerns by introducing a new modulariza-
tion entity, called an aspect.

Currently, a wealth of technologies are available that all aim at integrating the
ideas of both AOSD and CBSD. Examples of such technologies include JAC [16],
JAsCo [20], Caesar [14], CAM/DAOP [18], JBoss/AOP [4], AspectWerkz [3] and
Spring/AOP [8]. Some AOSD technologies introduce an asymmetric, AspectJ-
like [10] approach, where crosscutting concerns are implemented through means

of a dedicated aspect language. Other, framework-based AOSD technologies im-
plement aspects through the base programming language. Although framework-
based approaches allow for a more straightforward integration of aspects within
the standard software development process, they still enforce aspects to imple-
ment a set of so-called aspect interfaces. Hence, similar to asymmetric AOSD
approaches, aspects are still considered, treated and implemented as different
kinds of entities within the application. This explicit distinction between aspects
and components however induces several disadvantages. Inherently, the behavior
provided by aspects is not that different from regular component behavior. Both
implement some functionality required within the application and it is only the
way in which they interact with the rest of the software system that differs. The
crosscutting composition mechanism of current aspect modules however, resides
itself tangled with the behavior of the concern, explicitly ruling out other ways of
integrating its behavior within the application. In addition, the reusability and
applicability of existing software components is constrained. Nowadays, several
mature, feature-rich components are available that for instance allow managing
the security issues within an application. At the moment however, there is no
elegant and straightforward solution available for integrating the behavior of
existing components in an aspect-oriented fashion.

The research presented in this paper aims at exploring the possibilities and
advantages of introducing a symmetric, unified approach towards combining the
ideas and concepts of AOSD and CBSD. Instead of introducing and considering
aspects as specialized entities, we propose to apply aspect-oriented composition
mechanisms upon the existing component constructs. On the one hand, this al-
lows aspects to straightforwardly adopt the same characteristics of components,
namely being reusable and independently deployable while at the same time
exposing and adhering to a contractually specified interface [21]. On the other
hand, the decision whether components should be integrated in a regular or
an aspect-oriented manner can be postponed until component composition time
and can easily be changed afterwards.

The remainder of this paper presents the ongoing FuseJ research [19], a first
experiment for achieving a symmetric and unified aspect/component architec-
ture. The next section introduces the FuseJ component model and its configura-
tion language by presenting a small case study situated in a Peer-To-Peer (P2P)
file sharing environment. Section 3 discusses related work. Finally, we present
our conclusions and future work.

2 The FuseJ Approach

In order to achieve a seamless unification between aspects and components,
FuseJ mingles ideas from the AOSD and CBSD world in a simple, expressive
component model and introduces a novel configuration language for describing
the aspect/component composition. As a small case study, we employ a simpli-
fied and partial implementation of a P2P file sharing application. The down-
load controller subsystem is responsible for managing the retrieval of shared file

1 interface TransferI {
2 byte[] getFileFragment(String aFileName)
3 FileFragementInfo findFileFragment(String aFileName);
4 }
5

6 interface NetworkI {
7 void send(String host, String info);
8 byte[] get();
9 }

10

11 service TransferS {
12 provides TransferI;
13 expects NetworkI;
14 }

Listing 1. The TransferS service specification

fragments from remote hosts. It features four components, namely Transfer,
Network, Optimizer and Logger. The Transfer component retrieves file frag-
ments and employs the functionalities offered by the Network component to
communicate with remote hosts. The Optimizer component is responsible for
optimizing the file fragment transfer strategy depending on several user crite-
ria: one user could be interested in first downloading file fragments that are not
very well spread, while other users could be interested in first downloading file
fragments from hosts that have a broadband connection. Instead of hard-coding
and tangling the logic of these various transfer strategies within the implemen-
tation of the Transfer component itself, one can better opt for modularizing
these strategies as aspects. The next subsections illustrate how FuseJ implements
both regular and crosscutting concerns as components and elucidates how the
FuseJ configuration language helps at integrating and composing them in the
P2P download controller subsystem.

2.1 FuseJ Component Model

FuseJ employs a simple, straightforward Java-based component model, built
upon the well-known concept of provided -expected interfaces. Its main objec-
tive is to keep coupling amongst components as low as possible, hence achiev-
ing maximum reusability. To this end, FuseJ proposes the concept of a service
specification. A service specification defines the set of operations implementing
components should provide to and can expect to be offered by the environment
in which they are eventually deployed. The provided and expected operations of
a service specification are described in terms of regular Java interfaces.

Listing 1 illustrates the TransferS service specification. Components that
implement this service specification are required to provide an implementation
for operations that are part of the TransferI interface, while at the same time
they can employ operations that are part of the NetworkI interface within their
internal implementation. Hence, the set of provided interfaces make up the pub-
licly accessible interface of the component, while the expected interfaces describe
the set of interaction points with operations offered by other components.

1 class TransferC implements TransferS {
2

3 public byte[] getFileFragment(String aFileName) {
4 FileFragementInfo info = findFileFragment(aFileName);
5 send(info.host(), "get|" + aFileName + "|" + info.filefragement());
6 return get(); }
7

8 public FileFragementInfo findFileFragment(String aFileName) {
9 /* Code for sequential retrieval of file fragments */ }

10

11 }

Listing 2. The TransferC component implementation

Listing 2 illustrates the simplified implementation of the TransferC com-
ponent that implements the TransferS service specification. This component
is required to provide an implementation for all operations defined within the
TransferI interface. Whenever the TransferC component is ordered to retrieve
a shared file fragment, it employs the findFileFragment operation. The default
implementation of the findFileFragment operation employs a non-optimized
download strategy, namely a sequential retrieval of file fragments. When a spe-
cific file fragment to download is found, the expected operations send and get
are employed in order to retrieve the file fragment from a remote host. All opera-
tions that are part of the expected interfaces of a component (e.g. the send/get
methods) can be transparently invoked from within the component implementa-
tion. Hence, the entire implementation of a concrete component is implemented
in terms of its own service specification, this way minimizing coupling with other
concrete service specifications and components.

The FuseJ component model does not support the language level specification
of non-functional properties typically encountered in CBSD systems, such as
quality of service, security and life-cycle management. As these kind of non-
functional properties have already been identified as being crosscutting [7], FuseJ
provides and models these properties as regular components, which are later on
composed with specific application concerns in an aspect-oriented fashion. The
next section describes how components are composed/integrated into a single
application by making use of the FuseJ configuration language.

2.2 FuseJ Configuration Language

For describing the component composition process, the FuseJ configuration lan-
guage makes use of an explicit configuration construct, a concept borrowed from
architecture systems [6]. A configuration acts as a kind of mediator, which pre-
scribes how two or more components should interact by linking provided/expected
operations. Listing 3 illustrates the structure of a FuseJ configuration entity.
Each configuration configures two or more components and the resulting compo-
sition again complies with a particular service specification. Each configuration
is built up out of one or more linklets. Each linklet links the operations defined
in one or more components and is generally built up out of four individual parts:

1 configuration <name> configures (<comp>|<serv>)+ as <serv> {
2 (linklet <linkname> {
3 execute|expose : (<compop>|<servop>)+
4 for|before|after|around|as : (<compop>|<servop>)+
5 (where: (<parameter_mapping>)+)?
6 (when: (<compop>|<servop>)+)?
7 })+
8 }

Listing 3. General structure of a FuseJ configuration entity

– A target role that enumerates the set of operations to execute (line 3).
– A source role that enumerates the set of operations that act as trigger (line

4).
– An optional property mapping that enumerates the set of property map-

pings, described in terms of source, target or external operations (line 5).
– An optional condition specification that enumerates the set of precondi-

tions, described in terms of source, target or external operations (line 6).

As FuseJ implements both regular and crosscutting concerns as basic compo-
nents in order to achieve unification, the distinction between both, namely the
way in which their interaction takes place, emerges at the configuration level.
In its most basic form, a linklet links up two operations, either defined at the
component or the service level.

1 configuration TransferNetC configures
2 TransferC, NetworkC as TransferNetS {
3

4 linklet send {
5 execute:
6 NetworkC.sendData(Ip ip, String st);
7 for:
8 TransferC.send(String ho, String st);
9 where:

10 ip = IpConvertC.convert(ho);
11 }
12

13 linklet get { ... }
14 }

g e t F i l e F r a gfi n d F i l e F r a g s e n dg e t s e n d D a t ag e t D a t at ot ofi n d F i l e F r a gg e t F i l e F r a g a sa s
. . .

Fig. 1. A component-based interaction between the TransferC - NetworkC components

Figure 1 illustrates a configuration that specifies two regular, component-
based interactions. It configures the TransferC and NetworkC components as
the new TransferNetC component that complies with the TransferNetS service
specification. Two separate linklets are employed. The send linklet interconnects
the send and sendData operations of respectively the TransferC and NetworkC
components. Hence, whenever the TransferC component employs the expected
send operation, the provided sendData operation of the NetworkC component is
executed. A linklet also prescribes how operation properties (i.e. input and out-
put parameter) are matched. Properties employed within the source and target

roles of a linklet are specified through a unique identifier. When these specified
identifiers match in both a source and target role (e.g. the st parameter), they
are automatically reified. When this is not possible (because of distinct param-
eter types), the where-clause declares how the mapping takes place (e.g. the ho
String parameter that gets converted to a parameter of type Ip).

In order to comply with the TransferNetS service specification, the config-
uration implicitly exposes the getFileFragment and findFileFragment oper-
ations of the TransferC component, although a separate expose-as linklet can
be employed if required. The newly configured TransferNetC component can
be employed within other configurations, hence supporting the hierarchical con-
struction of applications.

1 configuration LoggedTransferNetC configures
2 TransferNetC, LoggerC as TransferNetS {
3

4 linklet log {
5 execute:
6 Logger.log(String st);
7 before:
8 TransferNetC.*(..);
9 where:

10 st = Source.getMethodSignature();
11 }
12

13 }

TransferNetC

log

LoggedTransferNetC

findFileFrag

getFileFrag

findFileFrag

as

as

be
fo
re

TransferNetC

getFileFrag

Logger

Fig. 2. An aspect-oriented before interaction between the TransferNetC - LoggerC
components

Next to regular, component-based interactions, a configuration can also de-
scribe aspect-oriented interactions, this by declaring the source role as being
advised. At the moment, three kinds of crosscutting interactions are supported,
namely before, after and around. The before and after interactions trigger the
behavior of additional operations, which act as advice, before or after an advised
operation. The configuration illustrated in Figure 2 for instance, makes sure that
each execution of an operation that is part of the TransferNetC component is
logged for future reference. For this, quantification is employed in order to select
the appropriate methods that should be advised by the Log operation of the
Logger component. The where clause inits the st parameter with the method
signature of the triggering operation. For this, it accesses the Source object, a
component that is the run-time reification of the operation that triggered the
interaction (i.e. join point). In a similar fashion, Target allows to access the
run-time reification of the operation that is executed by the interaction.

An around interaction wraps and possibly replaces the original behavior of
an operation. FuseJ models the continuation of an around advice, which cor-
responds with the proceed concept in asymmetric AOSD approaches, through
means of an explicit proceed operation, specified as an expected operation. Fig-
ure 3 illustrates a configuration that specifies a crosscutting around interaction

1 configuration OptimizedLoggedTransferC configures
2 LoggedTransferNetC, OptimizerC as TransferNetS {
3

4 linklet optimize {
5 execute:
6 OptimizerC.optimize(String f);
7 around:
8 TransferNetC.findFileFragment(String f);
9 }

10

11 linklet optimizeproceed { }
12

13 }

TransferNetC

getFileFrag

findFileFrag

OptimizerC

optimize

OptimizedLoggedTransferC

getFileFrag

findFileFrag

as

as

ar
ou
nd

LoggedTransferNetC

subjectedop

to

Fig. 3. An aspect-oriented around interaction between the LoggedTransferNetC - Op-
timizerC components

through its optimize linklet. It recuperates the LoggedTransferNetC component
and wraps the behavior of its findFileFragement operation with the optimize
operation declared by the OptimizerC component. Depending on whether the
request can be optimized, the original file fragment retrieval behavior of the
TransferNetC component is either executed or not. For this, the subjectedop
expected operation of the OptimizerC component is back-linked to the advised
operation through the optimizeproceed linklet.

3 Related Work

Several aspect-oriented technologies have been introduced that also aim at avoid-
ing a specialized aspect module. Multi-Dimensional Separation Of Concerns is
one of the first approaches that promotes the simultaneous modularization of
multiple concerns, without one dominating the other [13]. HyperJ, its practical
realization, captures concerns in so called hyperslices. Hypermodules are used to
compose a set of hyperslices in order to build up the application. One of the main
differences between HyperJ and FuseJ however, is that FuseJ concentrates on
describing interactions between components, while HyperJ focuses on describing
mappings. In many cases, the HyperJ approach requires components to share
common method names and arguments, which easily gives raise to problems
when combining independently specified third-party components.

Invasive Software Composition is a component-based approach that unifies
several software engineering techniques, such as architecture systems and generic
and aspect-oriented programming [2]. Invasive Software Composition aims at
improving the reusability of software components. To this end, software com-
ponents are equipped with both explicit and implicit hooks. These hooks are
composed using a separate composition mechanism. Hooks are similar to the
provided/expected operations of FuseJ components. FuseJ component opera-
tions however, only expose the component’s public interface, while hooks can
be attached at any programming construct. Hence, hooks support a finer level
of granularity and the resulting composition has more expressive power. The

downside however is that, as the internals of a component are not contractu-
ally specified, the composition could easily break later on when the component
implementation evolves.

More recently, two approaches, namely FAC [17] and DyMac [12], have
emerged that, similar to FuseJ, specifically aim at eliminating the dissimilar-
ities between aspects and components. When FAC and DyMac are employed,
software applications are decomposed into regular components and aspect com-
ponents, where an aspect component is a regular component that modularizes
the behavior of a crosscutting concern. Similar to FuseJ, dedicated binding con-
structs are introduced that specify the (crosscutting) interactions amongst in-
dividual components. In contrast with FuseJ however, FAC and DyMac do not
strive for a full unification between aspect and components. Component methods
that are employed as advices still need to comply to a particular set of require-
ments (for instance method names and argument types), which obstructs a full
symmetric model for aspects and components.

4 Conclusions and Future Work

In this paper we present the ongoing FuseJ research, a symmetric and unified
approach towards combining the ideas and concepts of aspects and components.
To this end, the FuseJ research introduces a novel component model that does
not employ specialized aspect constructs for modularizing crosscutting concerns.
Instead, aspect-oriented composition mechanisms are provided through means
of an expressive component configuration language that allows to describe both
regular and aspect-oriented interactions amongst components. Next to the fea-
tures described in this paper, the FuseJ configuration language also provides
support for more advanced aspect-oriented mechanisms including more involved
pointcut designators such as cflow, dynamic triggering conditions and aspectual
polymorphism. A first prototype implementation of the FuseJ component archi-
tecture is available.

Although the FuseJ unified aspect/component architecture yields several ad-
vantages, some aspect-oriented encapsulation and composition techniques still
need to be integrated in order to achieve full AOSD expressiveness. For instance,
the integration of aspect precedence/combinations still needs to be examined. In
addition, experiments will be conducted that investigate the applicability of as-
pects at the architectural level itself.

References

1. M. Akşit, editor. Proc. 2nd Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2003). ACM Press, Mar. 2003.

2. U. Aßmann. Invasive Software Composition. Springer, 1st edition, 2003.
3. J. Bonér and A. Vasseur. AspectWerkz: simple, high-performant, dynamic,

lightweight and powerful AOP for Java. Home page at http://aspectwerkz.

codehaus.org/, 2004.

4. B. Burke et al. JBoss Aspect-Oriented Programming. Home page at http://www.
jboss.org/products/aop, 2004.

5. F. Duclos, J. Estublier, and P. Morat. Describing and using non functional aspects
in component based applications. In Kiczales [9], pages 65–75.

6. D. Garlan and M. Shaw. An introduction to software architecture. Advances in
Software Engineering and Knowledge Engineering, 1:1–40, 1994.

7. S. Göbel, C. Pohl, S. Röttger, and S. Zschaler. The COMQUAD component model:
enabling dynamic selection of implementations by weaving non-functional aspects.
In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-Oriented Software Devel-
opment (AOSD-2004), pages 74–82. ACM Press, Mar. 2004.

8. R. Johnson et al. Spring Java/J2EE Application Framework, Reference Doc-
umentation, 2004. Available at http://www.springframework.org/docs/spring-
reference.pdf.

9. G. Kiczales, editor. Proc. 1st Int’ Conf. on Aspect-Oriented Software Development
(AOSD-2002). ACM Press, Apr. 2002.

10. G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G. Griswold.
An overview of AspectJ. In J. L. Knudsen, editor, Proc. ECOOP 2001, LNCS
2072, pages 327–353, Berlin, June 2001. Springer-Verlag.

11. G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M. Loingtier, and
J. Irwin. Aspect-oriented programming. In M. Akşit and S. Matsuoka, editors,
11th Europeen Conf. Object-Oriented Programming, volume 1241 of LNCS, pages
220–242. Springer Verlag, 1997.

12. B. Lagaisse and W. Joosen. Component-based open middleware supporting aspect-
oriented software composition. In Proceedings of CBSE 2005, pages 139–254, St.
Louis, USA, May 2005.

13. H. Ossher and P. Tarr. Multi-dimensional separation of concerns and the hyper-
space approach. In Kluwer, editor, Proceedings of the Symposium on Software
Architectures and Component Technology: The State of the Art in Software Devel-
opment, 2000.

14. K. Ostermann and M. Mezini. Conquering aspects with Caesar. In Akşit [1], pages
90–99.

15. D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Comm. ACM, 15(12):1053–1058, Dec. 1972.

16. R. Pawlak, L. Seinturier, L. Duchien, L. Martelli, F. Legond-Aubry, and G. Florin.
Aspect-oriented software development with Java Aspect Components. In R. E.
Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-Oriented Software De-
velopment, pages 343–369. Addison-Wesley, Boston, 2005.

17. N. Pessemier, L. Seinturier, T. Coupaye, and L. Duchien. A model for developing
component-based and aspect-oriented systems. In Proceedings of the 5th Interna-
tional Symposium on Software Composition, Vienna, Austria, 2006.

18. M. Pinto, L. Fuentes, M. Fayad, and J. M. Troya. Separation of coordination in a
dynamic aspect oriented framework. In Kiczales [9], pages 134–140.

19. D. Suvée, B. De Fraine, and W. Vanderperren. FuseJ: An architectural description
language for unifying aspects and components. In L. Bergmans, K. Gybels, P. Tarr,
and E. Ernst, editors, Software Engineering Properties of Languages and Aspect
Technologies, Mar. 2005.

20. D. Suvée and W. Vanderperren. JAsCo: An aspect-oriented approach tailored for
component based software development. In Akşit [1], pages 21–29.

21. C. Szyperski. Component Software: Beyond Object-Oriented Programming. 1st
edition, 1998.

