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Abstract

In this report, we present the Eco aspect-oriented framework for Java. Eco’s
main goals are a flexible and open design and allowing static type-checking.
Eco realizes its flexibility and openness by employing a pure and well-designed
object-oriented approach. Static type-checking is realized by exploiting the
novel Java generics feature. In this report, we evaluate Eco with respect to
these goals and compare it to existing work.
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Chapter 1

Introduction

Aspect-Oriented Software Development (AOSD) [17] is a recent software engi-
neering paradigm that aims at providing a better separation of concerns than
possible using current paradigms. A good separation of concerns is crucial for
realizing better comprehensible, reusable and maintainable software [22]. AOSD
claims that by using classic approaches, certain concerns remain that cannot be
confined into a single logical module. These concerns are called crosscutting be-
cause the concern virtually crosscuts the decomposition of the system. AOSD
provides a solution to modularize these crosscutting concerns into a new entity
named an aspect.

A wealth of approaches are currently available that provide support for
aspect-oriented programming. They can be roughly divided in two categories:
framework-based approaches and language-based approaches. Framework-based
approaches, such as JBoss [5], PROSE [23] and AspectWerkz [3], introduce an
aspect-oriented framework implemented in the base language to support aspect-
oriented programming. Language-based approaches on the other hand, such as
AspectJ [16], JAsCo [26] and CaesarJ [21], introduce a dedicated language or
language extension for developing aspects. The obvious advantages of the typ-
ical framework approach are the compatibility with the existing development
process and the easier acceptance of the approach. Dedicated aspect languages
have the advantage of being more concise in their descriptions and are typically
more expressive.

In this report, we propose a new framework-based AOSD approach for Java,
named Eco, that aims at solving some of the deficiencies of current frameworks
and that tries to further improve on their inherent advantages. The main design
goal of Eco is to provide a statically type-safe framework for dynamic aspect-
oriented programming that is both very flexible and open:

• Static Aspectual Typing: One of the main problems in current framework-
based approaches is the lack of support for static aspectual typing, al-
though the base language typically employs a statically typed language.
Eco solves this by cleverly exploiting Java’s generics feature [11].

• Flexibility: Eco aims to provide general solutions that do not limit any
of the possibilities prematurely. This is not always the case in current
framework-based approaches and even languages. For example, aspect
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deployment is typically very inflexible in that aspects are viewed as sin-
gleton entities that cannot be instantiated manually.

• Openness: A natural advantage of frameworks is that they are more open
to adaptation and extension than language-based approaches because they
are available as libraries on the same level as the base application. How-
ever, current aspect-oriented frameworks do not seem to pursue that goal.
Aspect composition is for instance typically handled in a way that cannot
be extended nor customized beyond some predefined solutions.

The presentation of Eco in this report is organized as follows: the next sec-
tion provides an overview of aspect-oriented programming with the Eco frame-
work. Afterwards, we present an in-depth evaluation of the framework that
focuses on the three claimed properties. We then compare Eco to other state-
of-the-art approaches that share one or more design goals. Finally, we present
our conclusions and future work.
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Chapter 2

The Eco Approach

This section presents an overview of the Eco approach from the point of view
of the end developer. To modularize crosscutting concerns in an application,
he/she can implement these concerns as aspectual behavior. This is done using a
standard AOP mechanism where pointcuts select certain regions in the execution
of the application (join points), and interceptors (or advices) specify behavior
that is to be executed in addition to (or in place of) the standard behavior.

A graphical overview of the framework is given in figure 2.1. The four main
parts of this model are discussed successively in the following sections.

2.1 Invocations

The Invocation type is an argument that the system passes to interceptors. It
represents the intercepted join point. Join points are regions in the execution
of the application, such as the execution of a method, access to a field, etc. An
interceptor might require access to certain context information about the join
point, e.g. the argument with which the method was invoked in case the join
point is a method execution. The getContext() method exposes this kind of

Figure 2.1: Overview of Eco approach.
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1 public class BeforeAfterInterceptor<RT,CT> implements Interceptor<RT,CT> {

2 public final RT invoke(Invocation<RT,CT> invocation) {

3 CT context = invocation.getContext();

4 before(context);

5 try { return invocation.invokeNext(); }

6 finally { after(context); }

7 }

8 public void before(CT context) {}

9 public void after(CT context) {}

10 }

Listing 1: A convenience interceptor for simple before/after advice.

context information: the interceptor calls it to retrieve a context object1. In
addition to context information, the interceptor can also invoke the original be-
havior of the intercepted join point and retrieve its result. The invokeNext()
method is available for this purpose, although its specification has to be gener-
alized slightly to accommodate for the possibility of multiple interceptors that
apply to the same join point: in that case, a chain of interceptors is formed
according to a certain strategy (covered in section 2.5), and the invokeNext()
method invokes the next interceptor in the chain (hence its name) or the original
join point behavior when the interceptors have been exhausted.

Note that the Invocation type is parametrized by the generic type param-
eters RT (which represents the return type of the join point) and CT (which
represents the type of the context object). These type parameters are carried
over to the other core elements of the framework and always refer to the return
type and context type of the intercepted join point.

2.2 Interceptors

An interceptor specifies the behavior that is to be applied at the intercepted
join point. The Interceptor type captures this behavior in very general terms:
it contains only an invoke method with the behavior to be used in place of the
join point. This method takes an argument of type Invocation as input, and
can use it to retrieve context information or to invoke the original behavior, if
this is appropriate. There is one constraint however: as the normal behavior of
the application has to continue after application of the interceptor, this method
has to return an object of the same return type as the intercepted join point2.

The developer implements aspectual behavior by subtyping the Interceptor
type and specifying the behavior in the invoke method. Although this general
Interceptor type is powerful (it can express any advice behavior of typical
AOP approaches), it is not very convenient to specify basic aspectual behavior
that is to be executed in addition to (i.e. before or after) the standard behavior
of the join point. The Eco framework therefore provides a convenience class

1For simplicity, only the case of one context object is presented. See section 3.3 for a
discussion on how to support a different number of context objects.

2Note that a generic return type does not conflict with methods that don’t return a value.
The type parameter RT can be bound to the “empty” type java.lang.Void to denote this
case. Treating functions that do not return a value as a special case of functions that do
return a value by bringing a unit type into existence is commonplace in functional languages
that natively support parametric polymorphism, e.g. Haskell or Objective Caml.
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1 public class OrderTrace<RT> extends BeforeAfterInterceptor<RT,Order> {

2 protected OutputChannel out;

3 public OrderTrace(OutputChannel out) { this.out = out; }

4 public void before(Order o) {

5 out.println("Operation on " + o.getName());

6 }

7 }

Listing 2: An interceptor for tracing order manipulations.

BeforeAfterInterceptor that is presented in listing 1. In this class, invoke is
a template method [10] that retrieves the context information and executes the
original behavior, but defers to the before and after methods for executing
possible additional behavior. Besides convenience, this class has another advan-
tage: when realizing aspectual behavior, a general around advice is more costly
than e.g. an after advice [14]; as subtypes of BeforeAfterInterceptor only
constitute simple before/after advices, the system can exploit this knowledge
to realize them more efficiently behind the scenes. The general invoke method
would then no longer be used, and invocations to the the before and after
methods can be added directly to the original behavior.

Listing 2 illustrates how a developer can implement a simple interceptor
to trace manipulations to Order objects from the problem domain of his/her
application. As the type parameter CT is bound to the type Order, the ad-
vice behavior can invoke methods specific to this type (such as the getName()
method) without having to resort to explicit casts. This implementation of the
tracing interceptor encompasses a degree of customizability: the OutputChannel
to which log messages are written can be specified as a parameter.

2.3 Pointcuts

Pointcuts are used to select the join points in the execution of the application
that must be intercepted. A large number of pointcut approaches exist in the
field of AOSD [12, 7, 8, 20], and Eco framework aims to be agnostic of a concrete
pointcut model or language: different approaches could be integrated, possibly
at the same time. Once defined, a pointcut is abstracted to the context type
and the return type of the join point(s) it selects, at least in the viewpoint
of the aspect developer (see figure 2.1); the system will of course need more
knowledge to allow for its underlying machinery to intercept the selected join
points. In this presentation we will use the pointcut language of the well-known
AspectJ approach. When using the AspectJ pointcut model and its pointcut
designators, there are still at least two possible methods of integration with the
framework: either by using a dedicated language or by using an object-oriented
representation of the language entities.

AspectJ itself uses a dedicated aspect language. This allows pointcuts to be
written in a straightforward manner. To integrate this dedicated language in the
Eco framework, we propose to provide the pointcut definition as an annotation
to the class that represents this pointcut. These annotations are processed in a
compile-time preprocessing step that parses the pointcut definition, sets up the
required run-time information, and extracts and verifies the type information.
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1 @APointcut(

2 "orderManip(Order o): execution(void Order.set*(*)) && this(o)"

3 )

4 public class OrderManip implements Pointcut<Void,Order> {}

Listing 3: A pointcut to select manipulations to Order objects.

1 public class MethodExecutionExposingThis<RT,CT> implements Pointcut<RT,CT> {

2 public MethodExecutionExposingThis(

3 Class<CT> containingClass,

4 Class<RT> returnType,

5 String methodNameRegExp,

6 Class... parameterTypes

7 ) {

8 ...

Listing 4: Signature of the Java representation of an execution pointcut that
exposes the this object.

Listing 3 illustrates an example of a pointcut for selecting order manipulations
using this method. The pointcut definition specifies to select the execution of
methods with void return type and whose name starts with “set” on objects
of class Order. Additionally, it exposes the involved Order object as a context
object. Note that the OrderManip class is defined as a subtype of Pointcut with
return type bound to Void and context type bound to Order; the preprocessor
can verify that these types are compatible with the return type and context
type of the join point(s) selected by the pointcut definition.

This integration of a dedicated language in an object-oriented framework
leaves a number of things to be desired. Most importantly, it is not possible to
build programmatic abstractions over the language entities: imagine a procedure
that takes a class as an argument and that returns a pointcut to select the
execution of the setters on objects of that class; this would allow to reduce the
amount of boilerplate code in common pointcuts such as the above OrderManip.
To enable these abstractions, we propose to use a Java representation of the
entities of the pointcut language. This is illustrated in listing 4, which shows the
signature of a class that represents the execution pointcut designator, together
with the closely related functionality of exposing the object upon which the
method was invoked3. With this object-oriented representation of one of the

3Note that the class literal expression C.class, where C is the name of a class, returns
an object of type Class<C> that represents the class C [11]. The type parameter C allows for
static type safety in reflective operations.

1 static <CT> Pointcut<Void,CT> getClassSettersPC(Class<CT> theclass) {

2 return new MethodExecutionExposingThis<Void,CT>(theclass, void.class, "set*");

3 }

4

5 Pointcut<Void,Order> orderManip = getClassSettersPC(Order.class);

Listing 5: A pointcut to select manipulations to Order objects, implemented
using an auxiliary procedure to select the execution of the setters of a class.
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1 Interceptor<Void,Order> ordertrace = new OrderTrace<Void>(System.err);

2

3 Pointcut<Void,Order> ordermanip = new OrderManip();

4

5 Deployment<Void,Order> deploy = new Deployment<Void,Order>(ordermanip,ordertrace);

6

7 deploy.deployGlobal();

Listing 6: Deployment of a tracing interceptor to a pointcut that selects manip-
ulations to Order objects.

elements of the pointcut language, we can build the aforementioned procedure
for setter pointcuts in listing 5, and use it in turn to create an orderManip
pointcut (line 5) with exactly the same semantics as that of listing 3. The
Java representation is a more tedious way to write pointcuts than the dedicated
language, but the ability to write programmatic abstractions can compensate
for this to a certain level: when using the getClassSettersPC procedure, the
definition of orderManip pointcut (line 5) can be given on a higher level of
abstraction because it hides the implementation details of the pointcut.

2.4 Deployment

In the Eco approach, interceptors and pointcuts are defined as independent and
reusable entities. A separate deployment step is used to connect these two types
of entities, and to activate the aspectual behavior. For this, the aspect developer
uses the Deployment class. The constructor of this class expects the interceptor
to be deployed, as well as the pointcut that selects at which join points the
interceptor is to be applied. An example is shown in listing 6, where we install
aspectual behavior to trace manipulations to Order objects on the error output
stream. This is done by first instantiating the interceptor from listing 2 and the
pointcut from listing 3. These instances are then used to create a Deployment
object. Instances of Interceptor and Pointcut can be freely combined when
creating a Deployment: for example, the same OrderTrace instance can also
be used to create a deployment with another pointcut, or even with the same
pointcut, in case it is desired to execute the aspectual behavior another time
(possibly with different deployment options).

The deployment model of Eco supports different modes of deployment. The
standard mode is to intercept join points regardless of the object in which it
occurs. This is selected with the deployGlobal() method, as shown on line 7
of listing 6. Alternatively, the deployment can be limited to intercept only join
points from specific join point objects. To this end, the deployOn method can be
invoked with the object for which to activate interception as an argument (see
figure 2.1). The aspectual behavior is active after one of these two deployment
methods has been invoked. Eco is hence a very dynamic AOP approach [9],
in the sense that it supports hot deployment : aspectual behavior can be added
to (and removed from) an application at run-time, either with the deploy (and
inverse remove) operations, or with the disable() and enable() methods that
allow to switch off/on individual deployments without changing their deploy-
ment structure. In fact, the only way to activate aspectual behavior with Eco

8



Figure 2.2: Organization of Interaction Resolution in Eco.

is through this run-time interface. However, if constant aspectual behavior is
desired during the entire execution of the application, this can be simulated by
placing the deployment code in a static initializer. The aspectual behavior is
then deployed when the containing class is loaded.

2.5 Interaction Resolution

We define aspect interaction [24] as the situation where multiple deployments
specify aspectual behavior for the same intercepted join point. The behavior
in such a case is unspecified, so it is not clear which interceptions are applied,
and in what order. The way in which the deployments are composed might not
be of importance for the correct operation of an application (e.g., in case the
interacting deployments have orthogonal functionality), but when the order of
combination implies an important semantic difference for example, this decision
does matter. In such a case, one needs to be able to influence the resulting
composition, i.e. it must be possible to control how the interaction is resolved.

The solution that Eco provides for the resolution of interactions is shown in
figure 2.2. It follows the same design strategy as the definition of interceptors in
section 2.2. At the root is a very flexible Resolution type that contains a sin-
gle resolve method. At every possible join point, this method is called with a
representation of the join point and the list of triggered deployments (i.e. active
deployments whose pointcut matches the intercepted join point). The method
then returns a list of those deployments whose aspectual behavior must be ap-
plied, in the order in which they must be applied4. As such, resolution strategies
have full control over the aspectual behavior: they can effectively reorder the de-
ployments, remove triggered deployments and/or add untriggered deployments,
and this resolution can vary over different join points. It is clear however that

4Note that the resolve method is queried for this information even if no deployments
originally triggered.
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1 Deployment<Void,Order> tracing = ...

2 Deployment<Void,Order> synchro = ...

3 Deployment<Void,Order> persist = ...

4

5 OrderedResolutionCombinator globalres = new OrderedResolutionCombinator();

6 globalres.addResolution(new PrecedenceResolution(synchro, persist));

7 globalres.addResolution(new PrecedenceResolution(tracing, persist));

8

9 System.installGlobalResolution(globalres);

Listing 7: Installation of a combined resolution strategies regarding the persis-
tence concern.

this flexibility has a high performance cost, as the resolution strategy has to be
queried at each possible join point and its result cannot be cached. The sys-
tem therefore provides a subclass ContextlessResolution which defines the
general resolve method in terms of an abstract resolve method that does
not depend on the join point argument and that adheres to a contract of being
purely functional (i.e. having the same return value upon each invocation with
the same argument values). This subclass is not as much a convenience class as
an opportunity for the system to optimize the implementation of typical resolu-
tions: when the installed resolution strategy is a ContextlessResolution, the
system is expected to optimize the resolution internally by caching the results
of the resolution strategy.

Eco further provides a number of predefined resolution strategies. The class
PrecedenceResolution implements a simple resolution that ensures that the
aspectual behavior of two given deployments is applied in a certain order when
they are triggered at the same join point (it realizes this by swapping the
position of the deployments if they occur in incorrect order). Alternatively,
ComparatorResolution uses a standard Java comparator to order the triggered
deployments. Other standard resolutions are of course imaginable, e.g. mutual
exclusion between deployments or precedence relations between deployed inter-
ceptors instead of specific deployments. Furthermore, a developer can always
implement a custom resolution strategy by subclassing the ContextlessReso-
lution or Resolution type.

A more fundamental property of resolutions in Eco, is that it is possible
to combine several resolutions using combinators. The OrderedResolution-
Combinator is an example of such a combinator. Several resolutions can be reg-
istered with an instance of this class using the addResolution method. When
the combinator is then asked to resolve a list of deployments, it will pipe this
list through each registered resolution (in order of registration), passing the
output of the first as input to the second, and so on. An example of its usage
is shown in listing 7. We image that three concerns are deployed as aspectual
behavior: tracing, synchronization and data persistence. In order to minimize
the risk of data loss, we want the persistence interceptor to appear closest to
the original join point in the interceptor chain (so its after advice will be ex-
ecuted immediately after the original behavior), i.e. after the other concerns
in the list of deployments; other than that, we assume that the relative order
of synchronization and tracing is not of direct importance. This behavior is
accomplished in the example by configuring an ordered combinator with two
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precedence resolutions and installing this combined resolution as the global res-
olution strategy. The combined effect will be that, if triggered, the persistence
deployment will be placed after either two of the other concerns (both when
they occur together or separately) in the list of resolved deployments. When
the persistence deployment was not triggered, the order will not be modified.
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Chapter 3

Evaluation

In this section, we present an evaluation of the proposed approach. The purpose
of this evaluation is to state the problems that motivated the creation of Eco, and
to explain the rationale behind its design decisions. It also tries to clarify how
Eco relates to mainstream approaches in the field of AOSD. The discussion is
organized according to the three claimed properties of Eco: flexibility, openness
and static type-safety.

3.1 Flexible Aspect Model

This section focuses on the structural design decisions that underpins the model
of Eco. These decisions relate primarily to the flexible use and reuse of entities
in the aspect model.

3.1.1 Deployment of Aspectual Behavior through Instan-
tiation

The ability to deploy aspectual behavior in different contexts has been recog-
nized as an important reuse property for aspect-oriented technologies [13, 21,
26]. The AspectJ approach organizes this reuse through the concept of abstract
aspects. Such aspects define advice methods for yet unspecified (abstract) point-
cuts, and subaspects are subsequently used to deploy the aspect by filling in the
abstract pointcuts. An alternative model consists in using the concept of instan-
tiation to deploy aspectual behavior, and to pass in the concrete pointcuts as
instantiation parameters. AspectJ precludes this possibility by stipulating that
its aspects are always implicitly instantiated by the system, but technologies
such as JAsCo or JBoss do take this approach as their deployment of aspects
through connectors or XML deployment descriptors constitutes an instantiation
(or can conceptually be considered one).

Eco follows the latter design and allows aspectual behavior to be deployed
through the creation of a Deployment instance, without requiring the definition
of a new subtype. The first reason for this is that we consider it a limitation
of object-oriented possibilities to exclude instantiation of aspects as a varia-
tion point besides inheritance. Put differently, we encourage having different
instances of the same aspect, instead of having different subaspects with one
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1 new Deployment<Void,Order>(

2 new MethodExecutionExposingThis<Void,Order>(Order.class, void.class, "finish"),

3 new BeforeAfterInterceptor<Void,Order>() {

4 public void after(Order o) { DataStore.saveOrder(o); }

5 }

6 ).deployGlobal();

Listing 1: Direct complete specification of aspectual behavior to persistently
store orders after they are finished.

instance. The second reason is that the inheritance structure is statically fixed
in Java; if the deployment of aspects requires the creation of a new subtype,
then it is impossible to vary the aspectual behavior based on run-time values
(e.g. imagine deploying as many instances of an aspect as an integer argument
to the program prescribes). Instantiation does not suffer from this limitation.
Note that this latter point is related to the discussion of dynamic deployment
in the next section.

3.1.2 Independent Pointcuts and Interceptors

In addition to the reuse of interceptor behavior, Eco also aims at providing
equally flexible reuse of pointcut definitions. In the JAsCo approach for ex-
ample, it is not possible to share pointcuts between different aspect entities.
This hampers the possible reuse of pointcut definitions. Eco on the other hand
employs a straightforward design where pointcuts and interceptors are defined
independently, and where an interceptor can be freely deployed to a pointcut as
long as the respective type parameters are not in conflict. This allows to reuse
both a pointcut and an interceptor definition, even if they have been indepen-
dently developed. As a consequence, Eco differs from most AOP approaches in
that it does not couple the definition of pointcuts and interceptors to an aspect
entity, although pointcuts and interceptors classes can be grouped in a package
if they are logically related.

Note however that Eco does not enforce this separate definition of pointcuts
and interceptors. If reuse is considered unlikely and the overhead of separate
class and variable definitions is deemed too high, a complete specification of
aspectual behavior can be given in one statement by inlining the definitions.
This is shown in listing 1, where we implement a complete aspect to write Order
objects to a data store after their finish() method has been invoked. Apart
from Order and DataStore, no types are used that are not directly present in
the Eco framework. The interceptor is defined as an anonymous class.

3.2 Open Framework Approach

Eco can be called a Java AOP framework primarily because the specification
and deployment of aspectual behavior occurs in plain Java code. As a con-
sequence, integration with existing Java tools is facilitated and developers do
not have to learn another language to employ Eco. But although these are
handy advantages, they do not constitute the main reasons why Eco proposes
to offer aspect-oriented facilities at the level of a run-time Java API. The main
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motivations are that the aspectual behavior is better integrated with the base
application (i.e. the code which the aspects advice), and that it allows for
powerful programmatic abstractions.

3.2.1 First-class Deployment Entities

Most of the current aspect-oriented languages and frameworks do not allow to
deploy aspect using a plain Java API1. Instead, common options are dedicated
languages (e.g. AspectJ and JAsCo), XML configuration files or code annota-
tions (e.g. JBoss and AspectWerkz) for deployment. Although these solutions
are generally more straightforward to employ, the inherent downside is that
these deployment descriptions no longer have the same status as regular code
objects with regard to abstraction, run-time construction, etc. We can say that
the deployment entities are not first-class. As a consequence, for example, there
are no suitable means to avoid the duplication between similar (or largely sim-
ilar) deployments. Eco specifically targets first-class deployment entities and
therefore deployment occurs primarily through a Java API. Although this is
more tedious at first, this can be compensated by the ability to abstract detail
in higher-lever deployment strategies. (Note the similarity with the discussion
on the merits of a Java representation of pointcuts in section 2.3.) It is for
example possible with Eco to declare a procedure that takes an Interceptor as
an argument and that deploys this interceptor with a particular pointcut and
an appropriate resolution strategy. This procedure can then be shared between
the deployment of several interceptors.

3.2.2 No Global Static Aspects

Aspect-oriented programming historically departed from a view where aspects
specify their behavior as rules over the compile-time structure of an application
(“whenever method Foo() is called, write a log entry”). This corresponds with
a model of global and static aspects, i.e. aspects that have but one instance that
applies to all objects in the base application, at all times. More recently, a trend
towards dynamic aspects [9] and association aspects [25] has proven this view
to be too simplistic. To a certain extent, we notice that the process of mak-
ing aspects dynamic and non-global involves giving them abilities of standard
classes (multiple instances, run-time construction, . . . ). By already organizing
all aspectual behavior in terms of classes and objects, Eco can natively meet
these requirements.

More concretely, the term dynamic aspects generally refers to aspectual be-
havior that is triggered on run-time conditions or that can be recomposed at
run-time. The former concern is primarily related to the employed join point
model and its expressiveness; it is therefore not directly addressed by Eco. It
certainly meets the latter concern however. As explained in section 2.4, deploy-
ment and undeployment is organized entirely dynamic through the API of Eco.
Association aspects on the other hand, refers to aspects with different instances
for different objects or object groups. Eco accommodates for this by making the
creation of Interceptor and Deployment instances explicit and controllable by

1JBoss is a notable exception that also offers a run-time API for deployment, however
primarily with the objective of enabling run-time deployment.
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the aspect developer. This allows him/her to flexibly set up aspect instances
and associate them with objects of the base application.

3.2.3 Base/Aspect Integration

Asymmetric AOP approaches make a strong distinction between the base ap-
plication that implements the main or business concerns, and aspects that im-
plement crosscutting concerns. Although the Eco approach defines aspectual
behavior in regular classes, it is still of asymmetric nature: interceptors are for
example clearly distinguishable from base code as subtypes of Interceptor,
and interceptor code is clearly aware of its status (e.g. when it invokes the
original join point behavior).

Eco’s usage of plain code deployment does however facilitate the integration
between the aspects and the base application. Aspects may require parame-
ters from the base application for their operation that are not directly available
at the intercepted join point. Concrete examples could be the handle of the
application’s log file in case of a tracing aspect, or the observers to notify in
case of an aspect that intercepts changes to an observed subject. A first solu-
tion for this problem could be that the aspect implements additional aspectual
behavior to capture the required information. This is not straightforward and
error-prone: e.g., one has to verify that in all cases this capture has succeeded
before the main aspectual behavior of the aspect is triggered. A second solution
involves making information available for static lookup: either the application
makes the desired objects available through static fields or methods, or the as-
pects are retrieved by the base application through for instance AspectJ’s static
aspectOf() construct, after which the base application injects the information
into the aspects. Solutions involving a static lookup impose a restriction as the
information must be addressable with a unique key. Eco can make this inte-
gration more flexible, as the aspectual behavior can be deployed from the point
where the parameter information is normally available in the base code. It can
there be easily passed in as a parameter to the relevant interceptor instance (as
is done for the OutputStream parameter in line 1 of listing 6, for example).

3.3 Static Type Safety through Generic Typing

Java is a programming language with static nominal type checking of explicitly
declared types and exceptions. Irrespective of discussions on the most produc-
tive or safe type systems, it seems logical for an aspect-oriented extension of
Java to use the same type system as the base language. Dedicated aspect lan-
guages such as AspectJ or JAsCo clearly aim to provide this, but Java aspect
frameworks such as JBoss or Spring/AOP typically reduce this to run-time type
checking. For example, context parameters are passed to advice blocks as ar-
guments of the general type Object and have to be explicitly casted to the
assumed type, which leads to run-time errors if the advice is deployed with
an incompatible pointcut. It is one of the contributions of Eco to implement
an AOP framework with hot deployment capabilities without sacrificing Java’s
static type safety.

To realize static type-safety in a framework approach, Eco relies on the
generic typing feature made available in Java 5. Although we demonstrate that
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this allows to check type compatibilities between the major parts of the frame-
work, we did encounter limitations to this approach. For example, it is not
possible to work with a variable number of type parameters, which is problem-
atic to support invocations with multiple context objects. Possible workaround
solutions are to group the context objects in one container object, or to define
different versions of the major classes of the framework for the different possible
numbers of context objects. A more fundamental solution seems to require a
smarter type system than what is currently available in Java.
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Chapter 4

Related Work

Nowadays, several aspect-oriented technologies are emerging, which aim at pro-
viding flexible and open-ended aspect-oriented technologies.

AspectS [15] is a general-purpose, aspect-oriented framework for Smalltalk.
Similar to Eco, AspectS exploits the expressive power of the existing base
language encapsulation mechanisms for modularizing pointcuts, advices and
their corresponding deployments. At the pointcut level, AspectS offers a more
open design compared to Eco, as its pointcuts can be build directly on top of
Smalltalk’s extensive meta-programming facilities. Eco on the other hand, offers
only a limited set of primitives that however should suffice in most cases to build
up other, more involved pointcut designators. The main advantage of Eco over
AspectS however, is that Eco allows for the independent specification of both
pointcuts and advices, whereas AspectS inlines the definition of both within
the aspect deployment, hence obstructing possible reuse. Finally, in contrast to
Java, Smalltalk does not support the notion of static type safety. Inherently,
this distinction is also reflected at the AOP framework level, as AspectS does
not support static type-safety for aspects in contrast to Eco.

Josh [6] and the AspectBench Compiler (abc) [2] represent efforts to build
open aspect systems at the compiler level. Josh provides an AspectJ-like lan-
guage built on top of the compile-time reflection library Javassist. New pointcut
designators and generic advice descriptions can be implemented as Java code
that uses the Javassist API and that is executed by the Josh weaver. Sim-
ilarly, abc is a reimplementation of the AspectJ compiler using the Polyglot
and Soot frameworks (for frontend and backend respectively). It also aims to
enable easy implementation of extensions such as new language features or im-
plementation techniques, but features static checks in the language frontend in
addition to Josh. Both approaches focus on building extensions to dedicated
AOP languages by providing access to lower-level compiling and weaving tech-
niques, whereas Eco primarily aims to allow the developer to build abstractions
on developer-level primitives.

Eco focuses on providing an open, aspect-oriented framework that can easily
be extended in order to conform to the requirements of a particular developer.
However, the general-purpose nature of Eco could sometimes obstruct its ease
of use, whereas domain-specific aspect languages are generally more expressive
and understandable. Nowadays, the combined use of separately defined domain-
specific aspect languages is troublesome, as each language typically employs its
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own set of conflicting integration mechanisms. Therefore, Pluggable AOP [18]
aims at offering a semantical framework in which independently developed as-
pect languages can be composed and collaboratively work together. For this,
Pluggable AOP introduces a mixin-based approach, where a so called aspect
mixin mechanism transforms the base mechanism description and introduces
some additional description that can be understood by other, independently
specified aspect mixins that are described in the same formal model.

Similar to Pluggable AOP, Reflex [27] aims at providing a framework that
allows for a straightforward collaboration between domain-specific aspect lan-
guages. To this end, Reflex introduces the concept of a versatile AOP kernel
that acts as a base to which all domain-specific aspect languages are translated.
The notions introduced by the Reflex AOP kernel bear quite some similarities
with the ones proposed by Eco: both pointcuts (modeled as hooksets which
are similar to Eco’s pointcuts) and advices (modeled as metaobject classes) are
encapsulated as independent entities that are later on explicitly combined em-
ploying so called link bindings. A Reflex link is similar to an Eco deployment.
Additionally, Reflex supports interaction resolution by building up composition
operators out of lower level kernel operations. In contrast with Eco however,
Reflex allows to automatically detect interaction conflicts, which can be auto-
matically resolved by attaching the necessary link interaction selectors. Eco on
the other hand allows to describe aspects on a higher level in contrast to Reflex,
from which the lower-level mechanisms are only intended to be observed and
employed by the implementor of a domain-specific aspect language.
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Chapter 5

Conclusions and Future
Work

We present the Eco framework that aims to improve on current state-of-the-art
aspect-oriented frameworks. The Eco framework especially excels at providing
a statically type-safe approach to dynamic AOP while being very flexible and
open. An in-depth evaluation reveals that Eco is able to provide these benefits
thanks to a well-designed object-oriented model that allows for definition and
deployment in plain code and that employs Java’s generics feature throughout.

In order to enable the Eco approach we are currently working on an im-
plementation on top of BEA’s novel JRockit AOP-enabled virtual machine [4].
This virtual machine supports a low-level API for AOP and aims to provide
aspectual behavior at very little performance cost. A first proof-of-concept pro-
totype of Eco shows promising results.
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