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Abstract

Aspect] was designed as a seamless aspect-oriented extension of
the Java programming language. However, unlike Java, Aspect]
does not have a safe type system: an accepted binding between a
pointcut and an advice can give rise to type errors at runtime. In
addition, Aspect]’s typing rules severely restrict the definition of
certain generic advice behavior.

In this paper, we analyze the roots of these type errors, and de-
scribe measures to recover type safety for both generic and non-
generic pointcut/advice declarations. Pointcuts quantify over het-
erogeneous sets of join points and are hence typed using type
ranges in our approach, while type variables and a dual advice sig-
nature allow to express the generic and invasive nature of advices.
Using these mechanisms, we can express advice that augments,
narrows or replaces base functionality in possibly generic contexts.
As a language engineering contribution, we integrate our proposal
with the Aspect] language, and we provide a prototype implemen-
tation as a plugin for the AspectBench Compiler (abc). On a the-
oretical level, we present a formal definition of the proposed con-
structs and typing rules, and develop proofs for their type safety
properties.

1. Introduction

Aspect-oriented software development aims to solve crosscutting
concerns by extending, often object-oriented, base languages with
specific language constructs to enable the clean modularization of
these concerns. One of the common design goals of such language
extensions is a seamless integration with the base language. To this
end, the aspect language will adopt a maximum of characteristics
from the base language. With respect to typing, aspect-oriented
extensions of statically-typed languages, such as Aspect] [19] for
Java, aim to introduce statically-typed aspect modules.

However, Aspect] does not succeed in carrying over Java’s
static type-safety. Whereas a runtime type error can only originate
from an explicit (narrowing) cast introduced by the programmer
in Java, there is no such guarantee in Aspect]: as was previously
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identified [31, 6], the type variance rules for pointcut and advice
declarations make the invocation of the proceed-method inherently
unsafe. Furthermore, despite Aspect] 5’s adoption of Generics [9],
support for typing generic advice methods is limited. For these
cases, Aspect] provides only an ad hoc solution that introduces new
safety problems in the advice application [17, 23]. We note that this
problem is not limited to AspectJ. To our knowledge, all other typed
aspect languages for Java (such as Caesar [26] or JAsCo [29]) also
suffer from these problems as they, in best case, adopt the same
typing strategy as Aspect].

In this paper we propose a novel type system that recovers safety
for pointcut and advice declarations. Its main design goal is to
support most common aspect definitions, including both generic
and non-generic advice behavior. Furthermore, the elements of the
type system can be integrated with practical aspect languages, and
we present such an integration for Aspect].

Contributions. The concrete contributions of this paper are the
following:

* We present an analysis of the current typing rules for pointcut
and advice declarations, and show how they can cause different
classes of type errors that remain undetected at compile-time.

We propose typing mechanisms that avoid these problems; they
include a dual advice signature for around-advice, type ranges
to describe the (possibly heterogeneous) selection made by
pointcuts, and type variables for generic advice behavior. We
derive type relations for these elements to guarantee safe advice
application.

We present the StrongAspect] language, an extension of As-
pect] that incorporates our type system. An implementation
of StrongAspect] is provided as a plugin for the AspectBench
Compiler (abc) [2]. Furthermore, we show that our typing rules
can also be enforced in framework-based AOP approaches that
employ only a generics-aware base language compiler.

We provide a formal definition of the syntax, matching seman-
tics and typing rules of the proposed extensions. Proofs of type
safety properties are sketched in an appendix, and more details
are available in a companion technical report [10].

While previous theoretical research [31, 17, 6, 23] has sporadically
identified the deficiencies discussed in this work, we present a
categorization of the different problems through a comprehensive
discussion of the current type system. Compared to their proposals,
we provide clear extensions and we present concrete integration in
mainstream approaches (such as Aspect] and AOP frameworks), an
issue that has not been previously addressed.

Paper Structure. Section 2 analyzes the typing rules of current
aspect languages, and presents the typing problems that motivate
this paper. Section 3 informally presents our type system: the un-
derpinning typing principles are explained in a general manner, and



the concrete StrongAspect] and AOP framework realizations are
presented. Some representative examples of realistic advice behav-
ior are developed using the new constructs in section 3.2.3. In sec-
tion 4, we discuss the abc implementation of the StrongAspect]
language, and in section 5, we give a formal definition of the key
elements of our proposal. Finally, we present some related work
and state our conclusions in sections 6 and 7.

2. Motivation

In this section, we recapitulate the current Aspect] typing rules
and outline the type-safety problems we have identified. These
issues relate to the central pointcut/advice mechanism which allows
aspects to intercept join points in the execution of an application.

In what follows, we will use the term “signature” in a general-
ized meaning to denote a contract stipulating parameter types and
a return type. While the concept of a signature is widely used for
ordinary methods and advice methods, and while the declaration of
a named pointcut also specifies a signature, we extend this usage
to join points as they are captured by a pointcut. For example, the
execution join point of method Person.getAge(), has signature
Integer(Person p) when itis selected by the following pointcut
(i.e. it can be executed with an argument p of type Person, and it
will return a value of type Integer):

execution(Integer Person.getAge()) && this(p)

Additionally, we consider a partial order relation between sig-
natures to indicate when the contract of one signature provides
stronger guarantees than another signature: we say signature A is
stronger than signature B, when the return type of A is a subtype
of the return type of B, and when the argument types of A are su-
pertypes of the respective argument types of B. The different treat-
ment of argument and return types is referred to as the principle
of contravariance for arguments, and covariance for results. For
example, the signature Integer(Person p) is stronger than the
signature Number (Employee p), because it requires a less specific
argument and promises a more specific return value. (Here, and in
the rest of the examples throughout the text, we use the well-known
type hierarchy Employee <: Person <: Object for argument
types, and Integer <: Number <: Object for return types, where
“<:” indicates “is a subtype of”.) Generally, a method or join point
can be substituted in place of another one, if the signature of the
first is equal to or stronger than the signature of the latter. This or-
dering is therefore also known as the subtype relation for function
types in some literature.

2.1 Current typing rules and subtype variance

In current typed aspect languages, the typing of pointcut and advice
declarations is typically founded on the following principles: (i) the
body of an advice method must adhere to the advice signature
(identical to how a regular method must adhere to its signature),
(ii) the pointcut signature must be stronger than the signature of the
join points that it selects, i.e. the selected join points must adhere
to the pointcut signature and (iii) when an advice is bound to a
pointcut, the signature of the advice must be stronger than that
of the pointcut. Together these principles ensure that the advice
signature will be stronger than the signature of an intercepted join
point, and the advice code can therefore be safely executed in
addition to, or in place of, this join point.

As a concrete example, consider the following valid declara-
tions in Aspect].

pointcut pc(Employee e): args(e,..) && within(Main);
before(Person p): pc(p) { /* ... %/}
Integer around(): call(Number =()) { /* ... =/}

The named pointcut in the first line declares an argument of type
Employee in its signature, and hence the pointcut expression must
always bind an argument of this type. This can be accomplished
with the primitives this, target and args, which bind respec-
tively the executing object, the receiving object or the arguments
of the join point to a given variable, but only match if the to-be-
matched object belongs to the variable’s type (or its subtypes). Be-
cause of this dynamic type test, the pointcut signature will be equal
or stronger than the join point signature, as its argument will be of
an equal or wider type (recall from the above that a stronger signa-
ture implies wider argument types). The signature of the advice in
the declaration on the second line is even stronger, since the argu-
ment type is further widened to type Person. The binding of this
advice to the pointcut pc is therefore accepted.

Return types on the other hand, are only declared for around-
advice kind in Aspect]. Since this advice is executed in place of
the join point, it needs to provide a return value to return to the
join point caller. Similar to the argument types, the return type of
an around-advice has to be verified against the pointcut. However,
Aspect] does not include a return type in pointcut signatures. The
verification of the return type is instead postponed until weaving
the advice, when the join point shadows are determined, and their
return types can be taken into account!. Nonetheless, the compat-
ibility of the advice is still determined according to the principle
that the advice signature should be equal or stronger than the join
point signature, i.e. that the advice return type should be equal or
narrower. Since the advice declaration in the third line only applies
to join points with exactly the static return type Number, the advice
return type (Integer) will always be narrower, and the advice will
always be accepted.

2.2 Around advice and the proceed mechanism

In the body of an around-advice, a proceed-method can be em-
ployed to invoke the execution of the intercepted join point (or to
call the next advice in an advice chain), possibly with different pa-
rameter values. Since the around-advice acts effectively as a wrap-
per around the join point in this manner, we can identify two inter-
faces associated with this advice: the proceed interface is fulfilled
by the intercepted join point and offered to the advice by means of
the proceed-method, while the interface of the advice method itself
is offered by the advice to the caller of the join point. Put differ-
ently, these are respectively the expected and provided interfaces of
an around-advice.

However, current typed aspect languages do not distinguish
between these two interfaces when determining the signature of the
proceed-method. For example, in Aspect], the proceed signature is
taken to be the same as the advice signature [19, sec. 3.6], which
amounts to ruling that — in the sense of these interfaces — the
advice can expect the same as what it provides. This is an incorrect
judgment in the cases of type variance explained in the previous
section (and already discussed in a more limited context in [31, 6]),
as the advice signature can be stronger than the join point signature,
and the advice then provides more than it can expect.

As a concrete example, the following advice is accepted by
Aspect]’s typing rules:

void around(Person p):
execution(void *()) && this(p) {
proceed(new Person());

'In case of compile-time weaving, this might still qualify as a static ver-
ification. Note however that the pointcut/advice compatibility has become
dependent on the particular base application on which the advice is applied,
an undesirable property.



While this advice works correctly with any Person as an argu-
ment, it may incorrectly assume the same of all of its join points.
The advice can also be applied to methods of subclasses, e.g.
Employee.promote(), in which case executing the join point via
the proceed-method with an argument of the general type Person
will cause a ClassCastException.

An identical situation can also occur with respect to the return
types, as demonstrated by the following advice:

Integer around(): call(Number =()) {
Integer i = proceed();
/) ...

}

Because this advice provides an Integer result, it can assume that
its join points do so as well in Aspect]. However, the advice can
also be applied to join points where the returned value of type
Number is not an Integer, in which case a ClassCastException
will occur when returning from the proceed-method to the advice
body.

The type systems of current aspect languages (such as Aspect])
do not prevent these type errors at compile- or weave-time. They
are caught by the runtime type checks of the execution platform
when the advices are executed with an incompatible context. Such
errors can be difficult to detect as the problem might only manifest
itself in an uncommon situation or after the base program has
evolved in a certain way (when, for example, new subclasses have
been introduced).

One obvious measure to prevent these type errors would be to
prohibit the corresponding forms of type variance. Alternatively,
the proceed-method could be defined as not taking arguments and
thus always invoke the join point with the original arguments (plus
a similar restriction for the return value). However, both modifica-
tions would clearly be very restrictive.

2.3 Special case of the Object return type

Of course, not every advice will use the full replacement power
enabled by around-advice. Some advices will always invoke the
proceed-method with an original argument value from the join
point caller, or will always return a value obtained from the join
point through a proceed invocation. Since these values will always
be of a correct type, the advice is generally compatible with any
join point (save other assumptions about these values). In this
sense, the advice is gemeric with respect to its return value or
arguments. For example, the following advice, which executes the
intercepted join point twice and which returns the result of the
last invocation, is generic with respect to its return value and is
therefore compatible with any join point return type.

Object around(): call(x incr()) {
proceed(); return proceed();

}

However, note that this advice binding is not as such allowed
by the type variance principle from section 2.1, which states that
the advice signature has to be equal or stronger than the join point
signature, i.e. that the advice return type has to be narrower than
the join point return type (while Object will generally be wider
instead). Since it is quite common and useful for an advice not to
interfere with the execution of the base functionality (e.g. in com-
mon AOP applications, such as a profiling aspect), this is a severe
restriction. Aspect] therefore employs an additional type variance
rule to accommodate for generic advice of this kind: when the re-
turn type of an around-advice is declared as java.lang.Object,
the default binding rule does not apply and the advice can instead
be combined with any join point return type. Put differently, the
typing rules consider the Object return type as a necessary and

sufficient condition for an advice to be generic with respect to its
return value.

Alas, this condition is neither necessary nor sufficient, and this
causes further type errors on the one hand, and prevents the typing
of certain valid advice methods on the other hand. For example,
the following advice declares the Object return type, but is by no
means generic:

Object around(): call(Number =()) {
return new Object();

3

Since the advice does not have to follow the type variance principle
from section 2.1, it can return a value which cannot be handled
by the corresponding base functionality, which will thus cause a
ClassCastException (as also observed, though without relation
to the type variance principle, in [17, 23]).

As an example of a case of generic advice that uses a type dif-
ferent from Object, consider the following generic advice method
that is in fact sound for any join point with a return type that is a
subtype of Number. However, as the advice is not declared with the
Object return type, the opposite relation (supertypes of Number) is
enforced by Aspect]. The following pointcut binding is thus illegal:

Number around(): call((Integer || Float) =(..)) {
Number n = proceed();
while(n.intValue() > 100)
n = proceed();
return n;

}

The workaround to enable this binding consists in declaring the
Object return type for this advice and including explicit casts to
Number at every invocation of the proceed-method. This is tedious,
and of course it does not guarantee static type safety either.

3. Safe and Flexible Pointcut/Advice Bindings

In this section, we informally present our proposed solution for the
typing problems from the previous sections. We first explain the
general principles for typing pointcut and advice declarations, and
then develop StrongAspect], a full integration with the concrete As-
pect] language. After presenting some typical examples of advice
behavior expressed using StrongAspect], we outline an alternative
realization of the typing principles as a type system for framework-
based AOP approaches such as Spring AOP or JBoss AOP.

3.1 Typing principles

To present our proposal at an abstract level, we will develop re-
placements for the typing principles outlined in section 2.1.

3.1.1 Dual advice signature

As described in section 2.2, the behavior of an around-advice is
governed by two interfaces: the proceed-interface determines what
the advice expects from the join point, while the advice interface
determines what it provides to the join point caller. We propose to
use an explicit proceed-signature in addition to the regular advice
signature for around-advice in order to reflect this distinction. The
advice body should adhere to the advice signature as before, but
it can only employ a proceed-method with the declared proceed-
signature.

3.1.2 Type variance relations, pointcut type ranges

This dual signature has to be taken into account when verifying
the compatibility of the advice with a pointcut and, ultimately,
its join points. To derive the necessary relations, we observe that
both the join point and its caller are unmodified by the advice
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Figure 1. Join point interfaces (a) without and (b) with advice
application, in UML ball-and-socket notation [25]

application, and thus rely on the original join point interface for
their interaction with the advice (see figure 1). Consequently, the
advice interface (Al) is provided where the join point interface
(JP]) is expected, and the join point interface is provided where the
proceed interface (PI) is expected. In order to obtain a safe advice
application, we accordingly require an advice signature which is
equal or stronger than the join point signature (i.e. the original
relation from section 2.2), as well as a join point signature which is
equal or stronger than the proceed signature, that is, we impose a
new relation that harnesses the new interface.

These variance relations involve the signatures of advice and
join points, but we have to enforce them in the typing rules us-
ing a pointcut signature, which functions as an abstraction of a
set of (possibly heterogeneous) join points. Since the join point
signature is bound on both ends by the two signature relations,
we propose to type pointcuts with signature ranges (rather than
a single signature), which in turn consist of type ranges (rather
than a single type) in the position of arguments and return val-
ues. A range is described using a lower bound (the most specific
signature/type) and upper bound (most general signature/type).
For example, when a pointcut is typed with the signature range
Integer-Number (Employee-Person p), then its join points must
have a signature that is no weaker than Number (Employee p) (the
upper bound with respect to signature strength), and no stronger
than Integer (Person p) (the lower bound).

We can then enforce the relations of the previous paragraph
when verifying a pointcut/advice binding, by requiring that the
advice signature is stronger than the lower bound of the pointcut
signature, and that the upper bound of the pointcut signature is
stronger than the proceed signature. Or, to summarize the situation
in a mathematical notation (where “o,” represents “signature of x”
and “<” represents “is equal or stronger”):

Cadvice < T pe,lower < Tjp < O pe,upper < O proceed
‘We can group these relations by considering containment of ranges:
a range contains another range if it has both an equal or more
specific lower bound and an equal or more general upper bound.
So (where “€” represents “lies within” and “C” represents “is
contained by”):

gjp € [Upc,/ower - O'pc,upper} - [O'advice - Oproceed]

3.1.3 Advice type variables

Finally, similar to other proposals [17], we propose to use type vari-
ables at the level of advice to support the generic advice behavior

of section 2.3 in the type system®. A type variable represents an
unknown type, possibly below a given non-variable bound, which
can be freely instantiated for each advice application. A typing us-
ing an unknown type X is a stronger guarantee than using Object
(or using its upper bound): while any value of type X can be as-
signed to a variable of type Object (or of its upper bound type),
the opposite does not hold. But as generic advice behavior always
invokes the proceed-method with an original argument (or it always
returns a result obtained from a proceed invocation), it is generally
able to keep the type of this argument (or of the result) unknown.
The bound of the type variable can be used to represent additional
assumptions made by the advice about this unknown type.

Which pointcuts can then be safely bound to an advice typed
with type variables? While the conclusions of the previous section
stay in effect, the ability to freely bind type variables for each
advice application makes it easier to meet the required relations. We
observe that, when a type variable appears as the type of the return
value (resp. argument) in both advice and proceed signatures, and
it does not appear elsewhere in these signatures, we can bind this
type variable to the type of the return value (resp. corresponding
argument) in the join point signature (at least, if this binding is
allowed by the type variable’s bound). As such, we will have
obtained that the advice signature, proceed signature and join point
signature all have the same type (i.e. no variance) for this return
value or argument, and thus satisfy the previous relations. We will
therefore allow the binding of this advice to pointcuts whose upper
bound for the return value (resp. corresponding argument) is below
the upper bound of the type variable.

3.2 StrongAspect]

We now present StrongAspect)®, an integration of the proposed
typing principles with the Aspect] language. We first discuss its
syntax, matching semantics and typing rules in a general manner,
and then present two sets of examples of advice behavior expressed
in StrongAspect].

3.2.1 Language definition

Our proposed extensions to Aspect] are specified in figure 2, which
contains a formal definition of the relevant parts of the language
syntax, and in figure 3, which lists the typing and matching rules for
the redefined constructs in a systematic (but still informal) manner.

Notational conventions. The definition borrows some notational
conventions from the Featherweight Java calculus [16]. In particu-
lar, we indicate the syntactic structure of an expression by means of
metavariables, which are the non-terminals in the grammar, along
with the lexical metavariables shown under the heading “Names
and variables”. Different metavariables are used for the same syn-
tactic category, in order to distinguish between multiple instances
of the same syntactic element in one definition phrase. Addition-
ally, we write € for an ordered sequence of zero or more elements
e, ..., en, Where the element separator may be space, comma or
semicolon, depending on the context. This convention is some-
times extended across binary constructs where the elements of
two sequences should be appropriately ‘zipped’, e.g. C' T signi-
fies C1 x1,...,Cy xn. An individual element is referred to as e;.
A form of syntactic sugar not shown in the syntax definition, is the
possible omission of the empty angle brackets “<>” when no type
variables are declared or when no type arguments are provided.

2 The usage of type variables for the typing of generic (or parametrically
polymorphic) behavior is wide-spread [5], and exists at the level of methods
and classes in Java 5 [24].

3 The “strong” prefix refers to the advanced safety guarantees provided by

the extension. The name is also loosely inspired by the Strongtalk type
system for Smalltalk [3].



// Names and variables

¢, d // Class name

p // Pointcut name

T,Y, 2 // Term variable

X, Y, Z, W // Type variable

// Type-related categories _

C,D,E,F,G == «c¢<T> // Non-variable type
P,Q,R,S,T := X | C //Type (var or non-var)
// Terms and pointcut expressions ~

M,N,I,J,K == ...|proceed(N) |.../Term

p(Z) | this(E-F x) o
target(FE-F z) | args(E-F )
// Top-level declarations o
D = pointcut p(E-F T): ¢;
| before(F Zz): ¢ {M}
|

10) = ...// Pointcut expression
|
|

afj:er(F‘ z): 7(1) {M} ~
<X extends C> R around(P ZI):
¢: S proceed(Q) {M}

Figure 2. StrongAspect] syntax (relevant parts)

Around advice declaration (cf. the last phrase of D in fig. 2)

Type use: Type variables X may be used as subtypes of bounds
C in the entire advice declaration. All types must be known
type variables or legal parametrized types as per [13, §4.5].

Variable signature types: Each type variable X; may be used at
most once in the signature types {R, P} and in {S,Q}. X;
must then appear in the same position in both signatures.

Parameter use: Identifiers T may be used as simple names_in
body M to refer to parameter variables of declared types P.

Proceed use: Fixed identifier proceed may be used as a simple
method name with declared signature S (Q) in body M.

Body return value: When declared with non-void return type R,
it is not allowed to drop off the end of the body M, and every
return must have an expression of some subtype of R.

Pointcut usage (cf. the first and last phrase of D in fig. 2)

Parameter binding: Declared advice or named pointcut parame-
ters £ must be bound (i.e. used as an argument) in each dis-
junctive branch of employed pointcut expression ¢.

Pointcut parameter type: When named pointcut parameter x; is
used as argument in a pointcut expression, the argument po-
sition type range must be contained in type range E;-F;.

Advice parameter type: When around advice parameter x; is
used as argument in a pointcut expression, the argument posi-
tion type range must be contained in range Q;-F;, if P; and
Q; are non-variable, or must lie below CY, if P; and @Q); both
equal type variable X, with bound Cj.

Advice return type: The compile-time return type of join points
where around advice is applied, must lie within advice return
types R-S, if R and S are non-variable, or must lie below
Ck, if R and S both equal type variable X, with bound Cf.

Pointcut matching (cf. ¢ in fig. 2)

Binding primitives: Primitive pointcuts this, target and args
match if the compile-time type of the to-be-bound variable or
expression is some supertype of the declared lower bound E,
and the run-time type is some subtype of upper bound F'

Figure 3. StrongAspect] semantics: typing and matching rules

Overview. The syntax specification in figure 2 consecutively de-
fines the structure of types (general, variable and non-variable), in-
termediate expressions (terms and pointcuts), and top-level decla-
rations (named pointcuts and advice). The parts omitted from this
figure keep their original Aspect] definition. In figure 3, the first
section of typing rules regulates the use of types and terms in the
signature(s) and body of around advice declarations. The second
section treats the usage of pointcut expressions in the declaration
of named pointcuts and advice (i.e. the pointcut/advice binding).
The last section defines the matching rules for pointcut expressions;
here only the primitives this, target and args are redefined.

Application of typing principles. The StrongAspect] extension
is the result of the integration of the principles of section 3.1
with the concrete elements of Aspect] and Java. As proposed in
section 3.1.3, we allow the introduction of type variables as a part
of the around-advice declaration with standard usage constraints
(rule Type use). Around-advice also includes the additional proceed
signature from section 3.1.1, and this declaration is enforced in the
body (rule Proceed use). The rule Variable signature types requires
that each type variable can be used at most once in these two
signatures, in the same position, following the observation from
section 3.1.3 that this measure allows the type variable to ‘capture’
the corresponding join point type (if this type does not exceed the
type variable bound).

Moreover, the principles from section 3.1.2 are applied: type
ranges are employed for the typing of pointcuts, and pointcut bind-
ings must honor the stipulated type range relations (see the three
last typing rules from section Pointcut usage in figure 3). The ad-
vice rules also include a case for variable signature types, where
the variable’s bound must be observed instead (section 3.1.3). The
binding rules for before and after advice are not listed in figure 3,
but stay in effect from Aspect], with the clarification that the point-
cut type must be abstracted to the lower bound signature. Addition-
ally, three design decisions require more explanation:

1. We increase the expressive power by including Null (in addi-
tion to Object) as a built-in non-variable type. Null (the type
of null) is at the bottom of every type hierarchy: it is a subtype
of every type*. By employing Null as a lower bound in a type
range, the range becomes unbounded in that direction’.

2. The binding primitives this, target and args now match join
points where the to-be-bound value has a type within the vari-
able’s declared type range, but notice from the matching rule
that the upper bound is compared against the dynamic type of
the join point value (a relaxation to select more join points).
Also, unlike Aspect], the variable’s type range is specified in-
line in order to make the pointcut expression independent of the
enclosing definition.

3. Similar to Aspect], StrongAspect] only declares arguments
type ranges in the definition of named pointcuts (first phrase
of D) and verifies return types while weaving around advice
(rule Advice return type). The return type is not relevant for the
other advice kinds, and its inclusion would complicate the defi-
nition of named pointcuts that are never used for around advice.
(This is a trade-off: in the framework-based implementation of
our approach in section 3.3, as well as in the formal type system
in section 5, we make pointcut return types explicit.)

4 Although this type is explicitly considered by the Java language specifica-
tion [13, §4.1], it is not allowed to use Null as a type annotation in Java.

3 We observe that type ranges thus become a generalization of the wildcards
for type arguments in Java 5 Generics [30]:

<? extends C> reducesto Null-C
<? super C> reducesto C-Object



3.2.2 Examples revisited

We now revisit some of the examples from section 2 to explain
the StrongAspect] typing rules, and to illustrate how they resolve
the identified Aspect] typing problems. The relevant rule(s) are
mentioned between parentheses at the beginning of each example.

Example (Pointcut matching). The expression
args(Null-Employee e,..)

selects join points where the first argument has a dynamic type
Employee, or belongs to one of its subtypes. This is the semantics
of the original args primitive with Employee as the declared pa-
rameter type. The pointcut this(Employee-Person p) matches
join points belonging to the classes Employee and Person and all
classes between them in the inheritance hierarchy.

Example (Pointcut parameter type). The following pointcut dec-
larations are legal because the pointcut argument type ranges are
only widened. In contrast, a pointcut parameter declared with type
range Employee-Employee cannot be bound to the argument of
these pointcuts.

pointcut pcO(Person-Person p): this(Person-Person p);
pointcut pcl(Employee-Person p): pcO(p);
pointcut pc2(Employee-Object x): pcl(x);

Example (Proceed use and Advice argument type). The follow-
ing around-advice proceeds the intercepted join point with a new
Person instance. It can be validly bound to a pointcut that matches
join points in the class Person (strictly). To bind it to a pointcut
that matches join points in subclasses, the argument of the proceed-
signature must be narrowed (e.g. to Employee). However, then the
invocation of the proceed-method with a general Person becomes
illegal. As such, the type errors of section 2.2 can be prevented.

void around(Person p):
execution(void *()) && this(Person-Person p):
void proceed(Person) {
proceed(new Person());

3

Example (Body return value and Advice return type). Rounding
advice that returns the integer value of the original return value can
be bound to a pointcut that selects join points with a static return
type between Integer and Number. Should weaving occur at a join
point with a return type of Float or Object (or a type unrelated to
Number), a compile error is raised.

Integer around():
call((Integer || Number) =()):
Number proceed() {
return new Integer(proceed().intValue());

}

Example (Advice parameter type and Variable signature types).
The following advice executes the intercepted join point twice with
the original parameter value. It can be bound to any pointcut with
one argument of any type (represented here by the most general
type range Null-Object).

abstract pointcut twice(Null-Object x);

<T> void around(T t): twice(t): void proceed(T) {
proceed(t); proceed(t);

}
<?> reduces to Null-Object
C reduces to C'-C

aspect NumberCache perthis(cachedOp()) {
pointcut cachedOp():
execution(Number DataProvider.expensive());

Number cache;
Number around(): cachedOp(): Number proceed() {

if(cache == null)

cache = proceed();
return cache;

Listing 1. Example Caching Aspect

Example (Advice return type and Type use). By declaring a vari-
able bound, the available interface can be made more specific and
the following advice can be admitted. In this case, the join points
matched by the bound pointcuts must have a static return type that
is a subtype of Number.

<N extends Number> N around():
call((Integer || Float) =*(..)):
N proceed() {
N n = proceed();
while(n.intValue() > 100)
n = proceed();
return n;

3.2.3 Some (more) realistic examples

In this section, we present a number of examples of common as-
pect applications expressed using StrongAspect]. Beside enabling
a better understanding of the proposed typing constructs, these ex-
amples also illustrate the usefulness of the introduced mechanisms
for practically-relevant, realistic advice behavior. They provide a
reasonable indication that our typing schemes do not significantly
restrict Aspect]’s expressiveness. To categorize the demonstrated
advice, we use the terminology of [28]. This work distinguishes
between augmentation advice (which always executes the origi-
nal behavior entirely), narrowing advice (which either executes the
original behavior or raises an error) and replacement advice (which
replaces the original behavior with entirely new behavior).

Caching is a common example of a concern that can be im-
plemented using aspects (e.g. [7]). In listing 1, we show a sim-
ple caching aspect that stores the numeric return value of an ex-
pensive operation and that retrieves it on subsequent invocations.
Different aspect instances (and thus cache values) are created for
each DataProvider using the perthis() keyword. (In practice,
the cache might employ a map to store a different return value
per combination of argument values, but this was omitted for the
sake of simplicity.) Until the cache has been initialized, the advice
behaves as an augmentation advice that stores the original return
value. Afterwards, it becomes a replacement advice that directly
returns a value without executing the original behavior. Because
the return value is both read and written in a single field, the same
return type must be used in both signatures (rules Body return value
and Proceed use). It is generally not safe to employ this advice for
a method with a different return type than Number and rule Advice
return type enforces this®.

In previous research such as [15], it has been recognized that
the implementation of a number of common design patterns benefit
from the application of aspect-oriented programming. In listing 2,

6 Although the entire cache could be made generic with respect to the type
of data that it stores by introducing a type variable at the level of the aspect
(as allowed in Aspect] 5 [9, sec. “Generic Aspects”]).




class Factory {
Component createTextArea(String t) {
return new JTextArea(t);
}
}
aspect ScrollPaneFactory {
pointcut componentCreation():
execution(Component Factory.create=(..));
JScrollPane around(): componentCreation():
Component proceed() {
return new JScrollPane(proceed());

Listing 2. Factory Method Example

interface JoinPoint<0,I> {
0 proceed(I i);
}
interface Advice<Oa,Ia,Op,Ip> {
Oa around(Ia i, JoinPoint<Op,Ip> jp);
}
interface GenAdvice<Ob,Ib> {
<0 extends Ob, I extends Ib>
0 around(I i, JoinPoint<0,I> jp);
}
interface Pointcut<0,I> {
void bind(GenAdvice<? super O, ? super I> ga);
void bind(Advice<? extends O, ? super I,
? super 0, ? extends I> a);

aspect Profiling {
pointcut profile(): execution(* Main.=x(..));
<R> R around(): profile(): R proceed() {
long start = System.currentTimeMillis();
try { return proceed(); } finally {
long stop = System.currentTimeMillis();
reportMeasurement (stop - start,
thisJoinPointStaticPart);

Y/

Listing 3. Example Profiling Aspect

we provide an example of the Factory Method pattern [12]. The in-
tent of this pattern is to create an interface for object creation that
defers instantiations to its specializations. Our example defines a
factory that creates GUI components (only one factory method is
shown). An aspect specializes the factory methods to decorate the
created components with scrollbars. In this case, the aspect per-
forms replacement advice that returns a newly created component.
We can employ different return types for the two signatures of the
advice method (rules Body return value and Proceed use), and as
such the advice can be applied for join points with a return type be-
tween JScrollPane and Component (rule Advice return type). In
case the specialized factory would refine the existing Component
instead of creating a new value (e.g. a border can be defined for an
existing component using the JComponent.setBorder method),
the advice would qualify as augmentation advice and typing using
type variables becomes possible.

Profiling is another example of a crosscutting concern that is
often implemented using aspects (e.g. [20, sec. 5.6.2]). Listing 3
presents a profiling aspect that measures the execution time of
methods in the Main class. Methods are identified using Aspect)’s
reflective access to the join point that is being advised. As can
be expected, this behavior classifies as pure augmentation advice.
By typing the advice method using an unbounded type variable as
return type (rule Type use), it can be bound to join points of any
return type (rule Advice return type).

3.3 Incorporation in Framework Approaches

As an alternative to the StrongAspect] language, we now present
an incorporation of the proposed typing principles of section 3.1 in
a framework-based AOP approach.

AOQOP frameworks employ only base language constructs to de-
scribe aspectual behavior, and typically offer limited static type-
safety guarantees in comparison to language extensions such as As-
pectl. The AOP Alliance specification [27], which is implemented

Listing 4. AOP Framework Key Interfaces

by a number of approaches including Spring AOP [18], even rules
out all static type checking as all argument and return types are
of the general Object type in its interfaces. The annotation-based
style of Aspect] [9] improves in this respect by implementing ad-
vice methods as regular Java methods with special pre-defined an-
notations. As such, advice methods can be typed with a concrete
signature which is checked for compatibility with the bound point-
cut by the aspect weaver at load-time. However, to implement the
proceed-method, a general interface ProceedingJoinPoint with
Object argument and return types is used, again reducing safety
guarantees to mere dynamic type-checking.

In this section, we show how the typing rules from our proposal
can be enforced by an AOP framework that employs a generics-
aware base language such as Java 5. The key interfaces for such
a framework are shown in listing 4. We augment the core types
representing join points, advice and pointcuts with type variables
that represent the type declarations of these entities. In the versions
presented in the listing, we assume one exposed pointcut parameter
(type variables starting with I) and one return value (type variables
starting with 0). (In contrast to StrongAspect], we will explicitly
keep track of pointcut return types.) The interface Advice encodes
the two signatures of a non-generic around-advice. GenAdvice
represents an advice that is generic in both argument type and
return type; it can possibly declare bounds for these type variables.
Finally, Pointcut encodes the binding rules for each of these two
advice types respective to the types declared for the pointcut.

To demonstrate how the typing rules are enforced, we revisit
an example from section 3.2.2, where an advice is presented that
declares void as return type and Person as argument type in both
the advice and proceed signatures. We reproduce this advice by im-
plementing the interface Advice, instantiated with the appropriate
concrete types. As such, advice bodies equivalent to those of the
StrongAspect] version become possible’:

class ExampleAdvice implements
Advice<Void,Person,Void,Person> {
Void around(Person i,
JoinPoint<Void,Person> jp) {
jp.proceed(new Person());

Y/

The binding rules are then checked based on the types de-
clared for the pointcut, represented by the (possibly wildcard)
type arguments of type Pointcut. An instance of this advice

7With exception that the advice body cannot drop off its end and should
instead return null, the only inhabitant of type java.lang.Void.




can be passed as an argument to the bind-method invoked on a
term of type Pointcut<Void,Person>, but not on one of type
Pointcut<Void,? extends Person>. Notice that this conforms
to the prescribed typing rules, as the second type arguments of these
two types represent the parameter type ranges Person-Person and
Null-Person respectively.

The presented interfaces allow to enforce all typing rules from
our proposal at compile-time using only the base language compiler
(i.e. any standard compliant Java 5 compiler). However, a number
of caveats still apply. It must still be enforced that pointcut defini-
tions correspond to their declared parameter and return types (this
depends on the manner in which the pointcut language is integrated
in the framework). Also, the wildcard types in our proposal are
more general than the wildcard type arguments currently available
in Java 5: it is not possible to represent a double bounded range
such as Employee-Person.

4. StrongAJ: An implementation using abc

In order to provide an experimentation platform for our approach,
we have realized a prototype implementation of the StrongAspect]
language. Instead of developing an extension of the standard As-
pect] compiler (ajc) [8], we have opted to employ the alternative
AspectBench compiler (abc) [2], since it promises easy and modu-
lar addition of new aspect language features through plugins, with-
out the need to fork the current source tree of the compiler. abc is
itself built on top of the extensible compiler framework Polyglot,
and the bytecode optimization library Soot. Following abc conven-
tions, our plugin is named StrongAlJ.

The StrongAJ implementation initially follows the best practice
procedure for extending the abc platform. This involves extending
the Polyglot frontend to support the new (or changed) syntax ele-
ments (e.g., in our case, the pointcut type ranges and the new pro-
ceed signature specification), and additionally providing the new
abstract syntax tree (AST) nodes to represent these language con-
structs. By making these new nodes reachable to the Polyglot AST
visitors, ambiguities in the type nodes are automatically resolved.
Another visitor will type check nodes against the information from
the type context, so by installing the new proceed-signature in this
context when the visitor enters the scope of an advice declaration,
the advice body is checked against its dual signature.

Veritying the pointcut/advice bindings requires more effort, but
in general we can locate the existing type checks and extend them
to enforce the additional type relations (typically adding a lower
bound check in addition to the existing upper bound check). Point-
cut arguments are checked in the frontend, where we override abc’s
typeCheck method for named pointcut nodes. Return types are
checked while weaving, so we are required to transport the ad-
ditional type information of the advice signatures to the backend
through abc’s so-called Aspectinfo classes. The matching of this,
target and args is also implemented in the backend, where, de-
pending on the corresponding static join point type, they either
never match, always match, or construct a test residue. We simi-
larly install the new matching behavior at this point, and provide it
with the declared type range of the variable being bound.

Since the current abc version (1.2.1) provides no support for
Java Generics (nor for the other features of the Java 5 release
from 2004), we were unsure about the feasibility of an addition
of type variables to the type system. Despite our initial reluctance,
this proved to be quite straightforward: we have introduced a new
class VariableType as a subclass of abc’s ReferenceType class
from the Polyglot type system, equipped with a supertype link to
the type variable’s bound. This is sufficient to verify the typing
using variable types in advice bodies. However, since the backend
cannot handle these types (type variables are not supported in
Java bytecode), we have introduced a new frontend visitor pass to

erase type variables from the AST after type checking. The type
variables are replaced by their respective bounds, similar to the
erasure procedure from Java Generics [4].

Although the current version of the StrongAlJ plugin still resides
in a proof-of-concept status®, it implements the complete StrongAs-
pect] proposal, as verified by a test suite of 62 static and 3 dynamic
test cases. Implementing it using the abc framework was a very
reasonable effort, which required a total of 54 classes/interfaces (or
about 2500 LOC). Nevertheless, we observe that some features re-
quire changing (i.e. subclassing) a large number of classes spread
over both frontend and backend, sometimes only to pass required
information to the relevant places. Perhaps an aspect-oriented im-
plementation of the compiler itself could help tackling the cross-
cutting nature of these features.

5. Defining pointcut/advice bindings formally

In section 3 we have informally introduced our proposal for type-
safe pointcut/advice bindings. In this section we present a formal-
ization of its essentials by presenting an excerpt of a corresponding
type system we have developed. (The full type system, evaluation
rules and property proofs, including for safety of the type system,
are available as the technical report [10]; the evaluation rules, term
typing rules and proof sketches are presented in appendix A.) We
then revisit some of the examples introduced previously in order to
show that they are correctly handled.

5.1 Type system

Our type system has been built based on a formal framework
introduced by Jagadeesan et al. [17] for the typing of aspects in
the presence of type polymorphism.

Figure 4 shows an excerpt of our type system that concerns
pointcut and advice declaration. These type rules formalize part of
the informal rules given in figure 3: the last four rules given here,
for example, formally define the conditions stated in rules Advice
parameter type and Advice return type of figure 3.

The typing judgments are based on variable types (e.g., X, Q)
and non-variable types (e.g., C, F, ). Furthermore, we make use
of the notations introduced previously, in particular, subtyping <:,
type ranges C—D (cf. section 3.1.2), and (possibly zipped) se-
quences of types and terms, e.g. for typed argument lists Q) Z.

Pointcuts Although we do not use explicit type signatures for
pointcuts, we expect that a pointcut ¢ can be typed in terms of the
variables it exposes (Zz), the type ranges for these variable values
F—(G, and the type range D—E of the return value. (Note that our
type system accommodates return types for pointcuts while they
are not present in StrongAspect] as discussed in section 3.2.1.)
The two rules WELL-FORMEDNESS-PC and CONSISTENCY-
PC in figure 4, which are noted ‘upside down’ compared to or-
dinary type rules, represent the requirements for the matching
and typing semantics of a pointcut language that is abstracted
from the core calculus. Rule WELL-FORMEDNESS-PC requires
that this typing produces well-formed types and an environ-
ment whose entries corresponding to the pointcut parameters are
well-typed (here and further on the auxiliary typing judgment
z; unique in Z means that all elements, here z;, of a sequence are
unique in that sequence, here Z). Rule CONSISTENCY-PC specifies
that only join points are matched that conform to a pointcut type. To
this end, an auxiliary function match returns, for a given method
call M and pointcut ¢, the exposed variables ¢, values K and a
proceed body M’. A match then conforms to the pointcut type if
the exposed values have types that specialize the corresponding up-
per bounds of the pointcut arguments, and if the proceed term can

8 Available at http://ssel.vub.ac.be/strongaj/
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Figure 4. Typing rules (excerpt)

be typed with an environment that assigns the pointcut arguments
their lower bounds. The resulting type generalizes the lower bound
of the pointcut return type range, while the return type of the orig-
inal method call specializes the upper bound of the pointcut return
type range.

Advice Advice declarations are typed using the last five rules of
figure 4. We only consider the around-advice since it can emulate
the other advice kinds. Rule DEC-ADVICE essentially specifies
that, when the advice body is typed with an environment that
contains the declared proceed signature, its return type R’ must
be a subtype of the declared return type R of the advice. The last
two premises respectively ensure the conditions on the types of
arguments and return values of the around and proceed signatures.
Each of the two premises can be established by two rules, one rule
for non-variable types and one for variable types’. As explained in

9 The resulting four rules are in fact a slightly restricted, but more readable,
version of the single more general rule used in our type system, see the rule
DEC-ADVICE in appendix A.

section 3.2.1, in these rules, argument and return values that are in
corresponding positions in the around and proceed signature have
to be both variable or both non-variable. Furthermore, if they are
variable the must denote the same type variable.

The rule for non-variable argument types VALID-NONVARARG
mainly states that pointcut argument type range £~G' is contained
in the argument type range established by the proceed and advice
Q—P, thus requiring a contravariant relationship. The rule VALID-
VARARG essentially states that the upper bound of the pointcut
argument range must specialize the type variable (no variance rela-
tionship here).

Similarly, The rule for non-variable argument types VALID-
NONVARRESULT mainly states that the pointcut result type range
D—F is contained in the result type range established by the (com-
bined) proceed and advice R—S, thus requiring a covariant relation-
ship. The rule VALID-VARRESULT essentially states that the upper
bound of the pointcut result range must specialize the type variable
(once again no variance relationship here).

Type safety Our type system is type safe: proof sketches for
corresponding type preservation and typing progress properties
can be found in appendix A, more details are available in the
companion report [10].

5.2 Examples revisited

In order to illustrate the above rules, let us reconsider some of the
motivating examples we have presented previously. The advice at
the end of section 3.2.2 that executes a base method using proceed
as long as its integer value is smaller than 100 is correctly typed as
expected: the return type of the advice and the return type of the
proceed-method are both N, i.e., both types are variable and equal
and thus satisfy rule VALID-VARARG. Furthermore, according to
rule DECL-ADVICE, methods to which this advice is applied must
return a value of a subtype of the upper bound of variable N, i.e.,
Number.

In the case of the Factory Method example shown in listing 2,
the advice declaration ensures through rule VALID-NONVARRE-
SULT that the advice of aspect ScrollPaneFactory may only
be applied to calls returning values of type in the range between
JScrollPane, the return type of the advice, and Component, the
return type of the proceed method.

6. Related Work

Typing problems of aspect languages and type variance for advice
has been considered in recent work on the foundations of AOP and,
rather in an ad hoc manner, in the context of several concrete aspect
languages. We now consider relevant work of these two groups.
Wand et al. [31] have presented for the first time some of As-
pect]’s type safety problems in a precise formal framework. They
have presented Aspect]’s typing policy for non-generic around-ad-
vice and proceed invocations and illustrated its lack of soundness.
This work does not, however, investigate remedies to this problem.
Three recent publications propose formal calculi that support
a type-safe form of pointcut/advice bindings in object-based set-
tings. Clifton and Leavens [6] introduce an imperative core lan-
guage that models context exposing pointcut primitives as well
as around-advice capable of changing parameter bindings on pro-
ceed-invocations. The authors define how argument types and a re-
turn type for pointcut expressions can be derived that correspond to
the static types of any join point matched by the pointcut. In a bind-
ing, the return type of an advice can be a subtype of the return type
associated with the pointcut, but proceed will always employ the
return type of the advised methods. Similar to our approach, advice
and proceed-signatures can thus be different to allow more liberal
bindings while maintaining soundness. However, the approach does



not allow similar type variance for the argument types (relaxation
of this restriction is cited as future work). Also, there is no sup-
port for generic advices (the language employs non-variable types
only). This precludes a large number of useful advices admitted by
our approach.

Jagadeesan et al. [17] extend Featherweight Generic Java [16]
with an advice construct whose type may depend on explicitly-
declared type variables. For example:

advice <R extends Number> R Ex(): exe(R Foo.*()) {
return do_after(proceed());

3

This enables typing of advice similar to the generic advice pro-
posed in this paper. They present two safe type systems, one based
on a type-carrying semantics and another based on type erasure.
However, their approach assigns equal signatures to proceed and
the corresponding advice, and must therefore require the join point
signature to be equal to this joint signature (i.e. no type variance, al-
though the type variables from the signatures can be instantiated for
each join point). The typing of replacement advice such as the Fac-
tory Method example we have tackled is therefore restricted [17,
p- 21]. Furthermore, it is unclear how the inlined pointcuts could
be decoupled from the advice declaration, since the scope of type
variables also extends over the pointcut expression. (In the above
example, note that the type variable R is used in the pointcut to
quantify over execution join points of methods with a return type
that is a subtype of Number.) In contrast, we explicitly support ab-
straction of pointcuts through typing based on type ranges.

Ligatti et al. [21] consider a type system for minimal core aspect
languages, among others, in the context of an object-based base
language. Since their approach (i) only considers advice having the
same type as the join point triggering it and (ii) does not include
subtyping between objects, their results only contribute marginally
to the problems we have considered.

Aspectual Caml [23] is an aspect-oriented extension of the func-
tional programming language Objective Caml. It includes a point-
cut/advice mechanism that integrates with the static type system of
the language. Pointcuts select join points through name and argu-
ment patterns, but are typed with type variables whose bindings
are inferred from the advices to which the pointcuts are bound.
The pointcut will then only select join points that match its typing.
While this also enables typing (and type inference) of generic ad-
vice behavior using type variables, this work does not address the
influence of subtype polymorphism (neither structural nor nomi-
nal) on the safety guarantees and type inference algorithms (which
are Hindley-Milner based). It is therefore unclear how their conclu-
sions can be translated to an object-oriented setting.

Aspect] 5 [9] modifies the Aspect] language to support Java 5
generics. Firstly, this involves coping with the presence of gener-
ics in the base language: type patterns can match generic types and
their instantiations, and generic members can be defined through
inter-type declaration. Secondly, type variables can be declared for
aspects, similar to generic classes. When these variables are em-
ployed as regular type annotations in the aspect definition, this al-
lows more advanced typing of generic aspect entities, akin to the
advantages of generic classes. Additionally, type variables can also
be employed in the type patterns of pointcuts and declare state-
ments, where they directly influence the semantics of the aspect.
As such, a new class of generalizations (as partially proposed in
[14]) is made possible. Although generic aspects can generalize
functionality over different deployments, it is not possible to de-
clare type variables for advice methods. It is as such not possible
to generalize over different applications of an advice method in one
deployment, as generic advice allows. Furthermore, Aspect] 5 does
not address any of the type-safety problems outlined in this paper.

Lohmann et al. [22] study the combination of AOP and C++
templates in the context of the AspectC++ language. One dimen-
sion of this work focuses on the usage of generic code in aspects.
The AspectC++ compiler realizes generic advice, in their sense, by
transforming advice code into a template member function that is
called from each instrumented join point. A specifically-generated
class that encodes the type information of the join point is passed a
template parameter for this call, and as such, each case can be type-
checked by the underlying C++ compiler. The usage of templates
provides an expressive form of compile-time metaprogramming
(Turing-complete even), exploited in AspectC++ to provide even
more advanced kinds of generative advice. The trade-off is how-
ever that less abstraction is possible as type-checking of templates
can only be done after their expansion. AspectC++ is therefore only
capable of type-checking advices for a concrete join point at hand,
while Aspect] (and our expansion of it) allows to type-check ad-
vices against declared pointcut parameter types, irrespective of a
base application.

Finally, some work has been done on concrete language de-
sign issues concerning polymorphism and advice, notably Ernst
and Lorenz’s work on aspectual polymorphism in the context of
Aspect] [11]. They propose a notion of advice groups from which
the most specific advice is selected at runtime based on a late bind-
ing mechanism. Expressing the corresponding variance using typed
generic advice as we have proposed improves on this because of the
support for static type checking and better integration with the base
language. The authors also consider the relationship of aspect in-
stantiation and reflective access to polymorphic advice, two issues
which should also be explored in the context of our approach.

7. Conclusions and Future Work

This paper presents a novel type system to recover safety for point-
cut and advice declarations. As typing mechanisms, we propose
separate signatures for proceed and corresponding around-advices,
signature ranges for pointcuts and type variables for generic ad-
vices. For these elements, we derive type relations to guarantee
safe advice application, and we show how they can support var-
ious representative kinds of advice behavior. We present Strong-
Aspect], an integration of this type system with the Aspect] lan-
guage, and provide an implementation as a plugin for the Aspect-
Bench Compiler. We also show how the typing principles can be
statically enforced in an AOP framework by a non-aspectual (but
generics-aware) compiler. Finally, we have presented formal defi-
nitions of the proposed constructs and a corresponding type system
along with a proof of a corresponding type-safety property.

This work paves the way for a number of improvements to be
tackled as future work. The more expressive typing constructs of
our proposal sometimes result in quite complicated syntax forms.
Investigating how we can simplify this for the programmer, e.g. by
adding syntactic sugar or by inferring certain type declarations, is
work in progress. Furthermore, it might be interesting to explore the
usage of a pointcut expression typing not as a means of quantifica-
tion, but as an aid in the development and maintenance of pointcuts;
current pointcut errors often lead to wrong or empty matchsets, and
can be difficult to debug.
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A. Type system essentials

In this appendix we present the essentials of our type system. The
reader is referred to [10] for a self-contained presentation.

A.1 Definitions

The following definitions make use of two standard auxiliary judg-
ments for field lookup (A F fields(T") = P f) and method lookup

(A F meth(T.0) = <Y <« E>R(P z){M}).
A.1.1 Evaluation

The evaluation rules of our calculus are shown in figure 5. (Besides
these rules, the usual evaluation contexts for the congruent evalua-
tion of subterms apply.) Method call evaluation first selects all de-
clared advices (rule EVAL-SELECT), and reduces this list according
to whether their pointcut matches (rule EVAL-APPLY) or not (rule
EVAL-NOAPPLY). Only after all advices have been considered, the
original method is executed (rule EVAL-METHOD). The substitu-
tions in rule EVAL-APPLY are required to rename ¥ into Z in the
pointcut arguments, for which an inner double substitution is em-
ployed. (Different typing rules will enforce that z are all different,
y are all different, and £ C 9.) Proceed substitution is defined as

homomorphic for all terms constructs except proceed(N), where:

PrOCeed(N)[M/proceed(i)] = M[N/i]

The outer substitution will bind any elements of § that do not
appear in ¥ back to their original argument value after proceed
substitution.

A.1.2 Typing

The term typing rules are given in the left half of figure 6. These
are equal to the rules of Featherweight Generic Java [16], but also
include a rule to type a proceed invocation based on its signa-
ture in the term environment (rule TERM-PROCEED), and a rule
to type an intermediate advised term (rule TERM-ADVISED). All
rules assume additionally that the environment is well-formed (i.e.
A; T F ok).

The right half of figure 6 presents a generalized typing rule
(DEC-ADVICE) for both generic and non-generic advice declara-
tions. The conditions are similar to those presented in figure 4 ex-
cept for the final binding rules. These basically state that, for any
join point return type (represented by fresh variable W) and for
any join point argument types (represented by fresh variables Z),
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M A<V >[a,b](N)

#1551, Lh<US[E(J K
—>L[(L[ /y]/iy <U>[b)( )/proceed(fc)][ /Q]

Figure 5. Term evaluation rules (M — M)

TERM-FIELD o TERM-ADVISED _ DEC-ADVICE.
TERM-VAR A +fields(T) =S f AT MA<V>(N): R ~ X<IC FC,R,P,S,Q
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Figure 6. Term typing rules (A; " - M : T) and advice typing rule (- advice a<X <« C>R(P %):¢:

there exists a valid binding V for the type variables X, such that,
under the assumptions that join point arguments and return type
adhere to their pointcut bounds (respectively F-G' and D—E), the
type relations with the advice signatures (i.e. R(P) and S(Q), after
substituting V for X) are honored. In the companion report [10],
we prove that this rule is indeed more general than the rules from
figure 4 by showing how each V}, can be constructed to satisfy these
requirements.

The concrete pointcut expressions are abstracted in our frame-
work, but we assume that its typing and matching will be consistent
according to rule CONSISTENCY-PC from figure 4. Additionally,
we stipulate that for a term with sufficiently evaluated subterms, a
pointcut should either match or not match.

A.2 Properties

We will give proof sketches for preservation (subject-reduction)
and progress; more detailed proofs are available in [10]. In what
follows, we will assume that all top-level declarations are well-
typed (Vi. = 2;).

A.2.1 Preservation

Lemma 1 (Proceed-Substitutivity). Consider A = Y < C and
D such that - D and - D <: C[P/y]. Additionally consider
I' = P z,8 proceed(Q) and N and M such that = N : P’
WllhAl—P’ <:Pande;Qz+ M : S witht- S <: S. It now
holds that if A;T F L = T then - L[P/y, Yz, Mforoceea(s)] + T’

with - T" <: T[P/y].

The proof is carried out by an induction on the judgment typing L,
making use of a similar type substitutivity lemma for basic types,
subtypes and methods.

S(Q){M})

Theorem 2 (Preservation). If = M : T and M — M’ then
= M’ T for some T' such that =T <:T.

The proof proceeds by induction on each of the evaluation rules. In
case of rule EVAL-APPLY, we have that the involved advice, point-
cut, and intercepted method call are all well-typed. From the condi-
tions of DEC-ADVICE and the conclusions of CONSISTENCY-PC,
we can (by appropriately binding Z) show that Q Z (i.e. the pro-
ceed argument declaration) is a stronger environment than F' Z (i.e.
the pointcut argument lower bound), and can (under the assumption
that a stronger environment preserves term typing) be used to type
the proceed term I.h<U>(J). We can then apply the proceed sub-
stitutivity lemma to show (using other conditions of DEC-ADVICE
and a binding of W) that the resulting term of the evaluation will
indeed preserve the original type.

A.2.2 Progress

Theorem 3 (Progress). If = M : T then either M is a value or
M — M’ holds for some M.

For the proof, we consider each of the term typing rules that can
establish = M : T'. The most interesting case is TERM-ADVISED,
where we distinguish between an empty and non-empty list of
advices. In case there is still advice to be considered, we have
required that either there is progress in a congruent evaluation
context, or its pointcut either matches (in which case we can apply
EVAL-APPLY) or not matches (in which case we can apply EVAL-
NOAPPLY). In case there are no more advices, we have reached the
actual execution of the method call. We can show this method call
is well-typed, so this case is similar to the corresponding case in
Featherweight Generic Java.




