Multi-step Concern Transformation

Andrés Yiel:2*

1 Grupo de Construccién de Software, Universidad de los Andes, Colombia
2 System and Software Engineering Lab (SSEL), Vrije Universiteit Brussel, Belgium
ayiegarz@vub.ac.be

Abstract. A Model-Driven Software Product Line (MD-SPL) uses meta-
models, models, and transformations to create a family of products. How-
ever, sometimes an MD-SPL must evolve to introduce new non-functional
requirements, such as security or logging, in its generated products. Since
the transformations used in a MD-SPL are fragile and complex, it is nec-
essary to avoid changing them. We propose a non-invasive approach to
add new non-functional requirements to the generated products, while
keeping the original MD-SPL’s transformations unchanged.

1 Model Transformation Lines Background

A Software Product Line (SPL) exploits the common characteristics of a prod-
uct family. These common characteristics are mapped to a common architecture,
components, and assets to assemble individual products. An SPL can be imple-
mented using the Model-Driven Engineering approach. A Model-Driven Software
Product Line (MD-SPL) [1] uses metamodels, models, and transformations as
assets to generate a wide family of products.

In an MD-SPL, a high-level model describes a specific member of the product
family using concepts from the specific domain (business) and this model does
not contain any technological platform concepts. Usually a business specialist
is in charge of building this model. Transformations are used to transform this
model into a low-level model and finally to translate them into application code.
Moreover, the use of platform independent models enables an MD-SPL to target
several technological platforms starting from the same application specification.

An MD-SPL is built using a Model Transformation Line (MTL) [2] to gen-
erate an application from a high-level model. To cope with the complexity of
transforming a high-level model into application code, an MTL performs several
small, consecutive transformation steps. At each step, a set of transformation
rules is executed trying to tackle a specific interest at time. For instance, the soft-
ware development stages (business analysis, architecture definition, design, and
implementation) can be used to generate an application from a high-level model.
Figure 1 presents an MTL where a high-level model is the input for the MTL and
at each step, transformations generate a new model using lower-level concepts.

* This research was supported by the Flemish Interuniversity Council (VLIR) funded
CARAMELOS project (http://ssel.vub.ac.be/caramelos/)

For example, a model expressed using business concepts is transformed into an
architectural model with concepts such as layers and communications among
them. Next, a new transformation is applied an it generates a design model with
specific platform concepts in it, such as the EJB’s used to implement the busi-
ness and system layers. Next, the lowest-level model of the required application
is generated with implementation details in it. Finally, this model is transformed

into the application code.
APPLICATION |
BUSINESS MODEL

+ Transformation

APPLICATION
ARCHITECTURE MODEL

" Transformation

APPLICATION
DESIGN MODEL

—_—

. Transformation

APPLICATION
IMPLEMENTATION MODEL

Code Generation

Fig. 1. A Model Transformation Line.

2 The Problem: Extending an MD-SPL

Even though the construction of an MD-SPL requires a high investment, the au-
tomatic generation of products makes it a valuable solution to improve software
development productivity. An MD-SPLs evolves by offering new features to their
family members. For example, it may be necessary to add a new non-functional
requirement or crosscutting concern such as security or logging to an existing
MD-SPL. While adding a new non-functional requirement we would like to pre-
serve the original MTL. Changing the original MTL may have high-impact and
as a result, the process could become very costly. The impact of changes on an
MTL is extremely difficult to measure because of the complexity and fragility of
transformations. For example, the addition of security to an existing MD-SPL
may require changing the metamodels (to add the new security concepts) and
the transformations (to transform the new concepts) at several steps.

If, in an existing MTL, we need to add security concepts to the metamodel,
the transformations that were defined using this metamodel could become in-
consistent with the new version of the metamodel. Transformations need to be
updated to fit to the new metamodel. If a change in a transformation rules set
is necessary, it could lead to a cascade of changes in consecutive transformation

rule sets. For example, if a change is applied to the first transformation step,
the dependencies among the transformations make the probability of impact in
the remaining transformation steps very high. Therefore, a simple change in the
first set of transformations could require changes in all the transformations in
the MTL.

2.1 Challenges

While adding a new non-functional requirement to an existing MD-SPL we would
like to preserve the original MTL. In order to do this, we need to modularize
the non-functional requirement independently from the main application us-
ing Aspect-Oriented Software Development (AOSD) techniques. Moreover, using
these techniques we need to tackle the following four challenges:

1. To reduce the impact of changes in the original MTL as much as possible. It
is necessary to minimize the cost in adapting the existing MTL for the new
crosscutting concern.

2. To offer a high-level mechanism to specify the crosscutting concern indepen-
dently from the application model. We want to model the new crosscutting
concern using high-level concepts and specify it separately from the business
model.

3. To provide a reusable mechanism to define relationships between the concern
model and the application model at high-level, and to bring the high-level
relationships to the low-level. The main objective of having high-level re-
lationships is to reduce the number of manually defined relationships (at
a high-level of abstraction fewer concepts are normally defined than at a
low-level of abstraction).

4. To offer a transparent and reusable composition mechanism to compose the
concern and the application models. To achieve this, it is necessary to identify
the most suitable moment in the transformation process to preserve the
original MTL. Furthermore, the final composed application model should
contain the necessary amount of details required to generate the complete
application code with the new concern.

3 Related Approaches

In current research we can find four different approaches that fail to fulfill all
these challenges.

High-level Composition In [3], an approach called Model-Driven Security is
presented. The goal of this work is to model an application and its security re-
quirements using high-level modeling languages. The entire application together
with the access control infrastructures is generated from high-level models, in
one transformation. In this approach is impossible to compose a new crosscut-
ting concern with the base application model at the initial transformation step
without changing the whole MTL: the original transformations will be useless
to manage the security and the application at the same time.

Low-level Composition In order to avoid discarding the MTL, the best mo-
ment to compose the new concern and the base application, is after the lowest
level model was generated (before the transformation to code). This model con-
tains all the platform-specific implementation details for the application and
could be composed with a concern low-level model. This approach is based on
traditional Aspect-Oriented Programming (AOP) [4]. The main drawback is the
complexity of defining the low-level concern model and its relationships with the
low-level application model.

Mixed-level Composition An approach that can be applied to specify a cross-
cutting concern at a high-level of abstraction and that preserves an existing MTL
is used in [5]. This work presents an approach to modularize transactions as as-
pects and specify them with a high-level transaction language. The high-level
transaction aspects are related to a low-level application model using a set of
pointcuts. Next, the transaction aspect is transformed and a low-level aspect
is generated. Finally, the low-level aspect is woven with a low-level application
model. The problem in this approach is the complexity of defining the pointcuts
between two different levels of abstraction.

One-step parallel transformation In the work presented in [6], the most
suitable approach to our problem is presented. This work presents an approach to
define business rules on an application as aspects. The business rules are modeled
using a high-level modeling language. The relationships between the business
rules and the application are defined using a high-level connection language. This
connection language abstracts the different patterns of how the business rules are
connected with the application code. Next, both models are transformed to low-
level models. The connections are also transformed and aspect code is generated
from them. Despite being a good approach, the one step transformations, and
the impossibility of defining additional connection between the medium-level
models, constitute major problems for its use to tackle the presented problem.

4 Proposed Approach: Multi-step Concern
Transformation

The drawbacks of the approaches presented in the previous section show the
necessity of using a different approach. Therefore, we propose the Multi-Step
Concern Transformation approach in order to fulfill the challenges mentioned in
section 2.1. This approach, is based on a parallel transformation of the applica-
tion model, the concern model, and the relationships between both models. With
the proposed approach, the original MTL is preserved and a new transformation
line for the crosscutting concern is built into the MD-SPL. In Figure 2 a MTL
for security is added and transformed at the same time with the application.
The approach starts from high-level models expressing the application and
the concern concepts. In the example, a model for the application is defined

APPLICATION — SECURITY
BUSINESS MODEL BUSINESS MODEL

APPLICATION z SECURITY
ARCHITECTUREMODEL | < ARCHITECTURE MODEL

APPLICATION - SECURITY
DESIGN MODEL DESIGN MODEL

APPLICATION p— SECURITY
IMPLEMENTATION MODEL | ~ IMPLEMENTATION MODEL
Manually Automatically
¢ APPLICATION ~ SEGURITY

Fig. 2. Multi-step Concern Transformation

using concepts like business entities. On the other hand, the security model is
defined with concepts such as resources, roles and permissions. We use a high-
level modeling language (metamodel), in order to specify the concern model.
After specifying both high-level models, it is required to define manually the
relationships between them. For example, these relationships define business
entities that are protected resources.

With both models and the relationships defined, several transformation steps
are applied to them. At each transformation step, the abstraction level is de-
creased and new details are added to the application and concern models. In
Figure 2, the security model is transformed in the same four steps as the appli-
cation. At the end a model of the application using Java concepts is generated
and the security is expressed with JEE security annotations. In this approach,
we postpone the actual composition to the final step of the transformation.

In addition to the model transformation, the relationships are also trans-
formed in every step. In this transformation, details are added to the existing
relationships and new ones are created automatically for the new concepts added
to the models. This relationship transformation is a complex task because it is
necessary to automatically create new relationships between the new elements
added to the application and concern models. Moreover, it is possible to de-
fine new relationships at each level of abstraction including specific details when
the required concepts are already added to the models. Therefore, the support
of automatic transformations to manage the relationships between the models
reduces the workload in the relationships definition.

Finally, the composition between the application and the concern is exe-
cuted and a low-level model with the application and the concern concepts is
generated. This composition requires managing the transformed models and the
accumulated relationships.

5 Progress and Expected Contribution

This work is still in its early stages. The analysis of the possible approaches to
tackle the presented problem and the proposed approach were presented in the
Early Aspects workshop at AOSD 2008 [2]. The work on progress aims to identify
the most adequate mechanism to define relationships between the concern and
the application model, such as dialects [3], correspondence models [7], etc. The
expected contributions are summarized below:

— A formalization of parallel model transformation.

— To enrich the knowledge of MD-SPL and the association of non-functional
requirements to features.

— A methodology to build a crosscutting concern transformation line and add
it to an existent MD-SPL

6 Conclusions

This paper has outlined the work on Multi-step Concern Transformation. It has
described the problem and context, which is how to add a new crosscutting
concern to an existent MD-SPL. It addresses specifically the issue of how to
maintain the original metamodels and transformations unchanged and add a
new modularized set of transformations for the concern.

References

1. Garcés, K., Parra, C., Arboleda, H., Yie, A., Casallas, R.: Variability management
in a model-driven software product line. Revista Avances en Sistemas e Informatica
4(2) (2007) 1-10

2. Yie, A., Casallas, R., Deridder, D., Straeten, R.V.D.: Multi-step concern refinement.
In Proceedings of EA workshop in conjunction with AOSD’08. Brussels, Belgium,
March 2008 (2008)

3. Basin, D., Doser, J., Lodderstedt, T.: Model driven security: From uml models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology (TOSEM) 15(1) (2006)

4. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. Proceedings European Conference on
Object-Oriented Programming. Jyviskyld, Finland (1997) 220242

5. Fabry, J., Tanter, E., TD’Hondt: Kala: Kernel aspect language for advanced trans-
actions. Science of Computer Programming (2008) 165-180

6. Cibran, M., D’Hondt, M.: A slice of mde with aop: Transforming high-level business
rules to aspects. Proceedings of the 9th International Conference on MoDELS/UML.
Genova, Italy (2006) 170-184

7. Bezivin, J., Bouzitouna, S., Fabro, M.D., Gervais, M.P.: A canonical scheme for
model composition. Second European Conference, ECMDA-FA 2006, Bilbao, Spain
(2006) 346-360

