An Execution Platform for Extensible Runtime
Models

Mario Sanchez*'2, Ivan Barrero!, Jorge Villalobos!, and Dirk Deridder**?2

1 Software Construction Group, Universidad de los Andes, Bogot4, Colombia
{mar-sanl,iv-barre, jvillalo}@uniandes.edu. co,
2 System and Software Engineering Lab, Vrije Universiteit Brussels, Belgium
Dirk.Deridder@vub.ac.be

Abstract. In model-driven development, high level models are pro-
duced in the analysis or design phases, and then they are transformed
and refined up to the implementation phase. The output of the last step
usually includes executable code because it needs to introduce the de-
tails that are required for execution. However, some explicit structural
information is lost or scattered, making it difficult to use information
from the high level models to control and monitor the execution of the
systems.

In this paper we propose the usage of a platform based on extensible,
executable models, which alleviates the loss of information. When these
models are used, the similarity between the structure of high level models
and of the elements in runtime eases the construction and usage of the
system. Moreover, it becomes possible to build reusable monitoring and
control tools that are only dependent on the platform, and not on the
specific applications. Our proposal is shown in the specific context of
workflow-based applications, where monitoring and control is critical.

1 Introduction

In many applications, runtime information is necessary for a variety of reasons.
For instance, it might be because it is necessary to take swift corrective actions
during execution, or because historical data is required to check and improve
performance. Runtime information might be difficult to manage and interpret,
and thus it is desirable to have powerful tools to handle it. Furthermore, since
such tools are difficult to build and maintain, then it is desirable to have reusable
tools that can serve to monitor and control different applications.

Additionally, these tools should also be capable of managing high-level con-
cepts. Modern systems allow business experts to have more direct control over
the applications, instead of relying on technology experts as in the past. Because
of this, it is expected for those applications to offer information in terms of high

* Supported by the VLIR funded CARAMELOS project
http://ssel.vub.ac.be/caramelos/ and by Colciencias

** Funded by the Interuniversity Attraction Poles Programme - Belgian State Belgian
Science Policy.

level business concepts. Similarly, the control interfaces should offer high level
operations instead of only low-level operations that require technical knowledge
about implementation details.

One possible alternative to manage these requirements, is to build model-
based tools to do runtime monitoring and control of applications. Given the
flexibility offered by unsing models, such tools would be reusable and have the
ability to manage high level concepts and information. However, the feasibility of
building such tools depends on features required in the monitored applications.
As we will see in this paper, these features are not always available.

Many platforms used to execute applications today have limitations. In the
first place, the interfaces offered to gather runtime information or to control
the execution of the applications are nor standardized; they do not even have
commonalities among several applications. Thus, it is difficult to have reusable
monitoring tools that manage information beyond the virtual machine or the
operating system level. Furthermore, the interfaces are limited in the quality of
information offered, which can be insufficient to adequately control the execution.

Another problem is that runtime information might be difficult to interpret in
terms of business concepts. This happens because the mapping from implemen-
tation elements to high level concepts can be difficult to establish. As shown in
figure 1, the analysis and design artifacts, which contain all the relevant business
information, are somehow used to produce implementation artifacts. Depending
on the strategy used, this step can produce different kinds of traceability infor-
mation that can be later used to reconstruct the transformations. This figure
also shows that monitoring and control tools are between the business and the
implementation level. The functionalities of these tools depend on low level im-
plementation data, events, notifications, actions, etc. However, the users that use
the tools expect to see all those low level elements in terms of the corresponding
business concepts. How to make this translation is thus the problem that has to
be solved.

4) ; 2\
Analy5|§ / Design Desired conceptual relations
Artifacts I L Y R
o Monitorin
Transformation,’ ° &0 9
development, ..} Control Business Level
' Tools Implementation Level
AN
Real dependencies
_ Implementation Artifacts)

Fig. 1. Dependencies of monitoring tools.

One example of the previous ideas could be an application where employees
have to perform a certain number of activities, and someone wants to monitor the
percentage of activities finished by each employee in a given period. In this case,

employee and activity are very precise business concepts, but they can be scat-
tered in the implementation. For instance, to retrieve the required performance
information it might be necessary to get low level information about sessions,
services invoked, database accesses and other. One alternative to preserve this
information could be to keep traceability information. However, there are other
kind of problems associated to the complexity of keeping track, managing and
interpreting this information.

The proposal presented in this paper targets the creation of platforms that
support the execution of a wide range of applications and offers the necessary
features to develop reusable monitoring and control tools with the requirements
discussed previously. In the first place, this proposal advocates for the devel-
opment of model-based applications. In second place, it proposes a reusable
platform for model execution, where runtime information is easily obtainable.
Furthermore, since the elements in execution have a structure that is very close
to the structure of elements in design, then it is easy to establish a mapping
between implementation and business elements.

This paper focuses on presenting the Cumbia platform. This platform is based
on extensible, executable models and it offers several advantages to runtime
monitoring and control of the applications that are executed on it.

Nowadays, workflows and wokflow-based applications are very important and
new ones are built permanently. Furthermore, in this context monitoring and
controlling are critical. In this paper, the Cumbia platform is illustrated in the
workflow context, but its advantages are also explained for more general contexts.

The structure of the paper is as follows. Section 2 presents the problem
of monitoring and controlling runtime systems and, in particular, workflows.
Afterwards, section 3 presents the details of our proposal, and section 4 shows
how it eases the runtime monitoring, management and adaptation of model-
based systems. Finally, some related works and the conclusions are presented.

2 Runtime monitoring and workflows

As we discussed previously, in many applications it is necessary to have access to
runtime information that can be used, for example, to support runtime decision-
making. Additionally, to have useful and powerful monitoring and control tools
it is necessary to have the means to raise the level of abstraction of the available
runtime information. This raise allows users of the tools to make analysis and
decisions from the business perspective instead than from the implementation
point of view. For instance, a non technical user might prefer to know that the
level of service offered by a partner application has dropped below the limit
specified in a contract, instead of having to understand reports about timeouts
or communication failures.

Part of the complexity associated to raising the level of abstraction is to be
found in the implementation of the applications. In many cases, applications
have structures and architectures that are very different from the structure of
the problems that are supposed to be modeled and solved. Thus, it is difficult

to reconcile low level runtime information with high level concepts, as required
by monitoring and control tools. This problem, as well as the limitations in
the interfaces to gather low-level information, becomes even more critical when
monitoring requirements appear late in the life-cycle of the applications.

Based on the promises made by approaches like MDA [1] or xUML [2], model-
based applications should face less problems to accommodate monitoring and
control tools. However, in these approaches not all the discussed problems are
solved because the last transformation or compilation step has as output ex-
ecutable code, which consistently scatters or loses some information that was
originally available on the models. One approach that can be applied to over-
come this problem inolves the usage of transformation models and traceabiliy
information [3]. Although this might solve the inmediate problem of the lack
of information, it creates other problems related to the interpretation of the
information.

In the context of workflows and workflow-based applications these problems
are also present. In the first place, in this context models are widely used by busi-
ness experts, which use domain-specific languages to describe business processes
taking into account the so-called business rules. Afterwards, these processes are
deployed into workflow engines to be executed. At runtime, process designers ex-
pect to see the same concepts that they used in the definition. In order to make
decisions, they have rules and policies that are based on that kind of information.

Normally, the execution of the processes is monitored and controlled either
with low-level applications, such as engines’ consoles, or with tools such as BAMs
(Business Activity Monitoring). In general, BAMs are rather flexible and config-
urable, and they have as main goal raising the level of abstraction of execution
information in order to make real time measurements of certain Key Performance
Indicators (KPI) described by domain experts. However, BAMs are also tightly
coupled to workflow engines’ implementation, and to the workflow definition
languages. As a result, the same BAM cannot be used with different engines.
Moreover, even small changes to an engines’ implementation, or to a language,
can render unusable an entire BAM. This is something critical in this context
because business rules and processes tend to evolve rapidly and the tools have
to evolve along.

Finally, an increasingly important requirement in workflow applications is
the ability to handle dynamic adaptation of the processes. This means that de-
pending on internal or external events, the structure of processes might change
at runtime, either in an autonomic fashion or following instructions specified by
business experts. These changes have an impact on monitoring because the tools
have to adapt and reflect the modifications. Furthermore, the tools used to de-
scribe the modifications should be integrated with the tools to do the monitoring
and they should share the same high level language and concepts. It is expected
that whoever directs the dynamic adaptation uses runtime information to make
the necessary decisions.

3 Extensible executable models

The proposal presented in this paper is part of the Cumbia project of the Soft-
ware Construction group of the Universidad de los Andes. In this project, we
have developed the Cumbia platform for extensible, executable models. Origi-
nally, we developed this platform with the main goal of supporting extensible
workflow-based applications, which might include complex monitoring require-
ments. Nevertheless, the platform is sufficiently generic and offers benefits that
can be valuable in other contexts as well.

From the point of view of monitoring and control, a very important feature of
the platform is the usage of executable models, which keep during execution all
the structural information of the models. Since there is no loss of information,
it is easier to rise the level of abstraction; in this case, creating the mapping
between implementation and design elements is trivial. Another advantage of
the platform is that it offers runtime information about every object in the
model, that can be easily consulted from external applications. Moreover, the
platform offers interfaces that can be used to easily integrate other applications,
such as monitoring tools.

In order to support the execution of models, the platform manages the corre-
sponding metamodels. The platform is very flexible in the support for metamod-
els, and also in the support for changes to the metamodels: they can grow and
evolve without any significant impact to the platform. In section 3.1 it will be
shown that the only requirement for metamodels is that they should be defined
in terms of open objects, which are the special kind of executable elements that
we defined for our platform. In this section, we will first briefly present XPM
(eXtensible Process Metamodel), which is a simple metamodel for the definition
of workflow processes that can be used in our platform. Afterwards, the main
details about open objects will be discussed with the goal of explaining how
monitoring and control are supported. More details about open objects can be
found in [4].

3.1 XPM and Open Objects

The purpose of this section is to present one sample metamodel we have devel-
oped for the platform; we do not pretend to argue here about the completeness
of the metamodel or its suitability to represent workflow processes. In order to
present XPM we will use the sample process shown in figure 2, which was taken
from the context of workflows for financial services. It defines a sequence of steps
to study and approve a credit request. This process is initiated when a customer
applies for a credit. Then, it requires an in-depth study of the submitted request
and of the financial history of the customer. Finally, someone has to approve or
reject the request based on the results generated by both studies.

This particular process shows most elements of the XPM metamodel. The
process is composed by four activities that are connected through ports and
dataflows. Each activity has a distinct workspace and each workspace executes

Evaluate Request

Credit
Application

ST Process “-Dataflow - Workspace “-Activity “Port

Fig. 2. A sample XPM process

a specific atomic task; activities serve to enclose them and handle all the syn-
chronization and data management issues.

Every metamodel in Cumbia is based on something that we have called open
objects, and thus they are the base for our platform. Every metamodel that is to
be executed in our platform, has to be defined using open objects as its building
block. As it will be shown, this means that every element in the metamodel has
to be defined as a specialized open object. The workflow engine that we use to
execute XPM processes was built using this approach and it has the open objects
platform at its base.

The fundamental characteristic of an open object is that it is formed by
an entity, a state machine associated to the entity, and a set of actions. An
entity is just a traditional object with attributes and methods. It provides an
attribute-based state to the open object and in its methods part of its behavior
can be implemented. The state machine materializes an abstraction of the life-
cycle of the entity, allowing other elements to know its state and react to its
changes. Finally, actions are pieces of behavior that are associated to transitions
of the state machine. When a transition is taken, its actions are executed in a
synchronized way.

Activity // @
activate() ‘
suspend(

restart()

getData()

finish()

Fig. 3. The specialized open object that represents XPM activities.

The interaction between open objects is based on two mechanisms: event
passing and method calling. In the specification of a state machine, each tran-
sition has an associated source event: when that event is received by the open
object, that particular transition must be taken. This mechanism not only serves
to synchronize open objects, but also serves to keep the state machine consistent
with the internal-state of the entity: each time the latter is modified, it gener-
ates an event that changes the state in the automaton. Events are also generated
when transitions are taken. The actions associated to these transition can also
be used to coordinate open objects by invoking methods in other entities.

Figure 3 shows an open object that has been specialized to behave as an
XPM activity. It has four states, and the state machine changes of state because
of events generated by the entity or by other open objects. For instance it goes
from the state Inactive to the state Active whenever the method activate()
is called, which in turn generates the event that moves the state machine. In ad-
dition, when this transition is taken, the action called RetrieveData is executed.

Several features of the platform and of the open objects facilitate the in-
teraction with monitoring and control tools. In the first place, the platform is
metamodel-based and changes to the metamodel can be seamlessly supported.
This makes the platform particularly suitable to handle applications used in
rapidly evolving contexts. In addition, open objects expose their state through
the state machines, and this is an advantage for monitoring because the amount
of available information. Furthermore, the interfaces provided by the platform
offer powerful ways of interaction from external applications: it is possible to
capture events to receive notifications, and it is also possible to invoke methods
of the entities to control them (see figure 4). Another big advantage is that the
mechanism of actions offers something similar to the interception meta-space de-
scribed for the Lancaster Open ORB project [5, 6]: since actions can be installed
and removed at runtime, it is possible to introduce extra-behavior between the
processing of interactions. This additional behavior can be used to add further
interactions with the monitoring applications. Finally, another big advantage
offered by the platform is the inspection interface that allows to navigate the
complete structure of the models, from the root level element (a process in XPM)
to the last action or event.

Engine 7\ Notifications Monitoring
R A

R &

| Control

Tools

Control and Info Requests

Fig. 4. Monitoring runtime models.

Besides building the XPM engine, we have developed other metamodels and
their corresponding “engines”. For instance, we have built the metamodels and
the engines for BPMN [7] and BPEL [8]. In order to use the platform for them,
the first step was to design the metamodels and implement the required open
object specializations. Since the platform itself is responsible for managing the
instantiation and execution of the models and their open objects, then some
other specific services had to be defined for the engines in an ad-hoc way. For
instance, in the case of the BPEL engine, the web-services based interface had
to be specially developed.

4 Monitoring and control

By taking advantage of the features of the platform described, it is possible
to build very powerful and reusable monitoring applications. The combination
of using explicit metamodels and the existence of a single executable platform
leads to monitoring tools that are highly configurable. Since these applications
are only dependent on the platform, they can be easily adapted for the usage
with systems based on other metamodels that can be executed in the platform.

When using the platform, monitoring tools can manage and offer four kinds
of information about the running applications. The first kind represents the
structure of the models, which normally is fairly static. The second kind is infor-
mation about the current state of the elements in the models. The third kind is
historical information about the state of the elements in the model, that is the
trace or the history of the execution. In these three cases, we are dealing with
elements available in the model, and accordingly to what was said previously,
this means that we are dealing with high level concepts that are put into execu-
tion. Similarly, although all the notifications received from the platform are low
level, they could be transformed and interpreted as high level notifications. For
instance, a notification about a transition taken in the state machine of an ac-
tivity, might be transformed into a high level notification about the completion
of the activity.

The fourth and last kind of information that can be monitored is composed
by derived information, which is not directly part of the model or its execution,
but can be calculated. This derived information has to be defined for each con-
text, including the rules necessary to calculate it using the information provided
by the platform. To define, manage and analyze this kind of information, it is
useful to have model-based monitoring tools, where the definition of the relevant
information can be easily made. In the context of workflows, a possible example
of derived information would be the average time required to execute the activ-
ities of a process. Another example, would be the name of the employee that
performed more activities in a given month.

We have developed some examples of applications that monitor the execu-
tion of applications based in open objects by managing the first three kinds of
information described. The most basic of those applications is an open objects

viewer. For a given open object, this application allows the observation of the
structure of the state machine and shows its state changes.

lrs-

test_6

Combgia

0.4 / . O
|

animation_test_6.animation | process_test_6.xml |process_test_6.decoration animationinfo_test_6.xml |proceso|

2. Problems (2, Declaration & Console @] Error Log [T Properties 53 AEENEE

Property
Element information
Implementation class name uniand bia.tests tensions.
Name P8
Port information
Expected variables. bc

Fig. 5. Screenshot of the XPM Viewer.

Another application that we have developed is a viewer for XPM processes
(see figure 5). This application not only shows the structure of the processes that
are running inside the XPM engine, but also animates the elements shown by
changing the color of the activities that are executed. This application has other
two interesting characteristics. The first one is the possibility of using a domain
specific language that describes what the viewer has to do when it receives
notifications about state changes in XPM elements. Although the language itself
is not very powerful (it only allows some basic stuff like changing the color figures
based on types and state changes), it gives some flexibility to the viewer and turns
it into an example of a simple configurable monitoring tool for open objects.

The second characteristic is that this application was developed as decoupled
from the XPM engine as possible. As a result, the XPM engine ignores totally
the existence of the viewer, while the viewer only has dependencies towards the
open objects platform and the XPM metamodel (not the XPM engine).

The most complex monitoring application that we have built for the plat-
form is called the “Cumbia Test Framework” (CTF). Although users do not
interact with the tool, this application observes the execution of the models and
interacts with them following the instructions in a script. Afterwards, the CTF
observes the execution, receives notifications and analyzes the traces to validate
assertions. Moreover, the control statements in the script are described using a
high level language. We have used the CTF to test the implementation of several

metamodels, and in each case, the required specializations to the CTF have been
minimal.

5 Conclusions

In this paper we have discussed about the importance of runtime monitoring
and control and we have identified some useful requirements for monitoring ap-
plications. Among these requirements, the one that creates most of the imple-
mentation problems, is the need of giving high level information to the users of
the tools, instead of providing implementation level information. Other problems
that we explored were the limitations on the quantity and quality of the available
runtime information, and the limited possibility of reuse for monitoring tools.

The proposal that we presented in this paper has two parts. First, it advo-
cates for the use of model-based development techniques. Then, it proposes the
usage of a platform based on extensible, executable models. This proposal has
several advantages that, in the paper, were illustrated in the context of work-
flows. Among these advantages there is the usage of explicit metamodels, and
the ease of integration with other applications besides control and monitoring
tools.

The various benefits offered by the proposed platform are useful for the con-
struction of monitoring and control tools. In particular, it makes possible the
development of new, reusable monitoring tools that can be applied to several
contexts which are to be executed on the platform.

References

1. Joaquin Miller and Jishnu Mukerji. MDA Guide. Object Management Group, Inc.,
Version 1.0.1., June 2003.

2. Mellor, S., Balcer, M.: Executable UML A Foundation For Model-Driven Architec-
ture. Addison-Wesley, Indianapolis (2002).

3. Jouault, F.: Loosely Coupled Traceability for ATL In: Proceedings of the Euro-
pean Conference on Model Driven Architecture (ECMDA) workshop on traceability,
Nuremberg, Germany (2005).

4. Sanchez, M., Villalobos, J.: A flexible architecture to build workflows using aspect-
oriented concepts. In: Workshop Aspect Oriented Modeling (Twelfth Edition), Bel-
gium (2008)

5. Blair, G. S., Costa, F. M., Saikosky, K., and Clarke, N. P. H. D. M. (2001). The
design and implementation of Open ORB version 2. IEEE Distributed Systems
Online Journal, 2(6).

6. Costa, F. M., Provensi, L. L. and Vaz, F. F.: Towards a More Effective Coupling
of Reflection and Runtime Metamodels for Middleware. In: Proceedings of Mod-
els@Run.time 2006, Genova, Italy (2006).

7. BPMN Information, http://www.bpmn.org/

8. BPEL Specification, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

