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ABSTRACT

Traditionally, workflow applications use a singlanfuage to
describe every relevant detail of a business psoddwerefore, the
complexity of the languages used and their impleateams has
increased, creating problems related to evolutiond a
maintenance. A possible approach to lower this dexity is to
separate the elements of a process according tendions or
perspectives, similarly to what is done in Aspede6ted
Programming. The problem is that most workflow sodb not
support explicit dimensions, and previous impleragahs of
these ideas had important limitations.

This paper presents Cumbia, a platform to build kflow
applications supporting multiple dimensions. In Gien an
executable model is used for each dimension, argseth
executable models are expressed with a coordinatimatel based
on synchronized state machines. Among other adgastahis
approach renders possible the usage of dimensiecifisp
languages, thus easing maintenance and evolutiqgraziesses,
engines and languages.
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1. INTRODUCTION

Nowadays, a growing number of contexts are takohgaatage of

workflow applications. In these, there is a centrabrdination

element that leads the cooperative execution oéragvactive

entities, and provides a way to integrate them tbiewve a

common goal [16]. Perhaps the best known workflamgliage is

currently BPEL [28], which is used for composing dan
coordinating web services. Moreover, there are lows

hundreds of different languages and engines, wiiigh different
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features and are usually targeted towards particaglication
contexts. For instance, there are workflow langsagmecialized
in scientific applications [25], in ubiquitous coatmg [11], or in
human interaction [29].

The usage of workflow applications has surged bsezaf the

many advantages they offer. One of these advantagles ability

to separate the order of execution of tasks (tleedination) from

the actual tasks performed (the computations), widases the
integration of heterogeneous components. Furthemaohis

separation between coordination and computationorfav
modularity and reuse. This can be seen when negepses are
created, using only existing, configurable elememsother

important characteristic of workflow applicatiorssthat they are
used in contexts that tend to evolve frequentlycabse they
provide the necessary flexibility to adapt to theamges. For
instance, in a financial company it is common teehahanging

business rules, changing processes, and new systeth$ools

that have to be integrated to the existing appboatstack.

Workflows are capable of handling this kind of chas without

making huge investments in new systems.

The central element in a workflow application ise tkontrol
dimension (or perspective): it comprises entitlest describe the
control-flow, that is, the tasks that have to begrened, and their
ordering [26,6]. In most applications, control @mplemented by
entities from other dimensions, such as data, ane resources.
Which dimensions appear in a specific applicatiepehds on the
context where that application is used. For inganio an
application to support distributed software develept processes
it is not enough to describe the tasks to be peddr It is also
necessary to describe the structure of the devadopteam, the
capabilities of its members, the timing restricidhat the process
should abide, and management policies for the piatduced by
the process. Thus, the description of these presessgjuires more
than control: it also requires elements from thmatisions of
resources, time and data.

The problem that we address in this paper is theiently most
workflow engines make no separation between dinessiThus,
users have to use languages that mix elements foery
dimension, and therefore, these dimensions becanagmently
entangled. From the users’ point of view, this nsakeocesses
more difficult to maintain and to evolve. From tpeint of view
of developers of workflow engines this also has dngnt
consequences. On the one hand, the evolution gtitages tends
to make them grow and become complex. Therefoegttgines
to support their execution also tend to become moreplex and



difficult to maintain. On the other hand, the cdpaof evolution
of these applications is also limited because & higupling
between dimensions makes it difficult to adapt
independently to changing requirements. Furtherribleecomes
very difficult to add extra dimensions late in tdevelopment
cycle.

With current mainstream techniques to build wonkflengines, it
is not easy to have multi-dimension support. In fingt place,
these approaches lack the flexibility to represesmirious
dimensions and support all their variations. On dllger hand,
they do not offer the capabilities to manage thengmng
relationships between dimensions. As section 2 shtvere have
been works to solve some of these problems, ane sisting
approaches offer partial solutions to them.

This paper presents Cumbia, a platform that cansee to build
workflow engines with multi-dimensional support. i¥hmeans
that Cumbia makes it possible to execute procetsszibed as a
composition of dimensions, and use a different lmgg to
describe each dimension. This has the followingaathges: first,
control languages are simplified because they db hawe to
include elements unrelated to control; it is alesgible to design

very suitablé dimension specific languages, and thus processes

easier to understand and to maintain; finally, ettoh of the
engine
independently, within certain restrictions [22].

The fundamental proposal of Cumbia is to use & gtachine
based coordination model to describe the dimensidhss is
achieved by means of dimension specific metamatkdsribed in
terms of a coordination element that we have callgeh objects
(see section 3). Thus, workflow processes are graipmodels
conformant to those metamodels, which are executeda
coordinated fashion. The underlying coordinationchasmism
offers characteristics that are important in wankflapplications:
it supports synchronous and asynchronous intergctimd it
offers powerful extensions mechanisms (see sedjion

This paper introduces the Cumbia platform and prssigs main
elements. First, it presents some related works$ pmaduced
interesting ideas that inspired Cumbia. Then, eec8 presents
the basics of the coordination model and the ojtgects. Section
4 llustrates the usage of open objects Qumbia-XPM a

metamodel for describing the control dimension obcpsses.
Finally, section 5 presents the tools developedsupport the
usage of Cumbia, and some Cumbia-based applicatised in

different contexts.

2. RELATED WORK

This section presents other research groups’ wtréis cab be
related to Cumbia. We have classified these worksthe
following three broad topics: coordination modelsdaReo;
aspect-oriented workflow languages; and YAWL.

! The term suitability refers to the match betweles tonstructs
available in the modeling language and the concaptthe
application domain [12]. Suitability is the mettised in many
works to explore the relationship between workflanguages
and patterns: control-flow patterns [18], resouysegterns [19],
data patterns [20], etc.

is simplified because each dimension canlvevo

As Papadopoulos and Arbab showed in their survéy, there
are many different coordination models, which canclassified

them as data-driven or control-driven. In the formerigrpthey mainly

focused on Linda and its descendants. However, d-likg

models have some deficiencies that make them inmdeqto
model workflows [17]. Nevertheless, some of themderlying

ideas are useful in modern coordination modelsh sas the
independence between the computation and coordimatir the
usage of a shared space for data (as is requirexhénof the
implementation strategies described in [21]). Amaomg control-
driven models identified in [16], there is Manifo[d7]. This

model has several similarities to Cumbia-XPM ané tipen
objects, but its design totally separates data fonirol. Whereas
in Cumbia-XPM we can use the flow of data to conthe state
of a process, Manifold is completely event-drivAiso, there is
no direct interaction between elements, other tharflow of data
through streams.

A more recent and powerful coordination model i® R3. It is
an exogenous language based on channels that casebeto
create very complex connectors. The usage of Reglugscode
between heterogeneous components promotes loosglingpu
because it makes possible to separate them anchalite their
interaction and the flow of data between them. Res been
applied to the problem of composing web servicess presented
in [7] and [13]. In these works, several featurésReo lead to
advantages over other solutions such as BPEL: uReg it is
possible to dynamically reconfigure the channelsestructure the
processes; distribution and mobility is also supgmbrby the
coordination model; finally, the formal descriptioh Reo makes
it possible to apply model checking techniqueshweb services
compositions.

One of the fundamental points of our proposal ésgbparation of
processes into different perspectives, which israegy that has
been applied in a small number of other workflowated
projects. AO4BPEL [5] is an aspect-oriented wornkflanguage
based on BPEL, which allows the definition of aspeasing
BPEL for the advices and XPATH as point cut languag
AO4BPEL offers static and dynamic weaving, usirgpacialized
BPEL engine. Padus [3] is also a workflow langudgg extends
BPEL. It has a logic-based point cut language, iaradso uses
BPEL to describe the advices. It only supportdcstaeaving, but
since the outputs of its weaving process are \BH&L processes,
they can be run in unmodified BPEL engines. Thesesaveral
differences between Cumbia and AO4BPEL or Paduthdifirst
place, they can only use BPEL as the advice larguatd thus it
is impossible to have dimension specific languagesthermore,
join points are limited to syntactic elements pr¢se the process
definition, or to ‘internal join points’, which aréixed steps
required for web services’ consumption. Compared the
flexibility offered by Cumbia and the open objectghich can
have state machines as complex as necessary, ahpipach
limits the possible extensions. Finally, there idifference in the
way they modularize with concerns. Although in maages they
use aspects to reduce tangling, they also use tasfeexpress
changes in a modular fashion. We do not sharaugdge because
aspects should modularize crosscutting concernsaarahcern is
not crosscutting with itself. Although it is a ugeflecomposition,
it should not be called aspect-based.



Another project that has explored the applicatidragpects to
workflows is AMFIBIA [1]. AMFIBIA is a metamodel tht
formalizes the core elements of business procesteling. It is
based on a core that groups common concepts, amdraerns
(aspects in their terminology) that specialize ¢heshared
concepts. AMFIBIA has several similarities to Cumbiit
separates workflow dimensions; it is formalism-ipeledent and it
is possible to have dimension specific languades;dimensions
used are not fixed and new ones can be added. tReless, there
are important differences between AMFIBIA and Cumbi
particularly in the relation between the elements each
formalism and the common elements. In their apgrptere is a
mapping between the elements of each concern amdcdhe
concepts. In Cumbia,
specializations of the open objects. In their dage mapping is
the foundation of the synchronization mechanisntgabse the
coordination can only happen if the core is inctiide

Finally, there have also been projects that hapéoead particular
dimensions (or perspectives) in workflows. For anste, in [21],
the main topic discussed is the data perspectiveséveral works
related to other perspectives are also referenimeé,(resources,
transactions, and functionality). However, thereais essential
difference between their strategy and ours in tthey propose the
need to have a clear separation of perspectives wiggleling a
process, even if its implementation and executittegrates the
perspectives into a single solution. With our s the
perspectives are separated when modeling and epayated, but
coordinated, during execution.

As discussed before, most existing workflow langsagnd
engines combine all the dimensions present in ags YAWL
is a very well known exception to this, since itasworkflow
language that was specifically designed to supgieet control
perspective and the original control-flow pattefB§]. From the
Cumbia viewpoint, YAWL is also interesting becauselearly
describes the workflow language and the underlgimgrdination
model as two different things, albeit tightly reldt YAWL'’s
development started with an analysis of the Peti$’'rsuitability
to accommodate the patterns and, after finding skimitations,
they proposed a formal coordination model based drabeled
Transition System (LTS). Similar to Cumbia-XPM, YAWs an
intermediate language to support the execution igh Hevel
languages. Since the coordination model was indping Petri
Nets, it includes concepts such as places, congittmd tokens. It
also uses state machines to describe the life-ofaéements, but
these nets are identical for every element anduseel only for
documentation purposes and not for coordinatioooonposition.
One advantage of the formal semantics of YAWL i® th
possibility to analyze and verify processes, whiths been
explored using a tool called WoffarCurrently, neither Cumbia-
XPM nor open objects have a formal definition amenantics.
Finally, YAWL also offers extensibility capabiliseusing Proclets
[27].

3. COORDINATION ELEMENTS: OPEN
OBJECTS

This section presents the coordination model tBathe core
contribution of the paper. This coordination moebased on a

2 Woflan, URL: http://is.tm.tue.nl/research/woflan/

the elements of each concem a

basic element called ‘open object’. By using selveféhese open
objects it is possible to build extensible and exaicle models
that have all their elements synchronized. In théstion the
elements that form an open object are first presenthen the
mechanisms that allow the coordination of sevep®noobjects
are discussed, as well as their extensibility cditieb; finally, the
requirements to implement a system based on opgttebare
discussed.

3.1 Structure of an Open Object

One of the advantages of the object oriented pamads the
capacity to materialize in a model the elements pfoblem, their
behavior, and their relations. Object-based modessially
replicate the structures of the problem domainngisobject
attributes to recreate relations and method cadls ntodel
interaction. In order to take advantage of the ciapaf building
isomorphic structures to the problem domain, oumpasition
elements are based on objects, but they have sdulicoaal
features that expose their internal state. Thathig we call them
‘open objects’.

In the traditional object-oriented paradigm, aestatan object is a
particular combination of values of its attributd® know this
state, it is necessary to call its methods. The bmrnof states
reachable by an object depends on the valuestshaitiibutes can
have. However, most of the time, the elements ititatact with
an object are interested only in a subset of @sheble states and
some of the possible states of the object can tepgd together
to create a simpler abstraction of its life cydlbis does not mean
that attribute-based states should be eliminatestedd, these
new, broader states can be materialized in an restestate
machine synchronized with the object. For instancéhe case of
a counter from 0 to 100, one possible abstractmidentify only
three different states: “Stopped,” “Counting,” at¥inished.”
This reduction in complexity simplifies monitoringand
coordination since the state machine can easily ligrub
notifications when a state change occurs and thrs serve to
coordinate other elements.

An open object is composed of amtity, a state machine
associated to the entity, and a setofions An entity is just a
traditional object with attributes and methods:piovides an
attribute-based state to the open object, and dthods are a
place where part of its behavior can be implementér: state
machine materializes an abstraction of the lifdeyd the entity,
allowing other elements to know this state and treac its

changes. This can be done using methods defindtkimterface
of the open object, which is based on the interfafcthe entity,

and is enriched with the methods needed to accebsavigate
the state machine. Finally, the actions are pie¢dsehavior that
are associated to transitions: when a transitiopricessed, its
actions are executed in a serialized way.

3.2 Coordination of Open Objects

The execution of an open objects-based model dspendthe
execution and coordination of its elements. Becaiighis, open
objects offers two different interaction mechanisnme is
asynchronous and based on events, and the otegnésronous
and based on actions and method calls. These tiwmatives
complement themselves and can be used to des@&ipeemplex
interaction patterns.



Events are the most important coordination mechamsCumbia
because they are used to maintain the synchromizatdt only
between open objects but also between entities tedr
respective state machines. This section explaing énents are
processed and used to keep state machines upbatefitst it is
necessary to discuss what generates events. F@mstahdpoint
of an open object, events can be produced by itsetity, by its
state machine, or by external elements, which @wther open
objects or even elements external to the modelertity usually
generates an event when one of its methods isdcafid changes
its internal state. Thus, the event is generateidftom the state
machine about the change and try to maintain thesistency
between the internal, attribute-based state ofetit@y, and the
current state of the state machine. Events can lssgenerated
when state machines change state: each time a ratthine
moves from its current state to the next, evengsgamerated to
show that i) the original state is abandoneiil) the processing of
a transition startsji{) the processing of a transition finishes, and
(iv) a new state is reached (see Figure Binally, events can be
generated by other sources, such as external systebecause of
user interaction. Cumbia does not differentiates¢hevents, and
they are treated exactly like internal events.

exitA enterB
<<trl>>
beforeTrl afterTrl

Figure 1: Events generated by state machines.

Every transition in a state machine has an assatiekpected
event description. This means that whenever an teteat
matches the description is received, the transhiasto be taken.
Events are described with an expression of the form
[ELEMENT]eventType, where[ELEMENT] describes who is
expected to generate the event, a@ntType specifies the
particular type of event expected. Note tBREMENT is not the
identifier of a specific element, but a relativéerence that can be
used to locate it. For example, if an open objestduin a
hierarchical structure has an event described aergeed by
[PARENT], then the generator of the event can be located
ascending in the hierarchy. If an event is desdribg generated
by [ME], then the generator is the same open object tias the
state machine (see Figure 2).

Events are processed by open objects in the follgwiay. First,
events are received and stored in a queue thatas to the open
object. Events are then processed one by one, thetifjueue is
empty. Events’ processing in multiple open objdtippens in
parallel within our current implementation of ther@bia kernel
(see section 5): a separate thread is used togzrdloe events of
each open object. However, a valid alternative @ny@ntation is
to use a single thread to process every event,gusbme

3 While the transition takes place, the state mazsrconsidered
to still be in the original state (A).

algorithm to select queues, or even using a shauede for all
open objects. The selection of one of these alteesmdoes not
have an impact on the execution semantics; nelestethere
may be an impact on non-functional requirementshsas
efficiency or scalability.

[ME] incremented

[ME] incremented

[PARENT] reset

[ME] finished

Figure 2: State machine with source events.

To process an event, it is necessary to analyz&dhsitions that
start in the current state of the open objectdestaachine. If the
event matches the description of the expected efeenany of
those transitions,i) that transition is taken,i)] its associated
actions are executed, and)(the state machine changes state. If
the event does not match the expected event for cdnthe
transitions that start from the current state, détent is discarded
and it is never processed adailf there are more than one
transition with matching expected events, one efitlis randomly
selected

The other coordination mechanism of open objectbaised in
actions and method calls. In general, actions a&ed uo add
semantics to state’s changes and produce someokiaflect on
the model. In particular, actions can be used tb emtities’
methods, to communicate with other applicationsl tangenerate
further events. By combining these two mechanishisteraction
it is possible to define the coordination of opdijeots with very
fine granularity, in a synchronous or asynchrondashion.
Furthermore, these coordination rules are defin¢ereally to the
open objects’ implementation, and they are thudyeaedifiable,
even at execution time.

4 This strategy was selected because it reducepabsibility of
having disordered events. Although discarding evemay
appear as a source of non-determinism, it forcemmedels'
developers to be more careful in their designsthieamore, it
changes a very difficult problem (processing disoed events)
for a simpler one (missing events that can be r&gdeagain).

® This situation should be considered an error mhgethe
designer of the state machine. Although it is pgaesito
introduce this kind of non-determinism, it shoulel &voided if
possible.



3.3 Extension Mechanisms

Open objects offer three extension mechanisms wigile
flexibility to models and metamodels. These mechrasi have
different capacity of expression, and they can bmbined if
necessary.

The first mechanism involves the modification oftiaes
associated to a state machine. This method, cadietple
extension can be applied to the definition of an elememd a
affect all its instances, or it can be applieduattime to affect a
single instance. This mechanism is the simpleas#) but it is not
as powerful as the other two. The following snippletode shows
an example of the usage of this mechanism to madifglement
of the metamodel.

<ext ended-type nane="ExtendedPort" extends="Port">
<ext ensi on transitionNane="Receive">
<action nane="Store Data"
cl ass="cunbi a. acti ons. StoreData"/ >
</ ext ensi on>
</ ext ended-t ype>

The code extends an existing element cdfledt , and creates an
extension calledext endedPort. The code specifies that the
new, extended type is similar to the base type, lag an
additional action calle®t or e Dat a associated to the transition
Recei ve. The new action is implemented
cunbi a. acti ons. St or eDat a.

This mechanism can also be applied at runtime, tdlify a
running instance. However, instead of using an tantlescribe
the extension, the open objects’ API is used to theddesired
action.

The second mechanism involves modifications tosthecture of
the state machine that add or remove states ansittcans. This
extension mechanism is much more expressive traprévious,
as it allows deeper changes to the behavior ofrtbéels. Using
it, it is possible to alter the abstraction of tife-cycle of the
entity, thus changing the way in which other opbjects relate to
it. The usage of this mechanism should take intmaat the risk
of creating new elements that will not synchronpzeperly with
the existing ones.

The third and last extension mechanism allows tleation of
new open objects by specializing existing oness Théchanism
requires modifications to the implementation of thatities to
change the part of behavior of open objects thabtsexpressed
with a state machine.

The three mechanisms presented cover a wide rahgieo
possible extension requirements that can surfaca workflow
application: they can be used to accommodate sthalhges to
the behavior of an element, but they can also bkd tsintroduce
totally new elements and adjust the others to inalfy, these
extension mechanisms also offer alternatives tlaay Wn their
expressiveness and their complexity: they were gdesi to
address different requirements and have specifipression
capacities that determine how much of the behawabrthe
elements can be modified. For instance, two ofrtteehanisms
can be used to extend the open objects behavidardbdunot
require modifications to the implementation of tleatities.

in the class

Because of this, a developer that uses open obfjestgo take
these two factors into account when selecting whielchanism to

apply.

3.4Usage and Implementation

In order to use the open objects, it is necessarybuild
metamodels based on them. As presented on thelimtion, the
idea is to have a metamodel for each dimension wogkflow
application. Metamodels are built with the follogisteps: first, it
is necessary to identify the elements that shoaldodrt of the
metamodel, and establish their relationships, baites and
behavior. Then, for each element a state machire thabe
designed. In this step, special attention shouldpbt on the
interactions between elements and on the requirgttbna.
Finally, the metamodels and their specialized apgacts have to
be implemented: the attributes and methods of fien mbjects
are described in the entities’ code; then, theestaachines are
described using an xml-based language; then, tii@naaused by
the state machines are implemented; as a last atapxtual
description of the metamodel is created, namingofien objects
included in it, specifying their entities and statechines, and
declaring their relationships. Most of these sta@ssupported by
the Cumbia editor that is presented in section 5.

The most important tool that we have implementedCfombia is
what we called th€umbia Kernel In the first place, the Kernel
understands metamodel descriptions and is capdbispaging
them. The Kernel is also capable of understandingdeh
descriptions written with an xml-based syntax. Usithis
information, the Kernel can create instances ofiwlels; this
requires the instantiation of open objects follogvthe definitions
included in the metamodel. Finally, the Kernel lsoacapable of
supporting the execution of the open objects:firsfan interface
to interact with any open object, and manages ¢keption and
distribution of events.

Although the Kernel provides most of the common awitr
shared by every metamodel, the Kernel is rarelg wgéhout any
modification. Instead, amngineis usually developed for each
metamodel. These engines are always based on theelKe
thereby it is not necessary to re-implement any tbé
functionalities offered by it. What most enginesopde is
behavior specific to the metamodel, and interfaodateract with
the models. For instance, the BPEL [28] engine rilesd in
section 5, offers specific behavior to manipulafeER data, and
an external APl based on web services.

4. OPEN OBJECTS IN THE WORKFLOW
CONTEXT

4.1 Cumbia-XPM

Cumbia-XPM is a metamodel constructed with openecisj
designed to describe the control dimension of wovkf
applications. This means that each element in tle¢gammodel
(Figure 3) is a specialized open object, with ac#jpeentity and
state machine. Because of the centrality of thérobdimension
in workflow applications, Cumbia-XPM models are alby called
theprocess descriptian
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Figure 3: Cumbia-XPM Metamodel.

A Cumbia-XPM model has a hierarchical structuret thas a
Processat its root. To be executed, a process needs soing
products that are consumed when tasks are execiitezse
products are called initial data and are receibedugh one of the
entry ports of the process. When that process hiasisits
execution, it generates a set of data that cardmvered through
one of its exit ports. To model this, we have dafiran element
called Port that can play the roles of entry or exit port.both
cases a port is given a set of data that has tdelieered to
someone who needs it: in the case of an exit dafieo process,
the data is picked up by someone or somebody eftéonthe
process; in the case of an entry port, the dapécleed up by one
of the elements that is part of the internal strcedf the process.

]

Executing a process means performing, in orderteaofkeither
simple or complex (sub-processes) tasks. Eachdhskprocess
requires also initial data and produces resultss tasks also need
entry and exit ports. The internal structure ofacpss defines the
execution order of the tasks and dependsDataflows which
connect ports. A dataflow connected to an exit pafria task
receives the results that it produces and makesn ftmv to an
entry port of the next task, carrying along bothadand control.
Figure 4 depicts a sample process with a struatfingorts and
dataflows that clearly defines the control-flow tbe process. In
this image it is possible to see how splits, jansl loops can be
achieved. For example, aftBecei ve Request the activities
Consult Credit Rating, Evaluate Request and
Study Credit History are executed in paralleMake
Deci si on can be executed after the completionGohsul t
Credit Rating, Evaluate Request and Study
Credit History.

The atomic tasks executed within a process are leddm
Cumbia-XPM with Activities and Workspaces An activity
controls the execution of a task and is respongiilenanaging
the data it requires and the data it produces. ¥ates are
encapsulated inside activities and are respons$dsleexecuting
specific tasks. A workspace interacts only with tmclosing
activity, which provides the data needed for ite@pion: when
the data reaches one of the entry ports of theiggtit is given to
the workspace to start its execution; when the smake finishes
its work, it generates an event, which the activiggs to pick up
the data, reset the workspace (so that it can beutad again),
and finally put the data in one of the exit povien one of those
exit ports becomes full, the flow of control andtal@ontinues
through the dataflows.

Consult Credit Rating

Make Decision

Process - “~.Port

Credit
-7
Application

Dataflow--"': MultiActivity :'-Workspace Activity

Figure 4: Elements of Cumbia-XPM in a sample proces

In the sample process there are five activiti®ecei ve
Request, Eval uate Request and Make Deci sion are
activities expected to be made by a usegnsult Credit
Rat i ng is expected to be executed automatically by a spake
specialized in consuming web services. There aescahere it is
necessary to execute in parallel several instanfethe same
activity. Cumbia-XPM has an element calldultiActivity to
achieve that. Every time a normal Activity getsadftom its entry
ports, the corresponding workspace is executed .oitea
MultiActivity, several instances of the workspage areated and
executed in parallel when the initial data requisececeived. The
number of workspaces executed can be defined dthimglesign
of the process, or during runtime, and new workepaof a
MultiActivity can be created in a dynamic way. lhet sample
process, several people should execute the actiitudy
Credit Hi story at the same time, but the exact number is
only known during the execution of the process.

Since Cumbia-XPM is based on the open objects’ matke
extension mechanisms (simple extension, adaptatiand
specialization) can be applied to it. For instariedquild a system
that orchestrates applications, workspaces canpbeiaized to
give them the ability to invoke web services. Thestended
versions of Cumbia-XPM can be easily created.

4.2 Open Objects’ Interaction in Cumbia-
XPM

To clarify how the interaction between open objerid between
elements of Cumbia-XPM proceeds, we now preseirhplified
scenario that includes only three elements: awnigcthat is going
to be executed; an entry-port of that activity, ethiwill receive
the data that is needed to start the executiomytelata); and a
workspace that is inside the activity and will esponsible for
executing a specific task using the entry-data. a¢t@on in this
scenario begins when the entry-port receives the dawas
expecting; the activity then picks the entry-dafaeds and
activates the workspace, and waits until it finislits execution.
An activity can have several entry-ports which ceceive data
concurrently; however, when one of those ports dells the
activity waits until the workspace finishes its exgon before
verifying if there is any other full entry-port.



Al :Activity

Ws1 :Workspace

Figure 5: Partial interaction between a port, an ativity and its
workspace.

The three state machines depicted in Figure 5 spored to
fragments of the state machines of a Port, an Agtiand its
Workspace. These three state machines were designdie
composed: some of the events that one of them g@seare
expected by the others to continue their executde now
describe the interaction between those state meshimt starts
when the port receives data.

1. The port P1 receives entry-data and takes theiti@ms

from state Waiting to state Full.

The state machine of activity Al receives the event
enterFull and takes the transition to state Active,
executing thegetData action, which retrieves the data

from the port and gives it to the Workspace.

The state machine of workspace Ws1 receives thet eve
enterActivegenerated by the Activity’s state machine.
The transition to state Execute is taken, executireg
action start, which initiates the execution of the
workspace.

This interaction sequence is repeated every timeactivity
instance starts its execution.

5. CURRENT IMPLEMENTATION

Besides theCumbia Kernel we have also implemented some
support applications. The most important ones areditor for
metamodels and a testing platform. As shown in féig, the
editor provides support for the definition of opeabjects’
specializations, and also for the definition of atenships
between open objects. After metamodels are fullfndd, the
editor generates metamodel descriptions that aderstandable
for the kernel, and also generates the code teemplabat
developers need to fill in order to specify all theetamodel-
specific behavior.

The Cumbia’s testing platform is what we use tofquren
automatic testing of every Cumbia-based engines Fatform
proposes a very powerful structure to model teségaand it can
be used to create specialized test frameworks dch engine.
Since Cumbia applications are highly concurrent,loa of
synchronization issues appear when things areiegrifiuring
execution; furthermore, since elements in the Car{i*M
metamodel are strongly interrelated, they are nsteaptible to be
tested independently. To solve these problems weldjged a
testing framework that allows the definition, ex@éen and

verification of testing scenarios. Scenarios arscdeed by a
static structure (a Cumbia-XPM process), instruddito control
its execution and some assertions that have teehbed after its
execution. The information to validate the assegits gathered
from execution traces in a fashion similar to wisatone in [8,9].
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Figure 6: Metamodels’ Editor while editing a) a meamodel
and b) an open object.

Using the Cumbia platform, we have developed sévera
metamodels with their respective engines. We hameced most
of our efforts in Cumbia-XPM because of the ceityrabf the
control dimension in workflow applications. Becausethis, we
have also developed an editor to graphically de€igmbia-XPM
processes (see Figure 7). We have also defined otbtamodels

to handle dimensions of workflows that are tightglated to
control. Cumbia-XRM (eXtensible Resources Model) was
designed to model the resources used in the epecotia process
(working personnel or machines, for example) analse capable
of modeling complex rules to assign these resoutcetasks.
Cumbia-XTM(eXtensible Time Model) can be used to model time



restrictions over the execution of a process. Fstance, one
restriction can specify that if a set of activitiests more than
three days, then an email has to be sent to thenggpr. Each of
these metamodels has its own engine, and XTM and XRdels

are composed to Cumbia-XPM processes using synizedstate
machines [23]. Thus, the coordination methods usetiveen

open objects inside XPM are also used to syncheoeiements
from several metamodels. The relationships betvedements of
different models are specified externally and apliaption that

knows all the engines is responsible for creatimg necessary
linkages. This external definition also makes i¢@sy to later add
new models or modify their relationships.

Using Cumbia, we have also implemented two differarsions
of a BPEL engine: the first one used Cumbia-XPM aas
intermediate language, whereas for the second enenedeled
the BPEL metamodel and we built a specific engimreitt The

first version of the engine was based on a transdtion

approach: first, we extended Cumbia-XPM with specd

workspaces to consume web services and handle atal dnd
then we translated BPEL process definitions intmeadically
equivalent Cumbia-XPM definitions. Furthermore, \Wad to
create a wrapper for the Cumbia-XPM engine in otdenake it
offer a BPEL compatible interface. Although thisplementation
was usable, it presented a problem that can alapgsar when
translations are made, that is the problem of séwgr the
translation. This reverse translation is necesdaryjnstance, if
someone is going to query the process status aimfei®sted in
receiving it in BPEL terms and not in Cumbia-XPMnts. In

order to solve this problem in this implementatiove used a
technique based on traceability information stoseden the
translation was made.

Figure 7: Cumbia-XPM'’s Editor.

Using the Cumbia platform and Cumbia-XPM, we alswadoped
an application calledPaperXpress PaperXpress is a tool to
support the collaborative writing of research papérallows the
definition of ad-hoc processes, and it offers thepert needed to
coordinate tasks and to handle the results of tliging process.
This application also applies the ideas of sepamatiof
dimensions; therefore it includes dimensions swchamtrol, data
and resources.

Another application that we have developed is ajirenfor IMS-
LD [10]. Although technically this specification issed to define

learnflows instead ofworkflows [14], the Cumbia platform was
very suitable to build this application. Finallyevare currently
developing a container for SCA [24] assemblies. bal of this
container is to provide a testing and analysisf@iat for SCA
based solutions. Thus, through the usage of opgectsbthe
container exposes a lot of useful information abitet internal
state and behavior of the components.

6. CONCLUSIONS

This paper presented a coordination model basexymehronized
state machines, and it showed the advantages dyimgpt to
workflow applications. The paper also showed tha main
problem that hinders maintenance and evolution umrenit
workflow engines is the lack of capacity to sepamimensions.
The direct consequence of this is that workflonglaages tend to
become big and complex. Consequently, the engihat run
these languages, and the processes described héth, talso
become inflexible and difficult to maintain and & These
problems can all be solved if the Cumbia platfosmsed to build
the workflow engines.

The Cumbia platform has the following characterstin the first
place, it separates the dimensions involved in &kflow and uses
dimension specific languagés describe them. This is possible,
because each dimension is described witmedamodelthat is
described in terms of a coordination model baseslyoachronized
state machines. The coordination elements of tloidahareopen
objects and they have powerful coordination capabiliti€kese
open objects also offer extension mechanisms thatribute to
the extensibility of processes and languages.

Another characteristic of the approach is its umifity, which
contributes to its ease of use, and also faciitetese. Uniformity
in Cumbia can be seen in the following points:

1. Every dimension expresses its behavior using theesa
coordination model. Thus, each dimension can be
accessed and manipulated using the same mechanisms.
This also makes it possible to have a common kernel
that offers the most important functionalities; ghu
engines for each dimension can be easily develaged
extensions to the kernel.

2. The same methods of the coordination model that are
used inside a model are also used for the compositi
between dimensions. Thus, open objects do not tteed
offer two different systems of coordination andithe
complexity is reduced.

3. The result of composing dimensions keeps the same
properties of the individual dimensions: it is Iséin
executable model and it is possible to coordinabero
models with it.

The characteristics of Cumbia have direct consecpgemon the
languages. Since they are used to describe orglesiimensions,
they can be simpler and more specific. As a rethily are easier
to use, maintain and evolve. Furthermore, dimerssgan evolve
independently, without a significant impact on thather
dimensions. Finally, the composition and coordorati
mechanisms make it possible to add or modify dinegrzseven at
run time.



Another advantage of the approach is the poteofidbwering
development time: basic dimensions such as cootrdime can
be reused, adapted and composed with a fine gréyubnd
without limiting their applicability to other applftions.
However, new dimensions, or extensions to existimgensions,
can be developed easily using the editors thatave developed.

Finally, the Cumbia approach can also be usedherdlypes of
applications. This paper focused only on workflopplécations,
but the advantages offered by Cumbia can also éilus more
general contexts.
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