
A State Machine Based Coordination Model
applied to Workflow Applications

Mario Sánchez*
Universidad de los Andes

Bogotá, Colombia

mar-san1@uniandes.edu.co

Jorge Villalobos
Universidad de los Andes

Bogotá, Colombia

jvillalo@uniandes.edu.co

Daniel Romero
University of Lille 1,

INRIA Lille, Nord Europe,
Laboratoire LIFL UMR CNRS 8022

daniel.romero@inria.fr

ABSTRACT
Traditionally, workflow applications use a single language to
describe every relevant detail of a business process. Therefore, the
complexity of the languages used and their implementations has
increased, creating problems related to evolution and
maintenance. A possible approach to lower this complexity is to
separate the elements of a process according to dimensions or
perspectives, similarly to what is done in Aspect-Oriented
Programming. The problem is that most workflow tools do not
support explicit dimensions, and previous implementations of
these ideas had important limitations.

This paper presents Cumbia, a platform to build workflow
applications supporting multiple dimensions. In Cumbia, an
executable model is used for each dimension, and these
executable models are expressed with a coordination model based
on synchronized state machines. Among other advantages, this
approach renders possible the usage of dimension-specific
languages, thus easing maintenance and evolution of processes,
engines and languages.

Keywords
Programming and Software Engineering, Model Driven
Engineering, Business Process Modeling, Aspect Oriented
Workflows.

1. INTRODUCTION
Nowadays, a growing number of contexts are taking advantage of
workflow applications. In these, there is a central coordination
element that leads the cooperative execution of several active
entities, and provides a way to integrate them to achieve a
common goal [16]. Perhaps the best known workflow language is
currently BPEL [28], which is used for composing and
coordinating web services. Moreover, there are nowadays
hundreds of different languages and engines, which offer different

 * Supported by the VLIR funded CARAMELOS project:

http://ssel.vub.ac.be/caramelos/ and by Colciencias.

features and are usually targeted towards particular application
contexts. For instance, there are workflow languages specialized
in scientific applications [25], in ubiquitous computing [11], or in
human interaction [29].

The usage of workflow applications has surged because of the
many advantages they offer. One of these advantages is the ability
to separate the order of execution of tasks (the coordination) from
the actual tasks performed (the computations), which eases the
integration of heterogeneous components. Furthermore, this
separation between coordination and computation favors
modularity and reuse. This can be seen when new processes are
created, using only existing, configurable elements. Another
important characteristic of workflow applications is that they are
used in contexts that tend to evolve frequently, because they
provide the necessary flexibility to adapt to the changes. For
instance, in a financial company it is common to have changing
business rules, changing processes, and new systems and tools
that have to be integrated to the existing application stack.
Workflows are capable of handling this kind of changes without
making huge investments in new systems.

The central element in a workflow application is the control
dimension (or perspective): it comprises entities that describe the
control-flow, that is, the tasks that have to be performed, and their
ordering [26,6]. In most applications, control is complemented by
entities from other dimensions, such as data, time and resources.
Which dimensions appear in a specific application depends on the
context where that application is used. For instance, in an
application to support distributed software development processes
it is not enough to describe the tasks to be performed. It is also
necessary to describe the structure of the development team, the
capabilities of its members, the timing restrictions that the process
should abide, and management policies for the data produced by
the process. Thus, the description of these processes requires more
than control: it also requires elements from the dimensions of
resources, time and data.

The problem that we address in this paper is that currently most
workflow engines make no separation between dimensions. Thus,
users have to use languages that mix elements from every
dimension, and therefore, these dimensions become permanently
entangled. From the users’ point of view, this makes processes
more difficult to maintain and to evolve. From the point of view
of developers of workflow engines this also has important
consequences. On the one hand, the evolution of languages tends
to make them grow and become complex. Therefore, the engines
to support their execution also tend to become more complex and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Conference’04, Month 1–2, 2004, City, State, Country.
Copyright 2004 ACM 1-58113-000-0/00/0004…$5.00.

Cuarto Congreso Colombiano de Computación 4CCC
Sociedad Colombiana de Computación
UNAB - UIS
© 2009 Los Autores. Todos los Derechos Reservados.

difficult to maintain. On the other hand, the capacity of evolution
of these applications is also limited because a high coupling
between dimensions makes it difficult to adapt them
independently to changing requirements. Furthermore, it becomes
very difficult to add extra dimensions late in the development
cycle.

With current mainstream techniques to build workflow engines, it
is not easy to have multi-dimension support. In the first place,
these approaches lack the flexibility to represent various
dimensions and support all their variations. On the other hand,
they do not offer the capabilities to manage the changing
relationships between dimensions. As section 2 shows, there have
been works to solve some of these problems, and some existing
approaches offer partial solutions to them.

This paper presents Cumbia, a platform that can be used to build
workflow engines with multi-dimensional support. This means
that Cumbia makes it possible to execute processes described as a
composition of dimensions, and use a different language to
describe each dimension. This has the following advantages: first,
control languages are simplified because they do not have to
include elements unrelated to control; it is also possible to design
very suitable1 dimension specific languages, and thus processes
easier to understand and to maintain; finally, evolution of the
engine is simplified because each dimension can evolve
independently, within certain restrictions [22].

The fundamental proposal of Cumbia is to use a state machine
based coordination model to describe the dimensions. This is
achieved by means of dimension specific metamodels described in
terms of a coordination element that we have called open objects
(see section 3). Thus, workflow processes are groups of models
conformant to those metamodels, which are executed in a
coordinated fashion. The underlying coordination mechanism
offers characteristics that are important in workflow applications:
it supports synchronous and asynchronous interaction, and it
offers powerful extensions mechanisms (see section 4).

This paper introduces the Cumbia platform and presents its main
elements. First, it presents some related works that produced
interesting ideas that inspired Cumbia. Then, section 3 presents
the basics of the coordination model and the open objects. Section
4 illustrates the usage of open objects in Cumbia-XPM, a
metamodel for describing the control dimension of processes.
Finally, section 5 presents the tools developed to support the
usage of Cumbia, and some Cumbia-based applications used in
different contexts.

2. RELATED WORK
This section presents other research groups’ works that cab be
related to Cumbia. We have classified these works in the
following three broad topics: coordination models and Reo;
aspect-oriented workflow languages; and YAWL.

1 The term suitability refers to the match between the constructs

available in the modeling language and the concepts in the
application domain [12]. Suitability is the metric used in many
works to explore the relationship between workflow languages
and patterns: control-flow patterns [18], resource patterns [19],
data patterns [20], etc.

As Papadopoulos and Arbab showed in their survey [16], there
are many different coordination models, which can be classified
as data-driven or control-driven. In the former group, they mainly
focused on Linda and its descendants. However, Linda-like
models have some deficiencies that make them inadequate to
model workflows [17]. Nevertheless, some of their underlying
ideas are useful in modern coordination models, such as the
independence between the computation and coordination, or the
usage of a shared space for data (as is required in one of the
implementation strategies described in [21]). Among the control-
driven models identified in [16], there is Manifold [17]. This
model has several similarities to Cumbia-XPM and the open
objects, but its design totally separates data from control. Whereas
in Cumbia-XPM we can use the flow of data to control the state
of a process, Manifold is completely event-driven. Also, there is
no direct interaction between elements, other than the flow of data
through streams.

A more recent and powerful coordination model is Reo [2]. It is
an exogenous language based on channels that can be used to
create very complex connectors. The usage of Reo as glue-code
between heterogeneous components promotes loose coupling
because it makes possible to separate them and externalize their
interaction and the flow of data between them. Reo has been
applied to the problem of composing web services, as is presented
in [7] and [13]. In these works, several features of Reo lead to
advantages over other solutions such as BPEL: using Reo it is
possible to dynamically reconfigure the channels to restructure the
processes; distribution and mobility is also supported by the
coordination model; finally, the formal description of Reo makes
it possible to apply model checking techniques to the web services
compositions.

One of the fundamental points of our proposal is the separation of
processes into different perspectives, which is a strategy that has
been applied in a small number of other workflow related
projects. AO4BPEL [5] is an aspect-oriented workflow language
based on BPEL, which allows the definition of aspects using
BPEL for the advices and XPATH as point cut language.
AO4BPEL offers static and dynamic weaving, using a specialized
BPEL engine. Padus [3] is also a workflow language that extends
BPEL. It has a logic-based point cut language, and it also uses
BPEL to describe the advices. It only supports static weaving, but
since the outputs of its weaving process are valid BPEL processes,
they can be run in unmodified BPEL engines. There are several
differences between Cumbia and AO4BPEL or Padus. In the first
place, they can only use BPEL as the advice language, and thus it
is impossible to have dimension specific languages. Furthermore,
join points are limited to syntactic elements present in the process
definition, or to ‘internal join points’, which are fixed steps
required for web services’ consumption. Compared to the
flexibility offered by Cumbia and the open objects, which can
have state machines as complex as necessary, their approach
limits the possible extensions. Finally, there is a difference in the
way they modularize with concerns. Although in many cases they
use aspects to reduce tangling, they also use aspects to express
changes in a modular fashion. We do not share this usage because
aspects should modularize crosscutting concerns and a concern is
not crosscutting with itself. Although it is a useful decomposition,
it should not be called aspect-based.

Another project that has explored the application of aspects to
workflows is AMFIBIA [1]. AMFIBIA is a metamodel that
formalizes the core elements of business process modeling. It is
based on a core that groups common concepts, and on concerns
(aspects in their terminology) that specialize these shared
concepts. AMFIBIA has several similarities to Cumbia: it
separates workflow dimensions; it is formalism-independent and it
is possible to have dimension specific languages; the dimensions
used are not fixed and new ones can be added. Nevertheless, there
are important differences between AMFIBIA and Cumbia,
particularly in the relation between the elements of each
formalism and the common elements. In their approach, there is a
mapping between the elements of each concern and the core
concepts. In Cumbia, the elements of each concern are
specializations of the open objects. In their case this mapping is
the foundation of the synchronization mechanism, because the
coordination can only happen if the core is included.

Finally, there have also been projects that have explored particular
dimensions (or perspectives) in workflows. For instance, in [21],
the main topic discussed is the data perspective, but several works
related to other perspectives are also referenced (time, resources,
transactions, and functionality). However, there is an essential
difference between their strategy and ours in that they propose the
need to have a clear separation of perspectives when modeling a
process, even if its implementation and execution integrates the
perspectives into a single solution. With our strategy, the
perspectives are separated when modeling and stay separated, but
coordinated, during execution.

As discussed before, most existing workflow languages and
engines combine all the dimensions present in a process. YAWL
is a very well known exception to this, since it is a workflow
language that was specifically designed to support the control
perspective and the original control-flow patterns [26]. From the
Cumbia viewpoint, YAWL is also interesting because it clearly
describes the workflow language and the underlying coordination
model as two different things, albeit tightly related. YAWL’s
development started with an analysis of the Petri nets’ suitability
to accommodate the patterns and, after finding some limitations,
they proposed a formal coordination model based on a Labeled
Transition System (LTS). Similar to Cumbia-XPM, YAWL is an
intermediate language to support the execution of high level
languages. Since the coordination model was inspired by Petri
Nets, it includes concepts such as places, conditions and tokens. It
also uses state machines to describe the life-cycle of elements, but
these nets are identical for every element and are used only for
documentation purposes and not for coordination or composition.
One advantage of the formal semantics of YAWL is the
possibility to analyze and verify processes, which has been
explored using a tool called Woflan2. Currently, neither Cumbia-
XPM nor open objects have a formal definition and semantics.
Finally, YAWL also offers extensibility capabilities using Proclets
[27].

3. COORDINATION ELEMENTS: OPEN
OBJECTS
This section presents the coordination model that is the core
contribution of the paper. This coordination model is based on a

2 Woflan, URL: http://is.tm.tue.nl/research/woflan/

basic element called ‘open object’. By using several of these open
objects it is possible to build extensible and executable models
that have all their elements synchronized. In this section the
elements that form an open object are first presented; then the
mechanisms that allow the coordination of several open objects
are discussed, as well as their extensibility capabilities; finally, the
requirements to implement a system based on open objects are
discussed.

3.1 Structure of an Open Object
One of the advantages of the object oriented paradigm is the
capacity to materialize in a model the elements of a problem, their
behavior, and their relations. Object-based models usually
replicate the structures of the problem domain, using object
attributes to recreate relations and method calls to model
interaction. In order to take advantage of the capacity of building
isomorphic structures to the problem domain, our composition
elements are based on objects, but they have some additional
features that expose their internal state. That is why we call them
‘open objects’.

In the traditional object-oriented paradigm, a state of an object is a
particular combination of values of its attributes. To know this
state, it is necessary to call its methods. The number of states
reachable by an object depends on the values that its attributes can
have. However, most of the time, the elements that interact with
an object are interested only in a subset of its reachable states and
some of the possible states of the object can be grouped together
to create a simpler abstraction of its life cycle. This does not mean
that attribute-based states should be eliminated. Instead, these
new, broader states can be materialized in an external state
machine synchronized with the object. For instance, in the case of
a counter from 0 to 100, one possible abstraction can identify only
three different states: “Stopped,” “Counting,” and “Finished.”
This reduction in complexity simplifies monitoring and
coordination since the state machine can easily publish
notifications when a state change occurs and this can serve to
coordinate other elements.

An open object is composed of an entity, a state machine
associated to the entity, and a set of actions. An entity is just a
traditional object with attributes and methods: it provides an
attribute-based state to the open object, and its methods are a
place where part of its behavior can be implemented. The state
machine materializes an abstraction of the life-cycle of the entity,
allowing other elements to know this state and react to its
changes. This can be done using methods defined in the interface
of the open object, which is based on the interface of the entity,
and is enriched with the methods needed to access and navigate
the state machine. Finally, the actions are pieces of behavior that
are associated to transitions: when a transition is processed, its
actions are executed in a serialized way.

3.2 Coordination of Open Objects
The execution of an open objects-based model depends on the
execution and coordination of its elements. Because of this, open
objects offers two different interaction mechanisms: one is
asynchronous and based on events, and the other is synchronous
and based on actions and method calls. These two alternatives
complement themselves and can be used to describe very complex
interaction patterns.

Events are the most important coordination mechanism in Cumbia
because they are used to maintain the synchronization not only
between open objects but also between entities and their
respective state machines. This section explains how events are
processed and used to keep state machines updated, but first it is
necessary to discuss what generates events. From the standpoint
of an open object, events can be produced by its own entity, by its
state machine, or by external elements, which can be other open
objects or even elements external to the model. An entity usually
generates an event when one of its methods is called and changes
its internal state. Thus, the event is generated to inform the state
machine about the change and try to maintain the consistency
between the internal, attribute-based state of the entity, and the
current state of the state machine. Events can also be generated
when state machines change state: each time a state machine
moves from its current state to the next, events are generated to
show that (i) the original state is abandoned, (ii) the processing of
a transition starts, (iii) the processing of a transition finishes, and
(iv) a new state is reached (see Figure 1)3. Finally, events can be
generated by other sources, such as external systems or because of
user interaction. Cumbia does not differentiate those events, and
they are treated exactly like internal events.

Figure 1: Events generated by state machines.

Every transition in a state machine has an associated expected
event description. This means that whenever an event that
matches the description is received, the transition has to be taken.
Events are described with an expression of the form
[ELEMENT]eventType , where [ELEMENT] describes who is
expected to generate the event, and eventType specifies the
particular type of event expected. Note that ELEMENT is not the
identifier of a specific element, but a relative reference that can be
used to locate it. For example, if an open object used in a
hierarchical structure has an event described as generated by
[PARENT] , then the generator of the event can be located
ascending in the hierarchy. If an event is described as generated
by [ME] , then the generator is the same open object that owns the
state machine (see Figure 2).

Events are processed by open objects in the following way. First,
events are received and stored in a queue that is local to the open
object. Events are then processed one by one, until the queue is
empty. Events’ processing in multiple open objects happens in
parallel within our current implementation of the Cumbia kernel
(see section 5): a separate thread is used to process the events of
each open object. However, a valid alternative implementation is
to use a single thread to process every event, using some

3 While the transition takes place, the state machine is considered

to still be in the original state (A).

algorithm to select queues, or even using a shared queue for all
open objects. The selection of one of these alternatives does not
have an impact on the execution semantics; nevertheless, there
may be an impact on non-functional requirements such as
efficiency or scalability.

Figure 2: State machine with source events.

To process an event, it is necessary to analyze the transitions that
start in the current state of the open objects’ state machine. If the
event matches the description of the expected event for any of
those transitions, (i) that transition is taken, (ii) its associated
actions are executed, and (iii) the state machine changes state. If
the event does not match the expected event for any of the
transitions that start from the current state, the event is discarded
and it is never processed again4. If there are more than one
transition with matching expected events, one of them is randomly
selected5.

The other coordination mechanism of open objects is based in
actions and method calls. In general, actions are used to add
semantics to state’s changes and produce some kind of effect on
the model. In particular, actions can be used to call entities’
methods, to communicate with other applications, and to generate
further events. By combining these two mechanisms of interaction
it is possible to define the coordination of open objects with very
fine granularity, in a synchronous or asynchronous fashion.
Furthermore, these coordination rules are defined externally to the
open objects’ implementation, and they are thus easily modifiable,
even at execution time.

4 This strategy was selected because it reduces the possibility of

having disordered events. Although discarding events may
appear as a source of non-determinism, it forces metamodels'
developers to be more careful in their designs. Furthermore, it
changes a very difficult problem (processing disordered events)
for a simpler one (missing events that can be requested again).

5 This situation should be considered an error made by the
designer of the state machine. Although it is possible to
introduce this kind of non-determinism, it should be avoided if
possible.

3.3 Extension Mechanisms
Open objects offer three extension mechanisms which give
flexibility to models and metamodels. These mechanisms have
different capacity of expression, and they can be combined if
necessary.

The first mechanism involves the modification of actions
associated to a state machine. This method, called simple
extension, can be applied to the definition of an element, and
affect all its instances, or it can be applied at runtime to affect a
single instance. This mechanism is the simplest to use, but it is not
as powerful as the other two. The following snippet of code shows
an example of the usage of this mechanism to modify an element
of the metamodel.

<extended-type name="ExtendedPort" extends="Port">
 <extension transitionName="Receive">
 <action name="Store Data"
 class="cumbia.actions.StoreData"/>
 </extension>
</extended-type>

The code extends an existing element called Port, and creates an
extension called ExtendedPort. The code specifies that the
new, extended type is similar to the base type, but has an
additional action called Store Data associated to the transition
Receive. The new action is implemented in the class
cumbia.actions.StoreData.

This mechanism can also be applied at runtime, to modify a
running instance. However, instead of using an xml to describe
the extension, the open objects’ API is used to add the desired
action.

The second mechanism involves modifications to the structure of
the state machine that add or remove states and transitions. This
extension mechanism is much more expressive than the previous,
as it allows deeper changes to the behavior of the models. Using
it, it is possible to alter the abstraction of the life-cycle of the
entity, thus changing the way in which other open objects relate to
it. The usage of this mechanism should take into account the risk
of creating new elements that will not synchronize properly with
the existing ones.

The third and last extension mechanism allows the creation of
new open objects by specializing existing ones. This mechanism
requires modifications to the implementation of the entities to
change the part of behavior of open objects that is not expressed
with a state machine.

The three mechanisms presented cover a wide range of the
possible extension requirements that can surface in a workflow
application: they can be used to accommodate small changes to
the behavior of an element, but they can also be used to introduce
totally new elements and adjust the others to it. Finally, these
extension mechanisms also offer alternatives that vary in their
expressiveness and their complexity: they were designed to
address different requirements and have specific expression
capacities that determine how much of the behavior of the
elements can be modified. For instance, two of the mechanisms
can be used to extend the open objects behavior, but do not
require modifications to the implementation of the entities.

Because of this, a developer that uses open objects has to take
these two factors into account when selecting which mechanism to
apply.

3.4 Usage and Implementation
In order to use the open objects, it is necessary to build
metamodels based on them. As presented on the introduction, the
idea is to have a metamodel for each dimension in a workflow
application. Metamodels are built with the following steps: first, it
is necessary to identify the elements that should be part of the
metamodel, and establish their relationships, attributes and
behavior. Then, for each element a state machine has to be
designed. In this step, special attention should be put on the
interactions between elements and on the required actions.
Finally, the metamodels and their specialized open objects have to
be implemented: the attributes and methods of the open objects
are described in the entities’ code; then, the state machines are
described using an xml-based language; then, the actions used by
the state machines are implemented; as a last step, a textual
description of the metamodel is created, naming the open objects
included in it, specifying their entities and state machines, and
declaring their relationships. Most of these steps are supported by
the Cumbia editor that is presented in section 5.

The most important tool that we have implemented for Cumbia is
what we called the Cumbia Kernel. In the first place, the Kernel
understands metamodel descriptions and is capable of managing
them. The Kernel is also capable of understanding model
descriptions written with an xml-based syntax. Using this
information, the Kernel can create instances of the models; this
requires the instantiation of open objects following the definitions
included in the metamodel. Finally, the Kernel is also capable of
supporting the execution of the open objects: it offers an interface
to interact with any open object, and manages the reception and
distribution of events.

Although the Kernel provides most of the common behavior
shared by every metamodel, the Kernel is rarely used without any
modification. Instead, an engine is usually developed for each
metamodel. These engines are always based on the Kernel;
thereby it is not necessary to re-implement any of the
functionalities offered by it. What most engines provide is
behavior specific to the metamodel, and interfaces to interact with
the models. For instance, the BPEL [28] engine described in
section 5, offers specific behavior to manipulate BPEL data, and
an external API based on web services.

4. OPEN OBJECTS IN THE WORKFLOW
CONTEXT
4.1 Cumbia-XPM
Cumbia-XPM is a metamodel constructed with open objects,
designed to describe the control dimension of workflow
applications. This means that each element in the metamodel
(Figure 3) is a specialized open object, with a specific entity and
state machine. Because of the centrality of the control dimension
in workflow applications, Cumbia-XPM models are usually called
the process description.

Figure 3: Cumbia-XPM Metamodel.

A Cumbia-XPM model has a hierarchical structure that has a
Process at its root. To be executed, a process needs some entry
products that are consumed when tasks are executed. These
products are called initial data and are received through one of the
entry ports of the process. When that process finishes its
execution, it generates a set of data that can be recovered through
one of its exit ports. To model this, we have defined an element
called Port that can play the roles of entry or exit port. In both
cases a port is given a set of data that has to be delivered to
someone who needs it: in the case of an exit port of the process,
the data is picked up by someone or somebody external to the
process; in the case of an entry port, the data is picked up by one
of the elements that is part of the internal structure of the process.

Executing a process means performing, in order, a set of either
simple or complex (sub-processes) tasks. Each task of a process
requires also initial data and produces results, thus tasks also need
entry and exit ports. The internal structure of a process defines the
execution order of the tasks and depends on Dataflows, which
connect ports. A dataflow connected to an exit port of a task
receives the results that it produces and makes them flow to an
entry port of the next task, carrying along both data and control.
Figure 4 depicts a sample process with a structure of ports and
dataflows that clearly defines the control-flow for the process. In
this image it is possible to see how splits, joins and loops can be
achieved. For example, after Receive Request the activities
Consult Credit Rating, Evaluate Request and
Study Credit History are executed in parallel. Make
Decision can be executed after the completion of Consult
Credit Rating, Evaluate Request and Study
Credit History.

The atomic tasks executed within a process are modeled in
Cumbia-XPM with Activities and Workspaces. An activity
controls the execution of a task and is responsible for managing
the data it requires and the data it produces. Workspaces are
encapsulated inside activities and are responsible for executing
specific tasks. A workspace interacts only with the enclosing
activity, which provides the data needed for its execution: when
the data reaches one of the entry ports of the activity, it is given to
the workspace to start its execution; when the workspace finishes
its work, it generates an event, which the activity uses to pick up
the data, reset the workspace (so that it can be executed again),
and finally put the data in one of the exit ports. When one of those
exit ports becomes full, the flow of control and data continues
through the dataflows.

Figure 4: Elements of Cumbia-XPM in a sample process.

In the sample process there are five activities: Receive
Request, Evaluate Request and Make Decision are
activities expected to be made by a user; Consult Credit
Rating is expected to be executed automatically by a workspace
specialized in consuming web services. There are cases where it is
necessary to execute in parallel several instances of the same
activity. Cumbia-XPM has an element called MultiActivity to
achieve that. Every time a normal Activity gets data from its entry
ports, the corresponding workspace is executed once. In a
MultiActivity, several instances of the workspace are created and
executed in parallel when the initial data required is received. The
number of workspaces executed can be defined during the design
of the process, or during runtime, and new workspaces of a
MultiActivity can be created in a dynamic way. In the sample
process, several people should execute the activity Study
Credit History at the same time, but the exact number is
only known during the execution of the process.

Since Cumbia-XPM is based on the open objects’ model, its
extension mechanisms (simple extension, adaptation, and
specialization) can be applied to it. For instance, to build a system
that orchestrates applications, workspaces can be specialized to
give them the ability to invoke web services. Thus, extended
versions of Cumbia-XPM can be easily created.

4.2 Open Objects’ Interaction in Cumbia-
XPM
To clarify how the interaction between open objects and between
elements of Cumbia-XPM proceeds, we now present a simplified
scenario that includes only three elements: an activity that is going
to be executed; an entry-port of that activity, which will receive
the data that is needed to start the execution (entry-data); and a
workspace that is inside the activity and will be responsible for
executing a specific task using the entry-data. The action in this
scenario begins when the entry-port receives the data it was
expecting; the activity then picks the entry-data, feeds and
activates the workspace, and waits until it finishes its execution.
An activity can have several entry-ports which can receive data
concurrently; however, when one of those ports gets full, the
activity waits until the workspace finishes its execution before
verifying if there is any other full entry-port.

Figure 5: Partial interaction between a port, an activity and its
workspace.

The three state machines depicted in Figure 5 correspond to
fragments of the state machines of a Port, an Activity and its
Workspace. These three state machines were designed to be
composed: some of the events that one of them generates are
expected by the others to continue their execution. We now
describe the interaction between those state machines that starts
when the port receives data.

1. The port P1 receives entry-data and takes the transition
from state Waiting to state Full.

2. The state machine of activity A1 receives the event
enterFull and takes the transition to state Active,
executing the getData action, which retrieves the data
from the port and gives it to the Workspace.

3. The state machine of workspace Ws1 receives the event
enterActive generated by the Activity’s state machine.
The transition to state Execute is taken, executing the
action start, which initiates the execution of the
workspace.

This interaction sequence is repeated every time an activity
instance starts its execution.

5. CURRENT IMPLEMENTATION
Besides the Cumbia Kernel, we have also implemented some
support applications. The most important ones are an editor for
metamodels and a testing platform. As shown in Figure 6, the
editor provides support for the definition of open objects’
specializations, and also for the definition of relationships
between open objects. After metamodels are fully defined, the
editor generates metamodel descriptions that are understandable
for the kernel, and also generates the code templates that
developers need to fill in order to specify all the metamodel-
specific behavior.

The Cumbia’s testing platform is what we use to perform
automatic testing of every Cumbia-based engine. This platform
proposes a very powerful structure to model test cases, and it can
be used to create specialized test frameworks for each engine.
Since Cumbia applications are highly concurrent, a lot of
synchronization issues appear when things are verified during
execution; furthermore, since elements in the Cumbia-XPM
metamodel are strongly interrelated, they are not susceptible to be
tested independently. To solve these problems we developed a
testing framework that allows the definition, execution and

verification of testing scenarios. Scenarios are described by a
static structure (a Cumbia-XPM process), instructions to control
its execution and some assertions that have to be verified after its
execution. The information to validate the assertions is gathered
from execution traces in a fashion similar to what is done in [8,9].

Figure 6: Metamodels’ Editor while editing a) a metamodel
and b) an open object.

Using the Cumbia platform, we have developed several
metamodels with their respective engines. We have centered most
of our efforts in Cumbia-XPM because of the centrality of the
control dimension in workflow applications. Because of this, we
have also developed an editor to graphically design Cumbia-XPM
processes (see Figure 7). We have also defined other metamodels
to handle dimensions of workflows that are tightly related to
control. Cumbia-XRM (eXtensible Resources Model) was
designed to model the resources used in the execution of a process
(working personnel or machines, for example) and is also capable
of modeling complex rules to assign these resources to tasks.
Cumbia-XTM (eXtensible Time Model) can be used to model time

restrictions over the execution of a process. For instance, one
restriction can specify that if a set of activities lasts more than
three days, then an email has to be sent to the supervisor. Each of
these metamodels has its own engine, and XTM and XRM models
are composed to Cumbia-XPM processes using synchronized state
machines [23]. Thus, the coordination methods used between
open objects inside XPM are also used to synchronize elements
from several metamodels. The relationships between elements of
different models are specified externally and an application that
knows all the engines is responsible for creating the necessary
linkages. This external definition also makes it is easy to later add
new models or modify their relationships.

Using Cumbia, we have also implemented two different versions
of a BPEL engine: the first one used Cumbia-XPM as an
intermediate language, whereas for the second one we modeled
the BPEL metamodel and we built a specific engine for it. The
first version of the engine was based on a transformation
approach: first, we extended Cumbia-XPM with specialized
workspaces to consume web services and handle xml data, and
then we translated BPEL process definitions into semantically
equivalent Cumbia-XPM definitions. Furthermore, we had to
create a wrapper for the Cumbia-XPM engine in order to make it
offer a BPEL compatible interface. Although this implementation
was usable, it presented a problem that can always appear when
translations are made, that is the problem of reversing the
translation. This reverse translation is necessary, for instance, if
someone is going to query the process status and is interested in
receiving it in BPEL terms and not in Cumbia-XPM terms. In
order to solve this problem in this implementation, we used a
technique based on traceability information stored when the
translation was made.

Figure 7: Cumbia-XPM’s Editor.

Using the Cumbia platform and Cumbia-XPM, we also developed
an application called PaperXpress. PaperXpress is a tool to
support the collaborative writing of research papers. It allows the
definition of ad-hoc processes, and it offers the support needed to
coordinate tasks and to handle the results of the writing process.
This application also applies the ideas of separation of
dimensions; therefore it includes dimensions such as control, data
and resources.

Another application that we have developed is an engine for IMS-
LD [10]. Although technically this specification is used to define

learnflows instead of workflows [14], the Cumbia platform was
very suitable to build this application. Finally, we are currently
developing a container for SCA [24] assemblies. The goal of this
container is to provide a testing and analysis platform for SCA
based solutions. Thus, through the usage of open objects the
container exposes a lot of useful information about the internal
state and behavior of the components.

6. CONCLUSIONS
This paper presented a coordination model based on synchronized
state machines, and it showed the advantages of applying it to
workflow applications. The paper also showed that the main
problem that hinders maintenance and evolution in current
workflow engines is the lack of capacity to separate dimensions.
The direct consequence of this is that workflow languages tend to
become big and complex. Consequently, the engines that run
these languages, and the processes described with them, also
become inflexible and difficult to maintain and evolve. These
problems can all be solved if the Cumbia platform is used to build
the workflow engines.

The Cumbia platform has the following characteristics. In the first
place, it separates the dimensions involved in a workflow and uses
dimension specific languages to describe them. This is possible,
because each dimension is described with a metamodel that is
described in terms of a coordination model based on synchronized
state machines. The coordination elements of this model are open
objects, and they have powerful coordination capabilities. These
open objects also offer extension mechanisms that contribute to
the extensibility of processes and languages.

Another characteristic of the approach is its uniformity, which
contributes to its ease of use, and also facilitates reuse. Uniformity
in Cumbia can be seen in the following points:

1. Every dimension expresses its behavior using the same
coordination model. Thus, each dimension can be
accessed and manipulated using the same mechanisms.
This also makes it possible to have a common kernel
that offers the most important functionalities; thus,
engines for each dimension can be easily developed as
extensions to the kernel.

2. The same methods of the coordination model that are
used inside a model are also used for the composition
between dimensions. Thus, open objects do not need to
offer two different systems of coordination and their
complexity is reduced.

3. The result of composing dimensions keeps the same
properties of the individual dimensions: it is still an
executable model and it is possible to coordinate other
models with it.

The characteristics of Cumbia have direct consequences on the
languages. Since they are used to describe only single dimensions,
they can be simpler and more specific. As a result, they are easier
to use, maintain and evolve. Furthermore, dimensions can evolve
independently, without a significant impact on the other
dimensions. Finally, the composition and coordination
mechanisms make it possible to add or modify dimensions even at
run time.

Another advantage of the approach is the potential of lowering
development time: basic dimensions such as control or time can
be reused, adapted and composed with a fine granularity and
without limiting their applicability to other applications.
However, new dimensions, or extensions to existing dimensions,
can be developed easily using the editors that we have developed.

Finally, the Cumbia approach can also be used in other types of
applications. This paper focused only on workflow applications,
but the advantages offered by Cumbia can also be useful in more
general contexts.

7. ACKNOWLEDGMENTS
We would like to thank the rest of the Cumbia group for their
hard work and their contributions to this research. In particular,
we would like to thank Camilo Jiménez, Fabio Quimbay and
Diana Puentes for their efforts in the development of the editors.

8. REFERENCES
[1] Axenath, B., Kindler, E., Rubin, V. 2007. AMFIBIA: a meta-

model for integrating business process modelling aspects. In
International Journal of Business Process Integration and
Management 2, 2 (2007), 120–131.

[2] Arbab, F., Mavaddat, F. 2002. Coordination through channel
composition. In COORDINATION ’02: Proceedings of the
5th International Conference on Coordination Models and
Languages (London, UK, 2002). Springer-Verlag, 22–39.

[3] Braem, M. et al. 2006. Isolating process-level concerns using
Padus. In BPM 2006. LNCS, 4102, Springer-Verlag, 113–
128.

[4] Brogi, A., Canal, C., Pimentel, E. 2007. Behavioural types
for service integration: Achievements and challenges. In
Electronic Notes in Theoretical Computer Science, 180, 2,
Elsevier, 41–54.

[5] Charfi, A., Mezini, M. 2006. Aspect-oriented workflow
languages. In On the Move to Meaningful Internet Systems
2006: CoopIS, DOA, GADA, and ODBASE. LNCS, 4275,
Springer Berlin / Heidelberg, 183–200.

[6] Craven, N. and Mahling, D. 1995. Goals and processes: a
task basis for projects and workflows. In Proceedings of
Conference on Organizational Computing Systems (Milpitas,
California, United States, August 13 - 16, 1995). N.
Comstock and C. Ellis, Eds. COCS '95. ACM, New York,
NY, 237-248.

[7] Diakov, N.K., Arbab, F. 2004. Compositional construction
of web services using reo. In Web Services: Modeling,
Architecture and Infrastructure - Proceedings of the 2nd
International Workshop on Web Services: Modeling,
Architecture and Infrastructure, WSMAI 2004, INSTICC
Press, 49–58.

[8] Dwyer, M.B., Avrunin, G.S., Corbett, J.C. 1999. Patterns in
property specifications for finite-state verification. In ICSE
’99: Proceedings of the 21st International Conference on
Software Engineering, Los Alamitos, CA, USA, IEEE
Computer Society Press, 411–420.

[9] Hu, Z., Shatz, S.M. 2006. Explicit modeling of semantics
associated with composite states in uml statecharts. In
Automated Software Engineering, 13, 4, 423–467.

[10] IMS Learning Desing, version 1, February, 2003.
http://www.imsglobal.org/learningdesign/

[11] Joohyun Han, Yongyun Cho, Jaeyoung Choi 2005. Context-
Aware Workflow Language Based on Web Services for
Ubiquitous Computing. In ICCSA 2005. LNCS, 3481,
Springer 1008–1017.

[12] Kiepuszewski, B. 2003. Expressiveness and Suitability of
Languages for Control Flow Modelling in Workflows. PhD
thesis, Queensland University of Technology (Brisbane,
Australia).

[13] Limniotes, T. A., Papadopoulos, G. A., and Arbab, F. 2004.
Web Services: separation of concerns: computation
coordination communication. In Proceedings of the 2004
ACM Symposium on Applied Computing (Nicosia, Cyprus,
March 14 - 17, 2004). SAC '04. ACM, New York, NY, 492-
497.

[14] O. Mariño, R. Casallas, J. Villalobos, D. Correal, J.
Contamines 2007. Bridging the Gap between E-learning
Modeling and Delivery through the Transformation of
Learnflows into Workflows. In E-Learning Networked
Environments and Architectures, Springer.

[15] Object Management Group: Software Process Engineering
Metamodel (SPEM), Version 1.1 (January 2005)

[16] Papadopoulos, G. A. and Arbab, F. 1998 Coordination
Models and Languages. Technical Report. UMI Order
Number: SEN-R9834., CWI (Centre for Mathematics and
Computer Science).

[17] Papadopoulos, G. A. and Arbab, F. 1998. Modelling
activities in information systems using the coordination
language MANIFOLD. In Proceedings of the 1998 ACM
Symposium on Applied Computing (Atlanta, Georgia, United
States, February 27 - March 01, 1998). SAC '98. ACM, New
York, NY, 185-193.

[18] Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P. and
Mulyar, N. 2006. Workflow Control-Flow Patterns: A
Revised View. In BPM Center Report, BPM-06-22,
BPMcenter.org.

[19] Russell, N., ter Hofstede, A.H.M., Edmond, D. and van der
Aalst, W.M.P. 2004. Workflow Resource Patterns. In BETA
Working Paper Series, WP 127, Eindhoven University of
Technology, (Eindhoven, The Netherlands).

[20] Russell, N., ter Hofstede, A.H.M. , Edmond, D. and van der
Aalst, W.M.P. 2004. Workflow Data Patterns. In QUT
Technical report, FIT-TR-2004-01, Queensland University
of Technology (Brisbane, Australia).

[21] Sadiq, S., Orlowska, M., Sadiq, W., Foulger, C. 2004. Data
flow and validation in workflow modelling. In ADC ’04:
Proceedings of the 15th Australasian database conference
(Darlinghurst, Australia). Australian Computer Society Inc.
207–214

[22] Sánchez, M., Villalobos, J., Deridder, D. 2008. Co-Evolution
and Consistency in Workflow-based Applications. In 1st

International Workshop on Model Co-Evolution and
Consistency Management (Toulouse, France).

[23] Sánchez, M. and Villalobos, J. 2008. A flexible architecture
to build workflows using aspect-oriented concepts. In
Proceedings of the 2008 AOSD Workshop on Aspect-
Oriented Modeling (Brussels, Belgium).

[24] Service Component Architecture - Assembly Model
Specification, version 1.0, March, 2007.
http://www.osoa.org/display/Main/Service+Component+Arc
hitecture+Specifications

[25] Taylor, I.J., Deelman, E., Gannon, D.B., Shields, M. (Eds.).
Workflows for e-Science: Scientific Workflows for Grids.
Springer, 2007.

[26] van der Aalst, W., ter Hofstede, A. 2003. Yawl: Yet another
workflow language (revised version). In QUT Technical
report, FIT-TR-2003-04, Queensland University of
Technology (Brisbane, Australia).

[27] van der Aalst, W. M., Barthelmess, P., Ellis, C. A., and
Wainer, J. 2000. Workflow Modeling Using Proclets. In
Proceedings of the 7th international Conference on
Cooperative information Systems (September 06 - 08, 2000).
LNCS, 1901, Springer-Verlag, London, 198-209.

[28] Web Services Business ProcessExecution Language, Version
2.0, April 2007, http://docs.oasis-
open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[29] WS-BPEL Extension for People (BPEL4People), Version
1.0, June 2007.

