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ABSTRACT 
Traditionally, workflow applications use a single language to 
describe every relevant detail of a business process. Therefore, the 
complexity of the languages used and their implementations has 
increased, creating problems related to evolution and 
maintenance. A possible approach to lower this complexity is to 
separate the elements of a process according to dimensions or 
perspectives, similarly to what is done in Aspect-Oriented 
Programming. The problem is that most workflow tools do not 
support explicit dimensions, and previous implementations of 
these ideas had important limitations. 

This paper presents Cumbia, a platform to build workflow 
applications supporting multiple dimensions. In Cumbia, an 
executable model is used for each dimension, and these 
executable models are expressed with a coordination model based 
on synchronized state machines. Among other advantages, this 
approach renders possible the usage of dimension-specific 
languages, thus easing maintenance and evolution of processes, 
engines and languages.   

Keywords 
Programming and Software Engineering, Model Driven 
Engineering, Business Process Modeling, Aspect Oriented 
Workflows. 

1. INTRODUCTION   
Nowadays, a growing number of contexts are taking advantage of 
workflow applications. In these, there is a central coordination 
element that leads the cooperative execution of several active 
entities, and provides a way to integrate them to achieve a 
common goal [16]. Perhaps the best known workflow language is 
currently BPEL [28], which is used for composing and 
coordinating web services. Moreover, there are nowadays 
hundreds of different languages and engines, which offer different 
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features and are usually targeted towards particular application 
contexts. For instance, there are workflow languages specialized 
in scientific applications [25], in ubiquitous computing [11], or in 
human interaction [29]. 

The usage of workflow applications has surged because of the 
many advantages they offer. One of these advantages is the ability 
to separate the order of execution of tasks (the coordination) from 
the actual tasks performed (the computations), which eases the 
integration of heterogeneous components. Furthermore, this 
separation between coordination and computation favors 
modularity and reuse. This can be seen when new processes are 
created, using only existing, configurable elements. Another 
important characteristic of workflow applications is that they are 
used in contexts that tend to evolve frequently, because they 
provide the necessary flexibility to adapt to the changes. For 
instance, in a financial company it is common to have changing 
business rules, changing processes, and new systems and tools 
that have to be integrated to the existing application stack. 
Workflows are capable of handling this kind of changes without 
making huge investments in new systems. 

The central element in a workflow application is the control 
dimension (or perspective): it comprises entities that describe the 
control-flow, that is, the tasks that have to be performed, and their 
ordering [26,6]. In most applications, control is complemented by 
entities from other dimensions, such as data, time and resources. 
Which dimensions appear in a specific application depends on the 
context where that application is used. For instance, in an 
application to support distributed software development processes 
it is not enough to describe the tasks to be performed. It is also 
necessary to describe the structure of the development team, the 
capabilities of its members, the timing restrictions that the process 
should abide, and management policies for the data produced by 
the process. Thus, the description of these processes requires more 
than control: it also requires elements from the dimensions of 
resources, time and data. 

The problem that we address in this paper is that currently most 
workflow engines make no separation between dimensions. Thus, 
users have to use languages that mix elements from every 
dimension, and therefore, these dimensions become permanently 
entangled. From the users’ point of view, this makes processes 
more difficult to maintain and to evolve. From the point of view 
of developers of workflow engines this also has important 
consequences. On the one hand, the evolution of languages tends 
to make them grow and become complex. Therefore, the engines 
to support their execution also tend to become more complex and 
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difficult to maintain. On the other hand, the capacity of evolution 
of these applications is also limited because a high coupling 
between dimensions makes it difficult to adapt them 
independently to changing requirements. Furthermore, it becomes 
very difficult to add extra dimensions late in the development 
cycle. 

With current mainstream techniques to build workflow engines, it 
is not easy to have multi-dimension support. In the first place, 
these approaches lack the flexibility to represent various 
dimensions and support all their variations. On the other hand, 
they do not offer the capabilities to manage the changing 
relationships between dimensions. As section 2 shows, there have 
been works to solve some of these problems, and some existing 
approaches offer partial solutions to them. 

This paper presents Cumbia, a platform that can be used to build 
workflow engines with multi-dimensional support. This means 
that Cumbia makes it possible to execute processes described as a 
composition of dimensions, and use a different language to 
describe each dimension. This has the following advantages: first, 
control languages are simplified because they do not have to 
include elements unrelated to control; it is also possible to design 
very suitable1 dimension specific languages, and thus processes 
easier to understand and to maintain; finally, evolution of the 
engine is simplified because each dimension can evolve 
independently, within certain restrictions [22]. 

The fundamental proposal of Cumbia is to use a state machine 
based coordination model to describe the dimensions. This is 
achieved by means of dimension specific metamodels described in 
terms of a coordination element that we have called open objects 
(see section 3). Thus, workflow processes are groups of models 
conformant to those metamodels, which are executed in a 
coordinated fashion. The underlying coordination mechanism 
offers characteristics that are important in workflow applications: 
it supports synchronous and asynchronous interaction, and it 
offers powerful extensions mechanisms (see section 4). 

This paper introduces the Cumbia platform and presents its main 
elements. First, it presents some related works that produced 
interesting ideas that inspired Cumbia. Then, section 3 presents 
the basics of the coordination model and the open objects. Section 
4 illustrates the usage of open objects in Cumbia-XPM, a 
metamodel for describing the control dimension of processes. 
Finally, section 5 presents the tools developed to support the 
usage of Cumbia, and some Cumbia-based applications used in 
different contexts. 

2. RELATED WORK 
This section presents other research groups’ works that cab be 
related to Cumbia. We have classified these works in the 
following three broad topics: coordination models and Reo; 
aspect-oriented workflow languages; and YAWL. 

                                                                 
1 The term suitability refers to the match between the constructs 

available in the modeling language and the concepts in the 
application domain [12]. Suitability is the metric used in many 
works to explore the relationship between workflow languages 
and patterns: control-flow patterns [18], resource patterns [19], 
data patterns [20], etc. 

As Papadopoulos and Arbab showed in their survey [16], there 
are many different coordination models, which can be classified 
as data-driven or control-driven. In the former group, they mainly 
focused on Linda and its descendants. However, Linda-like 
models have some deficiencies that make them inadequate to 
model workflows [17]. Nevertheless, some of their underlying 
ideas are useful in modern coordination models, such as the 
independence between the computation and coordination, or the 
usage of a shared space for data (as is required in one of the 
implementation strategies described in [21]). Among the control-
driven models identified in [16], there is Manifold [17]. This 
model has several similarities to Cumbia-XPM and the open 
objects, but its design totally separates data from control. Whereas 
in Cumbia-XPM we can use the flow of data to control the state 
of a process, Manifold is completely event-driven. Also, there is 
no direct interaction between elements, other than the flow of data 
through streams. 

A more recent and powerful coordination model is Reo [2]. It is 
an exogenous language based on channels that can be used to 
create very complex connectors. The usage of Reo as glue-code 
between heterogeneous components promotes loose coupling 
because it makes possible to separate them and externalize their 
interaction and the flow of data between them. Reo has been 
applied to the problem of composing web services, as is presented 
in [7] and [13]. In these works, several features of Reo lead to 
advantages over other solutions such as BPEL: using Reo it is 
possible to dynamically reconfigure the channels to restructure the 
processes; distribution and mobility is also supported by the 
coordination model; finally, the formal description of Reo makes 
it possible to apply model checking techniques to the web services 
compositions. 

One of the fundamental points of our proposal is the separation of 
processes into different perspectives, which is a strategy that has 
been applied in a small number of other workflow related 
projects. AO4BPEL [5] is an aspect-oriented workflow language 
based on BPEL, which allows the definition of aspects using 
BPEL for the advices and XPATH as point cut language. 
AO4BPEL offers static and dynamic weaving, using a specialized 
BPEL engine. Padus [3] is also a workflow language that extends 
BPEL. It has a logic-based point cut language, and it also uses 
BPEL to describe the advices. It only supports static weaving, but 
since the outputs of its weaving process are valid BPEL processes, 
they can be run in unmodified BPEL engines. There are several 
differences between Cumbia and AO4BPEL or Padus. In the first 
place, they can only use BPEL as the advice language, and thus it 
is impossible to have dimension specific languages. Furthermore, 
join points are limited to syntactic elements present in the process 
definition, or to ‘internal join points’, which are fixed steps 
required for web services’ consumption. Compared to the 
flexibility offered by Cumbia and the open objects, which can 
have state machines as complex as necessary, their approach 
limits the possible extensions. Finally, there is a difference in the 
way they modularize with concerns. Although in many cases they 
use aspects to reduce tangling, they also use aspects to express 
changes in a modular fashion. We do not share this usage because 
aspects should modularize crosscutting concerns and a concern is 
not crosscutting with itself. Although it is a useful decomposition, 
it should not be called aspect-based. 



Another project that has explored the application of aspects to 
workflows is AMFIBIA [1]. AMFIBIA is a metamodel that 
formalizes the core elements of business process modeling. It is 
based on a core that groups common concepts, and on concerns 
(aspects in their terminology) that specialize these shared 
concepts. AMFIBIA has several similarities to Cumbia: it 
separates workflow dimensions; it is formalism-independent and it 
is possible to have dimension specific languages; the dimensions 
used are not fixed and new ones can be added. Nevertheless, there 
are important differences between AMFIBIA and Cumbia, 
particularly in the relation between the elements of each 
formalism and the common elements. In their approach, there is a 
mapping between the elements of each concern and the core 
concepts. In Cumbia, the elements of each concern are 
specializations of the open objects. In their case this mapping is 
the foundation of the synchronization mechanism, because the 
coordination can only happen if the core is included. 

Finally, there have also been projects that have explored particular 
dimensions (or perspectives) in workflows. For instance, in [21], 
the main topic discussed is the data perspective, but several works 
related to other perspectives are also referenced (time, resources, 
transactions, and functionality). However, there is an essential 
difference between their strategy and ours in that they propose the 
need to have a clear separation of perspectives when modeling a 
process, even if its implementation and execution integrates the 
perspectives into a single solution. With our strategy, the 
perspectives are separated when modeling and stay separated, but 
coordinated, during execution. 

As discussed before, most existing workflow languages and 
engines combine all the dimensions present in a process. YAWL 
is a very well known exception to this, since it is a workflow 
language that was specifically designed to support the control 
perspective and the original control-flow patterns [26]. From the 
Cumbia viewpoint, YAWL is also interesting because it clearly 
describes the workflow language and the underlying coordination 
model as two different things, albeit tightly related. YAWL’s 
development started with an analysis of the Petri nets’ suitability 
to accommodate the patterns and, after finding some limitations, 
they proposed a formal coordination model based on a Labeled 
Transition System (LTS). Similar to Cumbia-XPM, YAWL is an 
intermediate language to support the execution of high level 
languages. Since the coordination model was inspired by Petri 
Nets, it includes concepts such as places, conditions and tokens. It 
also uses state machines to describe the life-cycle of elements, but 
these nets are identical for every element and are used only for 
documentation purposes and not for coordination or composition. 
One advantage of the formal semantics of YAWL is the 
possibility to analyze and verify processes, which has been 
explored using a tool called Woflan2. Currently, neither Cumbia-
XPM nor open objects have a formal definition and semantics. 
Finally, YAWL also offers extensibility capabilities using Proclets 
[27]. 

3. COORDINATION ELEMENTS: OPEN 
OBJECTS 
This section presents the coordination model that is the core 
contribution of the paper. This coordination model is based on a 
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basic element called ‘open object’. By using several of these open 
objects it is possible to build extensible and executable models 
that have all their elements synchronized. In this section the 
elements that form an open object are first presented; then the 
mechanisms that allow the coordination of several open objects 
are discussed, as well as their extensibility capabilities; finally, the 
requirements to implement a system based on open objects are 
discussed. 

3.1 Structure of an Open Object 
One of the advantages of the object oriented paradigm is the 
capacity to materialize in a model the elements of a problem, their 
behavior, and their relations. Object-based models usually 
replicate the structures of the problem domain, using object 
attributes to recreate relations and method calls to model 
interaction. In order to take advantage of the capacity of building 
isomorphic structures to the problem domain, our composition 
elements are based on objects, but they have some additional 
features that expose their internal state. That is why we call them 
‘open objects’. 

In the traditional object-oriented paradigm, a state of an object is a 
particular combination of values of its attributes. To know this 
state, it is necessary to call its methods. The number of states 
reachable by an object depends on the values that its attributes can 
have. However, most of the time, the elements that interact with 
an object are interested only in a subset of its reachable states and 
some of the possible states of the object can be grouped together 
to create a simpler abstraction of its life cycle. This does not mean 
that attribute-based states should be eliminated. Instead, these 
new, broader states can be materialized in an external state 
machine synchronized with the object. For instance, in the case of 
a counter from 0 to 100, one possible abstraction can identify only 
three different states: “Stopped,” “Counting,” and “Finished.” 
This reduction in complexity simplifies monitoring and 
coordination since the state machine can easily publish 
notifications when a state change occurs and this can serve to 
coordinate other elements. 

An open object is composed of an entity, a state machine 
associated to the entity, and a set of actions. An entity is just a 
traditional object with attributes and methods: it provides an 
attribute-based state to the open object, and its methods are a 
place where part of its behavior can be implemented. The state 
machine materializes an abstraction of the life-cycle of the entity, 
allowing other elements to know this state and react to its 
changes. This can be done using methods defined in the interface 
of the open object, which is based on the interface of the entity, 
and is enriched with the methods needed to access and navigate 
the state machine. Finally, the actions are pieces of behavior that 
are associated to transitions: when a transition is processed, its 
actions are executed in a serialized way.  

3.2 Coordination of Open Objects 
The execution of an open objects-based model depends on the 
execution and coordination of its elements. Because of this, open 
objects offers two different interaction mechanisms: one is 
asynchronous and based on events, and the other is synchronous 
and based on actions and method calls. These two alternatives 
complement themselves and can be used to describe very complex 
interaction patterns. 



Events are the most important coordination mechanism in Cumbia 
because they are used to maintain the synchronization not only 
between open objects but also between entities and their 
respective state machines. This section explains how events are 
processed and used to keep state machines updated, but first it is 
necessary to discuss what generates events. From the standpoint 
of an open object, events can be produced by its own entity, by its 
state machine, or by external elements, which can be other open 
objects or even elements external to the model. An entity usually 
generates an event when one of its methods is called and changes 
its internal state. Thus, the event is generated to inform the state 
machine about the change and try to maintain the consistency 
between the internal, attribute-based state of the entity, and the 
current state of the state machine. Events can also be generated 
when state machines change state: each time a state machine 
moves from its current state to the next, events are generated to 
show that (i) the original state is abandoned, (ii ) the processing of 
a transition starts, (iii ) the processing of a transition finishes, and 
(iv) a new state is reached (see Figure 1)3. Finally, events can be 
generated by other sources, such as external systems or because of 
user interaction. Cumbia does not differentiate those events, and 
they are treated exactly like internal events. 

  

Figure 1: Events generated by state machines. 

Every transition in a state machine has an associated expected 
event description. This means that whenever an event that 
matches the description is received, the transition has to be taken. 
Events are described with an expression of the form 
[ELEMENT]eventType , where [ELEMENT]  describes who is 
expected to generate the event, and eventType specifies the 
particular type of event expected. Note that ELEMENT  is not the 
identifier of a specific element, but a relative reference that can be 
used to locate it. For example, if an open object used in a 
hierarchical structure has an event described as generated by 
[PARENT] , then the generator of the event can be located 
ascending in the hierarchy. If an event is described as generated 
by [ME] , then the generator is the same open object that owns the 
state machine (see Figure 2). 

Events are processed by open objects in the following way. First, 
events are received and stored in a queue that is local to the open 
object. Events are then processed one by one, until the queue is 
empty. Events’ processing in multiple open objects happens in 
parallel within our current implementation of the Cumbia kernel 
(see section 5): a separate thread is used to process the events of 
each open object. However, a valid alternative implementation is 
to use a single thread to process every event, using some 
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to still be in the original state (A). 

algorithm to select queues, or even using a shared queue for all 
open objects. The selection of one of these alternatives does not 
have an impact on the execution semantics; nevertheless, there 
may be an impact on non-functional requirements such as 
efficiency or scalability. 

 

Figure 2: State machine with source events. 

To process an event, it is necessary to analyze the transitions that 
start in the current state of the open objects’ state machine. If the 
event matches the description of the expected event for any of 
those transitions, (i) that transition is taken, (ii ) its associated 
actions are executed, and (iii ) the state machine changes state. If 
the event does not match the expected event for any of the 
transitions that start from the current state, the event is discarded 
and it is never processed again4. If there are more than one 
transition with matching expected events, one of them is randomly 
selected5. 

The other coordination mechanism of open objects is based in 
actions and method calls. In general, actions are used to add 
semantics to state’s changes and produce some kind of effect on 
the model. In particular, actions can be used to call entities’ 
methods, to communicate with other applications, and to generate 
further events. By combining these two mechanisms of interaction 
it is possible to define the coordination of open objects with very 
fine granularity, in a synchronous or asynchronous fashion. 
Furthermore, these coordination rules are defined externally to the 
open objects’ implementation, and they are thus easily modifiable, 
even at execution time. 

                                                                 
4 This strategy was selected because it reduces the possibility of 

having disordered events. Although discarding events may 
appear as a source of non-determinism, it forces metamodels' 
developers to be more careful in their designs. Furthermore, it 
changes a very difficult problem (processing disordered events) 
for a simpler one (missing events that can be requested again). 

5 This situation should be considered an error made by the 
designer of the state machine. Although it is possible to 
introduce this kind of non-determinism, it should be avoided if 
possible. 



3.3 Extension Mechanisms 
Open objects offer three extension mechanisms which give 
flexibility to models and metamodels. These mechanisms have 
different capacity of expression, and they can be combined if 
necessary. 

The first mechanism involves the modification of actions 
associated to a state machine. This method, called simple 
extension, can be applied to the definition of an element, and 
affect all its instances, or it can be applied at runtime to affect a 
single instance. This mechanism is the simplest to use, but it is not 
as powerful as the other two. The following snippet of code shows 
an example of the usage of this mechanism to modify an element 
of the metamodel.  

<extended-type name="ExtendedPort" extends="Port"> 
    <extension transitionName="Receive"> 
       <action name="Store Data" 
               class="cumbia.actions.StoreData"/> 
    </extension> 
</extended-type> 
 
The code extends an existing element called Port, and creates an 
extension called ExtendedPort. The code specifies that the 
new, extended type is similar to the base type, but has an 
additional action called Store Data associated to the transition 
Receive. The new action is implemented in the class 
cumbia.actions.StoreData.  

This mechanism can also be applied at runtime, to modify a 
running instance. However, instead of using an xml to describe 
the extension, the open objects’ API is used to add the desired 
action.  

The second mechanism involves modifications to the structure of 
the state machine that add or remove states and transitions. This 
extension mechanism is much more expressive than the previous, 
as it allows deeper changes to the behavior of the models. Using 
it, it is possible to alter the abstraction of the life-cycle of the 
entity, thus changing the way in which other open objects relate to 
it. The usage of this mechanism should take into account the risk 
of creating new elements that will not synchronize properly with 
the existing ones. 

The third and last extension mechanism allows the creation of 
new open objects by specializing existing ones. This mechanism 
requires modifications to the implementation of the entities to 
change the part of behavior of open objects that is not expressed 
with a state machine. 

The three mechanisms presented cover a wide range of the 
possible extension requirements that can surface in a workflow 
application: they can be used to accommodate small changes to 
the behavior of an element, but they can also be used to introduce 
totally new elements and adjust the others to it. Finally, these 
extension mechanisms also offer alternatives that vary in their 
expressiveness and their complexity: they were designed to 
address different requirements and have specific expression 
capacities that determine how much of the behavior of the 
elements can be modified. For instance, two of the mechanisms 
can be used to extend the open objects behavior, but do not 
require modifications to the implementation of the entities. 

Because of this, a developer that uses open objects has to take 
these two factors into account when selecting which mechanism to 
apply. 

3.4 Usage and Implementation 
In order to use the open objects, it is necessary to build 
metamodels based on them. As presented on the introduction, the 
idea is to have a metamodel for each dimension in a workflow 
application. Metamodels are built with the following steps: first, it 
is necessary to identify the elements that should be part of the 
metamodel, and establish their relationships, attributes and 
behavior. Then, for each element a state machine has to be 
designed. In this step, special attention should be put on the 
interactions between elements and on the required actions. 
Finally, the metamodels and their specialized open objects have to 
be implemented: the attributes and methods of the open objects 
are described in the entities’ code; then, the state machines are 
described using an xml-based language; then, the actions used by 
the state machines are implemented; as a last step, a textual 
description of the metamodel is created, naming the open objects 
included in it, specifying their entities and state machines, and 
declaring their relationships. Most of these steps are supported by 
the Cumbia editor that is presented in section 5. 

The most important tool that we have implemented for Cumbia is 
what we called the Cumbia Kernel. In the first place, the Kernel 
understands metamodel descriptions and is capable of managing 
them. The Kernel is also capable of understanding model 
descriptions written with an xml-based syntax. Using this 
information, the Kernel can create instances of the models; this 
requires the instantiation of open objects following the definitions 
included in the metamodel. Finally, the Kernel is also capable of 
supporting the execution of the open objects: it offers an interface 
to interact with any open object, and manages the reception and 
distribution of events. 

Although the Kernel provides most of the common behavior 
shared by every metamodel, the Kernel is rarely used without any 
modification. Instead, an engine is usually developed for each 
metamodel. These engines are always based on the Kernel; 
thereby it is not necessary to re-implement any of the 
functionalities offered by it. What most engines provide is 
behavior specific to the metamodel, and interfaces to interact with 
the models. For instance, the BPEL [28] engine described in 
section 5, offers specific behavior to manipulate BPEL data, and 
an external API based on web services. 

4. OPEN OBJECTS IN THE WORKFLOW 
CONTEXT 
4.1 Cumbia-XPM 
Cumbia-XPM is a metamodel constructed with open objects, 
designed to describe the control dimension of workflow 
applications. This means that each element in the metamodel 
(Figure 3) is a specialized open object, with a specific entity and 
state machine. Because of the centrality of the control dimension 
in workflow applications, Cumbia-XPM models are usually called 
the process description. 



 

Figure 3: Cumbia-XPM Metamodel. 

A Cumbia-XPM model has a hierarchical structure that has a 
Process at its root. To be executed, a process needs some entry 
products that are consumed when tasks are executed. These 
products are called initial data and are received through one of the 
entry ports of the process. When that process finishes its 
execution, it generates a set of data that can be recovered through 
one of its exit ports. To model this, we have defined an element 
called Port that can play the roles of entry or exit port. In both 
cases a port is given a set of data that has to be delivered to 
someone who needs it: in the case of an exit port of the process, 
the data is picked up by someone or somebody external to the 
process; in the case of an entry port, the data is picked up by one 
of the elements that is part of the internal structure of the process. 

Executing a process means performing, in order, a set of either 
simple or complex (sub-processes) tasks. Each task of a process 
requires also initial data and produces results, thus tasks also need 
entry and exit ports. The internal structure of a process defines the 
execution order of the tasks and depends on Dataflows, which 
connect ports. A dataflow connected to an exit port of a task 
receives the results that it produces and makes them flow to an 
entry port of the next task, carrying along both data and control. 
Figure 4 depicts a sample process with a structure of ports and 
dataflows that clearly defines the control-flow for the process. In 
this image it is possible to see how splits, joins and loops can be 
achieved. For example, after Receive Request the activities 
Consult Credit Rating, Evaluate Request and 
Study Credit History are executed in parallel. Make 
Decision can be executed after the completion of Consult 
Credit Rating, Evaluate Request and Study 
Credit History.  

The atomic tasks executed within a process are modeled in 
Cumbia-XPM with Activities and Workspaces. An activity 
controls the execution of a task and is responsible for managing 
the data it requires and the data it produces. Workspaces are 
encapsulated inside activities and are responsible for executing 
specific tasks. A workspace interacts only with the enclosing 
activity, which provides the data needed for its execution: when 
the data reaches one of the entry ports of the activity, it is given to 
the workspace to start its execution; when the workspace finishes 
its work, it generates an event, which the activity uses to pick up 
the data, reset the workspace (so that it can be executed again), 
and finally put the data in one of the exit ports. When one of those 
exit ports becomes full, the flow of control and data continues 
through the dataflows. 

 

Figure 4: Elements of Cumbia-XPM in a sample process. 

 

In the sample process there are five activities: Receive 
Request, Evaluate Request and Make Decision are 
activities expected to be made by a user; Consult Credit 
Rating is expected to be executed automatically by a workspace 
specialized in consuming web services. There are cases where it is 
necessary to execute in parallel several instances of the same 
activity. Cumbia-XPM has an element called MultiActivity to 
achieve that. Every time a normal Activity gets data from its entry 
ports, the corresponding workspace is executed once. In a 
MultiActivity, several instances of the workspace are created and 
executed in parallel when the initial data required is received. The 
number of workspaces executed can be defined during the design 
of the process, or during runtime, and new workspaces of a 
MultiActivity can be created in a dynamic way. In the sample 
process, several people should execute the activity Study 
Credit History at the same time, but the exact number is 
only known during the execution of the process. 

Since Cumbia-XPM is based on the open objects’ model, its 
extension mechanisms (simple extension, adaptation, and 
specialization) can be applied to it. For instance, to build a system 
that orchestrates applications, workspaces can be specialized to 
give them the ability to invoke web services. Thus, extended 
versions of Cumbia-XPM can be easily created. 

4.2 Open Objects’ Interaction in Cumbia-
XPM 
To clarify how the interaction between open objects and between 
elements of Cumbia-XPM proceeds, we now present a simplified 
scenario that includes only three elements: an activity that is going 
to be executed; an entry-port of that activity, which will receive 
the data that is needed to start the execution (entry-data); and a 
workspace that is inside the activity and will be responsible for 
executing a specific task using the entry-data. The action in this 
scenario begins when the entry-port receives the data it was 
expecting; the activity then picks the entry-data, feeds and 
activates the workspace, and waits until it finishes its execution. 
An activity can have several entry-ports which can receive data 
concurrently; however, when one of those ports gets full, the 
activity waits until the workspace finishes its execution before 
verifying if there is any other full entry-port.  



 

Figure 5: Partial interaction between a port, an activity and its 
workspace. 

The three state machines depicted in Figure 5 correspond to 
fragments of the state machines of a Port, an Activity and its 
Workspace. These three state machines were designed to be 
composed: some of the events that one of them generates are 
expected by the others to continue their execution. We now 
describe the interaction between those state machines that starts 
when the port receives data.  

1. The port P1 receives entry-data and takes the transition 
from state Waiting to state Full.  

2. The state machine of activity A1 receives the event 
enterFull and takes the transition to state Active, 
executing the getData action, which retrieves the data 
from the port and gives it to the Workspace.  

3. The state machine of workspace Ws1 receives the event 
enterActive generated by the Activity’s state machine. 
The transition to state Execute is taken, executing the 
action start, which initiates the execution of the 
workspace.  

This interaction sequence is repeated every time an activity 
instance starts its execution. 

5. CURRENT IMPLEMENTATION 
Besides the Cumbia Kernel, we have also implemented some 
support applications. The most important ones are an editor for 
metamodels and a testing platform. As shown in Figure 6, the 
editor provides support for the definition of open objects’ 
specializations, and also for the definition of relationships 
between open objects. After metamodels are fully defined, the 
editor generates metamodel descriptions that are understandable 
for the kernel, and also generates the code templates that 
developers need to fill in order to specify all the metamodel-
specific behavior.  

The Cumbia’s testing platform is what we use to perform 
automatic testing of every Cumbia-based engine. This platform 
proposes a very powerful structure to model test cases, and it can 
be used to create specialized test frameworks for each engine. 
Since Cumbia applications are highly concurrent, a lot of 
synchronization issues appear when things are verified during 
execution; furthermore, since elements in the Cumbia-XPM 
metamodel are strongly interrelated, they are not susceptible to be 
tested independently. To solve these problems we developed a 
testing framework that allows the definition, execution and 

verification of testing scenarios. Scenarios are described by a 
static structure (a Cumbia-XPM process), instructions to control 
its execution and some assertions that have to be verified after its 
execution. The information to validate the assertions is gathered 
from execution traces in a fashion similar to what is done in [8,9]. 

 

Figure 6: Metamodels’ Editor while editing a) a metamodel 
and b) an open object. 

 

Using the Cumbia platform, we have developed several 
metamodels with their respective engines. We have centered most 
of our efforts in Cumbia-XPM because of the centrality of the 
control dimension in workflow applications. Because of this, we 
have also developed an editor to graphically design Cumbia-XPM 
processes (see Figure 7). We have also defined other metamodels 
to handle dimensions of workflows that are tightly related to 
control. Cumbia-XRM (eXtensible Resources Model) was 
designed to model the resources used in the execution of a process 
(working personnel or machines, for example) and is also capable 
of modeling complex rules to assign these resources to tasks. 
Cumbia-XTM (eXtensible Time Model) can be used to model time 



restrictions over the execution of a process. For instance, one 
restriction can specify that if a set of activities lasts more than 
three days, then an email has to be sent to the supervisor. Each of 
these metamodels has its own engine, and XTM and XRM models 
are composed to Cumbia-XPM processes using synchronized state 
machines [23]. Thus, the coordination methods used between 
open objects inside XPM are also used to synchronize elements 
from several metamodels. The relationships between elements of 
different models are specified externally and an application that 
knows all the engines is responsible for creating the necessary 
linkages. This external definition also makes it is easy to later add 
new models or modify their relationships. 

Using Cumbia, we have also implemented two different versions 
of a BPEL engine: the first one used Cumbia-XPM as an 
intermediate language, whereas for the second one we modeled 
the BPEL metamodel and we built a specific engine for it. The 
first version of the engine was based on a transformation 
approach: first, we extended Cumbia-XPM with specialized 
workspaces to consume web services and handle xml data, and 
then we translated BPEL process definitions into semantically 
equivalent Cumbia-XPM definitions. Furthermore, we had to 
create a wrapper for the Cumbia-XPM engine in order to make it 
offer a BPEL compatible interface. Although this implementation 
was usable, it presented a problem that can always appear when 
translations are made, that is the problem of reversing the 
translation. This reverse translation is necessary, for instance, if 
someone is going to query the process status and is interested in 
receiving it in BPEL terms and not in Cumbia-XPM terms. In 
order to solve this problem in this implementation, we used a 
technique based on traceability information stored when the 
translation was made. 

 

Figure 7: Cumbia-XPM’s Editor. 

 

Using the Cumbia platform and Cumbia-XPM, we also developed 
an application called PaperXpress. PaperXpress is a tool to 
support the collaborative writing of research papers. It allows the 
definition of ad-hoc processes, and it offers the support needed to 
coordinate tasks and to handle the results of the writing process. 
This application also applies the ideas of separation of 
dimensions; therefore it includes dimensions such as control, data 
and resources. 

Another application that we have developed is an engine for IMS-
LD [10]. Although technically this specification is used to define 

learnflows instead of workflows [14], the Cumbia platform was 
very suitable to build this application. Finally, we are currently 
developing a container for SCA [24] assemblies. The goal of this 
container is to provide a testing and analysis platform for SCA 
based solutions. Thus, through the usage of open objects the 
container exposes a lot of useful information about the internal 
state and behavior of the components. 

6. CONCLUSIONS 
This paper presented a coordination model based on synchronized 
state machines, and it showed the advantages of applying it to 
workflow applications. The paper also showed that the main 
problem that hinders maintenance and evolution in current 
workflow engines is the lack of capacity to separate dimensions. 
The direct consequence of this is that workflow languages tend to 
become big and complex. Consequently, the engines that run 
these languages, and the processes described with them, also 
become inflexible and difficult to maintain and evolve. These 
problems can all be solved if the Cumbia platform is used to build 
the workflow engines. 

The Cumbia platform has the following characteristics. In the first 
place, it separates the dimensions involved in a workflow and uses 
dimension specific languages to describe them. This is possible, 
because each dimension is described with a metamodel that is 
described in terms of a coordination model based on synchronized 
state machines. The coordination elements of this model are open 
objects, and they have powerful coordination capabilities. These 
open objects also offer extension mechanisms that contribute to 
the extensibility of processes and languages.  

Another characteristic of the approach is its uniformity, which 
contributes to its ease of use, and also facilitates reuse. Uniformity 
in Cumbia can be seen in the following points: 

1. Every dimension expresses its behavior using the same 
coordination model. Thus, each dimension can be 
accessed and manipulated using the same mechanisms. 
This also makes it possible to have a common kernel 
that offers the most important functionalities; thus, 
engines for each dimension can be easily developed as 
extensions to the kernel. 

2. The same methods of the coordination model that are 
used inside a model are also used for the composition 
between dimensions. Thus, open objects do not need to 
offer two different systems of coordination and their 
complexity is reduced. 

3. The result of composing dimensions keeps the same 
properties of the individual dimensions: it is still an 
executable model and it is possible to coordinate other 
models with it. 

The characteristics of Cumbia have direct consequences on the 
languages. Since they are used to describe only single dimensions, 
they can be simpler and more specific. As a result, they are easier 
to use, maintain and evolve. Furthermore, dimensions can evolve 
independently, without a significant impact on the other 
dimensions. Finally, the composition and coordination 
mechanisms make it possible to add or modify dimensions even at 
run time. 



Another advantage of the approach is the potential of lowering 
development time: basic dimensions such as control or time can 
be reused, adapted and composed with a fine granularity and 
without limiting their applicability to other applications. 
However, new dimensions, or extensions to existing dimensions, 
can be developed easily using the editors that we have developed.  

Finally, the Cumbia approach can also be used in other types of 
applications. This paper focused only on workflow applications, 
but the advantages offered by Cumbia can also be useful in more 
general contexts. 
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