Modeling Workflow Concerns using

Universidad de

los Andes

Functional Workflow Concerns

Synchronized Executable Models

Mario Sdnchez - Jorge Villalobos - Dirk Deridder

Vrije
Universiteit
Brussel

¥

mar-sanl@uniandes.edu.co

Senior dev‘f
Junior 1 Test
dev.f fdev.

Write
Tests.

Coding

Review

Code
( ’
1

D
at least half] [
coding time| {]
Store Results]

Store Results

Execute
Tests

Correct
Code

before @
31/12/08

Requirements

Control:

What tasks have to be performed
(business-wise), and in what order.

® Time:

Temporal restrictions on the process execution.

® Resources:

What resources are available to perform each task.

® Data:

How data relevant to the process has to be
managed.

Independent Implementations

Concerns have to be implemented
separately so they can be designed, evolved
and maintained independently.

Each concern should have a specific
language suitable to describe its models.
Each concern can have different technology
requirements.

Relations between Concerns

Relations between participating concerns
are specific to each application or process.
Usually, the control concern is related to the
other ones; however, it is also possible to
have relations between other concerns.
Since  there should not be hard
dependencies between concerns, reuse of
concern implementations  should be
common and easy.

Implementation using Executable Models

One concern, One executable model

Resources

Composition / Weaving

When executing, concerns should behave in
a coherent way. This has to be achieved
through weaving of concerns' elements.

To be successful, weaving requires fine-
grained composition and coordination
hooks.

The granularity of the hooks depends on the
implementation of the concerns.

Synchronization of elements and state machines
from different concerns

activate( )
finish( )
suspend( )
restart( )

Coding:
Activity

activate( )
suspend( )
restart( )
finish( )—]

Register |
Input

Evaluate |-~

|Condition

|ActivateNext

G3:Gateway

setinput( )
evaluate()

Evaluatin
Qnditiopls.

startCheck( )

stopCheck( )

\_\___-“’@u

[sorc ==

Open Objects are the basic construction element for our executable
models. They are composed by an 'entity' and a state machine.

Consistency between an entity and its state machine, or between two

A weaving

language is used to describe relations between
elements from different concerns. These relations are concretized

with actions, which are capable of invoking methods of entities

open objects, is achieved with a mechanism based on events and

method calls.

State machines have 'actions': operations associated to transitions
which are executed when transitions are taken. Actions can call

methods of any entity.

even if they belong to different concerns.

In the example above, there is an activity (control concern) that
must observe a time rule (time concern): when 'Coding' is

activated, the action 'StartChecking' forces the time rule 'TR1' to
start checking the duration.




