
FOCLASA 2007

Executable Models as Composition Elements
in the Construction of Families of

Applications

Jorge Villalobos1, Mario Sánchez2,3 and Daniel Romero4

Universidad de los Andes, Bogotá, Colombia

Abstract

In control-based applications, there is a central coordination element that leads the cooperative execution
of several active entities, and provides a way to integrate them to achieve a common goal. Unfortunately,
the contexts where control-based applications are used tend to evolve frequently, and they are not always
flexible enough to cope with these changes in a timely and cost effective manner. In particular, they present
problems with the coordination and composition of evolving and new elements.
In this paper, we propose a strategy to build families of control-based applications by lessening the problems
related to evolution and adaptation. This is achieved using an executable language for modeling processes,
Cumbia-XPM, and a coordination model that supports the modeling language. The latter is composed by
open objects, which are objects that expose their internal state using a state machine that abstracts their
life-cycle. These state machines provide also an event-based mechanism for coordination. Because of this
underlying model, Cumbia-XPM is very extensible and can be used as an intermediate model that supports
the execution of the control perspective of higher level languages. Using a similar strategy, the coordination
model can be used to build models that represent other perspectives that also participate in control-based
applications.

Keywords: Objects, State machines, Composition, Coordination, Workflows, BPM.

1 Introduction

Nowadays, a growing number of contexts are taking advantage of the usage of
control-based applications. In these applications there is a central coordination el-
ement that leads the cooperative execution of several active entities, and provides
a way to integrate them to achieve a common goal[10]. This central element is
what we call the control component. It comprises and executes entities that are
part of the control-flow perspective, that is, elements that describe tasks and their
execution ordering[15] to form processes. Control is complemented by entities from

1 Email: jvillalo@uniandes.edu.co
2 Email: mar-san1@uniandes.edu.co
3 Supported by the VLIR funded CARAMELOS project: http://ssel.vub.ac.be/caramelos/
4 Email: da-romer@uniandes.edu.co

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:jvillalo@uniandes.edu.co
mailto:mar-san1@uniandes.edu.co
http://ssel.vub.ac.be/caramelos/
mailto:da-romer@uniandes.edu.co

Villalobos, Sánchez and Romero

other perspectives, such as the data perspective, the time perspective and the re-
source perspective. Each context where an application is used imposes requirements
about the perspectives involved. For instance, an application to support distributed
software development processes should handle elements from a domain of resources
(roles, people, etc.): they participate in the enactment of the processes and are
responsible for its tasks.

The usage of control-based applications has surged because of the many advan-
tages they offer. Like in other situations where coordination models are central,
modularity is a key advantage here: it promotes reuse and eases the creation of new
processes that achieve new goals. For instance, several learn-flows can be designed
for an e-learning application, reusing the same elements, but accomplishing radi-
cally different goals. The ability to separate the order of execution of tasks from the
actual tasks performed contributes also to the integration of heterogeneous compo-
nents. As an example, a BPEL engine allows the composition of web-services to
create more complex services. Another example are workflow applications that al-
low the interaction of humans and machines, and are able to route and transform
the data produced in each step of the process. Unfortunately, the flexibility offered
by control-based applications sometimes is not enough to accommodate certain re-
quirements.

Because of their nature, the contexts where control-based applications are used
tend to evolve frequently. For instance, in a financial company is common to have
changing business rules, processes which are refined, and new systems and tools
that join the application stack and have to be integrated. Control-based appli-
cations, however, are not always flexible enough to cope with these changes in a
timely and cost effective manner. For instance, in some cases it is necessary to
introduce changes in strange ways that affect the usability and maintainability of
the applications; even worse, in some situations the only possibility is to built new
applications from scratch. In an ideal situation, it should always be possible to
easily build new applications as evolution of existing ones. This would lead to the
creation of families of applications with common elements and used in similar, but
not identical, situations.

In this paper, we propose a strategy to build families of control-based applica-
tions, by lessening the problems related to evolution and adaptation. The central
point in our strategy is to tackle a critical problem of those applications: coordi-
nation of evolving elements in a process. In order to have applications that can be
adapted and used to create other applications, coordination needs to have a cen-
tral role: old elements should be able to interact and be coordinated with elements
thrown in as the answer to new requirements. It is important that these improve-
ments are achieved without a big impact in the original applications, and without
closing the possibilities to further evolution.

Our strategy to construct control-based applications is based on two main ele-
ments: an executable language for modeling processes, and a coordination model,
which supports the modeling language. This language, called Cumbia-XPM (eXten-
sible Process Modeling), was designed to be used in different contexts: for instance,
it can be used as an intermediate model that supports the execution of higher level
languages. This ability comes from extension mechanisms that can accommodate

2

Villalobos, Sánchez and Romero

the structure and execution semantics of other control-based languages. The exten-
sibility of Cumbia-XPM comes from the fact that it is implemented on top of open
objects, our coordination elements. In this paper we show how these elements are
structured and how we can use them in languages such as Cumbia-XPM, to build
executable and extensible models. We focus specifically on control, but the same
ideas can be applied to other perspectives.

Section 2 of this article presents in detail the executable model and the open
objects. Section 3 presents the elements of “Cumbia-XPM” and shows how its
execution is supported by open objects. In section 4 we present the implementation
and testing of a Cumbia-XPM engine. The next section presents related external
work, followed by a brief description of our onging research. This includes the usage
of open objects to model elements form other perspectives, and the support to high-
level languages offered by Cumbia-XPM. Finally, the conclusions of the paper are
presented.

2 Open objects and executable models

The main goal of this section is to present open objects structure, along with the
mechanisms that can be used to compose and coordinate them to create executable
models. This section also presents the extension mechanisms available to adapt
open objects for usage in different situations. Using the terminology of [3], a com-
ponent model based on open objects is described with its composition techniques
and coordination mechanisms. We have also defined the corresponding composition
languages, but they are beyond the scope of this paper.

In order to show how open objects are composed and coordinated, this section
uses a very simple scenario. The main element in this setting is a control that
expects to receive a signal with some frequency; if the signal is not received when
it is expected, a time-out is generated and it is necessary to execute some action
to verify and correct the problem. Eventually, it could be necessary to include an
external monitoring system. Using plain objects, a possible solution could be the
one shown in figure 1. A class called Control has the methods ack(), to mark the
arrival of the signal, and start() to encapsulate the main logic of the control: it
runs an internal loop that verifies if the signal has already been received or if its
available time has finished. In the event of a time-out, the method execute() of
the class Action is called to verify and correct the error.

Fig. 1. Solution using objects.

The main difficulties in this scenario are the open nature of the correction action
(it is not precisely defined what must be done to correct the problem), and the
definition of time (it could be based on execution cycles of the machine instead of
absolute time). The possible inclusion of an unknown monitoring system can also

3

Villalobos, Sánchez and Romero

be a source of problems and incompatibilities.

2.1 Composition and coordination elements (open objects)

One of the main advantages in the object oriented paradigm is the capacity to
materialize in a model the elements of a problem, their behavior, and their relations.
Object-based models usually replicate the structures of the problem domain, using
object attributes to recreate relations and method calls to model interaction. In
order to take advantage of the capacity of building isomorphic structures to the
problem domain, our composition elements are based on objects, but have some
additional features that expose their internal state. That is why we call them
“open objects”.

In the traditional object-oriented paradigm, a state of an object is a particular
combination of values of its attributes. To know the state of an object, it is necessary
to call its methods. The number of states reachable by an object depends on the
values that its attributes can have. However, most of the time, the elements that
interact with an object are interested only in a subset of its reachable states. For
these other elements, some of the possible states of the object can be grouped
together to create a simpler abstraction of its life cycle. This does not mean that
attribute-based states should be eliminated. Instead, these new, broader states can
be materialized in an external state machine. For instance, in the case of a counter
from 0 to 100, one possible abstraction can identify only three different states:
“Stopped,” “Counting,” and “Finished.” This reduction in complexity simplifies
monitoring and coordination. A state machine can publish notifications when a
state change occurs in order to coordinate other elements, provided that its state is
always consistent with the attribute-based state of the object.

An open object is composed of an entity (a traditional object with attributes
and methods), a state machine associated to the entity, and a set of actions (this
section later explains the model to describe the state machines and their associated
actions). The interface of an open object is based on the interface of the entity,
improved with the methods needed to navigate the state machine. In a traditional
structure based on objects or components, the ability to compose and coordinate
is limited by the methods defined in the interfaces. It is not possible to modify the
behavior implemented inside a method. In the case of a structure based on open
objects, it is possible to compose and coordinate several elements using the state
machines as handlers for the composition, thus offering a coordination mechanism
more expressive than the traditional.

To keep the model in movement, a mechanism based on events and action calls
is used. It allows synchronization of the state machine with its entity to keep a
consistent state between the internal, attribute-based state, and the current state
of the state machine. When a method of the entity that changes its internal state is
called, events are generated and consumed by the state machine, which moves from
one state to the next accordingly to the change in the entity. This mechanism can
also be used to coordinate several open objects, since state machines can also be
moved by events generated by other open objects’ entities and state machines. Each
time a state machine moves from its current state to the next, events are generated
to show that the original state is abandoned, the processing of a transition starts,

4

Villalobos, Sánchez and Romero

the processing of a transition finishes, and a new state is reached. Each transition
in a state machine connects two states and has an associated event. To process
events, a search is made for a transition that starts in the current state and has an
associated event similar to the one being processed. If such a transition exists, then
it is used, and the state machine changes its current state. Otherwise, the event is
dropped and it is never processed again. Events received by a state machine are
stored in a queue until they are processed.

Events expected by a state machine are described with an expression of the
form [ELEMENT]eventType, where [ELEMENT] describes who is expected to
generate the event, and eventType specifies the particular kind of event expected.
To ease reusability of state machines, ELEMENT is not the identifier of a specific
element, but a relative reference that can be used to locate it. For example, if
an open object in a hierarchical structure has an event described as generated
by [PARENT], then the generator of the event can be located ascending in the
hierarchy. If an event is described as generated by [ME], then the generator is the
same open object that owns the state machine.

The last elements in this model are actions associated to transitions, which
are executed in a synchonized way when a transition is processed. Actions add
semantics to state’s changes like calling object methods, communicating to other
applications, and generating further events to move other open objects.

The interaction of open objects based on state machines’ events is a powerful
mechanism to solve coordination requirements in a model. It is a very expressive
way to define synchronic or asynchronic coordination rules. Since there are several
handles with very fine granularity available to make the composition, it is possible
to define coordination rules with a lot of precision. Furthermore, these coordination
rules can be defined externally to the open objects, and can be modified even at
execution time.

2.2 Composition scenario with open objects

A possible solution for the scenario is now shown using a pair of open objects. Figure
2 shows the structure of this new solution and its main two elements, Counter100
and Control. The open object Counter100 is a counter that is able to count to 100.
The method increment() adds one to the current value and the method reset()
gets the value back to 0. Right now, the limit of this counter is fixed at 100. The
other open object is Control, and has the methods ack() to notify the arrival of
the signal, and the method start() to initiate the reception of events. Besides
being implemented using open objects, one further difference in this solution is
that an external element controls the time by calling the method increment() in
Counter100.

Each open object has an entity and a state machine with states and transitions
that were specifically designed for the scenario. The state machine for the open
object Counter100, depicted in figure 3a, has three different states: “Stopped” (the
value is 0), “Counting,” and “Finished” (when the value is 100). All the transitions
in the state machine depend on methods generated by the entity itself (the generator
is always ME). The method increment() generates an event called incremented.

5

Villalobos, Sánchez and Romero

Counter100

int value

void restart()
void increment()

Control

void ack()
void start()

Fig. 2. Open objects in the scenario.

If the counter reaches the limit, then an event called finished is generated. When
reset() is called, the event reset forces the state machine to go back to the state
“Stopped.” For now, the counter cannot be restarted after reaching its limit.

The state machine of the open object Control (figure 3b) has four states: “Inac-
tive” (the control has not been started), “Waiting” (waiting for the signal), “Restart-
ing” (the counter is restarted), and “Timeout” (available time has run out). This
state machine shows several of the composition features offered by the model. Some
transitions have associated events generated by the Control itself (the ones with
[ME]) and others depend on events generated by the Counter100 (those marked
with [COUNTER]). This state machine has an action associated with the tran-
sition that goes from the state “Waiting” to the state “Restarting,” which calls
restart() in the counter whenever the transition is taken. The same mechanism
of actions is the one used to define what has to be done when a timeout is generated.
We have not included this action in the diagram to highlight the fact that it can be
configured very late in the life-cycle of the open object.

Stopped

Counting

Finished

[ME] incremented
[ME] incremented

[ME] finished
[ME] reset

Inactive

Waiting

Timeout

Restarting

[COUNTER] incremented

[ME] ack

counter.restart()

[ME] start

[COUNTER] reset

[COUNTER] finished

a) b)

Fig. 3. State machines of the open objects a) Counter100 and b) Control.

Besides showing how events produce coordinated movements of the state ma-
chines, this scenario also exemplifies other details of the model: in the first place,
state machines are the only elements in our model that consume events, but they
can be generated by state machines and by entities; finally, methods of entities can
be invoked by elements external to the model (other elements in the application),
and by other open objects.

This scenario has shown a small system based on open objects that solves a
problem with composition and coordination issues. However, it is not always pos-
sible to know beforehand all the interaction cases where an element will be used.
This creates the need for extension mechanisms that allow the definition of new

6

Villalobos, Sánchez and Romero

elements and the adaptation of old ones.

2.3 Extension mechanisms

Additionally to the definition of composition and coordination strategies, open ob-
jects also include three different extension mechanisms that give flexibility to the
model. Although traditional mechanisms have points of flexibility like interfaces in
components, there are usually limitations in what can be changed of the interac-
tion semantics between elements. Most of the time it is necessary to change the
implementation; furthermore, if it is necessary to connect something totally un-
expected, like a monitoring system, it is very likely that it will be necessary to
change interfaces. The extension mechanisms that the open objects model provides
were designed to address different cases and have specific expression capacities that
determine how much of the behavior of the elements can be modified. Two of the
mechanisms allow the extension of behavior, without modifying the implementation
of the entities.

The least expressive mechanism, but the easiest to use, modifies the actions
associated with state machines. This method, called “simple extension,” can be
applied to the definition of an element and affect all its instances, or it can be
applied at runtime to affect a single instance. In the scenario, this is the adequate
mechanism to specify the action that is executed when a timeout occurs.

Another way of extending the model is by modifiying the structure of a state
machine, either by adding or removing states and transitions. This extension mech-
anism is much more expressive. In the scenario, it allows the Counter100 to be
restarted after reaching its limit. This mechanism allows deeper changes to the
model, but the programmer is responsible for guaranteeing the proper behavior of
the element in relation with the other elements.

The last extension mechanism allows the creation of new open objects by special-
izing existing ones. This mechanism requires modifications to the implementation
of the entities to change the part of behavior of open objects that is not expressed
with a state machine. In the scenario, this mechanism is needed to change the limit
for the counter that is defined right now inside the implementation of the method
increment().

2.4 Using open objects to build families of applications

Our strategy to construct families of applications is based on the usage of exe-
cutable models for each perspective (control, resources, data, etc.) that appears
in an application. These models are constructed using the elements defined in a
specialized metamodel: each instance of a model represents one of the perspectives
in a solution. This facilitates the construction of families of applications, because it
allows the independent development, adaptation and evolution, of each perspective
and its later composition.

To start a family of applications it is necessary to have a basic set of metamodels,
which support the fundamental requirements of each perspective. The space of
applications that can be constructed by extending those metamodels, or adding
new compatible ones, depends on the capacity of adaptation of each metamodel:

7

Villalobos, Sánchez and Romero

with more flexible metamodels, the family of potential applications gets bigger. An
important limitation to the evolution of metamodels is posed by the need to keep
coordinated and synchonized several perspectives. Because of this, each metamodel
should provide powerful mechanisms of extension and the ability to flexibly describe
coordination.

The usage of open objects to materialize the elements of the metamodels of-
fers the features required. When open objects are used, it is possible to specify
explicitly the structure and behavior of metamodel elements, including their inter-
action and coordination. Since these relationships are externalized, they are easier
to manipulate and modify for evolution. Additionally, the extension mechanisms
offered by open objects confer to the metamodels the extensibility capabilities that
are required to build families of applications.

Fig. 4. Extensions to Cumbia-XPM.

In the case of control-based applications, the metamodel that is used to repre-
sent the perspective of control has a central role in guaranteeing the capacity of
adaptation of the family. We defined a metamodel called Cumbia-XPM, which is
used to model the control perspective in our applications. Figure 4 summarizes the
idea of extending a metamodel, using Cumbia-XPM as an example. In this case,
we have four sample extensions represented (XTMe1 to XTMe4), and each provides
different capabilities to the applications that use them. The effort associated to
creating each extension varies, like the distance between the base metamodel and
each extension varies in the figure. The next section explores this metamodel and
shows its elements, its features, and its applicability to the control domain.

3 Cumbia-XPM metamodel

Cumbia-XPM is a metamodel expressed in terms of open objects, designed to de-
scribe the control component of applications. The following explanation of the
elements that are part of this metamodel, and of the process we used to find them,
serves also to show some features of open objects that facilitate both the construc-
tion of the control component, and its adaptation to new contexts.

To find the elements for the metamodel, the first step was to study several
existing languages (XPDL 5 , BPEL 6 , BPMN 7 , IMS-LD 8 , SPEM 9 , and others)
that are used in contexts like business process modeling, workflows, e-learning,

5 XPDL Specification http://www.wfmc.org/standards/xpdl.htm
6 BPEL Specification http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
7 BPMN Information http://www.bpmn.org/
8 Learning Design Specification http://www.imsglobal.org/learningdesign/
9 Software Process Engineering Metamodel http://www.omg.org/technology/documents/formal/spem.htm

8

http://www.wfmc.org/standards/xpdl.htm
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.bpmn.org/
http://www.imsglobal.org/learningdesign/
http://www.omg.org/technology/documents/formal/spem.htm

Villalobos, Sánchez and Romero

and application orchestration. In each language, a set of elements that is used
to express control was identified and included in an initial set of common control
elements. Our goal was to find a small set of elements that could be used in a lot
of different contexts. We were not interested in having a huge set that posed a high
risk of becoming difficult to understand, use, and implement. Because of this, we
progressively eliminated specific elements and introduced more general ones until
we had a reasonable sized set. Since we knew that these elements were going to
be represented using open objects, this reduction took advantage of the extension
mechanisms: every specific element eliminated had to be obtainable by extending
one of the remaining elements. The result of this was a small set of elements (see
figure 5), which can be composed to form complex structures and can be extended
to express the same things (structures, actions, dependencies, etc.) as the original
languages.

Fig. 5. Cumbia-XPM Metamodel.

The control perspective of an application specifies a set of tasks that have to be
executed in a precise order to achieve a specific goal [5]. This set has a hierarchical
structure and, in the case of Cumbia-XPM, it has what we call Process at its root.
To be executed, a process needs some entry products that are consumed when tasks
are executed. These products are called initial data and are received through one of
the entry ports of the process. When that process finishes its execution, it generates
a set of data that can be recovered through one of its exit ports. To model this,
we have defined an element called Port that can play the role of entry or exit port.
In both cases a port is given a set of data that has to be delivered to someone who
needs it: in the case of an exit port of the process, the data is picked up by someone
or somebody external to the process; in the case of an entry port, the data is picked
up by one of the elements that is part of the internal structure of the process.

Executing a process means performing in order a set of either simple or complex
(sub-processes) tasks. Each task of a process requires also initial data and produces
results, thus tasks also need entry and exit ports. The internal structure of a process
defines the execution order of the tasks and depends on Dataflows, which connect
ports. A dataflow connected to an exit port of a task receives the results that it
produces and makes them flow to an entry port of the next task, carrying along
both data and control. Figure 6 depicts a sample process with a structure of ports
and dataflows that clearly defines the control-flow for the process. In this image it is
possible to see how splits, joins and loops can be achieved. For example, after Coding

9

Villalobos, Sánchez and Romero

the activities WriteTests and ReviewCode are executed in paralel. ExecuteTests can
be executed after the completion of CorrectCode and WriteTests. CorrectCode2 has
two possible outcomes: one enables a new execution of ExecuteTest, while the other
terminates the process.

The simple tasks that are executed within a process can be modeled with Activ-
ities and Workspaces, two of the elements available in Cumbia-XPM. An activity
controls the beginning of the execution of a task and is responsible for managing the
data required and the data produced. Workspaces are encapsulated inside activities
and are responsible for executing specific tasks. A workspace interacts only with the
enclosing activity, which provides the data needed for its execution: when the data
reaches one of the entry ports of the activity, it is given to the workspace to start
its execution; when the workspace finishes its work, it generates an event, which the
activity uses to pick up the data, reset the workspace (so that it can be executed
again), and finally put the data to one of the exit ports. When one of those exit
ports becomes full, the flow of control and data continues through the dataflows.

Fig. 6. Elements of Cumbia-XPM and sample process.

In the sample process there are three activities: Coding and WriteTest are ac-
tivities expected to be made by a user; ExecuteTest is expected to be executed
automatically by a workspace specialized in testing. Since Cumbia-XPM is based
on the open objects’ model, its extension mechanisms (simple extension, adaptation,
and specialization) can be used. For instance, to build a system that orchestrates
applications, workspaces can be specialized to give them the ability to invoke web-
services. On the other hand, two of the tasks (CorrectCode and CorrectCode2) are
sub-processes but their internal structure is not shown.

There are cases where it is necessary to execute several instances of the same
activity in parallel. Cumbia-XPM has an element called MultiActivity to achieve
that. Every time a normal Activity gets data from its entry ports, the corresponding
workspace is executed once. In a MultiActivity several instances of the workspace
are created and executed in parallel when the initial data required is received. The
number of workspaces executed can be defined during the design of the process, or
during runtime, and new workspaces of a MultiActivity can be created in a dynamic
way. In the sample process, several people execute the activity ReviewCode at the
same time, but the exact number is decided during the execution of the process.

To clarify how the interaction between elements of Cumbia-XPM proceeds, we
present a simplified scenario that includes only three elements: an Activity that is
going to be executed; an entry-port of that activity, which will receive the data that

10

Villalobos, Sánchez and Romero

is needed to start the execution (entry-data); and a Workspace that is inside the
activity and will be responsible of executing a specific task using the entry-data. The
action in this scenario begins when the entry-port receives the data it was expecting;
the activity then picks the entry-data, feeds and activates the workspace, and waits
until it finishes its execution. An activity can have several entry-ports which can
receive data concurrently; however, when one of those ports gets full, the activity
waits until the workspace finishes its execution before verifying if there is any other
full entry-port.

Fig. 7. Partial interaction between a port, an activity and its workspace.

The three state machines depicted in figure 7 correspond to fragments of the state
machines of a Port, an Activity and its Workspace. These three state machines were
designed to be composable: some of the events that they generate are expected by
another state machine to continue its execution. We now describe the interaction
between those state machines, that starts when the port receives data.

(i) The port P1 receives entry-data and takes the transition from state Waiting
to state Full.

(ii) The state machine of activity A1 receives the event enterFull and takes the
transition to state Active, executing the getData action, that retrieves the
data from the port and gives it to the Workspace.

(iii) The state machine of workspace Ws1 receives the event enterActive generated
by the Activity’s state machine. The transition to state Execute is taken,
executing the action start, that initiates the execution of the workspace.

This interaction sequence is repeated every time an activity instance starts its
execution. Although the interactions between pairs of elements are as simple as the
one presented, the complete set of state machines that interact in a single process
instance offer a very fine granularity level: the execution of a relatively simple
process can be supported by the interaction of tens of state machines. In a process
as simple as the one depicted in figure 6, there are 40 state machines (roughly 180
states) synchronized during the entire execution of the process: there is a state
machine per instance of an element, and each one of those has between three and
twelve states.

An important feature of Cumbia-XPM is its ability to model dataflow machines,
where the main responsibility is to control the flow of data consumed and generated,
as well as workflow machines, where the main responsibility is to control the order

11

Villalobos, Sánchez and Romero

of execution of the tasks. When implementing a dataflow, the three implementation
strategies described in [13] can be used: it is possible to combine the data and
control flows in a single dataflow, to use different channels for tokens and for data,
or to use a central repository for data. When implementing a workflow, simple
pieces of data called tokens can be used. These tokens, which flow as normal data,
are consumed and produced by activities; however, just the activities that hold
tokens can be active in a given moment.

Another important feature of the metamodel is to be navigable and reflexive.
The former means it is possible to reach any point in a process by traversing its
structure. This increases the extensibility of the model, because a program can
reach any element that needs to be modified. Since the metamodel is reflexive, it
is possible for an element in the process to alter its structure at runtime. These
features are possible because the open objects’ model allows the composition of
state machines at runtime.

In order to be applicable to different contexts, a model like Cumbia-XPM needs
to be very expressive regarding the definition of tasks and in structures that can
be constructed. We studied the expressiveness of Cumbia-XPM using two differ-
ent strategies. In the first place, compatibility with some existing languages was
verified (XPDL, BPEL, BPMN, IMS-LD) by making an analysis of the control
structures from each one and defining translation schemas to convert structures
from the original models to corresponding structures expressed with Cumbia-XPM.
In some cases, the translation schema was implemented in an application called
“importer” to allow the execution in our engine of processes defined with other
languages. The emphasis in this comparison of the languages was put on structural
elements related to control flow. Thus, specific tasks and details related to other
domains were ignored. We are currently working on a comparison with YAWL, as
is further explained in sections 5 and 6.

The other strategy to assess the expressiveness of the model involved control
flow patterns. The twenty basic control flow patterns [16] stand for control struc-
tures, which appear frequently in workflow related applications. These patterns
have become a standard for language comparison and the majority of commercial
languages have available documents explaining how each pattern is supported. For
someone who evaluates a language, these documents are useful, because they give
a standardized way of knowing if the language can be used for a specific context.
In the case of Cumbia-XPM, table 1 shows how patterns can be constructed us-
ing extension mechanisms. Values used in the column labeled “Support” have the
following meaning: D, pattern is directly supported by the model; Sp, pattern is
supported by specializing some elements; Ada, pattern is supported by adaptation
of state machines.

4 Implementation and validation

The Cumbia group has developed several tools to validate its proposals. The most
important one is an execution platform for Cumbia-XPM called JCumbia. JCumbia
is formed by a set of components developed in Java, and was designed to be run
in JBoss (see figure 8). In this platform the main element is an engine designed

12

Villalobos, Sánchez and Romero

Table 1
Support of control-flow patterns in Cumbia-XPM.

Pattern Support Pattern Support Pattern Support

1 (seq) D 2 (par-sp) D 3 (synch) D

4 (ex-ch) Sp 5 (simple-m) D 6 (m-choice) Sp

7 (sync-m) Sp 8 (multi-m) D 9 (disc) Ada-Sp

10 (arb-c) D 11 (impl-t) Sp 12 (mi-no-s) Sp

13 (mi-dt) D 14 (mi-rt) D 15 (mi-no) D

16 (def-c) Sp 17 (int-par) Sp 18 (milest) Sp

19 (can-a) D 20 (can-c) D

to execute Cumbia-XPM processes by implementing the open objects model. In
order to run processes in this engine, it is first necessary to load a definition using
an XML. From this representation, instances can be created and put into execution
using a set with the initial data. Running instances of the same process are grouped
together to simplify managment and to allow the sharing of data between several
instances of the same process. The responsibilities of this engine are limited to
executing processes by means of allowing the interaction of open objects, but it
relies on additional components of the platform to offer other requirements.

Besides the engine, JCumbia also has a deposit that is used to store both def-
initions of processes and the state of suspended processes. JCumbia has a Web
interface that is used to deploy processes, and to create and control instances. This
interface provides textual and graphical views of the running processes, which are
kept updated while instances are executed. Another way to monitor the execution
of the different components of JCumbia is to use consoles, that are specialized desk-
top applications that have a direct connection to the server. The design of JCumbia
offers the capacity to connect new components to enrich the execution of the pro-
cess. These include engines for other domains that should run synchronized to the
control component: section 6 presents briefly some projects related to this idea.

Fig. 8. Simplified architecture of JCumbia.

Besides doing manual tests of JCumbia, we have also addressed the problem of
building automatic tests for it. However, to build a test suite of functional tests for
a workflow engine is not an easy task, because techniques based on unitary testing

13

Villalobos, Sánchez and Romero

present several problems. Since Cumbia-XPM is highly concurrent, a lot of syn-
chronization issues appear when things are verified during execution; furthermore,
since elements in the Cumbia-XPM metamodel are strongly interrelated, they are
not susceptible to be tested independently. To solve this problems we developed a
testing framework that allows the definition, execution and verification of testing
scenarios. Scenarios are described by a static structure (a Cumbia-XPM process),
instructions to control its execution and some assertions that have to be verified after
its execution. The information to validate the assertions is gathered from execution
traces in a fashion similar to what is done in [7,8]. This strategy based on static
elements and off-line verification eliminates problems related to synchronization and
concurrency. This framework was used to verify the engine of Cumbia-XPM, using
scenarios selected to cover the most important and prone to error interaction cases
that can be constructed with the metamodel.

Using the same framework, scalability tests of JCumbia were also made. These
tests used also a complementing profiling tool 10 that led us to points in the imple-
mentation that were critical in the use of memory and processing time.

In this moment we have a complete workflow engine that has been thoroughly
tested. This engine was built on a platform that can escalate to be used in real
scenarios. As is reported on section 6, this engine is currently been used to execute
high level languages such as BPEL and BPMN.

5 Related work

This section presents some works related to our research. In [10], Papadopoulos and
Arbab present a survey of coordination models and classify them in two groups:
data-driven and control-driven. In the former group, the main focus is put on
Linda and its descendants but, as is presented in [11], Linda-like models have some
deficiencies that make them inadequate to model workflows. However, some of their
underlying ideas are useful in modern coordination models, such as the independence
between the computation and coordination or the usage of a shared space for data
(as is required in one of the implementation strategies described in [13]). One of
the control-driven models presented in [10] is Manifold[11]. This model has several
similarities to Cumbia-XPM and the open objects, but its design totally separates
data from control. Whereas in Cumbia-XPM we can use the flow of data to control
the state of a process, Manifold is completely event-driven. Also, there is no direct
interaction between elements, other than the flow of data through streams.

A more recent and powerful coordination model is Reo[2]. It is an exogenous
language based on channels which can be used to create very complex connectors.
The usage of Reo as glue-code between heterogeneous components, promotes loose
coupling because it makes possible to separate them and externalize their interac-
tion and the flow of data between them. For instance, Reo has been applied to
the problem of composing web services, as is presented in [6] and [9]. In these
works, several features of Reo lead to advantages over similar solutions like BPEL:
using Reo it is possible to dynamically reconfigure the channels to restructure the

10JMP Java Memory Profiler, URL: http://www.khelekore.org/jmp/

14

http://www.khelekore.org/jmp/

Villalobos, Sánchez and Romero

processes; distribution and mobility is also supported by the coordination model;
finally, the formal description of Reo makes it possible to apply model checking
techniques to the web services compositions.

In the work we have presented, state machines are used both to represent the
state of the elements and to coordinate their execution. In other works we consulted,
state machines have been used to analyze components and verify their compatibil-
ity. These techniques have been applied in cases where a static analysis of the
interfaces is not enough, and further information is required about the behavior of
the components[4].

One of the fundamental points of our proposal is the separation of processes in
different perspectives. In Cumbia-XPM we have focused on the control or struc-
tural perspective, but within the Cumbia project other perspectives have also been
studied and have resulted in complementing domains like the ones shown in section
6. In [13], the main topic discussed is the data perspective, but several works re-
lated to other perspectives are also referenced (time, resources, transactions, and
functionality). However, the essential difference between their strategy and ours is
that they propose the need to have a clear separation of perspectives when modeling
a process, even if its implementation and execution integrates the perspectives into
a single solution. With our strategy, the perspectives are separated when modeling,
and stay separated, but coordinated, during execution.

YAWL is a workflow language specifically designed to support the original
control-flow patterns[15]. Its design started with an analysis of the suitability of
Petri nets to accomodate the patterns. After finding some limitations, they pro-
posed a formal coordination model based on a Labeled Transition System (LTS).
In order to compare YAWL to the approach proposed in this paper, we identify
two complementing conceptual elements: the control model, that defines the ele-
ments that are used to build processes, and the coordination model that supports
the execution of those elements. Like Cumbia-XPM, YAWL is also proposed as
an intermediate language that should be used to make some high level languages
executable.

One of the purposes of YAWL was to provide a model with a clear execution
semantics. Because of this, the LTS they use has a formal description and a set
of rules with conditions for state transition. Since the project started with Petri
Nets, a similar textual and graphical syntax is used to describe the LTS, which
also keeps concepts such as places, conditions and tokens. In the specific case of
describing the execution semantics of a task, the life cycle is modeled with a Petri
net that resembles the state machines used in open objects; however, these nets are
identical for every element and are used only for documentation purposes and not
for coordination or composition. Furthermore, in YAWL the execution of a running
process depends on the state of the complete instance, and not just on the state of
the single elements. One of the clear advantages of the formal semantics of YAWL is
the possibility of analyze and verify processes. This has been explored using a tool
called Woflan 11 . Currently, neither Cumbia-XPM nor open objects have a formal
definition and semantics; however, that is part of our ongoing research.

11Woflan, URL: http://is.tm.tue.nl/research/woflan/

15

http://is.tm.tue.nl/research/woflan/

Villalobos, Sánchez and Romero

The other level of YAWL, which holds the elements used to build processes, has
some deep differences with Cumbia-XPM. While our meta model was designed to
have a few base elements and being able to accommodate extensions, YAWL has
more base elements and proposes very limited extension mechanisms. Because of
their inspiration in control-flow patterns, they include extra elements that are useful
to solve patterns with simplicity, even though the same results can be achieved with
other elements. Nevertheless, some YAWL elements can express behaviors that in
Cumbia-XPM require extensions based on extra code, like the regions for token
removal; however, used as intermediate languages, the complexity of the resulting
executable models should not be taken into account. The extension mechanisms
in YAWL are very limited: its main flexibility points are Tasks, which are used to
execute specific code and consume services through worklets[1].

Finally, a big difference between YAWL and Cumbia is related to the support
for other perspectives. In the case of YAWL, the support to the data, resource and
operational perspectives is provided by the implementation and it is not part of the
model [14,12]. In newYAWL[12] there is comprehensive support to data and resource
patterns, but there is no uniformity between control and these perspectives. On the
contrary, in Cumbia all the perspectives share the open objects and are executed
and coordinated using homogeneous mechanisms.

6 State of the project

Since the Cumbia project 12 started three years ago, team efforts have been divided
between the development of the coordination model and Cumbia-XPM, and some
complementing subprojects that pursue specific goals: 1) to specify new domains
that can be composed with the control domain; 2) to design and build complete
working applications which use Cumbia-XPM as an intermediate language; 3) to
formalize the coordination model. These projects have also been used to validate
our proposals from different points of view.

Using open objects, we have built metamodels to handle other perspectives
that are tightly related to control. Cumbia-XRM (eXtensible Resources Model)
was designed to model the resources used in the execution of a process (working
personnel or machines, for example). This metamodel is also capable of modeling
complex rules to assign these resources to tasks. Cumbia-XTM (eXtensible Time
Model) can be used to model time restrictions over the execution of a process.
For instance, one restriction can specify that if a set of activities lasts more than
three days an email has to be sent to the supervisor. XTM and XRM models are
composed with Cumbia-XPM processes by synchronization of state machines: the
same coordination methods used between open objects inside XPM, are used to
synchronize elements from several metamodels. The weaving between elements of
different models is specified externally, thus it is easy to add new models and to
modify their relationships.

The construction of full working applications validates our proposal of using
Cumbia-XPM as an intermediate language. One of the applications that we have

12Cumbia Home, URL: http://cumbia.uniandes.edu.co

16

http://cumbia.uniandes.edu.co

Villalobos, Sánchez and Romero

Fig. 9. Building a BPEL engine with Cumbia-XPM.

constructed is an engine for BPEL 2.0, which is currently in a beta stage. Figure 9
shows an overview of this. In the first place, there is an extension of XPM that adds
the necessary elements to execute BPEL processes, like several types of activities
to interact with web services. A BPEL model, built with one of the BPEL editors
available, is automatically transformed into an equivalent XPM process that uses
the extended elements. This process is then executed in a normal XPM Engine,
as the extension itself provides all the extra logic required by BPEL. Finally, a
wrapper is used around the XPM Engine to make it appear like a BPEL engine.
In particular, this layer provides a management interface that is published as a
web service. Another application that is being constructed is called PaperXpress, a
tool to support collaborative writing of research papers. It allows the definition of
ad-hoc processes, and offers the support needed to coordinate tasks and to handle
the results of the writing process. The cases of BPEL and PaperXpress have a very
important difference. Whereas BPEL is a language already defined, the high level
language used in PaperXpress was specifically designed for it. However, the costs
associated to the implementation of this language where low because of the usage
of Cumbia-XPM as its basis.

Finally, the goal of other of our ongoing projects is to provide a formalization
to the coordination model. This will provide tools to verify processes and further
validate the approach by verifying its properties and making comparisons possible.
As we already said, the formal aspect of YAWL permits static analysis of processes,
and we will like to replicate that. On the other side, in order to do in depth
comparisons with other coordination models, or other process models, we believe
that a more formal description of the approach is required. We are currently working
on this direction and this objective is guiding our formalization efforts.

7 Conclusions

In this paper we presented a strategy to build, at low cost, families of control-based
applications. Around a central control component, these applications coordinate
the execution of elements from other perspectives like resources, data or time. The
flexibility required to build with ease families of these applications, is obtained with
a coordination model based on open objects, which is used to materialize an inde-
pendent metamodel for each concern. This coordination model offers extensibility
mechanisms and provides a flexible way to describe composition and coordination
between the models that represent perspectives appearing in an application.

17

Villalobos, Sánchez and Romero

Our proposal is based on a metamodel for control, Cumbia-XPM, and on a co-
ordination model based on open objects, which is used to represent the metamodel.
Cumbia-XPM is used to build processes (the control component of an application)
and can be applied to several contexts: it was designed to support the elements
that are part of a general concern of control, and it can be extended and adapted
when it has to solve specific problems.

Currently, the models proposed are being formalized to do more formal compar-
isons with existing approaches. Meanwhile, we have evaluated the expressiveness
of our models using the workflow patterns. The concepts presented in this paper
have also been validated with the construction of engines and applications. The
basic Cumbia-XPM engine was implemented and tested intensively using a frame-
work based on scenarios. Similar engines were constructed to execute models that
represent different perspectives of the applications.

Applications that run BPEL and BPMN processes are almost complete: they
make use of an extended version of Cumbia-XPM as an executable intermediate
layer; they also depend on the synchronized execution of other models, built with
open objects, that represent the other perspectives. We expect to continue this line
of research in the future, applying it to other control-based applications, specially
those that use their own domain specific languages (like PaperXpress). This line of
research also requires the development of new metamodels for different perspectives,
and the evolution of our testing framework to support also these new concerns.

References

[1] Adams, M., A. H. M. ter Hofstede, D. Edmond and W. M. P. van der Aalst, Worklets: A service-
oriented implementation of dynamic flexibility in workflows, in: CoopIS 06: Proceedings of the 14th
International Conference on Cooperative Information Systems, Montpellier, France, Lecture Notes in
Computer Science 4275 (2006), pp. 291–308.

[2] Arbab, F. and F. Mavaddat, Coordination through channel composition, in: COORDINATION ’02:
Proceedings of the 5th International Conference on Coordination Models and Languages (2002), pp.
22–39.

[3] Aßmann, U., “Invasive Software Composition,” Springer-Verlag New York, Inc., Secaucus, NJ, USA,
2003.

[4] Brogi, A., C. Canal and E. Pimentel, Behavioural types for service integration: Achievements and
challenges, Electronic Notes in Theoretical Computer Science 180 (2007), pp. 41–54.

[5] Craven, N. and D. Mahling, Goals and processes: a task basis for projects and workflows, in: COCS
’95: Proceedings of conference on Organizational computing systems (1995), pp. 237–248.

[6] Diakov, N. K. and F. Arbab, Compositional construction of web services using reo, in: Web Services:
Modeling, Architecture and Infrastructure - Proceedings of the 2nd International Workshop on Web
Services: Modeling, Architecture and Infrastructure, WSMAI 2004 (2004), pp. 49–58.

[7] Dwyer, M. B., G. S. Avrunin and J. C. Corbett, Patterns in property specifications for finite-state
verification, in: ICSE ’99: Proceedings of the 21st international conference on Software engineering
(1999), pp. 411–420.

[8] Hu, Z. and S. M. Shatz, Explicit modeling of semantics associated with composite states in uml
statecharts, Automated Software Engg. 13 (2006), pp. 423–467.

[9] Limniotes, T. A., G. A. Papadopoulos and F. Arbab, Web services: separation of concerns: computation
coordination communication, in: SAC ’04: Proceedings of the 2004 ACM symposium on Applied
computing (2004), pp. 492–497.

[10] Papadopoulos, G. A. and F. Arbab, Coordination models and languages, in: 761, Centrum voor
Wiskunde en Informatica (CWI), ISSN 1386-369X, 1998 p. 55.

18

Villalobos, Sánchez and Romero

[11] Papadopoulos, G. A. and F. Arbab, Modelling activities in information systems using the coordination
language manifold, in: SAC ’98: Proceedings of the 1998 ACM symposium on Applied Computing
(1998), pp. 185–193.

[12] Russel, N., A. ter Hofstede, W. van der Aalst and D. Edmond, newYAWL: Achieving comprenhensive
patterns support in workflow for the control-flow, data and resource perspectives, Technical report,
BPMcenter.org (2007), BPM Center Report BPM-07-05.

[13] Sadiq, S., M. Orlowska, W. Sadiq and C. Foulger, Data flow and validation in workflow modelling, in:
ADC ’04: Proceedings of the 15th Australasian database conference (2004), pp. 207–214.

[14] van der Aalst, W., L. Aldred, M. Dumas and A. ter Hofstede, Design and implementation of the yawl
system, in: Advanced Information Systems Engineering. 16th International Conference, CAiSE 2004,
Riga, Latvia, June 2004, Lecture Notes in Computer Science 3084 (2004), pp. 291–308.

[15] van der Aalst, W. and A. ter Hofstede, Yawl: Yet another workflow language (revised version), Technical
report, Queensland University of Technology, Brisbane (2003), QUT Technical report, FIT-TR-2003-04.

[16] van der Aalst, W., A. ter Hofstede, B. Kiepuszewski and A. Barros, Workflow patterns, Technical
report, BPMcenter.org (2003), BPM Center Report BPM-03-06.

19

	Introduction
	Open objects and executable models
	Composition and coordination elements (open objects)
	Composition scenario with open objects
	Extension mechanisms
	Using open objects to build families of applications

	Cumbia-XPM metamodel
	Implementation and validation
	Related work
	State of the project
	Conclusions
	References

