
A flexible architecture to build workflows using
aspect-oriented concepts

Mario Sánchez, Jorge Villalobos
Universidad de los Andes

Bogotá, Colombia
{mar-san1,jvillalo}@uniandes.edu.co

ABSTRACT
Since many workflow applications are used in contexts where
the requirements and business rules change frequently, it is
necessary to build those applications using strategies and
tools that favor adaptation and reuse. The goal of this pa-
per is to show an approach to build these extensible workflow
applications using synchronized executable models. This ap-
proach uses concepts related to aspect-oriented software de-
velopment, such as concern separation and instrumentation;
thus, in addition to presenting the approach, we discuss
our view on the central characteristics that define aspect-
modeling, and we show how these concepts relate to our
work and how they can be applied to workflow applications.

Keywords
Workflow domains, Aspect-oriented modeling, Executable
models

1. INTRODUCTION
Aspect-oriented modeling is a technique that is frequently

used to guide the design and construction of many different
kinds of applications. Starting from the original proposal of
Aspect-oriented programming of Kiczales et al. [5], aspects
have been adopted in many languages and contexts. Since
not all the implementations are exactly alike, this opens a
discussion about what elements are fundamental to the as-
pects proposal. In this paper we pose our view on what ele-
ments are common to every aspect-oriented modeling tech-
nique, and we illustrate this in the context of the construc-
tion of workflow based applications.

Today, workflows are increasingly being used and this has
led to the definition of several languages and applications
to define and enact workflow processes. Moreover, there
are several applications that rely on workflow engines to
support some parts of its semantics. A common element
in these tools is a central coordination element that leads
the cooperative execution of several active entities, and pro-
vides a way to integrate them to achieve a common goal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop AOM (Twelfth Edition) April 1, 2008, Brussels, Belgium.
Copyright 2008 ACM 978-1-60558-146-0/00/0000 ...$5.00.

[1]. This central element is usually called the control di-
mension: it comprises and executes entities that are related
to the control-flow, that is, elements that describe tasks and
their execution ordering [10] to form processes. As an exam-
ple, a BPEL engine controls the access to web-services and
thus composes them to create more complex services. An-
other example are applications that control the interaction
between humans and machines by routing and transforming
the data produced in each step.

Currently, the problem is that workflows are mostly used
in contexts where there are frequent changes of requirements
and business rules; moreover, there is also a constant need
for new applications, and the particular requirements in each
case make it difficult to reuse existing applications. Due to
this, it is necessary to find strategies and tools to easily build
and adapt workflow applications. This can be achieved by
providing mechanisms to modularize, describe, adapt, reuse
and compose parts of the solutions.

The goal of this paper is to present our approach to build
workflow applications, and show how it relies on several con-
cepts that are basic to aspect-modeling. The approach that
we have developed is based on the usage of synchronized ex-
ecutable models to represent different concerns that partici-
pate in a workflow application. This is different from many
aspect-based strategies in that weaving is done over models,
and the result is not a single executable element but a set
of synchronized executable models. However, this approach
has several similarities to general aspect concepts, and of-
fers all of the advantages typically associated to aspect-
modeling.

The rest of the paper is organized as follows. Section
2 discusses some approaches to model workflows and the
possibility of identifying domains within them. Next, section
3 presents our view on the concepts that are fundamental
to aspect-modeling. Section 4 relates the ideas presented
in section 2 and 3 by showing our approach to implement
workflows using executable models in an aspect-like way. In
section 5 we describe one sample application, and in section
6 we present the conclusions of the paper.

2. WORKFLOW DOMAINS
The goal of this section is to show that workflows are in-

deed a kind of applications that can greatly benefit from the
usage of aspects independently from the technologies used
to implement them.

Several languages and tools to model and enact workflows
have appeared in recent years. Each one of those languages
usually focused on modeling specific kind of processes or

25

offering a specific advantage over other alternatives. For
instance, BPEL was designed to compose web-services and
thus it requires low-level descriptions of the processes and
of the interaction between services and data; on the other
hand, BPMN is mainly used to document processes from a
business perspective and offers high-level descriptions, but
it is not directly executable; a third alternative is YAWL,
that was designed as an intermediate language and has a
formal specification of its execution semantics. Other well
known languages and tools are XPDL, an interchangeable
format to describe processes, and the Microsoft Workflow
Foundation, that offers a framework with base elements to
build workflows.

When a process is fully defined to be enacted it should
include several small, extra elements and tasks that comple-
ment or support the main activities, but are not related to
the business process. These elements are usually recurrent
and they can address a wide variety of details. For example,
some of them serve to assign resources to the main activi-
ties; others serve to store, retrieve and transform data; and
others serve to check the compliance to certain restrictions,
such as deadlines and time-outs. Because of this wide range
of possibilities, they also vary in their structure and can have
a great impact on the structure of the process. For instance,
specifying the maximum duration of an activity can impact
the structure of a process beyond that single activity (see
[10], pag. 20, figure 7, for some examples of how introduc-
ing timing affects the process’ structure).

These extra elements and tasks can be transparently added
by the supporting tools, or they can be explicitly included in
the process definition. This is achieved with the help of spe-
cial constructs of the language used to describe the process.
For instance, BPEL offers constructs to handle time-outs. A
direct consequence of this is that the definition of the pro-
cess becomes entangled with the definition of elements that
are not part of the domain where the workflow is used; ad-
ditionally, it also forces the designer of the process to take
into account these extra things. Another disadvantage of
this situation is that it hinders evolution of the application
because of the high coupling between all its elements.

A possible strategy to solve this problem is to decouple
the process definition from the definition of the supplemen-
tal tasks and elements. These separated elements are then
grouped in domains, which serve to relate elements that ad-
dress similar goals. For instance, the domain of resources
groups the elements used to define the available resources,
and the rules to assign them to activities. A very special do-
main is the control domain that includes the elements used
to define and structure the tasks that are performed in a
workflow. After identifying the domains and their elements,
the other important step in this strategy is to identify the
relationships between elements from different domains. This
separation of domains favors the comprehension of the pro-
cess and the evolution of its parts. However, there is still
the problem of how to describe and implement the decoupled
elements and their relationships.

Several works have addressed parts of this problem. For
example, in [8] several domains are first identified and then
they focus on the analysis of the data domain. There are
also tools that implement similar ideas, such as AO4BPEL
[3] and Padus [2], two existing aspect-oriented extensions to
BPEL. AO4BPEL uses an XPath based pointcut language
to weave advices over existing BPEL processes and the re-

sulting processes are executed in a modified BPEL engine.
AO4BPEL has an important disadvantage in the fact that
advices have to be modeled using BPEL. On the other hand,
Padus is based in advices defined using BPEL, and point-
cuts described with a logic language. Since it uses a static
weaving system that outputs BPEL processes, it is possible
to execute the weaved applications in well-known and very
efficient standard BPEL engines. However, Padus suffers
from the same limitations of AO4BPEL because of the us-
age of BPEL as advice language: the things that can be said
in the advices are limited to what can be normally be said in
BPEL, even if the concerns modeled do not have anything
to do with control. The approach that we present in section
4 of this paper makes it possible to use different definition
languages for different concerns.

3. ASPECT-ORIENTED CONCEPTS
Starting with the original works of Kiczales et al. [5], dis-

cussions have been risen to identify issues such as the lim-
itations and advantages of aspects, their possible fields of
applications, and the concepts that are central to the orien-
tation. In [6], Filman and Friedman proposed that the dis-
tinguishing characteristics of aspect-oriented programming
and modeling are quantification and obliviousness; this work
served to Steimann as a basis for [9], starting a discussion
with the authors of [7], which proposed abstraction, modu-
larity and composability as fundamental properties of AOP.
We realize that these works had as main focus to obtain and
discuss a definition of aspect-oriented programming, whereas
our work’s main focus is on workflow applications. We do
not expect to confirm or refute any of these previous works,
so we present a small set of aspect-oriented concepts that
we have identified with our experience and serve to contex-
tualize our work.

The first of these concepts is the separation of crosscut-
ting concerns, intended as the identification and isolation of
several aspects of the system. The second concept is instru-
mentation, intended as the mechanism used to materialize
the relationships between concerns that are required to have
fully working applications. These two concepts always ap-
pear in aspect implementations, are consistent with both
the definitions of [7] and [6], and they are independent of
the languages and tools used. Furthermore, these two con-
cepts can be applied and bring benefits to applications in
many different contexts. In the rest of the section we will
further describe these two concepts. Since we will illustrate
them using code-oriented implementations of aspect tech-
nologies, we will use terms such as base-program and code
instrumentation.

Separation of crosscutting concerns
As presented in [5], the proposal of separating crosscutting

concerns comes from the idea that using only one abstraction
can be insufficient to handle all the issues that appear in an
application. Also in [5] it is said that “different aspects of
a systems behavior that must be programmed, each tend
to have their own ‘natural form’, so while one abstraction
framework might do a good job of capturing one aspect, it
will do a less good job capturing others”. From this point of
view, separation of concerns allows the usage of models and
languages with the adequate expressiveness for each case.

The separation of concerns is not always done a-priori
in an aspect-based application. In many cases it is possi-

26

ble to identify new concerns very late in the development
cycle. In these cases, the aspect-orientation becomes a facil-
itator for unexpected extension, and applications can then
be extended in ways that were unexpected when they were
initially developed. How profound are the extensions de-
pends on the expressiveness of the models and languages
used to describe those extensions. Another factor here is
that concerns can be separated in several ways even in a
single application. For instance, in java applications it is
common to group the main functionalities in a concern that
is called the base program, and in several other concerns
that handle extra requirements such as logging or transac-
tion management. However, it is important that concerns
must be completely separated from the base code and also
between them: they should not know about each other prior
to weaving, and it should be possible to execute the base pro-
gram even when one or all of the crosscutting concerns are
missing.

Another characteristic of concern separation is that it
should be possible to locate composition and coordination
hooks in the base program (join points) and in each concern
(advices). The hooks available in the base program depend
on the technology used. In the case of java applications,
joint points are usually associated to method calls. There
are also some recent tools that allow the location of specific
lines of code. In all cases, the finer the granularity of the join
points, the more expressive the weaving strategy becomes.
Adversely, the elements described in a concern are grouped
in ‘advices’, which are located by simply using a name. The
capacity of locating elements in the base program and in
the concerns makes it possible to design pointcut languages,
which are fundamental to the weaving process.

Instrumentation
The other essential concept of the aspect-orientation is the

usage of instrumentation to weave the concerns. Using this
mechanism, it is possible to take the execution control from
one concern and give it temporarily to another; in the case of
code-based applications, this means that instrumentation is
used to take the control from the base program and execute
some other code defined in a concern.

Instrumentation is also a mechanism to do white-box com-
position between concerns. This means that it is necessary
to know the internal structure of these elements in order to
establish relationships between them; if they were taken as
black-boxes, it would be impossible to locate arbitrary join
points and the possibilities of extension would only be the
ones foreseen by the initial developers. In the case of object-
oriented programming, this means that extensibility would
be limited to the interfaces provided, thus eliminating the
possibility of unexpected extensions.

Depending on the technologies involved, several weaving
strategies can be used, and each one offers a different trade-
off. For instance, static weavers that pre-process the source
files before compilation can use standard compilers, but have
a great impact on the code that is executed because it is dif-
ficult to distinguish the base-code from the aspect-code. On
the other hand, a coordination-based weaver, like the one
that will be presented in section 4, can maintain a clear sep-
aration between the original codes. Other weaving strategies
exist and depend on things like class inheritance, decorators,
proxies or byte-code modification.

In order to use an instrumentation strategy to weave a

base program with its concerns, it is necessary to have some
information about the relationships that have to be mate-
rialized. These links relate join points of the base program
(i.e. methods) with advices using a specific instrumentation
strategy. This information is described using a pointcut lan-
guage that is developed for each aspect technology.

This concludes our discussion about the base concepts be-
hind aspect-oriented modeling. In it, we identified one point
that relates to modularization, and one point that relates to
the composition of the modules obtained.

4. MATERIALIZING CONCERNS AS EXE-
CUTABLE MODELS

In this section we will present our approach to build work-
flow applications. This approach is based on the idea of
identifying domains involved in a workflow and implement-
ing them as concerns using executable models. The rela-
tionships identified between domains are materialized using
a weaving strategy that synchronizes the executable models
using a coordination mechanism based on event passing and
method calls. All our executable models are constructed us-
ing a coordination element that we call open object [11]: it
provides a way to represent the state of the elements appear-
ing in a model, and offers all the necessary synchronization
mechanisms. We will now present in more detail the struc-
ture and characteristics of an open object, and then we will
show how they can be extended and grouped to represent
specific concerns.

An open object is composed of an entity, a state machine
associated to the entity, and a set of actions. An entity is
just a traditional object with attributes and methods. It
provides an attribute-based state to the open object and its
methods are a place where part of its behavior can be imple-
mented. The state machine materializes an abstraction of
the life-cycle of the entity, allowing other elements to know
this state and react to its changes. Finally, the actions are
pieces of behavior that are associated to transitions of the
state machine. When a transition is taken, its actions are
executed in a synchronized way.

To specify a state machine it is necessary to describe its
states, the transitions between states and the events that
will trigger each transition. For instance, to keep the state
machine consistent with the internal-state of the entity, each
time the latter is modified, it generates an event. The state
machine receives that event, processes it, and takes the tran-
sition associated to that particular event. When a state ma-
chine changes its state, this also generates an event. This
mechanism can also be used to react to changes in other
open objects. Moreover, open objects also offer a synchro-
nization mechanism that is not based on events. When a
transition is taken, all the actions associated to that tran-
sition are executed, and these actions can make direct calls
to other elements to invoke their methods.

Figure 1 shows a simplified version of an open object that
represents an activity. There is an entity, (the class Activity
itself), a state machine, and one action associated to one
of the transitions in the state machine. The state machine
reacts to events that are generated by entity methods and
are related to the transitions. For instance, the method
activate() generates an event that takes the state machine
from Inactive to Active. On the other hand, the event
generated by the method finish() changes the state of the

27

Figure 1: Sample open object: Activity.

state machine from Active to Finished or from Suspended

to Finished. When the transition between Inactive and
Active is taken, the action RetrieveData is executed: the
behavior implemented in this action is invoking the method
getData() of the activity.

To support the flexibility requirements of workflows, and
to allow elements to be adapted individually, the open ob-
jects have three different mechanisms to alter or extend their
structure and behavior. The simplest mechanism involves
only the modification of the actions of an open object. This
mechanism is used to enrich the semantics of the transi-
tions and is very useful when building workflow applications
and synchronizing concerns. The second extension mech-
anisms involves the redefinition of the state machine of an
open object; this mechanism has a richer expressiveness than
the previous one. Finally, the third mechanism involves the
modification of the entity of an open object; this is achieved
with a total replacement of the associated object, or with
the creation of an extended version (possibly using inher-
itance). These three mechanisms are fundamental for the
creation of models to represent particular concerns.

In our approach, each concern of a workflow is represented
by an executable model based on open objects. Further-
more, to build each concern there is a different set of open
objects available, that we call a metamodel. These meta-
models can be used as a template to build models, and their
elements are not totally fixed and can be extended and cus-
tomized. This is similar to the strategy used in [12], but
instead on relying on MOF and classes, we use open ob-
jects. As an example, we have a metamodel called XTM
(eXtensible Time Modeling) that we use to build models
representing the time concern of any workflow. The cre-
ation of XTM required the definition of several open objects
that represent the basic elements of the concern. Whenever
a new time model is created using XTM, the available open
objects are adapted and extended as necessary to support
the specific requirements of the specific process.

The most important metamodel that we have defined is
called XPM (eXtensible Process Modeling), and it serves
to model the elements that are part of the control dimen-
sion of an application, that is, the set of tasks that have
to be executed in a precise order to achieve a specific goal
[4]. Some of the elements available in this metamodel are
Process, Activity, Multiactivity, Port and Dataflow; in [11]
there is a complete description of these elements, as well as
an example of a complete process. All the elements of the

metamodel are described as open obejcts, and each one has a
state machine that abstracts its life-cycle (see figure 1). The
structure of these state machines is fundamental to describe
the weaving between concerns.

Figure 2: Models, Metamodels, and Workflow Ap-
plications.

As figure 2 shows, each metamodel is used to create mod-
els, and these models together with some linkages forms
workflow applications: each model represents one of the con-
cerns involved in an application, and the links between them
are responsible for their coordination. This is achieved by
using a weaving strategy that coordinates the open objects
to synchronize the various executable models. In this weav-
ing strategy, to synchronize two models it is fist necessary
to locate a transition that will be used as join point. Next,
an open object that is interested in being notified about the
transition is identified in the other model. Finally, it is nec-
essary to add an action to the transition and to configure it
to notify the element identified in the second model. This
notification is usually performed by invoking a method of
the entity.

The weaving strategy presented can be considered an in-
strumentation based strategy. By adding an action, the exe-
cution control is synchronically transfered to the other con-
cern. The behavior of the original model is not altered and
thus if the weaved concern does not performs any operation,
then the behavior of the application remains unchanged.

The responsible of performing the weaving is a component
that is separated from all the models. This weaver is capable
of interpreting a pointcut language that serves to define all
the information required, including the type of action used
to establish the link.

We will now illustrate these ideas using a fragment of a
sample workflow. This application includes a process (do-
main of control), and time restrictions that apply to the
execution of the process (domain of time). To implement
this workflow two models are defined, one for each concern.
In the rest of the explanation, we will use the activity in
the process that is called A, and the time restriction called
TR1 that specifies that A’s execution should last less than
2 hours. The state machines of these elements are shown in
figure 3. In this image we have also included a time counter
that checks the time for TR1. This time counter is another
open object, with methods to start and stop that are called
by TR1’s actions, but for simplicity we have represented it
as a small clock.

In order to synchronize the two open objects A and TR1,
it is necessary to establish relationships between them: the
time restriction TR1 should start checking the time (using
the time counter started by the action StartTC) as soon as

28

Figure 3: Relations between an activity and a time
restriction.

activity A starts its execution; furthermore, the time re-
striction TR1 should be notified when activity A finishes its
execution and stop the time counter. These relationships
are created by the weaver using instructions such as the fol-
lowing:

process:(Activity)A|activation

StartChecking (

time:(TimeRestriction)TR1,

startCheck())

process:(Activity)A|deactivation

NotifyEnd (

time:(TimeRestriction)TR1,

stopCheck())

As said previously, the weaving mechanism is based on
adding actions. The first block of instructions specifies that
the action StartChecking should be associated to the tran-
sition called activation of activity A, and that this action
should invoke the method startCheck() of the time re-
striction TR1. The second block of instructions specifies
that the action NotifyEnd should be associated to the tran-
sition called deactivation of activity A, and that this action
should invoke the method stopCheck() of the time restric-
tion TR1. Other similar instructions are used to relate the
state of TR1 with the transitions that go to and from the
state Suspended of A.

In this example we have shown how to weave one specific
activity to one specific time rule. However, it is also possible
to weave one time rule to several activities or to specify that
each activity has to be woven to a time rule.

5. EXPERIMENTATION
The approach that we have presented in this paper has

been implemented, tested and used to build several workflow-
based applications. One of these applications is called Pa-
perXpress and it is a tool to support collaborative writing
of research papers. In PaperXpress, ad-hoc processes are
defined and then the tool offers the support needed to en-
act the processes by coordinating its tasks and handling the
results of the writing process.

When PaperXpress is executed, there are three domains
involved: a control model, a resource model and a data
model. The control model describes the activities that have
to be executed in order to write the paper; the resource
model describes who is responsible for each of the tasks;
and the data model holds all the relevant information, in-
cluding the structure and the contents of the paper that is
being written.

In this application, the metamodels of control and re-
sources are extensions to metamodels that we had already
used, such as XPM. Only the metamodel of data was de-
veloped from scratch for this application. Because of this,
PaperXpress is also an example of how the approach pre-
sented impacts the development cycle of an application by
favoring reuse.

The following is a small list of the steps required to build
similar applications, with a special emphasis on the reuse of
metamodels.

1. Identify the domains that are going to be part of the
application.

2. Study the available metamodels, created for previous
projects, and select those that can be used to model
the domains identified in step 1.

3. Adapt and extend the metamodels that require adjust-
ments in order to be used in the new application.

4. Build new metamodels for the remaining dimensions.

5. Build the rest of the application, using the selected
metamodels to represent the concerns involved.

Besides showing the advantages of the approach that are
related to reuse, this also shows important benefits related
to evolution. Specifically, that the metamodels can evolve
independently and it is even possible to add new concerns.
Furthermore, the relationships between concerns are totally
decoupled and they can also evolve independently.

6. CONCLUSIONS
In this paper we have presented our approach to build

workflow applications and we have motivated some reasons
to consider it an aspect-oriented approach. First, we identi-
fied some characteristics of workflow applications that makes
them suitable to be modeled from an aspect-oriented per-
spective. Then, we discussed what we consider the basic
concepts behind the aspects orientation: separation of con-
cerns and instrumentation. These concepts are rather evi-
dent in code-oriented aspect implementations, but they can
also be applied in other kind of applications.

We propose the idea that workflow applications can be
constructed using executable models which are synchronized

29

with method calls and event passing. This provides an as-
pect framework where the concerns are represented with ex-
ecutable models, and the weaving is based on a coordination
mechanism.

The usage of aspects to build workflow applications is in-
teresting form several points of view. It facilitates the usage
of different models to represent each dimension that is in-
volved in the workflow. It also makes extensions simpler to
create because the workflow descriptions become less entan-
gled. Finally, the approach presented also offers advantages
related to reuse, since it identifies some specific reusable ar-
tifacts and offers mechanisms to adapt these artifacts to new
requirements.

7. ACKNOWLEDGMENTS
This work is supported by the VLIR funded CARAME-

LOS project (http://ssel.vub.ac.be/caramelos/) and by Col-
ciencias (http://www.colciencias.gov.co).

8. REFERENCES
[1] Papadopoulos, G. A. and F. Arbab, Coordination

models and languages. In 761, Centrum voor Wiskunde
en Informatica (CWI), ISSN 1386-369X, 1998 p. 55.

[2] Braem, M. et al. Isolating Process-Level Concerns
Using Padus. In Proceedings of the 4th International
Conference on Business Process Management (BPM
2006), Vienna, Austria, September 2006. LNCS
Springer-Verlag.

[3] Charfi, A., Mezini, M., Aspect-Oriented Workflow
Languages. In OTM Confederated International
Conferences, Montpellier, France, 2006, Lecture Notes
in Computer Science 4275, pp. 183-200.

[4] Craven, N., Mahling, D.: Goals and processes: a task
basis for pro jects and workflows. In: COCS 95:
Proceedings of conference on Organizational computing
systems, New York, NY, USA, ACM Press (1995)
237-248

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97–Object-Oriented
Programming, 11th European Conference, LNCS 1241,
pages 220-242, 1997.

[6] R. Filman, D. Friedman, Aspect-Oriented Programming
is Quantification and Obliviousness. In OOPSLA WS
on Advanced Separation of Concerns, 2000.

[7] A. Rashid, A. Moreira, Domain Models are NOT
Aspect Free. In MoDELS 2006, Springer, LNCS 4199,
pp. 155-169.

[8] Sadiq, S., M. Orlowska, W. Sadiq and C. Foulger, Data
flow and validation in workflow modelling. In ADC 04:
Proceedings of the 15th Australasian database
conference (2004), pp. 207-214

[9] Steimann, F., Domain models are aspect free. In
MoDELS 2005, 8th International Conference on Model
Driven Engineering Languages and Systems (2005)
171-185.

[10] van der Aalst, W., L. Aldred, M. Dumas and A. ter
Hofstede, Design and implementation of the yawl
system. In: Advanced Information Systems
Engineering. 16th International Conference, CAiSE
2004, Riga, Latvia, June 2004, Lecture Notes in
Computer Science 3084 (2004), pp. 291-308.

[11] Villalobos, J. Sánchez, M. and Romero, D. Executable
Models as Composition Elements in the Construction
of Families of Applications. 6th International Workshop
on the Foundations of Coordination Languages and
Software Architectures (FOCLASA 2007), Portugal,
September 2007.

[12] Object Management Group: Software Process
Engineering Metamodel (SPEM), Version 1.1 (January
2005)

30

