
Towards a symbiosis between Aspect-Oriented and
Component-Based Software Development

ABSTRACT
In this paper we present a novel approach, called FuseJ,
for achieving a symbiosis between aspect-oriented and
component-based software development. We build on
previous research that proposes a new aspect-oriented
programming language tailored for the component-based
field, called JAsCo. Although JAsCo provides us with
some nice results, we argue that a symbiosis between
aspects and components is essential. To achieve this
symbiosis, we describe the first steps towards a new
component model, where both aspects and components
are described in the same base component language.
Each component is equipped with a number of
homogeneous gates that allow accessing a particular
feature. An application is assembled by interconnecting
these gates, using explicit connectors, which contain the
full expressive power for specifying crosscutting
communication. As crosscutting behavior is specified as
regular components, aspects and components can not be
differentiated and a true symbiosis has been obtained.

Keywords: aspect-oriented software development -
component-based software development - symbiosis -
component model

1. INTRODUCTION
For a long time, object-oriented software development
(OOSD) was considered the holy grail of software
engineering. When an object-oriented application is
built, it is split up in a set of classes which are able to
perform one or more specific tasks for the system.
Although OOSD considerably improved the development
of software applications, it did not cure all problems
experienced during the software engineering process.
For some years now, component-based software
development (CBSD) and more recently aspect-oriented
software development (AOSD) have been proposed to
tackle these problems.
One of the problems of OOSD, is the hard-coupled
collaboration between the classes contained within the
system. CBSD presents itself as a solution for

overcoming this hard-coupling. In CBSD, full-fledged
software systems are developed by assembling a set of
pre-manufactured components. Each component is a
black-box entity that can be deployed independently and
is able to provide one or more specific services to the
system [14]. The deployment of this paradigm drastically
improves the speed of development. Also, the quality of
the produced software is improved, as domain-specific
components are reused several times.
AOSD [1,6] on the other hand, aims at improving the
“separation of concerns”-principle in OOSD. When a
software system is developed, properties of the
application should ideally be described independently
from each other. This paradigm makes it possible to
independently analyze, reuse, change and extend the
features provided by the system. OOSD tries to achieve
this principle by providing a class-model in which the
properties of a system can be described. Some properties
of a software-system however, called aspects, can not be
cleanly modularized using OOSD, as their
implementation crosscuts several classes of the system.
This is mainly caused by the tyranny of the dominant
decomposition [11], as only one separation dimension is
available for describing the properties of the system. As
a result, the implementation of aspects is spread among
several classes of the system. Examples of such aspects
within the system are synchronization and logging. To
solve this problem, AOSD proposes to describe each
crosscutting aspect as a separate entity, which is weaved
in the base implementation of the system later on. This
way, other parts of the system are not affected when
aspects are added, edited or removed.
Nowadays, several AOSD-technologies, such as AspectJ
[2], HyperJ [10], and Compostion Filters [3], are
available, for describing crosscutting aspects in the
OOSD-context. Little by little, the possibilities of AOSD
are researched in a component-based context. Similar to
OOSD, aspects such as persistence and accounting are
encountered, which crosscut several components from
which the system is assembled. Consequently, the ideas
behind AOSD should also be integrated into the CBSD-

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 67

viviane@info.vub.ac.be

context. The other way around, namely the integration of
CBSD within the AOSD-context, is a valuable concept as
well. CBSD puts a lot of stress on the plug-and-play
characteristic of components: it should be fairly easy to
extract a component from a particular composition and
replace it with another one. Introducing a similar plug-
and-play concept in AOSD, makes aspects reusable and
their deployment easy and flexible.
Combining the ideas behind AOSD and CBSD would
consequently be a valuable contribution to both
paradigms. The available AOSD and CBSD technologies
however can not be straightforwardly integrated, because
of several restrictions:

• Nearly all AOSD-approaches describe
aspects with a specific context in mind, which
limits reusability.

• The deployment of an aspect within a
software-system is at the moment rather
static, as aspects loose their identity when
they are integrated within the base-
implementation. As a result, aspects are not
able to exhibit the same plug-and-play
characteristic as components.

• The communication between components
depends on the employed component model.
Current AOSD-technologies however, are not
suited to deal with these specific kinds of
interactions.

JAsCo [5] is our first experiment to integrate the ideas
behind AOSD and CBSD, as it allows describing
reusable aspects which can deployed independently in a
component-based context. JAsCo differentiates three
kinds of entities: aspects, components and connectors,
which are described making use of special, dedicated
languages. Case-studies however, performed using
JAsCo, illustrate that no real difference can be found
between aspects and components. They are both
reusable, independently deployable entities that deliver
one or more specific services for the system, with the
exception that their mutual communication is defined
along another separation dimension [9].
In this paper, we present the first steps towards a
symbiosis between aspect-oriented and component-based
software development, by introducing a new component
model, called FuseJ, where no distinction is made
between aspects and components. Both are described in
a base component language, and their collaboration is
once more specified by making use of connectors. The
next section describes JAsCo, our first experiment for
integrating AOSD and CBSD. Section three presents
some critical observations about JAsCo and illustrates the
necessity for a symbiosis between aspects and
components. Section 4 introduces the first concepts of
the FuseJ component model. In section 5 we describe

some related work and section 6 presents our future
research. Finally we state our conclusions.

2. JASCO
JAsCo was our first experiment to achieve integration
between aspect-oriented and component-based software
development, by providing an aspect-oriented extension
for the JavaBeans component-model. JAsCo is primarily
based upon two existing AOSD approaches: AspectJ [2]
and Aspectual Components [7]. AspectJ’s main
advantage is the expressiveness of its “join point”-
language, as it allows describing properties of a system
that interact on very specific points in the execution of
the application. However, aspects described making use
of AspectJ, are not reusable, as the context on which an
aspect needs to be deployed is specified directly in the
aspect-definition. To overcome this problem, Karl
Lieberherr et al introduce the concept of Aspectual
Components. They claim that doing aspect-oriented
programming means being able to express each aspect
separately, in terms of its own modular structure. Using
this model, an aspect is described as a set of abstract join
points which are resolved when an aspect is combined
with the base-modules of a software system. This way,
the aspect-behavior is kept separate from the base
components, even at run-time. JAsCo combines the
expressive power of AspectJ with the aspect
independency idea of Aspectual Components. To
achieve this objective, JAsCo introduces two new
entities: aspect beans and connectors. An aspect bean is
an extension of a Java Bean component, which is able to
specify crosscutting behavior. A connector on the other
hand is responsible for deploying the crosscutting
behavior of the aspect beans into a specific context and
for declaring how several aspects collaborate.
In this section, we present the basic features of the
JAsCo-language. For more information about this
approach, and how its underlying component model is
implemented, we refer to [13].

2.1 THE JASCO LANGUAGE
The JAsCo language stays as close as possible to the
regular Java syntax and constructs and introduces two
new concepts: aspect beans and connectors. Aspect
beans are used for describing some functionality that
would normally crosscut several components from which
the system is composed. An example of such
crosscutting concerns is caching. Some features of a
system consume a lot of resources to accomplish their
task. Caching some of their resulting output could
drastically improve the performance of the system. This
caching-aspect could be a valuable property for an online
booking/searching system for hotels. Instead of
executing the search-query in the database for each
request of a customer, a set of query-results could be
cached to improve the performance of the system. Figure

1 illustrates the implementation of this caching-aspect in
JAsCo.

1 class CachingManager {
2
3 Cache cache = new Cache();
4 void setRecyclingRate(int sec) {
5 cache.recylingRate(sec); }
6
7 hook CacheControl {
8
9 CacheControl(method(..args)) {
10 execute(method); }
11
12 replace() {
13 if(cache.cached(method,args) {
14 return
15 cache.getCached(method,args); }
16 else {
17 Object re = method(method,args);
18 cache.cache(method,args,result);
19 return re;
20 }
21 }
22 }
23 }

Figure 1: The JAsCo-aspect for caching.

Aspect beans usually contain one or more hook-
definitions (line 7 till 22), and are able to include any
number of ordinary Java class-members (line 3 till 5),
which are shared amongst all hooks of the aspect. A
hook is used for defining when the normal execution of a
method should be cut, and what extra behavior there
should be executed at that precise moment in time. For
defining when the behavior of hook should be executed,
each hook is equipped with at least one constructor (line
9 till 10) that takes one or more abstract method
parameters as input. These abstract method parameters
are used for describing the context of a hook. The
CacheControl-hook specifies that it can be deployed on
every method that takes zero or more arguments as input.
The constructor-body defines how the join points of a
hook initialization are computed. In this particular case,
the constructor-body (line 10) specifies that the behavior
of the CacheControl-hook should be executed whenever
method is executed. The behavior methods of a hook are
used for specifying the various actions a hook needs to
perform whenever one of its calculated join points is
encountered. Three kinds of behavior methods are
available: before, after and replace. The CacheControl-
hook specifies only one behavior method (line 12 till 20).
The replace behavior method specifies that the cache
should be checked if it contains the output-value for the
specific input-values of the arguments of a method. If so,
the cached result is returned. In the other case, method is
executed, and its result is cached for later use. Note
however, that the Cache-object will recycle its content
depending on the number of seconds that are specified.
Connectors are used for initializing a hook with a specific
context (methods or events). A hook initialization takes
one or more method or event signatures as input. Figure

2 illustrates the CachingConnector. This connector
initializes a CachingControl-hook with the getHotels-
method of the BookHotel-component (line 3 till 6). After
initializing this hook, the CachingConnector specifies the
execution of the replace behavior method (line 9) and
sets the cache recycling rate on 60 seconds (line 8).
Consequently, the CachingConnector has following
implication: check if some cached result exists whenever
a customer requests the available hotels for a specific
city. If so, return the cached lists of hotels. Otherwise,
execute the query and cache its result.

1 static connector CachingConnector {
2
3 CachingManager.CacheControl ca =
4 new CachingManager.CacheControl (
5 List BookHotel.getHotels(String)
6);
7
8 ca.setRecylingRate(60);
9 ca.replace();
10
11 }
 Figure 2: The JAsCo-connector for caching result

of the HotelBook-component.

3. ASPECT/COMPONENT SYMBIOSIS
Several case-studies have been performed, making use of
the JAsCo aspect-oriented component language. JAsCo
has been integrated into the visual component
composition environment PacoSuite [15], for
implementing invasive composition adapters. Research
has been conducted to represent business-rules as JAsCo-
aspects to incorporate them in a software-system. In the
future, research is considered in the webservice-domain
and a large-scale project is planned to increase the
maturity of JAsCo.
Although the JAsCo-approach is a valuable contribution
to research that tries to achieve integration between
AOSD and CBSD, some criticism is required. The
JAsCo-model makes a distinction between three kinds of
concepts: components, aspects and connectors. Although
components and aspects are described by making use of
special dedicated languages, no fundamental difference
can be found between both entities when aspects are
compared to the ECOOP ‘96 definition [14] of
components: “A software component is a unit of
composition with contractually specified interfaces and
explicit context dependencies only. A software component
can be deployed independently and is subject to
composition by third parties”.
When comparing aspects to this definition, the following
observation can be made: Similar to components,

• aspects provide some functionality for the
system by making use of contractually
specified interfaces.

• aspects need to be described independently
from a specific context.

When?

What?

Where?

• aspects can be combined with other
components or aspects, to become useful to
the system.

This observation has two possible consequences: either
the definition of a component requires updating or an
aspect should be considered as a regular component. In
our opinion, the second consequence is the more likely
one. Also, it should be possible to reuse components
within a variety of applications. For some functionalities
of a system however, it is very difficult to decide
beforehand whether it should be specified as an aspect or
as a component. Encryption for instance, could be
crosscutting in some applications and non-crosscutting in
others. As a result, an aspect-oriented version of the
encryption-functionality can no longer be used in a non-
crosscutting way, which limits its reusability. When
aspect-oriented and regular components are however
expressed uniformly, this problem does no longer exist.
An aspect can thus be conceived as a regular component,
with the exception that its communication with other
components is defined along another separation
dimension [9]. This conclusion is also noticeable in the
JAsCo aspect-language. Only one additional construct is
provided, on top of the regular JAVA-constructs, which
is used to describe the context of an aspect bean. The
remaining parts of the aspects are described by making
use of regular JAVA.
One way to achieve a kind of symbiosis between aspects
and components in the JAsCo language is by describing
the aspect-behavior (the JAVA-part of the aspect) in a
separate component. When this principle is applied onto
the caching example introduced in section 2, it can be
rewritten as illustrated in figure 3.

1 class CachingManager {
2
3 CacheComp cache = new CacheComp();
4 void setRecyclingRate(int sec) {
5 cache.recylingRate(sec); }
6
7 hook CacheControl {
8
9 CacheControl(method(..args)) {
10 execute(method); }
11
12 replace() {
13 cache.execBehavior(method,args); }
14 }
15 }

Figure 3: New JAsCo-aspect for caching.

The behavior of the Caching-aspect (the replace behavior
of the CacheControl-hook in figure 2) is now specified in
a separate component called CacheComp. The
CachingManager aspect itself only contains the
specification of the abstract aspect context (line 9 till 10)
and the execution of the caching-behavior (line 12 till
13). For deploying the new implementation of the
CachingManager-aspect within the system, a connector

is again required. The implementation of this connector
is similar to the one of figure 2.
Although some kind of symbiosis is achieved by
describing aspects in this manner, three critical
observations can be made on this approach. First of all,
the CachingManager-aspect is not an aspect-bean
anymore. It only specifies an abstract context and the
execution of some method when the concrete context is
encountered. As it does no longer implement any
particular behavior, we can no longer consider it an
aspect-bean. Secondly, the behavior of the caching-
aspect is now scattered amongst two places: the
CacheComp-component and the CachingManager-
aspect. Although the aspect-behavior is removed from
the aspect itself, an explicit call to the component that
implements the behavior is still required. In fact, we
could even argue that the implementation of the
CacheComp-component crosscuts the CacheControl-
hook, as this hook is only responsible for catching a
specific point in the execution of the application.
Thirdly, the CachingManager-aspect becomes quite
obsolete when aspects are implemented this way, as for
applying this aspect within the system, a connector is still
required. In fact, the aspect-definition of figure 3 only
specifies an extra level of indirection, which is actually
not required. The aspect-bean used to describe the
behavior of the caching-aspect. Now however, it is
reduced to a kind of template for the abstract application
of an aspect.
When comparing aspects to the ECOOP-definition of
components, it is clear, that aspects and component are
quite similar. From the arguments above, it is proved
that JAsCo is not able to enforce symbiosis between both
entities. The next section describes our first steps
towards a new component-model where we want to
accomplish symbiosis between aspects and components.

4. FUSEJ COMPONENT MODEL
To accomplish symbiosis between aspects and
components, we propose a new component model, FuseJ,
which makes no distinction between aspects and
components at both implementation and assembly time.
The component model features three layers: a component
layer, a gate layer and a communication layer. Figure 4
illustrates this new component model with the hotel
booking system introduced in section two as a concrete
example.
The aspects and the base components of a system are all
part of the component layer. The functionality of both
these types of entities is described in a base component
language, and no specific language-features are provided
for specifying aspects. As a result, there is no way to
distinguish an aspect from a component when observing
their implementation. All components contained within
the component layer are black-box and completely
independent of each other. Consequently, no hard

linking between components exists. In our online hotel
booking system, two components are available: the
booking component and the caching component.

Booking

Component

Caching

Component Component Layer

Communication Layer

Gate Layer

1 2

a b c

Figure 4: FuseJ component model

The services provided by a component can not be
accessed directly. All communication with or from a
component needs to pass through the gate layer. Each
component within the system is provided with a number
of gates that offers access to features provided by the
component. A gate can thus be observed as some kind of
guardian of a two-way channel that allows accessing the
internals of a component. It is the responsibility of the
component implementer to provide each component with
at least one gate. The caching component for instance,
provides two gates. Gate c allows access to the
component-feature that allows setting the caching
recycle-rate. A request to this gate will be translated into
a call to the recylingRate-method of the cache-
component. Gate b allows accessing the caching-feature
of the caching-component, previously implemented as an
aspect. A request to this gate will be translated into a
crosscutting execution of the method that implements this
caching behavior. The mapping of a gate onto a
component is not always supposed to be a one-on-one
method mapping. Several method calls could be required
to be able to perform a specific feature provided by the
gate. This control-flow within the component is however
transparent to the user. The nice concept about gates is
that all gates are homogenous to the component
composer, in the sense that it does not matter if a gate
provides access to a feature that implements some aspect-
behavior or a feature that implements some base-
functionality for the system. As already mentioned, gates
are two-way channels. Incoming communication has
following semantic: "Execute the feature of the
component the gate provides access to." Outgoing
communication has following semantic: "Whenever the
feature of the component the gate provides access to, is
executed, do something else." "Something else" depends
on the feature of some other component the outgoing
communication is referring to.
The communication between gates is specified by making
use of connectors, situated in the communication layer.

A connector is a one-way channel for interrelating the
various features of the components. A connector is thus
responsible for combining the outgoing communication
of a component with the incoming communication of
another component. In case of the hotel booking
example of figure 4, connector 1 specifies that some
component of the system queries the booking-component
(gate a). Connector 2 specifies that whenever this query
(gate a) is executed, the caching feature of the caching
component is executed (gate b) and the recycling rate
(gate c) is set. Take in mind that connectors are n-ary
entities. As a result they are able to contain multiple
inputs and outputs.
When comparing the FuseJ component model to other
technologies that allow describing crosscutting behavior,
an evolution can be observed. In AspectJ, the expressive
power for specifying crosscutting behavior is completely
contained within an aspect, as it describes both the
behavior and the concrete linking points with the base-
application. JAsCo breaks this crosscutting specification
up into an aspect that describes the behavior and the
abstract context, and a connector which specifies the
concrete context. FuseJ is the next step in this evolution.
No real aspect definition is found anymore, because
aspects are defined as regular components. The full
crosscutting power is now contained solely within the
connectors. As a result, the power of the FuseJ
component-model is dependent on the expressive power
of the connector specifications, as these have to allow
both regular and crosscutting communication at the same
time.

5. RELATED WORK
Jiazzi [8] is another approach that combines aspect-
oriented ideas with component based software
development. In Jiazzi, software is composed of different
units that can be compiled separately. Similar to FuseJ,
units do not need to declare whether their behavior is
crosscutting. Units themselves are able to export
signatures. A signature is similar to a gate because they
both specify an interface to a component. Gates however
can also specify all possible join points explicitly. A
separate linking language, similar to the FuseJ connector
language, is used to specify the interactions between the
reusable units. The FuseJ connector language extends the
linking language of Jiazzi as it allows specifying more
complex combinations of components.
Some other approaches also force a component developer
to explicitly specify the possible join points of the
component, like for example AspectLagoona [4] and µ-
Dyner [12].

6. FUTURE RESEARCH
This paper only present the first steps towards a new
component model, called FuseJ, where no distinction is
made between aspects and components. In the future, the

concepts and ideas that were presented need to be
elaborated further on. In particular, the mapping of the
gates onto the components and the various
communication mechanism provided by the connectors
need to be investigated. This research will be performed
iteratively, making use of a set of case-studies.

7. CONCLUSIONS
Current AOSD-technologies consider aspects and
components to be two separate entities, as both are
described in their own dedicated language. However,
when comparing aspects to the ECOOP-definition of
components, no real difference can be found between
both entities. Therefore, we propose a new component
model, where no distinction is made between aspects and
components. Both are described in some base
component language, and no special language features
are provided for specifying aspects. Access to the
features provided by a component is supplied by means
of gates. These gates are homogenous in the sense that it
does not matter if a gate provides access to a feature that
implements some crosscutting behavior or a feature that
implements some base-functionality of the system. To
interconnect the various components, connectors are
used. As crosscutting communications have been
entirely moved to the connector-layer, the usefulness of
this model is dependent on the expressive power of the
connectors.
The FuseJ component model has some promising
advantages. No distinction between the crosscutting and
non-crosscutting behavior is made anymore, as
components are expressed in terms of features which do
not imply a dimension. As a consequence, a component
developer does not need to choose at component
development time whether his component describes
crosscutting or regular behavior. This increases
reusability of the developed components. Another
advantage of this approach is that because of the feature-
interface of the gates, the interior of a component is not
revealed at all. This facilitates to replace or update a
component, as long as the new component still complies
with the old feature-interface. Also, the component-
model is hierarchical, as several assembled components
can again be used as a single component, ready for
composition. A disadvantage of this feature-concept is
that join points are specified on a higher level of
granularity than those found in most aspect-oriented
technologies.

8. ACKNOWLEDGMENTS
We owe our gratitude to Prof. Dr. Viviane Jonckers for
her invaluable help during our research and for proof
reading this paper. Since October 2000, Wim
Vanderperren is supported by a doctoral scholarship from

the Fund for Scientific Research (FWO or in Flemish:
“Fonds voor Wetenschappelijk Onderzoek”).

REFERENCES
[1] AOSD Website: http://www.aosd.net.
[2] AspectJ Website: http://www.aspectj.org.

[3] Bergmans, L. and Aksit, M. Composing Crosscutting
Concerns Using Composition Filters. Communications
of the ACM, Vol. 44, No. 10, pp. 51-57, October 2001.

[4] Gal, A., Franz, M. and Beuche, D. Learning from
Components: Fitting AOP for System Software. In
proceedings of ACP4IS workshop at AOSD 2003, Boston
USA, March 2003.

[5] JAsCo Website: http://ssel.vub.ac.be/jasco
[6] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C.,

Mendhekar, A. and Murphy, A. Aspect-Oriented
Programming. In proceedings of the 19th International
Conference on Software Engineering (ICSE), Boston,
USA. ACM Press. May 1997.

[7] Lieberherr, K., Lorenz, D. And Mezini, M. Programming
with Aspectual Components. Technical Report, NU-
CSS-99-01, March 1999.

[8] McDirmid, S. and Hsieh, W.C. Aspect Oriented
Programming with Jiazzi. In Proceedings of AOSD
International Conference, Boston USA. ACM Press.
March 2003.

[9] Ossher, H., and Tarr, S. Multi-Dimensional Separation
of Concerns in Hyperspace. Position paper at the ECOOP
’99 Workshop on Aspect-Oriented Programming, Lisbon
Portugal. June 1999.

[10] Ossher, H. and Tarr, P. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In
Proceedings of the Symposium on Software Architectures
and Component Technology: The State of the Art in
Software Development. Kluwer, 2000.

[11] Parnas, D. L. On the Criteria to be Used in
Decomposing Systems into Modules. In
Communications of the ACM. Vol. 15. No. 12. Pages
1053-1058. December,1972.

[12] Ségura-Devillechaise, M., Menaud, J. and Muller, G. Web
Cache Prefetching as an Aspect: Towards a Dynamic
Weaving Based Solution. In Proceedings of AOSD
International Conference, Boston USA. ACM Press.
March 2003.

[13] Suvée, D., Vanderperren, W., and Jonckers, V. JAsCo: an
Aspect-Oriented approach tailored for CBSD. In
Proceedings of AOSD International Conference, Boston
USA. ACM Press. March 2003.

[14] Szyperski, C. Component software: Beyond Object-
oriented programming. Addison-Wesley, 1998.

[15] Vanderperren, W., Suvee, D. and Jonckers, V. Invasive
Composition Adapters: an aspect-oriented approach
for visual component-based development. In
proceedings of ACP4IS workshop at AOSD 2003, Boston
USA, March 2003.

