Electronic Notes in Theoretical Computer Science 82 No. 5 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume82.html 12 pages

Online reconfiguration of component-based
applications in PacoSuite

Pieter Schollaert ™, Wim Vanderperren®#°, Davy Suvee®,

Viviane Jonckers®?
& System and Software Engineering Lab

Vrije Universiteit Brussel
Brussels, Belgium

Abstract

In this paper, we present an original approach for enabling online reconfiguration of
component-based applications. This research fits into our component composition
methodology PacoSuite, that makes use of explicit connectors between components,
called composition patterns. Both components and composition patterns are docu-
mented by making use of a special kind of MSC. We propose an algorithm to check
whether a new component can fulfill the role of an old component in a given compo-
sition pattern, without the need to revalidate the entire composition all over again.
To enable online reconfiguration, we extend the documentation of a component
with a new primitive that specifies when a component reaches a safe state. This
approach enables to swap a component at run-time, while maintaining a consistent
application.

1 Introduction

Software systems are subject to evolution. When a system is deployed for the
first time, its design reflects the requirements that were imposed by its end
users on that precise moment in time. If a system however addresses real world
activities, it will be subjected to changes in domains, needs and expectations
over time. Software maintenance is defined as all activities associated with the
modification of a software product to meet new requirements, to correct faults,
or to adapt a product to a different environment [3]. Software maintenance
is the most expensive part of all software costs, estimated at 80%. This high

Email: pscholla@vub.ac.be
Email: wvdeperre@vub.ac.be
Supported by the FWO
Email: ldsuvee@vub.ac.be

TR W NN =

Email: vejoncke@vub.ac.be

(©2003 Published by Elsevier Science B. V.

mailto:pscholla@vub.ac.be�
mailto:wvdeperre@vub.ac.be�
mailto:dsuvee@vub.ac.be�
mailto:vejoncke@vub.ac.be�

SCHOLLAERT

percentage is mainly due to the fact that maintaining software is usually more
difficult than the original development, since unanticipated requirements need
to be fit into the old system design. Additional problems arise, when systems
are encountered for which the down-time should be minimal or even nil, e.g.
web services and critical applications such as power plant controllers. Here,
updates that take place at run-time are required. Two important aspects need
to be considered when live updates are performed. Firstly, the state of the
application needs to be preserved. All data, stored in a database, is consid-
ered to be safe, but the global state of the application itself should not be
lost either. Secondly, the moment of modification must be carefully chosen,
since interrupting the system during a critical operation might have serious
consequences.

Maintaining applications which are deployed using component-based software
development (CBSD) should be easier, as CBSD develops full-fledged software
systems by assembling a set of pre-manufactured independently deployable
components. Maintaining an application in CBSD, means replacing one or
more of its components or its entire design. A component can be modified
to correct faults or to meet new performance/functional requirements. When
one or more bugs of a component are fixed or its implementation is improved
to fulfill new Quality of Service (QoS) requirements, the impact on the system
is minimal, as the external interface of the component is not changed. As a
result, the replacement of a component with its improved version does not
harm the system. However, if the functional requirements of a component
do change, problems may arise, because the possibility exists that the mod-
ified component might not fit in the application anymore as its specification
changed. In addition, the replacement of components needs to occur at run-
time, if the uptime of the application is critical. It is also essential that the
application remains consistent at all times.

In this paper, we focus on the online reconfiguration of component-based ap-
plications which are deployed using PacoSuite. PacoSuite is our approach to
visual component composition. This paper discusses our approach for compo-
nent replacement and proposes a technique to enable online reconfiguration.
The next section introduces our component-based methodology. Section three
discusses an algorithm to validate the replacement of components. Section
four describes the technique we propose to enable online reconfiguration of
component-based applications. The visual component composition tool Paco-
Suite, is presented in section five. Finally, we state our conclusions.

2 Research context : PacoSuite

We mainly focus our component-based research on lifting the abstraction level
for component-based development. We want to enable the plug and play con-
cept of component-based development. Therefore, we propose to document
components with usage scenarios that specify their use. A usage scenario is

2

SCHOLLAERT

expressed by making use of a special kind of MSC. The main difference with
a regular MSC is that the signals are taken from a limited set of predefined
semantic primitives. Each of these signals is mapped on the concrete API
that performs them. As a result, the documentation of a component is both
abstract and concrete at the same time. Fig. [1lillustrates a usage scenario of
a generic TCP/IP network component. One participant of a usage scenario
represents the component itself and the other participants represent the en-
vironment the component expects. In this case, there’s only one environment
participant, namely the NetworkUser. This usage scenario specifies that the
network component first expects to be created by the NetworkUser environ-
ment participant. Afterwards, the Network component either expects data to
be send over the network or it submits events to the NetworkUser environment
participant, when it receives data, when a connection is established or when
it is disconnected.

We introduce explicit composition patterns that are also expressed by making
use of MSC’s. A composition pattern is an abstract specification of the in-
teraction between a number of roles. The signals between the roles originate
from the same limited set of semantic primitives. This allows to compare the
signals in a usage scenario of a component with these in a composition pat-
tern. Fig. 2 illustrates a generic game composition pattern. This composition
pattern specifies the interaction between three roles: the Network, GameGui
and Checker roles. One of the applications of this game composition pattern
is a distributed scrabble game. The checker role is then filled by a dictionary
component that is used to verify the validity of a word. The GameGUI role
is filled by a dedicated Scrabble user interface component. The network role
can be filled by the network component of Fig. (1.

The documentation of components and composition patterns allows to auto-
matically check the compatibility of a component with a role. The glue-code
that constraints the behavior of the components and that translates syntac-
tical incompatibilities is automatically generated. Both these algorithms are
based on finite automata theory. In this paper, we do not go into the details
of these algorithms. The interested reader is referred to [8]67].

3 Component Replacement in PacoSuite

Replacing a component in a given composition means that compatibility of
the composition has to be completely rechecked and glue-code has to be gen-
erated anew. Revalidating a composition pattern with filled-in components
using our current algorithms can take up quite some time since the algorithms
are of exponential nature. A lot of work is duplicated, as the compatibility of
the entire composition, except for the new component, is already validated.
In this section, we describe our approach to minimize the work to validate the
correctness of a component replacement and to generate new glue-code. Fig.
Jlillustrates the decision chart for determining whether a replacing component

3

SCHOLLAERT

Metwork Natwork [ver
o CREATE
- it
Loor [metwark [Gamecul Chocker
ALT | - SENTY :
s Tt [OFT | R CREATE
FERFORM
ey ALT
recelve Teyt I I SEND
DISCONNECT PERFORM |
dircormectod L
DATA N
COMMECT *
conmectad o SET
Fig. 1. Usage scenario of Net- Fig. 2. Generic game composition pattern.

work component.

is compatible with an application and whether the glue-code needs changes.
We divide component replacement into several logical cases depending on the
"difference” between the new and the old component. The cases range from
new components that are completely similar as the old components to new
components which are not compatible with the composition at all. Before
explaining these cases into more detail, we define ”difference” between com-
ponents and how it is calculated.

3.1 Calculating difference between new and old component

The interactions of a component are documented by making use of abstract
semantic primitives and the concrete API that performs them. As a conse-
quence, two levels are taken into account for defining difference between two
components. First of all, we define difference on level 1 as difference on the
primitive level, disregarding the concrete implementation. Both components
share the same abstract protocol, if no difference is detected on level 1. If one
component replaces another ”"equal” component, the resulting composition
remains valid. Even if two components differ on level 1, the resulting com-
position does not automatically become invalid. The new component could
for instance be completely identical, except that it introduces some new op-
tional fragment of protocol. In that case, the composition is still valid, as the
optional functionality of the new component isn’t used. Secondly, we define
the difference on level 2 as the difference on both the API and primitive level.
If no difference is detected on both the API and primitive level, they both
share the abstract protocol, but also the same concrete implementation for
the abstract protocol. This should for instance be the case for newer versions
of a component.

Calculating the difference between two components on both levels described
above is very straightforward, as our component usage scenarios can be trans-
formed into deterministic finite automata (DFA). The calculation of the differ-

4

SCHOLLAERT

[INYALID]

YVALID
._&— Glue-rnde adantation

yes

VALID
Glue-rade adantation

CASE 3b

‘___.___.«-"""rrjf&s hlu]

@.‘ [INVALID J

) (2

VALID
[VALID

Glue-code adantation

CASE 4a @

Fig. 3. Decision chart for determining whether the new component is valid or not
and whether the glue-code needs changes. Branches that correspond to a logic case
are tagged with a case number. We define difference between components on two
levels: primitive level only, disregarding concrete API (level 1) and primitive plus
API level (level 2).

ence between DFA’s is a standard process and described in literature [4]. The
only consideration we have to take in mind is that if we check the difference on
level 1 only, the concrete implementation (API) needs to be ignored to verify
equality of transitions between states.

3.2 CASE 1 : components have the same abstract protocol and implementa-
tion

If two components have no difference on the second level (primitive+API),
they are completely similar on the protocol level. As a consequence, the new
component can safely replace the old one. The existing glue-code doesn’t need
any changes either. Notice that our approach only checks compatibility on the

bt

SCHOLLAERT

OLD COMPONENT NEW COMPONENT
‘ Controf ‘ ‘ VirusS cana ‘ ‘ Controf ‘ ‘ Virusscang
LooP LOOP
START START
statScanning starChecking o
STOP STOP
stopScanning stopChecking o

Fig. 4. This example illustrates two kinds of virus scanner components. Replacing
the old virus scanner with the new one, is valid. The glue-code however needs to
be adapted.

syntactic and synchronization level. The semantic level (i.e. what the compo-
nent does) is not covered automatically. As a result, it is possible to replace a
network component with a Ul component if they share the exact same proto-
col. As a consequence, the application does not work as expected. Checking
semantic compatibility is however a hard problem and although some ap-
proaches exist, it is difficult to generalize them. In our methodology, semantic
compatibility checking is not really needed as we expect the application to be
composed manually. The component composer selects the appropriate com-
ponents based on their description. So, replacing a network component with a
UI component would be nonsense for a human person. Our approach however,
does allow component composition without in-depth technical knowledge of
the components, because of the automatic protocol compatibility checks and
glue-code generation.

3.8 CASE 2: components have the same abstract protocol but different im-
plementation

If two components are different on the second level (primitive+API), but not
on the first (primitive), both components share the same abstract protocol,
but implement it in a different way syntactically. Fig. 4 illustrates a simple
example, where a virus scanner component of company A, is replaced by a
virus scanner component of company B. They both allow to send START
and STOP signals to them. However, virus scanner A implements START by
startScanning and the virus scanner B by startChecking. In this case, both
components are compatible on the protocol level, so replacing them is allowed.
The glue-code between the components however needs to be altered to cope
with the different API of the new component.

6

SCHOLLAERT

OLD COMPONENT NEW COMPONENT
‘ Contro! ‘ ‘ Juggler ‘ ‘ Contro! ‘ ‘ Juggler
LOOP OPT SET
START sethiumberQiBeansin
statlugging | LOOP
STOP

START
stopJugging

startluggling

STOP
stopugiing

Fig. 5. The component on the right hand-side is a different version of the Juggler
bean that allows to change the number of beans it throws. This behavior is not
supported by the original Juggler bean. However, the original Juggler bean is
checked to be compatible with the application. Therefore, the extra behavior is not
used by the application and we can safely replace the new Juggler with the old one.

3.4 CASE 3: New component has extra functionality

In case three, the difference between the new component and the old compo-
nent is not empty on both level 2 (primitive+API) and level 1 (primitive).
The difference between the old component and the new component is however
empty on level 1 and either empty or non-empty on level 2. In this specific
case, the new component implements some extra functionality. Altough the
old component does not have this extra functionality, it is still compatible
with the application. The extra functionality is thus not required by the ap-
plication and as a result the new component can be considered compatible
with the given composition. A distinction can be made between two subcases.
In case 3a, the difference between old and new component is empty on level
2. As a consequence, the glue-code does not need any changes. In case 3b
however, the glue-code has to be adapted to cope with the different API of
the new component. Fig. 5l illustrates a simple example of this case. An
enhanced version of the Juggler bean replaces the original Juggler bean. The
enhanced version supports an extra optional feature to be able to change the
number of beans thrown by the Juggler. This behavior is not supported by
the original Juggler bean. However, the original Juggler bean is checked to be
compatible with the application. Therefore, the extra behavior is not used by
the application and we can safely replace the new Juggler with the old one.
As the new Juggler bean has the same implementation as the original bean
for the behavior they share, the glue-code does not need any changes.

7

SCHOLLAERT

OLD COMPONENT NEW COMPONENT
‘ Controf ‘ ‘ Juggler ‘ ‘ Control ‘ ‘ Juggler ‘
oPT SET LoopP
setiumie rOfBean s'n) START
LOOP staitdug aing -
STOP
START ——
stag fugging
startuugoling
STOP
stopdiog g

Fig. 6. The component on the left hand-side is a different version of the Juggler bean
that allows to change the number of beans it throws. This behavior is not supported
by the original Juggler bean on the right-hand side. Replacing the original Juggler
bean for the enhanced Juggler is only allowed if the application doesn’t use the
extra behavior.

3.5 CASE J: New component misses functionality, but not used by applica-
tion

In case four, the difference between the new component and the old compo-
nent is empty on level 1 (primitive) and either empty or non-empty on level
2 (primitive+API). The difference between the old component and the new
component is however not empty on both level 2 and level 1. In this specific
case, the new component misses some functionality. At first sight, one might
decide to define the new component to be incompatible with the application
because it lacks some behavior. However, it is very well possible that this be-
havior is not used by the application. To check this, we have to verify whether
the difference between the old component and the new component is contained
in the DFA that represents the entire composition. If so, the missing behavior
is indeed used by the application. As a consequence, the new component is
not compatible with the application. Else, the missing behavior is not used
by the application and thus the old component can be safely replaced by the
new one. Again, a distinction can be made between 2 subcases. In case 4a,
the difference between new and old component is empty on level 2. As a re-
sult, the glue-code does not need any changes. In case 4b, the glue-code has
to be adapted to cope with the different API of the new component. In the
example of Fig. 6, the component composer wants to replace the enhanced
version of the Juggler bean with the original bean. However, changing the
number of beans it throws is not supported by the original bean. As a conse-
quence, replacing the original Juggler bean for the enhanced Juggler bean is
only allowed if the application doesn’t use the extra behavior.

8

SCHOLLAERT

3.6 CASE 5: New Component is incompatible with the application

In all other cases the new component is not compatible with the existing
application and the replacement should be denied.

4 Online Component Replacement

One of the major challenges of online component replacement is deciding
when to replace, as replacing a component at a random moment might cause
the application to become inconsistent. Therefore, we need to make sure that
it is ”safe” to replace a component. Kramer and Magee [1] propose an ap-
proach where the components have an explicit interface to turn them into
passive mode. In passive mode, the components don’t engage any interactions
with the other components anymore. In [I] a complete theory is developed to
decide which components to passivate in order to replace a certain component.
A drawback of this approach is that it requires components to have an explicit
interface to be able to passivate/activate them. As a consequence, components
that do not implement this interface can not be used. In addition, the logic
to activate and passivate a given component is not always straightforward to
implement. Furthermore, it makes components more heavy-weight as they
contain a concern that is not part of their main functionality. Wermelinger
et al [5] introduce another approach to be able to determine the safe moment
for replacement. They model not only the protocol, but also the interior logic
of the components in a formal language. By explicitly modeling the compo-
nents in a formal language, it is possible to automatically determine when
the system will be in a safe state. On the other hand, formal languages are
not so user-friendly as graphical representations. In addition, duplicating the
component both in the formal language and in the concrete implementation
language imposes extra work and it is difficult to keep both the implementa-
tion and the formal model consistent.

For the reasons above, we propose a novel strategy to be able to determine
the suitable moment for component replacement. Because we already have an
explicit documentation of a component, it is very natural to augment this doc-
umentation with information that specifies the moment a component reaches
a safe state. Fig. [7 illustrates a usage scenario of the Juggler bean that
is augmented with safe state information. In this case, the Juggler declares
itself safe to be replaced after a consecutive START and STOP have been
received. From this augmented documentation, glue-code can be generated
that knows when a component is in a safe state. Opposite to [1], we do not
have to take the other components into account, because of the glue-code that
sits in between the components. Components never communicate directly to
each other, so the glue-code is able to remember the interactions that occured
during replacement. When a system is running and component X is replaced
by component Y, the four steps of algorithm [1! are performed.

SCHOLLAERT

Algorithm 1 Step 1: Verify whether component Y is compatible with the
application using the algorithm described in the previous section, if not stop.
Step 2: Wait until component X is in a safe state.

Step 3: Replace component X by component Y.

Step 4: Continue.

One of the main problems with this approach in general is that it is possible

that a component never reaches a safe state or that it takes too long for
reaching a safe state. It is however possible to determine if a component is
not able to reach a safe state. This way, the component composer is at least
warned that the component never reach a safe state.
At first sight, the replacement of a component itself might seem obvious,
however, some problems exist. First of all, the glue-code maintains hard links
to the components it instantiated, so replacing a component with another
component means that we have to adapt the running glue-code to use another
component. Second, if the glue-code logic - which is actually a DFA - changes,
we have to be able to somehow replace the running DFA with the new one.
Our first naive attempt to solve these issues consists of generating new glue-
code and stopping the old glue-code. The PacoSuite application and the
previous glue-code communicate using a simple network protocol to negotiate
a suited moment for replacement. When the replacement is able to occur,
all the components except the one that should be replaced are serialized and
sent over the network along with the current state of the DFA. PacoSuite
then generates new glue-code that uses the new component and initializes
the other components with the serialized state. Afterwards, the new glue-
code is started. This approach is however quite cumbersome and serializing
components might cause problems. Therefore, we propose a more flexible
solution that requires changing the glue-code generation process. Instead of
generating static glue-code, we plan to generate more dynamic glue-code that
is able to change the components it uses and employs reflection to call the
correct methods on the components. The new glue-code also allows reading in
a new DFA from file or network if necessary. PacoSuite and the glue-code still
communicate using a network protocol to be able to determine a safe state for
replacement. Afterwards, the new component and possibly the new DFA are
sent to the dynamic glue-code. This approach allows switching components
safely without the side-effects that might be caused by serializing components.
Also, it does not require generating new glue-code, so the replacement of a
component itself should be faster. A drawback of this new idea is that using
reflection poses an extra performance overhead at run-time during the whole
lifecycle of the application.

5 Tool support

PacoSuite [2] is a visual component composition environment, which provides
tool support for our component-based methodology introduced in section two.

10

SCHOLLAERT

‘ Control ‘ ‘ Juggler

LOOP
START

startduggling

STOP
T StopJugghng |

SAFE >

Fig. 7. Juggler component usage scenario augmented by safe states.

3 i

Fig. 8. Screenshots of PacoSuite. The middle left and bottom right screenshots
illustrate the visual component composition environment PacoSuite. The rectangles
represent components, the ovals stand for composition patterns. The top-right
screenshot shows the documentation of a Scrabble component in the PacoDoc tool.

PacoSuite consists of two visual applications, PacoDoc and PacoWire. The
fist one, PacoDoc, is a visual editor, used for documenting individual com-
ponents and composition patterns. PacoWire on the other hand, is a visual
composition environment, which allows assembling an application by visually
applying components onto composition patterns. This drag-and-drop action
is refused when the component is detected to be incompatible with the com-
position pattern. To perform this check, PacoWire makes use of the documen-
tation of both the components and the composition patterns. When all roles
of the composition patterns are filled with their appropriate components, the
composition is checked as a whole. Afterwards, glue-code between de various
components is generated and a running application is obtained.

We developed a prototype which extends our current implementation of Paco-
Suite to enable online reconfiguration of component-based applications. The
component composer is able to visually replace a component using the Pa-
coWire tool. PacoSuite checks whether this new component is able to per-
form the same task as the previous one. If so, PacoSuite waits for a save
state to occur, before replacing the existing component with its replacement.
The component replacement strategy that is currently implemented consists
of the first naive idea described in the previous section. Fig. 8 illustrates some
screenshots of this tool suite.

11

SCHOLLAERT

6 Conclusions

In this paper, we propose an original approach to enable online reconfiguration
of applications, which are build using our component composition tool Paco-
Suite. Our approach should simplify the maintenance of component-based
applications that are subject to evolution over time. We propose an algo-
rithm, which enables to check whether a new component is able to fulfill the
role of an old component, without having to revalidate the entire composition
all over again. To enable the maintenance of component-based applications
at run-time, we extend the documentation of each component with a new
primitive that specifies when a component reaches a safe state. This strategy
enables online reconfiguration, without making the state of an application in-
consistent. The main advantages over other approaches are that we avoid to
duplicate the application in a full formal model and that we do not require
our components to implement an explicit activate/passivate interface. On the
other hand, some drawbacks exist. First of all, it takes an undetermined pe-
riod of time before the swap takes place because we have to wait until the
component reaches a safe state. Second, at this moment we do not provide a
solution for automatically transferring the interior state of the old component
to the new one.

References
[1] Magee, J., and J. Kramer, The Fvolving Philosophers Problem: Dynamic
Change Management., IEEE TSE 16, 11, November 1990.
[2] Pacosuite website, URL: http://ssel.vub.ac.be/pacosuite.

[3] Schach, S. R., ”Object-Oriented and Classical Software Engineering.”, Mc
Graw-Hill, ISBN 0072395591.

[4] Ullman, J. D., J.E. Hopcroft and R. Motwani, ”Introduction to Automata
Theory, Languages and Computation.”, Addison-Wesley, Second ed. 2001.

[6] Wermelinger, M., and J.L. Fiadeiro, A Graph Transformation Approach to
Software Architecture Reconfiguration., Science of Computer Programming
44(2):133-155, August 2002.

[6] Wydaeghe, B., ”PACOSUITE: Component Composition Based on Composition
Patterns and Usage Scenarios.” ,PhD Thesis, URL:
http://ssel.vub.ac.be/Members/BartWydaeghe/research/PhD/phd.htm.

[7] Wydaeghe, B., and W. Vandeperren, Visual Component Composition Using
Composition Patterns., Proceedings of Tools 2001, July 2001.

[8] Wydaeghe, B., and W. Vandeperren, Towards a New Component Composition
Process., Proceedings of ECBS 2001, April 2001.

12

http://ssel.vub.ac.be/pacosuite�
http://ssel.vub.ac.be/Members/BartWydaeghe/research/PhD/phd.htm�

