
Applying aspect-oriented programming ideas in a
component based context: Composition Adapters.

Wim Vanderperren
System and Software Engineering Lab (SSEL)

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, 1050 Brussels, Belgium

wvdperre@vub.ac.be
http://ssel.vub.ac.be/members/wvdperre

Keywords: component, composition, aspect-oriented programming.

Classification: 1 year’s PhD work

1 Introduction

Aspect-oriented programming (AOP) is a new programming methodology that
enables the modularization of crosscutting concerns. Until now, the emphasis of AOP
research lays on being able to modularize these concerns in an object-oriented
context. However, the same problem also applies to the component based software
engineering domain. In this paper we propose a solution, namely composition
adapters. We are able to cleanly modularize crosscutting concerns using composition
adapters. Additionally, we develop algorithms to automatically weave these concerns
into the composition. The next section describes the context in which this research is
conducted, followed by an explanation of the research goal. Afterwards, different
approaches are presented and our approach is described in more detail.

2 Research Context

Component Based Development is one of the research topics of the System And
Software Engineering Lab. The research of the lab mainly focuses on lifting the
abstraction level for the development of component-based systems. Until now
designing and developing component-based applications turns out to be very hard.
There is no support to check whether components are able to work together and the
glue-code to make the components work together has to be written manually. Much of
the existing glue-code in current systems is written to "hack" components together
instead of following a careful design.
Explicit composition patterns that describe the interaction between a number of roles
are introduced. A special kind of Message Sequence Charts (MSC) [1] is used as
notation for the composition patterns. Components are also documented using these
MSC’s. Figure 1 and Figure 2 illustrate examples of respectively a component and
composition pattern documentation. At composition time, each role of a composition
pattern is filled in by a component. Automatic compatibility checks reject

inappropriate components based on their documentation using automata theory. When
all the roles are filled, glue-code is automatically generated. This glue-code translates
syntactical incompatibilities between the components and constraints the components
their behavior as prescribed by the composition pattern. Additionally, a tool that
realizes these ideas in a visual way has been implemented. Figure 3 shows a
screenshot of this tool. For more information about the algorithms for compatibility
checking and glue-code generation and about our approach on component-based
development in general, see [2][3].

JButton Env: Observer

SIGNAL
LOOP

actionPerformed

LOOP

Launcher

SEND

Network

START

ALT

PERFORM

Client

Figure 1: Usage Scenario of

JButton bean.
Figure 2: Example of a composition

pattern.

Figure 3: PacoSuite: our visual component composition prototype tool.

3 Research goal

A couple of case studies using the PacoSuite tool are done to validate our approach.
Although these case studies were successful, we felt that some concerns of the
application were not cleanly modularized. For example, one of the case studies is a

distributed exam service. To introduce accounting in the exam service, all
composition patterns have to be altered in the same way. Because we have no way to
describe these adaptations in a separate module, new composition patterns that
include both the original and the accounting behavior have to be created. Another
approach to introduce accounting consists of modifying existing components so that
they are able to send accounting information to interested accounting components.
The goal of my research is to be able to cleanly modularize crosscutting concerns in
component-based systems. In other words, we try to recuperate the ideas from aspect-
oriented programming into the component-based development domain. However, we
do not want to lower the abstraction level. So, the formalism we introduce to capture
crosscutting concerns has to allow component composition in a visual manner without
in-depth technical knowledge of the components.

4 Possible Approaches

We see two different possibilities to modularize crosscutting concerns in our
component-based context. The first solution consists of using a new component
model that allows a component to describe adaptations in other components. Prof
Lieberherr and others present a concrete proposal for such a component [4]. They call
these components aspectual components. They propose to have a new type of
interface that allows components to describe adaptations independent of the concrete
components that will be adapted. At composition time, special compositions connect
the adaptations with the concrete components. The adaptations are then weaved into
the components using binary code adaptation. This approach is very powerful,
because the adaptations are described by a programming language (in fact a special
version of JAVA). Although this is an interesting approach, it is impossible to directly
recuperate it in our component-based context. Because we do not want to lower the
abstraction level, we have to come up with a (preferable graphical) notation of what
the consequence of the adaptations on the exterior behavior of the altered components
will be. This extra information is needed to allow automatic compatibility checking
and glue-code generation.
Therefore, we propose to use another alternative, namely having special compositions
that could adapt other compositions. This approach is clearly less powerful, but by far
a more easier and flexible solution. Composition adapters are only able to alter the
exterior behavior of components by re-routing or ignoring their messages. However,
the code for the compositions is not yet generated, so adapting these compositions
requires no code adaptation whatsoever.

5 Composition Adapters

We propose to document composition adapters by MSC’s similar to regular
composition patterns. Composition adapters consist of two parts, a context and an
adapter part. The context part describes the behavior that will be adapted. The adapter
part describes the adaptation itself. Figure 4 illustrates an example of a composition

adapter. In this example, the composition adapter will re-route every occurrence of a
SEND from role Source to role Dest through a Logger role. Suppose we apply this
composition adapter to the composition pattern of Figure 2. Then we manually map
the Source role of the composition adapter onto the Client role of the composition
pattern in Figure 2. Likewise, the Dest role is mapped onto the Network role. The
result of applying the composition adapter is that every SEND from Client to Network
will be sent through the Logger role (see Figure 5). The Logger role and the combined
Source/Client and Dest/Network roles are afterwards filled in by concrete
components. In the aspectual component approach, the Logger component would be
an aspectual component that adds logging logic either to the component mapped on
the Source role or the component mapped on the Dest role. Notice that from this
example it seems useful to be able to express wildcard roles in composition adapters.
Wildcard roles would be automatically mapped onto roles of the affected
composition. This would free the component composer of manually mapping
composition adapter roles.

Logger

&217(;7�

Source Dest

$'$37(5�

SEND

SEND

Source Dest

SEND

LOOP

Launcher

SEND

Network/Dest

ALT

Client/Source Logger

START

SEND

PERFORM

Figure 4: Logging composition

adapter.
Figure 5: Logging composition adapter

applied to the composition pattern of Figure 2.

6 Weaving a composition adapter into the composition

Automatically applying a composition adapter requires two steps. In the first step we
check whether the adaptation makes sense, this means checking if the context of the
composition adapter appears in the composition pattern the composition adapter is
applied upon. Although this seems obvious from the example in Figure 4, where we
just have to search for a SEND in the composition pattern of Figure 2, in most cases
syntactically scanning the affected composition won’t work. If the context is
described by loops and/or other control blocks, a more evolved algorithm that
matches the MSC’s on a semantic level is needed. The algorithm we developed is
based on automata theory. Due to space constraints the algorithm is only shortly
sketched. Both the context of the composition adapter as the affected composition
pattern are translated to a Deterministic Finite Automaton (DFA). Then, for each state
in the DFA of the composition pattern the product automaton with the DFA of the
adapter context is calculated. If one of these product automata is not empty, meaning

that there exists at least one path from start to stop state, then it is possible to apply
the adaptation there. Although this check may seem superfluous because not being
able to apply the composition adapter doesn’t do any harm, the result of the algorithm
is needed for the next step. Additionally, if a component composer applies a
composition adapter, it is probably not her/his intention that this has no effect.
Subsequently, the composition adapter has to be weaved into the composition. This
algorithm is again based on automata theory. The result of the previous algorithm,
namely the states where it is possible to apply the composition adapter, is needed
here. The algorithm to weave in the composition adapter is rather complex and
therefore not elucidated here due to space constraints. The general idea is to replace
all paths where the context of the composition adapter applies with the adaptation.
The automaton generated by the algorithm is used to check compatibility with filled-
in components and to generate glue-code. For this we use our algorithms developed in
earlier work [2][3].

7 Conclusions

In this paper, we build on our previous work to lift the abstraction level of
component- based development. We notice that there are concerns that crosscut the
component-based design and provide a solution. Using composition adapters, we are
able to cleanly modularize crosscutting concerns. Furthermore, we develop algorithms
to automatically weave these concerns into the composition.
Benefits do not only arise in the development of the component-based application, but
also in evolutionary changes to the application. New requirements often lead to
concerns that crosscut the existing component composition. Instead of having to re-
wire all the components, the existing compositions are altered using composition
adapters.

References

[1] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, September 1993.

[2] Vanderperren, W. and Wydaeghe, B. Towards a New Component Composition
Process. In Proceedings of ECBS 2001, Washington., USA, April 2001.

[3] Wydaeghe, B. and Vandeperren, W. Visual Component Composition Using
Composition Patterns. In Proceedings of Tools 2001, Santa Barbara, USA, July 2001.

[4] Lieberherr, K., Lorenz, D. and Mezini, M. Programming with Aspectual Components.
Technical Report, NU-CCS-99-01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-comps.html.

