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Abstract 

Building on the work of architectural description languages and aspect-oriented 
programming, we try to improve current visual component composition environments. In our 
research, we introduced the concept of a composition pattern to lift the abstraction level of 
current visual wiring to a protocol rather than event/action pairs. This work is summarised 
briefly in this paper before we present the main topic: composition adapters. In component-
based development, the components are the natural unit of modularisation. However, there will 
always be concerns that cannot be confined to one single component. We introduce 
composition adapters as a means to localize crosscutting concerns in a separate entity. We use 
state information deduced from the composition pattern to weave composition adapters into the 
component-based application. In this paper, we explain how composition adapters are checked 
on their compatibility with the composition pattern and how this state based insertion of 
composition adapters is done. 

1. Introduction 

Component based development is considered a promising paradigm to cure the software crisis [4]. A 
classic metaphor often used to describe component-based development is the children’s building system 
called Lego. Creating an application becomes as easy as selecting suited building blocks and assembling 
them together. Obviously, this vision is too naïve. Current visual component composition tools are still 
far away from reaching this ideal. Current tools do not have support for notifying the component 
composer of incompatibilities between components.  In addition, the wiring between components cannot 
be reused. However, the success of design patterns proves that the same interaction protocols are used in 
many different applications. In general, we feel that the abstraction level of current component 
composition tools is still too low. Therefore, we introduce a specification of the protocol of a component. 
In addition, we propose to explicitly document generic interactions between components using 
composition patterns. Using this documentation, we are able to automatically check compatibility of a 
component with a role in a composition pattern. Moreover, glue-code that translates syntactical 
incompatibilities between the components is automatically generated. This research has been going on at 
our lab for a couple of years [9,10] and has been finalized in Bart Wydaeghe’s PhD thesis [8]. 
Building on this research, we investigate how to separate crosscutting concerns in a distinct entity. In an 
object-oriented context, aspect-oriented programming (AOP) is introduced to modularise crosscutting 
concerns [5]. However, due to the black box nature of components, the problem of crosscutting concerns 
proves to be even more difficult in a component-based context. A typical example is accounting 
behaviour. Every component has to be created with accounting functionality in mind and the same 
behaviour is scattered over all the components. Consequently, altering the accounting behaviour becomes 
very difficult. We want to be able to separate crosscutting concerns in a distinct entity. In an object-
oriented context, a couple of aspect -oriented programming languages have been proposed, where 
AspectJ [6] is a well-known example. However, AspectJ is not very well suited to be used in a 
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component-based context. This is because the point(s) where the aspect will be applied has to be hard 
coded into the aspect. Therefore, there is no separate connecter to compose an aspect with the other 
classes. Secondly, AspectJ uses source code adaptation, which is unfeasible in a component-based 
context. We propose composition adapters to be able to modularise crosscutting concerns in our 
component-based context. Composition adapters can be automatically checked for validity and 
automatically inserted into a composition of components.  
The next section introduces our component-based approach and explains our documentation of 
components and composition patterns in more detail. In section 3, our notion of compatibility is 
elucidated. In addition, we briefly discuss our algorithms to check compatibility and to generate glue-
code. Section 4 explains the composition adapter idea in more detail. The algorithms and ideas elucidated 
in this paper are implemented in a prototype tool. Section 5 presents this tool. Finally, the last section 
states our conclusions. 

2. Documentation 
The idea is to document how components and composition patterns should be used. We propose to use a 
special kind of Message Sequence Charts (MSC’s) [1] to document these scenarios. Figure 1 summarizes 
our scenario syntax. This syntax is mainly the MSC syntax. It contains a set of participants, a set of 
signal sends between these participants and a set of control blocks and structuring mechanisms. We use 
the OPT, ALT and LOOP control blocks from the MSC syntax. The OPT keyword means an optional 
block and the ALT keyword indicates alternatives. The LOOP keyword indicates iteration over a part of 
the scenario (i.e. zero or more times). 

primitive 
primitive 

primitive ALT 

primitive OPT 

LOOP 

primitive 

Component Env1 Env2 

  
Figure 1: Summary of the scenario syntax 
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Figure 2: Set of Primitives 

Our documentation uses the standard MSC graphical symbols, but the signal sends are taken from a 
compact set of terms with a known meaning. This stands in contrast with standard MSC messages that 
are expressed directly in terms of API calls. Building automatic tool support based on concrete API calls 
is very difficult. The "update" API call in a GUI component for example has not the same meaning as the 
"update" API call found in a database component. It takes a human and a lot of documentation to 
distinguish the two. This ambiguity not only burdens the construction of automatic tool support it 
eventually forces the developers to experiment with the component to see what happens. Figure 2 shows 
the set of primitives we use in our experiments. These primitives are classified in a simple hierarchy 
where the signal primitive is the most general one. We recognized the need for this kind of hierarchy 
while modelling output events. This hierarchy is used during the matching process described further in 
this text in the sense that we allow more specific primitives to map on more generic primitives and vice 
versa.  
From our experience in building a set of primitives for our experiments, we learned that it is very hard to 
come up with a general set that is usable for all kinds of domains. One should rather construct a set of 
primitives for a specific application domain. Therefore, we state that this approach is especially useful to 
build "construction kits". It gives developers the opportunity to build a set of components and to 
document for that set how they should be used and combined. Part of this research is done for the 
Advanced Internet Access (AIA) project where we try to build construction kits for Internet services. For 
this project we built a construction kit that allows us to build all kinds of distributed exams for the 
Internet (real time, offline, multiple choice, open questions, authorized, non authorized, with or without 
multimedia, etc.) using this approach. The set we present in Figure 2 proved to be sufficient to document 



all components and compositions in this set. This set was constructed during an iterative process of 
several months. We started with a basic set of primitives that simply seemed to be reasonable and 
adapted it based on the feedback from people documenting the exam components and compositions. 
It is important to note that this set of primitives is just a proof of concept. We do not claim that this is the 
only set of primitives or even that it is a good set of primitives. We use this set for our experiments only. 
However, it gives indications on how such a set should look like and how it can be constructed. 

2.1.1. Component documentation 

We propose to document a component with a number of usage scenarios using the sequence diagrams 
introduced above. The usage scenario describes the interaction of the component with its environments. 
Therefore, we introduce the "environment" participant. An environment participant stands for any other 
cooperating component the component expects. In addition to the environments, a usage scenario for a 
component contains also one “main” participant that represents the component.  
Recall that the signal sends between participants are documented using higher-level primitives. In 
addition to this abstract documentation, every signal send is mapped on one or more API calls that 
actually perform the primitive. Figure 3 illustrates a usage scenario of the JButton bean. 
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Figure 3: Usage Scenario of JButton bean. Figure 4: Example of a composition pattern 

from the exam service construction kit. 

 

2.1.2. Composition documentation 

Compositions are documented in a very similar way. I.e. a composition is also documented using a 
scenario that uses the fixed set of primitives we introduced. A composition scenario describes the 
interaction between a set of roles and can thus be viewed as a kind of use case for (a part of an) 
application. As a composition describes an interaction between roles, it does not contain environment 
participants or implementation mappings. A composition pattern is a high level description of the 
cooperation between several roles without any indication on how this cooperation will be implemented.  
Figure 4 shows a composition pattern from the exam service construction kit. 

3. Matching 
In the previous section, we introduced the documentation for components and composition patterns. The 
goal of this documentation is to allow automatic compatibility checks and code generation. The 
following sections describe our notion of compatibility and briefly discuss our algorithms to verify 
compatibility of a component with a role. For more information about our algorithms and our 
component-based approach in general, we refer to [8,9,10]. 

3.1. Compatibility 

We distinguish two different kinds of compatibility. A component needs to be compatible with the role it 
plays in the composition pattern and the combination of a set of components should be compatible with 
the composition pattern that connects them.  

3.1.1. Local Compatibility 

We consider composition patterns as reusable entities. This means that a generic composition pattern 
often provides several alternatives. Figure 5 shows a typical composition expressing an interpretation of 
observer behaviour. This scenario contains one optional part. After the observer role receives a 



notification it can refresh its own data by getting the new data or it can ignore the new value (this is the 
case for example for notifications of a pressed button).  
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Figure 5: Observable behaviour with an optional block 

It is clear that we do not want every component that is used in this composition to implement the optional 
block. The same goes for several alternatives. Suppose that the composition pattern supports two 
different kinds of observer connections. One based on notification and another one based on polling. 
Again, we want components to implement only one of these alternatives.  
The situation where the component offers more options and alternatives than what the composition asks 
for is even more likely. Our exam construction kit for example contains a generic network component 
that can be used as server or as client. A given application will never use both functionalities at once. 
Therefore, we can only check if there exist at least one compatible trace through both the component and 
the corresponding role of the composition pattern. I.e. we check if the component and the role of the 
composition pattern have common behaviour.  

3.1.2. Global Compatibility 

The local compatibility as defined above does not guarantee that a composition of components has a 
common compatible trace. Every component in the composition could have another trace in common 
with its role rendering a composition that deadlocks immediately. Global compatibility means that there 
exists at least one trace that is common for all the participating components and the composition pattern. 
These definitions of compatibility only guarantee that there exists at least one trace as specified by the 
composition pattern that is supported by all the components. We have no guarantee that one of the 
components will not follow a different trace than the common trace. Therefore, we generate glue-code 
that constrains this unwanted behaviour. See section 3.3 for details. 

3.2. Matching 

Here we explain briefly the global checking algorithm used in our approach. The general idea is to 
combine the behaviour of all selected components first and to take the intersection with the composition 
pattern afterwards. The algorithm is now shortly sketched. 
The first step is to convert the usage scenario of the components to deterministic finite automata. Using 
the standard translation algorithm [2], the direction of messages between participants is lost. Because we 
cannot ignore direction, we had to adapt the translation algorithm slightly to consider direction. Each 
message or primitive in our case is augmented with a direction tag indicating if a message is send form 
the component or received by the component. We also add the component to the labels. I.e. we obtain a 
state machine where the transitions are labelled as in: “ComponentX MessageY out/in”. 
Next, we calculate the shuffle automata of these automata to obtain all possible interactions between the 
components we want to combine. Calculating the shuffle automata itself is a well known process. See [7] 
for details. As the composition pattern only describes interactions betwene components we are only 
interested in possible synchronization points between components. Such points are easily found as they 
comply with the template as shown in Figure 6. I.e. we look for states where one component sends a 
messages and another component is ready to receive this message. Thus, we contract these “Out/In” 
couples in the shuffle automata to one transition and prune all other traces. During this step, we also 
combine the component mappings. For example a transition labelled “C1 A out” followed by a transition 
labelled “C2 A In” becomes one transition “A (C1,C2) ”. This step is needed to calculate the intersection 
with the composition automaton.  
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Figure 6: Template for a "valid" trace in the shuffle automaton 

The composition automaton contains transitions of the form “A (Role1, Role2)”, while the post-
processed shuffle automaton contains transitions of the form “A (Component1, Component2)”. To 
calculate the intersection automaton between the composition automaton and the shuffle automaton we 
need to map roles on components in the composition pattern. The application builder normally provides 
this mapping by dragging the right component on the role it has to play in the composition pattern. We 
also developed an algorithm that searches for all possible mappings of roles on components that render a 
working application.  
Finally, we calculate the intersection. If there exists a start-stop path in the resulting automaton, we know 
that there is at least one possible trace through the selected set of components that complies with a trace 
in the composition pattern. Our glue code generation forces the resulting application to follow this trace. 

3.3. Code generation 

We use the Java Beans component model. In this model, component communication is based on events 
and method calls. More precisely a component sends events to any subscribed listener and any piece of 
code can call its API. Glue code typical connects output events with a call on another component.  
The resulting automaton of the global checking process contains the common behaviour of all 
components that match with the composition pattern. This automaton will be used as glue code between 
the components. We generate code that simulates this automaton. This code then translates outgoing 
events of one component to incoming calls on another component based on the current state.  At the 
mean time, it restricts incompatible traces of components by ignoring illegal events for a given state. 
The result is then stripped from all paths that are not members of a start-stop path and a glue code class is 
generated that implements this result. A main class is also generated were the glue code class and all 
cooperating components are instantiated. This class also subscribes the glue code class to receive the 
events of every component that is a member of this composition. If an application contains multiple 
compositions, a glue code class is generated for every composition. All these classes are then started in 
their own thread. This allows a component to be part of multiple compositions at the same time. 

4. Composition Adapters 

4.1. Introduction 

After doing some case studies we felt that some concerns cannot be cleanly modularised in our 
component-based context. For example, to add tracing behaviour, all composition patterns have to be 
manually altered in the same way. Because we have no way to describe these adaptations in a separate 
module, new composition patterns that include both the original and the tracing behaviour have to be 
created.  
We see two different possibilities to modularise crosscutting concerns in our component-based context. 
The first solution consists of using a new component model that allows a component to describe 
adaptations in other components. Prof Lieberherr and others present a concrete proposal for such a 
component [3]. They call these components aspectual components. They propose to have a new type of 
interface that allows components to describe adaptations independent of the concrete components that 
will be adapted. At composition time, special compositions connect the adaptations with the concrete 
components. The adaptations are then weaved into the components using binary code adaptation. This 
approach is very powerful, because the adaptations are described by a programming language (in fact a 
special version of JAVA). Although this is an interesting approach, it is impossible to directly recuperate 
it in our component-based context. Because we do not want to lower the abstraction level, we have to 
come up with a (preferable graphical) notation of what the consequence of the adaptations on the exterior 
behaviour of the altered components will be. This extra information is needed to allow automatic 
compatibility checking and glue-code generation.  
Therefore, we propose to use another alternative, namely having special compositions that could adapt 
other compositions. Composition adapters are only able to alter the exterior behaviour of components by 
re-routing or ignoring their messages. However, the code for the compositions is not yet generated, so 



adapting these compositions requires no code adaptation whatsoever. This approach is clearly less 
powerful, but by far a more easier and flexible solution. 

4.2. Documentation 

We propose to document composition adapters by MSC’s similar to regular composition patterns. 
Composition adapters consist of two parts, a context and an adapter part. The context part describes the 
behaviour that will be adapted. The adapter part describes the adaptation itself. Figure 7 illustrates an 
example of a composition adapter. In this example, the composition adapter will re-route every 
occurrence of a SEND from role Source to role Dest through a Filter role. Suppose we apply this 
composition adapter to the composition pattern of Figure 7. Then we manually map the Source role of 
the composition adapter onto the Client role of the composition pattern in Figure 8. Likewise, the Dest 
role is mapped onto the Network role. The result of applying the composition adapter is that every SEND 
from Client to Network will be sent through the Filter role (see Figure 8). The Filter role and the 
combined Source/Client and Dest/Network roles are afterwards filled in by concrete components. In the 
aspectual component approach, the Filter component would be an aspectual component that adds 
Filtering logic either to the component mapped on the Source role or the component mapped on the Dest 
role. Notice that from this example it seems useful to be able to express wildcard roles in composition 
adapters. Wildcard roles would be automatically mapped onto roles of the affected composition. This 
would free the component composer of manually mapping composition adapter roles. 
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Figure 7: Filtering composition 
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Figure 8: Logging composition adapter 
applied to the composition pattern of Figure 4. 

 

4.3. Applying a Composition Adapter 

Automatically applying a composition adapter requires two steps. In the first step we check whether the 
adaptation makes sense, this means checking if the context of the composition adapter appears in the 
composition pattern the composition adapter is applied upon. In a next step, all paths that match with the 
context part are replaced by the adapter part of the composition adapter.   

4.3.1. Checking a Composition Adapter 

The goal of this phase is to search all paths that correspond to the context part of the composition 
adapter. Although this seems obvious from the example in Figure 4, where we just have to search for a 
SEND in the composition pattern of Figure 2, in most cases syntactically scanning the affected 
composition won’t work. If the context is described by loops and/or other control blocks, a more evolved 
algorithm that matches the MSC’s on a semantic level is needed. The algorithm is sketched for a small 
example in Figure 9. Both the context of the composition adapter as the affected composition pattern are 
translated to a Deterministic Finite Automaton (DFA). Then, for each state x of the DFA of the 
composition pattern, we copy this DFA and transform it so that state x becomes the start state and all 
others states are end states. Subsequently, we calculate the intersection of the transformed DFA with the 
context DFA. If the intersection is not empty, then we have found a path that matches with the context 
part of the composition adapter. Notice that to be able to calculate the intersection, we need a mapping 
from the roles of the composition adapter to the roles of the composition pattern. Recall that the 
component composer has manually specified this mapping, so there’s no problem. After doing this for all 
states in the composition pattern DFA, we know all paths that correspond to the context part of the 



composition adapter. In the example of Figure 9, we have one matching path from state 4 to state 5. If 
there are no such paths, the composition adapter has no effect and a warning is issued.  
 

4.3.2. Inserting a composition adapter into the composition 

To insert the composition adapter into the composition, we have to replace all paths that correspond to 
the context part of the composition adapter with the adapter part. Again, we start by translating both the 
adapter part as the composition pattern to a DFA. Then for each path we have calculated in the previous 
step (all paths that match with the context part), we remove that path and replace it by a copy of the 
adapter DFA. Figure 10 illustrates this algorithm. We have one path that matches the context part from 
state 4 to state 5 (denoted by dashed lines). We remove that path and insert the adapter part between state 
4 and 5. Notice that this renders the automaton non-deterministic, so before we are able to use this 
automaton it has to be made deterministic again. Afterwards, this automaton is used to check 
compatibility with the filled-in components and to generate glue-code using the algorithms described in 
section 3 and 4. 

4.4. Composition Adapter Interaction 

We allow a component composer to apply multiple composition adapters onto a composition. The 
composition adapters are inserted in the sequence the component composer specifies. However, a 
composition adapter that is applied latest could destroy the effect of former composition adapters or vice 
versa. Notice that two composition adapters can only obstruct each other if their context parts have traces 
in common. Consequently, we can analyse which composition adapters could possibly obstruct each 
other. For every pair of composition adapters we calculate the intersection between the context parts. If 
the intersection is not empty, there is a possible conflict between this pair of composition adapters. The 
component composition tool then issues a warning. Notice that a more thorough analysis that finds out 
whether some composition adapters certainly conflict might be desirable. This topic is subject for further 
research. 

5. Tool support 
The work described in this paper has been implemented in a prototype tool called PacoSuite. PacoSuite is 
entirely written in JAVA and consists of two applications, PacoDoc and PacoWire. PacoDoc is a 
graphical editor that allows drawing, loading and saving of component documentation, composition 
patterns and composition adapters. The PacoWire tool is our actual composition tool and implements the 
algorithms described in this paper. It uses a pallet of components, composition patterns and composition 
adapters. This tool allows dragging a component on a role of a composition pattern. The drag is refused 
when the component does not match with the selected role and optionally mismatch feedback is given to 
the user. If a composition adapter is applied to a composition pattern, the components are checked to be 
compatible with the adapted composition pattern. When all the component roles are filled, the 
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Figure 10: Inserting a composition adapter.  



composition is checked as a whole and glue-code is generated. Figure 11 shows some screenshots of our 
tool. 

 

 
Figure 11: Screenshots of PacoSuite. 

6. Conclusions 
Using composition adapters, we are able to cleanly modularise crosscutting concerns in our component-
based context. Composition adapters can be verified and inserted automatically in a composition of 
components. We improve on current aspect-oriented approaches as the join points where the composition 
adapter will be applied are specified by a full protocol instead of a mere set of methods. Composition 
adapters still preserve the high abstraction of our visual component composition. Additionally, we 
propose an analysis to warn for possible conflicts between interacting composition adapters. A drawback 
of this approach is that we can only adapt the exterior behaviour of components by re-routing or ignoring 
their messages. Composition adapters that are also able to adapt the internals of a component are a topic 
for further research. 
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