

Towards a New Component Composition Process

 Wim Vanderperren1 Bart Wydaeghe 2
 Vrije Universiteit Brussel
 Pleinlaan 2
 1050 Brussel, Belgium
 +32 2 629 {2969|2975}
 { wvdperre | bwydaegh }@info.vub.ac.be

1 Supported by the FWO.
2 This research was partly conducted with the support of the Flemish Government Project: Advanced Internet Access (ITA II)

Abstract

Component Based Development is considered to be a
promising technology to cure the software crisis. However,
until now designing and developing component-based
applications turns out to be very hard. Current component
based development not only involves a component
configuration phase, but also writing a lot of glue-code.
Much of the existing glue-code in current systems is written
to “hack” components together instead of following a
careful design. In this paper we introduce a component
composition methodology based on the concept of
composition patterns. A composition pattern describes an
interaction between a set of roles using an extended
sequence chart. It serves as a bridge between the design
and the implementation. We further propose a component
documentation and a set of algorithms based on finite
automata theory to perform an automatic compatibility
check and glue-code generation to support this
methodology.

1. Introduction

Components come in a variety of formats, designs and
implementations. Components can be designed to work
together or they can be obtained from very different
sources. This influences greatly the amount and kind of
composition work that is to be done. Two different
approaches can be taken in this context. One view is that
component composition should not be attempted when
components are not specifically designed to work together.
The other view - also our opinion - is that components

should be glued together until fitting. The first view
reduces component reusability and implicitly implies that
the way components work together is fixed. The developer
is thus not only forced to choose from the available set of
components that is designed to work together, moreover he
is forced to do it in the prescribed way. Discussions with
industrial partners confirm that this is no real option;
especially huge components are reused no matter their
design.

This means that components should be combined even
when there is no direct match (both on a syntactic and
semantic level). Depending on the mismatch between the
components we want to compose, more or less glue-code
has to be written. Component composition thus ranges from
plugging together over wrappers and adapters to writing
extensive glue-code [1]. The existing component
documentation does not offer support to the developer to
write this glue-code or even to distinguish a perfect match
from a complete mismatch of a set of components.

It is widely believed that component based development
follows all major software engineering principles regarding
project management and methodology. However, in the
current state of component-based technology it is rather
pointless to do a thorough design of the project at hand.
Indeed, once the design finished, the implementation phase
starts with a search for suitable components. Once these are
found these components are “hacked” together, ignoring all
the beautiful design principles proposed by the design team.
For example, in the framework approach, the framework
implementation reflects the design and individual
applications are all based on this common design. This is
clearly a much smoother transition from design to
implementation than the component based development
process.

In this paper we propose a new methodology for
component-based development that cures this problem.
This is done by introducing composition patterns. These
can be considered as a kind of micro-architectures for the
application at hand. We also discuss how the compatibility
of a set of components with such an architecture can be
checked. In addition, we describe how we automatically
generate glue-code between the selected components based
on the wanted architecture. Finally, we present a prototype
tool that implements these algorithms.

2. Overview of the Solution

To identify components in a design document we
propose to look at the roles. A role is typically “filled” by
one component. The reason is that a key property of a
component is its “independent nature”. A component
should be independently deployable [2]. This means that its
behavior should be self-contained as long as it is not
composed with other components. A role has exactly the
same property.

To check the compatibility between a role in the design
specification and a given component we describe typical
component interactions with its environment in a similar
way as a design diagram describes role interactions. More
specifically we propose to use a special kind of Message
Sequence Charts [3] to model composition patterns (role
interactions) at the design phase and to use the same
diagrams to model typical component usage scenarios (i.e.
typical interactions of a component with the environment).
Based on this documentation we perform an automated
compatibility check using finite automata theory.

Once we identified a set of components that are
compatible with the design we need to generate glue-code
is generated in accordance with the design.

3. Documentation

The compatibility check between components and a
design specification is performed based on sequence chart
documentation.

3.1. Syntax

The idea is to document how components should be
used. We propose to use a special kind of Message
Sequence Charts (MSC's). Each component is documented
with a set of MSC's. Each MSC describes a scenario for
one of the functionalities supported by this component. The
main difference with standard MSC's lies in the kind of
signals sent. We developed a compact set of primitives with
a predefined meaning.

Instead of using API calls we use these primitives to
model the components behavior thus avoiding the

confusion that stems from the use of API calls for the signal
labels. Figure 1 summarizes our scenario syntax. This
syntax is mainly the MSC syntax. It contains a set of
participants, a set of signal sends between these participants
and a set of control blocks and structuring mechanisms.
This section describes these syntax elements and their
meaning.

Figure 1: Component Documentation Syntax

3.1.1. Participants

Message Sequence Charts describe interactions between
a number of participants. We want to use this
documentation to document components. To do this we
introduce the "environment" participant. An environment
participant stands for any other cooperating component or
glue-code. A sequence diagram specifies a contract for any
component or glue-code that plays the role of this
participant. It specifies what kind of messages the
component expects from it and what kind of information or
services are sent to or called on it.

As can be seen, a scenario contains exactly one
"component" participant. All other participants are
"environment" participants. An "environment" participant
is labeled "ENVi". A "component" participant is labeled
with the component name.

3.1.2. Messages

Our documentation uses the standard MSC graphical
symbols , but the signal sends are taken from a compact set
of terms with a known meaning. Those terms are then
mapped on the API of the component. This in contrast with
standard MSC's messages that are expressed directly in
terms of API calls. Building automatic tool support based
on concrete API calls is very difficult. The "update" API

call in a GUI component for example has not the same
meaning as the "update" API call found in a database
component. It takes a human and a lot of documentation to
distinguish the two. This ambiguity not only burdens the
construction of automatic tool support it also forces the
developers to experiment with the component to see what
happens. The primitives we propose are used to map API
calls from very different sources. Mapping a set of API
calls from one component on for example the primitive
"CONNECT" indicates that these API calls correspond
with a set of other API calls on another component that are
also mapped on the primitive "CONNECT". Figure 2
shows the set of primitives we use in our experiments.
These primitives are classified in a simple hierarchy. This
hierarchy is used during the matching process described
further in this text in the sense that we allow subtypes to
map on super types and vice versa.

Important note:

The set of primitives we use here is just a prove of
concept. We do not claim that this is the only set of
primitives or even that it is a good set of primitives. We use
this set for our experiments only. However, it gives
indications on how such a set should look like and how it
can be constructed.

Figure 2: Set of Primitives

From our limited experience in building a set of
primitives for our experiments we learned that it is very
hard to come up with a general set that is usable for all
kinds of domains. One should rather construct a set of
primitives for a specific application domain. Therefore we
state that this approach is especially useful to build
"construction kits". It gives developers the opportunity to
build a set of components and to document for that set how
they should be used and combined. Part of this research is
done for the Advanced Internet Access (AIA) project where

we try to build construction kits for Internet services. For
this project we built a construction kit that allows us to
build all kinds of distributed exams for the Internet (real
time, offline, multiple choice, open questions, authorized,
non authorized, with or without multimedia, etc.) using this
approach. The set we present in Figure 2 proved to be
sufficient to document all components and compositions in
this set.

This set was constructed during an iterative process of
several months. We started with a basic set of primitives
that simply seemed to be reasonable and adapted it based
on the feedback from people documenting the exam
components and compositions.

3.1.3. Control Blocks

We use the OPT, ALT and LOOP keywords from the
MSC syntax. The OPT keyword means an optional block
and the ALT keyword indicates alternatives. The LOOP
keyword indicates iteration over a part of the scenario.

3.2. Component and Composition
Documentation

The documentation introduced in the previous sections
is used to document both components and compositions.
The documentation for components is straightforward. For
every component a usage scenario describes the interaction
of the component with its environment. Thus our
component documentation contains exactly one main
participant and a set of environment participants. It also
contains an implementation mapping for every message
used in this usage scenario. This implementation mapping
consists of the real API calls that perform the primitive.

Compositions are documented in a very similar way. I.e.
a composition is also documented using a scenario that uses
the fixed set of primitives we introduced. A composition
scenario describes the interaction between a set of roles and
can thus be viewed as a kind of use case for part of an
application. As a composition describes an interaction
between roles, it does not contain environment participants
nor implementation mappings. A composition pattern is
just a high level description of the cooperation between
several roles without any indication on how this
cooperation will be implemented. The next section
describes how components are checked on their
compatibility with a role in such a composition pattern and
how glue-code can be generated based on this abstract
composition documentation.

4. Methodology

The service development methodology we propose is
illustrated in Figure 3. The methodology uses two
repositories, namely one with components and one with

composition patterns. In the proposed methodology we not
only document components, but we also document
composition patterns explicitly. Components are
documented with usage scenarios that reflect the typical use
of the component. Section 3 explains our documentation in
more detail.

Components

Select & Wire

Global Match
and Resolving

Glue Code
Generation

Composition
Patterns

Component Application

Figure 3: The Component Composition

Methodology

Development of a new application or component can

start in two ways. Component-centered development starts
with the selection of some components, followed by the
selection of a compatible composition pattern. The second
possibility consists of choosing a composition pattern from
the pattern database and then filling in the component roles.
This is called pattern-centered development. The
component composer can explicitly select a component for
each participant in a composition pattern. When the
component composer selects a component for a role, the
component is verified to be compatible with the selected
role of the composition. When all the component roles of a
composition are filled, the composition as a whole is
checked for validity. If the component composer did not
explicitly map each role on a component, an additional step
is required. During this step the role-component mappings
are resolved automatically. Glue-code that makes this
composition work is then automatically generated. This
glue-code reflects the behavior of the composition pattern
and makes the interacting components cooperate as the
composition pattern prescribes. After the glue-code
generation is done, the development of the new component
or application is finished. If a new component is generated,
it can be added to the component repository.

In the next sections, the three major steps in our
methodology are explained in more detail.

4.1. Select & Wire

When the component composer selects a component for
a role in a composition pattern, this component is checked
for compatibility with that role. Our checking algorithm is
based on finite automata theory and consists of four steps.

First a projection of the composition pattern with the
corresponding role is taken. This projection is needed
because interactions between other roles are not relevant
for this component.

 Component C1

C1 E1

B

A ALT

R1 R2 R3

A

B

D

C

1 2

3

A in

B out

4 5

A in

6

B out

7

C in

14 25

A in

36

B out

Composition pattern

Figure 4: The local checking process.

Next, both scenarios are translated to non-deterministic
finite automata (NDFA). Using the standard translation
algorithm, the direction of messages between participants is
lost. Because we cannot ignore direction, we had to adapt
the translation algorithm slightly to take direction into
account. Each message or primitive in our case is
augmented with a direction tag, namely “out” or “in”.
These direction tags are in terms of the component in the
component documentation and in terms of the role where
the component maps on in the composition pattern.

The third step involves the translation of these NDFA’s
to deterministic finite automata (DFA). Finally, the product
automaton of both DFA’s is calculated. The calculation of
the product automaton is a well-known process. The
interested reader can find efficient implementations in
[4,18]. If this product automaton is non-empty the MSC’s
have common behaviour. So, the component is compatible
with the selected role of the composition pattern.

Figure 4 illustrates the working of the local checking
algorithm. The usage scenario of component C1 is shown
on the left. The component is mapped on the second role of
the composition pattern. The next step shows the DFA’s
calculated from both MSC’s. The DFA of the compositio n
pattern is restricted to the projection of the composition

with the second role. Notice that each label of a transition is
augmented with a direction tag. The product automaton of
both DFA’s is not empty, so this component can work as
the selected role of the composition prescribes.

4.2. Global Check

The next step in the composition process consists of
validating the complete composition. This additional check
is needed because it is possible that all components match
with their intended role, but fail in cooperating with each
other. Figure 5 depicts a theoretical situation where all the
local checks for the three components at the left hand side
succeed but where there is clearly no trace in the three
components together that matches with the required trace of
the composition. The two first component scenarios select
the first alternative and the third component scenario
selects the second alternative. It is obvious that this
composition is invalid.

C1 Env

C2 Env

Env1 C3 Env2

A

B

A
C

R1 R2 R3

A
B

A
C

ALT

Composition Pattern Component Usage Scenarios

Figure 5: Why a global check is needed

This example clarifies why a global check is needed. In
a local check, parts of the composition pattern are
“selected” by (or unified with) the component. It is possible
for different components to “select” different traces trough
the composition pattern that are not necessarily compatible.

During the global check we combine the behaviour of all
selected components first and take the intersection with the
pattern afterwards. This requires the following steps:

1. Convert the usage scenario of the components to
deterministic finite automata (DFA).

2. Calculate the shuffle automata of these automata.

3. Post-process the shuffle automata

4. Add component mapping information

5. Calculate the product automata with the
composition pattern

6. Check for a start-stop path in the intersection

These steps are now further explained.

First we convert the usage scenario of the components to
deterministic finite automata. This conversion is done
exactly as it was done for the local check. The only

difference is that we no longer only add relative direction to
the transitions but also absolute direction. I.e. we no longer
write “A out” but “A out (C1, E1)”. This information is
needed in the following steps.

Next we calculate the shuffle automata of these
automata to obtain all possible interactions between the
components we want to combine. Calculating the shuffle
automata itself is a well known process. See [5] for details.
The resulting automaton contains many traces that are
“invalid” without even considering cooperation between
components or compatibility with the composition pattern.
It is clear that in the combined behaviour of a set of
components, any interaction between two components
complies to the template as shown in Figure 6.

1

A Out (C1,E1)

2 3

A In (E1,C2)

Figure 6: Template for a "valid" trace in the

shuffle automaton

The reason is that the shuffle automaton doubles every
message in the overall sequence diagram by splitting every
message in an “Out” and an “In” part. Therefore we
contract these “Out/In” couples in the shuffle automata to
one transition and prune all other traces. During this step
we also combine the component mappings. For example a
transition labelled “A out (C1,E1)” followed by a transition
labelled “A In (E1,C2)” becomes one transition “A (C1,C2)
”. This step is needed to calculate the intersection with the
composition automaton. As long as every message is split
up in two parts we would obtain an empty intersection.

The composition automaton now contains transitions of
the form “A (Role1, Role2)”, while the post-processed
shuffle automaton contains transitions of the form “A
(Component1, Component2)”. To calculate the intersection
automaton between the composition automaton and the
shuffle automaton we need to map roles on components in
the composition pattern. The application builder normally
provides this mapping by dragging the right component on
the role it has to play in the composition pattern. We also
developed an algorithm that searches for all possible
mappings of roles on components that render a working
application.

Finally, we calculate the intersection. If there exists a
start-stop path in the resulting automaton we know that the
selected set of components are able to provide the
behaviour as specified by the composition pattern.

4.3. Glue-code generation

As a final step in the composition process, glue-code is
generated. This glue-code reflects the behavior of the
composition pattern and makes the interacting components

cooperate as the composition pattern prescribes. The glue-
code generation happens automatically except for the more
involved parameter mappings.

To simulate the composition, we use the automaton
generated from the previous global checking process,
because that automaton represents the behavior of the
composition as a whole. The components do not interact
directly because obviously there are some incompatibilities
(otherwise there is no need for glue-code). Instead, a
number of adapters are generated for each component.
These adapters represent the environment the component
expects. They just forward all incoming messages to the
state machine. Depending on the next state of the state
machine, one or more outgoing messages are then sent to
other components.

5. Discussion

This section discusses two issues concerning the
algorithms above. A first issues concerns the performance
of the global check and a second one explains how
automatic role component mappings can be deduced fro m
the automata.

5.1. Asymmetric Cross Product

Notice that all the steps in the composition process
except for the glue-code generation require calculations that
are exponential. Especially the calculation of the shuffle
automaton is very expensive (shuffling 10 component
automaton with 10 states each results in an automaton with
1010 states). Now make the following two observations.

Observation 1: Recall that in the global checking process
we need to prune the generated automaton so that only
out/in couples remain. Thus the generated automaton is
much bigger than needed.

Observation 2: As the global checking process ends with
the calculation of the intersection between this pruned
shuffle automaton and the composition automaton, it is
clear that the result needs to be a restricted version of the
composition automaton.

These observations have inspired the construction of a
new algorithm. The idea is to skip the calculation of the
shuffle automaton and restrict the composition automaton
incrementally with the component automaton by
calculating a special kind of intersection. It is clear that
calculating the intersection of the composition automaton
with the automaton of one of the participating components
removes all behavior that is not relevant for this particular
component. If we then calculate the cross product of a
second component with the result we end up with an empty
automaton.

Therefore we propose to calculate the product
automaton for all related transitions only (i.e. all transitions

that stand for messages that are send from or to the role
mapped on the component we are intersecting with). All
other transitions are ignored and left were they are.

Figure 7 gives an example for a very simple component
(named C1) and a composition pattern. We calculate the
asymmetric cross product between this component
automaton and the composition automaton. The result
contains a transition A(C5,C6) because this transition has
no relation with the component. It is thus left intact. It also
contains a transition B(C1,C3) because this transition is
related to the component but occurs in both automatons.
The transition C(C1,C2) of the composition automaton is
pruned because it is related to component C1 but
component C1 has no corresponding transition.

1 2 3

4

1 2

1 2 3

A(C5,C6) B(C1,C3)

C(C1,C2)

B(C1,Env)

A(C5,C6) B(C1,C3)

Composition Automaton after
role-component substitution

Result after the assymetric product
calculation Component Automaton for C1

Figure 7: The asymmetric cross product.

Theoretically, both algorithms are exponentially and the
performance of both algorithms is equal for the worst-case
scenario. However, the new algorithm never performs
worse than the shuffle algorithm and in practice the
incremental algorithm performs far better.

Another advantage of this algorithm is its incremental
nature. This algorithm renders an automaton for partially
filled composition patterns. This makes it very well suited
for “component generation”. I.e. it is possible to take a
composition pattern, fill it in partially and use the unfilled
part as new environments for a super component. Details
about this process are left out of the paper due to space
constraints.

5.2. Automatic Role -Component Mapping

All the algorithms in this paper are based on the
assumption that the developer provides a role-component
mapping for each of the roles in the composition pattern.
This is not always easy to do for the developer. We
developed an algorithm that calculates all mappings for a
set of components and a composition pattern that render a
solution (i.e. the components fit in the role and provide the
behavior as specified by the composition pattern).

This algorithm is based on the algorithm that calculates
the shuffle automaton of the components first and

calculates the intersection afterwards (thus not the
incremental algorithm). The only point where a role-
component mapping is necessary in this algorithm is to
substitute role names with components in the composition
automaton before the calculation of the product automaton.

The straightforward algorithm to find these mappings is
to calculate the intersection for all permutations of role-
component mappings and keep all these permutations that
render a non-empty product automaton. This algorithm is
clearly too expensive. We developed an algorithm based on
dynamic programming to circumvent this performance
problem. Due to space constraints we cannot further discuss
this in detail.

6. Prototype tool

We implemented a prototype tool to do component
composition according to our methodology. Our tool is
entirely written in JAVA and consists of two programs,
namely PacoDoc and PacoWire. Figure 8 shows
screenshots of both tools. PacoDoc is a graphical editor that
allows drawing the documentation of both components and
composition pattern in a user-friendly manner. The MSC’s
are stored in XML.

Figure 8: Screenshots of the prototype tools

The PacoWire tool is our actual composition tool. It uses
a pallet of both components and composition patterns. This
tool allows dragging a component on a role of a
composition pattern. The drag is refused when the
component does not match with the selected role. It is
possible to drag a component on more than one role, so that
the same component can be shared among different
composition patterns. When all the component roles are
filled, the composition is checked as a whole and glue-code
can be generated. The tool has an option dialog to select the
shuffle or the incremental algorithm and to choose between
automatic and manual role-component mappings.

7. Relation with other work

In this article we propose to augment the component
interface description with protocols, to document
component composition patterns with the same kind of
documentation and to use state machine theory to perform
protocol compatibility checks and glue-code generation.

Campbell and Habermann's [6] introduced the idea of
augmenting interface descriptions with sequence
constraints already in 1974. More recent work includes the
Rapide system [7] or the PROCOL system [8]. These
approaches differ from our proposal because they use
unidirectional protocols only. I.e. components are used as a
class library where functions are called and output is never
actively sent. Other work concerning the translation of
interfaces includes the work on gluons by Pintado et al.
[9], and the interface adaptors of Thatte [10].

This work is extended and improved by Yellin and
Strom [11] who use similar ideas as ours to check
component compatibility. Their approach is however
restricted to two parties. The component composition
model used in their approach allows an interface in one
component to be bound to an interface in a second
component. It does not allow an interface in one component
to be bound to multiple interfaces (in several components)
as our system does.

Other interesting work regarding protocols can be found
in protocol conversion literature [12,13,14]. In this work,
protocols are used to specify interfaces and an algorithm is
described that synthesizes a converter given the protocols
and the specification. The goal of this work is to generate
converters from one protocol to another rather than
checking compatibility.

Closely related work can be found in Allen and Garlan's
work [15] as well as in the work on contracts by Helm et al.
[16]. In both models, components may have one or more
interfaces, each with its own formal specification based on
finite state protocols. Their connectors are first-class
reusable components in their own right and can support
nparty interactions. However, they support the local
checking process only. They provide no mechanism to
check whether a set of components can be used to
implement the wanted connector (the global checking
process). Their work has an interesting advantage above
ours in their “mismatch” report. Using theorem provers
allows one to generate a trace with an explanation where
the match went wrong. We are currently trying to reverse
engineer the resulting product automaton on the original
composition pattern to provide similar feedback.

Reussner also uses finite automata theory in his
"Coconut" project [17] to perform component matching.
His work is very similar to ours as far as the local check is
involved. At the moment he does not perform a global

check. He uses the incremental algorithm to generate
adapters for mismatching components.

Finally, we use parts of the adaptive programming
library [18] for efficient implementations of the cross
product. This library allows us to calculate the cross
product of two non-deterministic automata directly without
the need for a (expensive) conversion to deterministic
automata first.

8. Conclusions

In the previous we introduce documentation and
algorithms that allow us to check a set of components
against a specified mini architecture. Building a
component-based application can now be done starting
from these composition patterns instead of the components.
In practice this will be an iterative process where
composition patterns are selected based on available
components and components are selected based on the
specification given by the composition pattern. This
process fits in the tradition of Software Development life
cycles such as the waterfall model, the iterative model and
the spiral model. Composition patterns can be viewed as a
kind of use-case for the application. As use cases are
developed very early in the software life cycle they provide
an excellent link between the different phases.

The whole process is supported by automatic tool
support to suggest compatible components for a given
composition pattern or compatible composition patterns for
a given set of components.

9. Acknowledgements

We like to thank Luc Goossens for his help on several
topics, but especially for his idea concerning the
incremental algorithm. We also want to thank Bart
Michiels, who worked with us on this research, but recently
went to the industry. We owe our gratitude to Ralf
Reussner, who gave us interesting feedback. In addition, we
like to thank Kurt Verschaeve who participated in this
research and for proof reading the paper. Finally, we like to
thank Prof. Dr. Viviane Jonckers for her invaluable help
during our research.

10. References

[1] Mezini, M., Seiter, L. & Lieberherr, K. Software
Architectures and Component Technology: The State of
the Art in Research and Practice. Kluwer. 2000.
Available at
http://www.ccs.neu.edu/research/demeter/biblio/Compo
nentIntegration.html

[2] Szyperski, C. Component Software; beyond Object-
Oriented Programming. Addison-Wesley, 1997.

[3] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, September
1993.

[4] Aho, A.V., Sethi, R. & Ullman, J. D. Compilers
Principles, Techniques and Tools . Addison-Wesley,
1985.

[5] Shaw, A.C. Software descriptions with flow
expressions. IEEE Transactions on Software
Engineering, 4(3):242-254, May 1978.

[6] Campbell, R. & Habermann, A. The specification of
process synchronisation by path expressions. In
Proceedings of an International Symposium on
Operating Systems, pages 89-102. SpringerVerlag, April
1974.

[7] Luckham, D., Kenney, J., Augustin, L., Vera, D.,
Bryan, D. & Mann, W. Specification and analysis of
system architecture using rapide. IEEE Transactions on
Software Engineering 21, 1995.

[8] den Bos, J. V. & Laffra, C. Procol a concurrent object-
oriented language with protocols delegation and
constraints. Actua Inf. 28, pages 511-538, June 1991.

[9] Pintado, X. & Junod, B. Gluons: Support for software
component cooperation. Object Frameworks, pages
311-346, July 1992.

[10] Thatte, S. Automated Synthesis of interface adapters for
reusable classes. In ACM SIGPANSIGACT POPL 94
Conference proceedings., pages 174-487, 1994.

[11] Yellin, D. & Strom, R. Protocol specifications and
component adaptors. ACM Transactions on
Programming Languages and Systems, 19(2):292-333,
1994.

[12] Lam, S. Protocol conversion. IEEE Trans. Softw. 14,
pages 353-362, March 1988.

[13] Okumura, K. A formal protocol conversion method. In
proceedings of the ACM SIGCOMM ’86 Symposium,
pages 30-37, July 1992.

[14] Shu, J. & Liu, M. A synchronization model for protocol
conversion. In Proceedings of IEEE Infocom ’89, 1989.

[15] Allen, R. & Garlan, D. Formalising architectural
connection. In Proceedings of the Sixteenth
International Conference of an International
Symposium on Operating Systems., pages 71-80,
Sorrento, Italy, May 1994.

[16] Helm, R. Holland, I.M. & Gangopadhay D. Contracts:
Specifying behavioral compositions in object -oriented
systems. In Proc. Of the OOPSLA/ECOOP-90:
Conference on Object-Oriented Programming: Systems,
pages 169-180, 1990.

[17] Reussner R. Dynamic types for software components. In
ACM Conf. OOPSLA, 1999.

[18] Lieberherr, K.J. & Patt-Shamir, B. Traversals of Object
Structures: Specification and Efficient Implementation.
Technical Report NU-CCS-97-15, College of Computer
Science, Northeastern University, Boston, MA, July
1997.

