
 21

JAsCo: an Aspect-Oriented approach tailored for
Component Based Software Development

ABSTRACT
In this paper we introduce a novel aspect oriented implementation
language, called JAsCo. JAsCo is tailored for component based
development and the Java Beans component model in particular.
The JAsCo language introduces two concepts: aspect beans and
connectors. An aspect bean describes behavior that interferes with
the execution of a component by using a special kind of inner
class, called a hook. The specification of a hook is context
independent and therefore reusable. A connector on the other
hand, is used for deploying one or more hooks within a specific
context. To implement the JAsCo language, we propose a new
“aspect-enabled’ component model, which contains build-in traps
that enable to interfere with the normal execution of a component.
The JAsCo component model is backward-compatible with the
Java Beans component model. Furthermore, the JAsCo
component model allows very flexible aspect application,
adaptation and removal at run-time. The necessary tool support
for the JAsCo approach has been implemented. In addition, we
present a performance assessment of our current implementation.

1. INTRODUCTION
Component based software development (CBSD) and more
recently, aspect-oriented software development (AOSD) have
been proposed to tackle problems experienced during the software
engineering process. When applying CBSD, a full-fledged
software-system is developed by assembling a set of pre-
manufactured components. Each component is a black-box
entity, which can be deployed independently and is able to deliver
specific services [18]. The deployment of this paradigm
drastically improves the speed of development and the quality of
the produced software. AOSD on the other hand, tries to improve
the separation of concerns [14] in current software engineering
methodologies, by providing an extra separation dimension along
which the properties of a software-system can be described.
Currently available AOSD-research mainly focuses on object-
oriented software development (OOSD). CBSD however, also

suffers from the problems that arise with the tyranny of the
dominant decomposition [13]. Similar to OOSD, aspects such as
synchronization and logging are encountered, which crosscut
several components from which the system is composed.
Consequently, the ideas behind AOSD should also be integrated
into CBSD. The other way around, namely the integration of
CBSD within AOSD, is a valuable concept as well. CBSD puts a
lot of stress on the plug-and-play characteristic of components;
for example, it should be possible to extract a component from a
particular composition and replace it with another one.
Introducing a similar plug-and-play concept in AOSD, would
make aspects reusable and their deployment easy and flexible.
Combining the AOSD and CBSD principles is a valuable
contribution to both paradigms. However, currently available
AOSD and CBSD research cannot be straightforwardly
integrated, this because of several restrictions which are imposed
by the existing approaches:

• The deployment of an aspect within a software-system
is at this moment rather static. In AspectJ for example,
an aspect looses its identity when it is integrated within
the base-implementation of a software system. This
makes it very difficult to extract an aspect from a
particular composition and to replace it afterwards with
a totally different aspect. This plug-and-play property
is vital in some environments where the dynamic
characteristic of components is considered an essential
requirement.

• Most AOSD-approaches describe their aspects with a
specific context in mind. Therefore, it is impossible to
reuse aspects. This is not acceptable within CBSD,
since every component of a software-system should be
independently deployable.

• The communication between the various components
from which an application is composed, is in most cases
specific to the employed component model. Java Beans
for instance, makes use of an event-model. Currently
available AOSD-technologies however, are not suited to
deal with these specific kinds of interactions.

To integrate the ideas of AOSD into CBSD, we introduce a new
aspect-oriented implementation language, named JAsCo, which is
designed especially for CBSD. This language enables the
development of software along another separation dimension, on

Davy Suvée
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 65

dsuvee@vub.ac.be

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 67

viviane@info.vub.ac.be

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AOSD 2003 Boston, MA USA
Copyright ACM 2003 1-58113-660 -9 /03/002...$5.00.

 22

top of the Java class hierarchy. JAsCo stays as close as possible
to the regular Java syntax and introduces two concepts: aspect
beans and connectors. An aspect bean is a regular Java bean that
is able to declare one or more logically related hooks, as a special
kind of inner classes. Hooks are generic and reusable entities and
can be considered as a combination of the AspectJ’s pointcut and
advice. Since aspect beans are described independent from a
specific context, they can be reused and applied upon a variety of
components. The initialization of a hook with a specific context
is done by making use of connectors.
To make the JAsCo language operational, we introduce a new
"aspect-enabled" component model. The JAsCo Beans component
model is a backward compatible extension of the Java Beans
component model where the traps are already built-in. These traps
are used to attach and detach aspects. As a result, JAsCo beans do
not require any adaptation whatsoever to be subject to aspect
application. The JAsCo component model enables run-time
aspect application and removal. In addition, aspects remain first
class entities at run-time as they are not weaved and spread into
the target components.
The next section gives an explanation about the different features
the JAsCo-language has to offer. The syntax of aspects and
connectors is discussed by making use of some small examples.
Section three introduces the JAsCo component model in more
detail. Afterwards, research that is related to this work is
summarized and the integration of the JAsCo language in a visual
component composition environment is shortly sketched. Finally,
we describe our future research and state our conclusions.

2. THE JASCO LANGUAGE
The intention of JAsCo is to provide an aspect-oriented extension
to Java. The principal aim is to keep our language as close as
possible to the regular Java syntax and concepts, this by
introducing a minimal number of new keywords and constructs.
The JAsCo-language is primarily based upon two existing AOSD
approaches: AspectJ [1] and Aspectual Components [12].
AspectJ’s main advantage is the expressiveness of its “join
point”-language. However, aspects are not reusable, since the
context on which an aspect needs to be deployed is specified
directly in the aspect-definition. To overcome this problem, Karl
Lieberherr et al introduce the concept of Aspectual Components.
They claim that doing aspect-oriented programming means being
able to express each aspect separately, in terms of its own
modular structure. Using this model, an aspect is described as a
set of abstract join points which are resolved when an aspect is
combined with the base-modules of a software system. This way,
the aspect-behavior is kept separate from the base components,
even at run-time. JAsCo combines the expressive power of
AspectJ with the aspect independency idea of Aspectual
Components.
This section introduces the various features JAsCo has to offer
and the syntax of both the aspect and the connector language.
This explanation is given by presenting a basic aspect, which
enables to control the access to components.

2.1 Aspect syntax
The JAsCo-language introduces two constructs: aspects beans
and connectors. Aspects beans are used for describing some
functionality that would normally crosscut several components
from which the system is composed. An example of such

crosscutting concerns is access-control. Database-systems for
instance, need some control-mechanism to manage the user-
access to the objects they hold. A similar concern could be
stipulated in an ordinary application. Imagine a piece of software
that runs on an operating system that allows only one user at the
same time to be logged in. If users don’t have the required
permission, the access to some services of this system should be
denied. Figure 1 shows an access-control aspect, specified using
JAsCo.

1 class AccessManager {
2
3 PermissionDb p db = new PermissionDb();
4 User currentuser = null;
5
6 void login(User user, String pass)
7 { //login code }
8 void logout()
9 { //logout code }
10
11 void addAccessManagerListener(AML listener)
12 { //adding code }
13 void removeAccesManagerListener(AML listener)
14 { //remove code }
15
16 hook AccessControl {
17
18 AccessControl(method(..args)) {
19 execute(method); }
20
21 replace() {
22 if(p_db.check(currentuser,cobject) {
23 return method(args); }
24 else {
25 throw new AccessException(); }
26 }
27
28 }
29 }

Figure 1: The JAsCo-aspect for access-control.

An aspect bean usually holds one or more hook-definitions (line
16 till 26), and is able to contain any number of ordinary Java
class-members (line 3 till 14), which are shared amongst all
hooks. Each hook is a participant of an aspect, and is used for
specifying:

• when the normal execution of a method of a component
should be “cut”.

• what extra behavior there should be executed at that
precise moment in time.

A hook specifies at least one constructor (line 18 till 19) and one
behavior method (line 21 till 26), and is able to contain any
number of ordinary Java class-members. A hook-constructor is
similar to a regular Java constructor. It is identified with the name
of the hook it belongs to, followed by one or more abstract
method parameters. Abstract method parameters outline the input
of a hook and are used for defining the context of a hook
initialization. They are substituted for the concrete method
signatures at aspect application time. The constructor (line 18) of
the AccessControl-hook specifies that this hook can be deployed
on every method which takes zero or more arguments as input.
The constructor-body (line 19) describes how the join points of a
hook initialization should be computed. In this particular case,
the behavior of the AccessControl-hook is performed whenever a
method, which has been taken as input of the hook, is executed.

When?

What?

 23

Another consruct, cflow, can be used to delimit the context of a
hook to the control-flow of another method. Both cflow and
execute constructs can be combined using logical operators. This
makes it possible to describe more advanced join point
calculations. Similar to regular Java classes, hooks are able to
contain additional constructors. This makes it possible to initialize
an aspect in more than one way.
The behavior methods of a hook are used to specify the various
actions a hook needs to execute when one of its calculated join
points is encountered. Three kinds of behavior methods are
available: before, after and replace. The AccessControl-hook
specifies only a replace-method (line 21 till 26), which substitutes
the normal execution of the method which initialized the hook.
The replace-method checks if the currently logged-in user has the
proper access-permissions to the component that was called. This
is done, by employing the cobject-keyword, which refers to the
object that contains the point where the normal execution has
been interrupted. The permissions-database, which contains the
various logins and permissions for each user of the system,
verifies if the logged-in user has the proper permissions for
accessing the cobject. When no problems are encountered,
method is executed. Otherwise, an AccessException is thrown.

2.2 Connector syntax
Deploying an aspect within an application is done by making use
of connectors. Imagine that our application contains a printer
component. Only people who have the appropriate print
permissions, may access this component. Figure 2 shows the
connector that is used for deploying the AccessControl-aspect
upon the Printer component:

1 connector PrintAccessControl {
2
3 AccessManager.AccessControl control =
4 new AccessManager.AccessControl(
5 * Printer.*(*));
6
7 control.replace();
8
9 }

Figure 2: The JAsCo-connector for print-access-control.

A connector contains three kinds of constructs: one or more hook-
initializations (line 3 till 5), zero or more behavior method
executions (line 7), and finally any number of regular Java
constructs. A hook-initialization is identical to a Java class
instantiation, and takes one or more method signatures (dependant
on the number of abstract method parameters specified in the
hook-constructor) as input. The PrintAccessControl connector
contains one hook-initialization control, which is deployed upon
all methods defined in the Printer component interface.
Afterwards, the execution of the replace behavior method on the
control hook is specified. To sum up, the connector of Figure 2
indicates that the replace method of the AccessControl hook
should be executed, whenever one of the methods of the Printer
component is called. After compiling the PrintAccessControl
connector, a unique instance of this connector will exist at run-
time. Imagine the application also includes a fax component,
which should use the same permissions-database as the one of the
printer. Figure 3 illustrates a connector where the AccessControl
hook is applied on both the printer and the fax component. By

inserting multiple method signatures between braces, the same
hook-initialization can be applied onto different components.

1 AccessManager.AccessControl control = new
2 AccessManager.AccessControl(
3 { * Printer.*(*) , * Fax.*(*) });

Figure 3: JAsCo-connector for multiple-hook-initialization.

In the Java Beans component model, the outgoing communication
is done by posting “events”. JAsCo-aspects are able to intercept
these events, by initializing a hook with the onevent keyword. If
the Printer component throws an event when it finishes printing a
document, this event can be intercepted by a hook in order to
execute some appropriate action. Figure 4 shows the initialization
of a logging-aspect which writes some statistics to file, when a
printing-job has finished.

1 Logging.FileLogger logger = new
2 Logging.FileLogger(
3 onevent Printer.jobFinished(PrintEvent));

Figure 4: Hook-initialization on events.

Calling aspect behavior methods in the connector (figure 2, line 7)
is not really necessary. When no behavior methods are called on
a hook initialization, the default behavior of the hook is assumed.
This default-method is automatically generated when an aspect is
compiled. It specifies the execution of all behavior methods that
were specified in the aspect, applying the following order: before
– replace – after.
A double motivation exists for permitting the calling of behavior
methods in the connector. The first advantage is that it enables
advanced users of an aspect to tightly control the execution of the
aspect-behavior. The default-method on the other hand provides
an easy way for deploying an aspect within an application,
without needing any knowledge about how the aspect-behavior is
executed. The second advantage of this approach is that it
provides a solution for the feature interaction problem [23].
When multiple aspects are applied upon the same join points of an
application, some way is needed to order the execution of their
behaviors. JAsCo partly addresses this open issue in AOSD by
the specification of the behavior executions in the connector.
Imagine that only one user at the same time may address the
Printer-component, and the access to the printer still needs to be
managed. Figure 5 illustrates the simultaneous deployment of a
Lock-aspect and an AccessManager-aspect upon the Printer
component.
JAsCo allows arranging the execution of the aspect behaviors by
specifying the order in the connector body. Whenever mutual
join points of both the acontrol and the lcontrol hooks are found,
the order in which the behavior execution is specified in the
connector is applied. In this particular case, the access to the
Printer component is locked, by calling the before behavior
method on the lcontrol hook (line 11), so that no other user can
access it. Next, the AccessManager checks if the user has the
correct permissions to use the printer (line 12). Afterwards, the
lock is freed (line 13), by calling the after behavior method, such
that other users can access the Printer component again.

Where?

 24

1 connector PrintLockAccessControl {
2
3 AccessManager.AccessControl acontrol =
4 new AccessManager.AccessControl(
5 * Printer.*(..));
6
7 LockingManager.LockControl lcontrol =
8 new LockingManager.LockControl(
9 * Printer.*(..));
10
11 lcontrol.before();
12 acontrol.replace();
13 lcontrol.after();
14
15 }

Figure 5: Connector that controls the precedence of hooks.

In comparison to AspectJ, JAsCo allows a more fine-grained
control on the order in which aspects should be executed. In
addition, JAsCo allows the precedence of aspects to vary over
different applications as this is not hard coded into the aspect.

2.3 Advanced aspect combinations
The primitive support for arranging the execution of aspect-
behavior presented above is not sufficient for specifying more
complex aspect relationships. For example, one might have to
specify that when aspect A is applied aspect B can not be applied.
This problem could be solved by introducing an extra connector-
keyword excludes which specifies that aspect A excludes aspect
B. However, other aspect combinations require additional
keywords and it seems impossible to be able to define all possible
combinations in advance. That’s why we propose a more flexible
and extensible system that allows to define a combination strategy
using regular Java. A CombinationStrategy interface is introduced
(see Figure 6) that needs to be implemented by each concrete
combination strategy. A JAsCo CombinationStrategy works like a
filter on the list of hooks that are applicable at a certain point in
the execution.

1 interface CombinationStrategy {
2
3 public HookList verifyCombinations(Hooklist);
4
5 }

Figure 6: The CombinationStrategy-interface.

To clarify how JAsCo combination strategies work we propose a
slightly adapted version of the AccessControl-hook, presented in
Figure 7. The ExtAccessControl-hook specifies that when the
administrator has logged in, no access-control checks have to be
performed because the administrator has access to all parts of the
system. For implementing this functionality, the isApplicable
method is introduced. Often, the execution of a hook depends on
more than the programmatic conditions that are defined when a
hook is instantiated. The isApplicable method allows to specify
whether the hook has to be executed depending on external
conditions that are checked at run-time. In absence of such a
construct, this condition has to be tested in all the aspect behavior
methods that are implemented. Making this condition explicit by
introducing a new keyword has the advantage that it allows more
elaborated aspect combination strategies as the hook is only
executed when it is applicable on both programmatic and external
conditions. In addition, introducing a new keyword allows

optimizing this condition performance-wise in comparison to
having it implicitly in each hook behavior method.

1 class ExtAccessManager extends AccessManager {
2
3 hook ExtAccessControl extends AccessControl {
4
5 isApplicable() {
6 return !p_db.isAdmin(currentuser);
10 }
11 }
12 }

Figure 7: AccessControl with admin-check.

Now, we want to able to apply both the ExtAccessControl-hook
and the FileLogger-hook, however we only want to log actions
whenever the ExtAccesControl-hook is also applied. This
behavior is accomplished by implementing the
CombinationStrategy-interface of Figure 6. Each combination-
strategy needs to implement the verifyCombinations-method,
which filters the list of applicable hooks and possible modifies the
behavior of individual hooks.
The relationship between the AccessManager-aspect and the
Logging-aspect is defined as a twin-combination, since the
behavior of the Logging-aspect should only be executed when the
behavior of the AccessManager-aspect has been performed.
Figure 8 shows the implementation of a reusable
TwinCombinationStrategy. This combination-strategy specifies
that hookB should be removed whenever hookA is not found (line
11-16). This way, the behavior of hookB is never executed, if the
behavior of hookA is not performed.

1 class TwinCombinationStrategy
2 implements CombinationStrategy {
3
4 private Object hookA, HookB;
5
6 TwinCombinationStrategy(Object a,Object b) {
7 hookA = a;
8 hookB = b;
9 }
10
11 HookList verifyCombinations(Hooklist hlist) {
12 if (!hlist.contains(hookA)) {
13 hlist.remove(hookB);
14 }
15 return hlist;
16 }
17
18 }

Figure 8: The twin combination-strategy.

The combination-strategy of Figure 8 can now be added to a
connector where both the ExtAccesControl-hook and the
FileLogger-hook are instantiated. Figure 9 illustrates such a
connector. Both the ExtAccessControl-hook and the FileLogger-
hook are applied upon the same context (line 3 till 9), and are
used as input of the twin-combination-strategy (line 11-12). This
strategy is added to the list of combination-strategies of the
connector (line 14). To add a combination strategy to a connector,
the addCombinationStrategy-method has to be called. Of course,
it is possible to add multiple combination strategies to the same
connector. In that case, the result of the first combination strategy
is passed on to the second and so on.

 25

1 connector LoggingAccessControl {
2
3 ExtAccessManager.ExtAccessControl control =
4 new ExtAccessManager.ExtAccessControl(
5 * System.*(..));
6
7 Logging.FileLogger logger =
8 new Logging.FileLogger(
9 * System.*(..));
10
11 TwinCombinationStrategy twin = new
12 TwinCombinationStrategy(control,logger);
13
14 addCombinationStrategy(twin);
15
16 logger.before();
17 control.replace();
18 logger.after();
19
20 }

Figure 9: Connector using a combination-strategy.

3. JASCO COMPONENT MODEL
3.1 Introduction
To make the JAsCo language operational for CBSD, “normal”
weaving is not an option. First of all, source code weaving is not
possible because third party components are often only available
in binary form. Byte code weaving on the other hand is
technically quite complex in comparison to source code weaving.
In addition, byte code weaving leads to serious problems when
considering quality of service guarantees for third party
components. Third party components often ship with several
quality of service (QOS) guarantees, like for example memory
usage in certain conditions. If one weaves aspects into a
component, obviously all the guarantees become void. It is even
possible that a component is encrypted or digitally signed so that
it becomes impossible to modify the component at all. Another
severe disadvantage of normal weaving is that it is too static. In
most weaving approaches aspects can’t be dynamically loaded
and unloaded at run-time. When considering CBSD, and in
particular the world of web services where flexibility and
dynamicity are of great importance, static weaving becomes
unfeasible.
We considered two options to implement the JAsCo language for
component based development: modify the virtual machine or
introduce a new component model. The first option consists of
modifying the virtual machine so that aspects can intercept
method calls and execute their own behavior instead. It is clear,
that developing a new virtual machine should suffer less
performance penalties. However, the main drawback of this
approach is that it is not very flexible, since a specialized virtual
machine has to be used. The solution we eventually choose for
implementing JAsCo consists of introducing a new “aspect
enabled” component model. The JAsCo Beans component model
is a backward compatible extension of the Java Beans component
model where the traps are already built-in. The idea is that regular
Java Beans are transformed to JAsCo components at component
development time. A component developer can sell “aspect-
enabled” JAsCo Beans that do not require any adaptation
whatsoever to apply aspects. In this way, the component
developer can guarantee QOS for the components. In addition,

our approach allows the component developer to shield some
crucial parts of the component from aspect interaction. Our
approach also allows aspects to keep their identity at run-time, as
they are not woven and spread out into the base components, but
are still separate entities at run-time. In addition, dynamic
connector loading and unloading becomes possible.

3.2 Our approach
 Figure 10 illustrates schematically how JAsCo is implemented.
The central connector registry serves as the main addressing point
for all JAsCo entities. The connector registry is notified when a
trap has been reached or when a connector has been loaded. The
left-hand side of Figure 10 shows the JAsCo bean comp1. All
methods of comp1 are equipped with traps, so that when a method
is called, the execution is deferred to the connector registry. The
main method of communication of Java Beans is event posting, so
throwing an event also reschedules execution to the connector
registry. The connector registry contains a database of connectors.
When a trap is reached, the connector registry looks up all
connectors that registered for that particular method or event. The
connector on its turn dispatches to the hooks that have been
instantiated with the corresponding method or event.

CONNECTOR
REGISTRY

CONNECTOR 1

COMP1

Method1

Method2

Throw
Event 1

CONNECTOR2

HOOK 1 HOOK 2

HOOK 3

 Figure 10: JAsCo architecture.

While the advantages of having explicit connectors at compile-
time are obvious, one might question why we keep this extra level
of indirection at run-time. The idea is that connectors serve as
collections of related aspects. We want to add, remove or edit the
behavior of these aspects at the same time. For example, if we
want to alter a connector to only trigger on a certain instance of a
JAsCo bean and not on other instances, we can now do this easily
by accessing the connector. Otherwise, we have to manually
notify all the affected aspects of this change. In addition, this
would require that the aspects have public methods for adapting
their behavior other than those defined in the aspect’s source
code, what could be confusing. In short, it is possible to get rid of
an explicit connector at run-time to gain efficiency, but we would

 26

end up with a polluted model where the connector’s logic is
spread over different entities.
Our approach is very flexible to support unanticipated run-time
changes. Connectors can be easily loaded and un-loaded at run-
time. The connector registry detects whether connectors are
removed or added to the system and takes appropriate actions. We
also support the instantiation of a hook on expressions that
contain wildcards. These limited regular expressions are matched
at run-time. Consequently, when a new component is added to an
application, it is automatically affected by all aspects that were
declared using wildcards. In addition, run-time wildcard matching
makes the compilation of a connector that instantiates a wildcard
aspect very fast, this in comparison to approaches that resolve
these wildcards at compile-time. On the other hand, matching the
wildcard expressions at run-time degrades the run-time
performance.

3.3 Implementation of tool support
In this section, we introduce the different tools developed to
realize the JAsCo language without going into too much technical
detail. The most important tool is the bean transformation tool
that transforms a regular Java bean into a JAsCo bean. This tool
takes as input a Java bean in binary format and inserts traps at
every method the bean implements. At run-time, the traps inquire
the connector registry for hooks that are registered on this
method. If no hooks are registered, the normal execution of the
method continues, otherwise the hooks’ behavior is executed at
the appropriate moment (i.e. before, after, replace). Applying
hooks on the throwing of events is somewhat trickier. The Java
Beans convention doesn’t standardize the naming of the method
that causes the event to fire. Although fire followed by the event
name is used for Java swing components, in general we can’t even
count on the existence of a method that throws the event.
Therefore, we employ the following strategy: we use the fire
method if it exists; otherwise we patch the standardized methods
for adding and removing listeners, so that we are in control of the
firing of the corresponding event.
Our approach doesn’t allow calling the original method
implementation from outside, so bypassing the execution of
aspects is not possible. Also, the resulting JAsCo bean has the
same interface as the original bean, because we do not add any
public members.
Technically, the transformation process employs byte-code
manipulation techniques. We use a custom-made byte code
adaptation library [11] for adapting methods and adding new
behavior. This library allows, in contrast to most other adaptation
libraries, to inject plain Java code in a class file. The library takes
care of compiling the inserted Java source code to Java byte code.
This simplifies implementing the transformation process greatly.
Our library uses BCEL [4] to transform Java byte codes to human
readable jasmin assembler code and Jasmin [10] is used to do the
transformation the other way around, i.e. from jasmin to a Java
class file.
Beside the transformation tool, we have four other tools:
CompileConnector, RemoveConnector, CompileAspect and
Introspect. The first tool allows compiling a connector to its Java
class representation. To enable the connector’s logic, the
connector has to be in the classpath of the target application.
RemoveConnector is a tool that allows to remove a certain

connector. The removal is detected by the connector registries of
applications that have that connector in their classpath.
CompileAspect compiles a JAsCo aspect to a normal Java bean.
The generated bean is also equipped with traps so that it is
possible to apply other aspects on a certain aspect. Introspect is a
GUI tool that allows introspecting what connectors are loaded for
a given classpath. The tool also shows the various hooks that are
instantiated by the connectors and the targets on which these
hooks are applied.

3.4 Performance assessment

Table 1: Three performance experiments using a tracing
aspect. The time values are in milliseconds.

Experiment Aspect
hard
coded

Aspect
applied
direct

Wildcard
aspect

application

1000x short method 501 1332 1822

10x long method 10015 10155 10246

Event throwing 117 160 231

When designing and implementing our approach, we
systematically choose for maximum flexibility and having a high-
quality model. That these choices have a negative effect on
performance is no surprise. To prove that our approach is still
functional in practice we perform three small performance
experiments (see Table 1). The experiments are all fine grained in
the sense that we only benchmark one method instead of the
operation of a whole application. This because we clearly want to
show the effect of applying an aspect on a method. If we take a
whole system as benchmarking artifact, a bunch of factors have to
be taken into account for explaining performance differences. For
all three experiments, we use the same simple tracing aspect. This
is because only the location where the aspect is applied to matters
for checking the performance of our system. The first experiment
consists of executing a short method thousand times. The
overhead of using JAsCo to separate the tracing logic is quite
large here and becomes even more than 300% when aspects are
applied using wildcards. In the second experiment, we apply our
tracing aspect to one long method that is executed 10 times. As
one might expect, the overhead is much less here. But the
wildcard aspect application still poses an overhead of nearly
2,5%. The last experiment applies the tracing aspect to the
throwing of the actionPerformed event in the JButton bean and
shows similar results. In general, our approach causes a fixed
amount of overhead per method call or event throwing. On our
test system1 this overhead ranges from 0.8ms to 50ms per call,
depending on the number of times the method is executed. At first
sight this overhead might seem quite huge; however some
considerations have to be taken into account. First of all, as we’re
dealing with black-box components, only the interface (i.e. public
methods) of a component is equipped with traps and is subject to
a performance overhead. Aspects should not be dependent on the
interior of a component, because the implementation of a
component might evolve or change completely when new

1 Pentium III 933Mhz, 192MB ram, Windows XP, JDK 1.4

 27

versions of a component are released. The larger overhead for
wildcard application of aspects might be explained by the fact that
we use a full regular expression matching library. However, we
only support wildcards for now, so a custom made wildcard
matching library should decrease this overhead significantly. We
also want to stress that the tool support is in an early prototype
phase, so there’s still room for improvement. On the other hand,
these benchmarks already suggest that our approach is not
applicable in domains with limited resources, as for example the
very popular embedded systems market.

4. RELATED WORK
One of the first approaches to integrate aspect oriented software
development and component based software development is the
aspectual component model of Lieberherr et al [12]. The JAsCo
language was partly inspired by this work and quite some
similarities exist between both languages. They both employ a
separate connector language to deploy an aspect within a specific
context. On a technical level however, aspectual components uses
byte code weaving, while we propose a new component model.
Another, more recent approach to recuperate aspect oriented ideas
in component based software development is event based aspect
oriented programming (EAOP). EAOP [6] allows specifying
crosscuts on events and event patterns using a formal language.
Since EAOP is based on a formal model, EOAP is able to
improve on JAsCo because of the advanced detection and
resolution of aspect interactions [7]. On a technical level, EAOP
uses a similar model to make the language operational. A central
event monitor, similar to our connector registry, serves as the
main addressing point of all EAOP artifacts.
Invasive composition [2] proposes an original approach to
assemble a set of reusable components. Typical component
composition approaches generate glue-code for enabling
cooperation between components. Invasive composition on the
other hand adapts the components themselves so that they are able
to interact with the other components in the composition. The
invasive composition model introduces a box as a generic and
programming language independent component. Similar to
JAsCo, a box contains a set of hooks where the normal execution
can be altered. Unlike JAsCo however, these hooks are implicit.
Moreover, behavior is inserted at a given hook by making use of
program transformations. As a consequence, invasive
composition is less flexible than JAsCo regarding unanticipated
run-time changes.
Filman [9] proposes dynamic injectors to introduce aspects into a
given component configuration. He incorporates dynamic
injectors into OIF (Object Infrastructure Framework), a CORBA
centered aspect-oriented system for distributed applications. A
dynamic injector is a first class object and can be added or
adapted at run-time. Unlike JAsCo, Filman uses a wrapping
technique to inject the aspect’s logic into the application which
has the advantage that no new component model is needed.
Duclos et al [8] focus on separating crosscutting concerns in
legacy systems built using CCM[5]. Similar to JAsCo they
employ two languages, one for declaring an aspect and one for
describing how the aspect should be used. They improve on
JAsCo by lifting the abstraction level for aspect declaration from
the implementation level to the architecture level. They apply
aspects by generating individually tailored CCM containers that

include the aspect’s logic. In that sense, their approach is similar
to wrapping because they do not allow interior changes to the
components. Unlike JAsCo, their approach doesn’t allow flexible
run-time aspect application and removal. The Dynamic Aspect-
Oriented Platform (DAOP) [16] is another approach that targets
legacy component based systems. Opposite to [8], it allows
flexible application of aspects at run-time. DAOP is a distributed
platform, where the middleware layer stores the composition
information. This idea is similar to the JAsCo connector registry.
In addition, DAOP does not require any component adaptation
and allows aspects to remain first-class entities at run-time.
PROSE[17] is an aspect oriented library for Java that is not really
designed for component based development. Similar to JAsCo, it
allows very flexible run-time aspect weaving and unweaving.
Their approach is based on using the Java Virtual Machine
Debugger Interface (JVMDI) for intercepting events where an
aspect is interested in. As a consequence, they are able to apply
aspects on a much wider range of execution points than JAsCo,
such as the loading of a certain class. However, their approach
doesn’t outperform JAsCo, because the JVMDI requires the JVM
to run in debug-mode. This imposes serious performance
restrictions on the entire application, whereas in JAsCo only a
fraction of the system is subject to a performance overhead.
Another interesting approach that allows dynamic aspect weaving
is Handiwrap [3]. Handiwrap is designed as an extension of the
Java language. Similar to JAsCo, they also insert traps that allow
dynamical wrapping using byte code adaptation techniques.
Unlike JAsCo, handiwrap doesn’t employ a central registry but
directly inserts the wrappers into the base classes. As a
consequence, the handiwrap approach is less flexible than JAsCo.
For example, adapting or removing a wrapper at run-time is not
possible using handiwrap. Also, applying aspects on wildcards
can not be achieved. In addition, the external interface of wrapped
base classes is changed, what can cause some confusing and
unexpected side effects. On the other hand, the handiwrap
implementation clearly outperforms the implementation of
JAsCo.
Another similar approach that allows run-time aspect addition and
removal is JAC [15]. JAC is an aspect-oriented framework which
doesn’t introduce a new language for describing a crosscutting
concern. Therefore programming in JAC is situated on a lower
abstraction level than JAsCo, since JAsCo introduces extra
language constructs for AOSD. On the other hand, JAC is more
flexible than JAsCo because run-time changes to where and when
aspects need to be applied are easily achieved through some calls
to the framework. In JAsCo, most changes require to write and
compile a new connector, which is a lot more cumbersome and
error-prone. Similar to JAsCo, JAC introduces traps in base
components to be able to interfere with their execution. Unlike
JAsCo however, these traps are installed at load-time.
In addition, in the world of Meta Object Protocols (MOP), some
approaches exist which allow run-time adaptation of a class. Kava
[22] in particular uses an approach very similar to ours. Kava also
inserts traps that refer to the meta-level, by byte-code
transformations. This way, they also achieve strong non-
bypassability [22] and JVM independence. However, the
overhead of a full meta-object protocol might not always be
desirable. In addition, MOPs are not specifically designed for

 28

AOSD and are thus not as efficient in expressing a crosscutting
concern.

5. INTEGRATION INTO PACOSUITE
JAsCo is integrated in a visual component composition
environment, called PacoSuite [21,24]. PacoSuite allows
component based development on a high abstraction level without
in-depth technical knowledge of the components. Recently, a new
concept called a composition adapter [19,20] is added to enable
the modularization of concerns that do not fit in the normal
PacoSuite entities. Composition adapters can be applied on a
given component composition in a visual way. However, a
limitation of this approach is that only the exterior behavior of
components can be adapted by re-routing or ignoring their
messages. To cope with this limitation, a revised version of the
model, called an invasive composition adapter has been proposed.
An invasive composition adapter has an implementation in the
JAsCo language to make the model operational. The tool
automatically generates one or more JAsCo connectors from a
visually wired model. Figure 11 shows two screenshot of
PacoSuite. The bottom-right screenshot illustrates the application
of an invasive composition adapter (the hexagonal shape) on a
given component composition. In the top-left screenshot an
invasive composition adapter is applied onto a more complex
component collaboration. Notice that here several invasive
composition adapters are stacked onto the same collaboration.

Figure 11: Screenshots of PacoSuite. The hexagonal shapes
represent an invasive composition adapter that is

implemented in JAsCo.

6. FUTURE WORK
We are currently planning to port JAsCo to several other
platforms beside Java Beans. Two of the most important
platforms are J2EE and Microsoft .NET. Microsoft’s .NET
framework has promising features for AOSD. The .NET
framework allows integration of programs written in various
languages. Currently more than 20 languages are supported,
including C++, COBOL and Visual Basic. Similar to Java, .NET
compiles all these languages to a common intermediate language,
called MSIL. If our component transformation process is able to

work on MSIL, we get all the languages supported by .NET for
free! J2EE and EJB are Sun’s component based solution for
legacy systems. It would be interesting to examine how our
language has to be extended to cope with this new environment.
On a more conceptual level we want to investigate how we could
achieve a symbiosis between aspects and components. Indeed,
one might question why aspects and components are considered
different entities since our aspects are regular JAsCo Beans
equipped with the same traps. Therefore, we plan to develop a
powerful connector language that is able to wire aspects and
components written in the same base language.

7. CONCLUSIONS
JAsCo is a new aspect oriented implementation language tailored
for component based software development and the Java Beans
component model in particular. Aspects described using JAsCo
are context-independent and first-class entities. A separate
connector language is used to apply an aspect onto target
components. JAsCo partly addresses the infamous feature
interaction problem by allowing to order conflicting aspect
behaviors and by introducing explicit and reusable combination
strategies. In addition, JAsCo allows the precedence of aspects to
vary over different applications as this is not hard coded into the
aspect.
To make the JAsCo language operational, we propose a new
component model that already incorporates the necessary traps to
enable dynamic aspect application and removal. Another
advantage of this new component model is that component
developers are still able to guarantee QOS for their components.
However, the dynamicity and flexibility gained by using this new
component model comes with a price. Our approach imposes a
rather large performance overhead compared to static languages,
like for example AspectJ. As a consequence, our approach is
unsuitable in environments where resources are limited.

8. ACKNOWLEDGMENTS
We owe our gratitude to Prof. Dr. Viviane Jonckers for her
invaluable help during our research and for proof reading this
paper. Since October 2000, Wim Vanderperren is supported by a
doctoral scholarship from the Fund for Scientific Research (FWO
or in Flemish: “Fonds voor Wetenschappelijk Onderzoek”).

9. REFERENCES
[1] AspectJ Website.

http://www.aspectJ.org.
[2] Assman, U. A Component Model for Invasive Composition.

Position paper at the ECOOP 2000 workshop on Aspects and
Dimensions of Concerns. (Cannes France, June 2000)

[3] Baker, J. and Hsieh, W. Runtime aspect weaving through
metaprogramming. In Proceedings of the 1st international
conference on Aspect-oriented software development.
(Enschede The Netherlands, April 2002)

[4] Byte Code Engineering Library
http://bcel.sourceforge.net.

[5] Corba Component Model
http://www.omg.org.

 29

[6] Douence, R., Motelet, O. and Südholt, M. A formal
definition of crosscuts. In Proceedings of the 3rd
International Conference on Reflection. (Kyoto Japan,
September 2001)

[7] Douence, R., Fradet, P. and Südholt, M. A framework for the
detection and resolution of aspect interactions. In
Proceedings of the ACM SIGPLAN/SIGSOFT Conference
on Generative Programming and Component Engineering
(Pittsburgh PA, October 2002)

[8] Duclos, F., Estublier, J. and Morat, P. Describing and Using
Non Functional Aspects in Component Based Applications.
In Proceedings of the 1st international conference on Aspect-
oriented software development. (Enschede The Netherlands,
April 2002)

[9] Filman, R.E. Applying aspect-oriented programming to
intelligent systems. Position paper at the ECOOP 2000
workshop on Aspects and Dimensions of Concerns. (Cannes
France, June 2000)

[10] Jasmin Library
http://mrl.nyu.edu/~meyer/jvm/jasmin.html.

[11] Java Byte code editor and library
http://ssel.vub.ac.be/Members/dsuvee/jbe/index.htm.

[12] Lieberherr, K., Lorenz, D. And Mezini, M. Programming
with Aspectual Components. Technical Report, NU-CSS-99-
01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html.

[13] Ossher, H., and Tarr, S. Multi-Dimensional Separation of
Concerns in Hyperspace. Position paper at the ECOOP ’99
Workshop on Aspect-Oriented Programming (Lisbon
Portugal, June 1999)

[14] Parnas D.L. On the Criteria to be Used in Decomposing
Systems into Modules. In Communications of the ACM.
Vol.15. No. 12. Pages 1053-1058.

[15] Pawlak, R., Seinturier, L., Duchien, L. and Florin, G. JAC:
A flexible solution for aspect-oriented programming in Java.
In Proceedings of the 3rd International Conference on
Reflection. (Kyoto Japan, September 2001)

[16] Pinto, M., Fuentes, L., Fayad, M.E. and Troya, J.M.
Separation of Coordination in a Dynamic Aspect Oriented
Framework. In Proceedings of the 1st international
conference on Aspect-oriented software development.
(Enschede The Netherlands, April 2002)

[17] Popovici, A., Gross, T. and Alonso, G. Dynamic Weaving
for Aspect-Oriented Programming. In Proceedings of the 1st
international conference on Aspect-oriented software
development. (Enschede The Netherlands, April 2002)

[18] Szyperski, C. Component software: Beyond Object-oriented
programming. Addison-Wesley, 1998.

[19] Vanderperren, W. A pattern based approach to separate
tangled concerns in component based development. ACP4IS
workshop at AOSD 2002. (Enschede The Netherlands, April
2002)

[20] Vanderperren, W. Localizing crosscutting concerns in visual
component based development. In proceedings of Software
Engineering Research and Practice (SERP) international
conference. (Las Vegas NV, june 2002)

[21] Vanderperren, W. and Wydaeghe, B. Towards a New
Component Composition Process. In Proceedings of ECBS
2001. (Washington DC, April 2001)

[22] Welch, I. and Stroud, R. Kava - A Reflective Java based on
Bytecode Rewriting. Lecture Notes in Computer Science
1826 from Springer-Verlag (2000).

[23] Workshop on “feature interaction in composed systems” at
ECOOP 2001. Program available at http://www.info.uni-
karlsruhe.de/pulvermu~/workshops/ecoop2001.

[24] Wydaeghe, B. and Vanderperren, W. Visual Component
Composition Using Composition Patterns. In Proceedings of
Tools 2001. (Santa Barbara CA, July 2001)

