
 1

Unraveling Crosscutting Concerns Web Services Middleware

Bart Verheecke, Wim Vanderperren, Viviane Jonckers
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussels, Belgium

{Bart.Verheecke;Wim.Vanderperren;Viviane.Jonckers}@vub.ac.be

Abstract
With the emergence of Web Service Technology, the need
arises for techniques to realize just-in-time integration
and composition of services in client-applications.
Current approaches to integrate web services are rather
inflexible, affecting short-term adaptability and long-term
evolution towards the service, the network and the
business environments. To enable the development of
more flexible and robust applications we propose the Web
Services Management Layer (WSML) for the dynamic
integration, selection, composition and client-side
management of web services in Service-Oriented
Architectures (SOA). In this paper we identify several
crosscutting concerns in a SOA and show how dynamic
AOP can be used to solve them. A realistic industrial case
study of the WSML in the context of broadband service
provisioning is presented.

Keywords
D.2.0.c Software engineering for Internet projects, D.2.7.e
Evolving Internet applications, D.2.7.g Maintainability,
D.2.12.b Distributed objects, D.2.11.b Domain-specific
architectures

1. Introduction
Service-Oriented Architecture (SOA) is an application

architecture designed to achieve loose coupling among
interacting software applications. Using Web Service
technology a distributed application can be created in a
heterogeneous environment. The ultimate goal of SOA is
to be able to write applications independently of the
concrete services used and to select and to integrate
services on the fly. Currently, web services are described
in WSDL-format and published in a registry. Service
clients can browse these registries to find a matching
service and determine how to communicate with it. By
analysing the WSDL documentation, the client can
integrate the service and invoke it through XML-based
SOAP communication.

Basically, there are two ways to create a SOA: the first
scenario involves the implementation of an inter- or intra-
organisational process with a fixed number of partner
roles. Based on an orchestration or workflow
specification, each partner implements a web service to
fulfil a specific role in the business process. Any
modification to the process implementation in a later stage

requires a new agreement between the partners before the
modification can be deployed. The second scenario takes
more advantage of the loosely coupled nature of web
services: a client application is build independently from
any concrete services; partner roles are specified that need
to be filled in by services at runtime. In this approach,
just-in-time integration of services becomes a crucial
process: the entire process of service discovery, selection,
integration and invocation is deferred until runtime.

As a motivating example, imagine a web application
that allows flights and hotels to be booked for a customer.
This system needs to integrate with dozens of different
airline company services and hotel reservation systems.
Depending on continuously evolving business
requirements and changing network and service
conditions, different services will be integrated at a given
time. However, automating this process is far from
straightforward: the web services belong to different
domain controllers and as a result might differ on several
points including syntactical and semantical differences in
the service interface, security measurements, Quality-of-
Service, billing mechanisms, etc. All of these variations
need to be reflected in the client application, which clearly
is a hindrance for a smooth integration process.

Furthermore, using traditional programming
techniques, the code dealing with these concerns will
result tangled and scattered in the client. A better
alternative is to dynamically identify, compose, invoke
and manage the appropriate web service(s) independently
from the client. In [1], the Web Services Management
Layer (WSML) is proposed as an adaptive middleware
layer, placed in between the application and the world of
web services. The WSML allows dynamic selection and
integration of services into an application, client-side
service management, and support for service criteria based
on non-functional properties that govern the selection,
integration and composition.

This paper discusses how Aspect-Oriented
Programming (AOP) [2] has been adopted during the
development of the WSML. It gives a broad systematic
overview and discussion of several identified aspect
categories and mentions the different AOP techniques
used. AOP aims to provide a better separation of concerns
by capturing crosscutting concerns in a new kind of
module called aspects. An aspect consists of two parts: a
pointcut, which describes where the aspect needs to be
applicable and an advice, which describes the actual
behavior that needs to be executed at the places where the

 2

aspect is declared to be applicable. These places are
named joinpoints.

AOP is well suited to build the core functionality of
this management layer as service communication details,
selection policies and management concerns are all
suitable candidates to be modularized in aspects. By
exploiting dynamic AOP, the necessary flexibility is
provided for successfully realizing just-in-time service
integration. The following sections introduce the
requirements for just-in-time service integration and
motivate why dynamic AOP is well suited for realizing
this. Afterwards, the architecture and a prototype of the
WSML are presented and the different aspects used in the
WSML are explained. The core technology of the WSML
is JAsCo [3], a highly-performing state-of-the-art dynamic
AOP language. Finally, a realistic industrial case study of
the WSML in the context of broadband service
provisioning for Video-on-Demand systems is presented.

2. Just-in-time integration of web services
Runtime integration of unanticipated web services in

client applications is a complex process including, but not
limited to:

- Service Discovery: web services that deliver the
required functionality for a client need to be looked up
on the internet. Services must be semantically
compatible in order to be integrated.

- Service Selection: if multiple web services or service
compositions are available for a given client request, the
most optimal service or composition must be
determined, based on a set of selection policies.

- Service Integration: to invoke a remote service, a
client-side stub needs to be created and the appropriate
method(s) must be invoked on it. This process must
offer support to deal with compositional mismatches
between the concrete service interface and what the
client expects.

- Service Composition: if services are only partially
compatible, it might be required to combine multiple
services together in order to deliver the required
functionality.

- Service Management: invoking services belonging to
different domain controllers requires monitoring,
advanced exception handling, security, Authentication,
Authorization, and Accounting (AAA), billing, etc.

The WSML offers an AOP-enabled reusable
framework dealing with the last four processes. The
WSML contains all service-related code, nicely separated
from the code of the client application. Web services,
found on the internet, can be registered in the WSML.
Based on the WSDL-description of these services, a
composition specification can be made to describe how
the services should cooperate to deliver the required
functionality for the client. A flexible integration
mechanism based on dynamic AOP, deals with the
invocation, selection and client-side management of the

appropriate web services and service compositions. The
following section motivates the need for AOP in general
and dynamic AOP in particular.

3. Motivation for AOP
Code fragment 1 shows a typical piece of Java code
required to invoke a remote web service. The code deals
with various concerns including redirection, user
authentication, the actual invocation, logging and
exception handling. Clearly, the code for each of these
various concerns is tangled. Moreover, in other places in
the core application where a service invocation is
required, similar or even identical code can be found: the
code is also scattered. Note that the code fragment is
based on the use of a static stub: clearly, the use of
dynamic stubs makes the code even more complicated,
especially if specific policies are applicable to determine
which stub (and thus which service) to invoke. These
policies, driven by constantly evolving business
requirements, might need data from various sources
including the web service documentation, the web service
behaviour or the client state. All these points need to be
intercepted to gather the required data, which becomes an
impossible task if the system needs to deal with
unanticipated selection policies.

Code fragment 1 – Invoking a Web Service in Java

Another issue involves the variety of client-side
management concerns that might be applicable on a
specific service. In the code fragment, a simple form of
authentication is used, but possibly the communication
with the service needs to be encrypted, or the service
needs to be paid in advance. All these concerns, enforced
by the web service, will be reflected in the code of the
client. For example: if the service is configured to only
process messages with a specific SOAP header containing
authentication information, then the client is forced to
include this information in all SOAP messages it sends to
the service. And as the services belong to different domain
controllers, these requirements might change

 3

independently on a frequent basis, even without notice.
SOAP actually provides a protocol evolution model based
on SOAP headers, exactly for this purpose. Therefore, the
client is obliged to co-evolve with the service, even while
loose-coupling is one of the key features of web service
technology.

Furthermore, also the client might want to enforce a set
of client-side concerns to guide the service invocation
process. For example, to avoid expensive calls over the
network the client might deploy a caching mechanism that
returns cached results. Or, to avoid long waiting times, run
a pre-fetching mechanism to invoke the service even
before the client has made a specific request. Again, these
concerns might require changes on various places in the
code. Even if these concerns were encapsulated in a
separate module, the places where these concerns are
triggered and the manner to trigger them, are still spread
and duplicated over the client application. For instance, in
Java JAX-RPC [4], it is possible to specify dedicated
message handlers for a given concern. However, these
handlers are limited to adding, reading and manipulating
header blocks of the SOAP messages sent to and received
from service. Furthermore, they still need to be registered
manually in a handler registry of the stub. This seriously
hampers evolution of these management concerns.

By opting for an AOP-approach, each of the
aforementioned concerns can be cleanly modularized in
aspects and enforced in the code in an oblivious manner
enhancing the evolution and maintenance of the code.
AOP provides an expressive language to select joinpoints,
that may identify any kind of method call or execution,
even within the client application and the WSML
framework, which is not the possible with message
handlers. And, unlike with handlers, the full client context
is available to aspect advices (e.g. part of the history when
using stateful aspects). Furthermore, by opting for a
dynamic AOP-approach it becomes possible to anticipate
changes in the network and service environment without
having to stop and alter the code of the client application.
With dynamic AOP, the aspects can be plugged in and out
at runtime, and as such enforce various selection policies
and management concerns in the client. This is
particularly important in critical applications dealing with
long-running intra- or inter-organizational processes that
cannot be stopped easily.

The prototype of the WSML is implemented in JAsCo,
a novel aspect-oriented programming language targeted at
component-based software engineering [3]. The main
features of the JAsCo language are its highly reusable
aspects and its strong aspectual composition mechanism
for managing combinations of aspects. Clearly, the
advantages of having reusable aspects in a component-
based context also apply to the distributed service-based
context. The JAsCo technology excels at providing
dynamic integration and removal of aspects with a
minimal performance overhead. The JAsCo language is an
aspect-oriented extension of Java that stays as close as
possible to the original Java syntax and concepts and
introduces two important additional entities: aspect beans

and connectors. An aspect bean is an extended version of
a regular Java bean component that specifies crosscutting
behaviour in a reusable manner. A JAsCo connector is
responsible for applying the crosscutting behaviour of the
aspect beans in a specific context and for declaring how
several of these aspects collaborate.

4. Architecture of the WSML
Figure 1 illustrates the architecture of the WSML.

JAsCo aspects are used to implement the generic
functionality of the management layer while connectors
specify when these aspects need to be deployed. The left-
hand side of the figure illustrates an application requesting
web service functionality via a Service Type. A service
type is a generic description of the required service
functionality, independently of concrete web services. A
service type can be seen as a contract specified by the
application towards the services: the client assumes a
specific functionality of the service type, and the WSML
is responsible to deliver that functionality.

The right-hand side shows three semantically equivalent
services that are available to answer the request. By
semantically equivalent services we identify services that
offer the same functionality but might differ in the way
they provide it. A mechanism based on composition and
redirection aspects allows for the redirection of requests
and enables hot-swapping. Additional selection policies,
encapsulated in selection aspects enable advanced service
selection. Finally, management aspects deal with
management concerns such as monitoring, caching and
billing.

Figure 1 – Main Architecture of the WSML

4.1 Service Redirection Aspects
The first category of aspects in the WSML includes

redirection aspects. A redirection aspect encapsulates all
communication details of a single web service or of a
service composition. In case of a single service it contains
all necessary code to actually make the service invocation
(in code fragment 1 all code annotated with the redirection
label). Note that this code can become more complex in
case of compositional mismatches: i.e. if glue-code is
required to deal with mismatches in the service interface
(examples include differences in method names,
parameter types, parameter ordering, return types, etc).

 4

More additional code is required to deal with possible
semantical differences. For service compositions, the
advices will contain calls to multiple services and specify
the data- and workflow between the individual web
services. Using redirection aspects realizes three important
requirements for the WSML:

- Hot Swapping: if a service invocation fails, another
semantically equivalent service is invoked by triggering
another redirection aspect. This process is completely
transparent for the client.

- Just-in-time integration: when a new service becomes
available on the market that better suits the needs of the
client, it can be easily integrated by adding a new
redirection aspect to the appropriate joinpoints.

- Pro-active selection: by temporarily removing aspects
by enabling or disabling the appropriate connectors, or
by reordering the connectors, the redirection process
can be optimized to prioritize one service over another
and to accommodate to changes in the service and
network environment.

Several forms of web service communication exist, and
therefore several categories of redirection aspects have
been identified. Each category requires additional specific
AOP techniques:

Basic redirection

In case of stateless communication, it does not matter
which service or service composition is addressed for a
given request. Therefore, any of the available redirection
aspects may be triggered at a given time. This category
covers exactly the mechanism as stated above.

Conditional redirection

In specific scenario’s not all available web services can
deal with all kinds of requests: each service is specialized
in a sub set of the possible requests. For this purpose, a
condition can be added to the redirection aspects’ pointcut
specification using an if pointcut designator. As such, web
services are filtered out at two levels: first, services are
pro-actively filtered out by enabling or disabling
connectors, for instance if the corresponding service is
unavailable. Second, the condition of the remaining
services is checked against the current request. Only the
services that are left over are candidates to be invoked, as
only their corresponding aspects are considered.

Stateful redirection

Stateful services keep state of their clients whenever a
more complex interaction pattern is required. For example
the client needs to successively login, browse for
products, make a reservation, checkout his cart, do a
payment and logout. In this case, the redirection
mechanism cannot redirect successive requests to different
services (unless the state migrates between the services, an
option that is not further discussed here). Stateful aspects
[5] provide a solution here. Stateful aspects are aspects
that define a composite pointcut expression based upon a
protocol history or execution trace. JAsCo natively

supports stateful aspects by declaratively specifying a
protocol pointcut based on a deterministic finite
automaton [6]. By specifying the communication protocol
of the web service as a pointcut of a stateful aspect, the
advices (and thus the invocations of the web service) will
only be triggered when the correct protocol is followed.
As such, this strategy makes sure that the same web
service or service composition is used consistently during
a complete communication protocol. Using dedicated
keywords, JAsCo allows to instantiate the redirection
aspects for each instance of the client, in case multiple
instances of the process need to run.

Compositional redirection

In case no web service can deliver the needed
functionality for a service type, a composition of multiple
services that work together can be specified in a dedicated
aspect. By modularizing composition details in aspects,
pro-active and reactive compositions are deployed. A pro-
active composition uses a fixed set of concrete services,
while in a reactive composition the services are not
determined before hand and no concrete service interfaces
are hardwired in the composition specification. Reactive
compositions are used to avoid the explosion of the
number of service compositions that need to be specified
in case multiple partners are available to play a specific
role in a composition. Only at runtime a temporal
composition is created that best fits the criteria of the
client by combining the appropriate redirection aspects.

4.2 Service Selection Aspects
With a powerful service redirection mechanism in

place, the need arises to specify selection policies that
guide the process of determining the most appropriate
service for a given request. With the appearance of loosely
coupled web service technology, selection becomes more
important as the whole integration and communication
process becomes more volatile. Today, selection might be
based on the fact that all services must belong to a specific
business partner, but tomorrow all services need to offer a
specific Service Level Agreement (SLA) in order to
become eligible.

A service policy specifies a constraint that should be
met by the redirection mechanism. A policy can specify a
hard constraint on an individual service (i.e. an
imperative), or might specify a soft constraint on multiple
services (i.e. a guideline). Some constraints can be
enforced at any given moment while other ones only over
a period of time. Out of the constraint specification two
elements can be deduced:

- Triggers: the policy must be triggered whenever a
change occurs in the environment, affecting the
enforcement of the constraint. These triggering points
can be located in various places ranging from the client,
over the network to the actual web services.

- Action: the action of a selection policy typically
includes qualifying, disqualifying and prioritizing
services for the current or future client requests.

 5

In the WSML, selection policies are represented by
aspects: one aspect enforces one policy. The triggers are
mapped to pointcuts and the actions to advices. For
example, the aspect implementing a policy stating a
maximum allowed price for a service will be triggered as
soon as the price of that service changes. In the aspect
advice the service will be disqualified if necessary. In case
of a more complex policy stating the fastest service should
be used, based on data monitored over the last month, the
aspect needs to collect data on the response times of all
services and reorder the services according to their speed.
Using aspects to implement the selection policies, realizes
the following requirements:

- Identity: each policy is modularized into one logical
unit even while the policy might need data from various
places in order to be able to execute. The policy is not
scattered around multiple points in the code, making it
easier to implement and maintain the policies.

- Flexibility: a wide range of unanticipated policies can
be enforced in a unified manner without having to stop
the client or rewrite any code.

- Reusability: many policies can be generalised in
generic patterns: for instance “whenever a property
changes, the policy should decide on disqualifying the
service”. By implementing this behaviour in reusable
aspects, a library of reusable aspects is created.

The following categories of selection aspects exist.
Each category exists in two flavours: imperative and
guideline.

- Client-initiated selection: the constraint applies to
explicit or implicit client-side business logic (e.g.: if the
user of the client application has a gold subscription,
use the fastest service). The triggering points reside in
the client.

- Non-functional service property based selection: the
constraint applies to one or more properties of one or
more services that are advertised in the documentation
(e.g. price). The location of the triggering points
depends on the kind of property, the documentation and
the notification mechanism used by the service.

- Service behaviour-based selection: the constraint is
based on the behaviour of one or more services over a
period of time (e.g.: the down-time of a service in the
last month). The triggering points depend on the kind of
property: typically a set of measurement points to
collect the required data is necessary.

- Service-initiated selection: the constraint applies to
explicit or implicit service-side business logic (e.g.:
during peak hours the capacity of the service is limited
to a certain number of requests for each client). Again,
the triggering point depends on the documentation and
notification mechanism used by the service.

In case of remote triggering points, a distributed
joinpoint model [7] can be applied. However, this is only
realistic in case both hosts belong to the same
organisation. Another solution is to use a notification

mechanism such as WS-eventing or a polling mechanism
to detect remote changes and trigger advices. Also note
that the last three categories of selection aspects may
require detailed service documentation. The WSDL
documentation of web services does not suffice for this
purpose as no non-functional properties can be expressed
in this format. However, as publicly available service
descriptions are essential for achieving interoperability
between heterogeneous systems, more research and
standardisation efforts are needed to resolve this issue [8].

4.3 Service Management Aspects
Integrating unanticipated services from independent

domain controllers causes another important issue: each
domain might enforce a set of requirements on the service
clients and the client must comply with them in order to
invoke the service properly. Examples include the
authentication and exception handling code in Code
fragment 1, encryption, billing, reliable messaging,
transactions, etc. A modular approach is required to
implement and enforce these concerns in the client. On the
other hand, also the client business logic might force
additional concerns to be enabled. Examples include the
logging in Code fragment 1, monitoring, caching, pre-
fetching, etc.

Again, dynamic aspects are ideally suited for this
purpose: each concern is modularized in a separate aspect,
and deployed for those services that require it. Using
aspects to implement the management concerns realizes
analogue requirements of the WSML as the selection
policy aspects: each concern is cleanly modularized in one
aspect, non-anticipated concerns can be implemented in
aspects and enforced in an oblivious manner in the client,
and code reusability is achieved by generalizing the
concerns in patterns. An aspect library is available for a
wide range of concerns, and based on a set of parameters
needed to instantiate the aspect, a connector can be
automatically generated and compiled in the system.

Depending on the way they are deployed, the
management aspects are enforced on three possible levels.
By deploying the aspect per service type, they are
enforced for each service composition and web service
used to fulfil the functionality of the service type. Per
composition results in an enforcement of the concern for
all services belonging to that composition, and the most
fine-grained deployment, per web service, only deploys
the concern for one specific web service. For instance, a
reusable caching aspect deployed per web service, realizes
local caching (only the results of that service are cached),
while deploying the caching per service type realizes
global caching, as all the results returned by the service
type are cached. Additional triggering points might reside
in the client, the network or the services. To be able to
detect changes in the web service, a polling mechanism or
notification mechanism based for instance on WS-
notification can be employed.

A common issue in current practice AOP consists of
being able to manage the cooperation of several aspects
applicable to the same joinpoint. Several approaches have

 6

been proposed in order to make the composition of aspects
more explicit, examples are Strategic Programming
combinators [9] and treating aspect composition as
function composition [10]. JAsCo supports a
programmatic approach for explicitly representing aspect
compositions, named combination strategies. In case of
the WSML, this is especially important for the
management aspects, which are not always completely
orthogonal. Consider for instance the combination of both
a caching and billing aspect. Whenever the caching aspect
successfully retrieves the result for a request from the
cache, which means that the actual web service is not
invoked, the billing aspect should not be executed. This
kind of composition policies can be explicitly captured by
combination strategies.

5. Case Study
The research presented in this paper has been carried

out in cooperation with Alcatel Bell in the context of
broadband service provisioning. Implementing broadband
services requires a plethora of different service
capabilities, such as profiling, accounting, rating and
network access. However, the current situation in the use
of broadband internet shows that service capabilities are
implemented from scratch by each service provider,
increasing the effort of developing service applications.
Each service provider uses their own systems and
standards, making it difficult for network providers to
accommodate to the different approaches employed by
each service provider. This places a heavy burden on the
network providers since they need to provide enough
infrastructures to be able to integrate with all these
different systems. As a consequence, there is a need and a
market for a service and network management framework
that facilitates the adoption of service capabilities. The
Service Enabling Platform (SEP) of Alcatel Bell is a
service provisioning platform targeted to this market. The
WSML has been integrated in a prototype of the SEP to
facilitate the integration with different content providers
using web service technologies and dynamic AOP.

Several demonstrators have been developed that
successfully exploit the WSML’s capabilities. One of
them uses the WSML to intercept messages between the
SEP and proprietary Video-on-Demand (VoD) systems.
The SEP and the WSML are hosted at the network
provider and the VoD systems at different content
providers. The SEP is a client of the WSML, the VoD
systems offer web services for requesting, streaming and
paying videos. End users can play streaming media on a
television connected to a setup box and need to prepay the
product with their mobile phone account. In this complex
distributed setup with multiple partners, billing and
accounting becomes a difficult task. The WSML needs to
intercept messages between the SEP and the VoD and
apply billing depending on the subscription status of the
client (bronze, silver, gold), the product bought, the
content provider of the VoD and the mobile phone
operator. Typically, each partner receives a percentage or
a fixed amount of the price paid by the customer.

Furthermore, temporal promotions need to be applied on
the billing, including reductions, free purchases,
reductions on other products, etc. The redirection aspects
of the WSML are used to intercept and redirect calls to the
appropriate VoD systems and mobile phone operators.
The payment schemas and promotional offers are
implemented through a set of management aspects. In a
typical setup with 3 VoD systems, 2 mobile operators, 5
billing schemas and 3 promotional actions, around 25
aspects (including 5 redirection aspects, 5 selection
aspects and 15 management aspects) were deployed,
containing around 2500 lines of aspect code. This is in
contrast to the original implementation of this SEP
demonstrator, which contains more than 9000 lines of
crosscutting service invocation, selection and management
code while only offering a fraction of the WSML’s
functionality.

6. Related Work
A lot of research is going on in the web service context

and numerous vendors are currently working on dedicated
web service management platforms. However, most of
these approaches focus on the server-side management of
web services. Our approach provides support for the client
applications that want to integrate and manage different
third-party web services.

From an industry point of view, WS-BPEL [11] is
proposed as a functional approach for service
composition. WS-BPEL allows for the specification of the
partner roles and the logical flow of the messages in a
composition. WS-BPEL and the WSML are
complementary, as WS-BPEL is a service orchestration
language, while the WSML offers a dynamic service
invocation mechanism for clients. On a technical level, the
WSML and a WS-BPEL-engine can be integrated by
making service types fill in the partner roles in the BPEL-
process, instead of concrete web services. Or vice versa:
by using an as web service exposed BPEL-process to
fulfill the functionality of a service type.

Semantic Web also offers an approach for composition
based on ontologies. OWL-S [12] is a web service
ontology, which offers a core set of markup language
constructs for describing the properties and capabilities of
services in a unambiguous, computer-interpretable form.
In the WSML, a Matchmaker algorithm has been
developed to determine the compatibility between service
types and web services when they are both enriched with
ontological documentation.

The idea of applying AOP concepts at the client-side to
decouple web services concerns is quite innovative; as a
result not many approaches have been proposed that focus
on this combination. However, Arsanjani et al. [13] have
identified the suitability of AOP to modularize the
heterogeneous concerns involved in web services. More
recently, AO4BPEL [14] has been proposed as an AOP
extension for WS-BPEL. Aspect-Sensitive Services
(CASS) are proposed in [15] as a distributed aspect
platform that targets the encapsulation of coordination,

 7

activity lifecycle and context propagation concerns in
service-oriented environments.

7. Summary
This article discusses the different kinds of aspects and

AOP techniques used to implement the WSML. The
WSML is an AOP-enabled reusable framework for the
dynamic integration, selection, composition and client-
side management of web services in client-applications.
By employing AOP, the client application becomes
oblivious of web service related concerns. Because these
concerns are now well modularized, flexible and dynamic
integration of the web service invocation, composition and
management is realized.

8. References

[1] Verheecke, B., Cibrán, M. A., Vanderperren, W.,
Suvee, D., Jonckers, V., “AOP for Dynamic Configuration
and Management of Web services in Client-Applications”,
International Journal on Web Services Research (JWSR),
Volume 1, Issue 3, July-Sept 2004.

[2] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J.M., Irwin, J., “Aspect-oriented
programming”, In Aksit, M., Matsuoka, S. (eds.): 11th
Europeen Conf. Object-Oriented Programming. Volume
1241 of LNCS., Springer Verlag, 1997.

[3] Suvée, D., Vanderperren, W. “JAsCo: an Aspect-
Oriented approach tailored for Component Based
Software Development,” proceedings of 2nd Int.
Conference on Aspect-Oriented Software Development,
Boston, MA (USA), March 2003.

[4] Loughran, S., Smith, E., “Rethinking the Java SOAP
Stack”, to be published in proceedings of IEEE
International Conference on Web Services (ICWS) 2005, ,
Orlando, FLA (USA), July 2005

[5] Douence, R., Fradet, P., S¨udholt, M., “Composition,
reuse and interaction analysis of stateful aspects”, In
Lieberherr, K., (ed): proceedings of 3rd International
conference on Aspect Oriented Software Development
2004 (AOSD), ACM Press, Lancaster (UK), March 2004.

[6] Vanderperren, W., Suvee, D., Cibran, M., De Fraine,
B, “Stateful Aspects in JAsCo”, proceedings of Software
Composition 2005, LNCS, Edinburgh (UK), April 2005.

[7] Nishizawa, M., Chiba, S., and Tatsubori, M., “Remote
pointcut: a language construct for distributed AOP.” In
Proceedings of the 3rd international Conference on
Aspect-Oriented Software Development (AOSD) '04.
ACM Press, Lancaster (UK), March 2004

[8] O'Sullivan, J., Edmond, D., Hofstede, A, “What's in a
service: Towards accurate description of non-functional
service properties.” Distributed and Parallel Databases
Journal. Special Issue on E-Services 12 (2002), pp. 117-
133.

[9] Lämmel, R., Visser, E., Visser, J, “Strategic
Programming Meets Adaptive Programming”,
proceedings of the second International Conference on
Aspect-Oriented Software Development, Boston (USA),
March 2003.

[10] Lopez-Herrejon, R., Batory, D., “Improving
Incremental Development in Aspectj by Bounding
Quantification”, proceedings of Software Engineering
Properties and Languages for Aspect Technologies
(SPLAT), AOSD conference, Chicago, Ill (USA), March
2005.

[11] Andrews, T., et al. “Business Process Execution
Language for Web Services (BPEL4WS)”, specification
1.1, available at: http://www.siebel.com/bpel.

[12] Ankolekar, A. DAML-S: “Web Service Description
for the Semantic Web”, proceedings of the International
Semantic Web Conference, Sardinia (Italia), June 2002.

[13] Arsanjani, A., Hailpern, B., Martin, J., Tarr, P., “Web
Services Promises and Compromises,” ACM Queue.
March. 1(1). 2003, http://www.acmqueue.org/

[14] Charfi, A., Mezini, M., “Apect-Oriented Web Service
Composition with AO4BPEL”, proceedings of the
European Conference on Web Services 2004
(ECOWS'04), Erfurt (Germany), Sept. 2004,

[15] Cottenier, T., Elrad, T., “Dynamic and Decentralized
Service Composition”, to be published in proceedings of
Web Information Systems and Technologies, Miami, FLA
(USA), May 2005.

