

A pattern based approach to separate tangled concerns in
component based development

Wim Vanderperren
Vrije Universiteit Brussel

Pleinlaan 2
1050 Brussel, Belgium

+32 2 629 29 62

wvdperre@vub.ac.be

ABSTRACT
This work builds on aspect-oriented software development ideas
and our previous research where we lift the abstraction level of
visual component based development. In component based
development, the components are the natural unit of
modularization. However, there will always be concerns that
cannot be confined to one single component. We introduce
composition adapters as a means to modularize crosscutting
concerns in separate and reusable entities. A composition adapter
describes an adaptation of the interaction protocol between a set
of components. An important feature of a composition adapter is
that the adaptations are described independent of a concrete API,
making them highly reusable. Using composition adapters, we are
able to weave crosscutting aspects in a component based
application. The weaving algorithm uses automata theory to allow
the state-based insertion of a composition adapter into the
interaction protocol. This allows a seamless integration with our
component based methodology. We embedded composition
adapters and our algorithms into PacoSuite, a visual component
composition tool that is used in our lab as a research vehicle.
PacoSuite hides the underlying complexity to the component
composer, rendering an easy to use visual component based
development environment that includes now aspect separation
features through composition adapters.

1. INTRODUCTION
Component based software development is considered a
promising paradigm for curing the so-called software crisis [1].
The idea is that applications are created by composing reusable
components. Hence both the software quality and the
development speed improve substantially. At the System and
Software Engineering Lab (SSEL) we have been doing research
on a novel component based software development methodology
for a couple of years. The major goal of our approach is to lift the
abstraction level for component based software development. The
success of design patterns [2] indicates that there exist
collaboration patterns that are used frequently. Therefore, we
introduce explicit and reusable composition patterns. A
composition pattern is an abstract specification of an interaction
between a number of roles. Our approach allows us to
automatically verify whether a component is able to work as a role
of a composition pattern prescribes. Moreover, we are able to
generate glue-code that translates syntactical compatibilities
between a number of components mostly automatically.

Another research direction that has received lots of attention in
the last years is Aspect-Oriented Software Development (AOSD)
[3]. Some aspects of an application cannot be cleanly modularized
using current software engineering methodologies. Typical
examples include logging or synchronization. The focus of AOSD
research has been on separating crosscutting concerns in an
object-oriented context. However, the same problem also applies
to component based software development. To be able to separate
crosscutting concerns in our component based context, we
introduce the concept of a composition adapter. A composition
adapter describes adaptations of the external behavior of a
component independently of a specific API. When a composition
adapter is applied on a composition of components, we are able to
verify whether this makes sense. Moreover, we are able to
automatically insert the adaptations described by the composition
adapter into the composition pattern. These algorithms are based
on finite automata theory.

The next section describes the context in which this research is
conducted, namely our current component based approach. The
documentation of components and composition patterns is
explained in more detail. Section 3 introduces the composition
adapter and shortly sketches the algorithms necessary to
automatically insert a composition adapter into a composition
pattern. Section 4 presents the tool support that implements these
ideas. After a short discussion of related work, we state our
conclusions and describe our future work.

2. RESEARCH CONTEXT
We mainly focus our component based research on lifting the
abstraction level for component based development. We want to
realize the plug and play idea of component based development.
Therefore, we propose to document components with usage
scenarios that specify how to use the component. A usage
scenario is expressed by a special Message Sequence Chart
(MSC) [4]. The main difference with a normal MSC is that the
signals are taken from a limited set of pre-defined semantic
primitives. Each of these signals is also mapped on the concrete
API that performs them. So the documentation of a component is
both abstract and concrete. Figure 1 illustrates a usage scenario of
a generic TCP/IP network component. One participant of the
usage scenario represents the component and the others represent
the environment participants the component expects. In this case,
there’s only one environment participant, namely the
NetworkUser participant. This usage scenario documents that the

mailto:wvdperre@vub.ac.be

network component either expects data to send over the network
or submits events to the NetworkUser environment participant.
The network component submits an event when it received data,
when the connection is established or when it is disconnected.

LOOP

NetworkUser Network

connected
CONNECT

sendText
SEND

receiveText
PERFROM

ALT

disconnected
DISCONNECT

Figure 1: Usage scenario of Network component.

In addition, we introduce explicit and reusable composition
patterns. A composition pattern is an abstract specification of the
interaction between a number of roles and is also expressed by an
MSC. The signals between the roles come from the same limited
set of semantic primitives. This allows us to compare the signals
in a usage scenario of a component with these in a composition
pattern. Figure 2 illustrates a generic game composition pattern.
This composition pattern specifies the interaction between three
roles: the Network, GameGui and Checker roles. One of the
applications of this game composition pattern is a distributed
scrabble game. The checker role is than filled by a dictionary
component that is used to verify the validity of a word. The
GameGUI role is filled by a dedicated Scrabble user interface
component. The network role can be filled by the network
component of Figure 1.

 GameGUI Network

CREATE

Checker

SEND

PERFORM

OPT

ALT

DATA

SET

Figure 2: Generic game composition pattern.
The documentation of components and composition patterns
allows us to automatically check compatibility of a component
with a role. Glue-code that constraints the behavior of the
components and that translates syntactical compatibilities is also
generated automatically. These algorithms are based on finite

automata theory. In this paper we do not go into the details of
these algorithms. The interested reader is referred to [5,6,7].

3. COMPOSITION ADAPTERS
3.1 Introduction
Some aspects cannot be cleanly modularized using our current
component based approach. Typical examples of such aspects are
logging or synchronization. We encountered a more complicated
aspect in the SEESCOA1 research project. In this project we want
to verify the quality of service of component based applications.
More specifically, we would like to check both statically and
dynamically whether a component based application satisfies
certain timing constraints. Run-time checking of timing
constraints turns out to be a crosscutting concern. If we want to
check timing constraints dynamically using our current concepts,
we have to alter every composition pattern individually in the
same way. Of course, when the application goes into the
production phase, we do not want to keep the dynamic timing
aspect into the application. Consequently, we have to alter all the
involved composition patterns again to remove the timing aspect.
To solve this problem, we introduce the concept of a composition
adapter.

3.2 Documentation

Dest Source

SIGNAL

CONTEXT

Dest Source

ADAPTER

Timer

SIGNAL

ConstraintChecker

NOTIFY
SIGNAL

Figure 3: Dynamic timing checker composition adapter.
A composition adapter is able to describe adaptations of the
external behavior of a component independently of a specific API.
A composition adapter is also documented by a special kind of
MSC and consists of two parts: a context part and an adapter part.
The composition adapter we use to modularize the timing aspect
is depicted in Figure 3. The context part describes the behavior
that will be adapted. This can be as simple as one signal send as in
Figure 3, but can very well be a full protocol. The adapter part
describes the adaptation itself. In the case of the dynamic timing
composition adapter every signal between the source and
destination role will be re-routed through a Timer role. The Timer
role is responsible for taking a timestamp and notifies the
ConstraintChecker role. The ConstraintChecker role has a small
database of timing constraints and verifies whether every signal it

1 The SEESCOA (Software Engineering for Embedded Systems

using a Component-Oriented Approach) IWT project is funded
by the Flemish government. For more information see:
http://www.cs.kuleuven.ac.be/cwis/research/distrinet/projects/S
EESCOA/

is notified of does not violate a constraint. To minimize the
disruption of the system, the component that will be mapped on
the ConstraintChecker role could do the verification process
offline and/or run on a different CPU.

3.3 Applying a composition adapter
When the component composer applies a composition adapter
onto an existing composition pattern, the context roles of the
composition adapter have to be mapped onto roles of the
composition pattern. For example, suppose we want to time the
communication between the GameGUI and Checker roles of the
composition pattern in Figure 2. Then we would have to map the
Source role of the timing composition adapter of Figure 3 onto the
GameGUI role of the composition pattern. Likewise, the Dest role
has to be mapped onto the Checker role. The result will be that the
DATA signal is not send directly to the Checker/Dest role but is
first send to the Timer role. After sending the DATA signal to the
Checker/Dest role, the ConstraintChecker role is notified.

Inserting a composition adapter seems obvious from the example
explained above. In this example, merely syntactically scanning
the affected composition pattern would do the job. However,
when the context part of the composition pattern specifies a full
protocol, a more involved algorithm is needed. Therefore, we
developed an algorithm in three steps based on finite automata
theory. In this paper, the algorithm is only shortly sketched. A
more elaborate explication of the algorithm can be found in [8].
The algorithm does not work directly on MSC’s but on
Deterministic Finite Automata (DFA). The transformation of an
MSC to a DFA is a standard process and described in literature
[9]. The first step is a verification phase. This means searching all
paths in the affected composition pattern that correspond to the
context part of the composition adapter. If there are no matching
paths, the application of this composition adapter makes no sense.
In the second step, we insert the adapter part of the composition
adapter in the composition pattern at the paths that match with the
context part. The last phase consists of removing all paths that
match with the context part. To this end, we calculate the
difference automaton between the automaton resulting from the
previous phase and a special version of the context part.

4. TOOL SUPPORT
The work described in this paper has been implemented in a
prototype tool called PacoSuite. PacoSuite is entirely written in
JAVA and consists of two applications, PacoDoc and PacoWire.
PacoDoc is a graphical editor that allows drawing, loading and
saving of component documentation, composition patterns and
composition adapters. The PacoWire tool is our actual component
composition tool and implements the algorithms we developed in
our work [5,6,7,8]. It uses a pallet of components, composition
patterns and composition adapters. The tool allows dragging a
component on a role of a composition pattern. The drag is refused
when the component does not match with the selected role and
optionally mismatch feedback is given to the user. A composition
adapter can be visually applied on a composition pattern. The tool
checks whether the application of the composition adapter makes
sense and automatically inserts the composition adapter into the
composition pattern. When all the component roles are filled, the
composition is checked as a whole and glue-code is generated.
Figure 4 shows some screenshots of our tool.

Figure 4: Screenshots of PacoSuite. At the top-right a
screenshot of PacoDoc, our documentation tool is shown. At
the lower-right, our actual component composition tool called
PacoWire is shown. In this screenshot, the component
composer is about to map a component on a role of the
composition pattern. The leftmost shot shows a composition
adapter that is applied on a composition pattern.

5. RELATED WORK
Although combining AOSD ideas with component based
development is a rather new research direction, some approaches
are already emerging. An interesting approach is event based
AOSD [10]. Similar to the composition adapter approach they
allow specifying an aspect on a full protocol of events.

The aspectual component approach [11] proposes a new
component model to be able to specify crosscutting concerns.
The aspects are weaved into the components using binary code
adaptation techniques. The aspectual component approach
improves on the composition adapter idea because aspects that
alter the internals of a component can be specified. On the other
hand, it is impossible to directly recuperate it in our component-
based context. Because we do not want to lower the abstraction
level, we have to come up with a (preferable graphical) notation
of what the consequence of the adaptations on the exterior
behavior of the altered components will be. This extra information
is needed to allow automatic compatibility checking and glue-
code generation.

Filman [12] proposes dynamic injectors to introduce aspects into
a given component configuration. He incorporates dynamic
injectors into OIF (Object Infrastructure Framework), a CORBA
centered aspect-oriented system for distributed applications. The
dynamic injector approach is very similar to our composition
adapter idea because both approaches employ a wrapping and
filtering technique to insert crosscutting concerns into a
composition of components.

6. CONCLUSIONS AND FUTURE WORK
Using composition adapters, we are able to cleanly modularize
crosscutting concerns in our component based context.
Composition adapters can be verified and inserted automatically
in a composition of components. We improve on current aspect-
oriented approaches as the joinpoints where the composition
adapter will be applied are specified by a full protocol instead of a
mere set of methods. An important feature of a composition
adapter is that the adaptations are described independent of a
concrete API, making them reusable. Consequently composition
adapters still preserve the high abstraction of our visual
component composition methodology. However, this approach is
only able to alter the exterior behavior of components by re-
routing or ignoring their messages. As a consequence, concerns
that require adaptations of the interior behavior of a component
cannot be specified.

To be able to alter the internals of a component we have to use an
aspect-oriented implementation language. There already exists a
wealth of generic approaches to separate crosscutting concerns in
an object-oriented context. Well known approaches include
AspectJ [13], composition filters [14] and HyperJ [15]. However,
most of these approaches are not very well suited to be used in a
component based context for several reasons. First, components
interact in a well-defined manner (e.g. JAVA Beans interact by
posting events to interested listeners), so aspects should be able to
declare joinpoints specific for the component model. For the
JAVA beans component model, this means that it should be
possible to declare joinpoints on events. Secondly, components
come from different vendors and are not explicitly created to work
with each other. In order to make the aspects reusable, the
declaration of the aspect behavior has to be separated from the
concrete interface of the base component. This means that it
should be possible to declare abstract joinpoints in the aspect
specification. At aspect weaving time, the abstract joinpints are
connected to concrete joinpoints in the components. Finally,
source code from third-party components is often not available,
therefore source code weaving becomes unfeasible. In addition,
source code weaving is also unsuited for enabling the dynamic
weaving and unweaving of aspects.

To solve the problems described above, we envision a new aspect-
oriented implementation language tailored for the component
based field. The language will be able to specify joinpoints
specific for the component model. Explicit and reusable
connectors connect the abstract joinpoints in the aspect
declaration to concrete joinpoints in the components. The aspects
are weaved into the components using binary code adaptation
techniques. We already conducted experiments in component
adaptation for JAVA by directly acting on the byte code instead of
the source code. This has resulted in a first prototype aspect-
oriented implementation language. In a next phase, we plan to use
this aspect-oriented programming language as an implementation
for a composition adapter. In this way, we are able to specify
concerns that alter the internals of a component at a component
based design level. This enables a seamless integration with our
current component based methodology.

7. ACKNOWLEDGMENTS
We owe our gratitude to Dr. Bart Wydaeghe who developed the
component based methodology during his PhD research. We also
want to thank him for his interesting feedback and participation in
this research. In addition, we like to thank Prof. Dr. Viviane
Jonckers for her invaluable help during our research and for proof
reading this paper. Since october 2000 the author is supported by
a doctoral scholarship from the Fund for Scientific Research
(FWO or in flemish: “Fonds voor Wetenschappelijk Onderzoek”).

8. REFERENCES
[1] Szyperski, C. (1997). Component Software; beyond Object-

Oriented Programming. Addison-Wesley.

[2] Gamma, E., Helm, R., Johnson, R. & Vlissides, J. Design
Patterns, Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

[3] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C.,
Mendhekar, A. and Murphy, A. Aspect-Oriented
Programming. In proceedings of the 19th International
Conference on Software Engineering (ICSE), Boston, USA.
ACM Press. May 1997.

[4] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart (MSC). ITU-TS, Geneva, September 1993.

[5] Wydaeghe, B. PACOSUITE: Component Composition Based
on Composition Patterns and Usage Scenarios. PhD Thesis,
available at:
http://ssel.vub.ac.be/Members/BartWydaeghe/Phd/member_p
hd.htm

[6] Vanderperren, W. and Wydaeghe, B. Towards a New
Component Composition Process. In Proceedings of ECBS
2001, April 2001.

[7] Wydaeghe, B. and Vandeperren, W. Visual Component
Composition Using Composition Patterns. In Proceedings of
Tools 2001, July 2001.

[8] Vanderperren, W. and Wydaeghe, B. Separating concerns in
a high-level component-based context. EasyComp Workshop
at ETAPS 2002, April 2002. To be published.

[9] Hopcroft, J. E., Motwani, R., and Ullman, J. D. Introduction
to Automata Theory, Languages and Computation. Addison-
Wesley, Second ed. 2001.

[10] R. Douence, O. Motelet, M. Südholt A formal definition of
crosscuts. Proceedings of the 3rd International Conference
on Reflection and Crosscutting Concerns, LNCS.

[11] Lieberherr, K., Lorenz, D. and Mezini, M. Programming
with Aspectual Components. Technical Report, NU-CCS-99-
01, March 1999. Available at:
http://www.ccs.neu.edu/research/demeter/biblio/aspectual-
comps.html.

[12] Filman, R.E. Applying Aspect-Oriented Programming to
Intelligent Synthesis. Workshop on Aspects and Dimensions
of Concerns, 14th European Conference on Object-Oriented
Programming, Cannes, France, June 2000.

[13] Kiczales G. et al. An overview of AspectJ. In Proceedings of
the European Conference on Object-Oriented Programming,
Budapest, Hungary, 18--22 June 2001.

[14] L. Bergmans and M. Aksit. Composing Crosscutting
Concerns Using Composition Filters. Communications of
the ACM, Vol. 44, No. 10, pp. 51-57, October 2001.

[15] H. Ossher and P. Tarr. Multi-Dimensional Separation of
Concerns and The Hyperspace Approach. In Proceedings of

the Symposium on Software Architectures and Component
Technology: The State of the Art in Software Development.
Kluwer, 2000.

	INTRODUCTION
	RESEARCH CONTEXT
	COMPOSITION ADAPTERS
	Introduction
	Documentation
	Applying a composition adapter

	TOOL SUPPORT
	RELATED WORK
	CONCLUSIONS AND FUTURE WORK
	ACKNOWLEDGMENTS
	REFERENCES

