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Abstract

In this paper, we claim that a specialized aspect module is not required. Instead, we
propose an expressive aspect-oriented composition mechanism which can be applied
upon existing modules. At the design level, the CoCompose modeling framework
is introduced which is based on Model Driven Development. CoCompose allows
step-wise refinement from a high-level design to the lowest level design or code
level. Using these refinements, CoCompose postpones the decision concerning the
modularization construct that is chosen for a particular concern. At the lowest
level design however, a specialized aspect modularization construct still needs to be
chosen because current aspect-oriented technologies typically introduce an aspect
module. For resolving this issue, the FuseJ programming language is proposed that
allows implementing all possible concerns as regular components. FuseJ introduces
an expressive component composition mechanism that supports both regular and
aspect-oriented compositions between components. As such, a seamless transition
from design to implementation is achieved because no specialized aspect modules
exist both at the design and implementation level.
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1 Introduction

Aspect-Oriented Software Development (AOSD) is a new development paradigm
that aims at achieving a better separation of concerns than possible using stan-
dard object-oriented (OO) software engineering methodologies [15]. AOSD
claims that some concerns of an application cannot be cleanly modularized
with standard OO technologies as they are scattered over or tangled with the
different modules of the system. Such a concern is called crosscutting be-
cause the concern virtually crosscuts the decomposition of the system. As a
result, similar logic is repeated in different modules, with code duplication as
a consequence. Due to this code duplication, it becomes very hard to add,
edit or remove a crosscutting concern from the system. Typical examples of
crosscutting concerns are debugging concerns such as logging [15] and con-
tract verification [30], security concerns [31] such as confidentiality and access
control and business rules [6] that describe business-specific logic.

Component-Based Software Engineering (CBSE) is another software engi-
neering paradigm that aims at increasing reusability of individual components
and component compositions. CBSE advocates very low coupling between
components and high cohesion of single components. Furthermore, compo-
nents are black-box 3 entities, which are independently deployable [29] . In
fact, when CBSE is employed, a component should never explicitly rely onto
other specific components in order to increase reusability. As a consequence,
CBSE suffers greatly from crosscutting concerns and tangled code because a
lot of concerns are spread over and repeated among different components in
order to keep the coupling as low as possible. As a result, aspect-oriented
ideas are very welcome in the component-based world.

Currently, a wealth of technologies are available that integrate aspect-
oriented ideas into component-based software engineering. Examples are JAC
[21], JBoss/AOP [13], EAOP [9], OIF [11] and JAsCo [28]. All of these ap-
proaches focus at introducing new programming languages or frameworks in
order to modularize crosscutting concerns. Support for aspect-oriented ideas
during the early cycles of component-based software engineering is still not yet
fully explored. Even though several production-quality aspect-oriented tech-
nologies exist, it seems to be very difficult to recuperate aspect-oriented ideas
in for example the design process. Currently, when designing a software appli-
cation with aspects in mind, the crucial question is: “when to model concerns
as an aspect?”. Indeed, one has to decide which concerns of the application
at hand are modeled as aspects and which are modeled as components. In
the last few years, work on the so-called “early aspects” [26,22,7] has been
emerging. This work focuses on managing crosscutting properties at the early

3 There is currently no unanimous vision on CBSE. For example, several different ap-
proaches exist that motivate why black-box, grey-box or white-box component composition
is the better choice. In this paper, we assume the Szyperski vision [29] on CBSE with
black-box component composition.
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development stages of requirements engineering and architecture design. Al-
though being able to identify possible crosscutting concerns at the very early
development stages is an important contribution, the developer is still forced
to choose a specific representation, such as an aspect or a component. Akşit
et al [2] already motivated that this gives rise to problems when evolving the
software, because changing the representation of a concern can have a deep
impact on the software architecture. It is for instance possible that a certain
concern is initially perfectly modularized by a regular component. However,
the requirements of the application might change over time and as such the
concern that is modularized as a component turns out to be crosscutting. This
concern then has to be refactored into an aspect, which is a cumbersome and
error-prone task. This problem is caused by the additional module construct
(the aspect) introduced by aspect-oriented technologies in order to modular-
ize a crosscutting concern. Inherently, the behavior of these concerns is not
different from the behavior of non-crosscutting concerns; only the composition
mechanism differs. When introducing a separate aspect module, the compo-
sition mechanism is in fact tangled with the behavior of the concern itself. As
a result, other composition mechanisms are inherently ruled out.

The main claim of this paper is that a specialized aspect module should
not exist. Instead, we would like to apply aspect-oriented composition mech-
anisms to existing module constructs. As such, software components do not
need to be adapted in order to alter the composition mechanism. To support
this claim, we propose both a modeling framework, called CoCompose, and
a programming language, called FuseJ. Both approaches allow separating the
composition mechanism from the behavior specification. CoCompose employs
Model Driven Development (MDD) [16] in order to apply different composition
mechanisms on generic design elements. CoCompose allows to refine a model
with non-typed, generic concepts to a model that uses components, methods
and events. Generic composition concepts can also be refined to both regular
and aspect-oriented composition mechanisms. Using these MDD refinements,
it is possible to postpone the choice for a specific implementation construct
to the lowest level design.

FuseJ is a programming language that recuperates aspect-oriented ideas
and allows implementing all concerns as Java Beans. In addition, FuseJ pro-
vides a strong composition mechanism that is able to describe both aspect-
oriented and component-based compositions. As such, new composition mech-
anisms are made as unobtrusive as possible, e.g. when representing a software
element as a method, it should be possible to compose this method with
others as if it were an advice. This allows for postponing the choice for a spe-
cific composition mechanism and also enables employing this new composition
mechanism on existing software modules.

The next section introduces the CoCompose modeling framework and mo-
tivates why an explicit aspect-oriented composition mechanism is better than
a separate aspect module at the design level. Afterwards, the FuseJ program-
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ming language is introduced that maps seamlessly onto the CoCompose ideas.
In section 4, we present the tool support we are currently implementing for
supporting the CoCompose/FuseJ approach. Section 5 discusses related work
that also avoids introducing an extra modularization construct for aspects.
Finally, we state our conclusions.

2 Design Level Composition: CoCompose

CoCompose is a Model Driven Development framework that can be used for
the stepwise refinement [33] of software designs. In addition, CoCompose can
automatically determine which refinement alternatives to use. Current OO
design approaches, such as UML [17], do not explicitly support refinement
alternatives. A refined version of the design is made, thereby prematurely
eliminating other feasible refinements [2]. UML already starts halfway the
refinement process, since it forces the developer to choose one of its specific
constructs to represent a design element (e.g. class, operation, package, at-
tribute, . . . ).

CoCompose uses generic concepts to represent design elements 4 . Concepts
are explained in detail in subsection 2.1. Each concept can have several re-
finements, which are explained in detail in subsection 2.2. Concepts can reuse
refinements of other concepts in two ways: (1) they can inherit the refinements
from another concept or (2) another concept can superimpose its refinements
onto this concept. By using refinements for concepts, concepts are employed
to model compositions in a declarative way. The concept’s refinements specify
in more detail how the composition is accomplished. Finally, subsection 2.3
explains how code is generated from CoCompose models.

2.1 Concepts

Each design element is represented as a concept in CoCompose. Concepts
can participate in relationships that specify to which other concepts they are
related. Nested concepts are concepts that are contained within another con-
cept. A concept named AnInheritance, for instance, contains a Parent concept
and a Child concept that represent the two roles in an inheritance relation-
ship. A MyClass concept could have a relationship to the Parent concept of
the AnInheritance concept, which means that it plays the parent role in the
inheritance relationship. These relationships are shown in Figure 1.

Fig. 1. Representing design elements as concepts

4 The first version of CoCompose [32] used several elements for representing a design,
whereas currently only “concepts” are employed.
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The UML language model can be mapped onto the CoCompose language
model, such that design elements described using UML constructs have a Co-
Compose representation. This mapping is done on the meta-model level: each
UML element type (e.g. class, operation, . . . ) is mapped onto a CoCompose
concept representing the element type (e.g. a concept named Class). Each ac-
tual design element described in UML is mapped onto a CoCompose concept,
which inherits from the concept that represents the UML element type (e.g.
a class named MyClass will map to a MyClass concept that inherits from a
Class concept).

Figure 2 illustrates an CoCompose example model of a hotel booking sys-
tem expressed in UML. The system consists of three services: a booking service,
a discount service and a payment service. The booking service is responsible
for booking hotels. The discount service is a generic service, which assigns
discounts depending on business-specific properties. The payment service al-
lows to charge a credit card in order to confirm a booking. These services are
composed using two abstract collaborations: BookingDiscount, which applies
a discount to a booking, and BookingPayment, which triggers a payment after
a booking.

Fig. 2. An example model expressed in UML

Each element maps to a concept, which can inherit the refinements (see 2.2)
from another concept that represents the element type. Figure 3 illustrates
this mapping for the BookingDiscount collaboration and the DiscountService
concept. 5 The BookingDiscount collaboration, maps to a concept inheriting
from a Collaboration concept and contains a DiscountService concept and a
BookingService concept that both inherit from a CollaborationRole concept.
The DiscountService concept is already marked explicitly as an abstract con-
cept, which means that it does not inherit from any type-representing concept.

2.2 Refining Concepts

Each concept can have several refinements, which are either template designs,
called solution patterns, programming level templates, called implementation

5 Please note that the inheritance relationships shown in Figure 3 refer to inheritance of
refinements, not standard UML class inheritance.
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Fig. 3. Mapping the UML example to concepts

patterns, or executable code generators, called implementation generators.

The BookingDiscount collaboration from Figure 2 has two solution pattern
refinements: one using standard object-oriented composition and one using
AspectJ composition.

Figure 4 shows the standard object-oriented solution pattern for the Booking-
Discount collaboration, described in UML. It uses several roles, which serve
as template parameters. Roles are annotated using the “role” stereotype. In
this solution pattern two main roles are specified, namely DiscountService and
BookingService. When this solution pattern is applied, the DiscountService
and BookingService roles are replaced by the concepts that are linked to these
roles. In Figure 2, the BookingDiscount collaboration has two collaboration
roles that correspond with these solution pattern roles. The BookingService
role is in this case filled by the BookingService concept from Figure 2, because
it is linked to the BookingService collaboration role. Note that the Booking-
Service and the DiscountService roles are modeled as UML classes. This means
that any concept filling these roles inherits from the Class concept (see also
Figure 3).

Fig. 4. The object-oriented solution pattern for BookingDiscount

The solution pattern defines two other roles, bookHotel and getDiscount-
Price, which are nested roles. The concept that is refined does not need to
explicitly contain a bookHotel and a getDiscountPrice concept. Instead, the
concepts that fill the containing roles should provide these concepts: e.g. the
BookingService concept from Figure 2 must contain a bookHotel operation 6 .

Each role defines a multiplicity constraint, which puts a limit on how many
times a role can be filled. In Figure 4, for instance, the DiscountService role

6 The parameter types and return type of the operations should also be marked as roles.
In the example, this is ommited in order to preserve clarity.
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should be filled exactly once and the BookingService role can be filled zero
or more times. Coloring is used to mark role parts: all concepts having the
same color as a role are instantiated once for each time that role is filled. For
instance, a BookingDiscount concept is created for each concept that fills the
BookingService role.

The bookHotel operation of the BookingDiscount class has an implementa-
tion pattern refinement for Java, which is shown in Figure 4 as a comment.
It refers to several other concepts and/or roles in the model, e.g. bookHotel
in BookingService and the discount aggregation relation, which is shown by
using enclosing <>.In order to use these concepts and roles, constraints such
as “bookHotel must be a Method” need to be defined for the implementation
pattern (in CoCompose, all elements are concepts and it is possible to leave
the exact UML element type unspecified).

Assigning a discount to a price is an example of a business rule. In liter-
ature, business rules are already identified to be crosscutting concerns [6,20].
Figure 5 shows the AspectJ [14] solution pattern for the BookingDiscount
collaboration. The UML notation is based upon [24]. In AspectJ, an as-
pect is used to implement the DiscountService concept. In comparison to the
object-oriented solution pattern, the AspectJ solution pattern avoids intro-
ducing subclasses for every application of the DiscountService concept. As
such, the DiscountService concept remains well-modularized. This AspectJ
solution however requires to choose a specific aspect module construct. As a
consequence, the lowest design and implementation level still suffer from the
problems caused by tangling a composition mechanism with a modularization
construct. In section 3, the FuseJ programming language is introduced in
order to avoid this problem.

Fig. 5. The AspectJ solution pattern for BookingDiscount

Figure 6 shows the solution pattern for the BookingPayment collaboration
from Figure 2. It uses a component-oriented BookingPayment glue code class
to invoke a chargeAmount operation whenever a ChargeEvent is fired.

Using solution pattern refinements, a design can be refined up to the level
of the actual implementation language constructs (e.g. classes and methods,
but also AspectJ aspects, pointcuts and advices). Figure 7 shows the object-
oriented refined version and Figure 8 shows the AspectJ refined version of the
example design in Figure 2.
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Fig. 6. The solution pattern for BookingPayment

Fig. 7. The example model after applying the standard, object-oriented solution
patterns

Fig. 8. The example model after applying the AspectJ solution patterns
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2.3 Code Generation

The code generation process is based upon the original code generation strat-
egy employed in the previous CoCompose approach [32]. In order to generate
code from concepts, implementation generators are defined for each concept
that represents an implementation language construct. The Java implementa-
tion generator for a Class concept, for instance, generates Java class skeleton
code and pastes in an implementation pattern, if any. While the Class concept
itself does not have any implementation patterns, a concept inheriting from
Class may have one and can reuse the Class implementation generator.

Not only the module constructs for Java (e.g. class, method, . . . ) have
implementation generators, but also the composition constructs (e.g. inheri-
tance). The Java implementation generator for the Inheritance concept gen-
erates an extends clause.

As the implementation generators for Java have common knowledge about
the structure of a Java program, they can work together on composing the
separate Java elements. When for certain elements no implementation pat-
tern or implementation generator is defined, complete code generation is not
possible and a warning is issued. 7

3 Implementation Level Composition: FuseJ

In the previous section, CoCompose proposes a modeling approach that allows
generic compositions between generic concepts which can be refined towards
concrete constructs and composition mechanisms. However, the composition
mechanism is still tangled with the basic behavior at the lowest design or code
level, when traditional aspect-oriented technologies are used as refinement tar-
gets. In order to overcome this problem, the FuseJ language is proposed. The
idea of FuseJ is to implement all concerns required by a software system as
regular components and to introduce an expressive component composition
mechanism which allows specifying both regular and aspect-oriented interac-
tions among components. To this end, we propose a new unified component-
oriented architecture [27], which makes no distinction between regular and
aspect-oriented components at implementation time, at assembly time and at
run-time. In the next paragraphs, the first ideas and concepts of this unified
component architecture are introduced. To make our ideas more concrete, we
present the FuseJ language, which is a practical implementation of the uni-
fied component-oriented architecture onto an underlying component model,
in this case Java Beans. Afterwards we show how a seamless transition from
design to implementation level is achieved, when CoCompose is able to refine
its generic compositions towards the FuseJ language.

7 The generated code is not intended to be edited by the developer: the developer can
insert his code in the form of implementation patterns.
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3.1 Unified Component-Oriented Architecture

In order to introduce an explicit aspect-oriented composition mechanism at
the implementation level, a three-layered component-oriented architecture is
proposed, featuring a component layer, a gate layer and a connector layer.
Components are part of the component layer and the composition (both reg-
ular and aspect-oriented) between these components is mapped upon a com-
bination of the gate layer and the connector layer. Figure 9 sketches the
architecture of this three-layered model.

Fig. 9. Unified component architecture

Each concern required by the software system is mapped upon a component
which is situated in the component layer. Their behavior is implemented by
means of some base component language and no specific language constructs
are provided for specifying possible aspect-oriented interactions. Hence, con-
cerns which are typically captured by means of an aspect module, are now
described as regular components. As already mentioned in the introduction,
we consider each component contained within this component layer to be a
black-box entity which is specified and deployed independently from other
specific components.

Each component contained within the component layer offers a number of
services, which we call features. These features provided by a component can
however not be accessed directly. All communication with or from a compo-
nent needs to pass through gates, which are located in the gate layer. Gates
are the single entrance and exit points of a component, and provide access
to some feature the component implements. A gate can thus be observed as
some kind of guardian of the internals of a component. A gate is mapped
onto one or more methods implemented within the component. Gates are
defined to be two-way channels. Incoming communication has following se-
mantics: “Execute the feature of the component the gate provides access to”.
Outgoing communication on the other hand, has following semantics: “When-
ever the feature of the component the gate provides access to, is executed, do
something else”. This “something else” depends on the gate(s) of some other
component(s) the outgoing communication is connected to. The concept of
incoming and outgoing communication allows a gate to be involved in both
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regular and aspect-oriented compositions at the same time. Logging for in-
stance is a typical example of a concern which is implemented by means of an
aspect module. In case of the unified component-oriented architecture how-
ever, this logging concern is provided by one or more gates implemented by
a regular component. The specification of how this logging concern interacts
(in a regular or an aspect-oriented way) with the features provided by other
components within the software system is not specified in the gate itself, but
deferred until the component composition process.

The interaction between gates is described by making use of connectors,
which are situated in the connector layer. A connector connects the outgoing
communication of one (or more) gate(s) with the incoming communication of
one (or more) gate(s). Connectors are responsible for describing both regu-
lar and aspect-oriented compositions between components, as this description
is omitted in both the component and the gate implementation. Connectors
which specify regular component compositions are quite similar to the connec-
tors found in most component models. They are used for glueing together the
gates of two components by resolving mismatches between method names or
argument types. Connectors are however also able to specify aspect-oriented
composition between components. In this case, their corresponding gates are
glued together in an aspect-oriented way.

Deferring the aspect-oriented interaction specification to the component
composition mechanism, in this case the gates and the connectors, has multi-
ple advantages at the implementation level. The reusability of a component
is increased, as a component developer does not need to decide at develop-
ment time whether a component is supposed to interact in a regular or an
aspect-oriented way with the other components which are available within
the software system. All concerns are implemented as regular components,
and it is the connector that is responsible for specifying how the interaction
between components takes place. As a result, the features of a component
can be reused in both regular and aspect-oriented compositions at the same
time. This concept even allows existing components to be reused within an
aspect-oriented context.

3.2 Practical Implementation: FuseJ

In this section, the FuseJ language is introduced. The FuseJ language il-
lustrates the idea of having a unified component-oriented architecture at the
implementation level by mapping the concepts introduced above onto a real-
world component model, in this particular case Java Beans. A simple pro-
totype language for gates as well as for connectors is presented. Take in
mind that at the moment, this simple prototype language does not support
all possible aspect-oriented interactions among components. Indentifying and
respresenting this set of required interactions is subject to future research.

The hotel booking case study introduced in the previous section makes use
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of three components: a BookingService, a PaymentService and a Discount-
Service component. The first two components provide regular component
features, such as “book a hotel” or “bill a particular amount of money onto a
customers credit card”. The latter component implements a set of business-
rules which assigns a particular discount depending on a set of business-specific
conditions. Business-rules are typical examples of concerns which are imple-
mented by means of aspect modules, as business-specific information is often
scattered and tangled with the base implementation of the software system. In
FuseJ however, all three components are implemented as regular Java Beans,
independent of the fact whether they are involved into regular or aspect-
oriented compositions.

Each component within the hotel booking application is supplied with
a gate-interface which describes the features it provides. Figure 10 shows
the implementation of the gate-interfaces of the three components mentioned
above.

A gate specification typically consists out of two parts. A pattern part
which describes the mapping of the gate upon the internal implementation of
the component and an expose part which exposes the gate properties (input
arguments, return value, . . . ). The gate-interface of the BookingService com-
ponent for instance provides two gates. The pattern part of the BookHotel-gate
(line 4 to 6) maps this gate upon the bookHotel-method of the BookingService
component (line 5). The BookHotel-gate exposes the inputHotelName prop-
erty (line 8) that represents the name of the hotel that is given as input. The
outputPrice property (line 9) exposes the return value of the bookHotel-method
upon which the gate is mapped. Likewise, the ChargeForHotel-gate is mapped
upon the event which is thrown in order to charge the customer for the hotel
booking (line 13 to 20).

For combining several, independent components into a working software
system, connectors are employed. These connectors are responsible for con-
necting one (or more) gate(s) and to describe how these gates should be com-
posed (regular or aspect-oriented). The hotel booking case study requires two
connectors in order to fulfill its functionality. The first connector is respon-
sible for implementing the assignment of a discount when somebody books a
hotel. The second connector is responsible for billing an amount of money
onto a customers credit card when a hotel is booked. This latter connec-
tor is a typical example of a regular, component-based composition between
components. The BookingService-component throws a ChargeEvent and the
PaymentService-component needs to take the right steps when it receives such
a ChargeEvent. The implementation of this BookingPayment-connector is
shown in Figure 11.

A connector specifies one (or more) gate composition(s). A gate composi-
tion is typically build out of two parts. A connection-part (line 3 to 8), which
interconnects two gates, and a mapping-part (line 9 to 14), which is responsi-
ble for specifying the mapping between the concerned gate-properties. In case
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1 ginterface BookingService {

2

3 gate BookHotel {

4 pattern {

5 Float BookingService.bookHotel(String hotelname);

6 }

7 expose {

8 String inputHotelName = hotelname;

9 Float outputPrice = returnvalue;

10 }

11 };

12

13 gate ChargeForHotel {

14 pattern {

15 void BookingService.fireChargeRequest(ChargeEvent event);

16 }

17 expose {

18 ChargeEvent chargeEvent = event;

19 }

20 };

21

22 }

1 ginterface DiscountService {

2

3 gate Discount {

4 pattern {

5 Float DiscountService.getDiscountPrice(Float price);

6 }

7 expose {

8 Float inputPrice = price;

9 Float outputPrice = returnvalue;

10 }

11 };

12

13 }

1 ginterface PaymentService {

2

3 gate ChargeAmount {

4 pattern {

5 void PaymentService.chargeAmount(String ccnumber, Float amount);

6 }

7 expose {

8 String inputCCNumber = ccnumber;

9 String inputAmount = amount;

10 }

11 };

12

13 }

Fig. 10. Gate-interfaces of the hotel booking application

of the BookingPayment-connector, the ChargeAmount-gate of the Payment-
Service-component is connected to the ChargeForHotel-gate of the Booking-
Service-component. The mapping-part of the BookingPayment-connector is
responsible for specifying some gate property translations, in this case the
mapping of the chargeEvent-property of the ChargeForHotel-gate upon the
inputCCNumber and the inputAmount properties of the ChargeAmount-gate.
The resulting effect of this connector is that the customer is charged by means
of the PaymentService whenever he/she books a hotel. The implementation
of the BookingDiscount-connector, which is responsible for implementing the
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1 connector BookingPayment {

2

3 connect {

4 PaymentService.ChargeAmount;

5 }

6 to {

7 BookingService.ChargeForHotel;

8 }

9 where {

10 PaymentService.ChargeAmount.inputCCNumber =

11 BookingService.ChargeForHotel.chargeEvent.visaNumber;

12 PaymentService.ChargeAmount.inputAmount =

13 BookingService.ChargeForHotel.chargeEvent.amount;

14 };

15

16 }

Fig. 11. BookingPayment connector describing a regular component composition

assignment of a discount to the price of a hotel booking, is shown in Figure 12
.
1 connector BookingDiscount {

2

3 connect {

4 DiscountService.Discount;

5 }

6 after {

7 BookingService.BookHotel;

8 }

9 where {

10 DiscountService.Discount.inputPrice =

11 BookingService.BookHotel.outputPrice;

12 };

12

13 }

Fig. 12. Discount connector describing an aspect-oriented component interaction

The BookingDiscount-connector is responsible for specifying the compo-
sition between the BookHotel-gate of the BookingService-component and the
Discount-gate of the DiscountService-component. The BookingDiscount-connector
is responsible for specifying an aspect-oriented composition. An aspect-oriented
connector is specified in a similar way as a regular component composition con-
nector. The connection-part now specifies an aspect-oriented interaction be-
tween the related gates. In this particular case, the after-clause specifies that
the return value of the BookHotel-gate should be replaced with the return
value of the Discount-gate. Again, a mapping-part is provided which maps
the inputPrice-property of the Discount-gate upon the outputPrice-property
of the BookHotel-gate. The resulting effect of this connector is that a discount
price is calculated for a booked hotel.

3.3 CoCompose Revisited

In section 2, generic compositions between concepts are introduced which
can be refined towards regular or aspect-oriented composition mechanisms.
However, the decision of whether a concept should be mapped upon an aspect
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or a component still needs to be made at the lowest level of design. In FuseJ,
all concerns of a software system are described as regular components, and
an expressive composition mechanism is employed for combining them. As a
result, FuseJ eases the refinement process at the lowest level of design.

Figure 13 shows the FuseJ solution pattern for the BookingDiscount col-
laboration. Apart from the roles, several FuseJ-specific stereotypes such as
connector, connect and after are employed.

Fig. 13. The FuseJ solution pattern for BookingDiscount

The FuseJ solution pattern shows how the declarative BookingDiscount
collaboration from Figure 2 can almost directly be translated into a FuseJ
connector. The object-oriented solution pattern shown in Figure 4 is forced
to introduce a new BookingDiscount class to implement the composition. The
AspectJ solution pattern shown in Figure 5 needs to map the DiscountService-
concept upon an AspectJ aspect in order to enable to aspect-oriented inter-
action. In the FuseJ solution pattern however, a direct mapping between
CoCompose and FuseJ is possible, as concepts are refined to regular compo-
nents and collaborations between concepts are refined to connectors. As such,
FuseJ is a much easier refinement target for CoCompose MDD refinements
and allows for better traceability between design and implementation.

Figure 14 shows the FuseJ solution pattern for the BookingPayment col-
laboration. Remember that in FuseJ, connectors can also be used to describe
component interactions through events. Figure 15 shows the FuseJ refined
version of the example design in Figure 2.

Fig. 14. The FuseJ solution pattern for BookingPayment

Fig. 15. The example model after applying the FuseJ solution patterns
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4 Tool Support

We are currently developing tool support in order to support the approach
elucidated in this paper. For the CoCompose modeling framework, a visual
drawing editor is developed as a plug-in to the Eclipse IDE Framework [10].
This editor explicitly allows to visualize the CoCompose concepts. Models
are stored in CoCompose-specific XMI [18]. We are still working on UML
XMI importing and exporting. In the future, we plan to develop several
transformation tools for automating the refinement steps and code generation.

For FuseJ, a set of compilers are being developed which enable the com-
pilation of gate and connector specifications. These compilers translate FuseJ
specifications into regular Java classes which can be employed within the FuseJ
run-time infrastructure. For implementing this run-time infrastructure, we
consider the use of dynamic proxies [25]. These dynamic proxies facilitate the
creation of proxy classes on the fly. Given a set of interfaces, an object that
supports each of these interfaces can be created at run-time. When the proxy
receives a message, it passes it to an InvocationHandler, which is responsible
for executing some additional behavior. In our case, an invocation handler
is responsible for enabling aspect-oriented compositions between the gates of
several components.

5 Related Work

Recently, the Object Management Group has introduced the Model-Driven
Architecture (MDA) standard [16]. MDA forms an abstraction layer to specific
implementation platforms. It uses model transformations to refine a high-level
design (described using a Platform-Independent Model or PIM) to a platform-
specific design (described using a Platform-Specific Model or PSM). Several
layered PSMs can be defined to gradually refine the design. CoCompose fits in
the MDA vision as it also uses several layered refinements, which are described
using meta-level solution patterns. These form the intermediate Platform
Models (PMs) that define the transformation from a Platform Independent
Model (PIM) to a Platform Specific Model (PSM).

In the context of MDA, an approach based on graph transformations has
been proposed to transform UML design models to implementation [1]. UM-
LAUT [12] is a generic UML transformation framework, which can for instance
be used for design pattern generation and aspect weaving. The framework is
built upon the UML meta-model and allows for defining your own transfor-
mations, which can be stored in a transformation library. UMLAUT is not
aware of the concept of refinement and requires the developer to manually
choose the refinements. UML models can also be used within CoCompose via
mapping. This way, the CoCompose mechanism can be applied to different
versions of UML by creating only a new mapping.

In generative programming [8] and step-wise refinement [4], features and
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feature models are used to create a family of software systems instead of a
single system. Features can be optional or mandatory for a software system,
depending on the presence of other features. CoCompose can model optional
features through solution pattern roles, which can be left unfilled. Alternative
features can be modeled by alternative concept refinements.

Also at the implementation level, several aspect-oriented technologies are
introduced that do not require a specialized aspect module. Multi-Dimensional
Separation Of Concerns (MDSOC), for example, aims at decomposing soft-
ware so that it encapsulates all relevant kinds (dimensions) of concerns si-
multaneously, without one dominating the others [19]. The current practical
realization of MDSOC is HyperJ for Java [20]. HyperJ captures every con-
cern (crosscutting or not) of an application in a so called hyperslice. Similar
to FuseJ, HyperJ employs pure Java for describing hyperslices, allowing eas-
ier integration of existing modules. Hypermodules are used to compose a set
of hyperslices in order to form an application or new hypermodule. Techni-
cally, HyperJ merges the hyperslices, which are essentially Java classes, using
byte-code transformations. In CBSE, the black-box idea is very important,
because it decreases the coupling between the different components to the ex-
plicit component interfaces only. As such, HyperJ does not comply well with
the component-based philosophy. FuseJ, on the other hand, allows Java beans
to remain first class entities, even at run-time. As such, replacing or deleting
a component dynamically is for example impossible.

Composition Filters [5] is another very different aspect-oriented approach.
The Composition Filters model allows expressing crosscutting concerns by
attaching filters to existing classes. ConcernJ [23] is one of the practical re-
alizations of the Composition Filters approach that modularizes all concerns
of an application into the concern construct. As such, no specific aspect
construct is required. The ConcernJ language does however induce a major
refactoring of existing code in order to be able to modularize normal classes
as concerns. FuseJ is backward compatible as regular Java Beans can be im-
mediately incorporated in the approach. Furthermore, likewise to HyperJ,
ConcernJ invasively alters the concerns in order to insert crosscutting be-
havior. This property also renders the ConcernJ approach less suitable in a
component-based context.

Invasive software composition is a component-based approach that uni-
fies several software engineering techniques, such as generic programming,
architecture systems and aspect-oriented programming [3]. Invasive Software
Composition aims at improving the reusability of software components. To
this end, software components are equipped with both explicit and implicit
hooks. The hooks are then composed using an explicit and separate compo-
sition mechanism. These hooks are in fact very similar to the gate concept of
FuseJ. Gates in FuseJ are however only able to depend on the component’s
public interface, while hooks can be located at any programming construct.
As such, hooks are able to describe a finer level of granularity and the result-
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ing composition has more expressive power. Components in invasive software
composition are however less loosely coupled in comparison to FuseJ as they
are able to depend on each others internals. Technologically, Invasive Software
Composition merges the components to one unified application. Undoubtedly,
merging components renders a very efficient result. The drawback is that
components lose their identity at run-time. FuseJ allows the components, and
their corresponding connectors, to remain first-class, even at run-time.

6 Conclusions

In this paper, we claim that a specialized aspect module should not exist. In
order to support our claim, both a modeling framework and a programming
language are proposed that do not introduce a specialized aspect module.
Instead, a powerful composition mechanism is provided that supports aspect-
oriented composition. The CoCompose modeling framework is based on MDD
and allows step-wise refinement from a high-level design to the lowest level
design or code level. Using these refinements, CoCompose allows postpon-
ing the decision concerning the modularization construct that is chosen for
a particular concern. The drawback of targeting traditional aspect-oriented
programming languages in a refinement is that a specific aspect module has
to be selected in order to modularize certain concerns at this refined design
level. Therefore, the FuseJ programming language is introduced as a better
target for implementing CoCompose designs. The FuseJ programming lan-
guage allows to implement all concerns as regular components and provides
an explicit composition mechanism that supports aspect-oriented composition
by means of gates and connectors. As such, a separate aspect module does not
exist, even at the implementation level and a seamless transition from design
to implementation level is achieved.

The proposed FuseJ gate and connector language is only a first prototype
of our ideas. At the moment, the expressiveness of the FuseJ connectors does
not cover the complete aspect-oriented composition possibilities, as only sim-
ple aspect compositions, such as before and after are supported. Identifying
whether and how other aspect-oriented composition mechanism can map in
this model is subject to further research. A possible problem with the CoCom-
pose approach is scalability. Because every design element can have multiple
refinements, a multitude of possible refinement combinations are available.
Experience with the first version of CoCompose that targets Java, ConcernJ
and JAsCo already suggests that scalability issues can be overcome. In the
future, real-life experiments of CoCompose/FuseJ have to reveal whether this
approach is feasible.
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