
FuseJ: Achieving a Symbiosis between Aspects and
Components

Davy Suvée
System and Software Engineering Lab (SSEL)

Vrije Universiteit Brussel (VUB)
Pleinlaan 2, 1050 Brussels, Belgium

dsuvee@vub.ac.be
http://ssel.vub.ac.be/Members/dsuvee

Keywords: component-based software development, aspect-oriented software

development, symbiosis.
Classification: 5 months in first year’s PhD work.

1 Introduction

For a long time, object-oriented software development (OOSD) was considered the
holy grail of software engineering. Although OOSD considerably improved the
development of software applications, it did not cure all problems experienced during
the software engineering process. For some years now, component-based software
development (CBSD) and more recently aspect-oriented software development
(AOSD) have been proposed to tackle some of these problems.
In CBSD, full-fledged software systems are developed by assembling a set of pre-
manufactured components. Each component is a black-box entity that can be
deployed independently and that is able to provide one or more specific services for
the system [4]. AOSD on the other hand, aims at improving the “separation of
concerns” principle. Some properties of an application can not be nicely modularized
using current software engineering methodologies, as they crosscut several entities of
the system. AOSD aims at solving this problem by introducing a new concept, called
an aspect, which enables the modularization of crosscutting concerns [1].
Nowadays, several AOSD technologies are available for describing crosscutting
concerns in an object-oriented context. Little by little, the possibilities of AOSD are
explored in a component-based context. Similar to OOSD, CBSD suffers from the
tyranny of the dominant decomposition [2]. As a result, integrating the ideas behind
AOSD into CBSD is required. The other way around, namely the integration of the
ideas behind CBSD into AOSD, is a valuable concept as well. CBSD puts a lot of
stress on the plug-and-play characteristic of components, and introducing a similar
concept in AOSD, makes aspects reusable and their deployment easy and flexible.
In this paper, we present the first steps towards a new component model, called FuseJ,
which aims at achieving a symbiosis between AOSD and CBSD, by unifying aspects
and components. The next section introduces the goal of this research by sketching
the shortcomings of our previous research which aimed at integrating the ideas behind
AOSD and CBSD [3]. Section three introduces the first concepts of the FuseJ

component model. Section four discusses the current status of the FuseJ research.
Finally, we state our conclusions.

2 Research Goal

As already mentioned, integrating the ideas behind AOSD and CBSD would be a
valuable contribution to both paradigms. The JAsCo-language [3] was our first step
towards this integration. JAsCo is an aspect-oriented extension for the Java Beans
component model which allows describing reusable aspects, independently from a
specific context. JAsCo differentiates three kinds of entities: aspects beans,
components and connectors, which are described making use of dedicated language
elements. An aspect bean is a regular Java Bean, extended with a number of hooks,
for describing crosscutting behavior. Connectors on the other hand, are responsible
for deploying one or more aspect beans within a specific component context. This
way, whenever the context of an aspect bean is executed, the crosscutting behavior,
defined in the aspect bean, is performed. For more information on the JAsCo
approach, we refer to [3].
Several case-studies have been performed, making use of the JAsCo aspect-oriented
component language. Although the JAsCo approach is a valuable contribution to
research that aims at achieving integration between AOSD and CBSD, some criticism
is required. Similar to classical AOSD-approaches, an aspect bean is responsible for
specifying two things: behavior logic and a description on how the aspect bean
crosscuts the base implementation of the system. But consider for instance the need
for a service which supplies encryption. In some applications, encryption is
implemented as a regular component, and in others, it is implemented as an aspect.
The implementation of the encryption logic itself however, remains the same in both
cases. The only difference between the aspect version of the encryption functionality
and its component version is the way they interact with the rest of the application.
The goal of our research is to achieve symbiosis between AOSD and CBSD. In this
research, no distinction is made any longer between aspects and components. Aspects
are implemented as regular components, omitting a description of how they crosscut
the base implementation of the system. The crosscutting interaction is consequently
specified on a different level.

3 FuseJ Component Model

To achieve symbiosis between aspects and components, we propose a new component
model, called FuseJ, which makes no distinction between aspects and components at
implementation time, at assembly time and at run-time. The FuseJ component model
contains three layers: a component layer, a gate layer and a communication layer.
Figure 1 illustrates the FuseJ component model, making use of a gameserver
application as a basic example. Several players are able to connect to the server for
playing a game and the gameserver application itself uses logging for statistical
purposes.

 GameServer Component

connect(Player)

Logging Component

 logToStandardOutput(String)

Connector 1

Connector 2

connect(Player)

disconnect(Player)

score(Player)

log(String) getCounter()

incrCounter()

logToStandardOutput(String)

logToFile(String,String)

resetCounter()

Figure 1: FuseJ Component Model

All aspects and base components of a system are part of the component layer. The
behavior of both these types of entities is described in some base component
language, and no specific language elements are provided for specifying aspects. As
a result, there is no way to distinguish aspects from components when observing only
their implementation. Each component contained within the component layer is a
black-box entity and is specified independently of other components. In our example,
the gameserver application contains two components: a GameServer component and a
Logging component.
Each component contained within the component layer provides a number of services,
which we call features. These features however, can not be accessed directly. All
communication with or from a component needs to pass through gates, which are
located in the gate layer. A gate is the only entrance point of a component, and
provides access to some feature the component provides. As a result, a gate can be
conceived as some kind of guardian of the internals of a component. A request to a
gate is mapped onto the execution of one or more methods, contained within the
component. This control-flow is however transparent to the user. It is the task of the
component implementer to provide each component with a number of gates and to
supply the corresponding method mappings. The Logging component for instance,
supplies four gates. Some of these gates, such as getCounter, provide access to
features which could be part of a regular component. Other gates, such as
logToStandardOutput and logToFile, provide access to features which are typical
examples of crosscutting behavior. In an aspect-oriented context, these features of the
Logging component would typically be implemented as an aspect. The nice concept
about gates however, is that they are homogenous to the component composer: it does
not matter if a gate provides access to a crosscutting feature or a non-crosscutting
feature, as this is not defined in beforehand, nor in the gate, nor in the component
itself.
Gates are two-way channels. Incoming communication has the following semantics:
"Execute the feature of the component the gate provides access to". Outgoing
communication on the other hand, has the following semantics: "Whenever the
feature of the component the gate provides access to, is executed, do something else".
"Something else" depends on the feature of some other component the outgoing
communication is referring to. Whenever the connect feature of the GameServer
component is for instance requested, its gate commands the execution of the feature(s)

of the gate(s) it is connected to. It is possible to disallow the incoming
communication of a gate. This means that the component does not provide an
implementation for this feature, but that its corresponding gate needs to be connected
to the feature of another component to perform its functionality. An example of this
case is the logging feature of the GameServer component, which is used by the scores
feature for keeping statistics of the players’ scores. It is also possible to disallow the
outgoing communication of a gate. This is for instance the case for the resetCounter
feature. Blocking outgoing communication could be useful in cases were no
interference with a feature should be allowed, this for instance because of
performance issues.
The communication between gates is specified by making use of connectors, situated
in the communication layer. A connector is responsible for specifying the
communication between the gate(s) of one component with the gate(s) of another (or
the same) component. The gameserver application illustrated in figure 1 displays two
interactions between the GameServer component and the Logging component. The
implementer of the GameServer component anticipated the requirement that
whenever a player scores a point, this event should be logged for statistical analysis.
Connector 2 is used to enable this interaction. It connects the gate of the logging
feature of the GameServer component with the gate of the logToFile feature of the
Logging component. This kind of connector is quite similar to the connectors found
in most component-based models. Imagine now that our statistical analysis also
wants to include the scoring rate per hour for each player. For enabling this property,
it should be possible to also log the connection time of each user. The implementer of
the GameServer component did however not anticipate this kind of logging.
However, this interaction can still be enabled, by connecting the gates of the connect
and disconnect feature of the GameServer component with the gate of the logToFile
feature of the Logging component. Observe that this kind of communication between
components is defined as being crosscutting. It is however the connector that is
responsible for implementing this crosscutting interaction, as the Logging component
can be used as both crosscutting and non-crosscutting at the same time. Also, take in
mind that connectors are n-ary entities, i.e. they can contain multiple inputs and
outputs.

4 FuseJ Status

We are experimenting with a prototype Java implementation of the FuseJ component
model to demonstrate the effectiveness of our three layer model. Gates are
implemented manually making use of a simple event-listener protocol. Connectors
are also implemented manually and specify the interaction between gates. In the
future however, a big part of the implementation of gates and connectors could be
generated automatically. We are also considering two approaches for describing
connectors: a dedicated language, or an implementation in regular Java. A dedicated
language eases the development of connectors, as special language constructs are
available for expressing specific interactions. An implementation in regular Java

however, makes it possible to provide connectors with gates, which would again
provide a means for enabling (crosscutting) interactions on the connectors themselves.

5 Conclusions

Current AOSD technologies consider aspects and components to be two separate
entities as both are described by their own dedicated language elements. Our
previous research however indicates that aspects can be considered as regular
components. The only difference between both entities is that their mutual interaction
is defined differently. Therefore, we propose a new component model, called FuseJ,
where no distinction is made between aspects and components. Components are
expressed in terms of features, which are accessed making use of homogeneous gates.
These gates are then combined by means of connectors, which are used to describe
the (crosscutting) interactions between the various features provided by the
components. The FuseJ component model has some promising advantages. The
reusability of components is increased, as a component developer does not need to
decide at development time whether his component describes (non-)crosscutting
behavior. As the interior of a component is not revealed, it is easy to replace or to
update a component, as long as it complies with the old feature interface. The FuseJ
component-model is also hierarchical, as several assembled components can again be
used as a single component, ready for composition. Also, as crosscutting features are
implemented within regular components, it is possible to stack crosscutting features
on top of each other. A disadvantage of gates however, is that join points are
specified on a higher level of granularity than those found in most aspect-oriented
technologies.
This paper only presents the first steps towards the new FuseJ component model. In
the future, the concepts and ideas that are presented here need to be elaborated further
on. In particular, the various communication mechanism provided by the connectors
need to be investigated, as the power of the FuseJ component-model is dependent on
the expressive power of its connectors.

References

[1] Kiczales, G., Lamping, J., Lopes, C.V., Maeda, C., Mendhekar, A. and Murphy, A.
Aspect-Oriented Programming. In proceedings of the 19th International Conference
on Software Engineering (ICSE). Boston, USA, May 1997.

[2] Parnas, D. L. On the Criteria to be Used in Decomposing Systems into Modules. In
Communications of the ACM. Vol. 15. No. 12. Pages 1053-1058. December,1972.

[3] Suvée, D., Vanderperren, W., and Jonckers, V. JAsCo: an Aspect-Oriented approach
tailored for CBSD. In Proceedings of the second AOSD International Conference.
Boston, USA, March 2003.

[4] Szyperski, C. Component Software: Beyond Object-Oriented Programming.
Addison-Wesley, 1998.

