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Abstract. This paper addresses the problem of consistency preserva-
tion in model-driven software development. Software models typically
embody many different views that need to be kept consistent. In the
context of consistency within a model, behaviour inheritance consisten-
cies restrict the way the behaviour of a subclass can specialize the be-
haviour of a superclass. In the context of model evolution, model refac-
torings restructure a model while preserving its behavioural properties.
It is still an open research question how to define behaviour preservation
properties for model refactorings. We claim that behaviour inheritance
consistencies correspond, in an evolution context, to the preservation of
behavioural properties between model versions. To illustrate this claim,
we implemented consistency rules and preservation behaviour rules in
Racer, a reasoning engine for description logics. We show how the same
logic rules can be used to detect behaviour inheritance inconsistencies
in a model and to detect the preservation of call behaviour properties
during model refactoring.

1 Introduction

During model-driven software development, models are built representing differ-
ent views on a software system, or models can be evolved into a new version.
Both situations may lead to inconsistencies. To address the first situation, so-
called behaviour inheritance consistencies can be used to restrict the way the
behaviour of a subclass should specialize the behaviour of a superclass in a class
hierarchy (cf. Liskov’s well-known substitutability principle). To address the sec-
ond situation, so-called model refactorings can be used, because they have the
important benefit that they restructure a model while preserving certain be-
havioural properties.

The aim of this paper is to explore the precise relation between behaviour
inheritance consistencies and model refactorings. We claim that behaviour in-
heritance consistencies within a single model version correspond, in an evolution



context, to the preservation of certain behavioural properties between model
versions. In the remainder of the paper, we validate our claim in four successive
steps.

First, we investigate and formalise behaviour as defined in UML 2.0 state
machines and sequence diagrams (Section 3)[13]. Second, we express different
kinds of behaviour inheritance consistencies in the context of UML 2.0 state
machines and sequence diagrams, and found in literature [19] with our formalism
(Section 4). Third, we investigate and formalise different kinds of behaviour
preservation properties for model refactoring (Section 5). Finally, we show that
these notions of consistency and preservation are closely related (Section 6). To
this extent, we implement a set of logic rules in a reasoning engine based on the
formalism of Description Logic (DL) [2], and show that the logic queries that
are used to detect behavioural inconsistencies in a model, can also be applied
to guarantee the preservation of behavioural properties between different model
versions.

2 Motivating Example

The motivating example used throughout this paper, is based on the design
of an automatic teller machine (ATM), originally developed by Russell Bjork
for a computer science course at Gordon University. A possible usage scenario
of an instance of ATM is shown in the sequence diagram in Figure 1. This
sequence diagram shows part of an interaction between instances of the classes
ATM, Session, CardReader and CashDispenser, when a user decides to make a
withdrawal. The messages sent in the diagram verify if there is enough cash in
the ATM. If so, the amount of cash is dispensed and the card is returned to the
user.

aCashDispenser : CashDispenser aCardReader : CardReader anATM : ATM aSession : Session

checkIfCashAvailable(500)

currentCash()

true

dispenseCash(500)

dispenseCash(500)

ejectCard()

ejectCard()

cash

Fig. 1. Sequence diagram for withdrawal scenario on an ATM



The behaviour of the PrintingATM class, which is a subclass of ATM that
has extra printing functionality, is represented by the state machine in Figure 2.
When a customer wants to withdraw money from his account, he has to insert
a bank card and enter the associated PIN number. If the PIN is not valid, the
card is returned to the user. If a valid PIN has been entered, the ATM prompts
the user to enter the amount to withdraw from his account. If the amount is less
than 100, the user is asked to re-enter an amount. In the other case, the ATM
checks that the client’s account has sufficient funds. If so, the ATM proceeds to
check if it can dispense this amount. Once these checks have been passed, the
ATM dispenses the money and at the same time, the PrintingATM class, unlike
its parent, the ATM class, prints a receipt. Finally, the card is ejected.

 

PINEntry AmountEntry VerifyAccountBalance

VerifyATMBalance

Cash−Receipt

GiveCash

 

PrintReceiptReturnReceipt

issueReceipt()

ReturnCard

[valid PIN]/getAmountEntry() [amount >= 100]/verifyAccount()

[amount < 100]/getAmountEntry()

[not valid PIN]/ejectCard()
checkIfCashAvailable(amount)

[cash >= amount]/dispenseCash(amount)

[cash < amount]/ejectCard()

ejectCard()

Fig. 2. UML protocol state machine for PrintingATM class

Consider the consistency relationship that an instance of PrintingATM must
be usable in each situation where an instance of ATM is required (according to
the substitutability principle). To guarantee this consistency relationship, each
sequence of the ATM sequence diagram of Figure 1 should be contained in the
set of sequences of the PrintingATM state diagram of Figure 2. In our case,
ATM and PrintingATM do not obey this consistency rule, because an instance
of PrintingATM will, after dispensing the cash, always print a receipt. It is
not possible to skip this printing and immediately eject the card, which is the
original behaviour of the ATM class.

Consider now an evolution of the ATM class obtained by extracting function-
ality contained in the checkIfCashAvailable method into a separate method. This



model refactoring is comparable to the source code Extract Method refactoring
[8], but at the design level we do not have source code at our disposal.

In our example, a new method validate is created, which takes two arguments,
amount indicating the amount to withdraw and cash, the amount of money
available in the ATM. This method checks if there is sufficient cash available.
The sequence diagram in Figure 3 is the refactored version of the sequence
diagram in Figure 1 where in the body of the method checkIfCashAvailable, the
extracted method validate is called with arguments 500 and cash, which is the
return value of the invoked currentCash method.

aCashDispenser : CashDispenser aCardReader : CardReader anATM : ATM aSession : Session

currentCash()

true

dispenseCash(500)

ejectCard()

cash

checkIfCashAvailable(500)

validate(500, cash)

dispenseCash(500)

ejectCard()

Fig. 3. Refactored sequence diagram for refactored ATM class

The behaviour specified in Figure 1 is not altered by this model refactoring.
However, the call sequence in the method body of checkIfCashAvailable has been
extended with a call to the new method validate.

3 Behaviour in UML 2.0

In this section, basic definitions of behaviour as defined in the UML 2.0 Super-
structure and Infrastructure Specification [13] are given. These definitions enable
a precise characterisation of behaviour inheritance consistencies and behaviour
preservation in sections 4 and 5.

In UML 2.0, Behaviour is defined as a specification of how its context clas-
sifier changes state over time. Behaviour is an abstract metaclass and as such,
the specification of a behaviour can take a number of forms, as described in its
subclasses. A variety of specification mechanisms are provided by UML, such as
Statemachine, Activity, Usecase and Interaction. To keep our experiments man-
ageable, we deliberately confine ourselves to Statemachine and Interaction as
specifications of behaviour.



3.1 Interaction

As described in chapter 14 of [13], “ Interactions are used in a number of different
situations. They are used to get a better grip of an interaction situation for an
individual designer or for a group that need to achieve a common understanding
of the situation. Interactions are also used during the more detailed design phase
where the precise inter-process communication must be set up according to formal
protocols. When testing is performed, the traces of the system can be described
as interactions and compared with those of the earlier phases.”

The semantics of an Interaction is given by a pair of sets of traces [13]
representing valid traces and invalid traces, respectively. Only the valid traces
are described in [13].

Message
MessageEnd

StateInvariant

Behaviour

Interaction

NamedElement

EventOccurrence

-interaction1

-lifeline*
-covered

1 *
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*
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Fig. 4. UML meta model fragment for interactions

Figure 4 shows the relevant fragments of the UML meta model dealing with
interactions. An Interaction consists of some Lifelines which are covered by
EventOccurrences. EventOccurrences are MessageEnds representing either the
receiving event of a Message or the sending event of a Message. A Message is
a NamedElement that defines one specific kind of communication, represented
by another NamedElement, e.g., an Operation in the case of an operation in-
vocation. A Lifeline represents a ConnectableElement. A ConnectableElement
represents a set of instances owned by a containing classifier instance. The UML
meta class InstanceSpecification represents an instance in a modeled system.
However, this meta class is not related to the ConnectableElement meta class in
the UML 2.0 meta model. In this paper, a Lifeline is assumed to represent an
InstanceSpecification. On a Lifeline, StateInvariants can be specified. An Inter-
actionFragment is a piece of an interaction, which is an interaction in its own
right. An InteractionOperand is an InteractionFragment with an optional guard



expression. Only InteractionOperands with a guard that evaluates to true at this
point in the interaction will be considered for the production of the traces of the
enclosing Interaction.

The guards are InteractionConstraints, which are Constraints. In this paper,
we typically consider constraints that represent pre- and postconditions.

Notation 1 The set of all preconditions of an operation op of a class c,
i.e., the set of conditions specifying the state of the system when the operation op
is invoked, is denoted by Preop,c. The set of all preconditions of all operations
of a class c is denoted by Prec.
The set of all postconditions of an operation op of a class c, i.e., the set of
conditions specifying the state of the system when the operation op is completed,
is denoted by Postop,c. The set of all postconditions of all operations of a
class c, is denoted by Postc.

Depending on its purpose, an Interaction can be displayed with different
types of diagrams. For the sake of simplicity, we only consider sequence diagrams
here. We formally define a SD (sequence diagram) trace as:

Definition 1. A SD trace νo of an instance o of a class c is a sequence of event
occurrences denoted < e1, . . . , en > occurring on the lifeline of the instance o.
An event occurrence e is defined as a couple (m, cons) where m denotes the
message that is associated to this event occurrence and cons represents the con-
straints valid on the lifeline of the instance o before the execution of the event
occurrence e. The elements of cons are instances of the meta classes StateIn-
variant and InteractionConstraint.

Note that this definition of SD trace indicates a subset of what is meant by
the term “trace” in the UML 2.0 [13] chapter 14 on Interactions. A sequence
diagram typically consists of several traces, as defined below:

Definition 2. A sequence diagram ∆ is a set of SD traces. This set typically
contains SD traces for instances of different classes.

For defining behaviour inheritance consistencies, we are only interested in
the order of invocations of an object’s operations. As such, the traces of event
occurrences representing the receipt of a message are considered. Therefore, we
define a receiving SD trace as follows:

Definition 3. A receiving SD trace νo/rec of an instance o of a class c is
an SD trace νo for the instance o with only event occurrences representing the
receipt of messages, which represents the invocation of an operation.

Example 1. A receiving SD trace of the instance anATM of class ATM in the
sequence diagram ∆ of Figure 1 is < e1, e2, e3 >, where e1 represents the re-
ceipt (by anATM ) of the message checkIfCashAvailable, e2 represents the re-
ceipt of the message dispenseCash and e3 represents the receipt of the message
ejectCard.



Notation 2 The set of all event occurrences denoting the receipt of a
message for each instance o of a class c appearing in the sequence diagram ∆
is denoted by E∆,c.

Example 2. Let ∆ and ei be defined as in Example 1. Then E∆,ATM = {e1, e2,
e3}

3.2 Statemachine

UML 2.0 differentiates between two kinds of state machines, behavioural state
machines and protocol state machines. Behavioural state machines are used to
specify the behaviour of various model elements. Protocol state machines are
used to express usage protocols and are always defined in the context of a clas-
sifier, which can have several protocol state machines. These state machines
express the legal transitions that a classifier can trigger. As such they are a
convenient way to define a lifecycle of an object or an order of the invocation
of its operations. Because in the context of behaviour inheritance consistencies,
the order of invocation of operations is the most important, only protocol state
machines are considered here.

A protocol transition specifies a legal transition for an operation. Transitions
of protocol state machines have next to their trigger, which is an operation
invocation, a pre- and a postcondition. We make some simplifying assumptions
in this paper.3

A protocol state machine (PSM) can be defined as follows (based on the
definition in [18] and in [19]) 4:

Definition 4. A protocol state machine Πc = (Sc, Tc, Lc, ρc, Λc) for a class
c, consists of a set of states Sc and a labelled transition set Tc ⊆ P(Sc)× Lc ×
P(Sc) containing labelled relations (S1, l, S2) such that l is a triple (op, g, h)
where op is the operation, g ⊆ Preop,c specifies the precondition of the transition
(which is part of the precondition of the operation op), and h ⊆ Postop,c specifies
the postcondition of the transition (which is part of the postcondition of the
operation op). ρc denotes the initial state and Λc denotes the set of final states
of the state machine.

Example 3. The state machine specified in Figure 2 is a protocol state machine
which has six states of which one is a concurrent state. This concurrent state is
treated (as specified by the definition of a PSM) as a set of simple states. The con-
current state is entered in the set {GiveCash, PrintReceipt}, if issueReceipt() is
called, the new state configuration is {GiveCash,ReturnReceipt}. This brings
us to the next definition.
3 UML provides special kinds of states and transitions, such as history states, stubbed
transitions, junction and choice transitions. These concepts are not considered in
this paper.

4 Note that P(S) denotes the powerset of S.



The state of an object at a given point in time is defined by the set of states
it occupies in the state machine. This set of states is referred to as the life cycle
state configuration of the object.

Definition 5. A life cycle state configuration σo of an instance o of a class
c in a PSM Πc is a subset of Sc.

Definition 6. A PSM trace γ of an instance o of a class c in a PSM Πc is a
sequence of life cycle state configurations < σ1, . . . , σn > such that
σ1 = {ρo} and, for i ∈ {1 . . . n− 1}, σi+1 = σi or ∃(σi, τi, σi+1) ∈ Tc.

Definition 7. A call sequence µ of instance o of class c in a PSM Πc is a
sequence of labels < τ1, . . . , τn > (n ≥ 1), where τi ∈ Lc.

Definition 8. A call sequence µ =< τk, . . . , τn > is valid on a state config-
uration σk of instance o, if there is a PSM trace γ =< σ1 . . . σk . . . σn+1 > of o
where for i ∈ {k . . . n}, (σi, τi, σi+1) ∈ Tc.

Example 4. < issueReceipt, ejectCard > is a valid call sequence on the state
configuration {GiveCash, PrintReceipt} of Figure 2.

4 Behaviour Inheritance Consistencies

The basic definitions given in the previous section enable the precise definition
of behaviour inheritance consistencies in and between protocol state machines
and sequence diagrams. It is expected that the behaviour specification of classes
described by sequence diagrams and/or state machines is consistent with the
behaviour specification of their superclasses. This kind of consistency is not
defined in most object-oriented modeling languages and also not in UML 2.0.

In Ebert and Engels [5] two kinds of consistencies between state machines
are defined, observation and invocation inheritance consistency.

Observation inheritance consistency means that each sequence of calls which
is observable with respect to a subclass must result (under projection of the meth-
ods known) in an observable sequence of its corresponding superclass. If a sub-
class reacts to the invocation of an operation op, where op is also known to the
superclass, this reaction must also be reflected in the superclass behaviour specifi-
cation. Observation consistency can be defined between state machines, between
sequence diagrams, and between a state machine and sequence diagrams.

In order to define this kind of consistency, we need some auxiliary definitions.

Definition 9. The restriction µL of a sequence µ =< τ1, ..., τn > to a set
L is the sequence obtained from µ by removing all τi /∈ L.
Definition 10. Given a sequence diagram ∆ and a PSM Πc.
The function labelc : E∆,c → Lc : (m, cons) → (op, g, h) maps an event
occurrence onto a label as follows:
op is the operation corresponding to message m
g is a set of preconditions of op met by the set of constraints cons
h is a set of postconditions of op met by the set of constraints cons



Definition 11. Observation inheritance consistency. Given a class c and
a subclass c′ of c and instances o of c and o′ of c′.

A PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is observation consistent with a PSM Πc =
(S, T, L, ρ, Λ) if, for every valid call sequence µ′ of o′, µ′L is a valid call sequence
of o.

A SD ∆′ is observation consistent with a SD ∆ with respect to c and c′ if,
for every instance o′ of c′, if ν′ = νo′/rec is an SD trace in ∆′, then ν′E∆,c

is an
SD trace in ∆.

A SD ∆′ is observation consistent with a PSM Πc = (S, T, L, ρ, Λ) with
respect to c′ if, for every SD trace νo′/rec = < e1, . . . , en > in ∆′, there exists
a valid call sequence µo =< τ1, . . . , τn >, containing only labels τi for which
τi = labelc(ei)

Remark that we do not define observation inheritance consistency between a
PSM Πc′ and an SD ∆ with respect to the superclass c. Such a definition would
imply that all possible scenarios are described by ∆, because every trace in the
PSM Πc′ must be observable in ∆ under projection of the methods known. This
demands completeness of the models which is not always the case, especially in
early phases of the software development life cycle.

Example 5. Consider the protocol state machine ΠPrintingATM of Figure 2, and
the protocol state machine ΠATM that is the same as ΠPrintingATM except for
the absence of substates PrintReceipt and ReturnReceipt. ΠPrintingATM is ob-
servation consistent with ΠATM . After hiding the message call {issueReceipt},
the behaviour of the subclass PrintingATM is identical to the behaviour of the
superclass ATM.

Invocation inheritance consistency means that any sequence of operations
invocable on the superclass can also be invoked on the subclass. This notion of
behaviour inheritance consistency is based on the substitutability principle re-
quiring that an object of subclass B of class A can be used where an object of
class A is required.

Definition 12. Invocation inheritance consistency. Given a class c and a
subclass c′ of c and instances o of c and o′ of c′.

A PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is invocation consistent with a PSM Πc =
(S, T, L, ρ, Λ) if every valid call sequence µ on {ρ} in Πc is also valid on {ρ′} in
Πc′ and for their respective PSM traces γ and γ′ it holds that γ = γ′S.

A SD ∆′ is invocation consistent with a SD ∆ with respect to c and c′, if
every SD trace νo/rec in ∆ is also a SD trace in ∆′ for an instance o′ of class
c′.

A PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is invocation consistent with a SD ∆ with
respect to c if, for every SD trace νo/rec =< e1 . . . en > in ∆, there exists a valid
call sequence µo′ =< τ1 . . . τn > such that, for each i ∈ {1 . . . n}, τi = labelc(ei).
Remark that, in this case, we do not define invocation consistency between a
PSM Πc and a sequence diagram ∆′ with respect to a subclass c′ of c. Such a
definition implies completeness of the models involved.



Example 6. The behaviour of the sequence diagram ∆ of Figure 1 is not invo-
cation consistent with the PSM ΠPrintingATM of Figure 2 with respect to class
ATM. Indeed, the SD trace < e1, e2, e3 > of Example 1 does not correspond
to a valid call sequence <checkIfCashAvailable, dispenseCash, ejectCard> in the
PSM ΠPrintingATM , that always requires the message invocation issueReceipt
between dispenseCash and ejectCard.

5 Behaviour Preservation

Model refactorings restructure a model while preserving its behavioural proper-
ties. On the source code level, refactorings of an object-oriented program are re-
structurings that preserve program behaviour. Despite the available tool support
for source-code refactorings and also model refactorings, it is still an open re-
search question how to define behaviour preserving properties for (model) refac-
torings. In [12], call preservation was defined for source code refactorings. This
preservation property can be redefined for model refactorings as follows:

Definition 13. A model refactoring is call preserving if each operation still
invokes at least the same operations after the model refactoring as it did before
the model refactoring.

However, there are different variants of call preservation. Assume that we
have a modelM1 and a refactored versionM2 of this model. The most restricted
form of call preservation specifies that, if an operationm can invoke an operation
n in M1, the operation m can still invoke operation n in M2, following exactly
the same chain of messages as in M1. A less restricted form of call preservation
specifies that this message chain can be completely arbitrary in M2, as long
as n remains reachable from m. Another notion of call preservation we can
define formally, is observation call preservation. In this case, every call sequence
observable with respect to a class inM2 must result in an observable call sequence
of its corresponding class in M1.

Definition 14. Observation call preservation. Let c be a class, c′ a refac-
tored version of c and instances o of c and o′ of c′.

The behaviour specified by a PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is observation call
preserving with a PSM Πc = (S, T, L, ρ, Λ) if, for every valid call sequence µ′ of
o′, µ′L is a valid call sequence of o.

The behaviour specified by a SD ∆′ is observation call preserving with a SD
∆ with respect to c and c′ if, for every instance o′ of c′, if ν′ = νo′/rec is an SD
trace in ∆′, then ν′E∆,c

is also an SD trace of ∆.
The behaviour specified by a SD ∆′ is observation call preserving with a

PSM Πc = (S, T, L, ρ, Λ) with respect to c′ if, for every SD trace νo′/rec =
< e1, . . . , en > in ∆′, there exists a valid call sequence µo =< τ1, . . . , τn >,
containing only labels τi for which τi = labelc(ei).

Remark that Definition 14 is almost identical to Definition 11. The main
difference is that the words observation consistent are replaced by observation



call preserving. Also, c′ does not represent a subclass of c anymore, but a new
version of c in the refactored model.

Example 7. The behaviour specified by the refactored sequence diagram ∆′ of
Figure 3 is observation call preserving with the original sequence diagram ∆ of
Figure 1. The model refactoring presented here, abstracts existing behaviour into
a new operation and as such, boils down to the addition of a message validate
in ∆′. However, this does not affect the behaviour. All traces of the ATM class
in ∆′ are also traces in ∆ if we exclude the message validate.

Another kind of call preservation, invocation call preservation guarantees
that each call sequence invocable on the original version of a class, must also be
invocable on the corresponding class in the refactored model. The definition of
invocation call preserving is identical to Definition 12 by substituting invocation
call preserving for invocation consistency.

Referring to Example 7 above, the behaviour specified by the refactored
sequence diagram ∆′ is not invocation call preserving with sequence diagram ∆.
However, if we would ignore the message validate (because it can be considered
as an auxiliary method that is of no interest to the user), the property would
hold. This lead us to refine the two above notions of behaviour preservation into
weaker, more specialised, variants, where the traces and call sequences can be
restricted to a specific set of messages of interest to the user. As an example, we
give the formal definition of weak invocation call preservation below:

Definition 15. Weak invocation call preservation. Assume a class c, a
refactored version c′ of c and instances o of c and o′ of c′, and user-defined sets
of labels Luser ⊆ L′ and Euser ⊆ E∆′,c′ .

A PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is weak invocation call preserving with a
PSM Πc = (S, T, L, ρ, Λ) if every valid call sequence µ on {ρ} in Πc is also valid
on {ρ′} in Π ′′ where Π ′′ = (S′, T ′′, Luser, ρ

′, Λ′), where T ′′ is the restriction of
transition relations of T ′ to the ones with only labels contained in Luser, and for
their respective PSM traces γ and γ′′ it holds that γ = γ′′S.

A SD ∆′ is weak invocation call preserving with a SD ∆ with respect to c and
c′, if every SD trace νo/rec in ∆ is also a SD trace in ∆′ restrictred to Euser for
an instance o′ of class c′.

A PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) is weak invocation call preserving with a SD
∆ with respect to c if, for every SD trace νo/rec =< e1, . . . , en > in ∆, there
exists a valid call sequence µo′ =< τ1, . . . , τn > such that, for each i ∈ {1 . . . n},
τi = label′c(ei), where label′c(ei) is similar to labelc(ei), except that label′c(ei)
maps E∆,c on Luser.

Example 8. If the message validate is not considered in the sequence diagram
∆′ in Figure 3, the sets E∆,ATM , where ∆ is the sequence diagram in Figure
1, and Euser = {< e1, e2, e3 >}, where ei is defined as in Example 1, are equal.
This trivially implies invocation call preservation.



6 Tool Support

Consistency maintenance requires a decidable formalism to detect inconsistencies
and also a generic framework to facilitate the addition, removal and modifica-
tion of consistency specifications. In earlier work [22], we already proposed and
used description logics (DL) [2] to detect and resolve inconsistencies; also the
translation of the UML meta model and user defined models were described. A
crucial property of DL is that it allows us to guarantee that the consistency rules
that we can specify are decidable.

Given the similarity between the definitions for behaviour consistency and
behaviour preservation, identified in the previous section, it is possible to use
the same formalism in the context of checking the preservation of behavioural
properties between a model and its refactored version.

To achieve this, we set up the following tool chain. UML design models are ex-
pressed in a UML CASE tool (Poseidon [9]) which exports UML models in XMI
format. Using an XML parser (Saxon [17]), the models are translated into de-
scription logic statements. These are asserted into a knowledge base maintained
by a description logic reasoning engine. We chose Racer [10] for this purpose as
it is a state-of-the-art logic reasoning engine for DL.

To check behaviour inheritance consistency within a model and behaviour
preservation between a model and its refactored version, rules are specified.
These rules can be immediately translated into our logic framework using the
query language of Racer (nRQL) [11]. For example, to check invocation consis-
tency or preservation between the behaviour specified by a SD ∆ with respect to
a class c, and a PSM Πc′ = (S′, T ′, L′, ρ′, Λ′) with c′ subclass or refactored ver-
sion of class c, the following rule (written in pseudo-code) needs to be checked:
consistent(Πc′ , ∆, c) ←
query1(events, c,∆),
for each e ∈ events
query2(e, op, startstate, target,Πc′)
if op = NIL then “consistency error at state” startstate

Consider, first of all, the query1 that generates the SD traces for the sequence
diagram ∆:

(retrieve (?events ?c ?seqinteraction)
(and
(?objectid ?c instance-of) ;retrieve the instances of class c
(?objectid ?lifeline (inv represents));using the instance ?objectid the

;representing lifeline ?lifeline is retrieved
(?seqinteraction ?lifeline ownedlifeline);only lifelines from the involved sequence diagram
(?lifeline ?events eventoccurrences) ;the event occurrences ?events occurring on ?lifeline
(?events (some receivemessage message)))) ;only receiving event occurrences

Using these events, the state machineΠc′ is traversed. The next query query2
checks if the operation belonging to the event ?e is also the operation referred
to by the corresponding transition in the statemachine.

(retrieve (?e ?op ?startstate ?targetstate ?statemach)
(and
(?e ?msg receivemessage) ;retrieve the ?msg related to event ?e



(?msg ?op signature) ;retrieve the invoked operation ?op
(?transition ?op referred) ;?transition referring to ?op
(?statemach ?transition owningtransitions) ;?transition owned by statemachine
(?transition ?startstate source) ;?startstate must be the startstate of ?transition
(?transition ?targetstate target))) ;the target state of the ?transitions

We applied the above mentioned rules to check the consistency of the se-
quence diagram in Figure 1 and the protocol state machine in Figure 2. Fi-
nally, we applied the rules to check observation and invocation consistencies and
preservation, to the examples of Section 2. These experiments let us conclude
that our framework for inconsistencies as presented in [22] is also suitable to
check behaviour preservation for model refactorings.

7 Discussion and Related Work

Many notions of behaviour inheritance consistency can be found in literature.
Compared to Schrefl et al. [19], our notions of behaviour inheritance consistency
are more general, since they are defined independent of the kind of subtype
relation between the superclasses and their subclasses. Engels et al. [5] define
observable and invocation consistency using homomorphisms on state diagrams.
Criteria for inheritance of object life cycles based on Petri nets are discussed in
[19], [16] and [21]. Approaches based on CSP are discussed in [6] and [15]. CSP is
used as a medium to check consistency, i.e., the UML model remains consistent if
its CSP translation remains consistent. Moreover, CSP refinement relations are
used to check and define several inheritance approaches and subtyping relations.
In this approach, it is necessary to understand the effects that CSP refinement
relations induce on UML models.

Research on model refactoring is less abundant. A set of basic UML refac-
torings is provided in [20] to improve the software design in a stepwise fashion.
Boger et al. show how model refactorings can be integrated in the Poseidon UML
refactoring browser [3]. Astels uses a UML tool to perform refactorings more eas-
ily, and also to aid in code smell detection [1]. Model refactorings are defined in
[14] as a sequence of transformation rules. Surprisingly, none of the above ap-
proaches towards model refactoring takes behaviour preservation into account.
One of the reasons is that there is no generally accepted behavioural interpreta-
tion of UML models. Therefore, we consider this as an important contribution
of our paper.

The approach presented in our paper does not explicitly specify model refac-
torings as model transformations. In order to do this, the UML metamodel first
needs to be extended with a model transformation language (e.g., based on the
ideas of graph transformation [12]). We also need a formal means to prove that a
transformation preserves precisely those behavioural properties that we want to
reason about (e.g., observation and invocation call preservation). Using such a
formalism, we can guarantee that the refactored model is still consistent, without
needing to recheck all consistency rules. This is precisely the approach taken by
[7] in the context of UML-RT. Transformation rules specify local modifications



that preserve a local consistency property (e.g., absence of deadlocks) that can be
checked locally. This enables an incremental approach to consistency checking.

The approach explained above also provides a promising alternative to tra-
ditional model checking approaches [4] that need to recheck the entire model
whenever small and local changes have been made to a model.

8 Conclusion

In this paper, we have defined different kinds of behaviour inheritance consis-
tencies between UML 2.0 state machines and sequence diagrams. We also have
shown that those consistency specifications correspond to behaviour preserva-
tion properties between a UML model and its refactored version. Based on those
consistency definitions, definitions of behaviour preservation are given. We also
showed that our tool chain for detecting behavioural inconsistencies can be used
to check the preservation of behaviour between different model versions.

We only carried out experiments on small examples, experiments on larger
models must be done. As future work, we want to explore if other consistency
specifications such as the ones defined in [22] correspond to the preservation of
certain behavioural properties. We also need to extend our ideas to deal with
consistency maintenance and behaviour preservation between different levels of
abstraction. This will allow us to provide better formal support for the model-
driven architecture process.
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