
Guiding Service Composition in a Visual Service Creation Environment

Mathieu Braem, Niels Joncheere, Wim Vanderperren, Ragnhild Van Der Straeten,
and Viviane Jonckers

System and Software Engineering Lab
Vrije Universiteit Brussel

Pleinlaan 2, 1050 Brussels, Belgium
{mbraem,njonchee,wvdperre,rvdstrae}@vub.ac.be,

vejoncke@ssel.vub.ac.be

Abstract

Current day service composition languages like WS-
BPEL require in-depth knowledge of this language by the
service composition designers. In this paper we present
a high-level, visual Service Creation Environment (SCE).
This SCE provides service composition templates, verifica-
tion of compatibility and guidelines, and advanced separa-
tion of concerns through Aspect-Oriented Software Devel-
opment. Composition templates are abstract descriptions
of reusable compositions containing several placeholders
for services. Services are verified to be compatible with
the composition template when a service is mapped onto
a composition template’s placeholder. Composition guide-
lines such as QoS constraints can be added to the SCE and
verified. The modularization of crosscutting concerns is
supported by the SCE through the general-purpose Padus
Aspect-Oriented Programming language and the possibil-
ity to add concern-specific languages on top of Padus. The
SCE generates the appropriate WS-BPEL processes given a
complete and verified service composition.

1. Introduction

Over the last years, web services [2] have been gaining
a lot of popularity as a means of integrating existing soft-
ware in new environments. Basic web services can be cre-
ated by exposing existing applications to the internet using
XML front-ends. By composing a number of basic web ser-
vices, new web services can be created that provide more
advanced functionality. These compound web services can
then be used by other web services, further improving soft-
ware reusability.

Originally, the only way to compose web services was
by manually writing the necessary glue-code in program-

ming languages such as C and Java. It quickly became clear,
however, that a composition of web services is more nat-
urally captured by dedicated composition languages than
by general-purpose programming languages. Today, the
most popular language with respect to the composition of
web services is the Business Process Execution Language
(WS-BPEL) [3]. WS-BPEL processes are platform- and
transport-independent, and are expressed using XML. Re-
cently, a higher-level visual notation for WS-BPEL, called
the Business Process Modeling Notation (BPMN) [33], has
been proposed.

Although languages like WS-BPEL are designed for web
service composition as opposed to general-purpose pro-
gramming languages, they still require a large amount of
in-depth technical knowledge. For example, in the telecom
world, due to the intensive competition, a fast introduc-
tion of new services is needed through innovative service
creation mechanisms. Consequently, the service developer
needs to be able to learn how to use these technologies eas-
ily. Some of the key principles of Business Driven Devel-
opment (BDD) [21] are: (1) to cope with complexity, (2)
to deliver incremental value to enable early and continuous
feedback and (3) to focus continuously on quality.

Complexity can be reduced by working at a higher level
of abstraction and by supporting modularization of so-
called crosscutting concerns. The aim is to use higher-level
tools and languages and as such reduce the amount of man-
ual intervention. To enable early feedback to the user the
composition process has to support, e.g., the verification
of QoS requirements, the automatic generation of service
compositions at an early stage of development. By provid-
ing support for guiding the composition process quality is
ensured through the BDD life-cycle. To accommodate the
above specified requirements, our approach supports:

• verifying whether a service applied to a partner role is
effectively able to function in that role. For instance,

mailto:mbraem@vub.ac.be
mailto:njonchee@vub.ac.be
mailto:wvdperre@vub.ac.be
mailto:rvdstrae@vub.ac.be
mailto:vejoncke@ssel.vub.ac.be

the protocol of the service might be incompatible.

• verifying whether QoS constraints can be met using
the given services and workflow composition. This is
especially important for real-time processes.

• guiding the composition process by verifying other
quality attributes of the process in typical application
domains. For instance, certain activities need to be per-
formed in parallel in certain applications.

• supporting the modularization of concerns that cannot
be nicely isolated in the main process description [20]
such as billing [15] or access control [14]. Arsanjani
et al. [4] show that such crosscutting concerns are a
serious problem in web service development.

In order to facilitate and guide service composition a
higher level view above, e.g., WS-BPEL, and correspond-
ing tool support is required. We therefore propose a visual
service creation environment (SCE), which allows user-
friendly composition of services using reusable composition
templates, and which supports encapsulating crosscutting
concerns using both general-purpose and concern-specific
aspect languages. This environment is implemented as a
plug-in for the Eclipse [16] platform.

The research presented in this paper is conducted in the
context of the WIT-CASE project, which is partly funded
by Alcatel Belgium, a telecom company, and by the Insti-
tute for the Promotion of Innovation through Science and
Technology in Flanders (IWT-Vlaanderen).

The outline of the paper is as follows. The next section
introduces the running example used throughout the paper.
Section 3 provides an overview of the SCE and its main con-
cepts. Afterwards, the composition process and verification
support of the SCE is explained in more detail. Section 5
describes related work, and Section 6 states our conclusions
and future work.

2. Running Example

This section introduces the multi-party conference call as
a realistic example that will be used throughout this paper.
Remark that the example is a simplified version of a use
case delivered by Alcatel.

A multi-party conference call service orchestrates the
planning of a multi-party conference call into the agenda
of the participating parties. An alert service will initiate the
multi-party call at the specified date and time. Upon un-
availability of one of the parties, a notification will be sent
to that party on the delivery channel and terminal as speci-
fied by that party.

The composition of the different services establishing a
multi-parti conference call is expressed in the Business Pro-

cess Modeling Notation (BPMN). This notation has the po-
tential to become the standard notation for business process
modeling. In the context of service composition, it provides
the service designer with a high-level graphical language
for expressing service compositions. Therefore we elabo-
rate the multi-party conference call example providing the
corresponding BPMN diagrams.

The multi-party conference call service consists of two
parts: a provisioning part, which is the part that describes
what is done when the conference call is planned, and a
real-time part, which is the part that describes what is done
when the conference call is actually performed.

Five services are used in the provisioning part: the con-
ferenceCallProvisioning service, the bridge and call con-
troller service, the agenda service, the messaging service
and the alert service. Figure 1 provides the BPMN Business
Process Diagram (BPD) for the provisioning part of the ex-
ample. In order to plan a conference call, the initiator of the
conference call will contact the conferenceCallProvisioning
service. This service will first use the agenda service to add
the call to the agenda of each of the attendees. After that,
it will request an alert from the alert service for the planned
time for the conference call, and configure through the call
controller and bridge service possible supplementary ser-
vices. If an error occurs during the execution of the “Set-
Alert” or “ConfigureBCC” tasks, a message will be sent by
a messaging service to the initiator of the conference call
indicating that something went wrong.

Co
nf
er
en
ce
Ca
ll

Pr
ov
isi
on
in
g

ConfigureBCC

Al
er
t

Ag
en
da

BC
C

M
es
sa
gi
ng

AddCallToAgenda

SendMessage

start

end

addCall

sendMessage

configureBCC

SetAlert

requestAlert

Figure 1. BPD for the provisioning part

Figure 2 provides the BPD for the real-time part. Five
services are used in the real-time part: the ConferenceCall-
RealTime service, the call controller and bridge service, the
agenda service, the alert service, and the messaging service.
At the planned time for the conference call, the alert service
calls the ConferenceCallRealTime service in order to start
the real-time part of the conference call. This service will
retrieve the call’s attendees from the agenda service. If there

is only one participant, the process sends a message to this
participant before terminating. If there are several partici-
pants the call controlling and bridge service is called. This
service will create the conference call and will invite the
attendees. If an attendee is currently unavailable, the call
controlling and bridge service will send a message to the
corresponding attendee containing the contact number for
the conference call using the messaging service. After this,
all available attendees can start the conference call.

Co
nf

er
en

ce
Ca

ll
Re

al
Ti

m
e SendMessage

Al
er

t
Ag

en
da

BC
C

M
es

sa
gi

ng

GetParticipants

AddToCall

start

end
initiate

getParticipants

sendMessage

addToCall

numberOfParticipants <= 1

check number of attendees

Figure 2. BPD for the real-time part

3. The Service Creation Environment

In this section, we introduce the main concepts and un-
derlying tools and languages of the SCE. First, the main
concepts of the SCE are explained. Secondly, we motivate
the use of AOP principles and show how aspects can be
defined in our AOP language Padus. The SCE allows the
definition and usage of concern-specific languages that are
built on top of Padus. We briefly describe an example of
such a concern-specific language. Finally, the GUI of the
SCE is presented.

3.1. Concepts of the SCE

Figure 3 gives an overview of the main concepts of the
SCE. The SCE contains three repositories:

• A first repository contains a set of documented ser-
vices. The services contained in this repository are the
basic building blocks of the SCE. These services can
be in-house or third-party services.

• Another repository contains a set of documented com-
position templates. A composition template is speci-
fied by one or several WS-BPEL processes in the SCE.

Documented
Services

Documented
Composition
Templates

S1

S2

A B

C

B before a
service fulfilling
the condtions:

S1 S2

S3

Service composition
and creation

B1

B2

Adding, for example
coordination,

billing concern

Documented
Specific Concerns

Service execution

Check for Feature Interaction
and invoke "handling" code

dynamically

Figure 3. SCE architecture

• A third repository contains different crosscutting con-
cerns corresponding to management concerns such as
billing schemes. A crosscutting concern can be con-
nected to services and composition templates visually
and further refined through a pointcut language. These
concepts are detailed in Section 3.3 and 3.4.

In Section 4, we explain how the service designer is sup-
ported in the creation of a service composition.

3.2. Services and Composition Templates

The services stored in the first SCE repository are docu-
mented by a WSDL [11] file. The WSDL file may contain a
description of basic quality of service requirements. In the
current implementation of our SCE, focus is on common
QoS attributes like cost and average response time. Fur-
thermore, a service needs to be documented by a WS-BPEL
process that specifies the external protocol information and
that can be visualized by a BPD. Third-party services that
are documented by other means than WSDL files and WS-
BPEL processes are also amenable for verification by our
SCE tool if it is possible to construct an appropriate WSDL
file and WS-BPEL process from their documentation.

Composition templates are abstract descriptions of web
service compositions and may contain one or more place-
holders for services. These abstract descriptions of service
compositions are visualized by BPDs. Figures 1 and 2 are
examples of visualizations of such abstract descriptions of
the conference call template. Remark that the conference
call composition template contains a non-real-part (the pro-
visioning part) and a real-part (the actual communication)
resulting in multiple WS-BPEL specifications. The reposi-
tory of composition templates can contain pre-defined com-
position templates, but the user can also define new com-
position templates in the SCE. Consider again the BPDs in

Fig. 1 and 2. These BPDs can be drawn by the user in a
BPMN editor and exported to WS-BPEL code. This WS-
BPEL code represents abstract processes and is interpreted
by the SCE as a composition template.

3.3. Aspects and Padus

Aspect-oriented software development (AOSD) has been
proposed as a means of improving separation of con-
cerns [26] in software. AOSD is based on the observa-
tion that a number of concerns in software (such as log-
ging [19] and billing [15]) cannot be modularized using
object-oriented software development: a program can only
be decomposed in one way (e.g., according to the class hi-
erarchy in object-oriented programming), and concerns that
do not align with this decomposition end up scattered across
the program and tangled with one another. This problem is
dubbed “the tyranny of the dominant decomposition” [25].
AOSD allows expressing such crosscutting concerns in well
modularized aspects, so that adding, modifying or remov-
ing such concerns does not require changes to the main pro-
gram.

Initial research on AOSD has concentrated on applying
its principles to the object-oriented programming paradigm.
Arsanjani et al. [4] and others [10, 13, 32] have shown that
AOSD has a lot of potential in a web services context too.

The SCE supports the modularization of crosscutting
concerns through the Padus [6] language. Padus is our
aspect-oriented process language based on WS-BPEL. For
a detailed explanation of Padus, which is outside the scope
of this paper, the interested reader is referred to [6]. We only
introduce and explain the features of Padus relevant for the
SCE.

Padus is an XML-based language, and introduces two
main concepts: aspects and aspect deployments. An aspect
is a reusable description of a crosscutting concern, and con-
tains one or more pointcuts and advice. A pointcut selects
interesting points in the execution of the target WS-BPEL
process (called joinpoints), and exposes target objects to the
advice that expresses extra behavior that should be inserted
at a pointcut.

The pointcut language of Padus is a logic language based
on Prolog, and is thus very expressive in the sense that it is
declarative and supports naturally the specification of point-
cuts. [17]. The complete target WS-BPEL process is reified
as a collection of facts that can be queried by the pointcut.
The advice language is WS-BPEL, extended with AOSD-
specific constructs. Advice code is defined in an XML el-
ement that specifies the type of the advice. For before, af-
ter and around advices, this is a WS-BPEL activity. In ad-
vices can be used to insert other WS-BPEL elements too.
For around advices, the <proceed> activity can be used
to include the original behavior specified by the joinpoint.

1 <before joinpoint="Jp"
2 pointcut="invoking(Jp,‘smsService’,
3 ‘smsServicePT’,Operation)">
4 <sequence>
5 <assign>
6 <copy>
7 <from>Logging invocation of operation
8 $Operation</from>
9 <to variable="logMsg" part="msg"/>

10 </copy>
11 </assign>
12 <invoke partnerLink="logging"
13 portType="log:loggingPT"
14 operation="logMessage"
15 inputVariable="logMsg"/>
16 </sequence>
17 </before>

Listing 1. An advice that logs all invocations
of the SMS service

Listing 1 shows an example of a before advice that logs all
invocations of the smsServicePT web service. The ex-
tra behavior that is inserted is a sequence of two activities:
first, the log message containing the invoked operation is
created; then, this message is sent to the logging service.

The Padus technology is based on a traditional static
weaver that processes the target WS-BPEL processes and
generates new WS-BPEL processes containing the advice
code as specified in our visual environment. The main ad-
vantage of this approach is the compatibility with existing
infrastructure, as the output can be deployed on any WS-
BPEL-compatible engine.

3.4. Concern-Specific Languages

Our Padus language allows the implementation of as-
pects describing a certain crosscutting concern. Padus is
a general purpose AOP language and pogramming a cer-
tain concern requires in-depth knowledge of the Padus lan-
guage. This is in contradiction with our research objective
to allow the description of management concerns in an in-
tuitive, concise and declarative manner. Therefore, we need
the ability to (visually) specify concerns on a higher level
of abstraction. Our solution is to enable the definition of
concern-specific languages on top of the Padus technology
and integrated in the SCE.

An example of a crosscutting concern that occurs in
many service compositions is billing. Billing can be as sim-
ple as deducting a fixed fee from a client’s account after
the execution of an operation, but it can also require com-
plicated schemes based on the client’s location, standing,
which operation was executed, how long it took, etc. There-
fore a dedicated concern-specific Billing language is pro-
vided to the service designer. The SCE also allows the defi-
nition of other concern-specific languages. These languages

1 <concern:billing type="time" name="billcall">
2 <!-- specify when billing should occur: -->
3 <start when="invoking(Service,Port,‘connect’,User)"/>
4 <end when="invoking(Service,Port2,‘disconnect’,User)"/>
5
6 <!-- specify what should be charged: -->
7 <advice>
8 <begin> <charge type="setup" context="User"/>
9 </begin>

10 <success> <charge type="time" vontext="User,$Time"/>
11 </success>
12 <fail> <!-- do nothing --> </fail>
13 <finally> <!-- do nothing --> </finally>
14 </advice>
15 </concern>

Listing 2. Billing example

are XML-based languages too as they are built on top of the
Padus general-purpose AOP language.

In the Billing language, there are three types of Billing
modules: event-based modules are used to perform billing
based on events that occur during the execution of a ser-
vice (e.g., when a text message has been sent), time-based
modules are used to perform billing based on the time that
has passed between two events (e.g., between the start and
the end of a telephone call), and data-based modules are
used to perform billing based on the volume of data that has
been exchanged between two services. Next, it is possible
to specify for each kind of Billing module to specify when
billing should occur, and what should be charged.

Listing 2 provides an example of a time-based Billing
module (cf. line 1). Because our example is a time-based
module, it specifies both when billing should start (using the
start element in line 3) and when billing should end (us-
ing the end element in line 4). The when attributes of the
start and end elements are Padus pointcuts that select
certain points in the execution of a service.

Each module specifies what should be charged in the
advice element. This element has four children: the
begin element specifies what should be done when the
concern is activated, the success element specifies what
should be done when the concern terminates successfully,
the fail element specifies what should be done when an
exception is thrown while the concern is active, and the
finally element specifies what should be done when the
concern terminates, regardless of whether it terminates suc-
cessfully or not.

To apply a billing concern to the service process or ser-
vice composition process, a user can select the relevant as-
pects, add them to the service process and concretize them.

3.5. SCE GUI

Figure 4 provides a screenshot of the SCE’s interface.
The editor view (in the middle of the screen) is used to edit

compositions, and consists of two main parts: a large draw-
ing canvas, and a smaller palette. The palette contains some
selection and connection tools, and shows the available
services, composition templates, aspects expressed using
Padus and aspects expressed in a dedicated concern-specific
language as they are loaded from the library. By double-
clicking on a service or a service composition, the config-
ured editor for that service or composition is launched. By
default we use a BPMN editor but remark that other process
modelling notations or languages can be used to visualize
the composition and the internal flow of a service.

The outline view (at the right of the screen) shows a
tree-based overview of the state of the composition, and
the properties view (at the bottom of the screen) shows the
properties of the element that is currently selected in the
editor view or in the outline view.

The next section explains into more detail how the ser-
vice designer is guided through the composition process by
verifying several service composition properties.

4. Guiding the Composition Process

In order to create a composition in the SCE, it suffices
to drag a composition template on the composition canvas
and fill all the placeholders with concrete services. Aspects
can be connected to services, meaning that they will only
be applied to these concrete services, or to a complete com-
position template, in order to apply them to all the services
that take part in this composition.

The composition shown in Figure 4 contains a compo-
sition template called “conferenceCall” with four service
placeholders. Three services – a concrete “alert” service
corresponding to the alert service (cf. Section 2), a con-
crete “SMS” service corresponding to the messaging ser-
vice and a concrete “agenda” service corresponding to the
agenda service – have been added to the composition tem-
plate’s placeholders, while one placeholder is still empty.
This placeholder should be filled in before the composition
can work, for instance using the “BCC” service available in
the library. For each of the services it is indicated whether
they belong to the real-time part or to the non-real-time part
or to both parts in the conference call composition.

4.1. Protocol Verification

An important requirement of the SCE is that it supports
and guides users in creating valid compositions. The SCE
accomplishes this by verifying whether compositions are
valid while they are created: when a service is dragged
onto a placeholder, the SCE checks whether the service’s
protocol is compatible with the composition template’s pro-
tocol. In case the service turns out to be incompatible, a
report is generated that provides mismatch feedback to the

Canvas

Properties & Verification Report

Palette Outline

Figure 4. Screenshot of the SCE

user. Compatibility checking based on protocols rather than
plain APIs is possible because every service is explicitly
documented with a protocol specification expressed in WS-
BPEL.

In literature, a wealth of research exists on the topic of
protocol verification [8, 22, 27, 31, 35]. Our verification
engine is based on the PacoSuite approach [34], which in-
troduces algorithms based on automata theory to perform
protocol verification. In order to provide protocol verifica-
tion in the SCE, the WS-BPEL specifications of each ser-
vice, aspect and composition template are translated into
deterministic finite automata (DFA). By applying the algo-
rithms introduced by the PacoSuite approach, the SCE can
decide whether the service’s protocol is compatible with
the composition template’s protocol. More specifically, the
PacoSuite algorithm consists of constructing an automaton
that covers the complete composition by taking a special-
ized intersection of the composition template’s automaton
with each service’s automaton. The composition is invalid
when the resulting automaton is empty (i.e. no path from
a start to stop state). In that case a report is generated that
pinpoints which operations of which service does not follow
the composition template’s protocol. In case more detail is
required, the user can also view the generated automaton.

Because the algorithm is based on taking intersections
of automatons, the resulting performance is in worst-case
exponential with respect to the size of the input automata.

Notice that the algorithm is only executed at composition
time and thus does not interfere with the running applica-
tion. Furthermore, in practice the verifier seems to work
in an acceptable time frame. For instance, a quite involved
case study consisting of seven composition templates and
about thirty services can be verified in under ten seconds on
our test system1.

To demonstrate the idea we go back to the running ex-
ample. The composition template expects a service that
handles the scheduling logic: the Agenda service. The
vendor can choose from several alternatives in his service
repository, each handling a different backend. Important for
the composition is that the protocol of the chosen service,
matches the protocol that is expected by the composition
template. In this case we know from the service’s WSDL
file and protocol specification extracted from the service’s
WS-BPEL file that the operations AddCall, Accept and
GetParticipants are supported and in which order
these are invoked. Translating the protocol information to
DFAs, we can verify that the service’s protocol is compat-
ible with the composition template and we allow it in the
composition.

It is possible that an aspect adapts the external protocol
of an existing service (e.g., by adding an invocation) so that
it becomes incompatible with the composition template’s
protocol. Our tool therefore employs the Padus weaver both

1Mac OSX 10.4, Intel Core Duo 2Ghz, 1GB DDR2-RAM

on the composition template and on the services’ BPMN
protocol specification before translating them to DFAs. As
such, the effect of the aspect on the external protocol of
the composition template and services is visible and can be
taken into account by the verification engine.

4.2. Aspects and CSLs

The composition shown in Figure 4 contains an aspect
called “logging”, which is connected to the “messaging”
service. A service called “diskWriting” has been added to
the aspect’s only placeholder. The result of this composi-
tion is that the conference call application works using the
selected services, and that a logging aspect, which invokes
the disk writing service, is deployed to the messaging ser-
vice to log the messaging actions selected by the aspect’s
pointcut.

Notice that the aspects themselves define a declara-
tive pointcut that selects interesting joinpoints in the target
workflow for the aspect at hand. The user of the SCE can
only visually select the deployment scope, i.e. a complete
composition or a specific service.

Next to this “logging” aspect, the composition is also
affected by a concern-specific billing aspect. The palette
contains a library of templates for concern-specific aspects,
which may be instantiated by dragging them on the canvas.
The palette in the example contains three such templates,
i.e., “billing (time)”, “billing (event)” and “billing (data)”,
which correspond to the three types of billing that are iden-
tified above.

When a concern-specific aspect is dragged on the can-
vas and selected in the editor view, its properties appear in
the properties view. A time-based billing aspect, for exam-
ple, has five properties: “language”, “type”, “start”, “end”,
and “advice”. The first two properties simply show the lan-
guage and the type of the aspect, respectively. The other
properties, however, can be changed in order to define be-
tween which two points in the execution of the composi-
tion billing should occur, and how this billing should be
achieved. Based on this information, the information for
the corresponding Billing module is generated by the SCE.

4.3. Guideline Verification

In the context of the WIT-CASE project, the partners
have identified a non-exhaustive list of conditions that can
apply to service compositions in order to ensure efficient
execution. We specified a number of programmable guide-
lines that statically check these conditions and detect bad
smells in service compositions. These guidelines are op-
tional and can be turned off and on by the service designer
in the SCE. We list some of these guidelines here:

• Quality-of-Service In the composition template we set
constraints on placeholders for services, limiting the
services that can be used to those that have an execu-
tion time bounded within these constraints.

• Short lived real-time processes This guideline is
closely related to the Quality-of-Service guideline, but
takes the execution time of the complete realtime part
of the composition (instead of operations on single ser-
vices) into account. The minimal execution time of the
real-time process can be computed from the service
composition modeled and the SCE generates a warn-
ing if this execution time exceeds a certain predefined
amount of time.

• Paralellism Handling tasks concurrently improves ef-
ficiency because independent tasks do not have to wait
for others to finish. This guideline verifies if activities
are situated in parallel branches.

• Asynchrony The Asynchrony guideline verifies that
the invocations used in the composition are always
asynchronous, i.e., non-blocking calls.

• Subdivision Two-way communication between a real-
time and a non real-time process should be limited and
a warning is generated if the communication between
these two parts exceeds a certain number of calls.

To illustrate the Quality-of-Service guideline we go back
to the running example. The composition template requires
a Messaging service to notify the participants of the confer-
ence call of any errors. Imagine that the composition de-
signer has two different services available that handle mes-
saging: one works by sending a text message to the partic-
ipants’ phones, the other by sending an email to the par-
ticipants. In the documentation for these services, it is de-
clared that sending an SMS message takes 10 time units,
while sending an email takes 5 time units. The composition
templates states that using the messaging service can take
a maximum of 5 time units, so only the email messaging
service is accepted by the guideline.

Figure 5 shows a screenshot of the output of the guide-
line verification in the SCE. Two warnings are shown. The
first one reports the violation of the quality-of-service by
the concrete SMS service as explained above. The second
warning indicates that the Asynchrony guideline is violated
because a synchronous invocation is found in the composi-
tion specification of the conference call composition. The
error item shown in the screenshot in Figure 5 specifies that
the composition is not complete because the “BCC” place-
holder is not yet filled in.

Figure 5. Guideline verification report

Standard BPEL

Execution Engine

Padus Weaver

SCE

BPEL + Padus aspects

BPEL

Figure 6. Code generation flow

4.4. Code Generation and Deployment

When the composition is complete and verified, the user
may choose to generate the resulting composition and de-
ploy it on a WS-BPEL engine. This will start the code gen-
eration process (of which the flow is denoted in Figure 6),
which will bind the unbound partner links in the composi-
tion templates. An aspect deployment is automatically gen-
erated for the aspects contained in the composition. The
Padus weaver is then employed to weave the aspects into
the resulting WS-BPEL processes based on the aspect de-
ployment specification. Remark that for the aspects written
in a concern-specific language there is an extra step of indi-
rection. These aspects are first translated into regular Padus
aspects, and then woven into the code.

A resulting composition can also be imported back into
the library as a new service. The generated WS-BPEL
process then serves as documentation for the new service.
Apart from specifying a name and documenting the exter-
nal protocol, this process is also automated.

The SCE also includes a built-in WS-BPEL engine that
can be used to execute immediately a resulting composi-
tion. This feature is meant to be able to assess quickly the
result rather than to be the real deployment target. We are
currently working on improving the integration of this en-

gine, so that it can be used as a debugger for compositions
by providing feedback directly to the SCE.

5. Related Work

Several visual component composition environments
already exist in the context of Component-Based Soft-
ware Development (CBSD). CBSD advocates reusable
and loosely-coupled components in order to realize flexi-
ble plug-and-play component composition of off-the-shelf
components [30]. The main problem in CBSD is that wiring
components together requires writing glue-code manually
in order to resolve syntactic and semantic incompatibil-
ities. A visual component composition environment al-
lows to visually compose the components and supports the
(semi-)automatic generation of glue-code that implements
the composition. Current practice component composition
environments, like for example JBuilder from Borland al-
low already some form of automatic glue-code generation
from a given component composition. The main difference
with our approach, apart from the focus on components in-
stead of services, is that they do not support a reusable en-
capsulation of composition logic. Furthermore, there is no
support for verifying whether a certain composition is pos-
sible apart from syntactically checking messages and argu-
ments. Another disadvantage is that they do not support
modularizing crosscutting concerns.

Documenting components with protocol documentation
is already well investigated in literature. Campbell and
Habermann [8] introduced the idea of augmenting inter-
face descriptions with sequence constraints already in 1974.
More recent work includes the Rapide system [22] or the
PROCOL system [31]. In the research area of component
based software development, several component composi-
tion environments are available that lift the abstraction level
for component composition. Yellin and Strom [35], Reuss-
ner’s CoCoNut project [27] and PacoSuite [34] for example
also employ automata to document components. PacoSuite
is one of the most advanced component composition envi-
ronments and supports higher-level component composition
based on sequence charts. The main advantage with respect
to the other work on protocol verification is that PacoSuite

supports multi-party connectors, whereas other approaches
typically only support binary connectors. The PacoSuite ap-
proach is, however, domain dependent, and is only targeted
at the simple JavaBeans component model.

In [24] the Component Workbench is presented. Compo-
nents from different component models can be composed
and combined with web services. The resulting compo-
sition can be exposed as a web service. The workbench
supports multi-party connectors, however there is no sup-
port for modularizing crosscutting concerns. In [1] an in-
tegrated, end to end service creation environment is pre-
sented. This environment allows for service matching,
composition and deployment. As in our approach, com-
monly QoS attributes are verified on the service composi-
tion. However, in [1] crosscutting concerns such as billing,
access control, etc. are still tangled throughout the main
composition logic making it hard to add, modify or remove
such concerns. The Taverna workbench [18] allows the con-
struction of complex workflows with focus on the bioinfor-
matics domain. It can also be used to create web services.
Their verification is focussed on input and output compat-
ibility and they do not support modularizing crosscutting
concerns.

The METEOR-S approach developed a QoS model that
allows for the description of nonfunctional aspects of web
services [9]. To automatically compute the overall QoS of
web service composition, a mathematical model has been
designed and implemented. An issue of future work is to
investigate whether we could use this algorithm in our ap-
proach. Sirin et al. [28] report on an interactive, goal-
oriented approach for service composition. The composi-
tion relies on semantic annotations of services with OWL-S.
Extending our verification techniques with semantic infor-
mation provided by marking up content is an issue of future
work.

6. Conclusions and Future Work

In this paper, we present a high-level service creation en-
vironment for composing services. Our approach guides the
service composer in creating service compositions by ver-
ifying both hard constraints such as service compatibility
and softer constraints such as quality guidelines. Further-
more, the SCE supports the modularization of crosscutting
concerns through the Padus aspect language. The SCE also
provides a framework for developing concern-specific lan-
guages on top of Padus.

Our work is still in an early phase and as such several
improvements are possible:

• Our approach supports the visual deployment of as-
pects onto concrete services. The pointcuts still have
to be defined programmatically in Padus. Describ-
ing pointcuts at a higher level of abstraction would

be an important contribution to our work. We are ex-
perimenting with existing pointcut visualizations such
as Theme/UML [12], Join Point Designation Dia-
grams [29] and AOSF [23] to solve this problem.

• The support for integrating concern-specific languages
is currently quite limited. Apart from a framework
consisting of a set of common tools (such as XML
parsing and transformation tools) and a visualization
template language, defining and implementing a new
concern-specific language still largely happens in an
ad-hoc manner. A more in-depth solution based on ex-
isting work (such as, e.g., Babel [7] or GenVoca [5]) is
subject to future work.

• The verifier now only checks as soon as a service is
dragged on a placeholder. A more user-friendly ap-
proach would already pre-check compatible services
for each placeholder and only allow to select from the
list of pre-approved services. We plan to alter our pro-
totype tool to be able to support this.

• A case study of a real deployment is needed to validate
our approach in an industrial setting.

Acknowledgments

This research is partly funded by Alcatel Belgium and
the Institute for the Promotion of Innovation Through
Science and Technology in Flanders (IWT-Vlaanderen)
through the WIT-CASE project.

References

[1] V. Agarwal, K. Dasgupta, N. Karnik, A. Kumar, A. Kundu,
S. Mittal, and B. Srivastava. A service creation environment
based on end to end composition of web services. In Pro-
ceedings of WWW 2005, pages 128–137. ACM, 2005.

[2] G. Alonso, F. Casati, H. Kuno, and V. Machiraju, editors.
Web Services: Concepts, Architectures and Applications.
Springer, Heidelberg, Germany, 2004.

[3] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trick-
ovic, and S. Weerawarana. Business Process Execution Lan-
guage for Web Services, version 1.1, May 2003.

[4] A. Arsanjani, B. Hailpern, J. Martin, and P. Tarr. Web
services: Promises and compromises. Queue, 1(1):48–58,
2003.

[5] D. Batory, V. Singhal, J. Thomas, S. Dasari, B. Geraci, and
M. Sirkin. The GenVoca model of software-system genera-
tors. IEEE Software, 11(5):89–94, 1994.

[6] M. Braem, K. Verlaenen, N. Joncheere, W. Vanderperren,
R. Van Der Straeten, E. Truyen, W. Joosen, and V. Jonckers.
Isolating process-level concerns using Padus. In S. Dust-
dar, J. Fiadeiro, and A. Sheth, editors, Proceedings of the

4th International Conference on Business Process Manage-
ment (BPM 2006), volume 4102 of LNCS, pages 113–128.
Springer, 2006.

[7] J. Brichau. Integrative Composition of Program Generators.
PhD thesis, Programming Technology Lab (PROG), Vrije
Universiteit Brussel, Brussels, Belgium, Sept. 2005.

[8] R. Campbell and A. Habermann. The specification of pro-
cess synchronisation by path expressions. In Proceedings of
an International Symposium on Operating Systems, pages
89–102, Apr. 1974.

[9] J. Cardoso, A. P. Sheth, J. A. Miller, J. Arnold, and
K. Kochut. Quality of service for workflows and web ser-
vice processes. J. Web Sem., 1(3):281–308, 2004.

[10] A. Charfi and M. Mezini. Aspect-oriented web service
composition with AO4BPEL. In L.-J. Zhang, editor, Pro-
ceedings of the 2nd European Conference on Web Services
(ECOWS 2004), volume 3250 of LNCS, pages 168–182.
Springer, Sept. 2004.

[11] E. Christensen, F. Curbera, G. Meredith, and S. Weer-
awarana. Web Services Description Language (WSDL), ver-
sion 1.1. W3C Note 15 March 2001, World Wide Web Con-
sortium, Mar. 2001.

[12] S. Clarke and E. Baniassad. Aspect-Oriented Analysis and
Design - The Theme Approach. Addison-Wesley, 2005.

[13] T. Cottenier and T. Elrad. Dynamic and decentralized
service composition with Contextual Aspect-Sensitive Ser-
vices. In Proceedings of the 1st International Conference on
Web Information Systems and Technologies (WEBIST 2005),
pages 56–63, Miami, FL, USA, May 2005.

[14] B. De Win, W. Joosen, and F. Piessens. Developing secure
applications through aspect-oriented programming. In R. E.
Filman, T. Elrad, S. Clarke, and M. Akşit, editors, Aspect-
Oriented Software Development, pages 633–650. Addison-
Wesley, Boston, 2005.

[15] M. D’Hondt and V. Jonckers. Hybrid aspects for weav-
ing object-oriented functionality and rule-based knowledge.
In K. Lieberherr, editor, Proc. 3rd Int’ Conf. on Aspect-
Oriented Software Development (AOSD-2004), pages 132–
140. ACM Press, Mar. 2004.

[16] The Eclipse platform. http://www.eclipse.org/.
[17] K. Gybels and J. Brichau. Arranging language features for

pattern-based crosscuts. In M. Akşit, editor, Proc. 2nd Int’
Conf. on Aspect-Oriented Software Development (AOSD-
2003), pages 60–69. ACM Press, Mar. 2003.

[18] D. Hull, K. Wolstencroft, R. Stevens, C. Goble, M. R.
Pocock, P. Li, and T. Oinn. Taverna: a tool for build-
ing and running workflows of services. Nucl. Acids Res.,
34(suppl 2):W729–732, 2006.

[19] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. An overview of AspectJ. In J. L. Knud-
sen, editor, Proc. ECOOP 2001, volume 2072 of LNCS,
pages 327–353, Berlin, June 2001. Springer.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented pro-
gramming. In M. Akşit and S. Matsuoka, editors, 11th Eu-
ropeen Conf. Object-Oriented Programming, volume 1241
of LNCS, pages 220–242. Springer Verlag, 1997.

[21] P. Kroll and W. Royce. Key principles for
business-driven development, 2005. http://www-
128.ibm.com/developerworks/rational/library/oct05/-
kroll/index.html.

[22] D. Luckham, J. Kenney, L. Augustin, D. Vera, D. Bryan, and
W. Mann. Specification and analysis of system architecture
using Rapide. IEEE Transactions on Software Engineering,
21, 1995.

[23] M. Mahoney, A. Bader, T. Elrad, and O. Aldawud. Using
aspects to abstract and modularize statecharts. In O. Al-
dawud, G. Booch, J. Gray, J. Kienzle, D. Stein, M. Kandé,
F. Akkawi, and T. Elrad, editors, The 5th Aspect-Oriented
Modeling Workshop In Conjunction with UML 2004, Oct.
2004.

[24] J. Oberleitner and S. Dustdar. Constructing Web Services
out of Generic Component Compositions. In M. Jeckle and
L. Zhang, editors, Proceedings of the International Confer-
ence on Web Services Europe, volume 2853 of LNCS, pages
37–48, Berlin, Heidelberg, New York, et al., August 2003.
Springer.

[25] H. Ossher and P. Tarr. Using subject-oriented programming
to overcome common problems in object-oriented software
development/evolution. In Proc. 21st Int’l Conf. Software
Engineering, pages 687–688. IEEE Computer Society Press,
1999.

[26] D. L. Parnas. On the criteria to be used in decomposing sys-
tems into modules. Comm. ACM, 15(12):1053–1058, Dec.
1972.

[27] R. H. Reussner. Automatic component protocol adaptation
with the CoCoNut tool suite. Future Generation Computer
Systems, 19(5):627–639, 2003.

[28] E. Sirin, B. Parsia, and J. Hendler. Filtering and selecting
semantic web services with interactive composition tech-
niques. IEEE Intelligent Systems, 19(4):42–49, 2004.

[29] D. Stein, S. Hanenberg, and R. Unland. Expressing different
conceptual models of join point selections in aspect-oriented
design. In AOSD ’06: Proceedings of the 5th international
conference on Aspect-oriented software development, pages
15–26, New York, NY, USA, 2006. ACM Press.

[30] C. Szyperski. Component Software: Beyond Object-
Oriented Programming. ACM Press and Addison-Wesley,
New York, NY, USA, 1998.

[31] J. van den Bos and C. Laffra. PROCOL: A concurrent
object-oriented language with protocols delegation and con-
straints. Acta Informatica, 28:511–538, June 1991.

[32] B. Verheecke, W. Vanderperren, and V. Jonckers. Unravel-
ing crosscutting concerns in web services middleware. IEEE
Software, 23(1):42–50, Jan. 2006.

[33] S. A. White. Business Process Modeling Notation (BPMN),
version 1.0, May 2004.

[34] B. Wydaeghe. PacoSuite: Component Composition Based
on Composition Patterns and Usage Scenarios. PhD the-
sis, System & Software Engineering Lab, Vrije Universiteit
Brussel, Brussels, Belgium, Nov. 2001.

[35] D. M. Yellin and R. E. Strom. Protocol specifications and
component adaptors. ACM Transactions on Programming
Languages and Systems, 19(2):292–333, Mar. 1997.

	Introduction
	Running Example
	The Service Creation Environment
	Concepts of the SCE
	Services and Composition Templates
	Aspects and Padus
	Concern-Specific Languages
	SCE GUI

	Guiding the Composition Process
	Protocol Verification
	Aspects and CSLs
	Guideline Verification
	Code Generation and Deployment

	Related Work
	Conclusions and Future Work

