
FACULTY OF SCIENCE
Department of Computer Science
System and Software Engineering Lab

Inconsistency Management in
Model-Driven Engineering

A dissertation submitted in partial fulfilment of the requirements
of the degree of Doctor in Science

Ragnhild Van Der Straeten

Advisors: Prof. Dr. Viviane Jonckers, Prof. Dr. Tom Mens

An Approach using Description Logics

September 2005

FACULTEIT VAN DE WETENSCHAPPEN
Vakgroep Informatica
Laboratorium voor Systeem en Software Engineering

Inconsistentiebeheer in
modelgebaseerde ontwikkeling

Proefschrift ingediend met het oog op het behalen van de graad
van Doctor in de Wetenschappen

Ragnhild Van Der Straeten

Promotoren: Prof. Dr. Viviane Jonckers, Prof. Dr. Tom Mens

Een benadering gebruikmakend van
Description Logics

September 2005

Abstract

Model-driven engineering (MDE) is an approach to software development where the pri-
mary focus is on models, as opposed to source code. Models are built representing different
views on a software system. Models can be refined, evolved into a new version, and can be
used to generate executable code. The ultimate goal is to raise the level of abstraction, and
to develop and evolve complex software systems by manipulating models only. The ma-
nipulation of models is achieved by means of model transformation. Because model-driven
engineering is still in its infancy, there is a need for sophisticated formalisms, techniques
and associated tools supporting model development, evolution and transformation.

The main concern of the research presented in this dissertation, is the definition, detec-
tion and resolution of model inconsistencies. We focus on two aspects of these activities:
defining and resolving inconsistencies, and a feasibility study of Description Logics (DLs)
as a formalism for supporting these activities.

Since the Unified Modeling Language (UML) is the generally accepted object-oriented
modelling language, it ought to play an essential role in MDE. A software design is typically
specified as a collection of different UML diagrams. Because different aspects of the software
system are covered by different UML diagrams, there is an inherent risk that the overall
specification of the system is inconsistent. Also model transformations, such as (arbitrary)
model evolutions, can transform a model into an inconsistent state. Unfortunately, current-
day UML CASE tools provide poor support for managing inconsistencies between (evolving)
UML models.

Inconsistency management is a complex process consisting of different activities. It
is a well-studied process that is also well-known within software engineering. However,
in the UML context, little research has been done taking into account a wide range of
inconsistencies over different kinds of UML diagrams. Inconsistency management in the
UML context, is quite complicated due to several reasons. The most obvious reasons are
the missing formal semantics for the UML and the UML being a general purpose language
that can be applied to several application domains and in several software development
processes.

To be able to define the occurrence of UML model inconsistencies precisely and unam-
biguously, there is first of all a need to formalise the UML’s abstract syntax and concepts.
A first contribution is to formalise an important fragment of the abstract syntax. The stud-
ied UML fragment allows the specification of the static structure of an application and
the specification of behaviour of individual objects and the possible interactions between
objects. As a second contribution, we propose a classification of inconsistencies. The defi-
nitions of these inconsistencies are based on our formalisation. Inconsistency management,
as a process, also includes the activity of resolving inconsistencies. Different resolution
strategies are known in literature. The resolution of inconsistencies gives rise to some par-
ticular challenges. We give an overview of these challenges in the context of our classified
inconsistencies.

From the formalisation of a fragment of the UML abstract syntax, from our classification
of inconsistencies, from the definition of different inconsistencies and from the different
resolution strategies, we distil a set of key criteria. The requirements for each of these

criteria can be used to evaluate a formalism and tool support supporting the detection and
resolution of inconsistencies.

Through the second focus of this dissertation, we discovered that Description Logics
(DLs) and DL systems are suited (or can be made suited) for the detection and resolution
of inconsistencies on a fairly high-level of model abstraction.

DL is a two-variable fragment of first-order predicate logic, defining a family of logic
languages, offering a classification task based on the subconcept-superconcept relationship.
DLs are very suited for reasoning about hierarchies and about the satisfiability of knowledge
bases. Different DL systems are developed and can be used to validate this formalism for
the purpose of inconsistency detection and resolution.

DLs are validated against our key criteria in three successive steps. First, we investigate
to which extent it is possible to encode the fragment under study of the abstract syntax of
the UML. We also answer the question if DLs can be used as a semantic domain for some
possible semantics for UML diagrams. Second, we show how inconsistencies can be detected
using this formalism. Finally, we investigate if it is possible to resolve inconsistencies using
DLs and the capabilities of state-of-the-art DL systems.

Model transformations are considered to be the heart and soul of MDE. One partic-
ular kind of model transformation and evolution is model refactoring. Model refactorings
restructure models as opposed to source code refactorings, which restructure source code
and are well-known and well-studied. Model refactorings preserve behaviour. We show how
some of the classified inconsistencies correspond to behaviour preserving properties that can
be expressed between a UML model and its refactored version. A second idea about model
refactorings introduced in this dissertation, is to use inconsistency detection and resolution
techniques for supporting a software engineer in executing model refactorings.

Our ideas are illustrated and validated on a simplified, yet complex enough, set of
models of an Automatic Teller Machine (ATM) simulation application using a prototype
tool, called RACOoN. This tool is integrated in a commercial UML CASE tool using the
latter’s built-in plugin mechanism.

Samenvatting

Modelgebaseerde ontwikkeling is een bepaalde benadering van software ontwikkeling waarbij
de nadruk ligt op modellen in plaats van op broncode. Modellen worden gebouwd vanuit een
bepaalde kijk op het software systeem. Modellen kunnen verfijnd worden, evolueren naar
nieuwe versies en kunnen, bijvoorbeeld, gebruikt worden om broncode te genereren. Het
ultieme doel van modelgebaseerde ontwikkeling is om het abstractieniveau te verhogen en
om complexe software systemen te ontwikkelen en te laten evolueren enkel door modelma-
nipulatie. Deze modelmanipulaties worden bekomen door middel van modeltransformaties.
Modelgebaseerde ontwikkeling staat echter nog in zijn kinderschoenen waardoor er een nood
is aan gesofisticeerde formalismen, technieken en geassocieerde programma-ondersteuning
voor het ontwerpen van modellen, de evolutie van modellen en transformatie van modellen.

De hoofdinteresse van het onderzoek dat gepresenteerd wordt in deze thesis, is de defini-
tie, detectie en resolutie van model inconsistenties. De aandacht wordt gevestigd op twee
aspecten van deze activiteiten, nl., de definitie van inconsistenties en resolutie strategieën,
en een onderzoek naar de haalbaarheid van “Description Logics” (DLs) ter ondersteuning
van deze activiteiten.

Vermits de “Unified Modeling Language” (UML) de standaard objectgeoriënteerde mod-
elleertaal is, zou het een belangrijke rol moeten spelen in modelgebaseerde ontwikkeling.
Een software ontwerp is meestal een collectie van UML diagrammen, waardoor er een in-
herent risico is dat de globale specificatie van het systeem inconsistent is. Modeltransfor-
maties, zoals bijvoorbeeld een willekeurige evolutie van het model, kunnen inconsistenties
veroorzaken. De bestaande UML ondersteunende programma’s bieden echter onvoldoende
ondersteuning voor het beheren van inconsistenties tussen (evoluerende) UML modellen.

Inconsistentiebeheer is een complex proces bestaande uit verschillende activiteiten. Het
is een goed bestudeerd proces dat bekend is binnen software ontwikkeling. In de context
van UML is er nog niet zo veel onderzoek gedaan naar verschillende soorten inconsistenties
over een aantal overlappende UML diagrammen. En dit omwille van een aantal redenen. De
belangrijkste zijn: UML heeft geen formele semantiek, daarbovenop kan één enkel diagram
op verschillende manieren gëınterpreteerd worden en UML is een taal voor algemeen ge-
bruik in de zin dat ze kan gebruikt worden voor verschillende applicatiedomeinen en binnen
verschillende software ontwikkelingsprocessen.

Om UML model inconsistenties op een precieze manier te kunnen definiëren, hebben we
nood aan een formalisatie van de abstracte syntax van UML en een mogelijke semantiek.
Een eerste bijdrage van dit werk is de formalisatie van een belangrijk deel van de abstracte
syntax van UML. Dit deel van UML laat toe om de statische structuur van een applicatie
te specificeren en eveneens de specificatie van het gedrag van een bepaald object en de
mogelijke interacties tussen objecten. Een tweede bijdrage van dit werk bestaat uit een
classificatie van mogelijke inconsistenties tussen en binnen modellen die beantwoorden aan
het geformaliseerde deel van UML. Deze inconsistenties worden gedefinieerd op een precieze
manier aan de hand van de vooropgestelde formalisatie. Inconsistentiebeheer omvat niet
alleen de definitie maar ook het oplossen van inconsistenties. Deze activiteit brengt een
aantal specifieke uitdagingen met zich mee. We geven dan ook een overzicht van deze
uitdagingen.

Gebaseerd op onze formalisatie, op de classificatie van een verzameling inconsistenties
en op de verschillende uitdagingen gepaard gaande met het oplossen van inconsistenties,
kunnen een aantal sleutelcriteria gedistilleerd worden. Elk van deze criteria heeft een aantal
specifieke vereisten die gebruikt kunnen worden om een formalisme en ondersteuning voor
de definitie, detectie en oplossing van inconsistenties, te evalueren.

Het tweede aspect waarop de aandacht gevestigd wordt in deze thesis, is de evaluatie van
“Description Logics” als formalisme voor inconsistentie detectie en resolutie en dit aan de
hand van de sleutelcriteria. DL is een fragment van eerste-orde predikatenlogica en definieert
een familie van logische talen. Deze talen bieden een classificatietaak aan gebaseerd op een
subconcept-superconcept relatie. Ze zijn zeer geschikt voor het redeneren over hiërarchieën
en over de consistentie van kennisbanken.

In dit werk gaan we niet alleen na in hoeverre DLs geschikt zijn voor het representeren
van het door ons geformaliseerde UML fragment, maar ook in hoeverre de gedefinieerde
inconsistenties kunnen gedetecteerd worden en in hoeverre het mogelijk is om inconsistenties
op te lossen gebruik makende van deze logica’s en de bestaande ondersteunende systemen.

Modeltransformaties worden beschouwd als zijnde het hart en de ziel van modelge-
baseerde ontwikkeling. Modelherstructureringen zijn één welbepaalde soort van model-
transformaties. Deze transformaties herstructureren modellen. De tegenhanger van mod-
elherstructureringen zijn broncodeherstructureringen. Deze herstructureringen zijn bekend
en goed bestudeerd. Herstructureringen bewaren gedragseigenschappen die uitgedrukt kun-
nen worden tussen het originele model en het geherstructureerde. Wij tonen hoe een aantal
van onze gedefinieerde consistenties corresponderen met bepaalde gedragseigenschappen.
Een tweede idee is om inconsistentie detectie en resolutie technieken te gebruiken ter onder-
steuning van het uitvoeren van modelherstructureringen door een software ontwikkelaar.

Om de ideeën en benadering voorgesteld in deze thesis te illustreren en te valideren wordt
gebruik gemaakt van een verzameling modellen die de specificatie van een geldautomaat
simulatie voorstellen. Hiervoor hebben we een prototype programma ontwikkeld, genaamd
RACOoN, dat gëıntegreerd is in een bestaand UML ondersteunend programma.

Acknowledgements

First, I would like to thank Prof. Dr. Viviane Jonckers, for granting me the opportunity
to obtain a Ph.D., for allowing me to freely choose research topics I believed interesting,
for supporting me these past years and for proofreading this dissertation.

I am also greatly indebted to Prof. Dr. Tom Mens. Without his support and collabora-
tion during the last two years, I would probably still have to start writing. Our collaboration
also resulted in writing several papers together. He read every draft of this dissertation and
always provided me with valuable comments.

I owe my gratitude to my Ph.D. committee members, for taking the time to read this
dissertation in detail and for providing me with valuable comments. Apart from my advisors
Viviane and Tom, the committee members are Prof. Dr. Theo D’Hondt, Prof. Dr. Dirk
Vermeir, Prof. Dr. Geert-Jan Houben, Prof. Dr. Gregor Engels and Prof. Dr. Ralf Möller.

I should not forget to thank all the people that proofread parts of this dissertation.
Besides Tom, Viviane and Ralf, Dr. Maja D’Hondt and Prof. Dr. Kim Mens provided me
with valuable comments.

Many thanks also go to Jocelyn Simmonds. During her master’s thesis, Jocelyn helped
shaping some of the ideas of this dissertation. She also started developing the prototype
tool presented in this dissertation.

I am grateful to the people of the DL community: to Dr. Ulrike Sattler and Dr. Carsten
Lutz for introducing me in this community, to Prof. Dr. Volker Haarslev, Ralf and Michael
Wessel for developing the Racer system. Special thanks goes to Ralf and Michael for
always answering the enormous amount of e-mails and questions I sent them about DLs
and Racer.

I owe my gratitude to my colleague Maja for brainstorming about the rule-based ap-
proach presented in this dissertation, and for the nice little chats we had and the way she
encouraged me to finish this dissertation. I am also grateful to my colleague Dennis Wage-
laar for the discussions on model-driven engineering. Many thanks also go to all my other
colleagues of the System and Software Engineering Lab for providing an inspiring working
environment: Miro Casanova, Maŕıa Agustina Cibrán, Bruno De Fraine, Niels Joncheere,
Davy Suvee, Dr. Wim Vanderperren and Bart Verheecke. I also want to thank the (for-
mer) assistants of the department of Computer Science, with whom I shared some teaching
tasks, for the nice collaboration: Dr. Katja Verbeeck, Dr. Tom Lenaerts, Steven Claes,
Joke Reumers, Bram Vanschoenwinkel and Dr. Joris Van Looveren.

I would like to thank my boyfriend Brecht Vandermeiren for putting up with me, for
always being there and for his moral support.

Last but not least, I would like to thank my parents and my grandparents. Special
thanks to my mother for asking me a thousand times when my dissertation would finally
be finished. She and my father gave me the opportunity to study and to pursue whatever
degree I wanted. I also want to thank them for supporting every decision I made.

“Een open geest hebben is cruciaal. Je moet dingen die alle anderen ervaren
als voldongen feiten toch in twijfel durven trekken. Het grondig te bekijken om
te weten of het echt wel waar is. Daardoor zie je dingen die anderen niet zien,
gewoon omdat ze de vraag niet stellen.”

Prof. Dr. Catherine Verfaillie in een interview in De Morgen,
zaterdag 22 januari 2005.

Contents

Table of Contents i

List of Figures ix

List of Tables xi

List of Racer Fragments xiii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Research Objectives and Approach . 3

1.2.1 Objectives . 3
1.2.2 Approach . 4

1.3 Model-Driven Engineering . 5
1.3.1 What is a Model? . 5
1.3.2 The Role of the UML in MDE . 6
1.3.3 Transformation of Models . 7

1.4 Model Refactoring . 8
1.5 Inconsistency Management . 10

1.5.1 Inconsistency Management Process 10
1.5.2 Dimensions of Consistencies . 11

1.6 Key Criteria . 12
1.7 Contributions . 13
1.8 Outline . 15

2 Lightweight Formalisation of UML 2.0 Fragment 19
2.1 Case Study Requirements . 19
2.2 UML 2.0 Specification . 21

2.2.1 A Metamodelling Approach . 21
2.2.2 The Four-Layer Metamodel Hierarchy 21
2.2.3 Specifications . 22
2.2.4 UML 2.0 Diagrams . 24

2.3 Scope of UML 2.0 Fragment . 25
2.4 UML 2.0 Class Diagram . 27
2.5 UML 2.0 Sequence and Communication Diagram 37

2.5.1 Communication View . 37
2.5.2 Interaction View . 40

CONTENTS ii

2.6 UML 2.0 State Machine Diagram . 44
2.7 UML 2.0 Models . 51
2.8 Conclusion . 52

3 Conceptual Classification of Inconsistencies 53
3.1 UML and Consistency . 53
3.2 Conceptual Classification Explained . 56

3.2.1 Overview . 56
3.2.2 Motivation . 58
3.2.3 Inconsistency Template . 58

3.3 Structural Specification Inconsistencies . 59
3.3.1 Inherited Cyclic Composition Inconsistency 59
3.3.2 Dangling Type Reference . 60
3.3.3 Connector Specification Missing . 60

3.4 Structural Specification/Instance Inconsistencies 63
3.4.1 Instance Specification Missing . 63

3.5 Structural Instance Inconsistencies . 68
3.5.1 Disconnected Model . 68

3.6 Behaviour and Behaviour Inheritance . 71
3.7 Behavioural Specification Inconsistencies 73

3.7.1 Invocation/Observation Interaction Inconsistencies 73
3.8 Behavioural Specification/Instance Inconsistencies 75

3.8.1 Invocation/Observation Behaviour Inconsistencies 75
3.8.2 Specification Behaviour Incompatibility 76
3.8.3 Specification Incompatibility . 77

3.9 Behavioural Instance Inconsistencies . 80
3.9.1 Invocation Inheritance Inconsistency 80
3.9.2 Observation Inheritance Inconsistency 81
3.9.3 Instance Behaviour Incompatibility 83

3.10 General Discussion . 84
3.11 Conclusion . 86

4 Inconsistency Handling 87
4.1 Terminology . 87

4.1.1 Inconsistency Management . 87
4.1.2 Consistency Maintenance . 88

4.2 Resolution Actions . 89
4.2.1 Causes of Inconsistencies versus Resolution Actions 89
4.2.2 Classification of Resolution Actions 90
4.2.3 Dependencies between Resolutions of Inconsistencies 92

4.3 Construction Rules . 95
4.3.1 Preservation of Observation/Invocation Consistency 95
4.3.2 Preservation of Behaviour Compatibility 97
4.3.3 Preservation of Structural Consistencies 97

4.4 Discussion . 98
4.4.1 Conclusions . 98

iii CONTENTS

4.4.2 Related work . 98
4.5 Key Criteria . 99

4.5.1 Criterion #1: Abstract Syntax and Semantics Representation 99
4.5.2 Criterion #2: Precise Definitions of Inconsistencies and Inconsistency

Detection . 100
4.5.3 Criterion #3: Precise Definitions and Management of Interactive In-

consistency Resolutions . 101
4.5.4 Tool Support Requirements . 101

4.6 Conclusion . 102

5 Introducing Description Logics 103
5.1 Why Logic Formalism? . 103
5.2 Why Description Logics? . 104
5.3 Concepts, Roles and Knowledge Bases . 105
5.4 Reasoning Tasks . 109
5.5 Expressive Means in DLs . 110

5.5.1 Tboxes . 110
5.5.2 Number Restrictions . 110
5.5.3 Inverse Roles . 111
5.5.4 Transitive Roles . 111
5.5.5 Role Inclusion Axioms . 111
5.5.6 General Role Inclusion Axioms . 112
5.5.7 Concrete Domains . 112

5.6 Complexity of Reasoning in DLs . 114
5.6.1 SHIQ . 114

5.7 On the Relation between DL and Modal Logic 116
5.8 Description Logic Systems . 117

5.8.1 Analysis Template for DL Systems 118
5.8.2 Classic . 118
5.8.3 Loom . 120
5.8.4 Fact . 121
5.8.5 Racer version 1.7 . 122
5.8.6 Discussion . 124

5.9 Conclusion . 125

6 Encoding of UML Model Elements 127
6.1 Encoding of UML Metamodel . 127

6.1.1 Encoding . 127
6.1.2 Example . 130
6.1.3 Discussion . 134

6.2 Concepts versus Individuals . 134
6.3 Interpretation of UML Models . 135

6.3.1 Class Diagrams . 136
6.3.2 Sequence and Communication Diagrams 136
6.3.3 Protocol State Machines . 137

6.4 Encoding of UML Class Diagrams . 138

CONTENTS iv

6.5 Encoding of Protocol State Machines . 139
6.5.1 Call Sequence Encoding . 139
6.5.2 Adding State Information . 140
6.5.3 Discussion . 143

6.6 Encoding of Interactions . 143
6.6.1 At Specification Level . 143
6.6.2 At Instance Level . 145

6.7 Encoding of Constraints . 146
6.7.1 OCL versus DLs . 147
6.7.2 OCL Constraints Encoded in SHIQ(D−) 148

6.8 A DL Framework Representing UML Models 150
6.9 Discussion and Related Work . 151

6.9.1 Formalising Statecharts . 151
6.9.2 Formalising Interactions . 152
6.9.3 Symbolic Messages versus Parametrised Messages 153
6.9.4 Evaluation of Criterion #1 . 154

6.10 Conclusion . 154

7 A DL Inconsistency Detection Approach 155
7.1 Conceptual Classification Revisited . 155
7.2 Querying the UML Metamodel . 157

7.2.1 Motivation for a DL Query Language 157
7.2.2 Requirements for a DL Query Language 159
7.2.3 nRQL . 161
7.2.4 Inconsistency Detection using nRQL 163

7.3 Using our DL Framework Representing UML models 165
7.3.1 The Use of Abox Reasoning Tasks 165
7.3.2 The Use of Tbox Reasoning Tasks 166

7.4 Discussion and Related Work . 169
7.4.1 Related work . 169
7.4.2 Advantages and Limitations of our Approach 170
7.4.3 Evaluation of Criterion #2 . 171

7.5 Conclusion . 172

8 A Rule-Based DL Inconsistency Resolution Approach 173
8.1 Definition of Resolution Actions . 173

8.1.1 At Abox level . 173
8.1.2 At Tbox level . 175

8.2 Challenges of Inconsistency Resolution . 175
8.3 Motivation for a Rule-Based Approach . 175
8.4 Rule-Based Systems . 176

8.4.1 Inconsistency Resolution Rules . 176
8.5 Description Logics and Rules . 177
8.6 Rule-Based DL System . 178

8.6.1 Rule Definition . 178
8.6.2 Rule Engine . 182

v CONTENTS

8.6.3 Requirements for Rule-Based DL System 182
8.6.4 nRQL Rules and Rule Engine . 183

8.7 Discussion and Related Work . 184
8.7.1 Related Work . 184
8.7.2 Evaluation of Criterion #3 . 185

8.8 Conclusion . 185

9 Model Refactorings 187
9.1 Motivating Example . 187

9.1.1 Model Refinement . 187
9.1.2 Model Evolution . 188
9.1.3 Model Refactoring . 189

9.2 Behaviour Preservation . 191
9.3 Behaviour Preservation and Behaviour Inheritance Consistencies 193
9.4 Model Refactoring through Rule-Based Inconsistency Resolution 196

9.4.1 Source Code Refactoring versus Model Refactoring 196
9.4.2 Refactorings Considered . 197
9.4.3 Executing Move Operation . 198

9.5 Discussion on a Rule-Based Refactoring Approach 203
9.5.1 Evaluation . 203
9.5.2 Open Issues . 206

9.6 Related Work . 207
9.7 Conclusion . 208

10 Proof-of-concept Tool Support 209
10.1 Introduction to RACOoN . 209

10.1.1 Architecture . 210
10.2 Inconsistency Detection in RACOoN . 212

10.2.1 Querying the Metamodel . 212
10.2.2 Impact of nRQL Completeness Modes 213
10.2.3 DL Framework . 213

10.3 Supporting Refactorings in RACOoN . 215
10.3.1 Move Operation Step-by-Step in RACOoN 217

10.4 Conclusion . 222

11 Conclusion 223
11.1 Summary and Contributions . 223
11.2 Future Work . 226

11.2.1 Larger Set of UML Elements . 227
11.2.2 Validation on Large-scale (Industrial) Cases 227
11.2.3 Management of Inconsistencies and Inconsistency Resolutions 228
11.2.4 Extending and Improving Tool Support 228
11.2.5 Model Refactorings . 229
11.2.6 Extensions to DLs and their Systems 229

A Racer Statements Representing our UML 2.0 Fragment 231

CONTENTS vi

B nRQL Inconsistency Detection Queries 237
B.1 Dangling Type Reference . 237
B.2 Connector Specification Missing . 237

B.2.1 Classless Connectable Element . 237
B.2.2 Dangling Connectable Feature Reference 238
B.2.3 Dangling Connectable Association Reference 238

B.3 Instance Specification Missing . 238
B.3.1 Classless Protocol State Machine . 239
B.3.2 Dangling Feature Reference . 239
B.3.3 Dangling Association Reference . 239

B.4 Disconnected Model . 240
B.5 Specification Incompatibility . 240

B.5.1 Multiplicity Incompatibility . 240
B.5.2 Navigation Incompatibility . 241
B.5.3 Abstract Object . 241

C Decision Diagrams for Execution of Model Refactorings 243

Bibliography 251

List of Figures

1.1 Three types of consistency between UML models. 12

2.1 Example of the four-layer metamodel hierarchy. 22
2.2 The role of Core in the context of other metamodels. 23
2.3 Metamodel snapshot concerning Feature. 27
2.4 A first class diagram from our case study. 28
2.5 Metamodel snapshot concerning Class, Property and Operation. 29
2.6 A second class diagram from our case study. 34
2.7 Elements of the Generalisation package in the UML Infrastructure. 35
2.8 A third class diagram from our case study. 36
2.9 UML metamodel fragment of Connections. 38
2.10 UML communication diagram for user session and withdrawal transaction. . 39
2.11 UML metamodel fragment for Interactions. 41
2.12 UML sequence diagram for the withdrawal transaction. 43
2.13 The UML 2.0 metamodel fragment used for Protocol State Machines. . . . 45
2.14 Protocol state machine diagram for a withdrawal transaction. 46
2.15 Part of protocol state machine diagram for withdrawal and charging trans-

action. 47
2.16 Part of changed protocol state machine diagram for a withdrawal and charg-

ing transaction. 48

3.1 Example of a horizontal consistency conflict. 54
3.2 Move Operation on a class diagram. 55
3.3 Sequence diagram modelling ATM start-up behaviour. 56
3.4 Example of an Inherited Cyclic Composition Inconsistency. 60
3.5 Sequence diagram at specification level. 61
3.6 Class diagram constituting, together with the sequence diagram of Figure

3.5, a model. 62
3.7 Class diagram constituting, together with the sequence diagram of Figure

3.5, a model. 63
3.8 UML sequence diagram for the startup of an ATM. 64
3.9 Sequence diagram for the startup of an ATM with logging. 65
3.10 Protocol state machine for the class CardReader. 65
3.11 Specific states and transitions for an inquiry. 66
3.12 Specific states and transitions for a transfer. 67
3.13 Specific states and transitions for a deposit. 67

LIST OF FIGURES viii

3.14 Class diagram constituting, together with the sequence diagram of Fig-
ure 3.15, a model. 69

3.15 UML sequence diagram for a transfer transaction. 70
3.16 Protocol state machine in which the state GettingCustomerSpecifics is not

reachable. 71
3.17 Sequence diagram at specification level, generic parent interaction. 74
3.18 Sequence diagram at specification level, concrete child interaction. 74
3.19 State diagram for a Session instance. 76
3.20 Multiplicity error between this diagram and Figure 2.6. 77
3.21 Navigation error between this diagram and the sequence diagram in Figure

2.12 . 78
3.22 UML sequence diagram for a user session. 79
3.23 PSM for the class CardChargingATM subclass of ATM. 82
3.24 UML sequence diagram for a deposit transaction. 83
3.25 UML sequence diagram for an inquiry transaction. 85

4.1 Resolution of a dangling feature inconsistency introducing a dangling associ-
ation. 93

4.2 Resolution of dangling association inconsistency introducing a navigation in-
compatibility. 93

4.3 Dependencies between resolution of inconsistencies. 94
4.4 Construction rules for invocation consistency. 96

6.1 Example of a composition relation. 130
6.2 User-defined UML class diagram. 132
6.3 Example of a spanning object. 135
6.4 Example of a communication diagram. 145
6.5 Specification versus instance level. 146
6.6 General picture on spanning functions. 150

7.1 Different SD traces. 167

9.1 Scenario of evolution of our motivating example. 188
9.2 UML protocol state machine for CardChargingATM class (version 1.1). . . 189
9.3 State machine for evolved CardChargingATM class (version 1.2). 190
9.4 Examples illustrating Proposition 1. 193
9.5 Examples illustrating Proposition 2. 195
9.6 Class diagram representing the relevant classes and executed refactoring. . . 198
9.7 Sequence diagram for a withdrawal session scenario on an ATM. 199
9.8 Sequence diagram after the execution of Move Operation. 200
9.9 Decision activities for Move Operation. 201

10.1 Architecture of inconsistency detection and resolution environment. 210
10.2 Screenshot of RACOoN ’s configuration pane in Poseidon. 211
10.3 Screenshot of RACOoN ’s inconsistency manager pane in Poseidon. 212
10.4 Implementation of the translation of call sequences of a PSM. 214
10.5 The activity of processing the transitions of a PSM. 214

ix LIST OF FIGURES

10.6 The activity of processing the call sequences. 215
10.7 Code implementing the processing of a sequence. 216
10.8 Running a rule engine. 217
10.9 Screenshot of rule instantiations. 218
10.10Execution of a rule. 219
10.11Screenshot of possible resolutions for the dangling association reference in-

consistency occurrences. 219
10.12Still four occurrences of the dangling association reference inconsistency. . . 220
10.13Asking user input for a certain inconsistency resolution. 221
10.14Extra possible resolution for the remaining three occurrences of the dangling

association reference inconsistency. 221

C.1 Decision activities for Extract Class. 243
C.2 Decision activities for Add Parameter. 244
C.3 Decision activities for Change Bidirectional to Unidirectional Association. . 245
C.4 Decision activities for Move Attribute. 246
C.5 Decision activities for Pull Up Operation. 247
C.6 Decision activities for Push Down Operation. 248
C.7 Decision activities for Extract Operation. 249
C.8 Decision activities for Replace Conditional with Polymorphism. 250

LIST OF FIGURES x

List of Tables

2.1 UML 2.0 diagram types. 24

3.1 Two-dimensional inconsistency table. 58

4.1 Two-dimensional resolution actions table. 91
4.2 Inconsistencies and resolution actions table. 92
4.3 Summary of the requirements for the key criteria. 101

5.1 Common DL operators. 106
5.2 Overview of the complexity of concept satisfiability. 114
5.3 Syntax and semantics of SHIQ. 115
5.4 Overview of DL systems. 125

6.1 Racer syntax for SHIQ. 132

7.1 A first two-dimensional DL inconsistency detection table. 156
7.2 A second two-dimensional DL inconsistency detection table. 156
7.3 Formal properties of detection approaches. 172

9.1 Analysis of relation between model refactorings and inconsistencies. 204
9.2 Analysis of reuse of inconsistency resolutions in and across model refactorings.205

LIST OF TABLES xii

List of Racer Fragments

6.1 Racer implementation of the UML metamodel snapshot of Figure 2.5. . . 131
6.2 Racer Abox implementation of the class diagram of Figure 6.2. 133
6.3 Racer expressions representing call sequences. 141
6.4 Racer expressions representing part of PSM of Figure 2.14. 143
6.5 Racer expressions representing an SD trace. 144
6.6 Racer expressions representing the communication diagram of Figure 6.4. 145
6.7 Racer expressions representing part of the communication diagram of Fig-

ure 6.4. 147
6.8 Racer expressions for a parametrised call sequence. 154
7.1 Racer expressions representing a PSM and SD trace. 168
7.2 Racer expressions representing an SD trace. 169

LIST OF RACER FRAGMENTS xiv

Chapter 1

Introduction

1.1 Problem Statement

Model-driven engineering (MDE) is an approach to software engineering where the primary
focus is on models, as opposed to source code. A model describes certain views of the
software system at a certain level of abstraction. Models are composed of submodels. Each
submodel represents a different view on a software system. For example in a bank ap-
plication, different views are customer management, transaction management and account
management. Each of these views is modelled by a different submodel. In the remainder
of this dissertation, everywhere the word “model” is mentioned, it can be substituted by
submodel unless specified otherwise.

Models can be refined, evolved into a new version, and can be used to generate executable
code. The ultimate goal is to raise the level of abstraction, and to develop and evolve
complex software systems by manipulating models only. The manipulation of models is
achieved by means of model transformation, which is considered to be the heart and soul of
model-driven engineering [SK03]. Because model-driven engineering is still in its infancy,
there is a need for sophisticated formalisms, techniques and associated tools supporting the
different model-driven engineering activities.

The Unified Modeling Language (UML) is currently the standard modelling language
for object-oriented software development and well on its way to become a standard in
MDE. Originally, the UML was conceived for modelling object-oriented software systems.
However, the class of systems covered by the UML has grown beyond just software systems.
The UML now covers any system for which it is useful to make statements about the data
maintained or about the behaviour the system exhibits relative to its environment, e.g.,
businesses, hardware, and so on. The visual representation of UML consists of a set of
different diagram types. Each diagram type is described in a certain language. Examples of
such languages are class diagrams, sequence diagrams, communication diagrams and state
machine diagrams. The different diagram types describe different aspects of a software
system under study. A class diagram renders the static structure of the system. Sequence
diagrams focus on the interaction of different instances of classes, i.e., objects, in a certain
context. Communication diagrams describe how different objects are related to each other.
Finally, state machines define how the state of a certain object changes over time. A model
consists of different such diagrams.

During the software development life-cycle or in an evolution context, models can be

Chapter 1. Introduction 2

transformed into other models. Two well-known kinds of transformations are refinements
and model refactorings. Refinements are performed during the software development life-
cycle and transform a model into another model that is on a more detailed level of abstrac-
tion. In each refinement step, models get replaced by more refined ones. Model refinement
means that more and more detail will be added to models in each refinement step, e.g., the
behaviour specification can be extended in a stepwise fashion.

The inherent complexity of (design) models will continue to grow as these models evolve,
according Lehman’s second law of software evolution: “As a program is evolved its com-
plexity increases unless work is done to maintain or reduce it” [LRW+97]. To counter this
growing complexity, we need techniques that restructure the design to improve its qual-
ity and reduce its complexity. Such techniques, called model refactorings, are the design
level equivalent of source code refactorings that have been thoroughly studied in literature
([Opd92, Fow99, MT04]).

Inconsistencies in models can arise due to several reasons. Inconsistencies can arise
within a model due to the coexistence in the model of different diagrams that overlap with
each other. Inconsistencies can also occur between different submodels within a certain
model. The different submodels can overlap due to two reasons. First, the submodels de-
scribe different aspects of the software application, e.g., static view versus dynamic view,
and secondly, the submodels describe different, but mostly related, views of the software
application. A model can get refined during the software development life-cycle. Inconsis-
tencies can arise between the original model and its refinement. Evolution of models can also
introduce inconsistencies. Inconsistencies can express different things. They can express
lack of certain model quality attributes. An inconsistency can express that the specifica-
tion of a software system does not meet its requirements because the model specifying the
implementation of a software system is inconsistent with (part of) the model specifying the
requirements of the system. The occurrence of an inconsistency can also give an indication
that further analysis of the model(s) is needed. Inconsistencies can express that certain
properties are not guaranteed. Inconsistencies can also be interpreted as positive things.
For example, due to the occurrence of inconsistencies, the software developer is forced to
think again about some issues of the software system and as such, can come to a greater
insight in the software system under study.

Current state-of-the-art UML CASE tools provide little or no adequate support for
inconsistency management or consistency maintenance. Inconsistency management is a
process composed of several activities. As stated in [SZ01], these activities are: detection of
overlaps, detection of inconsistencies, diagnosis of inconsistencies, handling of inconsisten-
cies, tracking of inconsistencies, and specification and application of a management policy
for inconsistencies. This dissertation focuses on the activities: detection of inconsistencies
and handling of inconsistencies. While in the process of inconsistency management, the
existence of inconsistencies is tolerated, consistency maintenance emphasises the explicit
avoidance of inconsistencies. The ultimate goal of consistency maintenance is to maintain
the consistency in whatever situation. This is however, not realistic in a real-world project
on which several developers are working at the same time.

Several authors have recognised that inconsistency management is difficult, and more
so in the context of UML models. Several reasons are to be stated: (1) UML lacks formal
semantics, as a consequence, a single UML diagram can have different interpretations; (2)
the distribution of an inconsistency across different diagram types; (3) there may be many

3 1.2 Research Objectives and Approach

inconsistencies of which some are related; (4) for some applications, some inconsistencies
are more important than others. The handling of inconsistencies is considered critical to
inconsistency management, but also extremely difficult [Fin00]. Again different reasons are
to be stated: (1) handling inconsistencies involves changes in different models; (2) handling
a certain inconsistency can be of varying importance for certain domains; (3) handling
an inconsistency is in most cases system or application dependent. Due to these reasons,
among others, it is hard to define, detect and handle inconsistencies.

In literature different approaches have been proposed for defining and detecting in-
consistencies in the context of the UML. Some motivate a general methodology to deal
with inconsistencies [EHK01]. Most publications, however, concentrate on particular in-
consistencies and defend a certain approach for the detection of these inconsistencies
[ET00, EHHS02, EHKG02, FMP99, Tsi01, SKM01].

Literature dealing with the handling of inconsistencies in the context of UML is less
abundant. Some focus on the handling of particular inconsistencies, such as syntactic
inconsistencies [HHS02], while others focus on a particular level of abstraction, for example,
specifications [KZ04] or requirements [vLLD98].

Inconsistency management plays an important role in the context of MDE due to the
following reasons.

• Models are assets in MDE. Different views of the software system are covered by
different models. Because of the wide variety of models and the many relationships
that can exist between them, managing these models is a very complex task and
inconsistencies can arise easily.

• A model is described in a certain modelling language, e.g., the UML. The UML
contains several diagram types, each described in a certain language. Each model
must be legitimate with respect to the languages in which it is expressed.

• Because transformation of models is another important part of MDE, consistency
between, e.g., refined models or between different evolved versions of a model is also
an important issue.

• For some companies inconsistencies are more than the specification of general coher-
ence rules between or within models. Models are regarded as inconsistent if they do
not comply with specific software engineering practices or standards followed by the
company.

1.2 Research Objectives and Approach

1.2.1 Objectives

After studying the multitude of work on inconsistency definition and detection and the work
on inconsistency handling, we still observe some shortcomings in the context of the UML.
Due to lacking formal semantics for the UML, no precise definitions of inconsistencies are
given. Such definitions guarantee an unambiguous interpretation of inconsistencies. Most
literature focuses only on checking inconsistencies or only on resolving inconsistencies. No

Chapter 1. Introduction 4

general framework is provided for the detection and handling of different kinds of inconsis-
tencies in the UML context. Because of the important role of inconsistency management in
MDE, it is a worthwhile endeavour to investigate the aforementioned problems.

A global objective of this dissertation is to develop a coherent inconsistency management
framework for the definition, detection and handling of inconsistencies in the context of
object-oriented models with special focus on UML models. This framework will enable
a precise definition and detection of inconsistencies and the semi-automatic handling of
inconsistencies.

To obtain our global objective, we propose the objective of using a declarative formalism
for this inconsistency management framework. The use of a fragment of first-order logic as
declarative formalism will be evaluated. The reasoning capabilities of this formalism can
be used to reason about models. We believe that adequate tool support for model-driven
engineering has to be simple and quite powerful and as such profits from having a formal
framework as its foundation. This leads us to our research hypothesis.

By using a fragment of first-order logic, i.e., Description Logics, as underlying formalism
of a coherent inconsistency management framework, the precise definition of
inconsistencies and the automatic detection and semi-automatic handling of

inconsistencies between different UML models can be supported by well-defined procedures.

1.2.2 Approach

The approach to achieve our objectives is the following.
We will formalise an important fragment of the UML version 2.0 metamodel. This

formalisation must satisfy the following criteria: (1) It will be powerful enough to capture
the essence of object-oriented design in the UML. (2) We want a general formalisation, i.e.,
independent of any specific detection or handling procedure. As a result, different detection
or handling approaches can be based on this formalisation. (3) The formalisation must
allow the expression of different interpretations of UML diagrams. Some UML diagrams
can be interpreted in different ways. Sequence diagrams are such a kind of diagram. It is not
our intention to capture all possible interpretations, but basic semantics will be provided
on which more elaborate and customised semantics can be built. The interpretations of
the different diagrams will be discussed in the context of a concrete formalism for the
detection and handling of inconsistencies. As a result, it is possible to show which formalism
dependent constructs are needed to encode the different interpretations.

We will present a set of inconsistencies based on the model elements occurring in the
fragment of the UML metamodel we restrict ourselves to. Of course, it is impossible to
present an exhaustive list of possible inconsistencies in UML models. One of the reasons
is that inconsistencies are often domain dependent. We will ignore inconsistencies that are
violations of UML well-formedness rules because these rules are considered to be integrated
in the modelling language and to be part of the language’s abstract syntax.

Description Logics (DLs) that are a fragment of first-order logic, are investigated as a
formalism for the definition, detection and handling of inconsistencies. DLs are a family
of logic languages that are primarily used for modelling database conceptual schemata and
ontology engineering. DLs and DL systems are evaluated in this dissertation for the purpose
of inconsistency detection and handling. This evaluation is based on a set of key criteria.

5 1.3 Model-Driven Engineering

These key criteria are distilled from literature studies on inconsistency detection and the
different handling and resolution strategies and from our classification of inconsistencies.

In the remainder of this chapter, first, we introduce MDE. Secondly, model refactorings
are explained because we will show how some of our ideas can be applied to the domain
of model refactorings. Next we introduce inconsistency management, the criteria used
to evaluate potential formalisms for inconsistency detection and handling, and finally, we
present our contributions. At the end of this chapter, we provide the reader with an outline
of this dissertation.

1.3 Model-Driven Engineering

Models are the primary assets in MDE. In this section, we first introduce how models
are defined in literature. Next, we give our own definition of a model independent of
any modelling language. We also discuss the role of the UML in MDE. Because model
transformation is the heart and soul of MDE and because we will show in this dissertation
how some of our ideas can be used for the support of model refactorings, we consider a
classification of model transformations given in literature.

“Model-driven development is simply the notion that we can construct a model of a
system that we can then transform into the real thing”. [MCF03]

MDE aims to make models the primary assets in all aspects of software engineering.
The ultimate goal is to have a software development environment at our disposal with off-
the-shelf models and mapping functions that transform one model into another. Instead
of building and rebuilding systems as the application or technology changes, models are
selected, subsets are taken or models are extended, woven together with other models
to build the system. It goes without saying that inconsistency management will play a
prominent role in the achievement of this goal.

1.3.1 What is a Model?

In [MCF03], a model is defined as:
A model is a coherent set of formal elements describing something (e.g., a system, bank,
phone or a train) built for some purpose that is amenable to a particular form of analysis,
such as

• communication of ideas between people and machines,

• completeness checking,

• race condition analysis,

• test case generation,

• viability in terms of indicators such as cost and estimation,

• standards,

• transformation into an implementation.

Because our objective is to define, detect and handle inconsistencies on models, we
propose the following definition of a model:

Chapter 1. Introduction 6

Definition 1 A model is an accurate (partial) description of a system under study at some
level of abstraction.

The following statements all apply to our notion of a model:

• A model consists of several submodels describing a certain view of a system under
study.

A complex problem can better be divided into smaller pieces each describing different
parts of the solution from different viewpoints. A large design is traditionally split
into a part describing the static structure of the system under study and into a part
describing the dynamic structure. To be manageable, both parts are even further
subdivided. Removing or hiding detail that is irrelevant for a given viewpoint lets us
understand the essence more easily and this is also a means to cope with complexity.
Another advantage of decoupling several models is their ability to evolve independently
which in turn increases the models’ longevity.

However, working with multiple, interrelated models requires a significant effort to
ensure their overall consistency.

• A model is expressed in some language existing at some level of language abstraction.
Abstraction is a well-known means to cope with complexity. For example, it is easier
to write a certain program in a high-level program language such as Java then to
encode it in an assembler language. A modelling language enables the expression of
different views and aspects of a system under study in (different) models.

• A model needs not be complete. In an early phase of the software development life-
cycle, models are often used as a way to communicate designs describing important,
high-level concerns. These models are not complete. For example, a model can
emphasise the collaboration of different objects in a sequence diagram and hide the
behaviour specification of a single object as specified in a state machine diagram.

Remark that incompleteness and a high degree of abstraction do not equate to im-
precision.

1.3.2 The Role of the UML in MDE

MDE does not require the UML. Any modelling language can be used. However, the
UML has become the de facto modelling language for modelling software systems. Models
expressed in the UML, capture knowledge about a system at different abstraction levels,
from requirements and analysis models over design models to models used as programming
specifications. Originally, the UML was conceived for modelling object-oriented software
systems. Nowadays, the UML covers any system for which it is useful to make statements
about the data maintained or the behaviour the system exhibits relative to its environment,
e.g., businesses, hardware and so on. The different diagram types of the UML are introduced
in Chapter 2.

At the heart of the role of the UML in MDE are the different ways in which developers
want to use it. The UML has several applications in MDE. It can be used as a general-
purpose modelling language. It can also be used as a basis for (domain-specific) extension
and reuse.

7 1.3 Model-Driven Engineering

Martin Fowler argued in his invited talk at the�UML2003� conference and in [Fow99],
that there are three different modes in which developers use the UML: sketch, blueprint,
and programming language.

1. UML as sketch This usage is used to communicate informally software designs describ-
ing important things but that are not detailed. The essence of sketching is selectivity.
The models do not give a complete view of the software system. Only the most im-
portant aspects are selected for communication. Informal tools such as a whiteboard
are used to draw and communicate.

2. UML as blueprint The models are used to communicate detailed instructions to pro-
grammers. The essence of blueprint is completeness. The models should be sufficiently
complete in that all design decisions are laid out. A precise notation and semantics
are necessary in this case. Blueprints require more sophisticated modelling tools than
sketches do.

3. UML as programming language If the UML is used as a programming language, the
UML models drive the whole process. UML diagrams are compiled directly to exe-
cutable code, and the UML becomes the source code. It is obvious that this usage
of UML demands sophisticated tools and further research is necessary to obtain this
usage.

1.3.3 Transformation of Models

Models are specified at different levels of abstraction and sometimes also in different lan-
guages. Transformation from one or multiple source models to one or multiple target models,
called model transformation is an important issue within MDE. In Kleppe et al. [KWB03]
the following definition of model transformation is provided:

Definition 2 A transformation is an automatic generation of a target model from a source
model, according to a transformation definition. A transformation definition is a set of
transformation rules that together describe how a model in the source language can be
transformed into a model in the target language. A transformation rule is a description
of how one or more constructs in the source language can be transformed into one or more
constructs in the target language.

In [MCV05], a taxonomy of model transformations is discussed. Two orthogonal dimen-
sions are defined, horizontal versus vertical and rephrasing versus translation.

• Horizontal transformation indicates transformation between different models at the
same level of abstraction. Model refactoring is an example of such a transformation
because the source model is restructured and the target models are at the same level
of abstraction. In the next section, we go into more detail on model refactoring.

• Vertical transformation indicates a transformation where the source and target models
reside at different levels of abstraction. Refinement is an example of such a transfor-
mation. The original model and its refined version are at different levels of abstraction.

Chapter 1. Introduction 8

• Rephrasing indicates a transformation where the models are expressed in the same
modelling language. This kind of transformation is also called an endogenous trans-
formation. Examples of rephrasing are optimisation, which aims at improving certain
operational properties while preserving the semantics of the software, and refactoring
which aims at improving certain software quality characteristics while preserving the
software’s behaviour.

• Translation indicates a transformation where the source and target models are ex-
pressed in different languages. This kind of transformation is also called an exogenous
transformation. Examples of translation are reverse engineering which extracts a
higher-level specification from a lower-level one, and migration which translates a
program written in one language to another, while keeping the same level of abstrac-
tion.

1.4 Model Refactoring

Software restructuring is “the transformation from one representation form to another at
the same relative abstraction level, while preserving the subject system’s external behaviour
(functionality and semantics). [...] While restructuring creates new versions that implement
or propose change to the subject system, it does not normally involve modifications because
of new requirements. However, it may lead to better observations of the subject system
that suggest changes that would improve aspects of the system. Restructuring is often used
as a form of preventive maintenance to improve the physical state of the subject system
with respect to some preferred standard” [CC90]. In an object-oriented context, the term
refactoring is used instead of restructuring [Opd92, Fow99].

The inherent complexity of (design) models will continue to grow as these models evolve,
following Lehman’s second law of software evolution: “As a program is evolved its com-
plexity increases unless work is done to maintain or reduce it” [LRW+97]. To counter this
growing complexity, we need techniques that restructure the design to improve its qual-
ity and reduce its complexity. Such techniques, called model refactorings, are the design
level equivalent of source code refactorings that have been thoroughly studied in literature
([Opd92, Fow99, MT04]).

We define a model refactoring as follows:

Definition 3 A model refactoring is a transformation of a model into a different model
expressed in the same modelling language to improve quality attributes of the models of the
system under study without changing the modelled external behaviour of the system under
study.

Although source code can be regarded as a model and it meets Definition 1, we assume that
in the above definition, models do not refer to source code. As such, this definition is the
design level equivalent of the one of source code refactoring [Fow99].

Following the aforementioned Lehman’s second law of software evolution, model refac-
torings play an important role in the context of MDE. Refactorings can be situated on
different levels within MDE, e.g., on requirement documents, design models or source code.
For example, in the context of the Model-driven Architecture (MDA), model refactorings
can be applied on two different levels. MDA distinguishes between Platform Independent

9 1.4 Model Refactoring

Models and Platform Specific Models. Platform Independent Models as well as Platform
Specific Models can be refactored. Platform Independent Model refactorings boil down to
a restructuring of the Platform Independent Models independent of any platform. These
restructurings improve simplicity of the models. In case of Platform Specific Models, de-
pendent on the chosen platform, different platform-specific refactorings can be executed on
Platform Specific Models.

Like the process of source code refactoring [MT04], the process of model refactoring
consists of some distinct activities:

1. Identification of where the design should be refactored.

2. Determine which model refactoring(s) should be applied to the identified places.

3. Apply the model refactoring(s).

4. Guarantee that the applied model refactoring preserves behaviour.

5. Assess the effect of the refactoring on quality characteristics of the design (such as
complexity, understandability, maintainability).

6. Maintain consistency between the refactored design and other software artifacts (such
as requirements, program code, etc.).

Topic 6 is treated by the process of inconsistency management, which is, as explained in
Section 1.5 a research area in its own right.

In this dissertation, we will show how the definition of some consistencies correspond to
behaviour preservation properties (topic 4) and how our ideas for inconsistency resolution
can be used to support the application of model refactorings (topic 3). In the remainder of
this section, we will go into more detail on the topic of behaviour preservation.

A model refactoring is not supposed to change the behaviour specified by the models
in question. Model refactoring is a rather recent research issue and as such definitions
of behaviour preservation properties are not yet given. Moreover, in the context of the
UML such definitions do not exist because there is no consensus on a formal definition
of behaviour. Also for source code refactorings, definitions of behaviour preservation are
rarely provided. Opdyke [Opd92] suggests the following definition of behaviour preservation:
“for the same set of input values, the resulting set of output values should be the same
before and after the refactoring”. To ensure this kind of behaviour preservation, refactoring
preconditions and postconditions need to be specified [Rob97]. However, as explained by
[MT04], this kind of behaviour preservation is sometimes insufficient since many other
aspects of the behaviour may be relevant as well. This implies the need for a wide range
of definitions of behaviour preservation depending on domain-specific or user-specific or
company-specific concerns.

Behaviour preservation can also be dealt with in a more pragmatic approach. A first
approach is by means of rigourous testing. Another pragmatic approach is to specify a
weaker notion of behaviour preservation that is not sufficient to guarantee the full program
semantics preservation, but focuses on specific issues. Mens et al. [MDJ02] adopt this
approach and specify different kinds of behaviour preservation.

At design level, specifications of behaviour of the software are provided in a certain
modelling language, e.g., the UML. These specifications need not be complete, as the models

Chapter 1. Introduction 10

containing these specifications are also not necessarily complete. In the context of model
refactorings, questions such as which kinds of behaviour are important for which model
refactorings and how behaviour preservation can be checked, preserved or proved, arise.
We will focus on these questions in Chapter 9.

1.5 Inconsistency Management

1.5.1 Inconsistency Management Process

Inconsistency management has been defined in Finkelstein et al. [FST96] as “the process
by which inconsistencies between software models are handled so as to support the goals of
the stakeholders concerned”.

Finkelstein et al. [FST96] and Nuseibeh et al. [NER00] propose general frameworks
describing the activities of this process. Both approaches agree that the process of inconsis-
tency management includes activities for detecting, diagnosing, and handling them. These
activities are extended by Spanoudakis and Zisman [SZ01]: detection of overlaps, detection
of inconsistencies, diagnosis of inconsistencies, handling of inconsistencies, tracking, speci-
fication and application of an inconsistency management policy. Additionally, Spanoudakis
and Zisman present a survey of techniques and methods supporting the management of
inconsistencies.

The definition of particular inconsistencies is not included in the process of managing
inconsistencies. In our opinion this must be included in the process of inconsistency man-
agement too. As recognised by Spanoudakis and Zisman, different kinds of inconsistencies
can be distinguished. The definition of a particular inconsistency must be unambiguous.
This makes one single, clear interpretation of each inconsistency by the software developer
possible.

Detection of inconsistencies is the activity of checking for inconsistencies in soft-
ware models. Different approaches to the detection of inconsistencies are possible. In
Spanoudakis and Zisman, four broad categories of approaches are listed. In the logic-based
approach, models are expressed in some logic language. The inconsistency procedures are
well-defined an have sound semantics. The logic-based approach is applicable to arbi-
trary consistency rules. As disadvantages, Spanoudakis and Zisman report on the semi-
decidability of first-order logic and the inefficiency of theorem proving. The model checking
approach translates models in a particular state-oriented language. The results of the trans-
lation are used by a model checker, applying specialised model checking algorithms. These
algorithms are used to detect certain inconsistencies. In a model checking approach the
inconsistency detection procedures are well-defined and have sound semantics, but due to
state explosion the approach is not always efficient and only specific kinds of consistency
rules can be checked. A third approach is to use specialised forms of automated analysis.
Models are expressed or translated into a specific language and specific kinds of consistency
rules can be checked. A fourth approach is the usage of human-based collaborative explo-
ration. Models are expressed in informal modelling languages. Stakeholders are expected to
inspect the models on inconsistencies. This approach is very labour intensive and difficult
to use with large models. In our work, we prefer the logic-based approach and restrict our
approach to a decidable fragment of first-order logic. We will motivate this approach in
Chapter 5.

11 1.5 Inconsistency Management

Diagnosis of inconsistencies is “concerned with the identification of the source, the cause
and the impact of an inconsistency” [SZ01]. The source and the cause of an inconsistency
can play an important role in the activity of inconsistency handling.

Inconsistency handling is concerned with the following activities according to [SZ01]:

1. the identification of the possible actions for dealing with an inconsistency,

2. the evaluation of the cost and the benefits that would arise from the application of
each of these actions,

3. the evaluation of the risks that would arise from not resolving the inconsistency, and

4. the selection of one of the actions to execute.

A last activity that must be added to the above list, is the execution of the selected ac-
tion. There are different techniques for handling an inconsistency. The model can just be
marked as being inconsistent and the modelling elements involved in the inconsistency can
be annotated. It is up to the software designer to take action or to leave the inconsistency
in the model. In some cases, the model can be corrected manually, in other cases, it can be
corrected automatically or semi-automatically. If the model is corrected, the inconsistency
is resolved through so-called resolution actions. Our work focuses on the identification of
the possible resolution actions and the execution of these actions.

1.5.2 Dimensions of Consistencies

The model of a system under study is typically expressed as a (large) collection of inter-
dependent and partially overlapping submodels. These models describe the system from
different viewpoints and at different levels of abstraction and granularity. These models
may also be expressed using different notations, and different software developers can be
involved in the software modeling process. All these issues are bound to lead to inconsis-
tencies among models. An inconsistency is described in [SZ01] as “a state in which two
or more overlapping elements of different software models make assertions about aspects of
the system they describe which are not jointly satisfiable”.

Overlaps are defined as “relations between interpretations ascribed to software models
by specific agents” [SZ01]. An agent may be a person or a computational process. Models
overlap when they incorporate elements referring to common concerns of the system under
study.

Nuseibeh et al. [NER00] define an inconsistency as “any situation in which a set of
descriptions does not obey some relationship that should hold between them. The relationship
between descriptions can be expressed as a consistency rule against which the descriptions
can be checked”.

In literature, two orthogonal dimensions of consistencies are described. The first dimen-
sion concerns horizontal versus vertical versus evolution consistency. The second dimension
concerns syntactic versus semantic consistency.

As illustrated in Figure 1.1 and described in the literature, a first dimension distinguishes
between three different types of consistencies.

1. Horizontal consistency [KRSH02], also named intra-consistency or intra-model consis-
tency, indicates consistency within a model or between different models at the same

Chapter 1. Introduction 12

State
Diagram v2

Class
Diagram v1

State
Diagram v1

Sequence
Diagram2 v1

Sequence
Diagram1 v1

Class
Diagram v2

Refined Class
Diagram v1

Refined
Sequence

Diagram1 v1

Refined
Sequence

Diagram2 v1

<<evolution>><<evolution>>

<<horizontal>>

<<horizontal>><<horizontal>>

<<vertical>> <<vertical>>
<<vertical>>

<<horizontal>>

<<horizontal>>
<<horizontal>>

Figure 1.1: Three types of consistency between UML models.

level of abstraction, and within the same version. For example, in any UML model,
the class diagrams and associated sequence diagrams and state diagrams should be
mutually consistent.

2. Evolution consistency [EKHG02] indicates the consistency between different versions
of the same model. For example, when a class diagram evolves, it is possible that its
associated state diagrams and sequence diagrams become partially inconsistent.

3. Vertical consistency [KRSH02], also named inter-consistency or inter-model consis-
tency, indicates the consistency between models at different levels of abstraction.
“Vertical” refers to the process of refining models and requires the refined model to
be consistent with the one it refines [EKHG01].

A second dimension, which is orthogonal to the first, distinguishes between syntactic
and semantic consistencies.

1. Syntactic consistency ensures that a specification conforms to the abstract syntax of
the modelling language, specified by, for example, a metamodel. This guarantees that
the overall model be well-formed.

2. Semantic consistency requires models to be semantically compatible. Semantic com-
patibility addresses the compatibility of the meaning of the different models. To be
able to define this notion, the meaning of a model must be well-defined. In general, in
a horizontal consistency setting, semantic consistency requires the different submodels
of a model to be semantically compatible. In an evolution context, the refactored
model needs to be semantically compatible with the one it refactors. With respect to
vertical consistency, this requires a refined model to be semantically compatible with
the one it refines.

1.6 Key Criteria

From the literature on the different approaches and formalisms used to support the different
activities of inconsistency management (especially inconsistency definition, detection and

13 1.7 Contributions

handling) and from the research we did on those topics, we distilled a set of key criteria.
Each criterion consists of some requirements. These requirements must be (partially) met by
approaches or formalisms supporting definition, detection and handling of inconsistencies.
We will briefly introduce each criterion here, but detail them in Chapter 4.

• Syntax and semantics representation. It must be possible to express the abstract syn-
tax of the modelling language in the formalism, this enables well-formedness checking
of the user-defined models. The representation of the semantics of the modelling lan-
guage must be supported. In some cases, this might require the integration of different
formal languages defining the semantics of the different sublanguages involved in the
modelling language. In other cases, it might be sufficient to have a formalism that is
powerful enough to define the semantics of (most of) these sublanguages.

• Precise definitions of inconsistencies and inconsistency detection. The formalism must
enable the precise definition of inconsistencies and provide a mechanism to detect the
inconsistencies. Different kinds of inconsistencies must be expressible in the formalism.
In terms of the dimensions mentioned in the previous section, it must be possible to
define syntactic and semantic inconsistencies. The abstract syntax of the language as
well as the semantics of the language can be used to define (in)consistencies.

Furthermore, it would be desirable to have a detection mechanism that has some
formal properties such as soundness, completeness and decidability.

• Precise definitions and management of interactive inconsistency resolutions. A for-
malism for inconsistency resolution must enable the precise definition of resolutions
for inconsistencies. Resolutions applied on a certain model resolve particular incon-
sistencies in this model.

A mechanism for executing these resolutions is demanded. This mechanism must be
highly interactive. Several resolutions can be applied to resolve a certain inconsis-
tency. In some cases, the software developer has the responsibility to decide which
resolution will be executed and which not. As a result the inconsistency resolutions
are interactively managed.

1.7 Contributions

The contributions of this dissertation are:

• We present a lightweight formalisation of an important fragment of UML 2.0. This
formalisation serves as a basis for the definition, detection and handling of inconsis-
tencies. It enables an unambiguous specification of the different mentioned activities.
In a more general context, it can also be seen as a basis for the formalisation of the
complete UML language.

• We provide a two-dimensional classification of domain-independent inconsistencies.
Each of these inconsistencies is defined using the aforementioned formalisation. We
do not claim that this is an exhaustive list of inconsistencies, but we show that this
is a relevant list. This classification results in a set of possible, unambiguous incon-
sistencies. Moreover, new inconsistencies can be added to the classification easily, if
desired.

Chapter 1. Introduction 14

• We show to which extent DLs can be used for the formalisation and encoding of the
abstract syntax of the UML fragment we formalised. This straightforwardly enables
the well-formedness of the UML models.

• We also show how DLs can be used as a semantic domain for the different UML
diagram types considered. Consequently, the possible meanings of these diagram
types are determined and well-defined.

• Using the two previous contributions, we define the detection of inconsistencies in
DLs. These definitions have, among other things, led to the development of a sophis-
ticated query language for Racer, one of the state-of-the-art DL systems. This query
language has been developed by the Racer authors based on, among other things,
our concrete input.

• We define an approach for the handling of the classified inconsistencies. This approach
is a rule-based system using DLs. This system allows for the automatic detection of
inconsistencies and it proposes several resolution actions to the user.

• Based on our formalisation of the UML fragment, we show the correspondence between
consistencies and behaviour preservation properties. This allows to check and to prove
that certain properties hold for model refactorings using exact the same approach as
for the detection of certain inconsistencies.

• We introduce the idea to use the rule-based approach for handling inconsistencies to
support a software developer in the execution of some model refactorings. We show
how our rule-based system that is in the first place meant to resolve inconsistencies,
can be used by support for the application of some model refactorings.

• While the previous contributions are scientific contributions, as a more practical con-
tribution we developed a prototype tool capturing our approach. The prototype tool
is integrated into Poseidon [gen05], a state-of-the-art UML CASE tool.

These contributions are partially presented in different research papers. The general and
preliminary ideas of using DLs for inconsistency management are published in [Van02b]. Our
classification of inconsistencies is presented in [VMSJ03] and [SVJM04]. These publications
also elaborate the idea of formalising a fragment of the UML metamodel and using a DL
system for querying user-defined models. This approach has also been presented in an
evolution context as a chapter in the book “Software Evolution with UML and XML”
[MVS05]. In [VSM03], we showed the need for a powerful query mechanism for state-of-
the-art DL reasoning systems. This was one of the motivations for the development of a
query mechanism for Racer, a state-of-the-art DL system, by the Racer authors. This
query language is introduced in [HMSW04]. We contributed to this publication by using
the query language for the detection of inconsistencies. The initial ideas for using DLs as a
semantic domain for sequence diagrams and protocol state machine diagrams are introduced
in [Van04]. The elaboration of this idea is also presented in [VMJ06]. The correspondence
between inconsistencies and behaviour preservation properties is introduced in [VJM04] and
elaborated in [VMJ06].

15 1.8 Outline

1.8 Outline

Chapter 2: Lightweight Formalisation of UML Fragment The chapter starts by
introducing the requirements of a case study. This case study will be used throughout the
whole dissertation.

In this dissertation UML 2.0 is used. The high-level specifications of this UML version
are introduced. We based ourselves upon the final adopted draft specifications of version
2.0. The reader familiar with the UML can skip this part. Next, we motivate why that
particular fragment of the UML metamodel is chosen. Finally, the different selected parts of
the UML metamodel are described and a formalisation of the abstract syntax and possible
semantics of these parts is given in terms of a mathematical model. This model is kept
clean in the sense that not the full expressiveness of the UML is considered. The elements
described by the selected fragment of the UML metamodel are elements used by class
diagrams, sequence, communication diagrams and protocol state machine diagrams. Each
type of diagrams is described in a distinct section. The sections are organised as follows:
first the UML metamodel part is described, and next, a formalisition of this abstract syntax
and possible semantics is given. The formalisation introduced, enables the precise definition
of inconsistencies in and between UML models.

Chapter 3: Conceptual Classification of Inconsistencies This chapter starts with
an outline on how the different consistency dimensions presented in the introduction are
related to the UML. A second step is to classify different inconsistencies along two dimen-
sions. The classification is motivated based on the nature of the UML and on a literature
study. The set of presented inconsistencies is not exhaustive, but we argue that this is a
relevant set. New inconsistencies can be added to the classification easily.

Each inconsistency is described in terms of the involved UML metamodel elements. Each
inconsistency is defined based on our formalisation of the UML fragment and exemplified
by models from the previously introduced case study.

Chapter 4: Inconsistency Handling This chapter focuses on the activity of inconsis-
tency handling in the inconsistency management process. First, we agree upon the used
terminology. Our approach will focus on resolution actions. These actions modify models in
order to resolve inconsistencies. An overview of the different challenges related to resolution
actions is given and exemplified by examples of occurrences of our classified inconsistencies.
We catalogue different possible resolution actions and relate this catalogue to the classified
inconsistencies presented in the previous chapter.

Next, constructions rules and their possible applications are shown on some of our
classified inconsistencies. Construction rules specify how a model can be modified preserving
some consistencies. These rules are used in the process of consistency maintenance rather
than in the process of inconsistency management.

Finally, the three key criteria introduced in the introduction are elaborated. These
key criteria will be used to evaluate Description Logics as a formalism for inconsistency
definition, detection and resolution.

Chapter 5: Introducing Description Logics Description Logics are introduced in
this chapter based on “The Description Logic Handbook” [BCM+03], on the Ph.D. thesis

Chapter 1. Introduction 16

of Carlos Areces [Are00] and on overview papers by Sattler et al. [Sat03, BHS05]. Readers
familiar with DLs can skip this part of the chapter. The basic building blocks of these
logics and their reasoning abilities are explained. The different expressive means leading
to different kinds of DLs are also described. These expressive means will play a prominent
role in the translation of UML model elements to a certain DL.

In the next part of this chapter, DL systems are analysed. The analysed systems are
Classic, Loom, Fact and Racer. The reader familiar with DL systems can skip this
part. Based on this analysis, we motivate the selection of the Racer system. This system
will be used in the next chapters and by our tool support.

Chapter 6: Encoding of UML Model Elements The goal of this chapter is to eval-
uate the first criterion, abstract syntax and semantics representation of the UML in DL.
First, the translation of the UML metamodel fragment into a DL is defined and discussed.
Next, different interpretations of UML class diagrams, UML sequence and communication
diagrams and state machine diagrams are briefly discussed. Translations in DLs for class
diagrams, protocol state machines, sequence and communication diagrams are considered
consecutively. We also compare DLs and the Object Constraint Language (OCL) and show
which OCL constraints can be expressed by DLs. Finally, we present a DL representation
framework representing UML models which contain different kinds of UML diagrams and
represent different interpretations of these diagrams.

Chapter 7: A DL Inconsistency Detection Approach The goal of this chapter is to
evaluate the second criterion, enable definitions of inconsistencies and inconsistency detec-
tion. The definitions of the inconsistencies are based on the encoding of the UML elements
presented in the previous chapter. Our inconsistency classification introduced in Chapter 3
is revisited from the viewpoint of our DL representation framework. Depending on the rep-
resentation of the models in DL and the inconsistencies to be checked, different detection
approaches are defined. A first approach is to detect inconsistencies by sophisticated queries
on DL knowledge bases that represent the UML metamodel and the user-defined models
as instances of this metamodel. Another approach is to use the standard DL reasoning
tasks on the DL knowledge bases representing an interpretation of state machine diagrams,
sequence diagrams, class diagrams or a combination of those diagrams. We also discuss the
formal properties guaranteed by both approaches. This chapter is concluded by a discussion
on the advantages and limitations of the usage of DLs as an inconsistency definition and
detection approach.

Chapter 8 A Rule-based DL Inconsistency Resolution Approach The goal of this
chapter is to evaluate the third criterion, precise definitions and management of interactive
inconsistency resolutions. First, we define resolution actions in DLs. The identified prob-
lems and challenges in the context of inconsistency resolution are exactly those that are
addressed by rule-based systems. We identify two types of rules in our DL representation
framework. A set of requirements for a DL rule-based system can be distilled. The current
support for rules by DL systems is compared to these requirements. Finally, the proposed
resolution approach is evaluated against the third key criterion.

17 1.8 Outline

Chapter 9: Supporting Model Refactorings This chapter can be divided into two
parts. In a first part, behaviour preservation properties of model refactorings are discussed.
It is shown that some of our defined consistencies correspond to behaviour preservation
properties in a refactoring context. Using this knowledge, properties about the behaviour
of refactored super- or subclasses can be proved.

In a second part, we argue that our rule-based inconsistency approach can be used
for supporting some model refactorings. In order to execute some refactorings, a chain of
user input and inconsistency detection and resolution steps is performed. We argue by an
example of a specific model refactoring, that manually determining inconsistency resolution
scenarios that correspond to all possible situations is an unmanageable and error-prone task.
The identified problems are exactly those that are addressed by our rule-based inconsistency
resolution approach. Hence we use the inconsistency resolution rules defined in Chapter 8,
to support model refactorings. We present an overview of the relation between a larger set
of model refactorings and our classified inconsistencies.

Chapter 10: Proof-of-concept Tool Support In this chapter proof-of-concept tool
support is presented implementing different inconsistency checks and resolutions. The pre-
sented protottype RACOoN is developed as a plug-in of the state-of-the-art UML CASE
tool Poseidon and uses the state-of-the-art DL reasoning engine Racer. First, we show how
the detection of our classified inconsistencies can be implemented through the implementa-
tion of our DL representation framework. Next, some resolution actions are implemented
and used in rules which can be used not only in an inconsistency resolution approach but
also in the context of supporting model refactorings. The execution of one model refactoring
using a set of representative resolution rules is demonstrated. This chapter provides small
yet representative implementations of our approach.

Chapter 11: Conclusions This chapter concludes this dissertation. An overview of our
ideas is given and future work is discussed.

Chapter 1. Introduction 18

Chapter 2

Lightweight Formalisation of UML
2.0 Fragment

This chapter starts with the introduction of the requirements of a case study (Section 2.1).
This case study models an ATM application and is used as running example throughout
this dissertation.

Next, the definition of the UML [Obj04a] is discussed (Section 2.2). The language ar-
chitecture of the UML is based on a metamodelling approach. Recently, the UML version
2.0 has been adopted. The specification of this language consists of several documents each
specifying different parts of the language definition. The UML 2.0 notation consists of differ-
ent standard diagram types which can be used throughout the entire software development
cycle. In this dissertation, we will deliberately confine ourselves to three types of diagrams.
We motivate this research restriction and the choice of the diagrams (Section 2.3). We
introduce the three types of diagrams. First, class diagrams expressing the static structure
of the software are introduced (Section 2.4). Next, sequence diagrams, emphasising on the
sequences of message sends and communication diagrams, emphasising on the links between
the different objects, are introduced (Section 2.5). Finally, state machine diagrams (Section
2.6) that specify the different states of a particular object and the possible state transitions,
are introduced. The model elements occurring in these 3 different types of diagrams, and
their relationships are formalised in the respective sections. Based on these definitions, a
definition of the concept UML model is given (Section 2.7).

2.1 Case Study Requirements

In this section, the case study used as a running example throughout the next chapters, is
introduced. Our case study is a design of an automated teller machine (ATM) simulation
and is an adapted version of the ATM simulation example by Russell C. Bjork [Bjo04]. We
now specify the requirements for the ATM example.

The simulated ATM possesses a magnetic card reader for reading an ATM card, a cus-
tomer console (keyboard and display) for interaction with the customer, a slot for depositing
envelopes, a dispenser for cash, a printer for printing customer receipts, and a key-operated
switch to allow an operator to start or stop the machine.

This key-operated switch allows an operator to start and stop the servicing of customers.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 20

After turning the switch to the “on” position, the operator will be required to verify and
enter the total cash on hand. The machine can only be turned off when it is not servicing
a customer. When the switch is moved to the “off” position, the machine will shut down,
so that the operator may remove deposited envelopes and reload the machine with cash,
blank receipts, etc.

The ATM will service one customer at a time. A customer will be required to insert
an ATM card and enter a personal identification number (PIN). Both of which will be sent
to the bank for validation as part of each transaction. The customer will then be able to
perform one or more transactions.

The ATM must be able to provide the following services to the customer:

• A customer must be able to make a cash withdrawal from any suitable account linked
to the card. Approval must be obtained from the bank before cash is dispensed.

• A customer must be able to make a deposit to any account linked to the card, consist-
ing of cash and/or checks in an envelope. The customer will enter the amount of the
deposit into the ATM, subject to manual verification when the envelope is removed
from the machine by an operator. Approval must be obtained from the bank before
physically accepting the envelope.

• A customer must be able to make a transfer of money between any two accounts
linked to the card.

• A customer must be able to make a balance inquiry of any account linked to the card.

• A customer must be able to abort a transaction in progress by pressing the Cancel
key instead of responding to a request from the machine.

The ATM will communicate each transaction to the bank and obtain verification that
it is allowed by the bank. A transaction will be considered complete by the bank once it
has been approved. In the case of a deposit, a second message will be sent to the bank
indicating that the customer has deposited the envelope. If the customer fails to deposit
the envelope by pressing cancel instead, no second message will be sent to the bank and the
deposit will not be credited to the customer.

The ATM will provide the customer with a printed receipt for each successful transac-
tion, showing the date, time, machine location, type of transaction, account(s), amount,
and ending and available balance(s) of the affected account (“to” account for transfers).

Possible extensions to this example are:

• If the bank determines that the customer’s PIN is invalid, the customer will be required
to re-enter the PIN before a transaction can proceed. If the customer is unable to
successfully enter the PIN after three tries, the card will be permanently retained by
the machine.

• If a transaction fails for any reason other than an invalid PIN, the ATM will display
an explanation of the problem, and will then ask the customer whether he/she wants
to do another transaction.

21 2.2 UML 2.0 Specification

• The ATM will also maintain an internal log of transactions to facilitate resolving
ambiguities arising from a hardware failure in the middle of a transaction. Entries
will be made in the log when the ATM is started up and shut down, for each message
sent to the Bank (along with the response back, if one is expected), for the dispensing
of cash, and for the receiving of an envelope. Log entries may contain card numbers
and amounts, but for security will never contain a PIN.

2.2 UML 2.0 Specification

UML originates from the unification of different object-oriented graphical modelling lan-
guages flourishing in the early 1990s. In 1997, UML version 1.1 was adopted by the Object
Management Group (OMG) as an official OMG standard. Due to these standardisation
efforts UML became the state-of-the-art modelling language it is now. As a consequence,
UML is well-known and there is a lot of tool support available.

2.2.1 A Metamodelling Approach

The UML specification is defined using a metamodelling approach. A metamodel specifies
what can be expressed in the valid models of a certain modelling language.

A language definition normally consists of an abstract syntax, a concrete syntax and
semantics. The UML metamodel includes all the concrete graphical notation, abstract
syntax and, however informal, the semantics for UML. The UML abstract syntax consists
of UML class diagrams. The concrete syntax is informally specified UML notation. Well-
formedness rules are constraints on the abstract syntax and they specify when an instance
of a particular language construct is meaningful. These rules are described partially in the
Object Constraint Language (OCL) [Obj04d] and in English. The semantics of UML defines
a model’s meaning and is described in natural language (English) and OCL.

The UML metamodel has been architected following a four-layer architectural pattern
(see Figure 2.1).

2.2.2 The Four-Layer Metamodel Hierarchy

The meta-metamodelling layer forms the foundation of the metamodelling hierarchy. This
layer, often referred to as M3, is a specification of the language used to express metamodels.
OMG has defined metamodels for languages other than UML. The OMG Meta-Object
Facility (MOF) is an example of a meta-metamodel. It defines an abstract language and
framework for specifying and constructing metamodels. There is no need to have additional
meta-layers above MOF because MOF is reflective. There are some advantages using this
meta-metamodelling approach. It can be used to compare different modelling languages or
to shift from one modelling language to another as long as they are expressed in the same
meta-metamodel. It also makes adding new features to a modelling language easy.

A metamodel is an instance of a meta-metamodel, which means that every element of
the metamodel is an instance of an element in the meta-metamodel. The responsibility of
this layer, often referred to as M2, is to define a language for specifying models. UML and
the Common Warehouse Metamodel (CWM), which is a specification describing metadata
interchange among data warehousing, business intelligence and knowledge management, are

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 22

Class

Attribute Class Instance
-classifier

-amount : Integer

ATM

amount : Integer = 12500
 : ATM

anATM

M3 (MOF)

M2 (UML)

«instance»

«instance»

«instance»

«instance»

«instance»

«instance»

«instance»

«instance»

M1 (User Model)

M0 (run-time
instances)

<<snapshot>>

Figure 2.1: Example of the four-layer metamodel hierarchy.

examples of metamodels which are instances of a meta-metamodel. Every UML metamodel
element is an instance of exactly one model element in MOF. As shown in Figure 2.1, the
concepts Class, Attribute and Instance in the UML metamodel are instances of the concept
Class in MOF.

The model layer, referred to as M1, has the primary responsibility to define languages
that describe certain domains. A user model is an instance of the UML metamodel. User
models contain model elements and sets of instances of these model elements. For example
in Figure 2.1 the class ATM is an instance of the Class concept in the UML metamodel.
The object :ATM is contained in M1 and is an instance of the Instance concept in the UML
metamodel.

The lowest meta-layer is called M0 and contains the run-time instances of model elements
defining a specific domain. Objects defined in the user models are snapshots of the run-time
instances contained in M0.

2.2.3 Specifications

The UML 2.0 specification consists of several documents:

• UML 2.0 Infrastructure [Obj04c]

• UML 2.0 Superstructure [Obj04e]

• UML 2.0 Object Constraint Language (OCL) [Obj04d]

23 2.2 UML 2.0 Specification

Core

UML

MOF

CWM

Figure 2.2: The role of Core in the context of other metamodels.

• UML 2.0 Diagram Interchange [Obj04b]

UML 2.0 Object Constraint Language contains the definition of OCL version 2.0 which
is aligned with UML 2.0. OCL is used to express well-formedness rules and parts of the
semantics. However, OCL has some limitations. OCL is a constraint language which is also
used to navigate over UML class diagrams. Three types of constraints can be expressed in
OCL, i.e., invariants, pre- and postconditions. An OCL constraint must always be specified
in a certain context. For pre- and postconditions this context is a certain operation defined
in a class diagram. For invariants, the context is a Classifier. This boils down to classes,
associations, association classes, interactions and state machines. However, only navigation
over static structure elements such as associations is permitted. As a result, OCL almost
only addresses static UML diagrams. It is also not possible to formalise UML diagrams
using OCL and to reason about them in the same way as a logic formalism can. And last
but not least, the tool support available for OCL emphasises on support for writing OCL
expressions and generating code for these expressions [Uni04a, HDF00]. These limitations
point out that we need something more powerful in the realm of expressing constraints on
behavioural UML diagram elements and in the realm of reasoning on UML diagrams.

The goal of the UML 2.0 Diagram Interchange specification is to enable a smooth and
seamless exchange of documents compliant to the UML standard between different software
tools. [Obj04b]. This document provides a metamodel (MOF-compliant) for UML diagram
information (including notational information).

The UML 2.0 Infrastructure defines the foundational language constructs required for
UML 2.0. It is complemented by UML 2.0 Superstructure defining the user level constructs
required for UML 2.0. These two specifications constitute a complete specification for the
UML version 2.0 language.

The Infrastructure of UML 2.0 is defined by the InfrastructureLibrary package. This
package consists of the packages Core and Profiles. Core contains core concepts used when
metamodelling, while Profiles defines mechanisms used to customise metamodels.

The Core package is a complete metamodel. Other metamodels at the same metalevel
import or specialise the specified metaclasses. Figure 2.2 shows how UML, CWM, and
MOF each depend on a common Core.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 24

One of the primary uses of the UML 2.0 Infrastructure specification is that it should be
reused when creating other metamodels [Obj04c]. The UML metamodel reuses the Infras-
tructureLibrary in two different ways:

1. The UML metamodel is instantiated from meta-metaclasses that are defined in the
InfrastructureLibrary.

2. The UML metamodel imports and specialises all metaclasses in the InfrastructureLi-
brary.

The InfrastructureLibrary is used both at the M2 and M3 metalevels, since it is being reused
by UML and MOF.

The UML Superstructure metamodel is structured into three parts: the first part, Struc-
ture, defines the static, structural constructs used in structural diagrams, such as class
diagrams, component diagrams and deployment diagrams. The InfrastructureLibrary is
primarily reused in this part that adds more capabilities to the modelling constructs which
are not necessary to include for purposes of reuse or alignment with MOF. The second part,
Behaviour, specifies the dynamic constructs used in behavioural diagrams, such as activity
diagrams, sequence diagrams and state machine diagrams. The third part, Supplement,
defines auxiliary constructs and profiles to customise UML for various domains, platforms
and methods.

2.2.4 UML 2.0 Diagrams

The UML 2.0 specification describes 13 diagram types. Those diagrams can be classified
into structure and behaviour diagrams. Table 2.1 based on [Fow03], summarises the purpose
of the different diagram types.

Diagram Purpose
Structure
Class Types of objects and static relationships among them
Component Structure and connections of components
Composite Structure Run-time decomposition of a class
Deployment Deployment of artefacts to nodes
Package Group elements together into higher-level constructs
Behaviour
Interaction

Communication Possible interaction between objects; emphasis on links
Sequence Possible interaction between objects; emphasis on sequence
Timing Possible interaction between objects; emphasis on timing
Interaction overview Mix of sequence and activity diagram

Activity Procedural logic, business process and work flow
Object Possible configurations of instances
State machine States of an object and state changes over its life
Use case How users interact with a system

Table 2.1: UML 2.0 diagram types.

25 2.3 Scope of UML 2.0 Fragment

The types are not rigid in the sense that it is legal to use elements from one diagram
type on another diagram.

A class diagram describes the types of objects and the various kinds of static relations
existing among them. Component diagrams on the contrary, specify the static structure and
connections between components and are subject to a small range of modelling elements.
Composite structure diagrams show how complex classes can be decomposed, much of its
notation is used by component diagrams. Deployment diagrams show a system’s physical
layout, displaying which (pieces of) software run on what (pieces of) hardware. These
diagrams only contain two modelling elements: a node, which can be a device or execution
environment and an artefact. Finally, package diagrams describe packages, which contain
classes and packages, and some possible relations between them.

State machines are a quite well-known technique to describe the behaviour of a system
and more in particular, a state machine defines the possible states a certain object can
possess and the different state transitions existing between states. In contrast to state
machines, activity diagrams are used to describe work flow or procedural logic. In both
cases multiple objects can be involved. Next to the description of the behaviour of a single
object, we also need to be able to model possible interactions between various objects and
to indicate how these objects are linked at run-time. For this purpose, interaction diagrams
are used in UML. These diagrams come in different flavours. An interaction implies two
major aspects: first of all the sequence in which messages are sent between different objects
and secondly, the communication paths between the different interacting objects. Both
aspects are described by interaction diagrams, however, sequence diagrams emphasise on
the sequence aspect, while communication diagrams emphasise the communication aspect.
Other interaction diagrams are timing diagrams which show timing constraints between
message sends or state changes on different objects and interaction overview diagrams which
combine sequence diagrams and activity diagrams. A last type of behaviour diagrams is
a use case diagram. Use cases are a technique for capturing functional requirements of a
system and as such are used in the requirements phase of the development cycle. Use cases
are also well known, however, nothing in UML describes how the content of a use case
should be captured.

2.3 Scope of UML 2.0 Fragment

We will only consider one kind of structure diagram, class diagrams, in our work for the
following reasons.

• It is the most important structure diagram in the sense that it describes the types of
objects and the various kinds of static relations existing among them. These concepts
are fundamental to object-oriented development.

• A class diagram is subject to the greatest range of modelling elements.

• Elements defined by class diagrams are used in the behavioural diagrams. As a con-
sequence there is an overlap between class diagrams and behavioural diagrams.

• Class diagrams are also used for the description of the abstract syntax of UML.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 26

Section 2.4 provides a detailed description of the different modelling elements occurring in
class diagrams. This description is quite detailed on purpose, as the UML abstract syntax
is described using class diagrams, a good understanding of class diagrams is necessary to
understand UML.

As behaviour diagrams, we will only consider sequence, communication and state ma-
chine diagrams in our work for the following reasons.

• The research reported upon in this dissertation is in line with earlier research efforts
conducted at the System and Software Engineering Lab.

In the dissertation of Kurt Verschaeve [Ver01], bridges are investigated between object-
oriented analysis and design formalisms (OMT/UML style) and formal specification
languages (SDL-92 style). This line of research started with the Esprit III project
INSYDE (Integrated Methods for Evolving System Design) and is continued in the
context of the AIA (Advanced Internet Access) project where an environment for
design, implementation and documentation of components for multimedia services
is investigated. Iteration between system design in the UML, especially UML state
machines, and detailed design in SDL-96 is an important generic result of this line of
research and this iteration guarantees round-trip engineering.

In Bart Wydaeghe’s dissertation [Wyd01], concerning component-based development,
the tool suite PaCoSuite is presented. This tool suite supports the visual composition
of components. Message Sequence Charts (MSC’s) on which UML sequence diagrams
are partially based, are used to describe the interaction between a set of roles. As
such the wiring of components is lifted to a full protocol and automatic compatibility
checks and glue-code generation can be performed.

• Sequence diagrams and state machine diagrams are complementary in the sense that
the former diagrams describe objects’ interactions, while the latter ones describe the
behaviour of a single object. Both diagrams types are subject to a great range of
modelling elements. There is a significant overlap between these behaviour diagrams
and class diagrams.

• Communication diagrams and sequence diagrams are equivalent. They only focus on
different aspects of object interactions.

• UML state machine diagrams and sequence, communication diagrams are most de-
scribed in literature (e.g., [ET00], [EHHS02], [vdB01], [LL99], [LCM+03] and many
others.).

• Activity diagrams also contain a large amount of modelling elements. However, due
to time restrictions it is not possible to investigate this type of diagram.

• Other behaviour diagrams are very specific, e.g., timing diagrams. Use case diagrams
are well-known too but are very loosely described in UML and are realised by sequence
diagrams which we will describe.

Sequence and communication diagrams are considered in Section 2.5, while state machine
diagrams are considered in Section 2.6.

27 2.4 UML 2.0 Class Diagram

MultiplicityElement TypedElement Feature

StructuralFeature

Property

BehaviouralFeature

Operation

TypedElement

Parameter

MultiplicityElement

ValueSpecificationMultiplicityElement

0..1 *
0..1 *

0..1

0..1

0..1 0..1
0..1 0..1

+ownerFormalParam +formalParameter

+ownerReturnParam +returnResult

+ownerUpper

+ownerLower

+upperValue

+lowerValue

+defaultValue

+owningParameter

NamedElement

Figure 2.3: Metamodel snapshot concerning Feature.

For the different diagrams studied in this dissertation, structured definitions are given for
the basic concepts constituting those diagrams, in view of defining several (in)consistencies.
We will not and cannot use the full scale of model elements that a team of software engineers
would use on a large real-world project in order to keep our formalisation clean enough for
the purpose of inconsistency checking and management. The full UML standard is crowded
with a lot of notations on which we will have to compromise. Rigorous definitions of
UML model elements and UML elements are necessary to provide precise definitions of
inconsistencies between and within UML (sub)models. Our ideas and results can then be
extended to more detailed language concepts, closer to real-world modelling, and can be
generalised to concepts of UML diagrams which are not detailed in this dissertation.

2.4 UML 2.0 Class Diagram

The first type of UML diagram described here, is class diagrams. A class diagram specifies
the static structure of the software system under study. This static structure is described in
terms of the different classes and different kinds of static relationships between them. Class
diagrams show the properties and operations of a class. UML 2.0 uses the term feature to
indicate properties and operations of a class.

Classes A class represents a set of objects with common features. As specified in Figure
2.3, that represents a portion of the UML 2.0 metamodel, a Feature can be a StructuralFea-
ture or a BehaviouralFeature. An example of a StructuralFeature is a Property and an
example of BehaviouralFeature is an Operation. Properties in UML 2.0 have two distinct
notations: attributes and association ends. If a property is owned by a class, it represents an
attribute. If a property is owned by an Association, it represents an end of the association.

Graphically, a class is represented by a rectangle divided into three parts. The first
part contains the name of the class, this name must be unique within the whole class

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 28

diagram. The second part contains the attributes of the class and the third part contains
the operations of the class. An example of a class diagram is shown in Figure 2.4.

ATM

-id:Integer
-cash:Cash

+switchOn():void
+switchOff():void
+getID():Integer
+cardInserted():void
+performStartup():void
+performShutdown():void
+readCard():Card
+verifyPIN(pin:Integer,aCard:Card):Boolean
+ejectCard():void
+dispenseCash(amount:Cash):void
+checkIfCashAvailable(cash:Cash):Boolean
+acceptEnvelope():void
+getAccountNbr():Integer
+getAmountEntry():Cash
+displayCash(amount:Cash):void
+send(m:Message):Boolean
+readPIN():Integer
+displayMessage(message:String):void
+retainCard():void
+cancel():void
+printReceipt():void

CardReader

+ejectCard():void
+retainCard():void
+readCard():Card

CashDispenser

-cash:Cash

+setInitialCash(initialCash:Cash):void
+dispenseCash(amount:Cash):void
+checkCash(amount:Cash):void

CustomerConsole

+readPIN():Integer
+readAmount():Cash
+readAccountNbr():Integer
+displayAmount(amount:Cash):void
+display(message:String):void

EnvelopeAcceptor

+acceptEnvelope():void

ConnectionToBank

+openConnection():void
+closeConnection():void
+verifyPIN(pin:Integer,aCard:Card):Boolean

OperatorPanel

+getInitialCash():Cash

ReceiptPrinter

+printReceipt():void

Session

+performSession():void
+handleFailedTransaction():void
+terminateSession():void

atm+

1 reader+

1ATM<!>CardReader

1 cashdispenser+

1ATM!>CashDispenser

1console+

1 ATM!>Console

1acceptor+

1 ATM!>EnvelopeAcceptor

1 0..1

ATM!>Bank

1 panel+

1ATM<!>OperatorPanel

1printer+

1 ATM!>Printer

session+0..1

atm+ 1

Session!>ATM Cash

-amount:double

+add(amount:Cash):void
+subtract(amount:Cash):void
+equal(amount:Cash):Boolean
+greaterThan(amount:Cash):Boolean
+lessThan(amount:Cash):Boolean

Figure 2.4: A first class diagram from our case study.

In the next paragraphs, the notions of attributes, operations and associations are ex-
plained.

Attributes Attributes are represented in the UML 2.0 metamodel by the metaclass Prop-
erty. As shown in Figure 2.5, a Property is a subclass of StructuralFeature which is a
TypedElement (see Figure 2.3). A StructuralFeature is also a MultiplicityElement. A Multi-
plicityElement has an upperValue and a lowervalue indicating the maximum and minimum
cardinality, respectively, for an instantiation of this MultiplicityElement. This means that
an attribute is denoted by a name, possibly followed by a multiplicity and the associated
type of the attribute. The full UML syntax for an attribute is:

visibility name: type multiplicity = default

• visibility indicates whether an attribute is public or private.

• name denotes the name of the attribute.

29 2.4 UML 2.0 Class Diagram

Type

Classifier

Class

Property
-aggregation: AggregationKind
-isComposite : Boolean

StructuralFeature

Operation

TypedElement

Parameter

NamedElement

Type

Constraint

AggregationKind
-none
-shared
-composite

Association

Classifier Relationship

0..1
type

0..1 *

0..1 * 0..12..*

0..1 *
0..1

*

0..1

*

+class

+ownedAttribute

+class +ownedOperation
+operation +formalParameter

+preContext

+postContext

+postcondition

+precondition

+memberEnd

+association

Figure 2.5: Metamodel snapshot concerning Class, Property and Operation.

• The type of the attribute specifies which kinds of values or objects an attribute can
contain.

• The multiplicity of an attribute indicates how many objects may fill the attribute.

• The default value is the value for a newly created object.

Only the name is mandatory.
Concerning visibility, UML 2.0 provides only two visibility markers: private and public.

The intention is that users will define their own visibility markers, from which visibility
semantics can be constructed.

Example 1 The class ATM in Figure 2.4, has two attributes: -id : Integer and -cash :
Cash. The first attribute’s name is id and its type is Integer. The second attribute’s name
is cash and its type is Cash.

Attributes in the Core of the InfrastructureLibrary and in the UML metamodel, are of
a type defined in the metamodel or of a primitive type. In Core and the UML metamodel,
PrimitiveTypes are predefined and available to the Core and UML extensions. It is intended
that every metamodel based on Core will reuse those primitive types. These may also be
reused in user models, however, CASE tools usually provide their own library of data types
to be used when modeling with UML. The available primitive types are Boolean, Integer,
String and UnlimitedNatural. To be able to define operations in the next paragraph, which
do not have a return result, we include Void to the set of primitive types.

First, a set of notations for different elements is introduced. Then, these elements are
successively defined.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 30

Notation 1 The set of all available classes is denoted by C
The set of primitive types is denoted by PT.
The set of types is denoted by T and T = C ∪PT.
For naming UML elements, we assume a non-empty set of names N.
The power set of a set S is denoted by P(S).
The set of all attributes is denoted by Att.
The set of all operations is denoted by Op.
The set of all associations is denoted by Assoc.
The set of all association ends is denoted by AssocEnd.
The set of all properties is denoted by Prop and Prop = Att ∪AssocEnd.

Attributes can now be defined as follows:

Definition 4 An attribute att is defined as a tuple, att = (n, c), where n ∈ N and c ∈ C.
The set of all attributes of a set of classes R ⊆ C is defined as AttR ∈ P(N×R).

The type and multiplicity of an attribute att are defined implicitly via the following (total)
functions:

Definition 5 The total function type: Att→ T.
The total function multiplicity: Att→ P(N+) \ {0}.

Because attributes are defined as elements of the extension of the relation N × C, each
attribute has a unique name in the context of the class owning the attribute.

Example 2 The attributes of the class ATM as modelled in Figure 2.4 can now be spec-
ified as: {attid = (“id” , ATM),attcash = (“cash”, ATM)} and type(attid) = Integer,
type(attcash) = Cash and multiplicity(attid) = {1}, multiplicity(attcash) = {1}.

Operations The Operation metaclass (see Figure 2.3) is a subclass of BehaviouralFeature
and possesses some formal Parameters and some return results which are also Parameters.

The full UML syntax for operations is:

visibility name (parameter-list) : return-type-expression

• The visibility marker is the same as for an attribute.

• The name denotes the name of the operation and is a string.

• The parameter-list is the list of parameters of the operation. A parameter is a
TypedElement.

• The return-type-expression is a comma-separated list of return types. UML allows
for multiple return types.

Remark, in class diagrams, only the signature of operations is defined. This includes the
formal parameters, the return types and the type owning the operation.

Example 3 As an example, consider the operations defined for the class ATM in Figure
2.4. One of these operations is checkIfCashAvailable(cash : Cash) : Boolean. The name
of the operation is “ checkIfCashAvailable” and the operation has one formal parameter of
type Cash. The return type of the operation is the primitive type Boolean.

31 2.4 UML 2.0 Class Diagram

Definition 6 An operation op is defined as a tuple, op = (n, c, (p1, . . . , pk), (r1, . . . , rm)),
where n ∈ N, c ∈ C and p1, . . . , pk, r1, . . . , rm ∈ T. p1, . . . , pk denote the types of the formal
parameters of the operation and r1, . . . , rm denote the types of the return values.
The set of all operations of set of classes R ∈ C is defined as OpR = {op|owner(op) =
c ∈ R}.
The total function owner : Op→ C: (n, c, (p1, . . . , pk), (r1, . . . , rm)) 7→ c.

Overloading of operations is allowed in UML. This happens when operations have the same
name, but a different signature, where the signature of an operation consists of the types of
the formal parameters and the types of the return values. Overriding of operations normally
takes place when two operations, one defined in a superclass and another in a subclass, have
the same name and signature but behave in different ways. However, it is not possible to
specify in a UML class diagram the fact that both operations behave in different ways. In
UML 2.0 it is possible to redefine some model elements in the context of a generalisation.
An operation may be redefined in a specialisation of its defining classifier. This redefinition
may specialise the types of the formal parameters or return results, add new preconditions
or postconditions. The above formalisation of operations allows one to have operations with
the same name and a different signature, or with the same name and the same signature
defined in two different classes, and it also allows the redefinition of operations.

Example 4 We can now formally define the operation opcheckIfCashAvailaible as modelled
in Figure 2.4. opcheckIfCashAvailable : (“checkIfCashAvailable”,ATM, (Cash), (Boolean)).

As shown in Figure 2.5, constraints can be specified on an operation. Preconditions
are an optional set of constraints that must be true when an operation is invoked [Obj04e].
Postconditions are an optional set of constraints that must be true when the operation is
completed [Obj04e].

Notation 2 The set of all preconditions of an operation op, i.e., the set of conditions
that must be true when the operation op is invoked, is denoted by Preop. The set of all
preconditions of all operations is denoted by Pre =

⋃
∀op∈Op Preop.

The set of all postconditions of an operation op, i.e., the set of conditions that
must be true when the operation op is completed, is denoted by Postop. The set of all
postconditions of all operations, is denoted by Post =

⋃
∀op∈Op Postop.

Just as UML, we do not prescribe a constraint language used for the pre- and postcon-
ditions of operations or any other kinds of constraints that will be defined further in this
dissertation. But we assume that these constraints (such as Preop and Postop) are sets of
predicates, i.e., Boolean expressions.

On a class diagram it is possible to indicate whether an operation is abstract or not. An
abstract operation has no implementation and is pure declaration. An implementation of
an operation can be specified in UML by, e.g., a sequence diagram or state diagram(s). The
most common way to indicate an abstract class or operation in UML is to italicise the name
or to use the label {abstract}. An abstract class is a class that cannot be instantiated
directly, because it has some abstract operations. In the next definition, we define the
relation isAbstract.

Definition 7 The unary relation isAbstract : C ∪OpC.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 32

Associations An association is a relation between instances of two or more classes. As
specified by the UML metamodel (see Figure 2.5), each association has at least two associ-
ation ends. Those association ends are Properties and as such can be explicitly named.

An association end also has multiplicity indicating how many objects participate in the
given association. In general, the multiplicity indicates lower and upper bounds for the
participating objects. The lower bound may be any positive number or zero; the upper
bound may be any positive number or ∗ for unlimited.

Conceptually there is no difference between an attribute and an association end. An
attribute has another kind of notation than an association end. Attributes are usually single-
valued. The difference occurs at the implementation level. Attributes imply navigability
from the class to the attribute only.

Navigability arrows can be specified on an association end as, for example, on the associa-
tion end between Type and TypedElement in Figure 2.5. This indicates that a TypedElement
is responsible for knowing its Type, but a Type does not know its associated TypedElements.
If a navigability exists in only one direction, the association is called unidirectional. A
bidirectional association contains navigability in both directions.

Definition 8 An n-ary association assoc is defined as an (n + 1)-ary tuple
assoc = (name, c1, c2, . . . , cn), where ci ∈ C, name ∈ N ∪ {ω}.

The classes c1, . . . , cn are called the participating classes of the association. In the
UML, the name of an association is optional. To support this, we introduce ω denoting a
dummy name. Remark, that it is not possible to have two associations with the same set
of participating classes and the same names, or all dummy names.

An n-ary association is in our model, a tuple belonging to the extension of a relation
Rn : N×C× . . .×C︸ ︷︷ ︸

n

. Each set of associations of a certain arity defines a certain relation.

For each relation Rn, selectors that are total functions and that, given a tuple representing
an association, return a certain element of that tuple, can be defined and are used in the
definition of association ends.

Definition 9 ∀i ∈ {1, . . . , n} : the total functions
assocTypen,i : {assoc|assoc ∈ Assoc ∧ assoc = (name, c1, . . . , cn)} → C : assoc =
(name, c1, . . . , cn) 7→ ci

Selectorsn =
⋃
∀i∈{1,...,n} assocTypen,i

Selectorsn denotes the set of selectors of associations of arity n.
To be able to retrieve the set of associations in which a class participates, we define a

(partial) function participates.

Definition 10 The partial function participates: C→ P(Assoc) :
c 7→ {assoc|∃ i ∈ {1, . . . , n} : assocTypen,i(assoc) = c}.

We can now proceed by defining association ends.

33 2.4 UML 2.0 Class Diagram

Definition 11 An association end assocend is defined as a tuple, assocend =
(assoc,assocTypen,i) where assoc ∈ Assoc, an n-ary association and
assocTypen,i ∈ Selectorsn.
The set of association ends of a set of classes R ⊆ C is defined as AssocEndR =
{assocend = (assoc,assocTypen,i)|∃j ∈ {1, . . . , n} \ {i} : assocTypen,j(assoc) ∈ R}.

An association end consists of the association owning the end and the selector that applied
to the association will return the type of the association end. By defining an association
end as a tuple consisting of the owning association and a selector, ends of self-associations
are uniquely identified. A self-association is a binary association where both ends of the
association are attached to the same class.

Furthermore, we introduce the constraint that for each association there exists as many
association ends as the arity of the association.

∀assoc = (name, c1, . . . , cn) ∈ Assoc ∀assocTypen,i ∈ Selectorsn

∃assocend = (assoc,assocTypen,i) ∈ AssocEnd

An association end can have a name and has a multiplicity. The function multiplicity
defined in Definition 4 can be extended to the domain of association ends, returning the
multiplicity of an association end or an attribute. Furthermore, a unary relation is defined
indicating whether an association end is navigable.

Definition 12 The partial function name: AssocEnd→ N.
The total function multiplicity : Prop→ P(N+) \ {0}.
The unary relation isNavigable : AssocEnd.

Example 5 Consider the association named ATM<->CashDispenser in the class dia-
gram of Figure 2.4. This is a binary association ATMtoCashDispenser = (ATM<-
>CashDispenser, ATM, CashDispenser). This association has two association ends.

A first association end can be defined as atmend =
(ATMtoCashDispenser,assocType2,1) and the second association end can
be defined as cashdispenserend = (ATMtoCashDispenser, assocType2,2)
where assocType2,2 (ATMtoCashDispenser) = CashDispenser, assocType2,1

(ATMtoCashDispenser) = ATM, name (cashdispenserend) = “cashdispenser”,
multiplicity (cashdispenserend) = {1} and isNavigable (cashdispenserend) and
multiplicity (atmend) = {1}.

Aggregation and composition Two special kinds of binary associations are aggrega-
tions and compositions. An aggregation denotes a part-of relationship. As specified in
the UML Superstructure document, the semantics of aggregation varies by application and
modeller. This makes it impossible to exactly specify in general the difference between
aggregation and association.

A stronger form of aggregation is composition that requires a part instance to be included
in at most one composite at a time. If a composite is deleted, all of its parts are deleted
with it.

The unary relation isComposite expresses whether an association end is composite .

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 34

Card

-number:Integer

+getNumber():Integer
+getAccount(accountnbr:Integer):Account

ATM

-id:Integer
-cash:Cash

+switchOn():void
+switchOff():void
+getID():Integer
+cardInserted():void
+performStartup():void
+performShutdown():void
+readCard():Card
+verifyPIN(pin:Integer,aCard:Card):Boolean
+ejectCard():void
+dispenseCash(amount:Cash):void
+checkIfCashAvailable(cash:Cash):Boolean
+acceptEnvelope():void
+getAccountNbr():Integer
+getAmountEntry():Cash
+displayCash(amount:Cash):void
+send(m:Message):Boolean
+readPIN():Integer
+displayMessage(message:String):void
+retainCard():void
+cancel():void
+printReceipt():void

Account

-balance:Cash
-accnumber:Integer

+getCurrentBalance():Cash
+setCurrentBalance(newBalance:Cash):void
+verifyAccountBalance(cash:Cash):Boolean
+getNumber():Integer

Transaction

+performTransaction():Boolean
+getCustomerSpecifics():void
+completeTransaction():void

Customer

-name:String
-address:String

ConnectionToBank

+openConnection():void
+closeConnection():void
+verifyPIN(pin:Integer,aCard:Card):Boolean

1

0..1
ATM!>Bank

0..1

1

Transaction!>ATM

0..1

1 Transaction!>Card

Session

+performSession():void
+handleFailedTransaction():void
+terminateSession():void

session+

0..1atm+

1
Session!>ATM

0..1

session+ 1

Transaction<!>Session

*

1..*Customer<!>Bank

customer
+ 1..2

account+1..*

account+ 1

accountCard+
1..*

*

1

Account!Bank

Message

-messageId:Integer
-toAccount:Integer
-fromAccount:Integer
-amount:Cash

+getMessageCode():Integer
+getToAccount():Integer
+getFromAccount():Integer
+getAmount():Cash

Figure 2.6: A second class diagram from our case study.

Definition 13 The unary relation isComposite : AssocEnd.
(isComposite((assoc,assocTypen,i)) ⇒ n = 2).

Remark that a composite self-association is antisymmetric and transitive.

Example 6 In Example 5, only atmend belongs to the relation isComposite, i.e.,
isComposite(atmend).

We are now able to define a class formally as:

Definition 14 A class c = (Propc,Opc) consists of

• a set Propc = Att{c} ∪AssocEnd{c} of properties,

• a set Opc = Op{c} of operations.

Example 7 The class ATM as modelled in Figure 2.4 can be specified using our formal
definition as follows: PropATM = {attcash} and OpATM = {opcheckIfCashAvailable} where
attcash is defined in Example 1 and opcheckIfCashAvailable is defined as in Example 4.

Example 8 Figure 2.4 and Figure 2.6 represent a first view on the static structure of our
case study. As shown in Figure 2.4, an ATM consists of, for example, a CustomerCon-
sole indicated by the composition relationship between ATM and CustomerConsole. The
multiplicity restrictions on this composition indicate that an ATM only possesses one Cus-
tomerConsole and a CustomerConsole belongs to only one ATM. Remark that in the class
diagrams of the next sections and chapters, the names of the associations are not always

35 2.4 UML 2.0 Class Diagram

Classifier Generalization

Relationship

DirectedRelationship

-name : String
NamedElement

Element

-source

1..*

-target1..*

-specific

1

-generalizaton

*

-general

1
-general

*

Class

Figure 2.7: Elements of the Generalisation package in the UML Infrastructure.

explicitly represented. Showing all the association names would clutter the diagrams and
make them unreadable.

All the classes in both figures exhibit quite a lot of behaviour through the definition of
different operations.

The class Account has one attribute balance of type Cash representing the amount of
money of the account. Figure 2.6 shows that the Account class is an abstract class. This
implies that there are concrete classes, subclasses of the the abstract class, implementing the
abstract class’ behaviour. This brings us to the generalisation relationship in the UML.

Generalisation and Hierarchies Generalisation indicates a taxonomic relationship in
UML. A generalisation relationship between a parent and a child class specifies that each
instance of the child class is also an instance of the parent class. This implies that the child
class inherits all the features of the parent class. But the child class can add features that
do not hold for the parent class.

In the UML metamodel, Generalization is a metaclass which has a link to its general
Classifier and its specialising Classifier. As specified in Figure 2.7, a Classifier also keeps
track of all its immediate ancestors through the directed general association. A Classifier
is a classification of instances. It is an abstract metaclass. Concrete subclasses of Classifier
are Class, Association, PrimitiveType, but also Behaviour explained in Section 2.5.

Using generalisation, several classes can be grouped together to form class hierarchies.
On the class diagram, the generalisation arrowhead can be labelled with the name of the
generalisation set. Generalisation sets are by default disjoint : any instance of the parent
class may be an instance of only one of the child classes within that set (see the Restric-
tion 2.1). Remark that UML allows multiple inheritance.

Definition 15 The binary non-reflexive, transitive relation generalisationOf : C×C.

If generalisationOf(c, c′) where c, c′ ∈ C then the class c′ is called a child class of c and
c is called a parent class of c′.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 36

Account

-balance:Cash
-accnumber:Integer

+getCurrentBalance():Cash
+setCurrentBalance(newBalance:Cash):void
+verifyAccountBalance(cash:Cash):Boolean
+getNumber():Integer

Transaction

+performTransaction():Boolean
+getCustomerSpecifics():void
+completeTransaction():void

Transfer

+getCustomerSpecifics():void
+completeTransaction():void

Deposit

+getCustomerSpecifics():void
+completeTransaction():void

Withdrawal

+getCustomerSpecifics():void
+completeTransaction():void

Inquiry

+getCustomerSpecifics():void
+completeTransaction():void

0..1
from+

1

Withdrawal!>Account

0..1

to+ 1

Deposit!>Account

to+

1

0..1

Transfer!>toAccount

0..1from+

1Transfer!>fromAccount

0..1

from+ 1

Inquiry!>Account

CurrentAccount SavingsAccount

Figure 2.8: A third class diagram from our case study.

Further restrictions can be applied to this generalisationOf relationship. For example,
the following relation is a restricted generalisationOf relationship.

Definition 16 Let c = (Propc,Opc) ∈ C and c′ = (Propc′ ,Opc′) ∈ C, then
inheritorOf(c, c′) if and only if

• generalisationOf(c, c′) ∧

• Propc ⊆ Propc′ ∧

• Opc ⊆ Opc′.

In UML 2.0 properties and operations inherited by a child class can be redefined in
the context of this class. How these redefined properties and operations are related to the
original properties and operations, must be defined by the user.

Example 9 Figure 2.8 represents another piece of the static structure of our case study.
This class diagram represents the transaction and account hierarchy. An Account can be
specialised into a CurrentAccount or a SavingsAccount.

Four possible transactions are defined by the following classes: Deposit, Inquiry, Trans-
fer and Withdrawal corresponding to the transaction a user can execute on an ATM.

The set of properties defined in a class together with its inherited properties is called a full
descriptor in the UML. The notion of full descriptor can be formalised as follows:

Definition 17 The full descriptor of a class c ∈ C is a tuple FDc = (Prop∗c ,Op∗c) where

• Prop∗c = Propc ∪
⋃
∀c′:generalisationOf(c′,c) Prop∗c′

• Op∗c = Opc ∪
⋃
∀c′:generalisationOf(c′,c) Op∗c′

37 2.5 UML 2.0 Sequence and Communication Diagram

2.5 UML 2.0 Sequence and Communication Diagram

A variety of behaviour specification mechanisms are provided by UML, such as Statema-
chine, Activity, Usecase and Interaction. As argued in Section 2.3, we confine ourselves
to Statemachine and Interaction as specifications of behaviour. We will start by basic
definitions of Interaction.

As described in chapter 14 of [Obj04e], “ Interactions are used in a number of different
situations. They are used to get a better grip of an interaction situation for an individual
designer or for a group that need to achieve a common understanding of the situation. In-
teractions are also used during the more detailed design phase where the precise inter-process
communication must be set up according to formal protocols. When testing is performed,
the traces of the system can be described as interactions and compared with those of the
earlier phases.”

The semantics of an Interaction is given by a pair of sets of traces [Obj04e] representing
valid traces and invalid traces, respectively. Only the valid traces are described in [Obj04e].

Interactions do not only specify the different possible traces but also the communication
paths used for the message passing. Depending on its purpose, an Interaction can be
displayed with different types of diagrams. We will consider sequence and communication
diagrams. As already pointed out in the section on the different UML diagram types,
sequence and communication diagrams combine two different run-time aspects: the sequence
of messages sent between different objects and the links through which different objects
communicate. We will call the former aspect the interaction view and the latter aspect the
communication view of sequence and communication diagrams.

2.5.1 Communication View

We start with a discussion on the fragment of the UML 2.0 metamodel, shown in Figure 2.9,
representing the connections between lifelines. Based on this metamodel fragment and on
previous definitions the main concepts inherent to the communication view are formalised.

A Lifeline represents an individual participant in the Interaction which is a Con-
nectableElement. Within UML 2.0 there are four types of ConnectableElements, i.e., Pa-
rameter, Property, Variable and Port. We will not consider Port, because this is a concept
inherent to composite structure diagrams. The metamodel element Parameter is discussed
in Section 2.4. The Variable metaclass is defined in the Action Semantics part of the UML
metamodel - this part was introduced in UML version 1.5 for MDA purposes and is not
considered in this dissertation - as an element for passing data between actions indirectly
and it stores values. The concept in the metamodel identifying a value or values in a model,
is the abstract metaclass ValueSpecification. However, in the current UML 2.0 metamodel
there is no connection between this metaclass and the metaclass Variable. Because, in our
opinion, it is important in some cases to know a variable’s value, we adapted the UML
2.0 metamodel by introducing a meta-association between Variable and ValueSpecification.
This association, surrounded in Figure 2.9 by a rectangle, expresses that a variable can
contain certain values. A ValueSpecification can be an Expression, a LiteralSpecification
or an InstanceValue. An Expression is a tree of symbols denoting a set of values when
evaluated in a certain context. A LiteralSpecification is an abstract metaclass identifying
a literal constant to be modeled as expressed by the different concrete specialisations of
this class. An InstanceValue identifies an instance and specifies the value modelled by an

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 38

Lifeline

ConnectableElement

Parameter Variable

Property

ConnectorEnd Connector

Association

Message

ValueSpecification

Expression
-symbol : String LiteralSpecification InstanceValue InstanceSpecification

Classifier

LiteralNull
LiteralUnlimitedNatural
value : UnlimitedNatural

LiteralString
value : String

LiteralBoolean
value : Boolean

LiteralInteger
value : Integer

*

1

*

0..1

0..1 * 12..*

*

1

*

0..1

*

1

+represents
+end+role

+end

+type

+connector

+instance

-classifier

+value

*

0..1
+expression

+operand

+definingEnd

Figure 2.9: UML metamodel fragment of Connections.

InstanceSpecification. In the context of interactions, we focus on instance values and their
specifications. An instance, i.e., an object in a modelled system at a certain point in time,
is represented by the metaclass InstanceSpecification. This instance can be classified by one
or several classes.

We define objects as instances of classes, i.e., identifiable entities that are referred to
by a unique object identifier (oid). Each object is uniquely determined by its identifier and
vice versa.

Notation 3 The set of all object identifiers is denoted by O = {o1, o2, o3, . . .}.
The set of all object identifiers of a set of classes R is denoted by OR.

As modelled in Figure 2.9, an InstanceSpecification can be classified by several classes. We
define a the (partial) function instanceOf associating an object identifier to a set of classes
of which the object is an instance.

Definition 18 The partial function instanceOf : O→ P(C) and
∀o ∈ OR ⊆ O ∃ C ⊆ C : (R ⊆ C ∧ instanceOf(o, C)).

A connectable element abstracts away from a single object. It represents a set of
objects that are not necessarily instances of the same set of classes. We define a connectable
element as a set of objects.

Definition 19 A connectable element ConnEl is defined as ConnEl ⊆ O.

39 2.5 UML 2.0 Sequence and Communication Diagram

atm:ATM :CardReader :Session

 :CustomerConsole

 :CashDispenser

 :ConnectionToBank

m:Message

1 : cardInserted() 1.1 : Session(atm)

1.2 : performSession()

1.2.1 : aCard:=readCard()

1.2.2 : pin:=readPIN()

1.2.5.1 : displayMessage("Withdrawal not allowed")

 :Withdrawal

1.2.3 : Withdrawal(atm, session, card)

1.2.4 : false:=performTransaction()

1.2.5.2 : destroy

1.2.4.1 : getCustomerSpecifics()

1.2.4.1.1 : accnumber:=getAccountNbr()

1.2.4.1.2 : cash:=getAmountEntry()

1.2.4.1.3 : true:=checkIfCashAvailable(cash)

1.2.4.1.5 : false:=send(m)

1.2.4.1.1.1 : accnumber:=readAccountNbr()

1.2.4.1.2.1 : cash:=readAmount()

1.2.5.1.1 : display("Withdrawal not allowed")

1.2.4.1.3.1 : checkCash(cash)

1.2.4.1.4 : Message(accnumber, cash, WITHDRAWAL)

1.2.4.1.5.1 : false:=send(m)

1.2.5 : handleFailedTransaction()

Figure 2.10: UML communication diagram for user session and withdrawal transaction.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 40

Example 10 The Interaction described by the communication diagram in Figure 2.10
shows a scenario where a user starts a session and does a withdrawal from his account.
The central concepts are the objects and the different connections between them. The differ-
ent lifelines are connected to objects. The objects specified in this diagram are 8 anonymous
objects and the object named atm and the object named m. For example, the set of objects
of the class ATM is a singleton containing only object identifier oid1, O{ATM} = {oid1}.

Lifelines in a sequence or communication diagram are connected to each other by Con-
nectors. The metamodel element Connector specifies links enabling the communication
between two or more instances. A Connector consists of two or more connector ends.
Each of these connector ends represents the participation of instances of classes typing the
connectable elements attached to this end. Indeed, a ConnectorEnd is an endpoint of a
Connector, attaching the Connector to a ConnectableElement. Each ConnectorEnd is part
of exactly one Connector. A ConnectorEnd is typed by a Property. This Property rep-
resents the corresponding AssociationEnd on the Association which types the Connector
owing this ConnectorEnd.

Notation 4 The set of all connectors is denoted by Connectors.

Definition 20 A connector Connector is defined as Connector ∈ P(OC1× . . .×OCn),
where ∀i ∈ {1, . . . , n} : Ci ⊆ C.
The partial function connectorType : Connectors → Assoc : Connector 7→ assoc.
The set of connectors typed by an association assoc is defined as, Connectorsassoc

= {Connector|connectorType(Connector) = assoc}.
A link l is defined as l = {(o1, . . . , on)} ∈ Connector ∈ P(OC1 × . . .×OCn).

Example 11 Between the different lifelines in Figure 2.10 connections are specified that
act as communication paths. Consider the connection between the lifeline representing an
instance of Withdrawal and the instance atm of ATM. The typing association of this con-
nection is the association specified between the class ATM and the abstract class Transaction
in the class diagram of Figure 2.6. This association is only navigable from Transaction to
ATM. This restriction has an implication on the sending of messages over connections typed
by this association. Only messages may be sent from a Transaction class to the ATM class.

We can now define the disjointness restriction on a set of classes. Let R = {c1, . . . , cn},

∀ ci ∈ R ∀ o ∈ O{ci} ∀ cj ∈ R \ {ci} : o /∈ O{cj} (2.1)

2.5.2 Interaction View

To clarify the definitions of the different concepts related to the interaction view, the relevant
parts of the UML metamodel are introduced first.

Figure 2.11 shows the relevant fragments of the UML metamodel dealing with interac-
tions. An Interaction consists of some Lifelines which are covered by EventOccurrences.
EventOccurrences are MessageEnds representing either the receiving event of a Message or
the sending event of a Message. A Message is a NamedElement that defines one specific kind

41 2.5 UML 2.0 Sequence and Communication Diagram

Message
MessageEnd

StateInvariant

Behaviour

Interaction

NamedElement

EventOccurrence

-interaction1

-lifeline*
-covered

1 *

Lifeline

*

-covered1

-sendEvent

0..1

-sendMessage

0..1

-receiveEvent 0..1 -receiveMessage0..1

InteractonFragment

InteractionOperand InteractionConstraint

-covered*

-coveredby*

-EnclosingOperand 0..1

-fragment *

1

-guard

0..1

ConnectableElement

*

-represents 1

Constraint

Constraint

1

-guard

1

-signature

0..1

Figure 2.11: UML metamodel fragment for Interactions.

of communication, represented by another NamedElement, e.g., an Operation in the case of
an operation invocation. A Lifeline represents a ConnectableElement. A ConnectableEle-
ment represents a set of instances owned by a containing classifier instance. On a Lifeline,
StateInvariants can be specified. An InteractionFragment is a piece of an interaction, which
is an interaction in its own right. An InteractionOperand is an InteractionFragment with
an optional guard expression. Only InteractionOperands with a guard that evaluates to
true at this point in the interaction will be considered for the production of the traces of
the enclosing Interaction.

The guards are InteractionConstraints, which are Constraints. A Constraint in UML
is a condition or restriction specified in natural language or in a machine readable lan-
guage. It specifies some additional semantics to certain elements. For example, in the UML
metamodel, OCL is used to add well-formedness rules and some semantical restrictions to
metamodel elements. In the section on class diagrams we already introduced a notation for
pre- and postconditions.

Notation 5 The set of all possible constraints is denoted by Constraints, where Pre ⊆
Constraints and Post ⊆ Constraints.

Because the user can define constraints in whatever language, it is not possible to generally
state how constraints relate to each other. In the UML metamodel, Constraint is related to
Element through a meta-association. This meta-association indicates the elements that are
referenced by a particular constraint. We will define a function that applied to a constraint
returns the elements referenced. Because we still have to define some model elements the
definition of this function is given in Section 2.7.

We formally define a sequence diagram (SD) trace for a particular instance of a certain
class. To be able to define such a trace, we first need to define the concepts event occurrence
and message. We define messages as identifiable entities that are referred to by a unique

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 42

message identifier (mid). Each message is uniquely determined by its identifier and vice
versa. A message can invoke an operation.

Notation 6 The set of all message identifiers is denoted by M = {m1,m2, . . .}.
The set of all event occurrences is denoted by E.
The set of all SD traces is denoted by Υ.
The set of all sequence diagrams is denoted by ∆.

Definition 21 The partial function invoked : M→ Op.

We can now define an event occurrence and related functions. We also define the equality
relation between two events. We use the well-known equal sign subscript e, =e, to denote
this relation.

Definition 22 An event occurrence e is defined as a triple, e = (m,Cons,direction)
where m ∈M, Cons ⊆ Constraints, direction ∈ {“send”,“receive” }.
The total function connected : E→ P(O) : e 7→ ConnEl ⊆ O.
A binary relation =e : E×E : =e(e = (m,Cons,direction), e′ = (m′,Cons′,direction′))
if and only if
∃ invoked(m) : invoked(m′) = invoked(m) ∧ Cons = Cons′ ∧ direction =

direction′.

The set of constraints associated to an event occurrence are the constraints specified on
the lifeline of the connectable element ConnEl before the occurrence of the event occurrence
on that lifeline. In UML metamodel terminology, the elements of Cons are StateInvariants
and InteractionConstraints.

Definition 23 A SD trace υ is defined as a n-tuple of event occurrences, denoted <
e1, . . . , en >.
A binary relation =υ : Υ×Υ : =υ(υ =< e1, . . . , en >, υ′ =< e′1, . . . , e

′
m >) if and only if

m = n ∧ ∀i ∈ {1, . . . , n} : =e(ei, e
′
i).

Remark that we adopt a different notation for an n-tuple in case of a trace (and also
in case of a call sequence, see Section 2.6). We use here the notations as introduced in the
Superstructure UML 2.0 document [Obj04e]. By using a different notation, we differentiate
between the elements defined as part of the abstract syntax of UML and the elements
that are not defined in this abstract syntax and that are rather concepts defining a certain
semantics.

Different subsequences, obeying a certain predicate, of a SD trace can be defined. First,
we define what a subsequence obeying a predicate means.

Definition 24 A subsequence of a given SD trace υ =< e1, . . . , en >∈ Υ obeying a
predicate P , subP (υ) =< e′1, . . . , e

′
m > is defined as:

• n ≥ m ∧

• ∀ e′i ∈ subP (υ) : P (e′i) ∧

• ∀ e′i ∈ subP (υ) ∃ej ∈ υ : (=e(e′i, ej) ∧ j ≥ i) ∧

43 2.5 UML 2.0 Sequence and Communication Diagram

• ∀ e′i ∈ subP (υ) : (=e(e′i, ej) ∧ =e(e′i+1, ek) ∧ j, k ∈ {1, . . . , n}) ⇒ (k ≥ j ∧ @ e ∈<
ej , . . . , ek >: (=e(e, e′) ∧ e′ ∈ < e′1, . . . , e

′
m >)).

Examples of subsequences of SD traces that will be useful for defining inconsistencies
are:

Definition 25 A SD trace υOR
= subP (υ), where R ⊆ C and P (e) = (connected(e) =

OR).
A SD trace υOpR

= subP (υ), where R ⊆ C and P (e = (m,Cons,direction)) =
invoked(mi) ∈ OpR.

A sequence diagram, as well as a communication diagram typically consists of several
traces, as defined below:

Definition 26 A sequence diagram δ ⊆ Υ is a set of SD traces.

In the remainder of this dissertation, sequence diagram is used to denote sequence diagram
as well as communication diagram unless specified otherwise.

s:Session

 :Withdrawal
1 : Withdrawal(atm, s)

2 : performTransaction()
2.1 : getCustomerSpecifics()

 :CustomerConsoleatm:ATM :CashDispenser

2.2.1 : dispenseCash(cash)

2.2.1.1 : dispenseCash(cash)

2.1.1 : accnumber:=getAccountNbr()

2.1.1.1 : accnumber:=readAccountNbr()

2.1.2 : cash:=getAmountEntry()

2.1.2.1 : cash:=readAmount()

m:Message

2.1.4 : [bool]Message(accnumber, cash, WITHDRAWAL)

2.1.5 : sendBool:=send(m)

2.1.3 : bool:=checkIfCashAvailable(cash)

2.1.3.1 : checkCash(cash)

2.2 : [sendBool]completeTransaction()

2.3 : printReceipt()

Figure 2.12: UML sequence diagram for the withdrawal transaction.

A sequence diagram does not contain necessarily the whole universe of SD traces. It
typically consists of several valid SD traces for instances of several classes. A sequence
diagram contains several traces of event occurrences belonging to a certain instance or a set

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 44

of instances. The partial function contained returns for a certain sequence diagram and a
set of classes, a set of connectable elements.

Definition 27 The partial function contained: ∆ × P(C) → P(O) : (δ,R) 7→ {O ⊆
OR|∃ υO ∈ δ}.

For defining certain kinds of consistency problems, we will only be interested in the
order of invocations of an object’s operations. As such, the traces of event occurrences
representing the receipt of a message are considered. Therefore, we define a receiving SD
trace as follows:

Definition 28 A receiving SD trace υ/rec = subP (υ), where P (e) = (e = (m,Cons,
“receive”) ∧ ∃ invoked(m)).

Example 12 A receiving SD trace of the instance atm of class ATM in the sequence di-
agram δ of Figure 2.12 is < e1, e2, e3, e4, e5 >, where e1 represents the receipt (by atm) of
the message getAccountNbr, e2 represents the receipt of the message getAmountEntry, e3

represents the receipt of the message checkIfCashAvailable, e4 represents the receipt of the
message send and e5 represents the receipt of the message dispenseCash.

Notation 7 The set of all event occurrences denoting the receipt of a message
for a set of instances of a set of classes R and belonging to the sequence diagram δ, Eδ,R, is
defined as Eδ,R = {e|e = (m,Cons, “receive”)∧connected(e) ⊆ OR ∧ ∃ υ ∈ δ : e ∈ υ}.

Example 13 Let δ and ei be defined as in Example 12. Then Eδ,{ATM} =
{e1, e2, e3, e4, e5}

2.6 UML 2.0 State Machine Diagram

UML 2.0 differentiates between two kinds of state machines, behavioural state machines
and protocol state machines. Behavioural state machines are used to specify the behaviour
of various model elements. Protocol state machines (shortly, PSM) are always defined in
the context of a single classifier and are used to express usage protocols. A classifier can
have several protocol state machines. Protocol state machines express the legal transitions
that can be triggered by a classifier. As such they are a convenient way to define a lifecycle
of an object or an order of the invocation of its operations. Because, in the context of
the consistency problems we will discuss, the order of invocation of operations is the most
important, only protocol state machines are considered here.

Again we will first discuss the relevant part of the UML metamodel shown in Figure
2.13 and used in our work.

A ProtocolStateMachine is a piece of Behaviour that owns one or more Regions. Re-
gions own Vertices and ProtocolTransitions. A ProtocolStateMachine is always defined in
the context of a Class. It specifies which operations of the class can be called in which
state and under which condition. A ProtocolTransition specifies a legal transition for an
Operation. Transitions of protocol state machines have next to their Trigger, which is an
operation invocation, a pre- and a postcondition. A Vertex is an abstraction of a node in a
statemachine. It can be the source or destination of any number of transitions. Concrete

45 2.6 UML 2.0 State Machine Diagram

Behaviour

ProtocolStateMachine

Region

ProtocolTransitionVertex
Operation

Constraint

State

FinalState

-kind : PseudoStateKind

PseudoState

-initial
-join
-fork

PseudoStateKind

NamedElement

NamedElement

0..1

-region1..*

-container

0..1

-transitions*

-container

0..1

-subvertex*

-source

1

-outgoing

*
-target

1

-incoming

*
0..1

-region *

*

-referred

*

0..1

-preCondition0..1

0..1

-postCondition0..10..1
-stateInvariant

0..1

Trigger

MessageTrigger

CallTrigger
*

-trigger* *

-operation1

Figure 2.13: The UML 2.0 metamodel fragment used for Protocol State Machines.

subclasses of Vertex are: States and Pseudostate. A State models a situation during which
some (usually implicit) variant condition holds. A state invariant is a Constraint and spec-
ifies conditions that are always true in a certain State when this State is the current State.

Example 14 The protocol state machine shown in Figure 2.14 specifies the possible oper-
ation calls in case the customer chooses to withdraw money. First of all the PIN code is
read and verified. If the customer is not able to specify a valid PIN after 3 tries, the card
is retained by the ATM. If the customer specifies a valid PIN a transaction is chosen by
the customer. In this case, a withdrawal transaction is executed. First the specific data for
this transaction must be specified. It is possible for the customer to cancel the transaction
in progress. If not, the cash is dispensed and a receipt is printed.

Figure 2.15 shows part of the protocol state machine of Figure 2.14 that has changed.
This part specifies the possible operation calls in case a customer withdraws money and
charges his/her card at the same time. Remark that the same account is used to withdraw
money and to charge the card. Also the same amount is withdrawn and charged on the card.

Figure 2.16 shows the same part of the protocol state machine as shown in Figure 2.15,
but now the behaviour specification is changed such that the different amounts can be with-
drawn and charged from different accounts by the user.

The different kinds of States distinguished by the UML metamodel, are simple state,
composite state and submachine state and final state. A simple states does not contain any
other states, i.e., substates. A composite state is either a simple composite state, containing
one Region or, it is a orthogonal composite state, which means that it is decomposed
two or more Regions. A Region contains States and ProtocolTransitions. Regions define

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 46

PINEntry

VerifyWithdrawal
GiveCash

GettingCustomerSpecifics

AccountEntry

VerifyATMBalance

AmountEntry cash := getAmountEntry()

cashAvailable := checkIfCashAvailable(cash)

ChoosingTransaction

getAccountNbr()[WITHDRAWAL]

allowedWithdrawal := send(m)[cashAvailable]

dispenseCash(cash)[allowedWithdrawal]

[valid!PIN]

PrintReceipt

ReturningCard

printReceipt()

ejectCard()

VerifyingPIN
verifyPIN(pin, aCard)

[not valid!PIN && tries < 3]

retainCard()[not valid!PIN && tries = 3]
cancel()

RetainCard

[not allowedWithdrawal]
[not cashAvailable]

Idle

pin := readPIN()

Figure 2.14: Protocol state machine diagram for a withdrawal transaction.

orthogonal parts of a state machine or of a composite state. Each Region has “a set of
mutually exclusive disjoint subvertices and a set of transitions” [Obj04e]. A submachine
state specifies “the insertion of the specification of a submachine state machine” [Obj04e].
Because a submachine state is semantically equivalent to a composite state, we do not
explain this kind of state into detail.

The metaclass FinalState specialises the metaclass State. A FinalState specifies that
the enclosing region is completed.

Example 15 The protocol state machine in Figure 2.14 contains a simple composite state,
i.e., the state named GettingCustomerSpecifics. This composite state contains three dif-
ferent substates and one initial state (denoted by a solid filled circle) which is a kind of
PseudoState (see next paragraph).

The part of the protocol state machine in Figure 2.15 contains a simple composite state
named GettingCustomerSpecifics. This state contains an orthogonal composite state, named
VerifyingTransaction. This orthogonal composite state contains two orthogonal regions. The
first region contains four simple states (InitWithdrawal, VerifyATMBalance, VerifyWith-
drawal, GiveCash), an initial state and a final state. This final state indicates that this first
region is completed and is denoted by a circle surrounding a small solid filled circle. The
second region contains three simple states (InitCharging, VerifyCharging, CardCharging),
an initial state and a final state.

The metaclass PseudoState is an abstraction subsuming different types of vertices. The
types of PseudoStates are initial, deepHistory, shallowHistory, join, fork, junction, choice,
entryPoint, exitPoint and terminate. An initial pseudostate represents a default Vertex
that is the source for a single transition to the default state in, for example, a composite
state. A join pseudostate merges several transitions emanating from source vertices in
different orthogonal regions. A fork pseudostate splits an incoming transition into two or
more transitions terminating on orthogonal target vertices, i.e., vertices in different regions
of an orthogonal composite state. Following the UML 2.0 specifications, deepHistory and

47 2.6 UML 2.0 State Machine Diagram

GettingCustomerSpecifics

AccountEntry

AmountEntry

VerifyingTransaction

VerifyATMBalance VerifyWithdrawal

GiveCash

InitWithdrawal

allowWithdrawal := send(m1)[cashAvailable]

dispenseCash(cash)[allowWithdrawal]

cashavailable := checkIfCashAvailable(cash)

VerifyCharging CardChargingInitCharging chargeCard()[allowCharging]
allowCharging := send(m2)

ChargingAmountEntry

tocharge := getAmountEntry()

cash := getAmountEntry()

!

PINEntry ChoosingTransaction
"#$%&'!()*+

PrintReceipt

ReturningCard

,-,./0$1'23

VerifyingPIN
#,1&45()*26&78!$0$1'3

"79/!#$%&'!()*!::!/1&,;!<!=+

1,/$&70$1'23"79/!#$%&'!()*!::!/1&,;!>!=+

RetainCard

61&7/?,.,&6/23

Error

Transactiondone

Idle
6&7!@>!1,$'()*23

A,/B..9C7/*D123"E)FGH?BEBI!$7'!0GB?J)*J+

.$7.,%23

"79/!$%%9K0L$1A&7A+

"79/!$%%9K0L$1A&7A+

Figure 2.15: Part of protocol state machine diagram for withdrawal and charging transac-
tion.

shallowHistory states can not occur in protocol state machine diagrams. EntryPoint and
exitPoint are defined in the context of submachine states. We will not treat them in our
work, but because submachine states are semantically equivalent to composite states, the
formalisation presented below can also cope with these concepts. We also do not consider
junction and choice vertices. Junction vertices are, as specified by the UML Superstructure
document, semantic-free vertices and are used to chain together multiple transitions. In
the remainder of this section, we define concepts that chain together different transitions.
Choice vertices realise a dynamic conditional branch. Because, we focus on static checking,
this kind of vertex is not considered in this work.

Example 16 The previously introduced (part of) protocol state machines include different
initial states. One initial state points to the initial default state of the protocol state machine.
Other initial states are defined in a simple composite state or in the regions of an orthogonal
composite state indicating the default initial state of this particular state or region.

In the part of the protocol state machine of Figure 2.16, a fork and junction state are
modelled. The fork state splits the incoming transition into two transitions. A first transi-
tion has the state WithdrawalAccountEntry as target, while the second transition has the
state ChargingAccountEntry as target. These target states are in different regions of the
orthogonal composite state GettingCustomerSpecifics. The junction state merges two tran-
sitions starting from the states GiveCash and CardCharging, both in different regions of the
orthogonal composite state GettingCustomerSpecifics, into a single transition terminating
on the state Transactiondone.

Notation 8 The set of all protocol state machines is denoted by Π.
The set of all states is denoted by S.

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 48

!

PINEntry
ChoosingTransaction"#$%&'!()*+

PrintReceipt

ReturningCard

,-,./0$1'23

VerifyingPIN#,1&45()*26&78!$0$1'3

6&7!9:!1,$'()*23"7;/!#$%&'!()*!<<!/1&,=!>!?+

1,/$&70$1'23"7;/!#$%&'!()*!<<!/1&,=!:!?+

.$7.,%23

RetainCard

GettingCustomerSpecifics

WithdrawalAccountEntry WithdrawalAmountEntrycash := getAmountEntry() VerifyATMBalance

cashavailable := checkIfCashAvailable(cash)

VerifyWithdrawal

allowWithdrawal := send(m1)[cashAvailable]

GiveCash

dispenseCash(cash)[allowWithdrawal]

ChargingAccountEntry ChargingAmountEntry VerifyCharging

CardCharging

cash := getAmountEntry()

allowCharging := send(m2)

"7;/!$%%;@A&/B'1$@$%+

61&7/C,.,&6/23

.B$1D,0$1'23"$%%;@0B$1D&7D+

Error

"7;/!$%%;@0B$1D&7D+

Transactiondone

D,/E..;F7/*G123"A)HIJCEAEK!$7'!0IECL)*L+

!

Idle 6&7!9:!1,$'()*23

Figure 2.16: Part of changed protocol state machine diagram for a withdrawal and charging
transaction.

The set of all labels is denoted by L.

A protocol state machine (PSM) can be defined as follows (based on the definition in [ST03]
and in [SS00]):

Definition 29 A protocol state machine πc = (Sc, Tc, Lc, ρc,Λc) ∈ Π for a class c,
consists of a set of states Sc ⊆ S and a labelled transition set Tc ⊆ P(Sc) × Lc × P(Sc)
containing labelled relations (S, τ, S′) such that τ ∈ Lc where Lc ⊆ L is a set of labels.

A label τ is defined as a triple (op, g, h) where op is an operation, g ⊆ Preop specifies
the precondition of the transition (which is evaluated as part of the precondition of the
operation op), and h ⊆ Postop specifies the postcondition of the transition (which is part
of the postcondition of the operation op), or, as a triple τ = (ε, g, {}), where ε corresponds
to a dummy operation and g ∈ Constraints specifies the guard.

ρc denotes the top-most initial state, and @S ⊆ Sc, @S′ ⊆ Sc: ρc ∈ S′ ∧ (S, τ, S′) ∈ Tc.
Λc denotes the set of final states of the state machine, for which @S ⊆ Λc, @S′ ⊆ Sc:

(S, τ, S′) ∈ Tc.

Note that in UML PSMs there can be transitions without operation calls and without
any guard, as well as transitions that only have a guard specified but no operation call.
To support both kinds of transitions in the above definition, we use labels of the form
l = (ε, g, {}).

Due to the fact that a transition is specified as a relation between sets of states, simple,
composite and orthogonal composite states are also supported. Our definition also supports

49 2.6 UML 2.0 State Machine Diagram

high-level, compound and completion protocol transitions. We first define the notion of (ac-
tive) life cycle state configuration, and then we explain the different kinds of transitions and
show how these transitions and the different kinds of states are supported by Definition 29.

Definition 30 A (life cycle) state configuration Σc in a PSM πc = (Sc, Tc, Lc, ρc,Λc) ∈
Π is a tree of states belonging to Sc.

A (life cycle) state configuration is a tree of states, because of the existence of composite
and orthogonal composite states.

Example 17 Consider as an example, the part of the protocol state machine shown in Fig-
ure 2.15. A possible life cycle state configuration is the tree (we represent a tree by nested
sets) { GettingCustomerSpecifics, {AmountEntry}}. Not only the simple state Amoun-
tEntry is considered as part of the life cycle state configuration but also all the directly
or transitively composite states to which the simple state belongs. Another example of a
life cycle state configuration is the tree {GettingCustomerSpecifics, {VerifyingTransaction,
{VerifyWithdrawal, CardCharging}}}.

The active state of an object at a given point in time is defined by the set of states the
object is in. This set of states is referred to as the active (life cycle) state configuration of
the object. In the example above, this is the set containing the leaf states VerifyWithdrawal
and CardCharging.

Definition 31 An active (life cycle) state configuration σc in a PSM πc =
(Sc, Tc, Lc, ρc,Λc) ∈ Π is defined as σc ⊆ Sc and corresponds to the set of leafs of a (life
cycle) state configuration Σc.

We now show how Definition 29 supports the concepts of composite, orthogonal composite
states and high-level, compound and completion protocol transitions by transforming UML
protocol state machines containing these concepts into a canonical form such that only
transitions between simple states are considered maintaining the semantics of the different
modeled kinds of states and transitions.

• A composite state that is not orthogonal, is a hierarchical state of which exactly
one of its substates can be active.

• If a composite orthogonal state is active, all of its regions are active, one substate
in each region. Transitions can be called on an active composite orthogonal state,
which is supported by our definition of state machines. After all, a labelled transition
is defined between sets of states.

• A high-level transition is a transition that originates from a composite. The transi-
tion with operation call cancel() originating from the state GettingCustomerSpecifics
in Figure 2.14 is an example of a high-level transition. Such a transition is inherited
by all substates of the composite state and gives rise to the generation of as much
labelled transitions as there are substates in the composite state in our definition. In
the example, the following transitions are generated:
({AccountEntry}, τ, {ChoosingTransaction}),

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 50

({AmountEntry}, τ, {ChoosingTransaction}) and
({VerifyATMBalance}, τ, {ChoosingTransaction}).
If the composite state is orthogonal, a labelled transition is generated for each possible
set of active state configurations of the orthogonal state, having this set of active state
configurations as source state.

• A compound transition is “an acyclical unbroken chain of transitions joined via
join or fork pseudostates that define a path from a set of source states (possibly a sin-
gleton) to a set of destination states, (possibly a singleton). ... A (simple) transition
connecting two states is therefore a special common case of a compound transition”
[Obj04e]. The state machine of Figure 2.16 contains a fork and a join state giving rise
to compound transitions. The incoming and outgoing transitions on a fork state are
translated into one labelled transition (S, τ, S′) where S denotes the set of source states
of the incoming transition of the fork state. S′ is the set of the target states of the out-
going transitions of the fork state. In the example, the following transition is generated
({ChoosingTransaction}, τ, {WithdrawalAccountEntry,ChargingAccountEntry})
In case of a join state, a similar translation happens. Again, the incoming and outgoing
transitions on a fork state are translated into one labelled transition (S, τ, S′). S
denotes the source states of the incoming transitions of the join state. S′ denotes the
target states of the outgoing transition of the join state. In the example, the following
transition is generated ({GiveCash,CardCharging}, τ, {Transactiondone}).

• A completion transition is a transition where the source is a composite state and
without an explicit operation call but a precondition can be specified. A comple-
tion transition is represented by one labelled transition (S, τ, S′), where S is the final
state of a composite or set of final states of an orthogonal composite state. S′ is
the set of target states of the completion transition. The protocol state machine
in Figure 2.15 contains such a completion transition. The transition starts on the
orthogonal composite state named VerifyingTransaction and terminates on the sim-
ple state Transactiondone. It does not specify any operation invocation nor any
pre- or postconditions. This transition gives rise to the following labelled transition:
({GiveCash,CardCharging}, τ, {Transactiondone}).

The firing of a transition enables the change of active state configuration.

Definition 32 A PSM trace γc in a PSM πc = (Sc, Tc, Lc, ρc,Λc) ∈ Π is a n-tuple of
active (life cycle) state configurations, denoted < σc,1, . . . , σc,n >, such that
σc,1 = {ρc} ∧ ∀i ∈ {1 . . . n− 1} ∃τ ∈ Lc : ((σc,i, τ, σc,i) ∈ Tc ∨ (σc,i, τ, σc,i+1) ∈ Tc).

Definition 33 A call sequence µc in a PSM πc = (Sc, Tc, Lc, ρc,Λc) ∈ Π is a n-tuple of
labels, denoted < τ1, . . . , τn > (n ≥ 1), such that ∀ i ∈ {1, . . . , n} : τi ∈ Lc.

Definition 34 Given a call sequence µc =< τk, . . . , τn > and an active state configuration
σc,k and a PSM π = (S, T, L, ρ,Λ):
valid is a ternary relation such that valid(µc, σc,k, π) if ∃γc = < σc,1 . . . σc,k . . . σc,n+1 >,
where γc is a PSM trace in π and ∀i ∈ {k, . . . , n}: (σc,i, τi, σc,i+1) ∈ T .

51 2.7 UML 2.0 Models

Example 18 < dispenseCash, printReceipt, ejectCard > is a valid call sequence on the
active state configuration {VerifyWithdrawal,CardCharging} of Figure 2.16.

There is of course a relation between sequence (or communication) diagrams and state
machine diagrams. A state machine diagram gives the complete behaviour of a single object,
whereas a sequence (or communication) diagram gives a single behaviour (trace) of a set of
objects. Each type of diagram contains complementary notions revealing different dynamic
aspects of the software system and they can be used to support each other’s specification.

In order to relate transitions and messages to each other, we need an auxiliary definition.
The restriction of a sequence to a certain set is the sequence obtained by removing all
elements from the sequence that do not belong to the set or are not equal to an element of
this set.

Definition 35 The restriction µL =< τ ′1, . . . , τ
′
m > of a sequence µ =< τ1, . . . , τn > to

a set L (n ≥ m) is defined as:
(∀ τ ′i ∈ µL : τ ′i ∈ µ ∧ (τ ′i ∈ L ∨ ∃ τ ∈ L : = (τ ′i , τ))) ∧ (∀ j ∈ {1, . . . ,m} : (= (τi, τ

′
j) ∧

= (τ ′j+1, τk) ∧ i, k ∈ {1, . . . , n}) ⇒ (i ≤ k ∧ @τ ∈< τi, . . . , τk >: (= (τ, τ ′) ∧ τ ′ ∈ µL)),
where = is =e in case µ is a SD trace.

An event occurrence defined in a sequence diagram can now be mapped onto a label be-
longing to a PSM.

Definition 36 The function label : E → L : (m,Cons, “receive”) 7→ (op, g, h) maps
an event occurrence onto a label as follows:

op = invoked(m)
g = Preop ∪Cons
h = Postop.

Now we defined the model elements that will be used in the next chapters, we can also
define the function constrainedElements that applied on a constraint returns the elements
referenced by the constraint. First, we introduce some notions used in this definition.

Definition 37 The partial function constrainedElements: Constraints → Prop ∪
Op ∪M ∪ S ∪Connectors ∪C returns the set of elements referenced by a constraint.

2.7 UML 2.0 Models

UML 2.0 defines a model as a description of a physical system with a certain purpose, such
as to describe logical or behavioural aspects of the physical system to a certain category of
readers.

In our view, a UML model is an abstraction of a software system, owning all the nec-
essary elements representing the system according to the purpose of this model. Using the
formalisation of the UML subset used in this work, we define a UML model as follows:

Definition 38 A UML model M is a tuple

(CM,ConnectorsM,ConstraintsM,PreM,PostM,OM,∆M,ΠM,

type,multiplicity,participates, isAbstract, isNavigable, isComposite,

Chapter 2. Lightweight Formalisation of UML 2.0 Fragment 52

generalisationOf , instanceOf , connectorType, connectorEnd,

connectorEndType, contained, invoked, connected,=e,valid)
(2.2)

where:

• CM ⊆ C,

• ConnectorsM ⊆ Connectors is a set of connectors,

• ConstraintsM ⊆ Constraints is a set of constraints,

• PreM ⊆ ConstraintsM is a set of preconditions,

• PostM ⊆ ConstraintsM is a set of postconditions,

• OM is a set of objects,

• ∆M is a set of which each element is a sequence diagram describing interactions
among objects of OM,

• ΠM is a set of state diagrams consisting of protocol state machine diagrams π,

• the functions type,multiplicity and participates are defined in Section 2.4,

• the binary relations isAbstract, isNavigable and isComposite are defined in Sec-
tion 2.4,

• generalisationOf reflects the generalisation hierarchy of classes and is defined in
Secton 2.4,

• the relations instanceOf , connectorEnd, invoked and =e are defined in Sec-
tion 2.5,

• the functions contained, connected, connectorType and connectorEndType
are defined in Section 2.5,

• the relation valid is defined in Section 2.6.

2.8 Conclusion

This chapter provides an introduction to UML 2.0 and to a case study that will be used as
a running example through the rest of this dissertation. The architecture of the UML 2.0
and its different diagram types, allowing the specification of different aspects of a software
system, are explained.

The research restriction considered here, is that only a limited set of UML concepts is
taken into account. This means that only class diagram concepts representing the specifi-
cation of the static structure of a software system, and sequence (communication) diagram
concepts representing the specification of possible interactions and protocol state machine
concepts are taken into account.

A first contribution, presented in this chapter, is the formalisation of that fragment of
the UML. Using this formalisation, several inconsistencies in and between UML models can
be precisely specified. This is the subject of the next chapter.

Chapter 3

Conceptual Classification of
Inconsistencies

In this chapter, we present a conceptual classification of different inconsistencies that can
occur in object-oriented models. First, the different consistency dimensions as explained in
the introductory chapter are elucidated in the context of UML (Section 3.1). Next, a two-
dimensional classification, based on the kind of the model affected and on the behavioural
or structural nature of the inconsistencies is introduced (Section 3.2).

The structural inconsistencies are described first (Section 3.3, Section 3.4 and Section
3.5). Before we start with a detailed discussion of the different behavioural inconsistencies
(Section 3.7, Section 3.8 and Section 3.9), a general discussion on behaviour and inheritance
of behaviour in object-oriented analysis and design is presented (Section 3.6).

The description of the different inconsistencies is followed by a discussion and related
work on existing inconsistency definitions (Section 3.10). Finally, the contribution of this
chapter is summarised and issues to be tackled in the next chapter are introduced (Section
3.11).

3.1 UML and Consistency

In the introduction of this dissertation, we introduced the consistency dimension distin-
guishing between horizontal, evolution and vertical consistency. In this section, we will
show how these definitions apply to the UML and more specifically, to the part of the
UML discussed in the previous chapter. We will also provide examples of violations of the
different kinds of consistency using our case study.

According to Spanoudakis [SZ01], an inconsistency is a state in which two or more
overlapping elements of (different) software models make assertions about the aspects of the
system they describe which are not jointly satisfiable. This definition is directly applicable to
UML models that are specified as a set of overlapping UML diagrams. Different diagrams
can relate to the same model elements and can make conflicting assertions about these
elements.

Horizontal consistency problems can occur in UML models due to two reasons. The first
reason is inherent to the UML language. The UML incorporates different types of diagrams
allowing the modeller to describe different aspects of the application. For example, class di-

Chapter 3. Conceptual Classification of Inconsistencies 54

ATM
id: Integer
cash: Cash
switchOn(): void
switchOff(): void
getID(): Integer
readCard(): Card
verifyPIN(pin: Integer): Boolean
ejectCard(): void
dispenseCash(amount: Cash): void
checkIfCashAvailable(cash: Cash): Boolean
acceptEnvelope(): void
getAccountNbr(): Integer
getAmountEntry(): Cash
displayCash(amount: Cash): void
readPIN(): Integer
displayMessage(message: String): void
cardInserted(): void

Session

performSession(): void
handleFailedTransaction(): void
send(m: Message): Boolean

0..1

1

Idle

ServingCustomer

switchOn()[switch_on]

cardInserted()

switchOff()[switch_off]

performStartUp()

[session_completed]

Figure 3.1: Example of a horizontal consistency conflict.

agrams constitute a static view on the application, while sequence, communication and state
machine diagrams are used to model a specific view on the behaviour of the application.
Structure diagrams specifying the static structure, and behaviour diagrams specifying the
behaviour of the application, do overlap and as such can become inconsistent. For example,
an operation may be (re)moved in a class diagram while an instance of this class (i.e., an ob-
ject) in a sequence diagram still relies on this operation to handle a message it receives from
another object. Behaviour diagrams can also contain overlapping information. For exam-
ple, sequence and communication diagrams often represent the same information, but the
first one emphasises the interactions and the second one the communication infrastructure.

The second cause of a horizontal consistency problem is due to the fact that a model
can consist of different submodels. Each of these submodels focuses on a different part of
the application. For example in Figure 2.4, Figure 2.6 and Figure 2.7, class diagrams are
specified for different parts of the ATM application. These submodels are not independent,
i.e., some parts of the submodels overlap or submodels are complementary. Remark that
for horizontal consistency only submodels at the same level of abstraction are considered.

Example 19 In Figure 3.1, on the left-hand side, a simple class diagram is taken from
our ATM case study and on the right hand side, a PSM diagram expressing start-up and
shutdown behaviour of our ATM example is shown. The model consisting of those two
diagrams contains a horizontal consistency conflict. The operation performStartup(): void
is used in the state machine diagram but not defined in the class diagram.

In the introduction, we defined evolution consistency between different versions of the
same model at the same level of abstraction. Evolution consistency conflicts arise between
UML models when a UML model or a submodel is restructured or refactored. They can also
occur when model elements are added, modified or deleted from UML models or submodels.

55 3.1 UML and Consistency

ATM
id: Integer
cash: Cash
switchOn(): void
switchOff(): void
getID(): Integer
readCard(): Card
verifyPIN(pin: Integer): Boolean
ejectCard(): void
dispenseCash(amount: Cash): void
checkIfCashAvailable(cash: Cash): Boolean
acceptEnvelope(): void
getAccountNbr(): Integer
getAmountEntry(): Cash
displayCash(amount: Cash): void
readPIN(): Integer
displayMessage(message: String): void
send(m: Message): Boolean

Session

performSession(): void
handleFailedTransaction(): void

0..1

1

Figure 3.2: Move Operation on a class diagram.

Example 20 As an example, consider the model refactoring Move Operation (see also
Section 9.4.3). This model refactoring is comparable to the source-code refactoring Move
Method, but at UML model level, we do not have source code at our disposal. We apply
this refactoring to the send(m: Message): Boolean method defined in the class Session in
the class diagram in Figure 3.1. This operation is moved to the class ATM as shown in
the class diagram in Figure 3.2. This model refactoring may impact sequence diagrams
specifying interactions concerning ATM objects or ATM or Session PSM diagrams.

Vertical consistency exists between models or submodels at different levels of abstrac-
tion. Vertical consistency conflicts can result from refining a model or submodel or by
adding or modifying models or submodels.

Example 21 In Figure 3.3, a sequence diagram modelling the object interactions as a
consequence of the start-up of an ATM is shown. Together with the state diagram shown
on the right-hand side of Figure 3.1, there is a possibility to have a vertical consistency
problem. We assume here that the state machine diagram is on a higher level of abstraction
than the sequence diagram. The trace in the sequence diagram received by an ATM object
must conform to a call sequence in the state machine diagram. One kind of conformance
specifies that the trace is included in a call sequence of the state machine diagram. In
this case, the sequence switchOn(), performStartup() is also included in the state machine
diagram.

Syntactic consistency guarantees conformance of models to the abstract syntax of the
modelling language. In case of the UML, this means that the user-defined UML models
must conform to its abstract syntax. The abstract syntax of UML is a set of class diagrams
together with so-called well-formedness rules. These well-formedness rules are expressed in
the OCL. Current UML CASE tools have incorporated ad-hoc support for compliance with

Chapter 3. Conceptual Classification of Inconsistencies 56

 :OperatorPanel :ATM :CashDispenser :ConnectionToBank

1 : switchOn()
1.1 : performStartup()

1.1.1 : initialCash:=getInitialCash()

1.1.2 : setInitialCash(initialCash)

1.1.3 : openConnection()

Figure 3.3: Sequence diagram modelling ATM start-up behaviour.

UML well-formedness rules. Due to this definition of syntactic consistency, our classification
only addresses semantic consistency violations.

UML lacks formal semantics. Its semantics is described by OCL constraints and some
informal statements in natural language, more specifically, in English. UML is a general
purpose modelling language, as a consequence, even the informal specified semantics can
change depending, for example, on the modelling process used. UML specifications do not
address semantic consistency issues at all.

Based on the formalisation defined in the previous chapter, we introduce a basic set of
semantic inconsistencies. Depending on the application or the modelling process, this set

can be extended by domain-specific or process-specific inconsistencies.

In the remainder of this dissertation, we mix the terms consistency and inconsistency. An
inconsistency is in this work the negation of a consistency and vice versa .

3.2 Conceptual Classification Explained

A two-dimensional classification of different inconsistencies is introduced in this section.
The different dimensions are explained and a motivation for the different inconsistencies is
given.

3.2.1 Overview

Two dimensions are distinguished: structural versus behavioural and specification versus
instances.

Structural versus Behavioural

The first dimension indicates whether structural or behavioural aspects of the models are
affected. Structural inconsistencies arise when the specification of the application’s structure
is inconsistent or when this specification is inconsistent with the specification of behaviour.

57 3.2 Conceptual Classification Explained

Behavioural inconsistencies arise when the specification of the application’s behaviour
is inconsistent.

In addition to classifying the inconsistencies by the affected aspects of the models, they
are also classified by the level of the affected model.

Specification versus Instance

The second dimension concerns the level of the affected model. We differentiate between
two levels, the Specification level and the Instance level. The specification level contains
model elements that represent specifications for instances, such as classes, associations and
messages. Model elements specifying instances, such as objects, links are at the instance
level. In terms of UML diagrams, this would naturally imply that structure diagrams, such
as class diagrams belong to the specification level and behaviour diagrams, such as sequence
and state machine diagrams belong to the instance level. However, sequence diagrams can
also belong to the specification level.

Although sequence diagrams are widely used, the interpretation of sequence diagrams
is rather vague. In the previous chapter, we focused on the interaction and communication
view. These views can be seen as semantic dimensions. Sequence diagrams can exhibit
different semantic alternatives, i.e., multiple interpretations of the same syntactic symbol
is possible. A more in depth discussion of the different semantic dimensions of sequence
diagrams and the corresponding numerous interpretations found in literature is opened in
chapter 6, that introduces DLs as semantic domain for UML model (elements).

One of the semantic dimensions that sequence diagrams can have is explained here
because of its importance for understanding the classification and the different categories
of inconsistencies. The UML draws a distinction between interactions between objects and
interactions between roles. The latter is the specification of an interaction between roles
objects can play, and a set of messages between these roles. In this form, sequence diagrams
abstract away from particular objects and focus more on properties typical to a particular
connectable element. Sequence diagrams are used to describe interactions between roles
when their intention is to describe prototypical interactions of design patterns. In the
former case, i.e., when sequence diagrams represent object interactions, they contain a set
of operation calls specified between different, particular objects. This usage is employed,
e.g., in the case of program testing.

In previous versions of the UML (versions 1.x), the syntactic distinction between those
two possible interpretations is made by underlining or otherwise, the names of the partici-
pants in the interaction. Both representations map to different UML version 1.x metamodel
elements. In UML 2.0, both interpretations are still possible but the syntactic difference is
blurred and both interpretations map to the same metamodel elements.

In our classification of inconsistencies, we will also make a distinction between sequence
diagrams representing object interactions and the ones representing role interactions. The
former ones belong to the instance level, the latter ones to the specification level.

In Table 3.1, the different categories of inconsistencies are listed. Before explaining the
different inconsistencies in the next sections, we motivate why we listed and classified this
particular set of inconsistencies.

Chapter 3. Conceptual Classification of Inconsistencies 58

Behavioural Structural

invocation interaction inconsistency dangling type reference
Specification observation interaction inconsistency inherited cyclic composition

connector specification missing

Specification- specification incompatibility instance specification missing
specification behaviour incompatibility

Instance invocation behaviour inconsistency
observation behaviour inconsistency

Instance invocation inheritance inconsistency disconnected model
observation inheritance inconsistency
instance behaviour incompatibility

Table 3.1: Two-dimensional inconsistency table.

3.2.2 Motivation

The set of inconsistencies in Table 3.1 is based on the model elements occurring in the
fragment of the UML metamodel we restricted ourselves to. The addition, deletion and
modification of those model elements can lead to inconsistent models. But also the spec-
ification of behaviour and especially the inheritance of behaviour (see Section 3.6), can
introduce specific inconsistencies between or within UML models. Remark that we ignore
inconsistencies that are violations of UML well-formedness rules because these rules are
considered to be integrated in the modelling language and to be part of the language’s syn-
tax. This classification is based on an extensive literature study ([Men99], [ET00], [EE95],
[KRSH02], [EKHG01]).

We do not claim that the list of inconsistencies presented in Table 3.1, is exhaustive.
Most of the listed inconsistencies can be found in literature. We have good reasons to assume
that this list contains the most important inconsistencies that can be found in industrial
cases. When we published our inconsistency classification for the first time [VMSJ03], a
set of inconsistencies was also presented in [LCM+03] and later in [Lan03] based on six
large-scale industrial case studies. A subset of our observed set of structural inconsisten-
cies, are also recognised by this work together with some additional model incompleteness
issues. Incompleteness occurs when there is an element in the overlapping part of diagrams
in the one diagram without matching counterpart in the other diagram [Lan03]. As ar-
gued in Chapter 1, a model can be incomplete and henceforth, we only consider model
inconsistencies. Behavioural inconsistencies are not studied by Lange et al. [Lan03].

We also presented our classification and inconsistency detection mechanism in [SVJM04]
and as a chapter in the book “Software Evolution with UML and XML.” [MVS05]. Although
the inconsistencies are tailored towards the UML, they can be applied to models represented
in whatever modelling language as long as the abstract syntax and semantics of (part of)
that modelling language corresponds to our previously introduced definitions.

3.2.3 Inconsistency Template

In the next sections every category defined in Tabel 3.1 is studied in detail. We describe
the inconsistencies using the following template.

UML Model Elements A list of UML metaclasses involved in the inconsistency.

59 3.3 Structural Specification Inconsistencies

Definition Each inconsistency is defined using the formalisation of UML models and mod-
elling elements introduced in the previous chapter. The notationM is used to indicate
the UML model under consideration (shortly, MUC) and the tuple (2.2) defined in
Definition 38 is used to define and denote the different elements of a model.

Example The inconsistency is exemplified by simple, yet representative UML diagrams.

This template lends a consistent format to the description of the classified inconsisten-
cies.

3.3 Structural Specification Inconsistencies

At the specification level, we identify three kinds of structural inconsistencies, inherited
cyclic composition inconsistency, dangling type reference and connector specification miss-
ing.

3.3.1 Inherited Cyclic Composition Inconsistency

An inherited cyclic composition inconsistency arises when a composition relationship (the
multiplicity constraints of this composition relationship are important) and inheritance
relationships between classes of a model form a cycle that produces an infinite containment
of the instances of the affected classes.

Involved UML Model Elements:Class, Association which is a composition, Property,
MultiplicityElement and Generalization.

Definition 39 M suffers from an inherited cyclic composition inconsistency if and
only if ∃ c, c’ ∈ CM : (generalisationOf(c, c’) ∧ ∃ end1 = (assoc,assocType2,1) ∃
end2 = (assoc,assocType2,2) : (assocType2,1(assoc) = c ∧ assocType2,2(assoc) =
c′ ∧ isComposite(end1) ∧ 0 /∈multiplicity(end2))).

Example 22 The UML model consisting of the class diagram shown in Figure 3.4, contains
this inconsistency. The class ATM which is in this case the root of a class hierarchy (which
is not mandatory) is composed of at least 1 instance of the class WithdrawPrintingATM.
This class inherits from the classes WithDrawATM and PrintingATM which are subclasses
of the class ATM. The asymmetric property of the composition relationship and the fact
that this relation is specified between a superclass and a subclass, where the superclass is
composed of at least one subclass, and that the composition instances form a forest, causes
an infinite chain of instances.

This inconsistency can have many causes. The generalisation relationship can be superflu-
ous, or perhaps the composition restriction on the association is redundant or the multi-
plicity of the composition relationship is too strong.

Chapter 3. Conceptual Classification of Inconsistencies 60

ATM

PrintingATMWithDrawATM

WithdrawPrinting
ATM

ChargeWithdrawPrintingATM TransferWithdrawPrintingATM

1..*

Figure 3.4: Example of an Inherited Cyclic Composition Inconsistency.

3.3.2 Dangling Type Reference

Dangling type reference occurs when a parameter’s or attribute’s type refers to a class that
does not exist in the model.

The reasons for this inconsistency to occur are twofold. The type of the attribute or the
parameter involved, may have been removed or the type is not yet included in the model.
To remove this type of inconsistency from the UML model, the type can be added to the
UML model involved.

Involved UML Model Elements:Property, Operation, Parameter, Model and Type.

Definition 40 M suffers from a dangling type reference if and only if one of the
following conditions hold:

1. ∃ att ∈ AttCM : type(att) /∈ (CM ∪PT).

2. ∃ op = (n, c, (p1, . . . , pk), (r1, . . . , rm)) ∈ OpCM : (∃i ∈ {1, . . . k} : pi /∈ (CM ∪ PT)
∨ ∃j ∈ {1, . . . m} : rj /∈ (CM ∪PT)).

Example 23 Consider the UML model only consisting of the class diagram in Figure 2.6.
Several occurrences of this type of inconsistency can be found in the model. Due to the fact
that the class Cash is not included in the model, the type of the attribute cash is not known,
also the type of the parameter amount of the dispenseCash operation of the class ATM is
not known to this model.

3.3.3 Connector Specification Missing

Connector specification missing represents a category of inconsistencies. Three kinds of
inconsistencies can be differentiated.

• classless connectable element : there is a connectable element in a sequence diagram
whose base class does not exist in the model.

61 3.3 Structural Specification Inconsistencies

:OperatorPanel :ATM :ConnectionToBank

1. switchOff()

1.1: performShutdown()

1.1.1: closeConnection()

Figure 3.5: Sequence diagram at specification level.

• dangling connectable feature reference: a message references a non-existing operation
in the corresponding class(es) (and its ancestors).

• dangling connectable association reference: a connector is not related to an association
or it is related to an association that does not exist between the base classes of the
corresponding connectable elements.

Remark that similar inconsistencies also occur on the specification/instance level within or
between sequence diagrams at instance level.

Classless Connectable Element

A connectable element can represent a set of non-existing classes due to the fact that these
classes are not yet included in the model or due to the fact that the class is deleted, e.g., from
a previous version of the model. This inconsistency also occurs if a connectable element is
not connected to any class.

Involved UML Model Elements:ConnectableElement and Class.

Definition 41 M suffers from a classless connectable element inconsistency if and
only if ∃ ConnEl ⊆ OM ∃ o ∈ ConnEl @ C ⊆ CM : instanceOf(o, C).

Example 24 In the UML model consisting of the class diagram in Figure 2.6 and the
sequence diagram in Figure 3.5, this inconsistency occurs due to the fact that one of the
lifelines in the sequence diagram of Figure 3.5 references the class OperatorPanel that does
not belong to the UML model.

Dangling Connectable Feature Reference

A connector can represent a non-existing operation due to the fact that this operation is
not yet included in the model. In an evolution or refinement context, the operation can
be deleted from a previous version of the model under consideration. Another possibility
is that the class owning this operation is deleted from the set of classes represented by the
corresponding connectable element. An operation can also have moved from one class to
another causing this inconsistency.

Chapter 3. Conceptual Classification of Inconsistencies 62

ATM
id: Integer
cash: Cash
switchOn(): void
switchOff(): void
getID(): Integer
readCard(): Card
verifyPIN(pin: Integer): Boolean
ejectCard(): void
dispenseCash(amount: Cash): void
checkIfCashAvailable(cash: Cash): Boolean
acceptEnvelope(): void
getAccountNbr(): Integer
getAmountEntry(): Cash
displayCash(amount: Cash): void
readPIN(): Integer
displayMessage(message: String): void
send(m: Message): Boolean

ConnectionToBank

openConnection(): void
closeConnection(): void
verifyPIN(pin: Integer): Boolean

OperatorPanel

getInitialCash(): Cash
1 1

1 0..1

Figure 3.6: Class diagram constituting, together with the sequence diagram of Figure 3.5,
a model.

Involved UML Model Elements:Message, Operation, Generalization, Lifeline, Even-
tOccurrence, ConnectableElement and Class.

Definition 42 M suffers from a dangling connectable feature reference inconsis-
tency if and only if ∃ C ⊆ CM ∃ e = (m,Cons, “receive”) ∈ υOC

∈ δ ∈ ∆M (υOC
is an

SD trace and δ is a sequence diagram) ∀c ∈ C : invoked(m) /∈ Op∗c .

Example 25 Consider as an example a UML model consisting of the classes and relation-
ships as shown in the class diagram of Figure 3.6 and a sequence diagram of Figure 3.5.
The operation performShutdown() sent to objects of type ATM is not known to these objects
which causes an inconsistency.

Dangling Connectable Association Reference

The dangling connectable association reference occurs if there is no association typing the
connector, or if the association typing the connector is defined between at least one class
not contained in the MUC, or if a connector is typed by an association that does not exist
between the classes of the corresponding objects (nor between any of the ancestors of these
classes).

Following the UML metamodel a connector may be typed by an Association. There are
common modelling situations where a connector is not an instance of an association. This
is the case if the connector represents the ability of the connected instances to communicate
because their identities are known by virtue of being passed as parameters, their identities
are held in variables, or because the communicating instances are the same object. Genova
et al. [GLF03] proposes to follow the rule that every connector is typed by an association. It
is however, not necessary that every association appears in a class diagram. It is sufficient
that the association is represented in the underlying model.

Involved UML Model Elements:Association, Connector, Class and Model.

Definition 43 M suffers from a dangling connectable association reference incon-
sistency if and only if one of the following conditions hold:

63 3.4 Structural Specification/Instance Inconsistencies

ATM
id: Integer
cash: Cash
switchOn(): void
switchOff(): void
getID(): Integer
readCard(): Card
verifyPIN(pin: Integer): Boolean
ejectCard(): void
dispenseCash(amount: Cash): void
checkIfCashAvailable(cash: Cash): Boolean
acceptEnvelope(): void
getAccountNbr(): Integer
getAmountEntry(): Cash
displayCash(amount: Cash): void
readPIN(): Integer
displayMessage(message: String): void
send(m: Message): Boolean
performShutdown(): void

ConnectionToBank

openConnection(): void
closeConnection(): void
verifyPIN(pin: Integer): Boolean

OperatorPanel

getInitialCash(): Cash

1 0..1

Figure 3.7: Class diagram constituting, together with the sequence diagram of Figure 3.5,
a model.

1. ∃ Connector ∈ ConnectorsM @ assoc : connectorType(Connector) = assoc

2. ∃ Connector ∈ ConnectorsM ∃ assoc = connectorType(Connector) ∃ c /∈ CM :
assoc ∈ participates(c)

3. ∃ Connector ∈ P(OC1 × . . . × OCn) ∈ ConnectorsM ∃ assoc =
connectorType(Connector) ∀ c ∈ Ci : (assoc /∈ participates(c) ∧
∀generalisationOf(c′, c) : assoc /∈ participates(c′)), with i ∈ {1, . . . , n}.

Example 26 The UML model consisting of the class diagram of Figure 3.7 and of the
sequence diagram of Figure 3.5 suffers from this inconsistency. There is no explicit asso-
ciation specified between the class ATM and the class OperationPanel and we also assume
that there is no association implicitly present in the UML model. This leads to the specified
inconsistency, because in the sequence diagram there is a connector connecting instances of
the class ATM and instances of the class OperatorPanel.

3.4 Structural Specification/Instance Inconsistencies

Between specifications and instances, we can have the problem of instance specification
missing. This means that a model element specification does not exist in a model, as it has
either been removed from a diagram or not included yet.

3.4.1 Instance Specification Missing

Instance specification missing inconsistencies occur between UML model elements contained
in class diagrams and model elements contained in sequence diagrams at instance level and
in state diagrams. We observed 4 different occurrences of this inconsistency category. Three
occurrences are very similar to the inconsistencies defined by the Connector specification
missing inconsistency category.

Chapter 3. Conceptual Classification of Inconsistencies 64

 :OperatorPanel :ATM :CashDispenser :ConnectionToBank

1 : switchOn()
1.1 : performStartup()

1.1.1 : initialCash:=getInitialCash()

1.1.2 : setInitialCash(initialCash)

1.1.3 : openConnection()

Figure 3.8: UML sequence diagram for the startup of an ATM.

Classless Instance

A classless instance inconsistency occurs if an object in a sequence diagram, specified on
the instance level, is the instance of a class that does not exist in the UML MUC or the
object’s class is not specified.

This inconsistency can be caused due to the fact that the original class is not yet included
in a model. Another cause can be the deletion of the class from the model in a refactoring
or refinement step or the change of type of the object referred to in the sequence diagram.

Involved UML Model Elements: InstanceSpecification and Class.

Definition 44 M suffers from a classless instance inconsistency if and only if ∃o ∈
OM @ C ⊆ CM: instanceOf(o, C).

Example 27 Consider the sequence diagram shown in Figure 3.8. This sequence diagram
shows a scenario for the startup of an ATM. An operator switches on the ATM, causing the
initialisation of the ATM. This initialisation includes setting the initial cash and opening
the connection to the bank. Suppose this sequence diagram is adapted to the requirement
that a log entry must be made when the ATM is started up. This results in the sequence
diagram of Figure 3.9. The UML model consisting of the class diagrams in Figure 2.6 and
2.8, and the sequence diagram of Figure 3.9 contains different occurrences of inconsistencies
of the category instance specification missing.

The fact that the class Log is not included yet in this model results in a classless instance
inconsistency.

Classless Protocol State Machine

This inconsistency arises when a protocol state machine is associated to a class not present
in the UML MUC.

Involved UML Model Elements: ProtocolStateMachine, Class and Model.

Definition 45 M suffers from a classless protocol state machine inconsistency if
and only if ∃πc ∈ ΠM : c /∈ CM

65 3.4 Structural Specification/Instance Inconsistencies

 :OperatorPanel :ATM :CashDispenser :ConnectionToBank :Log

1 : switchOn()

1.1 : performStartup()

1.1.1 : initialCash:=getInitialCash()

1.1.2 : setInitialCash(initialCash)

1.1.3 : openConnection()

1.1.4 : logOpenConnection()

Figure 3.9: Sequence diagram for the startup of an ATM with logging.

CardAbsent CardPresent

readCard()[cardInserted]

ejectCard()

RetainingCard

retainCard()

Figure 3.10: Protocol state machine for the class CardReader.

Example 28 Consider again the model consisting of the diagrams shown in Figure 2.6 and
2.8, and 3.9. In a next step the model is more detailed by adding a protocol state machine
for the class CardReader as shown in Figure 3.10. However, the class CardReader is not
part of the model. Remark that in most UML CASE tools it is not possible to show the
relation between the PSM and its class in the diagram but in another interface component
of the CASE tool.

Dangling Feature Reference

This inconsistency arises when a message in a sequence diagram or a protocol transition in
a PSM references an operation that does not exist in the corresponding class nor in any of
its ancestors. The inconsistency can also arise when a pre- or postcondition specified on a
transition in a PSM diagram references a property or operation that does not exist in the
corresponding class nor in one of its ancestors.

These types of inconsistencies occur as horizontal inconsistencies when a feature is ref-
erenced but not yet included in the MUC. These types of inconsistencies can also be caused

Chapter 3. Conceptual Classification of Inconsistencies 66

GettingCustomerSpecificsInquiry

AccountEntry

DisplayCash

getAccountNbr()

displayCash(balance)

PrintReceipt

ChoosingTransaction

printReceipt()

[INQUIRY]

cancel()

Figure 3.11: Specific states and transitions for an inquiry.

by a refinement or refactoring step by deleting the feature or moving the feature around.
Involved UML Model Elements: Message, Operation, ProtocolTransition, Protocol-

StateMachine, Lifeline, InstanceSpecification, Model, Precondition, Postcondition, Feature,
Class and Generalization.

Definition 46 M suffers from a dangling feature reference inconsistency if and only
if one of the four following conditions applies:

1. ∃ πc = (Sc, Tc, Lc, ρc,Λc) ∈ ΠM ∃τ = (op, g, h) ∈ Lc : op /∈ Op∗c .

2. ∃ δ ∈ ∆M ∃ C ∈ CM ∃ {o} ∈ contained(δ, C) ∃ e = (m,Cons, “receive”) ∈ υ{o}
∀c ∈ C : invoked(m) /∈ Op∗c .

3. ∃ pre ∈ PreM ∃ el ∈constrainedElements(pre) ∀c ∈ CM : el /∈ (Prop∗c ∪Op∗c).

4. ∃ post ∈ PostM ∃ el ∈ constrainedElements(post) ∀c ∈ CM : el /∈ (Prop∗c ∪Op∗c).

Example 29 An occurrence of this inconsistency is found in the model consisting of the
elements represented by the diagrams in Figure 2.6, Figure 2.4, Figure 2.8, and the protocol
state machines defined in the Figure 2.14, Figure 3.11, Figure 3.12 and Figure 3.13. Figure
3.11 shows the states and transitions starting from the ChoosingTransaction state in the case
of an inquiry. Figure 3.12 and Figure 3.13 show the states and transitions again starting
from the ChoosingTransaction state in the case of a transfer and a deposit, respectively.

The operation cancel() called on transitions on all four protocol state machine diagrams
is not defined in the class ATM.

Another occurrence of this inconsistency occurs in the model consisting of the elements
included in the class diagram in Figure 2.4 and the protocol state machine diagram in Figure
3.10. In the protocol state machine the precondition cardInserted is used on the operation
readCard(). However, the element cardInserted is not defined in the model.

67 3.4 Structural Specification/Instance Inconsistencies

GettingCustomerSpecificsTransfer

FromAccountEntry

AmountEntry

ToAccountEntry

getAccountNbr()

getAmountEntry()

ChoosingTransaction

VerifyTransfer

PrintReceipt

cancel()

[not allowTransfer]

printReceipt()[allowTransfer]

allowTransfer = send(m)

getAccountNbr()[TRANSFER]

Figure 3.12: Specific states and transitions for a transfer.

GettingCustomerSpecificsDeposit

AccountEntry

AmountEntry

getAccountNbr()

getAmountEntry()

VerifyDepositAcceptingEnvelope

Deposited

ChoosingTransaction

PrintReceipt
printReceipt()

cancel()
send(okm)

acceptEnvelope()[allowDeposit]

[not allowDeposit]

[DEPOSIT]

allowDeposit = send(m)

Figure 3.13: Specific states and transitions for a deposit.

Chapter 3. Conceptual Classification of Inconsistencies 68

Dangling Association Reference

A dangling association reference inconsistency occurs if a link is not typed by any association
or if a link is typed by an association between classes not belonging to the model. This
inconsistency can also occur if a connector in a sequence diagram (at instance level) is related
to an association that does not exist between the classes of the corresponding objects (nor
between any of the ancestors of these classes).

Involved UML Model Elements: Association, Connector, InstanceSpecfication and
Class.

Definition 47 M suffers from a dangling association reference inconsistency if and
only if one of the following conditions hold:

1. ∃ l = {(o1, . . . , on)} ∈ ConnectorsM @ assoc = connectorType(l),

2. ∃ l = {(o1, . . . , on)} ∈ ConnectorsM ∃ assoc = connectorType(l) ∃c /∈ CM :
assoc ∈ participates(c),

3. ∃ l = {(o1, . . . , on)} ∈ P(O{c1} × . . . × O{cn}) ∩ ConnectorsM ∃ assoc
= connectorType(l) ∃ ci ∈ {c1, . . . , cn} : (assoc /∈ participates(ci) ∧
∀generalisationOf(c′, ci) : assoc /∈ participates(c′)).

Example 30 The model composed of the elements represented in the class diagram of Fig-
ure 3.14 and in the sequence diagram of Figure 3.15 contains a dangling association refer-
ence. Figure 3.15 shows a possible scenario for a transfer transaction.

In this scenario, there is a message sent from an object of type Transfer to an object
of type Card. We assume that there are no implicit associations in the model, i.e., all the
associations existing in the model are shown in the class diagram in Figure 3.14. There is
no corresponding association explicit between the classes Transfer and Card and there is
also no association between Transaction and Card.

3.5 Structural Instance Inconsistencies

At the instance level, we identified the potential problem of disconnected models. This
problem is related to the topography of the diagrams, specifically, when it contains parts
that are disconnected from each other. For example, a state or transition may have been
deleted or omitted in a state diagram, resulting in a set of states that are not reachable
from the initial state. As another example, an object or connector may have been deleted
or omitted in a sequence diagram, resulting in a set of objects that are unreachable.

3.5.1 Disconnected Model

In the case of a PSM this inconsistency arises when a particular state is not reachable.
However, there are different forms of reachability of a state. The simplest form implies that
a state can be reached starting from the start state by following the transitions. In a more
complex form reachability consists also of verifying if the several operations specified on
the different transitions exist. This last condition is part of the above discussed dangling

69 3.5 Structural Instance Inconsistencies

ATM
id: Integer
cash: Cash
switchOn(): void
switchOff(): void
getID(): Integer
readCard(): Card
verifyPIN(pin: Integer): Boolean
ejectCard(): void
dispenseCash(amount: Cash): void
checkIfCashAvailable(cash: Cash): Boolean
acceptEnvelope(): void
getAccountNbr(): Integer
getAmountEntry(): Cash
displayCash(amount: Cash): void
readPIN(): Integer
displayMessage(message: String): void
send(m: Message): Boolean
performShutdown(): void

CustomerConsole

readPIN(): Integer
readAmount(): Cash
readAccountNbr(): Integer
displayAmount(amount: Cash): void
display(message : String): void

Session

performSession(): void
handleFailedTransaction():void

Card
number: Integer
getNumber() : Integer
getAccount(accountnbr: Integer) : Account

Transaction

performTransaction(): Boolean
getCustomerSpecifics(): void
completeTransaction(): void

1 1

0..1

1

1 0..1

1

0..1

Transfer

getCustomerSpecifics(): void
completeTransaction(): Boolean

Figure 3.14: Class diagram constituting, together with the sequence diagram of Figure 3.15,
a model.

feature reference. The most complex form of reachability is to verify if the operations can
be called by the objects in a certain configuration. To do this, the information found in
PSM and class diagrams is not enough. We need to know how the application is initialised
and which instances are alive. This is beyond the scope of the inconsistency we want to
describe here.

This inconsistency can also occur in sequence diagrams. Sequence diagrams suffer from
this inconsistency when there is an object that does not receive any message. A possible
exception on this is the object that sends the first message.

Again this inconsistency can occur as a horizontal inconsistency which implies that the
designer has created a disconnected model, e.g., by forgetting to include a transition in a
PSM diagram or by the omission of a connector or the sending of a message in a sequence
diagram.

Involved UML Model Elements: in case of a PSM: ProtocolStateMachine, State
and ProtocolTransition. For sequence diagrams, these model elements include Lifeline,
EventOccurrence and Message.

Definition 48 M suffers from a disconnected model inconsistency if and only if

• ∃πc = (Sc, Tc, Lc, ρc,Λc) ∃s ⊂ Sc (s is a state configuration) @ µ = < τ1, . . . , τn >:
(σ1 = {ρc} ∧ ∀i ∈ {1, . . . , n− 1} : ((σi, τi, σi+1) ∧ σi ⊂ Sc ∧ s = σn+1)).

• ∃C ⊆ CM ∃δ ∈ ∆M : (contained(δ, C) 6= ∅ ∧ Eδ,C = ∅).

Chapter 3. Conceptual Classification of Inconsistencies 70

s:Session

 :Transfer

1 : Transfer(atm, s, card)

2 : true:=performTransaction()
2.1 : getCustomerSpecifics()

 :CustomerConsole card:Card

2.1.2 : anAccount:=getAccount(fromnumber)

atm:ATM

2.1.4 : amount:=getAmountEntry()

2.1.1 : fromnumber:=getAccountNbr()

2.1.1.1 : fromnumber:=readAccountNbr()

2.1.3 : tonumber:=getAccountNbr()

2.1.3.1 : tonumber:=readAccountNbr()

2.1.4.1 : amount:=readAmount()

m:Message

2.1.5 : Message(fromnumber, tonumber, amount, TRANSFER)

2.1.6 : true:=send(m)

2.2 : completeTransaction()

Figure 3.15: UML sequence diagram for a transfer transaction.

71 3.6 Behaviour and Behaviour Inheritance

PINEntry VerifyingPIN ChoosingTransaction

VerifyTransaction

GettingCustomerSpecifics

pin := readPIN()
verifyPIN(pin, aCard)

[valid!PIN]

GiveCash-Receipt

GiveCash

PrintReceipt

ReturnReceipt

printReceipt()

dispenseCash(amount)

ReturningCard

ejectCard()

pin := readPIN()[not valid!PIN && tries < 3]

ejectCard()[not valid!PIN && tries = 3]

cancel()

Figure 3.16: Protocol state machine in which the state GettingCustomerSpecifics is not
reachable.

Example 31 In the PSM shown in Figure 3.16, there is no call sequence that leads to
the state GettingCustomerSpecifics. In this case, also the states VerifyTransaction and
GiveCash-Receipt are not reachable.

3.6 Behaviour and Behaviour Inheritance

Before studying the different categories of behavioural inconsistencies, the notions of be-
haviour and behaviour inheritance in object-oriented analysis and design and especially in
the context of UML, are considered.

In object-oriented systems, inheritance is a central issue. Classes are organised in hi-
erarchies in which subclasses inherit and specialise the behaviour of the superclasses and
this mainly to enable reuse. However, these hierarchies can also be used to specify how the
behaviour of a certain class must be specialised. The questions arising in this context are:
What does it mean to specialise behaviour? How can this specialisation be specified and
how to enforce restrictions on it?

Following the spirit of the previous chapter, we assume that the specification of the
behaviour of a class is defined as a combination of its protocol state machine and all sequence
diagrams in which instances of the considered class are involved.

In contrast to programming languages, object-oriented design languages provide a high-

Chapter 3. Conceptual Classification of Inconsistencies 72

level view on the behaviour of an application. The behaviour modelled consists of the
specification of how objects interact and on how objects evolve over their life time which
is often referred to as object life cycle. Different languages exist to specify behaviour at
an analysis and design level. The UML incorporates state machines, sequence diagrams,
communication diagrams, etc.. Other examples of languages are Message Sequence Charts
(MSCs), Petri Nets, Harel statecharts, etc..

To restrict the way the behaviour of a subclass should specialise the behaviour of a
superclass in a class hierarchy, so-called behaviour inheritance consistencies can be used.
Different notions for specialising the behaviour of a class are proposed in literature (for
example, [EE95], [SS00], [SS02], [HK99], [van02a]).

Engels et al. [EE95] were the first to distinguish - what they call - observable and
invocable consistency using homomorphisms on state diagrams. Observable consistency
means that each sequence of calls which is observable with respect to a subclass must result
(under projection of the methods known) in an observable sequence of its corresponding
superclass. If a subclass reacts to the invocation of an operation op, where op is also known
to the superclass, this reaction must also be reflected in the superclass behaviour specification.
In terms of UML PSMs, this can be rephrased as “after hiding all new operation invocations,
each sequence of the subclass state diagram should be contained in the set of sequences of
the superclass state diagram”.

Invocable consistency on the other hand, means that any sequence of operations invocable
on the superclass can also be invoked on the subclass. This notion of behaviour inheritance
consistency is based on the substitutability principle requiring that an object of subclass
B of class A can be used where an object of class A is expected. In terms of UML PSMs,
each call sequence of the superclass state diagram should be contained in the set of call
sequences of the state diagram for the subclass.

Similar criteria to the ones found in [EE95], for inheritance of object life cycles based
on Petri nets are discussed in [SS00], [SS02] and [van02a].

In UML 2.0 interactions and state machines can be generalised. The UML 2.0 specifi-
cations define how an interaction and state machine can be specialised. Only an extension
policy is provided, i.e., features can only be added. Specialising an interaction simply means
to add more traces to those of the original. We call the specialised interaction, the child
interaction and the interaction that is being specialised, the parent interaction.

A protocol state machine can also be generalised. A specialised state machine is an
extension of the general state machine. This means that regions, vertices and transitions
may be added. A simple state can be extended to a composite state, by adding one or more
regions. A composite state can be extended by either extending inherited regions or by adding
regions. A region is extended by adding states and transitions and by extending states and
transitions [Obj04e].

In the next sections, we express different kinds of behaviour inheritance consistencies
in the context of UML 2.0 elements represented in protocol state machine diagrams and
sequence diagrams at instance as well as specification level. Rather than inventing our own
definitions of behaviour inheritance consistencies, we will rely on two variants, observable
and invocable consistency, although it is very well possible that other useful definitions of
inheritance consistency exist.

In these sections consistency definitions are given (except for Section 3.8.3) as opposed to
the definitions of inconsistencies in the previous sections. The definitions of the behavioural

73 3.7 Behavioural Specification Inconsistencies

consistencies are more readable than the corresponding inconsistencies. A behavioural in-
consistency is the negation of a behavioural consistency.

3.7 Behavioural Specification Inconsistencies

At this level interaction inconsistencies are identified. Interaction inconsistencies comprise
invocation interaction inconsistency and observation interaction inconsistency. These in-
consistencies occur between sequence diagrams at specification level.

3.7.1 Invocation/Observation Interaction Inconsistencies

Interaction consistencies specify inheritance restrictions between two interactions. These
restrictions are specified on a set of traces received by a set of connectable elements.

An invocation interaction inconsistency arises when the set of receiving traces of a con-
nectable element in the parent interaction is not a subset of the set of receiving traces of
the corresponding connectable element in the child interaction. An observation interaction
inconsistency arises when, after hiding the new messages associated to connectable elements
belonging to a set of classes, the set of receiving traces of these connectable elements belong-
ing to the child interaction is not a subset of the set of receiving traces of the corresponding
connectable elements in the parent interaction.

Involved UML Model Elements: Operation, Constraint, Message and EventOccur-
rence.

Definition 49 Given C,C ′ ⊆ CM, where ∀c′ ∈ C ′ ∃c ∈ C : c′ = c ∨
generalisationOf(c, c′), and given the sequence diagrams δ and δ′:

• A SD δ′ is invocation interaction consistent with a SD δ if and only if,
∀O ∈ contained(δ, C) ∀υO ∈ δ : (∃O′ ∈ contained(δ′, C ′) ⇒ ∃ υ′O′ ∈ δ′ :
=υ(υO/rec, υ′O′/rec)).

• A SD δ′ is observation interaction consistent with a SD δ if and only if,
∀O′ ∈ contained(δ′, C ′) ∀ υ′ = υO′ ∈ δ′ : (∃O ∈ contained(δ, C) ⇒ ∃υ′′O ∈ δ :
=υ(υ′′O/rec, υ′Eδ,C

/rec)).

Example 32 Consider the sequence diagrams shown in Figure 3.17 and in Figure 3.18.
The first sequence diagram models a generic interaction. It is generic because it is an
interaction on conceptual level, i.e., the types that are included in the sequence diagrams
are roles that will be played by different concrete classes and also the operations called will
be refined by different concrete classes. The class Device is rather a concept than a class
that can represent an ATM class in an ATM simulation application or a Phone class in a
simulation of a Phone banking application.

The sequence diagram in Figure 3.18 models an interaction at specification level but
now for a concrete application. The Phone class can be regarded as a subclass or subconcept
of Device and PhoneSession is a subclass of Session and PhoneScreen is a subclass of
Console.

The sequence diagrams are observation consistent but not invocation consistent with C =
{Console} and C ′ = {PhoneScreen}. These diagrams are observation consistent because

Chapter 3. Conceptual Classification of Inconsistencies 74

 :Device

 :Session

1 : Session(d : Device)

 :Console

2 : performSession()

2.1 : pin:=readPIN()

 :Transaction

2.2 : Transaction()

2.3 : bool:=performTransaction()

3 : terminateSession()

Figure 3.17: Sequence diagram at specification level, generic parent interaction.

 :Phone :PhoneScreen

 :PhoneSession

1.1 : PhoneSession(p : Phone)

1.2 : performSession()

1.2.1 : login:=readLogin()

1.2.2 : pin:=readPIN()

 :I&TTransaction
1.2.3 : Transaction()

 :ConnectionToBank

1.2.3 : bool:=verifyPIN(pin)

1.2.5 : performTransaction()

1.3 : terminateSession()

Figure 3.18: Sequence diagram at specification level, concrete child interaction.

75 3.8 Behavioural Specification/Instance Inconsistencies

after hiding the call to readLogin(), the trace defined on Console and the trace defined on
PhoneScreen are equal. The trace defined on Console cannot be found on PhoneScreen
resulting in an invocation interaction inconsistency.

3.8 Behavioural Specification/Instance Inconsistencies

Three kinds of inconsistencies can be differentiated at this level.

• The first kind of inconsistency differentiates between invocation behaviour inconsis-
tency and observation behaviour inconsistency. These inconsistencies occur between
a PSM and sequence diagrams at specification level. These inconsistencies are similar
to the ones defined in the previous section.

• Another kind of inconsistency identified at this level is called specification incompati-
bility. This inconsistency arises when instances do not comply with the specifications
that characterise them, and it is defined between model elements belonging to class
diagrams and model elements belonging to sequence diagrams at instance level.

• A last kind of identified inconsistency is called a specification behaviour incompatibility.
This inconsistency is similar to the instance behaviour incompatibility (see Section 3.9).

Before defining the different consistencies, we need to define an auxiliary property be-
tween a SD trace and a PSM call sequence. This property is required if a correspondence
between an SD trace, defined on objects of class(es), and a call sequence, defined in the
corresponding PSM, is defined. Call sequences can contain labels with an empty operation.
Such labels do not correspond to any message in a sequence diagram and should be skipped
but the corresponding guard must be taken into account by the next label containing an
operation.

Definition 50 Given a SD trace υ =< e1, . . . , en > and a call sequence µ =< τ1, . . . , τm >
defined for a PSM π,
υ and µ are in strict sequence if and only if,
(∃ j ∈ {1, . . . ,m} ∃ i ∈ {1, . . . , n} : (τj = label(ei) ∧ ∃ u ≥ 1 : (τj+u = label(ei+1) ∧ ei+1 =
(m,Cons,direction)) ⇒ ∀ r ∈ {1, . . . , u− 1} : τr = (ε, gr, {}) ∧

⋃
j≤r≤j+u gr ⊆ Cons).

3.8.1 Invocation/Observation Behaviour Inconsistencies

Involved UML Model Elements: ProtocolTransition, ProtocolStatemachine, Operation,
Constraint, State, Region, Message and EventOccurrence.

Definition 51 • Given a PSM πc′ = (S′, T ′, L′, ρ′,Λ′) and a sequence diagram δ and
C ⊆ CM such that ∃ c ∈ C : generalisationOf(c, c′):

A PSM πc′ is invocation behaviour consistent with a SD δ if and only if,
∀O ∈ contained(δ, C) ∀ υO/rec =< e1 . . . en >) (with υO ∈ δ) ∃ µc′ =< τ1 . . . τm >:
(∀ τi ∈ µc′ : τi ∈ L′ ∧ m ≥ n ∧ ∃ σ : valid(µc′ , σ, πc′) ∧ ∀i ∈ {1, . . . , n} ∃ j ∈
{i, . . . , m} : (τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µ′c ⇒ k > j) ∧ µc′,
υO/rec are in strict sequence)).

Chapter 3. Conceptual Classification of Inconsistencies 76

Session Started Performing Session TerminatingSessionperformSession() terminateSession()

cancel()

Figure 3.19: State diagram for a Session instance.

• Given a PSM πc = (S, T, L, ρ,Λ) and a sequence diagram δ′ and C ′ ⊆ CM such that
∃ c′ ∈ C ′ : generalisationOf(c, c′):

A SD δ′ is observation behaviour consistent with a PSM πc if and only if,
∀ O′ ∈ contained(δ′, C ′) ∀ υO′/rec

Opc
= < e1, . . . , en > (with υO′ ∈ δ′) ∃ µc =<

τ1, . . . , τm >: (∀ τi ∈ µc : τi ∈ L ∧ m ≥ n ∃ σ : valid(µc, σ, πc) ∧ ∀i ∈ {1, . . . , n}
∃ j ∈ {i, . . . , m} : τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µc ⇒ k > j)
∧ υO′/rec, µc are in strict sequence)).

Remark that, in this case, we do not define invocation behaviour consistency between a
PSM πc and a sequence diagram δ′ containing instances of a subclass c′ of c. Such a
definition would imply that all possible scenarios are described by δ′, because every trace
in the PSM πc must be also invocable in δ′. This demands completeness of the models
which is not always the case, especially in the early phases of the software development
cycle. Secondly, we do not define observation behaviour consistency between a PSM πc′

and an SD δ containing instances of a superclass c of c′. Such a definition would imply
that all possible scenarios are described by δ, because every trace in the PSM πc′ must be
observable in δ under projection of the methods known. This demands completeness of the
models.

Example 33 The PSM shown in Figure 3.19 specifies the possible sequences of operations
invoked on an instance of the class Session. This PSM is observation interaction consistent
with the sequence diagram shown in Figure 3.18. This sequence diagram defines one trace
of event occurrences received by PhoneSession that is a subclass of Session. This trace
restricted to event occurrences invoking operations of the Session class corresponds to a call
sequence in the PSM of Figure 3.19.

3.8.2 Specification Behaviour Incompatibility

The specification behaviour incompatibility is defined between a PSM and a sequence dia-
gram. Such an inconsistency occurs when it is not possible to find a call sequence in the
protocol state machine of a class c that follows the order established by a receiving SD trace
of a set of instances of which at least one object o is an instance of the class c.

The consistency guarantees the compatibility between a PSM for a certain class c and
the set of receiving SD traces of instances of the class c.

Involved UML Model Elements: ProtocolTransition, ProtocolStatemachine, Opera-
tion, Constraint, State, Region, Message and EventOccurrence.

Definition 52 Given c ∈ C ⊆ CM and O{c} ⊆ OC ⊆ OM.

77 3.8 Behavioural Specification/Instance Inconsistencies

A PSM πc = (S, T, L, ρ,Λ) is specification behaviour compatible with a SD δ if
and only if,
∀O ∈ contained(δ, C) ∀ υO/rec =< e1 . . . en > (with υO ∈ δ) ∃ µc =< τ1, . . . , τm >:
(m ≥ n ∧ ∀ τi ∈ µc : τi ∈ L ∧ ∃ σ : valid(µc, σ, πc) ∧ ∀ i ∈ {1, . . . , n} ∃ j ∈ {i, . . . , m}:
(τj = (op, g, h) = label(ei) ∧ (∃ τk = label(ei+1) ∈ µc ⇒ k > j) ∧ υO/rec, µc are in strict
sequence)).

Remark that we do not define a specification behaviour incompatibility starting from the
call sequences in a protocol state machine because this would imply that all possible speci-
fications of scenario’s are described in sequence diagrams.

Example 34 Consider a UML model consisting of the class diagram in Figure 2.4, and the
sequence diagram in Figure 3.17, and the PSM shown in Figure 3.19. The behaviour of the
class Session, specified by the sequence diagram must be compatible with the behaviour speci-
fied by the PSM. This means that every trace contained in the sequence diagram corresponds
to a valid call sequence in the PSM. This model is specification behaviour compatible.

3.8.3 Specification Incompatibility

Three kinds of specification incompatibility are recognised, multiplicity incompatibility, nav-
igation incompatibility and abstract objects.

anATM:ATM aCard:Card acc1:CurrentAccount acc2:SavingsAccount

1.1 : number1:=getNumber()

1.2 : number2:=getNumber()

1 : accountNbr:=getAccountNbr()

Figure 3.20: Multiplicity error between this diagram and Figure 2.6.

Multiplicity Incompatibility

This kind of specification incompatibility occurs when a connector between connectable
elements in a sequence diagram at instance level does not respect the multiplicity restrictions
imposed on this connector by the corresponding associations defined (in a class diagram).

Involved UML Model Elements: Class, MultiplicityElement, Association, Connec-
tor, Property, InstanceSpecification and Lifeline.

Definition 53 M suffers from a multiplicity incompatibility if and only if,
∃o ∈ O{c} ⊆ OM ∃ Connector ∈ P({o}×O{c′}) ∃assoc = connectorType(Connector)
∃ end = (assoc,assocType2,i) : assocType2,i(assoc) = c′ ∧ card(Connector) /∈
multiplicity(end).

Chapter 3. Conceptual Classification of Inconsistencies 78

ATM

-id:Integer
-cash:Cash

+switchOn():void
+switchOff():void
+getID():Integer
+cardInserted():void
+performStartup():void
+performShutdown():void
+readCard():Card
+verifyPIN(pin:Integer,aCard:Card):Boolean
+ejectCard():void
+dispenseCash(amount:Cash):void
+checkIfCashAvailable(cash:Cash):Boolean
+acceptEnvelope():void
+getAccountNbr():Integer
+getAmountEntry():Cash
+displayCash(amount:Cash):void
+send(m:Message):Boolean
+readPIN():Integer
+displayMessage(message:String):void
+retainCard():void
+cancel():void
+printReceipt():void

CardReader

+ejectCard():void
+retainCard():void
+readCard():Card

CashDispenser

-cash:Cash

+setInitialCash(initialCash:Cash):void
+dispenseCash(amount:Cash):void
+checkCash(amount:Cash):void

CustomerConsole

+readPIN():Integer
+readAmount():Cash
+readAccountNbr():Integer
+displayAmount(amount:Cash):void
+display(message:String):void

EnvelopeAcceptor

+acceptEnvelope():void

ConnectionToBank

+openConnection():void
+closeConnection():void
+verifyPIN(pin:Integer,aCard:Card):Boolean

OperatorPanel

+getInitialCash():Cash

ReceiptPrinter

+printReceipt():void

Session

+performSession():void
+handleFailedTransaction():void
+terminateSession():void

atm+

1 reader+

1ATM<!>CardReader

1 cashdispenser+

1ATM!>CashDispenser

1console+

1 ATM!>Console

1acceptor+

1 ATM!>EnvelopeAcceptor

1 0..1

ATM!>Bank

1 panel+

1ATM<!>OperatorPanel

1printer+

1 ATM!>Printer

session+0..1

atm+ 1

Session!>ATM Cash

-amount:double

+add(amount:Cash):void
+subtract(amount:Cash):void
+equal(amount:Cash):Boolean
+greaterThan(amount:Cash):Boolean
+lessThan(amount:Cash):Boolean

Figure 3.21: Navigation error between this diagram and the sequence diagram in Figure
2.12

card applied on a set returns the cardinality of the set.
Remark that this inconsistency is only defined for binary associations due to the fact

that the semantics of multiplicity restrictions on n-ary associations is not defined in UML.

Example 35 An example of this inconsistency can be found in the model consisting of the
sequence diagram shown in Figure 3.20 and the class diagrams shown in Figure 2.6 and
Figure 2.8.

The multiplicity restrictions specified on the association between the class Account and
Card indicate that an instance of Account must be connected to at least one instance of
Card and an instance of Card can only be connected to one instance of Account. In
the sequence diagram the operation getNumber() is sent over a link, i.e., an instance of the
specified association, to two different instances of the Account class. As a result an instance
of Card is connected to two instances of the class Account violating the multiplicity defined
on the association involved.

In this example, the multiplicity specified on the association is wrong, a card can be
connected to several accounts, e.g., a current-account and some saving-accounts.

79 3.8 Behavioural Specification/Instance Inconsistencies

 :CardReader atm:ATM :CustomerConsole

1 : cardInserted()

s:Session
1.1 : session(atm)

1.2 : performSession()

1.2.1 : aCard:=readCard()

1.2.3 : bool:=verifyPIN(pin,aCard)

 :ConnectionToBank

1.2.3.1 : bool:=verifyPIN(pin,aCard)

 :Transaction

1.2.4 : [bool]Transaction(atm, s, aCard)

1.2.5 : boolTrans:=performTransaction()

1.2.6 : ejectCard()

1.2.6.1 : ejectCard()

1.2.2 : pin:=readPIN()

1.2.2.1 : pin:=readPIN()

Figure 3.22: UML sequence diagram for a user session.

Navigation Incompatibility

This kind of inconsistency arises when a connector and its connectable element in a sequence
diagram does not respect the navigability restrictions imposed on the corresponding class
by the specification of the navigability of the relevant association in a class diagram.

Involved UML Model Elements: Class, Association, Connector, Property, Instance-
Specification, Eventoccurrence, Message and Lifeline.

Definition 54 M suffers from a navigation incompatibility if and only if,
∃ Connector ∈ ConnectorsM ∃ assoc = connectorType(Connector)
∃ end = (assoc,assocType2,i) ∃ e = (m,Cons, “receive”) : connected(e) ∈
O{assocType2,i(assoc)} ∈ Connector ∧ ¬ isNavigable(end).

Example 36 The model consisting of the sequence diagram shown in Figure 2.12 and the
class diagram in Figure 3.8.3 contains an navigation inconsistency. The navigability arrow
on the association between the class ATM and the class Session, indicates that an ATM
has the responsibility to remember its Sessions but not vice versa. In the sequence diagram
in Figure 2.12 messages are sent from a Session to an ATM. This is not possible due to the
arrow on the association between ATM and Session.

Abstract Object

This inconsistency arises when an abstract class defined in the UML model, having no
concrete subclasses defined, is instantiated in a sequence diagram. If the abstract class has
concrete subclasses, the behaviour specified in the sequence diagram applies to the instances
of these subclasses. This corresponds to declaring the abstract class as the static type of

Chapter 3. Conceptual Classification of Inconsistencies 80

the object, and during execution, dynamically typing it as one of the concrete subclasses of
the abstract class.

Involved UML Model Elements: Class, InstanceSpecification, Generalization.

Definition 55 M suffers from an abstract object inconsistency if and only if,
∃o ∈ O{c} ⊆ OM ∧ c ∈ CM ∧ isAbstract(c) ∧ @ c′ ∈ CM : generalisationOf(c, c′).

Example 37 Consider the UML model consisting of the class diagram shown in Figure 2.6
and the sequence diagram shown in Figure 3.22. The sequence diagram shows an interaction
creating a Session object. This Session object controls the reading of the card and the PIN,
and the verification of the PIN. If the card can be read and the PIN is correct, then the user
can ask for a certain transaction. This results in the creation of a Transaction object and
the execution of this transaction. If the transaction is finished, the card is ejected. Messages
are sent in this sequence diagram to instances of the abstract class Transaction. However,
there are no concrete subclasses of this class known in the model. This implies an abstract
object inconsistency.

3.9 Behavioural Instance Inconsistencies

At instance level, we identify two different kinds of behavioural inconsistencies: inheritance
inconsistency, including invocation and observation inheritance inconsistency, and instance
behaviour incompatibility.

3.9.1 Invocation Inheritance Inconsistency

Invocation inheritance consistency [EHK01] can be defined between state machines, between
sequence diagrams at instance level, and between a state machine and sequence diagrams
at instance level. This consistency is violated when any of the following constraints in or
between sequence and PSM diagrams is violated: (i) each call sequence of the superclass
PSM should be contained in the set of call sequences of the PSM of the subclass; (ii) the
ordered collection of messages received by an object of the superclass should be contained
in the ordered collection of messages received by an object of the subclass; (iii) the ordered
collection of messages received by an object of the superclass in a sequence diagram, should
exist as a call sequence of the PSM for the subclass.

Involved UML Model Elements: ProtocolTransition, ProtocolStatemachine, Opera-
tion, Constraint, State, Region, Message and EventOccurrence.

Definition 56 Given c, c′ ∈ CM and generalisationOf(c, c′):
A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is invocation inheritance consistent with a PSM

πc = (S, T, L, ρ,Λ) if and only if,
∀ µ : (valid(µ, {ρ}, πc) ⇒ valid(µ, {ρ′}, πc′)) and for the PSM traces γ corresponding to µ
in πc and γ′ corresponding to µ in π′c, it holds that γ = γ′S.

A SD δ′ is invocation inheritance consistent with a SD δ, if and only if,
∀O ∈ contained(δ, {c}) ∀ υO ∈ δ : (∃O′ ∈ contained(δ′, {c′}) ⇒ ∃ υ′O′ ∈ δ′ :
=υ(υO/rec, υ′O′/rec)).

A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is invocation inheritance consistent with a SD δ if
and only if,

81 3.9 Behavioural Instance Inconsistencies

∀ O ∈ contained(δ, {c}) ∀ υO/rec =< e1 . . . en > (with υO ∈ δ) ∃ µc′ =< τ1 . . . τm >:
(∀ τi ∈ µc′ : τi ∈ L′ ∧ m ≥ n ∧ ∃ σ : valid(µc′ , σ, πc′) ∧ ∀ i ∈ {1, . . . , n} ∃ j ∈ {i, . . . , m} :
τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µc′ ⇒ k > j) ∧ µc′ , υO/rec are in strict
sequence)).

Remark that we do not define invocation consistency between a PSM πc and a sequence
diagram δ′ with respect to a subclass c′ of c, for the same reasons as in Definition 51.

Example 38 Consider the PSM in Figure 2.14 which specifies the possible sequences of
operations invoked on an instance of the class ATM. The PSM in Figure 3.23 specifies the
possible sequences of operations invoked on an instance of a subclass of the class ATM. This
subclass replaces the behaviour of withdrawing money from an ATM with the behaviour that
allows to withdraw and charge a card with money at the same time.

The question can now be asked if the behaviour specified by the PSMs is invocation
inheritance consistent. This implies that every call sequence specified by the PSM in Figure
2.14 is also specified by the PSM in Figure 3.23. This is not the case, because the behaviour
specified by the last PSM does not allow for the withdrawal of money without charging a
card. Both should happen. The PSMs would be invocation inheritance consistent if the
behaviour specifying the charging of the card is a separate transaction, i.e., if there is only
an extension of the existing behaviour as specified by the PSM of Figure 2.14.

3.9.2 Observation Inheritance Inconsistency

Observation inheritance inconsistencies [EHK01] can be defined between state machines,
between sequence diagrams at instance level, and between a state machine and sequence
diagrams at instance level. Observation inheritance consistencies are violated when any
of the following constraints in or between sequence diagrams and state machine diagrams
is violated: (i) after hiding all new operations, each call sequence of the subclass state
diagram is contained in the set of sequences of the superclass state diagram; (ii) after
hiding messages that are associated to newly introduced operations, the ordered collection
of messages received by an object of the subclass are contained in the ordered collection
of messages received by an object of the superclass; (iii) after hiding messages that are
associated to newly introduced operations, the ordered collection of messages received by
an object of the subclass in a sequence diagram, exists as a sequence of the state machine
diagram for the superclass.

Involved UML Model Elements: ProtocolTransition, ProtocolStatemachine, Opera-
tion, Constraint, State, Region, Message and EventOccurrence.

Definition 57 Given c, c′ ∈ CM and generalisationOf(c, c′):
A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is observation inheritance consistent with a PSM

πc = (S, T, L, ρ,Λ) if and only if,
∀ µ′ : (valid(µ′, {ρ′}, πc′) ⇒ valid(µ′L, {ρ}, πc)).

A SD δ′ is observation inheritance consistent with a SD δ if and only if,
∀O′ ∈ contained(δ′, {c′}) ∀ υ′ = υO′ ∈ δ′ (∃O ∈ contained(δ, {c}) ⇒ ∃υ′′O ∈ δ :
=υ(υ′′O/rec, υ′Eδ,{c}

/rec)).
A SD δ′ is observation inheritance consistent with a PSM πc = (S, T, L, ρ,Λ) if

and only if,

Chapter 3. Conceptual Classification of Inconsistencies 82

PI
N

En
try

C
ho

os
in

gT
ra

ns
ac

tio
n

[v
al

id
!P

IN
]

Pr
in

tR
ec

ei
ptR

et
ur

ni
ng

C
ar

d

ej
ec

tC
ar

d(
)

Ve
rif

yi
ng

PI
N

ve
rif

yP
IN

(p
in

, a
C

ar
d)

[n
ot

 v
al

id
!P

IN
 &

&
tri

es
 <

 3]

re
ta

in
C

ar
d(

)[n
ot

 v
al

id
!P

IN
 &

&
tri

es
 =

 3]

ca
nc

el
()

R
et

ai
nC

ar
d

G
et

tin
gC

us
to

m
er

Sp
ec

ifi
cs

W
ith

dr
aw

al
Ac

co
un

tE
nt

ry
W

ith
dr

aw
al

Am
ou

nt
En

try
ca

sh
 :=

 g
et

Am
ou

nt
En

try
()

Ve
rif

yA
TM

Ba
la

nc
e

ca
sh

av
ai

la
bl

e
:=

 c
he

ck
IfC

as
hA

va
ila

bl
e(

ca
sh

)

Ve
rif

yW
ith

dr
aw

al

al
lo

w
W

ith
dr

aw
al

 :=
 s

en
d(

m
1)

[c
as

hA
va

ila
bl

e]

G
iv

eC
as

h

di
sp

en
se

C
as

h(
ca

sh
)[a

llo
w

W
ith

dr
aw

al
]

C
ha

rg
in

gA
cc

ou
nt

En
try

C
ha

rg
in

gA
m

ou
nt

En
try

Ve
rif

yC
ha

rg
in

g

C
ar

dC
ha

rg
in

g

ca
sh

 :=
 g

et
Am

ou
nt

En
try

()

al
lo

w
C

ha
rg

in
g

:=
 s

en
d(

m
2)

[n
ot

 a
llo

w
W

ith
dr

aw
al

]

pr
in

tR
ec

ei
pt

()

ch
ar

ge
C

ar
d(

)[a
llo

w
C

ha
rg

in
g]

Er
ro

r

[n
ot

 a
llo

w
C

ha
rg

in
g]

Tr
an

sa
ct

io
nd

on
e

ge
tA

cc
ou

nt
N

br
()[

W
IT

H
D

R
AW

AL
 a

nd
 C

H
AR

G
IN

G
]

Id
le

pi
n

:=
 re

ad
PI

N
()

Figure 3.23: PSM for the class CardChargingATM subclass of ATM.

83 3.9 Behavioural Instance Inconsistencies

s:Session

 :Deposit

1 : Deposit(atm, s, card)

2 : x:=performTransaction()
2.1 : getCustomerSpecifics()

 :CustomerConsole card:Card

2.1.2 : anAccount:=getAccount(accnumber)

atm:ATM :EnvelopeAcceptor

2.2.1 : acceptEnvelope()

2.2.1.1 : acceptEnvelope()

2.1.1 : accnumber:=getAccountNbr()

2.1.1.1 : accnumber:=readAccountNbr()

2.1.3 : amounttodeposit:=getAmountEntry()

2.1.3.1 : amounttodeposit:=readAmount()

2.1.5 : true:=send(m)

m:Message

2.1.4 : Message(accnumber, amounttodeposit, DEPOSIT)

okm:Message

2.2.2 : Message()

2.2.3 : true:=send(okm)

2.2 : completeTransaction()

Figure 3.24: UML sequence diagram for a deposit transaction.

∀ O′ ∈ contained(δ′, {c′}) ∀ υO′/rec =< e1, . . . , en > (with υO′ ∈ δ′) ∃ µc =<
τ1, . . . , τm >: (∀ τi ∈ µc : τi ∈ L ∧ m ≥ n ∃ σ : valid(µc, σ, πc) ∧ ∀i ∈ {1, . . . , n}
∃ j ∈ {i, . . . , m} : τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µc ⇒ k > j) ∧ υO′/rec,
µc are in strict sequence)).

We do not define observation inheritance consistency between a PSM πc′ and an SD δ with
respect to the superclass c, for the same reasons as in Definition 51.

Example 39 Consider again the PSMs shown in Figure 2.14 and in Figure 3.23. These
PSMs are also not observation consistent. After hiding the operations not known to the su-
perclass, which boils down to hiding the call to the operation chargeCard(), the call sequences
specified by the PSM in Figure 3.23 do not correspond to the call sequences specified by the
PSM in Figure 2.14. This is because the concurrent state GettingCustomerSpecifics causes
a trace where the operation getAmountEntry() is called twice. This result corresponds to
the intuitive meaning of observation consistency. The behaviour observed by a user of the
superclass must be the same as the behaviour observed by a user of the subclass.

3.9.3 Instance Behaviour Incompatibility

Behaviour compatibility guarantees the compatibility between a PSM for a certain class c
and the set of receiving SD traces of instances of a class c. This consistency is defined

Chapter 3. Conceptual Classification of Inconsistencies 84

between sequence diagrams at instance level and a PSM.
An instance behaviour incompatibility occurs when it is not possible to find a call se-

quence in the protocol state machine of a class c that follows the order established by a
receiving SD trace of instances of a class c.

Remark that the specification behaviour incompatibility, defined in Section 3.8.2, is
similar to this incompatibility but is defined between a PSM and sequence diagrams at
specification level.

Involved UML Model Elements: ProtocolTransition, ProtocolStatemachine, Opera-
tion, Constraint, State, Region, Message and EventOccurrence.

Definition 58 Given c ∈ CM:
A PSM πc = (S, T, L, ρ,Λ) is instance behaviour compatible with a SD δ if and

only if,
∀ O ∈ contained(δ, {c}) ∀ υO/rec =< e1 . . . en > (with υO ∈ δ) ∃ µc =< τ1, . . . , τm >:
(m ≥ n ∧ ∀ τi ∈ µc : τi ∈ L ∧ ∃ σ : valid(µc, σ, πc) ∧ ∀ i ∈ {1, . . . , n} ∃ j ∈ {i, . . . , m}:
(τj = (op, g, h) = label(ei) ∧ (∃ τk = label(ei+1) ∈ µc ⇒ k > j) ∧ υO/rec, µc are in strict
sequence)).

Example 40 Consider a UML model consisting of the class diagrams in Figure 2.4, Figure
2.6 and Figure 2.8 and the sequence diagrams in Figure 2.12, Figure 3.15, Figure 3.24 and
Figure 3.25 and the PSM that is the result of the PSM in Figure 2.14 together with the
different composite states, representing the different transactions of the ATM, modelled in
Figure 3.11, Figure 3.12 and Figure 3.13.

Figure 3.24 shows a possible scenario for the Deposit transaction. In case of a deposit
transaction, the user is asked for the amount to deposit and the account number of the
account on which to deposit the money. If the transaction is allowed, the envelope is accepted
and a message is sent to the bank before the envelope is physically accepted. Figure 3.25
shows a scenario for the Inquiry transaction. In case of an inquiry transaction, the account
number of the account to inquire is asked and the balance of the account is shown to the
user.

The behaviour of the class ATM, specified by the different sequence diagrams must com-
patible with the behaviour specified by the PSM. This means that every trace contained in
the different sequence diagrams corresponds to a valid call sequence in the PSM. This model
is instance behaviour compatible.

3.10 General Discussion

Different definitions for - what we call - structural inconsistencies can be found in literature.
Ehrig and Tsiolakis [ET00] investigate the consistency between UML class and sequence

diagrams. As consistency checks between class and sequence diagrams only existence, visi-
bility and multiplicity checking are considered. Existence checking corresponds to checking
the occurrence of a dangling association reference; visibility checking concerns the checking
of visibility restrictions defined on classes, attributes and operations according to the visi-
bility restrictions declared in the class diagram. Checking for a dangling feature reference
in our work corresponds to a limited version of visibility checking as defined in [ET00]. We

85 3.10 General Discussion

s:Session

 :Inquiry
1 : Inquiry(atm, s, card)

2 : true:=performTransaction()
2.1 : getCustomerSpecifics()

card:Card :CustomerConsole

2.1.2 : anAccount:=getAccount(accnumber)

anAccount:Accountatm:ATM

2.1.1 : accnumber:=getAccountNbr()

2.1.1.1 : accnumber:=readAccountNbr()

2.1.4 : displayCash(balance)

2.1.4.1 : displayAmount(balance)

2.2 : completeTransaction()

2.1.3 : balance:=getCurrentBalance()

Figure 3.25: UML sequence diagram for an inquiry transaction.

only provided a limited version because the visibility restrictions specified for UML classes,
attributes, operations and associations need to be defined by the user in UML 2.0.

Kielland et al. [KB01] present a set of inconsistencies comprising syntactical errors and
completeness/omissions in UML class, state and sequence diagrams. The set is a subset
of our set of structural inconsistencies, their inconsistencies are informally specified and
heavily dependent on the XMI-format of Rational Rose.

Lange et al. [LCM+03] also present a set of inconsistencies and incompleteness issues.
Their set of inconsistencies is a subset of our set of structural inconsistencies. Their incon-
sistency and incompleteness sets are based on six large-scale industrial case studies and the
inconsistencies and incompleteness issues are defined in SQL.

All these approaches only present and check structural inconsistencies and the differ-
ent inconsistencies are always immediately defined using a particular (formal or informal)
inconsistency detection approach.

As already mentioned in Section 3.6 Engels et al. [EE95] were the first to define ob-
servable and invocable consistency. Definitions for restrictions on inheritance of object life
cycles based on Petri nets can be found in [SS00], [SS02] and [van02a]. None of these
approaches takes a close look on how to define behavioural inconsistencies between UML
models consisting of sequence diagrams and PSMs.

Küster [K0̈4] presents in his dissertation a general methodology for consistency manage-
ment of object-oriented behavioural models. The methodology is illustrated by a sample
development process for concurrent object-oriented systems. Consistency problem types are
defined between one or more submodel types resulting in a so-called consistency problem
type candidate matrix. Some consistency types between object-oriented behavioural models
(i.e., UML-RT sequence diagrams and state diagrams) are defined using the semantic do-
main CSP. We define (in this chapter) concrete inconsistencies and we believe that making

Chapter 3. Conceptual Classification of Inconsistencies 86

the inconsistency management process concrete is an important contribution of our work.

3.11 Conclusion

This chapter presents a second contribution of this dissertation. A classification of distinct
inconsistencies is introduced. In the previous chapter, a fragment of the UML metamodel
and some semantical concepts were well-defined. These definitions enable well-defined in-
consistencies independent of any detection formalism or approach. Each of our classified
inconsistencies (or consistencies) are described by specifying the UML metamodel elements
involved in the (in)consistency, by a precise definition and by a concrete example using
UML class, sequence (communication) and protocol state machine diagrams.

The definitions of our classified inconsistencies specify the conditions for having an
inconsistency and can be used by inconsistency detection mechanisms. However, if an in-
consistency is detected, what are the possible actions for dealing with an inconsistency? Is
it possible to avoid inconsistencies by specifying co-called construction rules? These ques-
tions are answered in the inconsistency handling activity of the inconsistency management
process. In the next chapter, we discuss this activity in the context of the inconsistencies
defined in this chapter and the UML fragment defined in the previous chapter.

Chapter 4

Inconsistency Handling

In this chapter, a discussion is opened on how to handle inconsistencies and on how to
preserve consistency in and between models. First, we discuss the different inconsistency
handling strategies and their terminology (Section 4.1). Next, we focus on resolution ac-
tions that allow the semi-automatic resolution of inconsistencies (Section 4.2). We show
examples of resolution actions for the inconsistencies defined in our classification. A clas-
sification of resolution actions is presented. The connection between this classification and
the classification of the inconsistencies presented in the previous chapter is clarified.

Consistency maintenance emphasises the preservation of consistency. Construction rules
can be defined guaranteeing the preservation of certain consistencies when applied on a
model (Section 4.3). We also show possible applications of this notion on the inconsistencies
defined in our classification.

In conclusion of this chapter, we first summarise our ideas and related work (Section 4.4).
A concrete inconsistency handling approach and its implementation will be introduced later
on. (Chapter 8 and 10) Next, the different requirements for the evaluation and validation
of an inconsistency detection and resolution formalism as first introduced in Section 1.6,
are revisited (Section 4.5).

4.1 Terminology

4.1.1 Inconsistency Management

As outlined in the introduction of this dissertation, the process of inconsistency management
includes activities for detecting, diagnosing and handling inconsistencies. The definitions of
our classified inconsistencies specify the conditions for the occurrence of an inconsistency
and can be used by inconsistency detection mechanisms. The question remains how to
diagnose and handle the inconsistencies?

The activity of diagnosing is concerned with the source, the cause and impact of an
inconsistency [SZ01]. In our approach, the source of an inconsistency is a subset of the
UML elements involved in the inconsistency. In Chapter 7, we will explain how the possible
sources of an inconsistency are returned by the detection mechanism. In our approach, in-
consistency detection returns not only a yes or no answer to the question whether a certain
inconsistency occurs, but it also returns the set of elements involved in this inconsistency.
The cause of an inconsistency can be important in the activity of handling inconsistencies.

Chapter 4. Inconsistency Handling 88

This is detailed in Section 4.2.1. Establishing the impact of an inconsistency can be neces-
sary for deciding the priority with which the inconsistency has to be handled. Establishing
this impact is a task normally deferred to the user. The impact of an inconsistency is
application dependent and dependent on the current activity of the software development
life-cycle. Therefore, we will not consider the establishment of the impact of an inconsis-
tency in our work.

The activity of inconsistency handling is concerned with the questions of how to deal
with inconsistencies, what are the impacts and consequences of specific ways of dealing with
inconsistencies, and when to deal with inconsistencies [SZ01]. Different handling strategies
are known and combinations of the different strategies can occur. In our work, we will focus
on the question how to deal with inconsistencies.

The central idea of inconsistency management is to tolerate inconsistencies. Nuseibeh et
al. [NER00] emphasise the importance of tolerating inconsistencies. They propose a frame-
work for inconsistency management which allows inconsistencies to be ignored and deferred.
Spanoudakis et al. [SZ01] differentiate between changing and non-changing actions. The
latter kind of actions only notify users or perform some analysis that allows safe further
reasoning from inconsistent models. The former kind of actions can be subdivided in par-
tial and full resolution actions. Partial resolution actions ameliorate models with respect to
inconsistencies but do not fully resolve the inconsistencies. Full resolution actions modify
models in order to resolve inconsistencies. This brings us to inconsistency resolution.

Inconsistency resolution is concerned with the resolution of inconsistencies. It is con-
sidered critical to inconsistency management, but also extremely difficult [Fin00]. The
resolution of inconsistencies can be done by user interaction or by automatically changing
the models or by a combination of both. Different techniques exist for helping the user to
resolve the inconsistency. From now on, we will use the term resolution actions to indicate
partial and full resolution actions. Full resolution actions are most of the time a combina-
tion of different partial resolution actions (see Section 4.2). Resolution actions can consist
of a set of guidelines, provided to the user, on how to resolve the inconsistency. The actions
can also be a set of pre-defined steps specifying the resolution of a particular inconsistency.
The resolution of an inconsistency can be done automatically or semi-automatically by a
resolution action. The choice of the resolution action(s) is dependent on the kind of inconsis-
tency and also on the cause of the inconsistency. Section 4.2 explains resolution actions for
our defined inconsistencies. Questions to be answered are: for which inconsistencies in our
classification can resolution actions be defined, to which degree is user interaction needed
for these actions, and what are the possible consequences of applying resolution actions.

4.1.2 Consistency Maintenance

As opposed to inconsistency management, consistency maintenance guarantees consistency
to a certain extent. Two flavours of consistency maintenance are consistency enforcement
and consistency preservation. In the former case, consistency of models is enforced at any
time. Only a strict set of operators is allowed for changing a model because consistency
must be preserved and temporal inconsistencies during development are not allowed. This
is a very restricted way of modelling.

A weaker version of consistency maintenance is to try to preserve consistency as much
as possible. In this case inconsistencies in the model are allowed. Instead of first detecting

89 4.2 Resolution Actions

inconsistencies and then handle them, construction rules are specified to construct from a
consistent model other consistent models. These rules specify the changes that are allowed
to a model in order to keep the model consistent. They specify the creation, deletion or
modification of abstract syntax elements of the modelling language, e.g., UML metamodel
elements. Construction rules can also be used to establish consistency-preserving model-
evolution in which case, they specify model transformations. There are different ways to
specify these rules, a visual representation can be used, they can be specified in a certain
semantic domain, or by other formalisms such as, e.g., homomorphisms. Section 4.3 answers
the question if it is possible to specify construction rules for avoiding inconsistencies defined
in our classification.

It is not the aim of this thesis to give a complete set of construction rules for every
defined consistency. Only some rules will be defined to illustrate or clarify certain issues
involved in consistency preservation.

4.2 Resolution Actions

Violations to syntactic inconsistencies in a model, i.e., a model not conforming to the
abstract syntax, can in some cases be corrected automatically by pre-defined resolution
actions. However, in most cases different solutions are possible and the user must decide
which one to choose. In the case of semantic inconsistencies, it is also difficult to correct
the inconsistencies in an automatic way. In most cases, the resolution of the inconsistency
consists of changes in the model that also change the semantics of the model. A lot of
user interaction is needed in that case. We will discuss possible resolution actions for our
classified inconsistencies.

4.2.1 Causes of Inconsistencies versus Resolution Actions

Choosing between different possible resolution actions can be dependent on the cause of the
inconsistency to be resolved. We will illustrate this by considering the inherited cyclic com-
position inconsistency defined in Section 3.3.1 and the dangling type reference inconsistency
defined in Section 3.3.2.

The inherited cyclic composition inconsistency can be solved in different ways. Examples
of solutions are:

• The generalisation relationship can be removed from the model.

• The composition relationship can be replaced by a normal association.

• The composition relationship can be removed.

• The multiplicity can be changed from mandatory to optional, i.e., the multiplicity
restriction is weakened.

Which solution to choose depends on the cause of the inconsistency. Suppose the aim of
the user is to introduce the well-known composite design pattern [GHJV94]. In this case,
it is the multiplicity of the composition relationship that is too strong. It can be that
the superclass is conceptually not a generalisation of the subclass. In this case, it is the

Chapter 4. Inconsistency Handling 90

generalisation relationship that is superfluous. Perhaps the user only wants to specify a part-
whole relationship between the two classes. In this case, it is the composition restriction
on the association that is redundant. However, without extra knowledge on previous model
changes or without extra knowledge from the user, it is not possible to (automatically)
detect the causes of this inconsistency. Consequently, in most cases, the user must decide
which action must be performed.

However, even with knowledge about the previous model changes, it is sometimes only
possible to propose some resolution actions that are more likely to be executed than others
depending on the causes of the inconsistency.

Consider the dangling type reference inconsistency. The reasons for this inconsistency
to occur are twofold. The type of the attribute or the parameter involved may have been
removed from the model or the type is not yet included in the model. Possible resolution
actions are:

• The addition of the type to the UML model involved.

• Replacing the type of the attribute or parameter by an existing type in the model
involved.

• Removal of the involved attribute or parameter.

In case the inconsistency arises as a consequence of an evolution (or refinement) step that
removed the type from the previous version of the model, it is not likely that as a solution
to the introduced inconsistency, the type will be added again to the model. However, in
some cases, it might be necessary to restore the previous (consistent) version of the elements
involved in the model. In general, none of the possible resolution actions may be excluded.

4.2.2 Classification of Resolution Actions

Recall the different definitions of our classified inconsistencies in the previous chapter. For
each of the inconsistencies, we listed the involved UML metaclasses. If a particular incon-
sistency is detected, resolving the inconsistency reduces to changing the involved instances
of the metaclasses involved in the definition of the inconsistency.

From the viewpoint of the software developer using our classified inconsistencies, we
distinguish three different kinds of resolution actions.

• Add model element In this case, a model element is created. An example is the
addition of a class to the model. In terms of the UML metamodel, this implies the
instantiation of a metaclass.

• Remove model element In this case, a model element is removed. For example,
an operation is removed from a UML class diagram. This implies the deletion of an
instance of a certain metaclass.

• Change model element In this case, a model element is changed by changing one
of its properties. When an operation is removed on a UML class diagram, the corre-
sponding instance of the metaclass Operation is removed. However, this instance, i.e.,
the operation in question, can still be referenced by a class or by messages. These ref-
erences are, in terms of the UML metamodel, instances of certain meta-associations.

91 4.2 Resolution Actions

These meta-associations state the connections between different UML model elements.
Changing an element encompasses changing the relationships between this element
and another element. For example, messages can be changed by changing the ref-
erenced operation. For the software developer this is an atomic action, but on an
underlying level, this involves two actions, i.e., removing and creating a connection
between UML model elements.

The different resolution actions for our classified inconsistencies can be classified using
the same dimensions as the dimensions of our inconsistency classification. First, we classify
the different UML metamodel elements into the categories: structural/specification, struc-
tural/instance, behavioural/specification and behavioural/instance. This classification is
shown in Table 4.1. Remark that the set of UML model elements in the behavioural/instance
dimension is a subset of the model elements in the behavioural/specification dimension be-
cause both interpretations, i.e., instance and specification, map onto the same UML meta-
model elements, as explained in the previous chapter.

The classification of resolution actions corresponds to this classification. Three kinds
of resolution actions correspond to each metamodel element specified in Table 4.1. For
example, the resolution actions corresponding to class are add class, remove class and
change class. A change class can involve the addition or removal of a reference to an
attribute, operation, association end and generalisation. The references of the elements that
are changed by a change element action, are determined by the different meta-associations
in which the element participates.

Behavioural Structural

eventoccurrence, message, lifeline class, association, property,
Specification precondition, postcondition, multiplicityelement, generalization,

connector, connectableElement, constraint parameter, type, operation

Instance protocol state machine, state,protocol transition, instancespecification
eventoccurrence, message, lifeline, connector,
region, constraint, precondition,
postcondition

Table 4.1: Two-dimensional resolution actions table.

The classification of resolution actions can be linked to our classification of inconsisten-
cies. For each inconsistency occurring in our inconsistency classification, the UML meta-
model elements involved in the inconsistency are described (see previous chapter). Based
on these elements, a link can be made between the classification of resolution actions and
the classified inconsistencies as shown in Table 4.2. The columns represent the different
categories of resolution actions. The rows list the different categories of inconsistencies. For
example, consider the category behavioural/specification-instance inconsistency. This cat-
egory of inconsistencies can be resolved by behavioural/specification, behavioural/instance
and structurql/specification resolution actions.

The resolution actions presented here, are fine-grained. In real-world projects, it is
sometimes necessary to execute several of these fine-grained resolution actions to cope with
a certain inconsistency. For example, the solution of a behaviour incompatibility could be
the addition of a sequence of event occurrences. This involves the addition of several event
occurrences and the addition of several messages and changing these event occurrences in

Chapter 4. Inconsistency Handling 92

Resolution actions Behavioural/ Behavioural/ Structural/ Structural/
Specification Instance Specification Instance

Inconsistencies

Behavioural/Specification X X

Behavioural/Specification- X X X
Instance

Behavioural/Instance X X

Structural/Specification X X

Structural/Specification- X X X
Instance

Structural/Instance X X

Table 4.2: Inconsistencies and resolution actions table.

such a way that the correct messages, lifelines and connectors are referenced. The newly
added messages must also refer to the correct operations. An inconsistency resolution
mechanism must allow the grouping of different fine-grained resolution actions.

In certain application domains, certain resolution actions are more important than oth-
ers, or the general resolution actions defined, must be fine-tuned. Domain-specific knowledge
is necessary, e.g., to order the resolution actions or to exclude some resolution actions as
possible solutions for a certain inconsistency. A domain can be the domain being modelled,
or the system domain, e.g., real-time systems. In Chapter 9, we show how inconsistency de-
tection and resolution can be applied for the execution of model refactorings. The possible
resolution actions for a certain inconsistency can be restricted in the context of a certain
model refactoring. This means that the set of possible resolution actions is tailored towards
the executed model refactoring.

Fine-tuning possible resolution options by the user is also proposed in the context of
conflict resolution during software merging [Men02] [MD94]. In that context, resolution
strategies are implemented in a uniform and customisable way. These strategies can be
adjusted depending on the application domain.

4.2.3 Dependencies between Resolutions of Inconsistencies

Resolution actions may introduce new inconsistencies. Consider the occurrence of a dangling
feature reference inconsistency between the class diagram and communication diagram in
the left-hand side model shown in Figure 4.1.1. The operation readPIN is not known
to the class CardReader. There are several possible solutions to this inconsistency. In
Figure 4.1, the type of the receiving object in the communication diagram is changed from
CardReader to CustomerConsole. This resolution action introduces a new inconsistency:
a dangling association reference. This inconsistency occurs because there is no association
defined between the class ATM and CustomerConsole.

To resolve this inconsistency, an association is created between these classes, but the
association specifies that navigation is only allowed from the CustomerConsole class to
the ATM class (see right-hand side of Figure 4.2). This resolution action introduces a
navigation conflict, because in the communication diagram the operation readP in is sent
from the ATM class to the CustomerConsole class.

1Only the relevant features for the explanation of our ideas are included in the models.

93 4.2 Resolution Actions

Dangling
Feature

Reference

ATM

CardReader

ejectCard(): void
retainCard(): void
readCard(): CardCustomerConsole

readPIN(): Integer
readAmount(): Cash
readAccountNbr(): Integer

1

1

atm

reader

:ATM :CardReader

readPIN()

Dangling
Association
Reference

ATM

CardReader

ejectCard(): void
retainCard(): void
readCard(): Card

CustomerConsole

readPIN(): Integer
readAmount(): Cash
readAccountNbr(): Integer

1

1

atm

reader

:ATM :CustomerConsole

readPIN()

Figure 4.1: Resolution of a dangling feature inconsistency introducing a dangling association.

Dangling
Association
Reference

ATM

CardReader

ejectCard(): void
retainCard(): void
readCard(): Card

CustomerConsole

readPIN(): Integer
readAmount(): Cash
readAccountNbr(): Integer

1

1

atm

reader

:ATM :CustomerConsole

readPIN()

Incompatible
Specification:

Navigation
conflict

ATM

CardReader

ejectCard(): void
retainCard(): void
readCard(): Card

CustomerConsole

readPIN(): Integer
readAmount(): Cash
readAccountNbr(): Integer

1

1 1

1

console

atm

reader

ATM->Console

:ATM :CustomerConsole

readPIN()

Figure 4.2: Resolution of dangling association inconsistency introducing a navigation in-
compatibility.

Chapter 4. Inconsistency Handling 94

Inherited Cyclic Composition Connector Specification
Missing

Instance Specification Missing

Incompatible Behaviour
Dangling Feature Reference

Dangling Association
Reference

Dangling Type Reference

remove generalization

remove generalization

remove generalization
remove composition

change type

change type

add association
delete connector or link

classless instance

add class/ change class
add class/ change class

Figure 4.3: Dependencies between resolution of inconsistencies.

The inconsistencies that can be introduced and the inconsistencies that depend on each
other, are determined by the resolution actions. A dependency graph can be developed,
which is a directed graph, expressing the relations between different inconsistencies de-
pending on the resolution actions for the purpose of inconsistency management tools to
support resolution. The vertices of the graph are the detected inconsistencies and the edges
are labelled with the resolution actions. The graph in Figure 4.3 shows some of the depen-
dencies between inconsistencies. The source vertex shows the detected inconsistency, the
target vertex shows the newly introduced inconsistency that can possibly occur after the
execution of the resolution action as specified on the edge.

It is obvious that for a certain amount of inconsistencies and resolution actions, this
graph becomes quite huge. Constructing such a graph would be an iterative and error-
prone process. No matter which approach that will be used to resolve inconsistencies,
it should enable the management of these dependencies. Chapter 8 and Chapter 10 will
describe how our approach will cope with these dependencies.

Due to the possible introduction of new inconsistencies by resolution actions, in worst
case, cycles can occur. These cycles will become visible in the graph. However, it is not
because there is a cycle in the dependency graph that this will lead to an infinite chain of
resolution actions. This will be the case, for example, if an inconsistency already occurred
during a preceding checking and resolution phase for the same set of modelling elements.
For example, in case a message or a transition references a non-existing operation, which is
an example of a dangling feature reference, a possible solution is to move the operation(s)
to the class in question. This resolution action can cause a new occurrence of a dangling
feature reference but for other model elements. Algorithms can be built to detect such
cycles (e.g., in [WGN03]). In case a cycle is detected, the user has to take action to resolve
the cycle.

In most cases, a certain amount of user interaction is necessary to resolve an inconsis-
tency. Consider, e.g., the resolution of interaction inconsistencies, inheritance inconsisten-
cies and behaviour incompatibility. If a UML model is behaviour incompatible, the cause

95 4.3 Construction Rules

can be in the PSM or in one of the sequence diagrams. In the latter case, the sequence
diagrams must be adapted implying adding message sends or deleting message sends. In
the former case, the PSM must be adapted by adding transitions and states or deleting
transitions and states. User interaction can be necessary to indicate whether the sequence
diagrams or the PSMs must be adapted and to indicate the kinds of actions that need to be
executed. For these kinds of inconsistencies, one can prefer to give construction rules. Such
rules are supported by consistency maintenance. These rules specify how PSMs or sequence
diagrams can be constructed that are compatible, or they specify how, given PSMs and/or
sequence diagrams specifying the behaviour of a certain class, new invocation/observation
consistent PSMs and/or sequence diagrams can be built for a sub- or superclass. In the
next section, we will illustrate how construction rules can be defined.

4.3 Construction Rules

Instead of detecting and resolving inconsistencies, an alternative strategy is to avoid in-
consistencies by applying construction rules. A good usage example of these rules is the
specification of how the behaviour of a certain class (or set of classes) can be specialised
obeying some behavioural consistencies.

4.3.1 Preservation of Observation/Invocation Consistency

How can we construct, e.g., PSMs and sequence diagrams obeying invocation inheritance
consistency? In [EE95], constructive ways are given to build a state transition diagram
for a specialised subclass in such a way that the existence of a homomorphism defining
invocation or observation consistency, is guaranteed. Constructive rules can be given to
enforce invocation or observation inheritance consistency between UML PSMs and SDs.
In our case, these rules can be specified using the formalisation of the UML fragment
introduced in Chapter 2.

The rules for constructing a subclass’ PSM that is invocation inheritance consistent with
the superclass’ PSM, are:

• States, transitions and regions can be added to the PSM without causing any problem
as long as the original state machine is embedded in the new one. After applying
this rule, the following constraint must be valid: Given a PSM πc = (S, T, L, ρ,Λ), a
PSM πc′ = (S′, T ′, L′, ρ′,Λ′), where generalisationOf(c, c′), can be constructed, with
S ⊆ S′ ∧ T ⊆ T ′ ∧ L ⊆ L′ ∧ Λ ⊆ Λ′ ∧ ∀τ : (valid(τ, {ρ}, πc)⇒ valid(τ, {ρ′}, πc′)).

• States and regions can be deleted but the transitions must be kept and their mutual
order must be maintained. This implies that transitions may not be deleted but their
source and target states can change. This rule is equal to the previous rule, without
the requirement that S ⊆ S′.

If the superclass’ behaviour is specified using sequence diagrams, invocation inheritance
consistent sequence diagrams exhibiting the interactions between certain objects and in-
stances of a subclass can be constructed by adding new traces to the lifeline of the respective
instances but the traces specified for the instances of the superclass may not be altered. It
is obvious that deleting a trace is not allowed. The following constraint must be valid after

Chapter 4. Inconsistency Handling 96

c

opg
opi
opj

c'

opf
opk

: a :c :b

g h

j
i

: a :c' :b

g h

j
i

f

k

s1

s2

s4 s3

f
g

i

j

l
s5

k

r2r1

Figure 4.4: Construction rules for invocation consistency.

the execution of the rules: Given a sequence diagram δ specifying interactions between,
among others instances of type c, where generalisationOf(c, c′), a sequence diagram δ′

can be constructed such that every receiving SD trace for instances of class c in δ is also a
SD trace in δ′ for an instances of class c′. The rule is visualised in the example of Figure
4.4 where it is called r1. The SD trace < g, i, j > for the instance of type c is included
in the SD trace < f, g, i, j, k > for the instance of type c′. (The correspondence between
the messages and the operations in the figure is as follows: a message x corresponds to an
operation call opx.)

From sequence diagrams containing different traces in which an instance of a superclass
is involved, an invocation inheritance consistent PSM can be built. The only rule that
must be valid is that all the traces specified by the sequence diagrams under study must be
included into the PSM. There can be more operations called in the PSM and there is also
no restriction on the number of states or how they are connected as long as : ∀υO{c}/

rec =<
e1 . . . en >∈ δ ∃valid(µ′ =< τ1 . . . τn >, σ, πc′) ∀ i ∈ {1 . . . n} : τi = label(ei)). This rule is
shown in Figure 4.4 where it is called r2. The SD trace < g, i, j > is included in the PSM
of the class c′.

If the behaviour of the superclass is specified by a combination of sequence diagrams
and PSM, new sequence diagrams and a PSM can be constructed using the rules specified
above.

Similar rules can be given to construct from a PSM of a superclass or from sequence
diagrams containing interactions involving instances of a superclass, an observation inher-
itance consistent PSM of a subclass, or sequence diagrams involving a subclass’ instances.

97 4.3 Construction Rules

In case the superclass’ behaviour is specified using a PSM, the following actions can be
executed on the PSM in order to construct a subclass’ PSM.

• States and transitions can be added to the PSM without causing any problem as long
as the operations called by the new transitions are only known to the subclass and
not to the superclass.

• Regions can also be added to the PSM as long as the transitions contained in these
new regions represent calls of operations only known to the subclass or as long as
the traces generated by these transitions are already known to existing regions in the
superclass’ PSM.

• States, transitions and regions can be deleted without any problem.

If the superclass’ behaviour is specified using sequence diagrams, sequence diagrams
exhibiting the interactions between certain objects and instances of a subclass can be con-
structed by adding new traces to the lifeline of the respective instances or by altering existing
traces through the inclusion of messages representing calls to operations known only to the
subclass. Deleting traces is allowed.

From the PSM of a superclass, sequence diagrams can be built expressing traces in which
an instance of the subclass is involved. These traces can be a subset of the traces included
in the PSM, or new ones may be added representing calls to operations only known to the
subclass or traces included in the PSM may be altered by including calls to new operations.
It does not matter where these calls are included in a trace as long as the order is not
altered of the existing traces. Remark that calls may be deleted from traces.

If the behaviour of the superclass is specified by a combination of sequence diagrams
and PSM, new sequence diagrams and a PSM can be constructed using the rules specified
above.

4.3.2 Preservation of Behaviour Compatibility

Construction rules can also be specified for the preservation of behaviour compatibility.
Starting from a sequence diagram, a PSM can be generated following the rule that every
SD trace for the instances of the specific class must be included in the PSM. Starting from
the call sequences included in the PSM of the involved class, different traces occurring in a
sequence diagram can be generated.

In both cases, we start from a particular diagram and construct another type of diagram
in a behaviour compatible way. However, it is also possible to start from a model contain-
ing both types of diagrams and specify rules that preserve behaviour compatibility when
changing the model. For example, changing the name of a state in a PSM does not affect
behaviour compatibility nor does any modification on class diagrams because class diagrams
are not involved in the definition of behaviour compatibility. Only rules considering model
elements involved in the definition of an inconsistency must be taken into account.

4.3.3 Preservation of Structural Consistencies

Constructive rules can also be defined for enforcing our structural consistencies. For exam-
ple, to enforce that a message references an operation known in the model, adding modelling

Chapter 4. Inconsistency Handling 98

elements to sequence and class diagrams is allowed. However, deleting operations involved
in sequence diagrams is not allowed. For our structural consistencies, it is sometimes easier
to specify negative application rules, i.e., rules that can lead to the construction of an incon-
sistent model. This concept is similar to negative application conditions [EHHS02] in the
context of graph transformations or Dynamic Meta Modeling (DMM) rules. In [EHHS02],
consistency conditions for UML dynamic diagrams are checked using DMM rules with neg-
ative application conditions (NAC). These NACs represent structures that must not be
present in the context of a DMM rule application.

4.4 Discussion

4.4.1 Conclusions

Roughly, in inconsistency management, resolution actions are used for handling inconsisten-
cies, while in consistency maintenance models are constructed using constructions rules that
guarantee the preservation of the consistencies. Both strategies can be taken and defined in
our approach. In the remainder of this dissertation, however, we will only concentrate on
resolution actions because the context of this work is inconsistency management as opposed
to consistency maintenance.

From the previous discussion, we can draw some important conclusions on inconsistency
resolution.

(1) Which resolution actions to choose, can be dependent on the cause of an inconsis-
tency. However, this dependency cannot be captured without extra knowledge provided by
the software developer. As a result, most of the time the execution of resolution actions
involves a lot of user interaction.

(2) We also introduced a classification of possible resolution actions for our classified
inconsistencies. These resolution actions are fine-grained and correspond to (elementary)
operations that can be applied on a UML model.

(3) Depending on the granularity of the resolution actions and the application domain
involved, it might be necessary to group and combine several resolution actions.

(4) Resolution actions can introduce new inconsistencies. The dependencies between
different inconsistencies caused by resolution actions must be taken into account by incon-
sistency resolution approaches.

The overall conclusion is that tools and an underlying formalism supporting inconsis-
tency resolution are necessary and must be very flexible. Inconsistency resolution often
relies on resolving fundamental conflicts or making important design decisions. It remains
a very interactive activity. However, support can be offered to the software engineer. How
inconsistency resolution can be supported in our approach is clarified in Chapter 8.

4.4.2 Related work

In [HHS02], graph transformations are used to specify resolution actions for the automatic
resolution of some syntactic inconsistencies, i.e., UML models violating the UML abstract
syntax. Other techniques let the user define and select resolution actions [Eas91], others
generate resolution actions [SF97] or provide very specific resolution patterns [vLLD98].
Resolution actions in the context of UML and more specifically, in the context of software

99 4.5 Key Criteria

specifications expressed in UML, are defined in [KZ04]. By analysing the inconsistency
occurred, resolution actions can be chosen.

Construction rules guarantee the preservation of certain consistencies when applied to
a consistent model. These rules restrict the set of possible operations applied to a model
emphasizing the set of operations, or these rules specify the consistency conditions. They
are very useful in constructing behavioural consistent models.

In [EE95] sufficient rules are given to construct state diagrams related by a homomor-
phism expressing observation or invocation consistency. In [SS02], necessary and sufficient
rules are given to check behavior consistency between object life cycles in the realm of Ob-
ject Behavior Diagrams. These rules specify consistency conditions rather then operations
allowed on the abstract syntax elements. Transformation rules are defined for UML-RT
elements in [EHKG02] and [K0̈4]. Such a rule captures a certain model evolution step by
describing the modification of the model in terms of UML-RT metamodel elements. Under
certain conditions depending on the modification, the new model is consistent.

4.5 Key Criteria

From the discussions on the modelling language fragment in Chapter 2, from our classifi-
cation of inconsistencies in Chapter 3 and from the discussions on inconsistency resolution
in this chapter, a set of criteria can be distilled and detailed. These criteria can be used
to evaluate a static inconsistency detection and resolution formalism that serves as the ba-
sis for inconsistency management tool support. The criteria set some requirements that,
ideally, are met by an inconsistency detection and resolution approach.

Our evaluation criteria are specified in a generic and objective way which makes them ap-
plicable to inconsistency detection and consistency resolution formalisms for general object-
oriented modelling languages. Of course, we will use them in the context of the introduced
UML fragment and related definitions in Chapter 2.

Remark that several key requirements for supporting inconsistency management are
recognised in [GHM98]. However, what is called requirements for an inconsistency manage-
ment environment in [GHM98], are the different activities of the inconsistency management
process.

4.5.1 Criterion #1: Abstract Syntax and Semantics Representation

As a first requirement, it must be possible to express the abstract syntax in the formalism,
this guarantees the well-formedness of the user-defined models. For UML this implies that
it must be possible to (1) describe sets of objects, i.e., classes and their attributes; (2)
relationships between these classes; (3) generalisations between the classes, i.e., the subset
relationship between sets of objects, and (4) some constraints on these concepts. The
formalism must provide a sound foundation for this metamodel in order to reason about
the metamodel and the user-defined models.

As a second requirement, the semantics or at least, part of the semantics of the mod-
elling language must be expressible in the formalism. The UML fragment considered in
this dissertation consists of different sublanguages, sequence diagrams, PSMs and class di-
agrams. A formalism for UML inconsistency detection and resolution must support the

Chapter 4. Inconsistency Handling 100

representation of a semantics or part of a semantics of the different languages. For exam-
ple, in Chapter 2, SD traces and call sequences are defined as semantical concepts. This
motivates our focus on the expression of these semantic concepts in the formalism we will
study. The representation of a semantics of different sublanguages can be established in
different ways. A first way is to integrate different formalisms each defining the semantics
of a sublanguage. In this case, the question remains how these different formalisms can
be connected, i.e., if it is possible to reason about the different semantics of the different
sublanguages. Another way is to require a formalism that is powerful enough to define the
semantics of (most of) these sublanguages.

An inconsistency detection and resolution formalism needs to be able to express the
abstract syntax and semantics of the modelling language such that well-formedness of the

user-defined models can be guaranteed.

4.5.2 Criterion #2: Precise Definitions of Inconsistencies and Inconsis-
tency Detection

The ability of the formalism to express the abstract syntax and semantics may not be
sufficient to express the definitions of the inconsistencies. For example, a formalism can
be rich enough to express the abstract syntax of UML, but for defining certain inconsis-
tencies, navigation over metaclasses and meta-associations is demanded and the transitive
closure of certain meta-associations is required (see definitions of our classified inconsisten-
cies in the previous chapter). A first requirement is the ability to define inconsistencies (or
consistencies) in a precise and unambiguous way.

A detection formalism can be required to satisfy different formal properties. Examples of
such properties are soundness, completeness and decidability. A sound formalism guarantees
that every statement provable in the formalism is true in all interpretations. No false state-
ments can be deduced. Applied to an inconsistency detection formalism, any inconsistency
that can be proved by the formalism is an inconsistency. A formalism is complete if every
statement that is true in all interpretations, can be proved. Applied to an inconsistency
detection formalism, this means that every inconsistency can be proved by the formalism.
A formalism is decidable, if there exists an effective procedure that will determine for every
statement, whether or not this statement is provable. Any inconsistency that is expressible
in a decidable inconsistency detection formalism can be proven to be valid or not.

For example, some inconsistencies can be detected by navigation over the metamodel,
resulting in the execution of queries over the user-defined models. A sound and complete
query formalism will guarantee that every inconsistency found is an inconsistency and the
complete answer set is returned. Other inconsistencies are defined in the context of se-
mantical concepts of the sublanguages and can be detected by reasoning over and across
the semantic domains of these languages. Such inconsistencies defined in our classification
make use of SD traces, call sequences and validity of constraints specified on sequence and
protocol state machine diagrams. Inconsistencies can be defined as violations of properties
of these semantical concepts. Any property is said to be decidable if there exists an effective
reasoning procedure that will determine whether or not the property holds.

An inconsistency detection and resolution formalism needs to be able to precisely define
inconsistencies and detect them, preferably exhibiting some formal properties.

101 4.5 Key Criteria

4.5.3 Criterion #3: Precise Definitions and Management of Interactive
Inconsistency Resolutions

As a first requirement, the formalism must enable the definition of resolution actions. These
resolution actions change the model into a consistent or a less inconsistent model. As
observed in this chapter, these actions can depend on the nature of the inconsistency in
question or on the causes of the inconsistency.

The activity of resolving an inconsistency by executing resolution actions is a highly
interactive process. A formalism for inconsistency resolution must be able to cope with this
interactivity.

Inconsistency resolution can introduce new inconsistencies. A resolution formalism must
take into account these dependencies, this is denoted by the word management used in
the description of this criterion. Suppose certain inconsistencies are detected in a model,
the user can decide to resolve one of the inconsistencies. This resolution can introduce
new inconsistencies, because the dependencies between different inconsistency resolutions.
As a result, different scenario’s are possible for the resolution of the different detected
inconsistencies.

An inconsistency detection and resolution formalism needs to be able to define resolution
actions and enable management of interactive inconsistency resolutions.

Criterion Requirements

#1 Abstract syntax representation Semantics definition
e.g., UML: (1) describe classes and their attributes, e.g., UML: call sequences,

(2) relationships between these classes, SD traces.
(3) generalisations between the classes,
(4) some constraints on these concepts.

#2 Definition of inconsistencies Detection of inconsistencies
in a precise way formal properties:

soundness
completeness
decidability

#3 Definition of resolution Interactivity Dependencies
actions to a high degree must be supported

Table 4.3: Summary of the requirements for the key criteria.

4.5.4 Tool Support Requirements

Next to the requirements specified by the criteria, tool support requirements can be iden-
tified too. These requirements are listed in this section.

Requirements for tool support for inconsistency detection are: it must be easy to create
and remove rules for the detection of inconsistencies; the software developer must be able
to decide when to check for inconsistencies and which inconsistencies must be checked or
whether the detection of certain sets of inconsistencies get priority over the detection of
other sets of inconsistencies.

A first tool support requirement for the support of inconsistency resolution calls for the
possibility for the software developer to customise the definition of the resolution actions.
Consequently, it must be possible to add, remove and modify resolution actions.

Chapter 4. Inconsistency Handling 102

Furthermore, the execution process of the resolution actions is demanded to be highly
customisable. The software developer has the responsibility to determine which resolution
actions will be executed and which not. This indicates the need for an ordering and grouping
mechanism for the execution of the resolution actions.

4.6 Conclusion

In this chapter we discussed some strategies for inconsistency handling in inconsistency
management and we also discussed on how to preserve consistency in a consistency main-
tenance context. In this dissertation we focus on resolution actions because the general
context of our work is inconsistency management rather than consistency maintenance. A
resolution action or a combination of resolution actions resolves a certain inconsistency.
Different resolution actions based on the metamodel of the UML fragment are introduced
and linked to our classified inconsistencies.

Inconsistency management is crucial in the development of large and complex systems.
CASE tools should include support for inconsistency management. Currently this support
is limited and the approach to inconsistency detection and resolution is rather ad-hoc. We
discussed some key criteria embodying some requirements for an inconsistency detection
and resolution formalism. We also introduced some tool support requirements. In this
work, focus will rather be on the requirements of our key criteria than on the tool support
requirements. Tool support is essential but in this work, it serves as a proof-of-concept of
our ideas on inconsistency management and a possible formalism.

With this chapter we finish the part of this dissertation on the formalisation of our UML
fragment and the classification of inconsistency definitions and the definitions of resolution
actions. We introduced a lightweight formalisation for a relevant fragment of the UML
metamodel and we introduced some semantical concepts. As a result, semantics are given
to a part of the UML. Next, a classification of different inconsistencies is defined. The incon-
sistencies contained in this classification are a basic set which can be extended for different
applications. Based on the formalisation, the different inconsistencies are well-defined. We
discussed the activity of resolving inconsistencies in the context of our classification and
distilled three key criteria for inconsistency detection and resolution formalisms.

The question remains which formalism can be used for the detection and resolution of
inconsistencies and to which extent does it fulfil the requirements listed in this chapter.
This is the subject of the next part of this dissertation.

Chapter 5

Introducing Description Logics

In this chapter, we elucidate the formalism used for inconsistency management in our work.
We start this chapter by explaining why a logic formalism is selected (Section 5.1) and
more specifically, why Description Logics (DLs) are chosen (Section 5.2). This motivation
of the choice of formalism is followed by an introduction to DLs (Section 5.3) and the
reasoning tasks they support (Section 5.4). This introduction is based on “The Description
Logic Handbook” [BCM+03], on the Ph.D. thesis of Carlos Areces [Are00] and on overview
papers by Sattler et al. [Sat03, BHS05].

DLs are a family of logic-based knowledge representation formalisms with expressiveness
as the characterising factor. We will discuss the main expressive means and show, without
going into detail, how they can be used for the representation of UML models (Section 5.5).
The higher the expressive power of a DL, the more complex the reasoning tasks become.
We discuss the complexity of the logics obtained by combining different expressive means
(Section 5.6).

Because a DL is a logic-based representation formalism, it is well-suited to express the
static structure of knowledge. However, some DLs have a one-to-one mapping to dynamic
logics such as Modal Logic. We also report on this mapping because it will enable the
reader to understand the different representations of UML models as presented in chapter
6 (Section 5.7).

Several DL systems are implemented. All the systems are designed and implemented
taking different positions on the requirements of expressive power, completeness of reason-
ing, and tractability of reasoning. Some of the early systems, some successor systems and
a new optimised generation of very expressive systems are discussed (Section 5.8).

5.1 Why Logic Formalism?

For the representation of the metamodel and the semantics of the different UML sublan-
guages, a formal and sound foundation is required. For this representation and the detection
of UML inconsistencies, we choose a logic-based approach. This choice is based on the fol-
lowing observations:

• The declarative nature of logic is well suited to express the design models that are
also of a declarative nature.

Chapter 5. Introducing Description Logics 104

• Logics have a declarative semantics, e.g., the Tarskian semantics of predicate logic
is the prototype of a declarative semantics. The logic reasoning algorithms are well
understood due to the extensively studied, well-defined and sound semantics. First-
order logic and theorem proving have been proposed by several authors for expressing
software models and the derivation of inconsistencies from these models resp. (e.g.,
[FGH+93], [NKF94], [NJJ+96], [EFA+99]). Most of these techniques operationalise
the consequence relation (`) by using theorem proving based on the standard in-
ference rules of classical logic such as resolution, conjunct and negation elimination,
instantiation of universally quantified formulas, and other rules for introducing neg-
ative information in the models such as the closed-world assumption (CWA). For a
survey of the logic-based approaches for detecting inconsistencies we refer to Chapter
7 and [SZ01].

• Some logic reasoning engines can deduce implicitly represented knowledge from the
explicit knowledge allowing an adequate treatment of incomplete or subjective or
time-dependent knowledge.

5.2 Why Description Logics?

Spanoudakis et al. [SZ01] identified two inherent limitations of logic-based approaches in
the context of inconsistency management: (i) first-order logic is semi-decidable, hence it
is not possible to provide for semantically adequate inference procedures, and (ii) theorem
proving is computationally inefficient. Description Logics are an attempt to overcome both
problems by restricting the expressive power of the logic language.

Other qualities of DLs that make it suitable for our work, are:

• DLs are designed to represent knowledge. Knowledge representation systems (KRS)
are focused on providing high-level descriptions of problem domains, in order to allow
the discovery of implicit consequences of the explicitly represented knowledge. These
are the so-called “terminological representation systems” that permit the definition of
a terminology describing the domain being modelled, using a representation language.
Once the domain representation has been established, as concepts and relations be-
tween them, it is possible to reason about the individuals of the modelled world. Some
of these KRSs use DLs as a representation language. As such, DLs are suited to ex-
press knowledge about the static structure of a software application. For example,
[CCDL01] translated UML class diagrams to the description logic DLR.

• DLs are based on formal semantics such as descriptive semantics [Neb91], which are
well-studied and understood.

• A wide range of logics are developed, from very simple ones to very expressive ones
combining different expressive means as explained in Section 5.5. As such, we can
choose the logic that is most suited for our goals.

In the last decade, a lot of work investigated DLs w.r.t. their expressive power and
computational complexity. This implies that the computational space has been thor-
oughly mapped out. An overview of the complexity of the different developed DLs is
given in Section 5.6.

105 5.3 Concepts, Roles and Knowledge Bases

• The most important feature of a DL is its reasoning ability. This reasoning allows us
to infer knowledge that is implicitly present in the knowledge base (shortly, KB). Con-
cepts are classified according to subconcept-superconcept relationships, e.g., Model is
a Element. In this case, Model is a subconcept of Element and Element is the super-
concept of Model. Section 5.4 provides a detailed overview of the different reasoning
tasks of a DL. The inference problems on which the reasoning tasks are based, are
decidable.

• Even with all the expressive power of first-order logic, it is not possible to define the
transitive closure of a relation in first-order logic. In [BMP+02] this is also recognised
as a deficiency of OCL. The well-formedness rules of the UML metamodel which
are expressed in OCL make heavy use of additional operations to navigate over the
metamodel. These operations are often recursive and this could be avoided if it was
possible to express transitive closure in OCL [BMP+02]. Most expressive DLs provide
a mechanism to define the transitive closure of a role.

• There is a close relation between description logics and modal logics [BdV01]. For ex-
ample, there is a one-to-one mapping between a certain DL (called ALCIreg [Baa91])
and converse-PDL [FL79]. This indicates that DLs are also suited to express to a
certain extent, behaviour specifications of a software application.

• The DL community is well organised. There have been a series of International De-
scription Logics Workshops (DL) which are associated with major AI conferences.
Workshop submissions are thoroughly reviewed by a selected, international program
committee. Next to these series of workshops, there is also a yearly workshop on Ap-
plications of Description Logics (ADL). Both series of workshops are the ideal place
to present our ideas on using DLs and to get feedback from the DL community.

• A wide variety of DL systems have been built. We will discuss them in Section 5.8.

5.3 Concepts, Roles and Knowledge Bases

Description logics (DLs) are a family of logic-based knowledge representation formalisms
designed to represent and reason about the knowledge of an application domain in a struc-
tured and well-understood way.

The basic notions in DLs are concepts and roles and a specific DL is mainly characterised
by the constructors it provides to form complex concepts and roles from atomic ones.
The following concept, intuitively, represents a model consisting of classes that have only
operations which are abstract.

Model u ∃ ownedMember.(Class u ∀ ownedOperation.(Operation u ∃ isAbstract.>))

Different combinations of constructors generate languages with different expressiveness.
Table 5.1[Are00] shows a summary of the most common DL constructors, including their
semantics. Using these concept and roles constructors, complex concepts and roles can be
formed.

Historically, a number of description logics have received a special name. The language
FL− [BL84] is defined as the description logic allowing universal quantification, conjunction

Chapter 5. Introducing Description Logics 106

Constructor Syntax Semantics
concept name C CI

top > ∆I

negation (C) ¬C ∆I \ CI

conjunction C1 u C2 CI1 ∩ CI2
disjunction (U) C1 t C2 CI1 ∪ CI2
universal quant. ∀r.C {d1 | ∀d2 ∈ ∆I .((d1, d2) ∈ rI → d2 ∈ CI)}
existential quant. (E) ∃r.C {d1 | ∃d2 ∈ ∆I .((d1, d2) ∈ rI ∧ d2 ∈ CI)}
unqualified number (≥ n r) {d1 | |{d2 | (d1, d2) ∈ rI}| ≥ n}
restriction (N) (≤ n r) {d1 | |{d2 | (d1, d2) ∈ rI}| ≤ n}
qualified number (≥ n r.C) {d1 | |{d2 | (d1, d2) ∈ rI ∧ d2 ∈ CI}| ≥ n}
restriction (Q) (≤ n r.C) {d1 | |{d2 | (d1, d2) ∈ rI ∧ d2 ∈ CI}| ≤ n}
functional number (≤ 1 r) {d1 | |{d2 | (d1, d2) ∈ rI}| ≤ 1}
restriction (F)
one-of (O) {a1, . . . , an} {a1, . . . , an}I = {aI1 , . . . , aIn}
role filler (B) ∃r.{a} {d | (d, aI) ∈ rI}
role name r rI

role conjunction (∇) r1 u r2 rI1 ∩ rI2
role hierarchy (H) r1 v r2 rI1 ⊆ rI2
inverse roles (I) r−1 {(d1, d2) | (d2, d1) ∈ rI}

Table 5.1: Common DL operators.

and unqualified existential quantifications of the form ∃R.>. FL− was proposed as a
formalisation of the core notions of Minsky’s frames. Concept conjunction is implicit in the
structure of a frame, which requires a set of conditions to be satisfied. Role quantifications
allow one to characterise slots: the unqualified existential state the existence of a value
for a slot, while the universal quantifier requires that the values of a slot satisfy a certain
condition.

The logic AL (= attributive language) [SSS91] extends FL− with negation of atomic
concepts. It is customary to define particular AL-languages by postfixing the names of
these original systems with the names of the added operators from table 5.1. For example,
the logic ALC is AL extended with full negation.

It is possible to introduce names for complex concepts. For example, for the concept
defined above, we can introduce the name ModelwithAbstractClasses. A Tbox is used
to introduce names, i.e., abbreviations, for complex concepts. More expressive Tbox for-
malisms allow the expression of so-called general concept inclusion axioms (GCI’s). The
following GCI specifies that only classes with abstract operations can be abstract.

Class u ∃ isAbstract.> v ∃ ownedOperation.(Operation u ∃ isAbstract.>)

Definition 59 [Sat03] Let C and R be disjoint sets of concept and role names. The set of
ALC-concepts is the smallest set such that each concept name A ∈ C is an ALC-concept
and, if C and D are ALC-concepts and r ∈ R is a role name, then

¬C,C uD,C tD,∃r.C, and ∀r.C are also ALC-concepts.

107 5.3 Concepts, Roles and Knowledge Bases

A general concept inclusion axiom (GCI) is of the form C v D for C, D ALC-concepts.
C is called a subconcept or child of D and D is called a superconcept or parent of C. The
notation C

.= D is used for C v D and D v C.
An interpretation I = (∆I , ·I) consists of a non-empty set ∆I , the interpretation do-

main and a mapping ·I which associates, with each concept name A, a set AI ⊆ ∆I and,
with each role name r, a binary relation rI ⊆ ∆I ×∆I .

The interpretation of complex concepts is defined in Table 5.1.
Let I = {a, b, c . . .} be a set of individual names. An assertion is of the form a : C,

(then a is called an instance of C), or (a, b) : r (then b is called an r-successor of a) for
a, b ∈ I, a role r and a concept C.

> is used as an abbreviation for A t ¬A, ⊥ for ¬>, C ⇒ D for ¬C tD, and C ⇔ D for
(C ⇒ D) u (D ⇒ C).

DLs split the available knowledge about a particular situation into terminological knowl-
edge and assertional knowledge.

Definition 60 A knowledge base Σ in a DL is a pair Σ = (T ,A) such that

• T is the T(erminological)-Box, a finite, possibly empty set of GCIs.

• A is the A(ssertional)-Box, a finite, possibly empty set of instances and r-successors.
Formulas in A are called assertions.

A Tbox can be divided into the following two, disjoint parts following [Sat03].

Background Knowledge GCIs of the form C v D for C and D complex concepts can be
used to formalise background knowledge of the application domain and to constrain
the set of models.

Definitorial Part For each concept relevant in the application domain, we can introduce
an atomic concept name A and a concept definition A v C or A

.= C for C a complex
concept describing necessary or necessary and sufficient conditions for individuals to
be an instance of A. A is called a primitively defined or a defined concept. The axioms
in the definitorial part are acyclic.

Tbox was originally thought of as a set of definitions and some restrictions were imposed
on the Tbox. The two most important restrictions were, simple terminological axioms and
acyclic definitions. A simple terminological axiom is a concept inclusion axiom, C v D,
where C is an atomic concept (belonging to C, see Definition 59). Acyclic definitions occur
when the graph obtained by assigning a node nA to each atomic concept A in the Tbox T
and drawing an arrow between two nodes nA and nB if there is an axiom C1 v C2 in T
such that A appears in C1 and B appears in C2, does not contain cycles.

Suppose we want to capture the information contained in the following quote:

“A protocol transition specifies a legal transition for an operation. Transi-
tions of protocol state machines have the following information: a precondition
(guard), on trigger, and a postcondition.”

From UML 2.0 Superstructure document, pg. 482.

Chapter 5. Introducing Description Logics 108

The following Tbox captures the information contained in the previous paragraph.

∃ referred.Operation v ProtocolTransition

ProtocolTransition v ∃ referred.Operation u ∃ precondition.Constraint

u ∃ postcondition.Constraint u ∃ trigger.Operation

u (≤ 1trigger)

∃ precondition.Constraint v ProtocolTransition

∃ postcondition.Constraint v ProtocolTransition

∃ trigger.Operation v ProtocolTransition

In order to specify the different reasoning tasks usually considered in DLs, we specify what
it means to satisfy axioms.

Definition 61 • An interpretation I satisfies a GCI C v D, (denoted by I |= C v D)
if CI ⊆ DI .

• If I satisfies all GCIs in T , it is called a model of T (I |= T).

• For Aboxes, an interpretation maps each individual a ∈ I to some element aI ∈ ∆I .
An interpretation I satisfies an assertion

– a : C (I |= a : C) iff aI ∈ CI and

– (a, b) : r (I |= (a, b) : r) iff (aI , bI) ∈ rI .

• An Abox A is consistent with respect to T iff there exists a model I of T that satisfies
each assertion in A. If I satisfies A, then I is called a model of A (I |= A).

Due to their semantics, DLs can be identified as fragments of first-order predicate logic.
Atomic concepts and roles are unary, resp. binary predicates, since an interpretation I
assigns to every atomic concept and role a unary, resp. binary relation over ∆I . The
translation ϕ from ALC-concepts to first-order logic formulas is specified as follows (Chapter
4 in [BCM+03]):

ϕx(A) = PA(x)
ϕx(¬C) = ¬ϕx(C)

ϕx(C uD) = ϕx(C) ∧ ϕx(D)
ϕx(C tD) = ϕx(C) ∨ ϕx(D)

ϕx(∃r.C) = ∃y.Pr(x, y) ∧ ϕy(C)
ϕx(∀r.C) = ∀y.Pr(x, y)→ ϕy(C)

where ϕx and ϕy are identical but swapping the positions of y and x.
Let C be a concept and T a (general or acyclic) Tbox.

ϕ(C, T) = ϕx(C) ∧ ∀x.
∧

D
.
=E∈T

ϕx(D)↔ ϕx(E)

109 5.4 Reasoning Tasks

Individual names a ∈ I appearing in an Abox A map to first-order logic constants ca. And
assertions are translated as follows:

ϕx(a : C) = ϕx(C)[ca]
ϕx((a, b) : r) = Pr(ca, cb)

ϕx(A) =
∧

β∈A
ϕx(β)

5.4 Reasoning Tasks

In DLs, we want to perform inferences given a certain knowledge base. Tbox reasoning is
used to refer to the ability to perform inferences from a Tbox, and similarly, Abox reasoning
refers to performing inferences from an Abox.

The standard reasoning tasks considered in DLs are for a Tbox : subsumption, knowledge
base satisfiability, concept satisfiability and for an Abox : instance checking and relation
checking. These standard reasoning tasks can be defined as follows:

Definition 62 [Are00] Let Σ be a knowledge base, C, D ∈ C, r ∈ R and a, b ∈ I, we
define the following reasoning tasks:

• Subsumption, Σ |= C v D
Check whether for all interpretations I such that I |= Σ, we have CI ⊆ DI .

• Instance checking,Σ |= a : C
Check whether for all interpretations I such that I |= Σ, we have aI ∈ CI .

• Relation checking, Σ |= (a, b) : r
Check whether for all interpretations I such that I |= Σ, we have (aI , bI) ∈ rI .

• Concept satisfiability, Σ 6|= (C .= ⊥)
Check whether for some interpretation I such that I |= Σ, we have CI 6= {}. In this
case, I is called a model of C.

• Knowledge base satisfiability, Σ 6|= ⊥ Check whether a knowledge base is satisfied, i.e.,
if there exists an interpretation I such that I |= Σ. (In this case, I is called a model
of Σ).

The subsumption algorithm determines subconcept-superconcept relationships: a concept
C is subsumed by a concept D with respect to a Tbox if, in each model of the Tbox, each
instance of C is also an instance of D. Such an algorithm can be used to compute the
classification of a Tbox. The problem of computing the most specific concept names in a
Tbox that subsume a certain concept is known as computing the parents of a concept. The
children are the most general concept names in a Tbox that are subsumed by a certain
concept. The term concept ancestors (concept descendants) is used to denote the transitive
closure of the parents (children) relation between concepts. The computation of all the
children and parents of each concept is called classification. This inference is needed to
build a hierarchy of concepts names.

Chapter 5. Introducing Description Logics 110

The basic reasoning task in an Abox is instance checking which verifies whether a given
individual is an instance of a specified concept. An individual is inconsistent with respect to
a Tbox if it is classified as an instance of the empty concept ⊥. Relation checking determines
whether two individuals of an Abox stand in a given relation.

Checking satisfiability of concepts is a key inference. Subsumption and satisfiability can
be mutually reduced to each other: C is satisfiable with respect to a Tbox T if and only
if C is not subsumed by ⊥ with respect to T , and C vT D if and only if C u ¬D is not
satisfiable with respect to T .

Based on Definition 62, the notion of role fillers with respect to an individual can be
defined.

Definition 63 The set of fillers of a role, r, with respect to an individual a is the set
{b | Σ |= (a, b) : r}.

Research on description logics has focused mainly on understanding the relations be-
tween the reasoning tasks mentioned above, and on establishing their computational com-
plexity. The study of the computational behaviour of DLs has provided a good understand-
ing of the properties of the language constructs and their interaction. Before giving an
overview of the computational complexity, we will present an overview of expressive means
used in DLs.

5.5 Expressive Means in DLs

In this section, we discuss a variety of expressive means commonly used in DLs. This
discussion aims at providing the reader with an understanding on the expressiveness of
DLs and preparing the reader on how this formalism is used in our work and what the
restrictions of usage are. This discussion is based on [Sat03] and [BCM+03].

5.5.1 Tboxes

Tboxes are defined in the previous section. They can be divided in a background knowledge
part and a definitorial part. Some DLs only allow for the definitorial part and possibly
require this part to be free of cycles. A Tbox contains a cycle if there exists an atomic
concept that uses itself. Otherwise, a Tbox is called acyclic. We say that an atomic concept
A uses an atomic concept B if B appears on the right-hand side of the definition of A, and
uses is defined as the transitive closure of the relation directly uses.

Reasoning with respect to acyclic concept definitions can be reduced to pure concept
reasoning. However, it turned out that, for a variety of logics, reasoning with respect to
acyclic concept definitions is as complex as pure concept reasoning.

5.5.2 Number Restrictions

Number restrictions are a popular expressive means in DLs. Almost all implemented DL
systems provide number restrictions. Those restrictions are concepts of the form (≥ n r.C)
(at least restriction) or (≤ n r.C) (at most restriction), for n a positive integer, r a role
and C a concept and are called Qualified Number Restrictions. In a simpler form, called
Unqualified Number Restrictions, these number restrictions only allow the concept > instead

111 5.5 Expressive Means in DLs

of the concept C above. The interpretation of (un)qualified number restrictions are given
in Table 5.1.

A functional role is a role for which each individual can only have up to one successor.
As an example, consider two concepts Bank and Account and a role belongs to between

Account and Bank. The concept (≤ 1 belongs to.Bank) expresses that each individual has
at most one successor that is an instance of Bank for the role belongs to. The general
inclusion axiom Account v (≤ 1 belongs to.Bank) represents in this case the multiplicity
restriction that an Account belongs to at most one Bank.

5.5.3 Inverse Roles

It is useful and necessary in most applications that roles are bidirectional. For example, we
not only want to use the role hasProperty but also the role isPropertyOf . To ensure that
< x, y > ∈ isPropertyOfI if and only if < y, x > ∈ hasPropertyI , some DLs provide the
notion of inverse roles. For a role name r, r− is the inverse role name and this is interpreted
as specified in Table 5.1.

Inverse roles are a necessary expressive means in the context of UML. Suppose that
an association is represented in a DL by a role. If this association is bidirectional, the
role representing this association must be bidirectional too. This constraint requires the
existence of the inverse of the role.

5.5.4 Transitive Roles

Transitive roles are special role names that have to be interpreted as transitive relations.
If two pairs of individuals i1 and i2 and i2 and i3 are related via a transitive role r, then i1
and i3 are also related via r. Transitive roles are used to model transitive relations such as
isPartOf .

Another way to extend DLs with transitivity is to allow for the transitive closure operator
on roles, i.e., to allow for roles r∗, where (r∗)I is to interpreted as the transitive closure of
rI .

The transitive closure of roles can be used in the UML context for describing the full
descriptor of a class.

5.5.5 Role Inclusion Axioms

Role inclusion axioms (RIAs) which are of the form r v s for r, s roles, are another expressive
means on roles. Such axioms are used to introduce subroles and in the case of r v s, r is
mapped to a subrelation of s. A role hierarchy is a finite set of role inclusion axioms. An
interpretation I satisfies a role hierarchy R if and only if rI ⊆ sI for each r v s in R. Such
an interpretation is called a model of R. Remark that if inverse roles are present, these
axioms can be used to express symmetric roles using r v r− and r− v r.

Role hierarchies are a weakened form of role intersection, replacing the role expression
r1 u r2 with a new role name r1,2 and adding to the Tbox the expressions r1,2 v r1 and
r1,2 v r2 which are a weakened form of intersection, since rI1,2 ⊆ rI1 ∩ rI2 .

Role inclusion axioms can also be used to yield a weakened form of transitive closure.
Suppose s is a transitive role then r v s yields a weakened form of transitive closure, because

Chapter 5. Introducing Description Logics 112

s is interpreted as a transitive role containing r, while r∗ is to be interpreted as the smallest
transitive role containing r.

Role inclusion axioms can for example be used to keep track of ancestors of classes.
Consider a transitive role ancestors and a role parent with parent v ancestors. From
the Abox assertions (class1, class2) : parent and (class2, class3) : parent, (class1, class3) :
ancestors is deduced automatically.

5.5.6 General Role Inclusion Axioms

General Role Inclusion Axioms (g-RIAs) are of the form r1 . . . rn v s1 . . . sm for ri, sj

role names and are a generalisation of the above introduced role inclusion axioms. An
interpretation I is a model of such a g-RIA if and only if rI1 ◦ . . . ◦ rIn ⊆ sI1 ◦ . . . ◦ sIm, where
◦ is the composition operator on binary relations. A local form of g-RIAs are role value
maps, which are concepts of the form r1 . . . rn ⇒ s1 . . . sm with semantics

(r1 . . . rn ⇒ s1 . . . sm)I = {x | ∀y.(x, y) ∈ rI1 ◦ . . . ◦ rIn ⇒ (x, y) ∈ sI1 ◦ . . . ◦ sIm}.

It is shown that subsumption becomes undecidable when adding general role inclusion
axioms or role value maps to, even a very weak, description logic [SS89]. However, in many
applications it would be useful to be able to express propagation of properties, for example
we want to express that, if a PSM owns a Region that has some States as its parts, the
PSM also owns these States.

For expressing propagation of properties, only axioms of the form r ◦ s v s or s ◦ r v
s are needed. However, extending expressive DLs with these forms of axioms yields an
undecidable logic [HS03]. These forms of role inclusion axioms can be further restricted: the
role hierarchies are restricted such that they do not contain, what is called affecting cycles
of length greater than one [Sat03]. Affecting is the transitive closure of direct affecting. A
role name r directly affects a role name s if r ◦ s v s, s ◦ r v s or r v s is contained in
the role hierarchy. An acyclic role axiom is a role axiom containing no affecting cycles of
length greater than one.

5.5.7 Concrete Domains

In many applications it is necessary to refer to concrete domains and predefined predicates
on these domains when defining concepts. Consider as an example the primitive types
introduced in chapter 2. These are used in the UML metamodel and can also be used in
user models. It must be possible to express in a UML class diagram that a certain attribute
is of a primitive type and has a certain value. Consider an Account class with the property
number representing the account’s number. This number is of type Integer and has a
certain value.

Next to the definition of a domain, e.g., Integer, restrictions on the values of the domain
must be allowed. Assume we want to define the concept Customer in DL. A person can in
some context only be a customer if his age is greater than or equal to 16. To express this in
DL, we want to define a new role has age and define Customer by Personu∃has age. ≥16.
≥16 stands for the unary predicate {n|n ≥ 16} of all nonnegative integers greater than or
equal to 16.

We now introduce the family of DLs ALC(D), but first the notion of a concrete domain
is defined.

113 5.5 Expressive Means in DLs

Definition 64 [BCM+03] A concrete domain D consists of a set ∆D, the domain of D, and
a set pred(D), the predicate names of D. Each predicate name P ∈ pred(D) is associated
with an arity n, and an n-ary predicate PD ⊆ (∆D)n.

As an example, consider the concrete domain N which has as its domain the set of all
nonnegative integers N, and pred(N) consists of the binary predicate names <,≤,≥, > and
the unary predicate names <n,≤n,≥n, >n for n ∈ N which are interpreted by predicates on
N.

The extended language ALC(D) should still have decidable reasoning tasks and this
requirement adds additional restrictions. The set of predicate names of the concrete domain
must be closed under negation. This implies that, if P is an n-ary predicate name in pred(D)
then there exists a predicate name Q ∈ pred(D) such that QD = (∆D)n \ PD. There also
must be a unary predicate name that represents ∆D.

We also have to determine what the satisfiability problem for the concrete domain D is.
Consider the conjunction

k∧
i=1

Pi(x(i))

where P1, . . . , Pk are k predicate names in pred(D) of arities n1, . . . , nk and x(i) stands for an
ni-tuple (x(i)

1 , . . . , x
(i)
ni) of variables. Deciding on the satisfiability of such finite conjunctions

is called the satisfiability problem for D.
ALC(D) extends ALC in two ways. First of all, the set of role names is now partitioned

into a set of functional roles and a set of ordinary roles. Both types of roles may occur
in universal and existential quantification. There is also a new constructor, called the
existential predicate restriction. The syntax of this constructor is defined as follows:

Definition 65 The existential predicate restriction which defines a new complex concept,
has the following syntax: ∃(u1, . . . , un).P where P is an n-ary predicate of D and u1, . . . , un

are chains of functional roles.

Concrete predicates P ∈ Pred(D) give rise to additional Abox assertions of the form
P (x1, . . . , xn), where x1, . . . , xn are names of concrete individuals. This also implies that in
ALC(D)-ABoxes, names for abstract and for concrete individuals must be distinguished.

Definition 66 An interpretation I for ALC(D) consists of a set ∆I , the abstract domain
of the interpretation and an interpretation function I. The abstract domain of the inter-
pretation and the concrete domain must be disjoint, i.e., ∆D ∩ ∆I = ∅. Functional roles
are now interpreted by partial functions from ∆I into ∆D ∪∆I .

The existential predicate restriction is interpreted as follows:
(∃(u1, . . . , un).P)I = {x ∈ ∆I |∃w1, . . . , wn ∈ ∆Dsuch that uI1 (x) = w1, . . . , u

I
n(x) =

wn and (w1, . . . , wn) ∈ PD}, where u = f1 ◦ . . . ◦ fn is a chain of functional roles and uI

denotes the composition of the partial functions fI1 , . . . , fIn .

The DL ALC(D) can be further extended in different directions. One possibility is to
use predicate restrictions to define new roles [HLM99]. This means that if P is a pred-
icate of arity m + n and u1, . . . , un and v1, . . . , vm are chains of functional roles, then
∃(u1, . . . , un)(v1, . . . , vm).P is a complex role. The semantics of these complex roles is de-
fined as:

Chapter 5. Introducing Description Logics 114

(∃(u1, . . . , un)(v1, . . . , vm).P)I = {(x, y) ∈ ∆I × ∆I |∃w1, . . . , wn, s1, . . . , sm ∈ ∆D

such that uI1 (x) = w1, . . . , u
I
n(x) = wn, vI1 (y) = s1, . . . , v

I
m(y) = sm and (w1, . . . , wn,

s1, . . . , sm) ∈ PD}.
This extension however has an undecidable satisfiability problem, but in [HLM99] syn-

tactic restrictions are defined on concepts such that the restricted language is closed under
negation and has a decidable Abox satisfiability problem. This implies that the subsumption
and instance problems are also decidable.

5.6 Complexity of Reasoning in DLs

Several reasoning mechanisms are developed for DLs. It is not our aim to give a detailed
description of these algorithms, we will only give a very brief overview.

For DLs not allowing negation, so-called structural subsumption algorithms can be em-
ployed to compute subsumption of concepts. Although these algorithms are of polynomial
time, they are only complete for simple DLs.

Tableau-based algorithms are used for expressive DLs to obtain sound and complete
satisfiability algorithms and this for a range of DLs extending ALC. For example, in [HS99]
such algorithms are used for languages with transitive roles and in [HLM99] for languages
with constructors allowing to refer to concrete domains. This approach is also extended to
the consistency problem for Aboxes [HM00].

There also exist optimal automata-based algorithms to decide for satisfiability of con-
cepts. They allow for an elegant and natural translation of logic and provide ExpTime
upper complexity and are optimal for ExpTime-hard logics.

5.6.1 SHIQ

Starting from the DL ALC, we will show how the different expressive means as introduced in
the previous section affect the complexity of the different resulting DLs. The accumulation
of those expressive means results into the expressive logic SHIQ used by current state-of-
the-art DL systems such as FacT and RACER. A summary of the complexity results for
the different DLs can be found in Table 5.2.

Pspace ExpTime NExpTime

ALC ALC
(w.r.t. empty Tboxes) (w.r.t. general Tboxes)

ALCN
(w.r.t. acyclic Tboxes)

S
(w.r.t. empty Tboxes)

SI ALCQI
(w.r.t. empty Tboxes) (w.r.t. general Tboxes)

SHI
SHIQ

SHIQ(D)

Table 5.2: Overview of the complexity of concept satisfiability.

115 5.6 Complexity of Reasoning in DLs

Satisfiability checking and thus subsumption w.r.t. a general Tbox is ExpTime-complete
[Sch91] in ALC. Concepts are defined in the context of a Tbox. In the context of developing
reasoning mechanisms, it is, however, conceptually easier to abstract from the Tbox or to
assume that it is empty [BCM+03]. The satisfiability problem becomes Pspace-complete
in ALC when considered w.r.t. the empty Tbox [SSS91].

The logic obtained by extending ALC with transitive roles is called S as shown in Table
5.3. This name is chosen because of the relationship of this logic with the proposition
(multi) modal logic S4(m) (More on the relationship between modal logics and DLs can be
found in the next section). The addition of transitive roles to ALC without Tboxes yields
a DL which is still Pspace-complete [Sat96]. Remark that adding the transitive closure
operator on roles yields an ExpTime-complete logic [FL79]. In current DL systems the
cheapest option is chosen: the description logic ALC is extended with transitive roles.

Constructor Syntax Semantics
atomic concept A AI ⊆ ∆I

universal concept > >I = ∆I

atomic role R RI ⊆ ∆I ×∆I

transitive role R ∈ R+ RI = (RI)+

conjunction C1 u C2 CI1 ∩ CI2
disjunction (U) C1 t C2 CI1 ∪ CI2 S
negation (C) ¬C ∆I \ CI

value restriction ∀R.C {d1 | ∀d2 ∈ ∆I .((d1, d2) ∈ RI → d2 ∈ CI)}
exists restriction (E) ∃R.C {d1 | ∃d2 ∈ ∆I .((d1, d2) ∈ RI ∧ d2 ∈ CI)}
role hierarchy R v S RI ⊆ SI H
inverse role R− {(x, y) | (y, x) ∈ RI I
qualified (≥ n R.C) {d1 | |{d2 | (d1, d2) ∈ RI ∧ d2 ∈ CI}| ≥ n} Q
number restriction (≤ n R.C) {d1 | |{d2 | (d1, d2) ∈ RI ∧ d2 ∈ CI}| ≤ n}

Table 5.3: Syntax and semantics of SHIQ.

Further adding inverse roles to S yields the logic SI. ALC without Tboxes and with
transitive roles and inverse roles is of the same complexity as pure ALC, i.e., Pspace-
complete [HST99]. A variety of DLs can be extended with inverse roles without affecting
their computational complexity [Tob01] [CGLN01].

The logic SHI is obtained by extending SI with role inclusion axioms. ALC extended
with transitive roles and role inclusion axioms becomes ExpTime-hard [Sat96].

For a variety of DLs, extending them with number restrictions does not change their
complexity. ALC extended with number restrictions remains in Pspace. The logic SHIQ
adds number restrictions to SHI. Number restrictions are concepts of the form (≥ n s.C)
and (≤ n s.C) for n a nonnegative integer and C a SHIQ-concept and s a simple role.
A role is simple if it is neither a transitive nor has a transitive subrole. This restriction
is necessary, because SHI extended with number restrictions on arbitrary roles yields un-
decidability [HST99]. Satisfiability of SHIQ-concepts is known to be ExpTime-complete.
The algorithm implemented in state-of-the-art DL systems (for example, Fact and Racer)
is 2NExpTime [Sat03]. However, several well-known efficient optimisations can be applied
so that the algorithms perform much better in practice than their worst-case complexity
suggests. For example, the algorithms in Racer are only inspired by tableau calculi for

Chapter 5. Introducing Description Logics 116

SHIQ and different algorithms are used for some subtasks.
SHIQ can further be extended by more expressive role inclusion axioms as explained

in the previous section. However, only the extension of SHIQ with so-called acyclic role
axioms is still decidable and this logic is called RIQ [HS03].

And, last but not least, adding concrete domains to a DL yields a NExpTime-complete
DL as shown in [BH91] and [Lut01]. Remark that worst-case complexity was only investi-
gated for SHIQ(D).

5.7 On the Relation between DL and Modal Logic

In this section, we will show in a nutshell how DLs are related to modal logic. The discovery
of this very close relationship led to the translation of results from modal logic and proposi-
tional dynamic logics (PDL) [HKT00] to DLs and as such a range of complexity results were
found for DLs. We focus on the relation between modal logics and DLs because a certain
modal logic is used to represent sequence diagrams in [Ara98] and PDLs are specifically
developed for reasoning about computer programs.

The basic modal logic is called K and is defined as follows:

Definition 67 [BdV01] Given a countable set of propositional letters, PROP =
{p1, p2, . . .}. The well-formed formulas of the basic modal logic K over PROP are:

FORM := > | pi | ¬ϕ | ϕ1 ∧ ϕ2 | ♦ϕ

where pi ∈ PROP and ϕ, ϕ1, ϕ2 ∈ FORM. �ϕ is the abbreviation of ¬♦¬ϕ.

The semantics of modal formulas is given by a triple M =< S, π,K > such that S is a
non-empty set, π a binary relation on S and K is a binary relation on S, i.e., K : PROP
→ P(S). M is a so-called Kripke structure, where S is a set of so-called states or worlds.
π(pi) is the set of states where pi holds and K is the so-called accessibility relation. The
semantics is then as follows:

Definition 68 [BCM+03] Let ϕ be a modal formula and s ∈ S a state, the expression
M, s |= ϕ is read as ”ϕ holds in M in state s”,

M, s |= pi iff s ∈ π(pi)
M, s |= ϕ1 ∧ ϕ2 iff M, s |= ϕ1 and M, s |= ϕ2

M, s |= ¬ϕ iff M, s 6|= ϕ

M, s |= ♦ϕ iff there exists s′ ∈ S with (s, s′) ∈ K and M, s′ |= ϕ

M, s |= �ϕ iff for all s′ ∈ S, if (s, s′) ∈ K, then M, s′ |= ϕ.

Other kinds of modal logics are established by restricting the Kripke structures. The modal
logic S4 is obtained from K by restricting the accessibility relation K to be reflexive and
transitive. Also, the number of accessibility relations may be multiple, such modal logics
are called multi-modal logics. Each accessibility relation can be thought of as corresponding
to one agent and is quantified using the multi-modal operators �i and ♦i. Km stands for
the multi-modal logic K with m agents.

117 5.8 Description Logic Systems

Schild [Sch91] established the relation between the modal logic Km and the DL ALC
by the following translation f from ALC-concepts using role names r1, . . . , rm to Km:

f(A) = A

f(C uD) = f(C) ∧ f(D)
f(¬(C)) = ¬f(C)
f(∀ri.C) = �i(f(C))
f(∃ri.C) = ♦i(f(C))

An analogous translation from Km formulas into ALC can be defined. It is now clear
that DL interpretations can be viewed as Kripke structures and vice versa; a is an instance
of an ALC-concept C in an interpretation I iff the translation f(C) holds in the state a in
the Kripke structure corresponding to I.

5.8 Description Logic Systems

In this section, implemented DL systems are analysed and based on this analysis we choose
which system will be by our tool support in order to validate the ideas presented in this
work.

Several earlier systems were developed which were not based on DLs but can be seen
as predecessors of current DL systems and as such provided important ideas. Kl-One is
a knowledge representation system developed by Brachman [Bra77]. This system as op-
posed to, e.g., frame-based systems enabled the inference of implicit knowledge from given
declarations. The initial versions of Kl-One are not logic-based.

The Kl-One language offers so-called concept names. Compound concepts, called con-
cept terms or concept descriptions can be formed using concept-forming operators. A
difference is made between classes of individuals and individuals. The latter can be related
by roles. These roles can be primitive or composed by role constructors. Concept defi-
nitions are assignments of a name to a concept term and cycles are not allowed in those
definitions. These concept definitions make the reasoning about the relationships between
different concepts important.

As opposed to frame systems, Kl-One introduced the idea to compute the subsumption
hierarchy. Algorithms for two inference problems were developed. A first one implemented
the so-called classifier inference that computed the subsumption hierarchy and a second
one implemented the so-called realiser inference, computing for each individual mentioned
the most specific atomic concepts of which the individual is an instance. The informal
specification of the semantics of Kl-One concept and role constructors led to problems. As
a consequence a formal semantics was introduced. Given this semantics it was shown that
the algorithms for classification and realisation are incomplete. Kl-One is also undecidable.
Also as a result of the formalisation the notions of Tbox and Abox were made more clear.
Kl-One systems were implemented in Interlisp and Smalltalk.

Successors of Kl-One are Krypton, Nikl, Penni and Kl-Two. These systems are
all quite old, not based on a particular DL and nowadays, out-dated. So-called second
generation DL systems have been used in more real-world application whereas first gen-
eration systems rather were used to study knowledge representation problems. From this

Chapter 5. Introducing Description Logics 118

second generation systems we will discuss two well-documented systems, Classic [BE89]
and Loom [Mac91].

At the end of the 1990s a new generation of sound and complete DL systems was
developed based on theoretical advances of which Fact [Hor99] and Racer [HLM99, HM01]
are the most important ones.

5.8.1 Analysis Template for DL Systems

In the next sections we will analyse resp. Classic, Loom, Fact and Racer. To be able to
analyse the different systems consistently, the following template is used. For each of these
systems the following aspects are discussed:

Language constructs The language constructs are dependent on the logic supported by
the system and on the restrictions imposed on Tboxes.

Completeness A description logic system is complete if it is guaranteed to find all the valid
inferences. Completeness is dependent on the language constructs provided. Some
systems have preferred to restrict expressiveness in order to guarantee tractability and
completeness. Having a less expressive concept definition language limits the expres-
sive power of the system, and the situations in which these systems are applicable
are reduced. Other systems have decided to include constructs that are known to be
intractable or even undecidable. These systems are more expressive, but the classifiers
are incomplete. In this case, the users have to be aware that there could be inferences
missing.

Open/Closed-World Assumption The reasoning tasks introduced in Section 5.4 can be
performed under either the closed or open-world assumption. If closed-world semantics
is assumed, the current fillers for all roles are considered to be the only fillers for these
roles. In contrast with closed-world semantics, if a relationship is not known to hold
in open-world semantics, it is not assumed to be false.

Query language This item discusses the provided query language for retrieving Abox in-
dividuals, by the DL system.

Additional features This item discusses some additional features offered by the system
such as how it can be used by client applications.

5.8.2 Classic

Classic [BE89, RBB+95] was developed in the AI Principals Research Department at
AT&T Bell Laboratories. It has been designed for applications where only limited expressive
power is necessary, but rapid responses to questions are essential.

Language Constructs

Classic’s basic concept definition language supports the logic ALNFh−1. The lowercase
letter h indicates that Classic supports role inclusion but not role conjunction, i.e., only
single inheritance is supported. Full Classic also supports the concept constructors O and
B, defined in Table 5.1 for referring to individuals in concept definitions. Concept definitions

119 5.8 Description Logic Systems

cannot be cyclic. Classic imposes the unique name assumption which ensures that new
atomic concepts are disjoint.

The designers of the system decided that it was essential that the system was able to
respond rapidly to questions. The context in which this system was used required that
many queries could be given to knowledge bases that are rarely changed.

Completeness

Classic is “almost” complete. However if the semantics for the concept constructors O and
B is used, where the interpretation function maps individuals in concept terms to disjoint
sets of domain objects, the inference algorithms of Classic can be shown to be complete.
In Classic a limited kind of disjunction (with concept names for which no definitions exist)
can be expressed while retaining polynomial inference algorithms [BCM+03].

Open/Closed-World Assumption

Classic provides support for closed-world reasoning. The user can manually close roles
using a system function. Closing a role for an individual means that an appropriate maxi-
mum number restriction for the role can be added. Classic will count the number of role
fillers and add an at-most restriction automatically.

Query Language

Classic is concept-centric and does not provide a general-purpose query language with
which Abox individuals could be examined. Instead, the user has to use system-defined
queries in the form of functions and a procedural interface provided by the underlying
implementation language of the system.

Additional Features

Implementation languages for Classic are CommonLisp and C.
Continual refinements and changes can be made to individuals, but the concept defi-

nitions cannot be changed. The invariant is that the knowledge base is always consistent.
This is achieved by rolling back to the last consistent state of the knowledge base, whenever
an inconsistent state is detected. Copies of the individuals that lead to the inconsistent
state are saved.

Classic has a rule system. Rules are applied to explicitly named individuals in the
Abox and this in a forward-chaining way. A rule consists of a precondition, i.e., a concept
and a conclusion which is also a concept. If it can be proven that an individual specified
in the Abox is an instance of the precondition concept, a concept assertion, making the
individual an instance of the conclusion concept, is added to the Abox. The combination
of role closing and rules makes the exact sequence of several closing operations important.
This sequence completely determines what holds in the resulting Abox.

Classic was one of the first systems offering an explanation facility which can be used
to find the cause of knowledge base inconsistencies. This is due to the fact that Classic was
one of the first systems designed with respect to users who are not experts in DL theory.

Chapter 5. Introducing Description Logics 120

The low expressiveness of the Classic DL made it hard to use the system in many
kinds of applications. However, increase in expressiveness has a certain price. This led to
the development of expressive DL systems with incomplete algorithms.

5.8.3 Loom

Loom [Mac91, Bri93, Uni04b] was developed at University of Southern California’s Infor-
mation Sciences Institute. As a knowledge representation system, Loom is a very flexible
system and offers a wide range of services: reasoning, editing, validation and explanation.
It has also been designed so as to incorporate different types of programming paradigms -
data-driven, object-oriented and logic programming - on top of a common shared knowledge
base.

Language Constructs

Loom’s concept definition language supports the Description logic ALCQRIFO plus ad-
ditional constructs for dealing with real numbers. Loom is based on the Kl-One language
which implies that concept definitions with necessary or with necessary and sufficient condi-
tions play an important role. The first versions were based on DLs, however later versions,
called PowerLoom, have “a classifier1 that is able to classify descriptions expressed in full
first-order predicate calculus” [Uni04c].

Completeness

Loom implements incomplete algorithms for subsumption and concept satisfiability. The
justification given by Loom’s designers for the utility of an incomplete classification algo-
rithm is that complete systems are only of theoretical interest, but are too restrictive to
be of use in most applications. Another reason involves the performance requirements for
Loom.

Incomplete algorithms have the problem that a “no”-answer should not be trusted.
Another problem with the Loom approach is that it is difficult to characterise the exact
circumstances which will result in incomplete reasoning or intractability. Loom deals with
this by letting the user limit the computational effort expended in seeking “expensive types
of inferences”. But the limits are still hard to define. The users cannot explicitly control
how declarative knowledge is used by the system.

Also many possible inferences are not supported. Loom cannot reason about cardinality
restrictions or role value restrictions. It is also known that reasoning about inverse roles
is incomplete. The exact circumstances that lead to incomplete reasoning are not known.
What has made it harder to pinpoint situations that lead to incompleteness of the classi-
fier is that, as the system was developed, the concept definition language was made more
expressive. As sources of incompleteness were found and solved, new ones arose.

Open/Closed-World Assumption

It is up to the user to decide whether a KB will assume that the world is closed or open, at
the moment of the KB’s creation. This assumption cannot be changed after expressions have

1This denotes the subsumption inference procedure.

121 5.8 Description Logic Systems

been asserted. There are no operators of functions that will switch the world from open to
closed or vice-versa. Choosing closed-world means that all the knowledge that is presently
in the knowledge base is all that is known about the individuals that inhabit the world. This
means that closing a role for a certain individual results in counting the number of known
role fillers. In addition to the individuals explicitly mentioned in the Abox, existential
qualification and minimum number restrictions have to be considered too. This will let
Loom draw additional inferences (as opposed to the default open-world assumption). This
in combination with an incomplete inference algorithm might lead to unexpected behaviour
as shown in chapter 8 of [BCM+03].

Query Mechanism

Loom provides an expressive query language for retrieving Abox individuals. The query
language is a predicate calculus-based language. This language is strictly more expressive
than the DLs used in the concept definition language. It is possible to include predicate
calculus-based expressions in description logics expressions using special operators. How-
ever, the classification algorithm cannot reason about these expressions. The Loom query
language does not support questions returning concepts, only sets of individuals.

Additional Features

Loom is implemented in CommonLisp, while PowerLoom can be obtained for Common-
Lisp as well as C and Java platforms.

Loom also supports rule-based programming. This rule system makes it possible to
specify additional necessary conditions for individuals which are explicitly mentioned in
the Abox but also which are derived to be instances of a certain defined concept. These
additional necessary conditions are not taken into account for Tbox reasoning. Note also
that Loom rule-based implications are not to be confused with true logical implications.
Backward-chaining strategies are used for query answering, however for the rule system
forward-chaining techniques are used. The user can control the inference process by com-
bining forward-chaining and backward-chaining inferences by marking concepts, but the
user is also responsible for the effects of these declarations.

Inconsistent definitions are not treated as illegal, but are classified under the built-in
concept Incoherent, that can be easily accessed by the user. Recognition and truth mainte-
nance only takes place when Loom’s matcher is invoked. This causes the re-computation of
the types of the modified instances, and the changes are propagated throughout the knowl-
edge base using a forward-chaining algorithm. When a concept is redefined, the necessary
reclassifications are made and the knowledge base is checked so as to ensure that knowledge
base satisfiability is maintained.

The user can create, manipulate and query knowledge bases interactively and from
within applications. There are many pre-defined functions that are designed to facilitate
application programming. Loom has a context mechanism, that allows the definition of
various contexts, each with its own Tbox and Abox, which are organised into hierarchies.

5.8.4 Fact

Fact (Fast Classification of Terminologies) [Hor99] has been developed at the University

Chapter 5. Introducing Description Logics 122

of Manchester as a result of research into optimizing tableaux subsumption algorithms.

Language Constructs

At the time of our review of DL systems, the system included two reasoners, one for the
logic SHF (ALC augmented with inverse roles and qualified number restrictions) and one
for the logic SHIQ.

Completeness

In order to be able to provide complete reasoning for an expressive DL like SHIQ,
Fact (and also Racer, see next section) does not use structural algorithms as the Kl-
One family does. Instead, it uses sound and complete tableau calculus-based algorithms.
This system was the first one to demonstrate the usefulness of expressive DLs for practi-
cal applications. Even if the runtime behaviour is exponential in worst case, optimisation
techniques can be developed and implemented that prevent DL systems from running into
combinatorial explosion. The resulting algorithms are still sound and complete.

Open/Closed-World Assumption

Both Fact reasoners operate under the open-world assumption: what cannot be proven
is assumed to be false. There are no operators or functions that allow to close a role.
Closed-world assumption requires non-monotonic reasoning that is not supported by state-
of-the-art DL systems.

Query Mechanism

At the time of this review, Aboxes were not supported by Fact. There is also no Abox query
mechanism available.

Additional Features

Fact is implemented in CommonLisp. The source code is available for research purposes.
CORBA-FaCT is a CORBA based client-server architecture for Fact.

There also exists a graphical interface for developing Tboxes in a frame systems based
way, called OilEd. This interface is described in [BHGS01]. Not only Fact but also
Racer can be used as underlying DL system for OilEd.

5.8.5 Racer version 1.7

Racer [HLM99, HM01, HM03] was initially developed at the Hamburg University of Tech-
nology, Germany. Racer is actively supported and future releases are developed at Concor-
dia University in Montreal, Canada, and at the University of Hamburg-Harburg, Germany.
Of all the evaluated KR tools, this system and Fact are the only ones that are actively
being developed and maintained.

123 5.8 Description Logic Systems

Language Constructs

Racer supports the DL ALCQHIR+(D−), where ALCQHIR+ corresponds to SHIQ and
D− indicates the support for concrete domains and no feature chains. Different sets of pred-
icates are supported for different sets of concrete domains. For natural numbers (N), linear
inequations with order constraints and integer coefficients are supported, for integers (Z),
interval constraints are supported. For reals (R), linear inequations with order constraints
and rational coefficients are supported and for complex numbers (C), nonlinear multivari-
ate inequations with integer coefficients are supported. Finally for Strings, equality and
inequality are supported.

Remark that simple roles, which are non-transitive roles that have no transitive subroles,
are allowed to have number restrictions. Transitive roles cannot have this type of restriction
because of the undecidability that would result in case of this unrestricted syntax.

There have been advances in the development of reasoning algorithms for expressive
description logics, but mostly only considering Tbox reasoning. In previous systems, with
the exception of Loom, Abox reasoning was never implemented. Based on theoretical
results, a practical implementation of Abox calculi was developed with Racer.

Racer is very flexible w.r.t concept definition, and even allows forward references to
concepts that will be introduced later. Roles can be arranged into hierarchies. A role having
subroles cannot be cyclic.

Completeness

Racer uses sound and complete algorithms and selects appropriate optimization techniques
based on a static analysis of input Tboxes and Aboxes and inference services asked by a
user.

Open/Closed-World Assumption

As Fact, Racer also operates under the open-world assumption.

Query Mechanism

Even though Racer offers Abox reasoning, it only provides concept-based instance retrieval.
Examples of query functions are concept-instances and related-individuals. The first query
retrieves the set of individuals for which it can be proven that they are instances of a
certain concept. The second query retrieves the set of pairs of individuals that are related
via a specified role. These sets of individuals can then be manipulated using the underlying
implementation language of the DL tool. The reasoning effort used for answering the simple
Abox queries can be controlled, by choosing either query indexes or exploiting the query
subsumption (see Racer manual).

Additional Features

The implementation language of Racer is CommonLisp. Racer is available as a server,
offering various operational modes. It offers a file-based interface, a socket-based TCP
stream interface and a HTTP-based stream interface. Both the socket and HTTP interfaces
of the Racer server can be used from application programs or graphical interfaces. Various

Chapter 5. Introducing Description Logics 124

graphical client interfaces are available for the Racer server, which makes interaction with
KBs more user-friendly.

Racer also supports multiple Aboxes and Tboxes. Assertions can be added to Aboxes af-
ter inferences are processed and, in addition, assertions can be retracted from Aboxes.

5.8.6 Discussion

In this section, we will summarise the different features of the different discussed DL systems
and motivate the choice of a particular system.

Standard Inference Services of DL Systems

First, we will summarise the main inference services that are expected to be standard in
DL systems. For Tbox reasoning these are:

• concept satifiability,

• concept subsumption,

• Tbox coherence checks imply checking the satisfiability of all concept names mentioned
in a Tbox without computing parent- and child-concepts.

• classification of a Tbox.

If a DL system supports Abox reasoning, the following inference services are assumed
as standard:

• Abox consistency with respect to a Tbox,

• instance checking,

• direct types of an individual, i.e., the most specific concept names mentioned in a
Tbox of which an individual is an instance,

• retrieval, i.e., finding all individuals mentioned in an Abox that are an instance of a
given concept C,

• the set of fillers of a role r for an individual i

• the set of roles between two individuals i and j.

We decide to use Racer as DL-based reasoning tool for our tool support. Racer, with
its highly expressive DL (including transitive roles and support for concrete domains) and
its support for Abox reasoning is the ideal candidate. However, version 1.7 of Racer lacks
an expressive query language enabling expressive reasoning and retrieval capacities over
Aboxes. We will argue the necessity of having expressive query facilities for Aboxes for our
application of DLs in chapter 7.

Loom also has a very expressive concept definition language and a powerful query and
retrieval mechanism. But we decided not to choose this system, because it has incomplete
algorithms, which implies that it is not a real DL system, and it is not maintained anymore
but rather replaced by PowerLoom, a first-order predicate reasoner.

125 5.9 Conclusion

The main reason for not choosing Classic is the lack of expressiveness of the DL and
its restricted reasoning power, e.g., it does not allow for cyclic concept definitions.

Fact has an expressive language but it does support concrete domains and it also has
no support for Aboxes or Abox reasoning.

In Table 5.4, the main features of the different discussed DL systems are recapitulated.
The columns entitled System and Language need no further explanation. The column
entitled CDs indicates if the system supports concrete domains and the column Abox
indicates wether Aboxes are supported. The column entitled Query Language specifies
if the DL system has an expressive query language. If only the standard Abox inference
services (as specified in the beginning of this section), are present, a min appears in this
column. The last column states whether the system is still maintained.

System Language CDs Abox Query Language Maintained?
Classic ALNFh−1 no yes min no
Loom ALCQRIFO yes yes yes no
Fact SHIQ no no no yes
Racer ALCQHIR+(D−) yes yes min yes

Table 5.4: Overview of DL systems.

5.9 Conclusion

In this chapter we argued why a logic-based formalism can be used, and more in particular,
why DLs can be used in the context of inconsistency management.

DLs are introduced as a family of logic-based formalisms with decidable inference prob-
lems. We explained how different DLs are obtained by combining different expressive means
and how these expressive means influence the complexity of these logics.

An overview of four different DL systems is presented, aimed at giving the reader an
impression of the available DL systems and their reasoning capabilities and expressivity.
This overview is also used to motivate our choice of the DL system used to validate our
ideas.

Now that the reader is familiar with the formalism of DLs and the available DL systems,
we can start with the evaluation of this formalism against the requirements of our key criteria
listed at the end of Chapter 4. The next chapter will study the usability of DLs for the
representation of the syntax and semantics of our well-defined UML fragment.

Chapter 5. Introducing Description Logics 126

Chapter 6

Encoding of UML Model Elements

First, the encoding of the UML metamodel fragment as introduced in Chapter 2 into one
of the most expressive DLs, i.e., ALCQHIR+(D−) or SHIQ(D−) that is supported by
Racer, is discussed (Section 6.1).

A UML model element can be represented in a DL knowledge base as an instance of
a metamodel element or as a DL concept description representing the element’s meaning.
This results in multiple representations of the same model element in DL. We observe that
this multiple representation is a known issue in literature and we illustrate how the proposed
solutions can be applied in our approach (Section 6.2).

The formalisation of our UML fragment specifies different possible interpretations for
UML models. We informally recapitulate the interpretations of class diagrams, sequence
diagrams and PSMs (Section 6.3). As a result, the encoding of class diagrams is introduced
(Section 6.4). Next, the encoding of PSMs is introduced (Section 6.5) and, finally, the
encoding of interactions (Section 6.6). Because the mapping of event occurrences on PSM
labels also takes into account constraints expressed on event occurrences (cf. Definition
35), the encoding of constraints in DL is also discussed (Section 6.7). The expressiveness of
the constraints specified in DLs is compared to OCL constraints. The different presented
encodings are summarised and related to each other (Section 6.8).

This chapter is concluded with a discussion on related work and on the different, pre-
sented formalisations in DL. Finally, we evaluate the requirements of our first criterion –
representation of abstract syntax and semantics – against the different discussed encodings
(Section 6.9).

6.1 Encoding of UML Metamodel

We will first discuss the encoding of the abstract syntax of UML into SHIQ(D−) and show
how the expressive means of this DL can be used in a straightforward way for the translation
of UML metamodel elements.

6.1.1 Encoding

The abstract syntax of the UML metamodel is expressed as a class diagram consisting of
classes, associations, generalisations and attributes. The UML metamodel is interpreted
by mapping instances of the metaclasses in the metamodel to the syntactic elements of the

Chapter 6. Encoding of UML Model Elements 128

UML language. Meta-associations and meta-attributes constrain the allowable structure
of, and relationships between, UML model elements interpreted as instances of metaclasses.
For the encoding of the different metamodel constructs, we used a similar approach as the
one used in [Ber02].

Metaclasses and Primitive Types Metaclasses are translated into concepts of
SHIQ(D−). The primitive UML types Integer and String map into the concrete
domains Z and String. The primitive type UnLimitedNatural is represented by a
concept. How the UML primitive type Boolean is represented, is explained in the
next item.

Meta-attribute att = (n, c) ∧ type(att) = c′ A meta-attribute att named n, owned by
a class c and of type c′ is modelled by a role n and the concept definition: c v
∀n.c′. If the attribute has a multiplicity, multiplicity(att) = [i..j], associated, this
multiplicity can be naturally captured by the following concept definition: c v (≥
i n c′) u (≤ j n c′).

Remark that c′ can be a DL concept or a concrete domain. Attributes that have the
primitive type Boolean are represented as roles without a range. The reason for this
is obvious. If the value of this attribute is true for a certain instance of the metaclass
owning this attribute, then a class in a UML model has the property expressed by
the meta-attribute, otherwise it does not have the property. Due to the open-world
assumption of DLs, the restriction of not having a certain property must be explicitly
stated in the knowledge base.

Meta-associations assoc = (assocname, c, c′) ∧ assocend1 = (assoc,assocType2,1) ∧
assocend2 = (assoc,assocType2,2) All meta-associations are binary. A bidirec-
tional association assoc with association ends assocend1 and assocend2, between
the classes c and c′ is modelled by a role with domain c and range c’ and its in-
verse. The role represents one of the association ends of a bidirectional associa-
tion, while the inverse of the role represents the other association end of the bidirec-
tional association. This captures exactly the meaning of a bidirectional association.
Bidirectional associations include the constraint that the two association ends are
inverses of each other. In case of a unidirectional association, the inverse of the
role is not defined. The domain restriction for the role assocend1 and its inverse
assocend2 is expressed by the GCI’s: ∃assocend1.> v c′ and ∃assocend−1 .> v c
and assocend2 ≡ assocend−1 . The range restriction for this role and its inverse
is expressed by: > v ∀assocend1.c u ∀assocend−1 .c′. Multiplicity constraints,
multiplicity(assocend1) = [n1..m1] ∧ multiplicity(assocend2) = [n2..m2], are
captured by c′ v (≥ n1 assocend1.c) u (≤ m1 assocend1.c), for assocend1, and
c v (≥ n2 assocend−2 .c’) u (≤ m2 assocend−2 .c’), for assocend2.

Meta-aggregations are translated in the same way as meta-associations. The distinction
between the contained class and the containing class in the aggregation is a conse-
quence of the convention used that the domain of the role is the containing class.

Meta-compositions are translated in the same way as meta-associations. There is how-
ever an extra restriction, a part instance can only be included in at most one com-
posite at a time. Suppose classes c1 and c2 both having a composition relationship

129 6.1 Encoding of UML Metamodel

with class c, meaning that both classes are composed of objects of type c as shown
in Figure 6.1. The extra restriction on the associationends assocend1 of type c1 and
assocend2 of type c2 and belonging to the class c, is encoded by the following GCI :
∃assocend1.c1 u ∃assocend2.c2 v ⊥.

A transitive relation generalisationOf : C×C Generalisation in the UML meta-
model is interpreted as a subclass relationship between the class and its generalisation,
augmented with inheritance. A subclass relationship is the inverse of a subsumption
relationship, i.e., the subsumed-by relationship. This relationship is transitive, that
is, if c is subsumed by c′ and c′ is subsumed by c′′ then c is subsumed by c′′. These
relationships are naturally supported by DLs. generalisationOf(c, c′) is encoded by
the GCI: c’ v c.

Inheritance between DL concepts works as inheritance between UML metaclasses.
Every tuple in a role having c as domain or range, can have an instance of c’ as
domain or range. This means that all attributes and association ends of a superclass
are inherited by its subclasses.

Disjointness of a set of classes A generalisation arrowhead on a class diagram can be
labelled with the name of the generalisation set. Generalisation sets are by default
disjoint. This disjointness restriction is specified by the Restriction 2.1. This dis-
jointness restriction among the set of classes R = {c1, . . . , cn} can be encoded as:
ci v un

j=i+1¬cj , with i ∈ {1, . . . , n}.

Transitive closure of meta-associations We also exploit the presence of transitive roles
in SHIQ(D−) and the subsumption relation between roles to implement the transi-
tive closure of a meta-association. For example, consider the meta-association general
between the metaclass Classifier and itself, as shown in Figure 2.7. This association
keeps track of all immediate ancestors of a certain Classifier. This association is ex-
pressed by a SHIQ(D−) role, say direct-superclass and its inverse. However, we
also define a transitive superrole, say superclass of the role direct-superclass.
Each instantiation of the role direct-superclass will automatically also be an in-
stantiation of the superrole superclass. As a consequence, if the tuple (a, b) and
(b, c) are fillers of the role direct-superclass, automatically the tuple (a, c) will be
filler of the role superclass. This gives us the ability to retrieve in a very easy way
all the ancestors (or descendants) of a certain class.

This facility is also used to keep track of the states related by transitions in a state
diagram. Again a role, say direct-successor-state, can be defined between the
concept state, representing the UML metaclass State, and itself, and a transitive
superrole of this role, say successor-state. As in the previous example, this easily
allows us to ask all the successor states of a certain state.

Enumeration types The UML metamodel also contains enumerations. An example of
such an enumeration is AggregationKind. AggregationKind specifies the literals for
defining the kind of aggregation of a property. These literals are none, shared and
composite. Instances of an enumeration type are one of the listed values. The represen-
tation of such an enumeration type in DL would require that is allowed for individuals
to appear in concepts. In DLs this is not allowed, except for the logics SHOQ and

Chapter 6. Encoding of UML Model Elements 130

C1

C2

C
assocend1

assocend2

Figure 6.1: Example of a composition relation.

SHOIN . The logic SHOQ corresponds to the logic SHQ extended with individuals
in concept definitions (O), i.e., the one-of operator as specified in Table 5.1. However,
this logic does not provide inverse roles because the complexity of reasoning with in-
verse roles in combination with individuals is known to be NExpTime [Sat03]. The
logic SHOIN is the logic SHOQ extended with inverse roles but restricted to unqual-
ified number restrictions. For this logic there is not yet a known practical inference
algorithm.

How can enumeration types be represented in, e.g., SHIQ(D−)? The different values
of the enumeration type are represented as disjoint concepts in the Tbox. In the Abox,
individuals are defined corresponding to the enumerated values. These individuals are
instances of a concept with the same name.

6.1.2 Example

In the examples of this chapter and the next ones, we will use the Racer syntax, which is
a Lisp-like syntax. Table 6.1 stipulates the Racer syntax of the constructors introduced
in Table 5.3. For a detailed description of Racer’s syntax, we refer the interested reader
to the Racer manual [HMW04].

As an example, consider the UML metamodel snapshot shown in Figure 2.5. The
encoding of this snapshot in Racer is shown in RACER Fragment 6.1. The encoding of
the complete UML metamodel fragment considered in this dissertation can be found in
Appendix A.

Statements (1) until (8) shown in RACER Fragment 6.1, define roles for each of the
eight meta-associations modeled in the metamodel. Statements (9) and (10) define roles for
each meta-attribute owned by the metaclass Property. Statement (11) states the restriction
on the composition relations involving the class Constraint.

Statements (12) until (19) define GCI’s between concepts representing metaclasses in-
volved in a hierarchy. Next the different multiplicity restrictions on meta-attributes and
meta-association ends are defined in statements (20)-(24).

Statement (25) defines the encoding of the enumeration type AggregationKind and its
possible values none, shared and composite. The enumeration type and its values are en-
coded as concepts (resp. AggregationKind, none, shared and composite) and the concept
AggregationKind is defined as a disjunction of the concepts representing its possible values.

The last two statements state the disjointness of the meta-classes. In DLs concepts are
not assumed to be disjoint, a specific restriction is needed to specify this.

131 6.1 Encoding of UML Metamodel

(1) (define-primitive-role ownedAttribute :domain class :range Property)
(2) (define-primitive-role ownedOperation :domain class :range Operation)
(3) (define-primitive-role association :domain Property :range Association

:inverse memberEnd)
(4) (define-primitive-role endType :domain Association :range Type)
(5) (define-primitive-role formalParameter :domain Operation :range Parameter)
(6) (define-primitive-role preCondition :domain Operation :range Constraint)
(7) (define-primitive-role postCondition :domain Operation :range Constraint)
(8) (define-primitive-role definedtype :domain TypedElement :range Type)
(9) (define-primitive-role aggregation :domain Property :range AggregationKind)
(10) (define-primitive-role isCompositie :domain Property)
(11) (implies (and (some (inv preCondition) operation) (some (inv postCondition) operation)) bottom)
(12) (implies TypedElement NamedElement)
(13) (implies Type NamedElement)
(14) (implies Class Classifier)
(15) (implies Classifier Type)
(16) (implies Property StructuralFeature)
(17) (implies Property TypedElement)
(18) (implies Association Relationship)
(19) (implies Association Classifier)
(20) (implies Property (at-most 1 isComposite))
(21) (implies Property (at-most 1 aggregation))
(22) (implies TypedElement (at-most 1 type))
(23) (implies Property (at-most 1 association))
(24) (implies Association (at-least 1 endtype))
(25) (equivalent AggregationKind (or none shared composite))
(26) (disjoint Type TypedElement)
(27) (disjoint Operation Property Parameter Constraint Association AggregationKind

Class)

RACER Fragment 6.1: Racer implementation of the UML metamodel snapshot of Figure
2.5.

Chapter 6. Encoding of UML Model Elements 132

Constructor DL Syntax Racer Syntax
concept term subsumes CN v C (define-primitive-concept CN C)
concept name
concept name equals CN

.= C (define-concept CN C)
concept term
GCI C1 v C2 (implies C1 C2)
Equivalence C1 ≡ C2 (equivalent C1 C2)
universal concept > top
atomic role R R
transitive role R ∈ R+ (define-primitive-role R :transitive)
conjunction C1 u C2 (and C1 C2)
disjunction C1 t C2 (or C1 C2)
negation ¬C (not C)
value restriction ∀R.C (all R C)
exists restriction ∃R.C (some R C)
role hierarchy R v S (define-primitive-role R :parents (S))
inverse role R− (inv R)
qualified (≥ n R.C) (at-least n R C)
number restriction (≤ n R.C) (at-most R C)

Table 6.1: Racer syntax for SHIQ.

ATM PrintingATM ASCIIPrintingATM

atmend asciiend

controls

1..*1

Figure 6.2: User-defined UML class diagram.

The UML metamodel fragment considered in this thesis, can be encoded into a
Racer Tbox applying the above specified encoding. Next, the question arises how user-
defined models can be represented. The UML concepts constituting these models are in-
stances of the different UML metamodel concepts. As such, one way to represent user-
defined models is as instances, i.e., individuals in an Abox, of the different Racer concepts
and roles representing the UML metamodel.

Consider the class diagram in Figure 6.2. The encoding of this user-defined model gives
rise to a Racer Abox that is shown in RACER Fragment 6.2. This Abox contains all the
relations between the different UML model elements conforming the UML metamodel. The
classes shown in Figure 6.2 are declared as instances of the metaclass Class and the two
generalisation relationships are declared as instances of the metaclass Generalization and
connected to the right classes via the meta-associations generalization and general.

The translation of the user-defined models can be automated (see Chapter 10).

133 6.1 Encoding of UML Metamodel

(instance none none)

(instance shared shared)

(instance composite composite)

;

(instance atm class)

(instance printingatm class)

(instance asciiprintingatm class)

(instance gen1 generalization)

(instance gen2 generalization)

(instance controls association)

(instance atmend property)

(instance asciiend property)

(related atm gen1 generalization)

(related printingatm gen1 generalization)

(related printingatm gen2 generalization)

(related asciiprintingatm gen2 generalization)

(related atm printingatm direct-superclass)

(related printingatm asciiprintingatm direct-superclass)

(related gen1 atm general)

(related gen2 printingatm general)

(related atm asciiend ownedAttribute)

(related asciiprintingatm atmend ownedAttribute)

(related atmend controls association)

(related asciiend controls association)

(related atmend composite aggregation)

(instance atmend (some isComposite))

(constrained atmend loweratm lower)

(constrained asciiend lowerascii lower)

(constraints (equal lowerascii 1) (equal lowerascii 1))

(instance upperatm LiteralInteger)

(instance upperascii Unlimitednatural)

(related atmend upperatm upper)

(related asciiend upperascii upper)

(constrained upperatm valueatm value)

(constraints (equal valueatm 1))

(instance ourmodel Model)

(related atm ourmodel belongstomodel)

(related printingatm ourmodel belongstomodel)

(related asciiprintingatm ourmodel belongstomodel)

RACER Fragment 6.2: Racer Abox implementation of the class diagram of Figure 6.2.

Chapter 6. Encoding of UML Model Elements 134

6.1.3 Discussion

The proposed encoding defines a semantics for the UML metamodel. The user-defined mod-
els are considered as instances of the concepts defined by the UML metamodel. Therefore,
the well-formedness of the user-defined models with respect to the metamodel is guaranteed
by the reasoning task checking the consistency of the Abox.

Because the UML metamodel is described using concepts appearing in UML class dia-
grams, and DLs can be used as semantic domain for the UML metamodel, DLs can also be
used as semantic domain for UML concepts constituting a UML class diagram. However,
the class diagrams representing the UML metamodel do not contain all concepts defined in
UML class diagrams. We will give the encoding of these concepts in Section 6.4.

The question arises if it is possible to encode the semantics of, e.g., SD traces in DLs.
This implies that the same UML model element will have different encodings in a DL. E.g.,
a UML class is in the context of the UML metamodel an instance of the metaclass Class,
but a UML class also represents a set of objects. As a consequence it can occur as an
instance in a DL Abox but also as a concept in a DL Tbox. However, in DLs concepts and
individuals are strictly kept distinct. The necessity of the different ways of representing one
and the same conceptual concept, e.g. a UML class, is already recognised and discussed in
literature [WF94]. In the next section, we summarise the ideas expressed in [WF94] and
illustrate how these ideas apply to UML model elements.

6.2 Concepts versus Individuals

A DL Tbox represents definitions of concepts and roles, i.e., unary and binary predicates,
an Abox represents instances of these concepts, i.e., constants.

Object-oriented modelling languages and programming languages, provide two basic
primitives: classes and instances. A class describes a set of instances and an instance
describes an object in the real world. As such, there is a one to one mapping between
a class and a concept, and between an instance and an individual. The interpretation of
representing a real-world object as an instance has always been an implicit assertion that
the object exists as an individual.

Welty et al. [WF94] argue that the language constructs for instance and class must be
kept distinct. DLs make this distinction, because they do not allow individuals to act as
descriptions. This is prevented by the syntax. Also the UML syntax makes a difference
between classes and instances. A class is denoted by a rectangle containing the name and
properties of the class. An instance of a class is denoted by a rectangle containing the name
of the instance and the name of the instantiated class. The name of the object and of its
type is underlined.

Sometimes an object has two interpretations: as an instance of a certain class and as a
class. This multiple interpretation occurs when a model consists of two or more universes
of discourse. In one universe of discourse, the object is an instance and in another universe
of discourse, the same object is a class. Welty [Wel95] calls these kinds of objects, spanning
objects.

Examples of spanning objects can be found in meta-facilities of object-oriented lan-
guages. In Figure 6.3 M2 denotes the abstract syntax model of the UML. M2 contains the
objects defining the UML language, e.g., the object Class. One instance of Class, is the

135 6.3 Interpretation of UML Models

Class

ATM

ATM14

instance

instance

M2

M1

Figure 6.3: Example of a spanning object.

object ATM. On the level M1, ATM is viewed as the description of the set of ATMs. An
instance of this description, is a particular ATM. It is obvious that ATM has two inter-
pretations: an instance of Class in M2 and a description of the real-world object ATM in
M1.

These special objects must be recognised by the modelling language and there must be
support for a modelling construct that can be applied to an arbitrary layering of universes
by the modeller. This support is lacking in current modelling languages. These special
objects can be represented by second-order predicates. However, second-order logic is highly
complex and computationally intractable. We will use the notion of spanning objects in
our translation of UML concepts into DLs.

Remark that such spanning objects do not always involve meta-objects. Also within a
certain domain, second-order objects can exist. The example used in the Artificial Intelli-
gence world is the example of eagles. Harry is a certain instance of eagle and eagle is an
instance of species. As such, eagle spans 2 universes of discourse.

Spanning objects are split into two parts. Each part is kept into a separate universe
of discourse in which it exists as a normal first-order object. The actual object is referred
to as a spanning object because its representation spans two universes of discourse. For
example, DLs have three kinds of objects: concepts, roles and individuals. Each spanning
object will be composed of an individual in one universe of discourse and a concept or role
in another universe of discourse. Each universe, or level is built on objects in the previous
universe. Each meta-layer in the UML architecture can be viewed as a universe consisting
of spanning objects.

The two parts of such an object are linked by a spanning function. This function
is defined for each class of second-order objects. For DLs, this function defines how to
generate the concept or role part from the individual part.

6.3 Interpretation of UML Models

In Chapter 2 we formally defined the syntax of UML models. We also defined a trace
semantics for sequence diagrams and PSMs. In this section, we will quickly recapitulate in
an informal way the different possible interpretations of the UML models. This allows for
a better understanding of the different translations of UML model elements into a DL. The

Chapter 6. Encoding of UML Model Elements 136

different interpretations of UML models will affect the translation of UML model elements
into DLs.

6.3.1 Class Diagrams

The interpretation of UML class diagrams is not conventionally fixed. The interpretation
might be given by a certain profile for using UML or might be the consequence of local design
conventions. For example, in a UML profile for Java, classes are interpreted as Java classes
and associations in the class diagram are interpreted as references between instances of the
Java classes. A UML profile for business modelling gives a very different interpretation of
class diagrams in terms of business entities.

Nevertheless, the UML elements appearing in class diagrams can be interpreted in a
generic way. A class describes a set of instances and an instance describes an object in
the real world. Instances must conform to the class description. The interpretation of an
association consists of a set of links connecting instances. The links must conform to the
association. For example, in the case of a bi-directional association, the two association
ends are inverses of each other. A generalisation between a parent class and a child class
means that every instance of the child class is also an instance of the parent class. The set
of instances of the subclass is a subset of the set of instances of the superclass. Inheritance
means that the instances of the child class inherit the properties of the parent class.

In the context of the UML metamodel, UML class diagram elements are interpreted as
instances of metaclasses and connected through instances of meta-associations (cf. Section
6.1). If the UML model elements, i.e., the instances in the metamodel representation of the
UML model, meet the restrictions imposed by metaclasses, meta-associations and meta-
attributes, the UML model is well-formed.

6.3.2 Sequence and Communication Diagrams

There are several semantic alternatives for sequence diagrams. In Chapter 2, we differentiate
between the interaction and communication view. We also discussed in Chapter 3 the
specification and instance level.

Numerous interpretations of UML sequence diagrams can be found in literature. An
overview of different usage scenarios for sequence diagrams as specified in UML 1.5 and
a grouping of syntactic and semantic issues along orthogonal dimensions can be found
in [HKS01]. The recognised dimensions are Function View, Ordering, Scope, Abstraction,
Composition and Time Quantification. The choices along one dimension represent semantic
variation points. Not all of these dimensions and variation points are currently supported by
UML version 1.x or version 2.0. The Composition dimension which assumes the existence
of additional UML language features to compose, refine or structure sequence diagrams is
not supported by UML 1.x nor by UML 2.0. Some of these dimensions are covered by some
newly introduced diagrams in UML 2.0. The Time Quantification dimension which assumes
the definition of an underlying time model, is a dimension concerning timing diagrams in
UML 2.0.

We briefly explain the Function View, Ordering, Scope and Abstraction. We show how
the different interpretations we already recognised and defined, fit in those dimensions.

The Function View differentiates between interaction and internal activity. This dimen-
sion allows for different semantics for an activation. In UML 2.0 an activation is represented

137 6.3 Interpretation of UML Models

in the abstract syntax by the ExecutionOccurrence element. An execution occurrence is rep-
resented by two event occurrences. The semantics of an execution occurrence is merely a
trace �finish, start� where finish and start are the respective event occurrences. Due to
the fact that we defined a trace semantics for sequence diagrams, this notion is implicitly
present in our approach. This does not prevent UML users to define their own semantics
or to refine the presented semantics for execution occurrences.

Within the Ordering dimension two possible choices are depicted in [HKS01], partial
order and total order. The traces belonging to a certain connectable element, and the
receiving traces defined in Chapter 2 define two different kinds of partial order. In the first
case, the event occurrences are ordered on a lifeline, in the second case, the receiving event
occurrences are ordered. A total order might be required by some applications, however,
there is no graphical support by the UML for it.

In the Scope dimension, Hausmann et al. [HKS01] define two different variation points,
scenario and specification. A scenario captures the expected or possible behaviour, while
a specification captures the intended or mandatory behaviour of a system. This dimension
allows for a range of interpretations of the specified behaviour by sequence diagrams. From a
very loose (scenario) interpretation of the specified behaviour to a very strict (specification)
interpretation. Observation and invocation consistent behaviour fit in this dimension. In
the definition of observation consistency, we assumed that observable behaviour is modelled
by (parts of) sequence diagrams and in the definition of invocation consistency, we assumed
that only invocation behaviour is depicted by (parts of) sequence diagrams.

The Abstraction dimension differentiates between sequence diagrams representing object
interactions, i.e., sequence diagrams at instance level, and role interactions, i.e., sequence
diagrams at specification level. This distinction was already discussed in Chapter 2, Section
3.2. Remark that sequence diagrams representing object interactions can be interpreted
as an instantiation of corresponding sequence diagrams representing role interactions. In
this case, the instances and messages sent must conform to the connectable elements and
messages sent at specification level.

The different variation points in a certain dimension require a different translation in
DLs as explained in the next sections.

6.3.3 Protocol State Machines

The UML state machine formalism is a variant of Harel statecharts. Harel statechart se-
mantics extend basic finite-state automata with many features. In UML 2.0 the semantics of
state machine diagrams is concerned with event processing based on the run-to-completion
assumption, firing priorities, selection of transitions and conflicting transitions.

We focus on PSMs and more in particular on the order of the operation calls, this is
a weakened form of the semantics of UML state machines in general. This implies that
PSMs are interpreted as a specification of different possible call sequences. The behaviour
specified by a PSM is interpreted to be complete with respect to sequence diagrams.

In the definitions of invocation and observation consistency, we again assumed that
the behaviour specified by the PSMs is invocation behaviour and observation behaviour,
respectively.

Chapter 6. Encoding of UML Model Elements 138

6.4 Encoding of UML Class Diagrams

Classes, attributes, generalisations, aggregations and compositions can be translated in the
same way as the corresponding meta-concepts. We still have to provide translations for
operations and adapt the translation of associations in such a way that n-ary associations
are allowed .

Operation op = (n, c, (p1, . . . , pk), (t1, . . . , tm)) An operation can be represented in
SHIQ(D−) as proposed in [Ber02]. An operation op with name n belonging to a
class c, is represented by introducing a concept n and k + m + 1 roles r1, . . . , rk+m+1

where k is the number of input parameters belonging to p1, . . . , pk corresponding to
the concepts P1, . . . , Pk, and m the number of return values belonging to t1, . . . , tm
corresponding to the concepts T1, . . . , Tm. One role is added to connect the opera-
tion with the class owning the operation. The following assertion needs to be added
to the respective Tbox : n v ∀r1.c u ∃r1 u (≤ 1 r1) u ∀r2.P1 u ∃r2 u (≤
1 r2) u . . . u ∀rk+m+1.Tm u ∃rk+m+1 u (≤ 1 rk+m+1). Remark that types of the
parameters can be primitive. In case that the parameters are classes, we also enforce
that the operation is the domain of the different roles connecting the operation with
the parameter types and also that the parameter types are the respective ranges of
these roles.

n-ary associations assoc = (name, c1, . . . , cn) In UML user-defined class diagrams n-ary
associations are allowed. SHIQ(D−) does not support n-ary predicates. There is one
family of DLs that does so, the family of DLR logics [CGL98]. However, we prefer
the logic SHIQ(D−), because there is no tool support for the DLs DLR and tech-
niques for reifying higher arity predicates are well-known. In SHIQ(D−), an n-ary
association between classes c1, . . . , cn is represented by reifying the association. In
[Ber02], it is shown that such an implementation is equivalent to an implementation
in DLR. The assertion name v (≤ 1 r1) u . . . u (≤ 1 rn) u ∃r1.c1 u . . . u ∃rn.cn

expresses the fact that the association named name, and represented by the con-
cept name connects instances of n different classes through the roles r1, . . . , rn rep-
resenting the different association ends of the association. Multiplicities can be
added to the different association ends of the association. n GCI’s of the form
ci v (≥ ki r−i .name) u (≤ mi r−i .name), for i ∈ {1, . . . , n}, express the different
multiplicity restrictions [ki..mi].

Using spanning functions, the modelling elements used in UML class diagrams can be
generated from the UML metamodel knowledge base. For example, a spanning function for
individuals of the concept Class, generates a concept description. The function finds the
value of the concrete domain attribute name which is a property of every NamedElement
and it uses this name as the name of the concept. The superclasses of this individual are
retrieved by using the fillers of the general role. The spanning function builds the concept
description by creating a list that starts with the word and and inserts each of the names
of the superclasses of this concept. In the case of the Abox shown in the RACER Fragment
6.2, this spanning function applied on the class ASCIIPrintingATM, yields the following
result: (implies asciiprintingatm (and printingatm atm)).

The spanning function for individuals of Attribute works as follows. A role is created
with name the filler of the concrete domain attribute name of the individual of Attribute.

139 6.5 Encoding of Protocol State Machines

The range of this role is determined by the filler of the role definedtype for the particular
individual. The domain of this role is determined by the filler of the role class of the
individual.

Similar spanning functions can be defined for associations, compositions, aggregations
and operations.

6.5 Encoding of Protocol State Machines

Are DLs also suited as semantic domain for expressing PSMs? In this section, we present
a possible translation of PSMs. Because PSMs focus on the possible call sequences on a
certain instance of a class, the translation presented here, focuses on the encoding of the
different call sequences defined by a PSM.

6.5.1 Call Sequence Encoding

Recall Definition 33, defining a call sequence of a PSM π = (S, T, L, ρ,Λ). A call sequence
µ =< τ1, . . . , τn > (n ≥ 1), where τi ∈ L, can be encoded in SHIQ(D−) in different ways
depending on the format of the label τi.

Label τi = (op, g, h) A label represents the call of an operation together with possible pre-
and postconditions. The call of the operation op, encoded by a concept opname is
encoded by the following concept description: ∀op.opname u (= 1 op). We introduce
a role op that will be used to define the different operation calls occurring in call
sequences. The preconditions g and the postconditions h are translated into concepts.
How pre- and postconditions are translated into SHIQ(D−) and how expressive these
constraints can be, is explained in Section 6.7.

Label τi = (ε, g, {}) In this case only g is translated into a concept.

Sequencing The question remains how to express that the different operations have to be
called in sequence. For this purpose, a binary role r is used and also the subsumption
relation is exploited. Different GCI’s of the form g1 u call1 v ∃r.(call2 u h1ug2)
are defined in a Tbox representing the different call sequences of a PSM. call1 and
call2 represent the invocation of a certain operation. g1 denotes the concept repre-
senting the preconditions defined on call1, and g2 denotes the concept representing
the guard defined on call1 and h1 denotes the postcondition defined on call1.

For example, consider the call sequence < (readPIN, ∅, ∅), (verifyPIN, ∅, ∅), (ε, valid−
PIN, ∅), (ejectCard, ∅, ∅) >, will be represented by the GCI’s:

∀op.readPIN u (= 1 op) v ∃r.(∀op.verifyPIN u (6.1)
(= 1 op))

∀op.verifyPIN u (= 1 op) v ∃r.((∃validPIN) u (6.2)
∀op.ejectCard u (= 1 op))

∃validPIN u ∀op.ejectCard u (= 1 op) v ∀r.(∃validPIN u (6.3)
∀op.ejectCard u (= 1 op))

Chapter 6. Encoding of UML Model Elements 140

The concepts readPIN, verifyPIN and ejectCard represent the operations readPIN ,
verifyPIN and ejectCard, respectively. The concept (∃validPIN) represents the
precondition validPIN (see Section 6.7). This example shows that if there is a label
in the call sequence containing only a guard, this guard is translated as part of the
guard of the next label representing an operation call. This choice is made because it
will allow the comparison between call sequences and SD traces. GCI (6.3) indicates
that the call sequences finishes with a call to ejectCard.

If several call sequences are taken into consideration, a label can be followed by
several other labels. Consider the PSM shown in Figure 2.14 and the transi-
tion calling the operation printReceipt. After this transition two transitions are
possible, or the card is ejected or the withdrawal transaction is chosen. The
GCI (∀op.printReceipt u (= 1 op)) v ∃r.(∀op.ejectCard u (= 1 op)) t
(∀op.getAccountNbr u (= 1 op) u (∃ withdrawal)) expresses that the calling of
the operation printReceipt is followed by a call to ejectCard or by a call to the
getAccountNbr operation.

The binary role r used in the translation of the different call sequences is similar to
the accessibility relation in modal logic (see Section 5.7). The GCI (6.1) specified
above, expresses that it is possible to reach the world where verifyPIN is triggered,
starting from the world where readPIN is triggered.

Completeness of call sequences In case a PSM represents the complete set of possible
call sequences the different ∃r.X concepts, where X is a concept variable, are replaced
by ∀r.X. If we also want to express that only one transition is possible starting from
a concept, we can add the restriction u (= 1 r) to each ∀r.X.

Exactly one operation called at a certain moment in time To be able to express
this constraint the following GCI’s need to be added. First, a GCI is added spec-
ifying the disjointness of the different operation calls defined in the call sequence(s).
Secondly, a GCI is added expressing that the specified operation calls are the only
existing ones.

Example

We exemplify our translation by encoding the PSM shown in Figure 2.14 in a Tbox. The
call sequences in the PSM shown in Figure 2.14 are represented by the definition of concepts
and GCI’s in the RACER Fragment 6.3. Statements (1) until (10) express abbreviations for
the operation calls. The statements (11) until (18) define the different guards and statement
(19) represents a disjointness constraints between different concepts used in the guards.

Statements (20) until (31) specify the different GCI’s encoding the different call se-
quences. Statements (32) until (36) encode the end conditions. Statements (37) and (38)
express that exactly one of the specified operation calls can be taken at a certain point in
time and that these are the only operation calls that can be taken.

6.5.2 Adding State Information

It is also possible to take into account states, or state invariants. A state in a state machine
diagram is an abstraction for a situation during which an invariant condition holds. If this

141 6.5 Encoding of Protocol State Machines

(1) (define-concept t1 (and (all op readPIN) (exactly 1 op)))
(2) (define-concept t2 (and (all op verifyPIN) (exactly 1 op)))
(3) (define-concept t3 (and (all op getAccountNbr) (exactly 1 op)))
(4) (define-concept t4 (and (all op getAmountEntry) (exactly 1 op)))
(5) (define-concept t5 (and (all op checkifCashavailable) (exactly 1 op)))
(6) (define-concept t6 (and (all op send) (exactly 1 op)))
(7) (define-concept t7 (and (all op dispensecash) (exactly 1 op)))
(8) (define-concept t8 (and (all op retainCard) (exactly 1 op)))
(9) (define-concept t9 (and (all op ejectCard) (exactly 1 op)))
(10) (define-concept t10 (and (all op printreceipt) (exactly 1 op)))
(11) (define-concept g1 (and (not (some valid-PIN top)) (< tries 3)))
(12) (define-concept g2 (some valid-PIN top))
(13) (define-concept g3 (and (not (some valid-PIN top)) (= tries 3)))
(14) (define-concept g4 (some withdrawal top))
(15) (define-concept g5 (some checkcashavailable top))
(16) (define-concept g6 (not (some checkcashavailable top)))
(17) (define-concept g7 (some allowedwithdrawal top))
(18) (define-concept g8 (not (some allowedwithdrawal top)))
(19) (disjoint valid-PIN withdrawal checkcashavailable allowedwithdrawal)
(20) (implies t1 (all r t2))
(21) (implies t2 (some r (or (and g1 t1) (and g3 t8) (and g2 t9 (not g4)) (and g2 g4 t3))))
(22) (implies (and t1 g1) (some r t2))
(23) (implies t4 (some r t5))
(24) (implies t5 (some r (or (and g6 t9 (not g4)) (and g6 g4 t3) (and t6 g5))))
(25) (implies (and g2 g4 t3) (some r t4))
(26) (implies (and g5 t6) (some r (or (and t7 g7) (and g8 t9 (not g4)) (and g8 g4 t3))))
(27) (implies (and g7 t7) (some r t10))
(28) (implies t10 (some r (or t9 (and t3 g4))))
(29) (implies (and g8 g4 t3) (some r t4))
(30) (implies (and g4 t3) (some r t4))
(31) (implies (and g6 g4 t3) (some r t4))
(32) (implies (and g3 t8) (some r (and g3 t8)))
(33) (implies (and g2 t9) (some r (and g2 t9)))
(34) (implies (and g6 t9) (some r (and g6 t9)))
(35) (implies (and g8 t9) (some r (and g8 t9)))
(36) (implies t9 (all r t9))
(37) (disjoint t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)
(38) (implies top (or t1 t2 t3 t4 t5 t6 t7 t8 t9 t10))

RACER Fragment 6.3: Racer expressions representing call sequences.

Chapter 6. Encoding of UML Model Elements 142

invariant condition is modelled explicitly, it can be taken into account in the translation of
call sequences.

State s ∈ S A simple state is translated into an atomic SHIQ concept.

Composite state A composite state is also explicitly translated into a complex SHIQ
concept consisting of the union of the different substates. The different substates
are subsets of the composite state and are disjoint. As an example, consider the
composite state GettingCustomerSpecifics in Figure 2.14 consisting of three different
substates. This composite state is represented by: GettingCustomerSpecifics ≡
AccountEntry t AmountEntry t VerifyATMBalance and a disjointness constraint for
the three substates.

States in the sequence Consider a call sequence < (op1, g1, h1), (op2, g2, h2) > where the
invariant condition s1 holds before op1 is called, the invariant condition s2 holds after
the call of op1 and before the call of operation op2 and the invariant condition s3 holds
after the call of op2. This call sequence together with the different invariant conditions
is expressed by the GCI’s: g′1 u ∀op.op′1 u (= 1 op) u s′1 v ∃ r.(s′2 u h′1),
s′2 u ∀op.op′2 u (= 1 op) v ∃ r.(h′1 u s′2), g′2 u ∀op.op′2 u (=
1 op) u s′2 v ∃ r.(s′3 u h′2). Again op′i are atomic concepts representing the
operation opi, g

′
i are concepts representing the preconditions gi, h′i are concepts rep-

resenting the postconditions hi, and s′i are concepts representing the state invariants
si.

Outgoing transitions between a composite state and a simple state can now
be translated in a natural way. Due to the semantics of the subsump-
tion relation, the GCI GettingCustomerSpecifics u ∀ op.cancel′ u (=
1 op) v ∃ r.ChoosingTransaction expresses that it is possible to go from each
substate of GettingCustomerSpecifics to the state ChoosingTransaction if the op-
eration cancel is called.

Completeness and disjointness of states If necessary, completeness of the set of states
can also be enforced. Another restriction is the disjointness of the different states of a
PSM. If both restrictions are valid, it is guaranteed that two states cannot be active
at the same time.

Example

Consider again the PSM of Figure 2.14 and the translation of its call sequences in the
RACER Fragment 6.3. The GCI’s in the RACER Fragment 6.4 represent the translation
of a part of this PSM taking into account the different states. The different ti’s and gi’s
used in this Tbox fragment are defined in the RACER Fragment 6.3.

The statements (1) until (5) in the RACER Fragment 6.4 encode the composite state
GettingCustomerSpecifics. The statements (6) until (12) correspond to the statements
(20) until (24) of the RACER Fragment 6.3 extended with state information.

143 6.6 Encoding of Interactions

(1) (implies accountentry gettingcustomerspecifics)
(2) (implies amountentry gettingcustomerspecifics)
(3) (implies verifyATMbalance gettingcustomerspecifics)
(4) (disjoint readingpin pinentry verifyingpin choosingtransaction accountentry amountentry

verifyATMbalance verifywithdrawal givecash retainingcard returningcard)
(5) (equivalent gettingcustomerspecifics (or accountentry amountentry verifyATMbalance))
(6) (implies (and readingpin t1) (some r pinentry))
(7) (implies (and pinentry t2) (some r verifyingpin))
(8) (implies (and verifyingpin g1) (some r readingpin))
(9) (implies (and verifyingpin g3 t8) (some r retainingcard))
(10) (implies (and verifyingpin g2 (not g4)) (some r choosingtransaction))
(11) (implies (and choosingtransaction g4 t3) (some r accountentry))
(12) (implies (and choosingtransaction t9) (some r returningcard))

RACER Fragment 6.4: Racer expressions representing part of PSM of Figure 2.14.

6.5.3 Discussion

The first translation defines how the different transitions are put in sequence without taking
into account state information. The second translation extends the first one with state
information. The role r used in the translations, can be interpreted as an accessibility
relation. The translation of the operations called, consists of the role op connected to the
concepts representing the called operations. As presented in the previous section, operations
are translated into concepts in the context of class diagrams. These concepts are used again
in the translations presented above.

Again using spanning functions, the representation in Racer of modelling elements
used in UML, the translation of call sequences with or without state information can be
generated. Spanning functions exist for labelled relations, (orthogonal) composite states
and call sequences. Depending on whether extra restrictions on PSM or call sequences
must be specified, next to the representations generated by the spanning function, extra
GCI’s must be specified.

6.6 Encoding of Interactions

In Chapter 2 and in Section 6.3 of this chapter, we distinguished different semantic di-
mensions of sequence diagrams representing interactions. In case of a sequence diagram at
specification level, focus can be on the different interactions defined or on the communica-
tion view. The same remark can be made for a sequence diagram at instance level. For each
of these dimensions proper semantics using DLs will be provided in the following sections.

6.6.1 At Specification Level

Recall that a sequence diagram at specification level defines message sends between sets of
instances of different classes.

Interaction View

The interaction view focuses on the different possible SD traces. The transla-
tion of SD traces into the DL SHIQ(D−) is similar to the translation of call se-
quences. Consider the Definition 28, defining receiving SD traces, containing event

Chapter 6. Encoding of UML Model Elements 144

occurrences denoting the receipt of a message. A receiving SD trace υ/rec =<
(m1,Cons1, ”receive”), (m2,Cons2, “receive”), (m3,Cons3,“receive”) >, is translated
into the different GCI’s: cons′1 u m′1 v ∃ r.(m′2 u cons′2), cons

′
2 u m′2 v ∃ r.(m′3 u cons′3),

where m′i are concepts representing the message mi, and cons′i are concepts representing the
set of constraints consi which must be valid before the execution of the owning event occur-
rence. In our formalisation, the different messages mi only contain the operation invoked.
Each message mi is defined in DL as m′i

.= ∀op.op′i u (= 1 op), where op′i represent the
operation opi. This translation of a message is similar to the translation of the call of
an operation. This similarity allows straightforward verification of properties between call
sequences and SD traces.

The SD trace denoting the receipt of messages by the object atm shown in the sequence
diagram in Figure 2.12, is represented in SHIQ(D−) by the GCI’s in the RACER Frag-
ment 6.5.

(define-concept m1 (and (all op getAccountNbr) (exactly 1 op)))

(define-concept m2 (and (all op getAmountEntry) (exactly 1 op)))

(define-concept m3 (and (all op checkIfCashAvailable) (exactly 1 op)))

(define-concept m4 (and (all op send) (exactly 1 op)))

(define-concept m5 (and (all op dispensecash) (exactly 1 op)))

(define-concept m6 (and (all op printReceipt) (exactly 1 op))))

(implies m1 (some r m2))

(implies m2 (some r m3))

(implies m3 (some r m4))

(implies m4 (some r m5))

(implies m5 (some r m6))

RACER Fragment 6.5: Racer expressions representing an SD trace.

Spanning functions can be used to generate the Racer expressions. First, for each
instance of the metaclass Message, a concept name is defined and the operation called in
this message is related to this concept name. For each trace of event occurrences, an implies
statement is generated combining the messages and constraints of the corresponding event
occurrences.

Communication View

The central issue of the communication view is how the different connectable elements are
connected. At specification level, these connectable elements abstract away from partic-
ular instances and indicate which classes play which roles in a certain interaction. The
connectable elements act as placeholders for concrete instances.

The translation of connectable elements and connectors is similar to the translation of
classes and associations. This is not surprising because connectable elements are sets of
objects and a connector is a subset of an association.

• Connectable elements are translated into concepts. By using the subsumption rela-
tionship, it is possible to express that a certain connectable element is a subset of
certain classes.

• The assertion C v (≤ 1 r1) u . . . u (≤ 1 rn) u ∃r1.c1 u . . . u ∃rn.cn expresses
that the connector represented by the concept C connects instances of n different
connectable elements.

145 6.6 Encoding of Interactions

/customer:Person /Insurance agent:Person

customers

agent1

Figure 6.4: Example of a communication diagram.

Example 41 Consider the communication diagram shown in Figure 6.4 consisting of two
connectable elements and one connector. The translation of these connectable elements
and the connector into DL is shown in the RACER Fragment 6.6. The first two GCI’s
express the fact that the connectable elements are sets of objects of type Person. The last
GCI expresses that the set of links represented by the connector CustomerAgent is a subset
of the set of links represented by the association PersonAssociation. This association is
defined between the class Person and itself.

(implies Customer Person)

(implies InsuranceAgent Person)

(some customers Customer) (some agent1 InsuranceAgent)))

(implies CustomerAgent PersonAssociation)

RACER Fragment 6.6: Racer expressions representing the communication diagram of
Figure 6.4.

Again spanning functions can be used to generate the different Tbox expressions as, for
example, shown in the RACER Fragment 6.6. From the different instances of the metaclass
ConnectableElement and their corresponding base classes, concept subsumption expressions
are generated. The same is done for instances of the metaclass Connector.

Remark that it is possible to connect messages with connectors. The notion of message
must be extended with the connector in question.

6.6.2 At Instance Level

A sequence diagram at instance level describes a particular scenario. If a corresponding
sequence diagram at specification level is defined, the sequence diagrams at instance level
must conform to this sequence diagram.

Interaction View

The traces of a sequence diagram at instance level can be translated in the same way as
the traces of a sequence diagram at specification level. In case the sequence diagram is
to be interpreted as an instance of a sequence diagram at specification level, the different
sequence diagram traces can also be translated into instances of the corresponding elements
of the sequence diagram at specification level. This idea is shown in Figure 6.5.

The message m1 can be seen in the UML architecture as an instance of the metaclass
Message. At the same time this message is part of a sequence diagram at specification level
and in this universe, the message m1 is a concept. However, there exists in a sequence

Chapter 6. Encoding of UML Model Elements 146

instance-of

UML Meta UML

instance level

Message m1

stimulus1

instance-of

instance-of

Figure 6.5: Specification versus instance level.

diagram at instance level, a stimulus1 1. This stimulus1 is an instance of the message m1
at specification level. At the same time this stimulus1 is a description of an invocation of
an operation, etc. In fact this stimulus1 is also an instance of the metaclass Message. This
is why there is an arrow in Figure 6.5 from stimulus1 to Message.

Communication View

The connectable elements in a sequence diagram at instance level, define particular in-
stances of classes. The connectors correspond to links, i.e., instances of associations. As a
consequence, the communication view of a sequence diagram at instance level is translated
into individuals.

Example 42 Consider as an example the communication diagram shown in Figure 2.10.
The RACER Fragment 6.7 represents the objects atm, the object of type Session and the
object of type Withdrawal and the links between these objects. The first two links are in-
stances of associations that are explicitly modelled in the class diagram shown in Figure 2.6.
The last two links are implicit in the class diagram. They represent instances of associations
implicitly present in the model due to self sends.

6.7 Encoding of Constraints

Constraints can be specified on UML class diagrams but also on lifelines in sequence dia-
grams, as pre- and postconditions on operations and as guards on PSM transitions. Con-
straints can also be specified on UML class diagram concepts. OCL can be used to specify
these constraints. We can now ask the question to which extent OCL constraints can be
translated into DL expressions.

The kinds of constraints that can be specified in a DL, are fully determined by its
expressive power. For example, the set of constraints that can be expressed in the DL
SHIQ(D−) is defined by the constructors which are defined in Table 5.3, together with the
predicate names of the supported concrete domains. We will compare the expressiveness of
this logic to the expressiveness of OCL constraints.

1Description of Stimulus can be found on pg. 31 in [Obj04e]

147 6.7 Encoding of Constraints

; translation of the objects

(instance atm ATM)

(instance session SESSION)

(instance withdrawal WITHDRAWAL)

;translation of the link between session and atm object

(instance sessiontoatm SESSIONtoATM)

(related sessiontoatm session sessionend1)

(related sessiontoatm atm atmend1)

;translation of the link between withdrawal and atm object

(instance withdrawaltoatm TRANSACTIONtoATM)

(related withdrawaltoatm atm atmend2)

(related withdrawaltoatm withdrawal withdrawalend1)

;translation of the link between session object and itself

(instance selfsession selfSESSION)

(related session selfsession sessionend2)

(related session selfsession sessionend3)

;translation of the link between withdrawal object and itself

(instance selfwithdrawal selfWITHDRAWAL)

(related withdrawal selfwithdrawal withdrawalend2)

(related withdrawal selfwithdrawal withdrawalend3)

RACER Fragment 6.7: Racer expressions representing part of the communication diagram
of Figure 6.4.

6.7.1 OCL versus DLs

There are some fundamental differences between OCL version 1.x or version 2.0 and DLs
in general.

1. OCL is a language based on first-order logic and set theory, it allows for bag semantics,
aggregation operations (like sum and size), etc., while DL is a decidable fragment
of first-order logic. Due to this, usually only unary and binary predicates can be
captured. Remark that the logic DLR is an n-ary logic. Techniques for reifying
higher arity predicates are well known too.

2. OCL is in the first place designed to specify constraints on elements of class diagrams,
they can be expressed on other UML diagram elements only in a limited way. For more
detail on this topic, we refer the interested reader to the UML 2.0 OCL Specification
document [Obj04d]. The terminological knowledge specified by DL statements, is
“generic” or “global”, which means that it is true in every model of the situation
and for every individual in the situation. In OCL free variables are allowed and
quantification can be used as in first-order logic. Using OCL, restrictions can be
specified on certain specific individuals.

3. OCL is a query language, it queries for individuals that violate a certain restriction.
It specifies “local” information about certain individuals. Such information can only
be specified by a DL query language that reasons on individuals defined in a DL
Abox. The DL system Racer version 1.7 does not offer an advanced query language.
In the next chapter we will show why inconsistency detection needs such a query
language. Among other things, based on our observations a query language, named
nRQL [Wes04], was developed and is available from Racer version 1.7.19.

4. DLs have (a form of) the tree model property (except for the DLs including nomi-
nals). This means that a DL concept C has a model (i.e., an interpretation) iff C

Chapter 6. Encoding of UML Model Elements 148

has a tree-shaped model, i.e., one in which the interpretation of properties defines a
tree-shaped directed graph. This requirement severely restricts the way variables and
quantifiers can be used. In particular, the quantified variable must occur in a property
predicate along with the free variable (DL concepts correspond to predicates with one
free variable). One obvious consequence of this restriction is that it is impossible to
describe concepts whose instances are related to another anonymous individual via
different property paths. For example, it is not possible to define a concept repre-
senting classes having attributes and association ends with the same name. Because
OCL is based on first-order predicate logic, no restrictions are enforced on quantifiers
appearing in the formulae.

6.7.2 OCL Constraints Encoded in SHIQ(D−)

In this section, we focus on which constraints, compared to OCL constraints, can be ex-
pressed in a SHIQ(D−) Tbox.

Due to the fact that OCL constraints must be expressed in the context of a classifier
and they are used to navigate over modeled associations, a certain OCL constraint can be
specified in several ways. There are also equivalences among OCL operations and between
the different logical operators defined in OCL. As a consequence, we start from OCL expres-
sions simplified to a conjunctive normal form that is a conjunction of different disjunctions
[CT04]. Conjunction and disjunction of OCL expressions corresponds to conjunction and
disjunction of DL complex concepts. We now compare the different literals of a disjunction
in the conjunctive normal form (this list is taken from [CT04]) of an OCL constraint, to
their corresponding SHIQ(D−) concepts and roles, if possible.

A literal can be one of the following:

boolean attribute This attribute is represented in a DL by a role as explained in Sec-
tion 6.4.

equality comparison between objects or sets A DL concept is to be interpreted as a
set of individuals. In the context of a UML class diagram, a DL concept is interpreted
as a set of objects. Equality of sets can be expressed by the equivalence relationship
and the subset relation is nothing more than the subsumption relation in DLs. It is
not possible to compare individuals at Tbox level, only at Abox level.

forAll iterator over an expression This can be expressed in a DL statement under the
condition that the expression does not state information about a particular individual
and that the set over which is iterated can be captured by a complex DL concept. For
example, the OCL constraint

context Bank inv:
self.customer->forAll(c | c.age >= 18)

stating that every customer of a bank must be older than 18 can be translated into
a DL statement Bank v ∀ customer.(Customer u ∀ age. >= (age, 18)) The
classes Bank and Customer are represented by the DL concepts Bank and Customer.
The association between Bank and Customer is represented by the DL concept
BanktoCustomer v (≤ 1 customer) u (≤ 1 bank) u ∃ customer.Customer u
∃ bank.Bank. The attribute age is represented by the DL role age.

149 6.7 Encoding of Constraints

not operator Negation is supported by expressive DLs such as SHIQ. Remark however
that this negation is interpreted as the complement. Depending on the context, also
the bottom concept, i.e., ⊥ ≡ ¬>, can be used. To express the OCL constraint,
context Customer inv: not trustful, the GCI Customer u ∃trustful v ⊥ can be
used.

oclIsTypeOf or oclIsKindOf operator over an expression oclIsTypeOf(t) deter-
mines whether t is the same type as the type of the expression on which the operator
is applied. oclIsKindOf(t) determines whether t is either the direct type or one of
the supertypes of the type of the expression on which this operator is applied. If it is
possible to express the OCL expression on which the operators are applied into a DL
expression, the subsumption and equivalence relation can be used to represent these
operators.

arithmetic comparison Due to the inclusion of the concrete domains integer, reals and
complex numbers, it is no problem to represent an arithmetic comparison in a DL
concept. However, problems can occur if OCL pre-defined operations are involved in
the comparison (see next discussion on OCL pre-defined operations).

We will now discuss how OCL pre-defined operations can be expressed in a DL. Due to
the DL semantics, we only investigate operations on the OCL Collection type and on the
OCL Set type. As defined in [Obj04d], there are some equivalences among these pre-
defined operations. Using these equivalences, the set of operations can be reduced to (see
also [CT04]): size(), count(object), select(expr), forAll(expr), union(set) and -(set). The
forAll operation is already discussed above.

• The operation size() returns the number of elements of the set on which the operation
is applied. If this set can be represented by a complex DL concept of the form R.C,
i.e. a qualified restriction, qualified number expressions can be used to restrict the
size of this concept. If the set cannot be represented by a qualified restriction, it is
not possible to express a constraint on its size. The same remark can be made for
the count(object) operation. This operation returns the number of occurrences of the
object in the set on which the operation is applied. In current DLs it is not possible
to count individuals at the Tbox level. However, it would be possible to introduce
cardinality restrictions on concepts in a DL. These cardinality restrictions restrict the
number of instances of a given concept. Such cardinality restrictions on concepts have
been proposed in [BBH93] and they show that the important inference problems stay
decidable. However, this has never been implemented in any DL system.

• The select(expr) operation specifies a subset of the set on which it is applied and for
which expr is true. If expr can be represented by a DL concept, this DL concept is
interpreted as the set for which expr is true. The OCL expression self.select(c |
c.age >= 18) is represented by the DL concept Customer u ∃age. >= (age, 18).

• The operation union(set) applied on a set returns the union of this set and set. This
operation corresponds to the t constructor. The operation -(set) returns the elements
of the set on which the operation is applied, which are not in set. This operation can
be represented in a straightforward way by a combination of the constructors ¬ and
u.

Chapter 6. Encoding of UML Model Elements 150

Tbox representing UML metamodel
(Section 6.1)

class diagram traces

call sequences

PSMs

individual-of
Abox representing user-defined UML models

Tbox representing classes
(Section 6.4)

spanning functions for
UML class diagram
concepts

Tbox representing SD traces
(Section 6.6)

spanning functions for
UML trace concepts

Tbox representing call
sequences

Tbox representing PSMs
(Section 6.5)

spanning functions for
UML PSM concepts
(minus call sequence
concepts)

spanning functions for
UML call sequence
concepts

class instances, links
and slots

message instances,
links and slots

individual-of individual-of

Figure 6.6: General picture on spanning functions.

6.8 A DL Framework Representing UML Models

Using the spanning functions (first defined in [WF94]), the translation of the different
interpretations of the distinct UML model elements can be generated from the abstract
syntax representation of the user-defined models. The general picture on the use of these
spanning functions is illustrated in Figure 6.6.

The upper rectangle represents the Tbox containing the encoding of the UML metamodel
as explained in Section 6.1. The ovals underneath contain the different user-defined UML
models as instances of the concepts representing the UML metamodel. From this knowledge
and using the spanning functions, Tboxes can be generated representing the semantics
of PSMs, call sequences, SD traces and class diagrams. In this framework we assume
that constraints on transitions, lifelines and class diagrams are written immediately in
DL. The implementation of OCL constraints in DLs and the use of spanning functions
for the generation of these constraints from the UML metamodel extended with the OCL
metamodel are topics of future work.

Objects and links between objects, for example, can be represented as instances of the
concepts representing classes and associations. Sequence diagrams at instance level can be
interpreted as instances of sequence diagrams at specification level. The lower two ovals
represent the Aboxes containing these instances.

151 6.9 Discussion and Related Work

In the next chapter, we will show how part of our classified inconsistencies can be
detected by queries over the Aboxes representing the user-defined UML models as instances
of UML metamodel concepts. The other part of our classified inconsistencies can be detected
using the standard DL reasoning tasks on the Tboxes representing the user-defined models.

6.9 Discussion and Related Work

In the literature, several formalisations for general statecharts and interaction diagrams
have been proposed. In this section, we discuss the most recent ones and compare
them to our approach. In the definitions of Chapter 2, messages are characterised only
by the operation called. Such messages are called symbolic messages, as opposed to
parametrised messages containing not only the operations but also the actual parameters
of the operation call. As a last topic of this section, symbolic messages/transitions versus
parametrised messages/transitions, is explicated and we show to which extent parametrised
messages/transitions can be supported in DLs.

6.9.1 Formalising Statecharts

There is an abundant amount of work on model checking for different statechart vari-
ants. Recent work concerns the translation of UML state machines into the process algebra
CSP [EHK01] and the translation into the model checker Spin [SKM01, LMM99].

Model checking is an automatic, model-based, property-verification approach. It is
intended to be used for concurrent, reactive systems. Model checking focuses explicitly on
temporal properties and the temporal evolution of systems. It starts with a model described
in a description language, and it discovers whether properties described in a specification
language, are valid on the model. If they are not valid, it can produce counterexamples,
consisting of execution traces. The specification language can be a temporal logic or a
labelled transition system.

The specification language used by Spin is PROMELA. Spin can be used as a full LTL
(linear-time temporal logic) model checking system, i.e., the properties to be verified are
LTL formulae. Temporal logics have a dynamic aspect, since truth of a formula is not
fixed in a model, as it is in predicate or propositional logic. The models of temporal logic
contain several states and a formula can be true in some states and false in others. Other
specification languages are also supported by Spin. In [SKM01] for example, UML state
machines are translated into PROMELA, while Büchi automata are used to describe the
properties to be verified. In this particular case the properties are UML collaboration
diagrams.

In [EHK01] a refinement-based approach is taken. The process algebra CSP is used to
describe UML state machines. A process algebra focusses on different ways to compose
formulae. CSP defines refinement relations. Whether a certain property fulfils a described
state machine depends on the existence of a refinement relation between them.

Some DL reasoning tasks can also be seen as an automatic, proof-based, property-
verification approach. In DLs the specification and description languages are the same. The
built-in reasoning capabilities are used to verify whether hypotheses asserted by the user
are valid on the model. This does not result in counterexamples which consist of execution
traces. Model checking starts with a logic model and discovers whether properties asserted

Chapter 6. Encoding of UML Model Elements 152

by the user are valid. In a model checking approach the verification relies on an exhaustive
search of all states that the system will encounter. This gives rise to the known problem of
state explosion. In case of a process algebra approach the verification relies on the available
refinement relations. DLs construct models in which the property is valid. Model checking
focuses explicitly on temporal properties unlike DLs. However, as explained in Section 5.7,
some DLs correspond to certain modal logics of which temporal logics are special cases.

Which properties can be checked by a model checker depends on the expressiveness of
the specification language. To conclude the discussion on formalising statecharts, we will list
practically relevant properties taken from [HR04] and check whether they can be expressed
in a DL. The following properties can be expressed in a DL.

• “It is impossible to get to a state where a property p1 holds, but p2 does not hold”.
This can be expressed by the GCI (implies (some r (and p1 (not p2))) bottom)
in case the translation of Section 6.5.1 is used.

• “For any state, if a property p1 holds then a next state can be reached where property
p2 holds.” This can be expressed by the GCI (implies p1 (some r p2)).

• “For any state, if a property p1 holds then eventually a state will be reached where
property p2 holds.” A restricted form of this property can be expressed by the GCI
(implies top (all s (or (not p1) (some s p2)))), where s is a transitive su-
perrole of r.

The following properties (also taken from [HR04]) cannot be expressed by DLs.

• Suppose we model the behaviour of a lift. “An upwards travelling lift at the second
floor does not change its direction when it has passengers wishing to go to the fifth
floor.” This is not expressible in DL. The fact that the lift travels upwards until it
reaches the fifth floor is not expressible in DL.

• The property “from any state it is possible to get to a certain state” is also not possible
to express in DLs.

In general, loops as expressed by the until in the behaviour of a lift, cannot be expressed
by DLs. Because SD traces describe scenarios, this does not affect the checking of our
inconsistencies by DLs.

6.9.2 Formalising Interactions

Several kinds of semantics have been defined for UML interactions in literature. Araújo
et al. [AM00] as well as Knapp [Kna99] transform UML interactions into a temporal logic.
In [AM00] UML sequence diagrams are translated into temporal formula in Object-Z. The
temporal logic, which is not included anymore in the Object-Z framework, corresponds
to the modal logic K. The translation we introduced in this chapter is similar to this
translation. As already explained in Chapter 5 roles in DLs can be used for the modal
operators. The temporal logic used in [Kna99] is a linear first-order logic which extends K
with the temporal connective W. This connective must be read as “unless”.

153 6.9 Discussion and Related Work

6.9.3 Symbolic Messages versus Parametrised Messages

Remark that in the definitions of Sections 2.5 and 2.6 and as a consequence, also in the
DL formalisation, only symbolic labelled messages and transitions with constraints are
considered. In our examples, we used parametrised messages and transitions. Consider the
transition from the state VerifyATMBalance to the state VerifyWithdrawal in the PSM in
Figure 2.14. In our translation we only take into account the constraint [cashAvailable]
and the operation called send. The actual value of the parameter m and the return parameter
allowedWithdrawal of the operation are not considered. Nevertheless, we believe that our
ideas can be extended and mounted to a more detailed level of messages and transitions.
Remark that allowedWithdrawal is used in a constraint on the outgoing transitions of the
state VerifyWithdrawal and translated into a DL concept.

We will discuss some ways dealing with actual parameters of an operation and assign-
ment of properties of a class. The actual parameters of an operation call belong to a
message. A message can be defined as a tuple consisting of the operation called and values
for each of its parameters. These values, however, are either values of a primitive type
such as Integer or String, or they are specific instances of classes. This means that these
values are specified as individuals in a DL Abox. However, in case of actual parameters, the
goal is to use these parameters in PSMs and sequence diagrams, i.e., at DL Tbox level. As
explained in Section 6.1, this is not an insurmountable problem.

The same remarks can be made for assignment of values to properties of a class. How-
ever, to make things more complicated, the values of properties of a class can change within
one SD trace or call sequence. Lets look at some examples.

Example 43 If an attribute or a parameter has a primitive type, a concept can be defined
which contains the assignment of this attribute/parameter to a certain value. Consider an
attribute has-age of type Integer This is defined on class diagram level in Racer as:
(define-concrete-domain-attribute has-age :type integer). It is possible to define
concepts, used on sequence diagram level for example, of the form (define-concept age1

(equal has-age 16)) and (define-concept age2 (equal has-age 18)). These con-
cepts can be used in more complex concepts and as such it is possible to reason about them.
Remark that it is not only possible to assign an integer value to has-age but also more
complex expressions. We refer the interested reader to the Racer manual ([HMW04], pg.
47) for the exact definition of these complex expressions.

Example 44 Consider the assignment m := amessage where m and amessage are both of
type Message. m denotes an attribute, or an association end. Both m and amessage are
Abox assertions and cannot be used at Tbox level in Racer. It is also not possible to
express in the same Abox or Tbox that in one case an assertion has a certain value and
in another case another value unless the context is explicitly modelled. What do we mean
by modelling the context in an explicit way?

Consider a transition allowedWithdrawal := send(m1) followed by a transition
allowedCharging := send(m2). allowedWithdrawal and allowedCharging indicate the
return value of the send operation called with the actual parameter m1, m2, respectively.
This call sequence can be expressed in Racer as described in the RACER Fragment 6.8.
Again in these definitions we included concepts like (exactly 1 p1). If Racer would allow
true reasoning over individuals in Tboxes, this would not be necessary, because the reasoner
would infer the knowledge that (all p1 m1) v (≤ 1 p1).

Chapter 6. Encoding of UML Model Elements 154

As a last remark, it is quite clear that only static checks can be executed. It is possible to

(define-concept t1 (and (all op (and send (all p1 m1) (all r1 allowedWithdrawal) (exactly 1 p1)

(exactly 1 r1))) (exactly 1 op)))

(define-concept t2 (and (all op (and send (all p1 m2) (all r1 allowedCharging) (exactly 1 p1)

(exactly 1 r1))) (exactly 1 op)))

(implies t1 (some r t2))

RACER Fragment 6.8: Racer expressions for a parametrised call sequence.

model parametrised messages in DL and to reason about these messages to a certain extent.
It is quite clear that only static reasoning is supported.

6.9.4 Evaluation of Criterion #1

In spite of their limited expressiveness, we can conclude that DLs meet the requirement
stating the ability to express the abstract syntax of the UML fragment considered in this dis-
sertation. We showed how metaclasses, primitive types, meta-attributes, meta-associations,
meta-aggregations, generalisations and enumerations can be encoded in DL. It is also possi-
ble to express particular semantics for certain UML model elements as defined in Chapter 2.
Through the encoding of class diagrams in DL, well-defined semantics is given to these dia-
grams. SD traces and call sequences with or without states can be encoded in DL providing
well-defined semantics for these concepts. Finally, the communication view of sequence
diagrams can be encoded in DLs too, providing a semantics for that particular part of a
sequence diagram.

In general, the expressiveness of DLs allows for the verification of high-level UML models.

6.10 Conclusion

The goal of this chapter was to explore to which extent DLs satisfy the requirements of
criterion #1, i.e., the representation of syntax and semantics. To evaluate the first part of
this requirement, the representation of the abstract syntax, a translation of the UML meta-
model to a particular DL, SHIQ is defined. This translation is based upon the translation
of the basic UML class diagram concepts in [Ber02]. The representation of the semantics
of the different UML semantical concepts was a next item of study. The same translation
of the UML metamodel into SHIQ can be used to translated class diagrams, completed
with some additional class diagram specific features. We also showed how and to which
extent PSMs, call sequences and SD traces can be translated into SHIQ concepts. We also
compared the expressiveness of OCL constraints to DL terminologies. This is the first study
investigating the use of DLs as semantic domain for UML sublanguages and comparing OCL
and DLs.

How the reasoning abilities of DLs together with the translations proposed in this chap-
ter, can be used to detect and resolve inconsistencies, is the subject of the next chapter.

Chapter 7

A DL Inconsistency Detection
Approach

This chapter presents DLs (and DL systems) as an inconsistency detection formalism. First,
we commence by revisiting our conceptual classification previously defined in Chapter 3
from the point of view of detecting these inconsistencies by DLs and DL query languages
(Section 7.1). We state that inconsistency detection in, or between, representations of UML
models – resulting from using the encoding of the UML elements in DLs presented in the
previous chapter – can be established in two ways.

We continue by introducing the first approach – to detect inconsistencies by querying
the user-defined models in terms of metamodel concepts (Section 7.2).

In the previous chapter, we argued that UML model elements have different interpre-
tations in different universes of discourse. These different interpretations are linked to
each other via so-called spanning functions. We demonstrate the second way of detecting
inconsistencies, i.e., how our DL framework representing UML models, can be used to de-
tect inconsistencies in combination with standard DL reasoning tasks over DL Tboxes and
Aboxes representing the semantics of UML diagrams (Section 7.3).

This chapter is concluded by a discussion on related work and on the advantages and
limitations of the DL detection approach and by evaluating this approach based on crite-
rion #2 of Chapter 4 – precise definitions of inconsistencies and inconsistency detection
(Section 7.4).

7.1 Conceptual Classification Revisited

In this section, our conceptual classification of inconsistencies as defined in Chapter 3 is
revisited from the point of view of the different inconsistency detection approaches. In
the next sections, we will introduce two possible inconsistency detection approaches. The
first approach is to query the user-defined models interpreted as instances of the UML
metamodel. The second approach is to use DLs as semantic domain and to use the reasoning
tasks, Tbox coherence or Abox consistency. An inconsistency belonging to our classification
can be detected by one or a combination of both approaches.

Table 7.1 demonstrates the DL inconsistency detection classification. This classification
is a revision of our conceptual classification. Again, two dimensions are distinguished.

Chapter 7. A DL Inconsistency Detection Approach 156

Metamodel (Section 7.2) DL Framework (Section 7.3)

dangling type reference invocation interaction
Specification inherited cyclic composition observation interaction

connector specification missing

multiplicity incompatibility
Specification- abstract object specification behaviour incompatibility

Instance navigation incompatibility invocation behaviour
instance specification missing observation behaviour

Instance disconnected model invocation inheritance
observation inheritance
instance behaviour incompatibility

Table 7.1: A first two-dimensional DL inconsistency detection table.

The first dimension concerns the different approaches to detection. The second dimen-
sion concerns the level of the affected model. This latter dimension also occurs in our
conceptual classification.

Next to this dimension, our conceptual classification is made with respect to the dimen-
sion distinguishing between structural and behavioural inconsistencies. Table 7.2 shows a
classification with respect to this dimension. From this table, we draw two conclusions.

Metamodel (Section 7.2) DL Framework (Section 7.3)

dangling type reference
inherited cyclic composition

Structural connector specification missing
instance specification missing
disconnected model

multiplicity incompatibility
abstract object specification behaviour incompatibility
navigation incompatibility invocation interaction

observation interaction
Behavioural invocation behaviour

observation behaviour
invocation inheritance
observation inheritance
instance behaviour incompatibility

Table 7.2: A second two-dimensional DL inconsistency detection table.

The inconsistencies classified as structural in Table 3.1 are all detected by using meta-
model information. This is not surprising due to the nature of these constraints. In Chap-
ter 3 the structural inconsistencies are specified in terms of UML metamodel concepts.

All behavioural inconsistencies, except for the specification incompatibilities, are de-
tected using DLs as a semantic domain. Again, this is not suprising due to the nature of
these constraints. These inconsistencies are defined in Chapter 3 in terms of semantical
concepts, except for the specification incompatibilities that are specified in terms of UML
metamodel concepts.

In the remainder of this chapter, we introduce both detection approaches and a discus-
sion on the advantages and limitations of these approaches.

157 7.2 Querying the UML Metamodel

7.2 Querying the UML Metamodel

Our structural inconsistencies and behaviour incompatibilities express properties on UML
models in terms of UML metamodel elements. To be able to detect these inconsistencies, the
user-defined models need to be queried in their capacity of metamodel element instances.
The detection of these inconsistencies boils down to the definition and execution of DL
queries on DL Aboxes representing the user-defined models.

First, we motivate the need for an extensive Abox query language for the detection of
inconsistencies using DLs. Next, we specify the requirements for this query language based
on our experience with the specification of the detection of our inconsistencies with the
query language of Loom. Finally, we demonstrate how the required features are used in
the detection of part of our classified inconsistencies.

7.2.1 Motivation for a DL Query Language

Practical DL systems such as Racer offer a functional API for querying a knowledge base,
i.e., a tuple of a Tbox and an Abox. For instance, Racer provides a query function,
(concept-instances C), for retrieving all individuals from an Abox that are instances of
a given concept C. This concept C can be an atomic or a complex concept. Remark that
the function concept-instances uses the subsumption reasoning task.

Let us consider the statements (related atm asciiend ownedAttribute), (related
asciiprintingatm atmend ownedAttribute) defined in the Abox of Figure 6.2. If we are
interested in finding individuals in the Abox for which it can be proven that an attribute
exists, the query (concept-instances (some ownedAttribute Property)) can be used
in Racer. However, if we would like to find all tuples of individuals x and y such that
a common owner exists of the attribute, it is not possible to express this in sound and
complete DL systems such as Racer version 1.7. The reason is two-fold. First, it is not
possible to define a concept representing a common owner of an attribute due to the tree
model property (cf. Section 6.7). Second, DL systems such as Racer version 1.7, are not
equipped with a query language and mechanism that allow variables and individuals as part
of the query and return tuples as answer sets. As a consequence, there is no support for
queries asking for tuples of related individuals.

In contrast to the state-of-the-art DL systems, the second generation system Loom has
offered an expressive query language right from the beginning. In [Sim03], we translated
part of the UML version 1.4 metamodel into Loom concepts, roles and individuals using
the translation introduced in the Section 6.1. We demonstrated how a major part of our
defined inconsistencies can be detected using Loom’s query language. For example, the
following query can be used to find all parameters of a certain operation whose types are
not contained in any model.

(do-retrieve (?operation ?parameter ?class1 ?class2)

(:and

(Operation ?operation) ;?operation is an operation

(Is-owned-by ?operation ?class1) ;?operation is owned by a class ?class1

(Has-parameter ?operation ?parameter)

;?operation has a parameter ?parameter

(Parameter-class ?parameter ?class2)

;type of the ?parameter is a class ?class2

(In-namespace ?class2 NIL))

;?class2 is not defined in a namespace (i.e., model)

Chapter 7. A DL Inconsistency Detection Approach 158

(format t "Type of the parameter ~S of operation ?S of class ~S, does not

exist in any model" (get-value ?parameter name) (get-value

?operation name) (get-value ?class1 name)))

The do-retrieve statement defines a query and the variables or individuals are preceded
by a question mark. The query atoms are concept names or role names in this particular
query. These concepts and roles correspond to UML 1.4 metaclasses, respectively meta-
associations. Remark that we decided not to use Loom as DL system in our approach (cf.
Chapter 5) because Loom is not maintained anymore and because it has an incomplete
algorithm and many possible inferences are not supported.

One could argue that we do not need such a query language in state-of-the-art DL
systems and that the function concept-instances together with some functions retrieving
the fillers of a role, is sufficient. The host programming language can be used to encode the
search. For example, in the CommonLisp Racer a similar query to the previous one can
be formulated using the loop facility of CommonLisp.

(loop for ?operation in (concept-instances ?operation)

with ?operationname = (first (retrieve-individual-fillers ?operation ’name)) do

(loop for (and ?class1 in (retrieve-individual-fillers ?operation ’Is-owned-by)

?parameter in (retrieve-individual-fillers ?parameter ’Parameter-class)

with (and ?classname = (first (retrieve-individual-fillers ?class1 ’name))

?parametername = (first (retrieve-individual-fillers ?parameter ’name)))

do

(loop for ?class2 in

(retrieve-individual-fillers ?parameter ’Parameter-class)

when (null (retrieve-individual-fillers ?class2 ’In-namespace)) do

(format t "Type of the parameter ~S of operation ?S of class ~S, does not

exist in any model" ?parametername ?operationname ?classname)

retrieve-individual-fillers? is a Racer function returning all the individuals that
are fillers of a role for a specified individual.

The disadvantages of this approach are quite obvious:

1. The queries written as search programs using Racer API functions result in a bunch
of nested loop-statements. The search programs can become quite complicated and
unmanageable. The order of the statements in such a search program is important.
The developer has to encode how the program must search through the Abox, while
the goal of defining a query is to encode what must be searched for.

2. A second disadvantage of writing the queries using, e.g., the loop facility of Common-
Lisp is that no optimisation of the query can be performed. By having a sophisticated
query mechanism, different optimisations can be performed. The amount of data avail-
able for the search process can be enhanced. The query mechanism will rewrite the
query and add some logical conjuncts without changing the query’s semantics. The
answer sets of queries can be cached for two reasons. First, the cached results can be
used when a query is executed more than once. Second, these results can be used for
answering related queries. Similar to DL concepts, also DL queries can be classified,
this process is called query classification [Wes04]. The most specific subsumers and
the most general subsumees can be computed.

In Van Der Straeten et al. [VSM03], we plead for the integration of such an extensive
query language in state-of-the-art DL reasoners. Based on our definitions of the differ-
ent inconsistencies and on our experience with translating these inconsistencies into the

159 7.2 Querying the UML Metamodel

Loom query language, a set of requirements can be defined for a DL query language. These
requirements must be satisfied by a DL query language to be suitable for our needs.

7.2.2 Requirements for a DL Query Language

We use the following query format:

q(~x)← body1(~x, ~y1, ~c1) ∨ . . . ∨ bodyn(~x, ~yn, ~cn)

In the remainder of this section, each part of this query format will be explained together
with the requirements for each part.

Query body The body of a query (i.e., the expression following ←) is a disjunction of
bodyi(~x, ~yi, ~ci). bodyi is a conjunction of atoms. This expresses our first requirement.
The body of a query can contain disjunctions as well as conjunctions. ~yi are all the
variables appearing in the body and ~ci are the constants appearing in the body. The
variables included in ~x are the answer set of the query. ~x denotes variables and
constants that occur in the body of the query.

The above specified Loom query has a body containing a conjunction of different
atoms. The next requirements specify the possible atoms contained in a query body.

Concept query atom An atom can have the form C(t) where t is an individual or variable
belonging to ~x, ~yi or ~ci. C is an SHIQ(D−) concept. This concept can be an atomic
concept or a complex concept. For example, the atom property(x) denotes all the
instances of the atomic concept property. These instances will be bound to the
variable x. The atom (featureu (¬property))(x) is a complex concept query atom.

Role query atom An atom can have the form R(t, t′) where t and t′ are individuals or
variables belonging to ~x, ~yi or ~ci. R is an SHIQ(D−) role that can be an atomic
role, an inverse role or a transitive role. By posing a query containing the atom
ownedAttribute(x, attCash), where attCash is a constant, all individuals which are
related to the individual attCash through the role ownedAttribute will be bound to
the variable x.

Concrete domain attributes atom An atom can have the form P (f(t), g(t′)) where t
and t′ are individuals or variables belonging to ~x, ~yi or ~ci. P is one of the concrete
domain predicates of SHIQ(D−). f = f1 ◦f2 ◦ . . . fn, g = g1 ◦g2 . . . gm are role chains
and fn and gm are concrete domain attributes or f and g are individuals from one
of the concrete domains supported by SHIQ(D−). An example of such an atom is
string=(ownedAttribute ◦ name(x), name(y)). It expresses that the name of y equals
the name of the owned attributes of x.

These concrete domain attribute atoms can be used to compare names of model
elements.

Restricting to explicitly presented individuals Reasoning under the open-world as-
sumption can lead to seemingly awkward results for users not familiar with it. Con-
sider the qualified number restriction (≥ 2 memberEnd property), expressing the
existence of at least two member ends of type property. If less than two member

Chapter 7. A DL Inconsistency Detection Approach 160

ends exist in an Abox, this will not result in an inconsistent Abox with respect to the
qualified number restriction. Due to the open-world assumption, absence of role fillers
of memberEnd is not interpreted as if there are none, but such role fillers can still be
added to the Abox later on. In this case we want to query the Abox for role fillers of
the role memberEnd. As a result of this query, we only want to retrieve the individuals
for which such a role filler assertion is explicitly stated. A requirement for a DL query
mechanism is that variables can only be bound to explicitly present Abox individuals
in the queried Abox.

True negation and negation by failure The atom (¬property)(x) in a query will re-
sult in the binding of all individuals for which a DL system, such as Racer, can
prove that the individual is not a property. This is due to the open-world semantics.
However, sometimes we want to retrieve all the individuals which are currently not
known to be properties. This implies that all the individuals will be retrieved for
which a DL system currently cannot prove that those are properties. This is called
the negation by failure semantics.

Suppose we are looking for operations that do not belong to any class. If the atom
(¬ownedoperation)(x, y) is used, this results in the set of pairs (x, y) for which it can
be proven that there are no operations. However, if some classes are present in the
Abox without any operations attached, those will not be returned by a query consisting
of the atom (¬ownedoperation)(x, y). Again, due to the open-world semantics, any
of the present classes which do not have any explicitly modelled operation in the Abox,
can still own operations later on.

This negation by failure semantics is also needed for the next requirement.

Presence of explicit role fillers In the context of some of our inconsistencies it becomes
particularly relevant to be able to check if there are explicitly specified role fillers in
an Abox. This is relevant for example, for checking whether a certain model element
belongs to the model under study. In this case, we want to check whether there is an
explicit ownership relation between the model and the model element.

Retrieve told values Until now, we assumed that the head of a query has the form q(~x),
where ~x consists of a set of individuals used in the body of the query and a set of
variables which will be bound as a result of executing the query. Because SHIQ(D−)
and Racer support concrete domains such as String, Integer, Reals, . . . , concrete
domain values assigned to so-called concrete domain attributes must be retrievable
from an Abox. An explicitly asserted concrete domain value is called in Racer, a told
value.

In the context of inconsistency detection, it is necessary, e.g., to retrieve the multiplic-
ity restrictions specified for a certain association end. These multiplicity restrictions
can be Integer values. The statement (attribute-filler end1 2 lowerValue)
can be added to a Racer Abox, indicating that the lower value of the multiplicity
restriction for the association end end1 is 2. The query language must enable the
retrieval of these told values.

Completeness of answer sets State-of-the-art DL systems are sound and complete rea-
soning systems. The question arises if the query language must be complete too.

161 7.2 Querying the UML Metamodel

By exploiting Tbox information and the standard DL reasoning tasks, the in-
formation explicitly stated in an Abox can be extended by inferred informa-
tion. Consider an Abox where it is explicitly stated that a certain individ-
ual i is an instance of the concept InstanceSpecification, and this individ-
ual is related to another individual j through the role is-instance. This
role is defined in the Tbox as (define-primitive-role is-instance :domain
InstanceSpecification :range Class). If this Tbox information is used by a query
retrieving all the instances of the concept Class, the individual j will be part of the
answer set of the query, while j is not explicitly stated an instance of Class.

For our purposes, in most cases, we want to search through the explicitly told infor-
mation from an Abox. We will discuss in Chapter 10 what the possible implications
of (in)completeness of answer sets are on inconsistency detection and related tool
support.

Integrated in a DL system The query language is preferably an integral part of a DL
system. This integration eliminates a drastic communication overhead between the
DL system and the query processor. It also allows the incorporation of several opti-
misation techniques in the query mechanism.

7.2.3 nRQL

Based on, among others, [Sim03] and [VSM03], a query language for Racer, called the new
Racer Query Language, or nRQL, was implemented by Michael Wessel [HMSW04] and
included in Racer version 1.7.19. The definition of this query language was first published
in [HMSW04]. We contributed to this publication by using this query language in the
context of inconsistency detection.

We include the definition of an nRQL query and nRQL atom. For the complete syntax
and semantics of this query language, we refer the interested reader to [HMSW04] and the
nRQL manual [Wes04]. Some notations are introduced first.

Notation 9 [HMSW04] Let I and V be two disjoint sets of individual names and variable
names, respectively. The set O =def V ∪ I is the set of object names. We denote variable
names (or simply variables) with letters x, y, . . .; individuals are named i, j, . . .; and object
names a, b,

Definition 69 [nRQL Query Bodies, Queries & Answer Sets] [HMSW04] A nRQL Query
has a head and a body. Query bodies are defined inductively as follows:
• Each nRQL atom rqa is a body; and

• If b1 . . . bn are bodies, then the following are also bodies:

– b1 ∧ · · · ∧ bn, b1 ∨ · · · ∨ bn, \(bi)

We use the syntax body(a1, . . . , an) to indicate that a1, . . . , an are all the objects
(ai ∈ O) mentioned in body. A nRQL Query is then an expression of the form

ans(ai1 , . . . , aim)← body(a1, . . . , an),
The expression ans(ai1 , . . . , aim) is also called the head, and (i1, . . . , im) is an index vector
with ij ∈ 1 . . . n. A conjunctive nRQL query is a query which does not contain any ∨ and
\ operators.

Chapter 7. A DL Inconsistency Detection Approach 162

Query atoms are the basic syntax expressions of nRQL and can be defined as follows:

Definition 70 (Query Atoms) [HMSW04] Let a, b ∈ O; C be an ALCQHIR+(D−) con-
cept expression, R a role expression, P one of the concrete domain predicates offered by
Racer; f = f1 ◦ · · · ◦ fn and g = g1 ◦ · · · ◦ gm be feature chains such that fn and gm are
attributes (whose range is defined to be one of the available concrete domains offered by
Racer, or f, g are individuals from one of the offered concrete domains which means that
m,n = 1 and f1, g1 are 0-ary attributes). Then, the list of nRQL atoms is given as follows:

• Unary concept query atoms: C(a)

• Binary role query atoms: R(a, b)

• Binary constraint query atoms: P (f(a), g(b))

• Unary bind-individual atoms: bind individual(i)

• Unary has-known-successor atoms: has known successor(a,R)

• Negated atoms: If rqa is a nRQL atom, then so is \(rqa), a so-called negation as
failure atom or simply negated atom.

For the explanation of the different kinds of atoms, we also refer to [HMSW04] and
[Wes04]. This query language fulfils all the above specified requirements. Definition 69
is a superset of our first requirement. The unary concept query atom corresponds to the
requirement for a concept query atom. The binary role query atom corresponds to the
requirement for a role query atom. Binary constraint query atom corresponds to the
requirement for a concrete domain attributes atom. The has-known-successor atom
only retrieves the individuals for which a role filler assertion is explicitly stated. This atom
fulfils the requirement that it must be able to check the presence of explicitly stated
role fillers. Definition 69 and negated atoms fulfil the requirement of having two kinds of
negation, i.e., true negation and negation by failure.

Definition 69 has been extended to include projection operators in the head of a query.
These projection operators allow the retrieval of told values of concrete domain attributes.
This exactly corresponds to our requirement retrieve told values.

Furthermore, nRQL is integrated in the Racer server and different optimisations are
applied. It offers different degrees of completeness. The nRQL engine only takes into
account explicitly presented individuals for inference and search. The engine also allows for
incremental, concurrent querying of Aboxes.

For the sake of completeness, we also have to mention that other specifications for query
languages for DL systems exist. DLs are also used in the context of ontology languages and
the Semantic Web. DAML and OWL are two examples of Web ontology languages based
on DLs. In the context of the Semantic Web, query language specifications for DAML
and OWL (i.e., DQL and OWL-QL) are defined and also protocols for a query answering
dialogue. Some DQL implementations already exist, but all of them have some drawbacks
compared to nRQL. For a comparison between the different approaches, we refer to the
Bachelor thesis of Birte Glimm [Gli04].

163 7.2 Querying the UML Metamodel

7.2.4 Inconsistency Detection using nRQL

We will elucidate how the features implementing our requirements are used for the detection
of some of our classified inconsistencies.

Each of the queries defined in this section, uses the translation (defined in Chapter 6)
of the metamodel fragment (defined in Chapter 2). The translation of this metamodel
fragment to Racer statements can be found in Appendix A.

It is quite obvious that the first three requirements – concept query atoms, role query
atoms and concrete domain attribute atoms – are necessary for inconsistency detection
using the encoding of the UML metamodel in DL. It is also quite obvious that we will
restrict the queries to explicitly represented individuals. In the remainder of this section,
we exemplify the features implementing the remaining requirements by different queries
which are necessary for the detection of some of our classified inconsistencies.

Concrete Domain Attributes Atom

In the case of a cyclic composition inconsistency we want to retrieve (at least) the classes,
related by inheritance and the composition relation introducing an inherited cyclic compo-
sition inconsistency. Due to the fact that we would like to have tuples, we have to define a
complex query over the Abox assertions.

The following nRQL query returns the classes and association involved in the inconsis-
tency.

ans(c1, c2, assoc)
← general(c2, c1) ∧ ownedAttribute(c2, end1) ∧

aggregation(end1, aggregKind) ∧ composite(aggregKind) ∧
memberassociation(end1, assoc) ∧memberassociation(end2, assoc) ∧
ownedAttribute(c1, end2) ∧ (∃(lower).≥1)(end2)

The superclass relationship is represented by the direct superclass role which is a
subrole of a transitive general role. A class involved in an association end, is linked to
this association end by the role ownedAttribute. An association end has an aggregation
kind which can be none or an aggregation or a composite. This knowledge is represented
by the roles aggregation and the concept composite. An association has two or more
association ends, the role memberassociation links the association ends to its association.
Each association end has a multiplicity. In the UML metamodel, a property is a multiplicity
element. A multiplicity has a range which has a lower and upper bound. The lower bound
is represented by the concrete domain attribute lower which has type Integer. To be able
to check whether this lower bound is greater than or equal to one, a binary constraint query
atom is used.

Negation as Failure

Consider the dangling feature reference inconsistency. This inconsistency arises when, e.g.,
a message references an operation that does not exist in the corresponding class nor in any
of its ancestors. To be able to retrieve the tuples of classes and operations of which the

Chapter 7. A DL Inconsistency Detection Approach 164

operations are currently not owned by the classes, i.e., such that Racer cannot prove that
the operation is owned by the class, the \(ownedoperation(x, y)) atom can be used.

ans(m, op, c)
← message(m) ∧ signature(m, op) ∧ operation(op) ∧

receiveevent(m,mend) ∧ coveredsub(mend, lifeline) ∧ lifeline(lifeline) ∧
represents(lifeline, connectableel) ∧ base(connectableel, c) ∧ class(c) ∧
\(ownedoperation(c, op))) ∧ \(general(superc, c))) ∧
ownedoperation(superc, op))

m represents a message, op the operation called by m and c the class represented by a
certain lifeline lifeline on which the operation is received through a message end mend.

Presence of Explicit Role Fillers

To be able to detect a dangling type reference, we need to be able to find out which classes
do not belong to any model or to a particular model. This means that we want to retrieve
the Abox assertions that are not explicitly connected to a model. One way to ask for classes
which are not connected to a model is by the query: ¬(∃member.>(x)). However, suppose a
concept ClassinModel is defined as ClassinModel v Class u∃member.>. If an instance cl
of this concept is defined in an Abox without defining a role filler for the role member, this
instance will not appear in the answer set of the above defined query. This is due to the
open-world assumption. The has known successor atom checks whether there are certain
explicitly modelled role successors in an Abox without retrieving them. If, in the example,
the \(has known successor) atom is used, the instance cl will be returned in the answer
set. This atom is used in the following query returning the attributes whose type is not
known to a model.

ans(prop, atype)
← property(prop) ∧ definedType(prop, atype) ∧
\(has known successor(atype,member))

Told value

To detect a multiplicity incompatibility, the defined multiplicities of association ends must
be retrieved from the Abox. The following query returns the lower bound of the multiplicity
specified for a certain association end end owned by a class cl and belonging to the associ-
ation assoc. The projection operator told− value present in nRQL is used to retrieve this
lower bound.

ans(cl, assoc, (told-value(lowermultiplicity)))
← memberEnd(assoc, end) ∧ class(end, cl) ∧ lower(end, multiplicity)

165 7.3 Using our DL Framework Representing UML models

Completeness of answer sets

Recall the dangling type reference inconsistency. In the previous queries we
searched for attributes whose type was not known in any model. What hap-
pens if the user specifies the type of an attribute but does not define this type
explicitly as a class in the UML model? Consider as an example the Abox :
{class(atm), ownedAttribute(cash, atm), property(cash), definedType(cash, Cash)}. In
this Abox it is not explicitly stated that Cash is a Type, i.e., complexType(Cash). The
concept ComplexType represents the union of PrimitiveType and Class. Due to the
inference mechanism of DLs that takes into account the Tbox knowledge, the assertion
ComplexType(Cash) is inferred. If the following query is submitted to this Abox, the answer
set will be the empty set.

ans(prop, atype)
← property(prop) ∧ definedType(prop, atype) ∧ not(complexType(atype))

However, due to the different degrees of completeness of nRQL, it is possible to reason
in different modes: (1) a mode where only syntactic told information is taken into account;
(2) a mode where told information plus Tbox information for concept names is taken into
account; (3) a mode where all inferences are taken into account. If the previous query is
submitted in the second mode, the answer set will be {cash}. In this case, the ancestors
of the concepts property and class are computed and for each told instance of a certain
concept, an assertion is added stating that this instance is also an instance of each ancestor
of the concept.

Inconsistencies of our classification that need to be detected using nRQL queries are:
dangling type reference, inherited cyclic composition, connector specification missing, in-
stance specification missing, specification incompatibility and disconnected model.

7.3 Using our DL Framework Representing UML models

In the previous chapter, we showed how class diagrams, PSMs, call sequences, SD traces
and the communication view of sequence and communication diagrams can be translated
into terminological knowledge. In this case, DLs are called the semantic domain for these
UML concepts, i.e., a suitable formal language. Our behavioural inconsistencies (except for
the specification incompatibilities) can be detected by using this knowledge and exploiting
the standard DL reasoning tasks. For the translation of these diagrams (or parts of these
diagrams) into DLs, the different spanning functions can be used. For example, when trans-
lating receiving SD traces, only part of a mode, in this case the receiving event occurrences
of a certain set of instances, are taken into account.

7.3.1 The Use of Abox Reasoning Tasks

An example of an inconsistency that can be detected in this way, is the multiplicity incom-
patibility. This inconsistency arises when a connector in a sequence (or communication)
diagram does not respect the multiplicity restrictions imposed by the class diagram. Each
multiplicity has a lower and upper bound. The multiplicity restrictions that can be checked

Chapter 7. A DL Inconsistency Detection Approach 166

are with respect to this lower and upper limit. Due to the open-world assumption the lower
bound must be checked using a nRQL query as shown in the previous section.

When the class diagram is translated into terminological knowledge using the translation
introduced in Section 6.4 and the communication view of the sequence (or communication)
diagram is translated as specified in Section 6.6, the reasoning task Abox consistency can
be used. Abox consistency will (among others) check if the upper bounds of the multi-
plicities specified on the association ends defined in the class diagram are respected by the
different specified links in the Abox. This means that the number of individuals which are
instances of the concepts representing the association ends must conform to the number
restrictions specified on the roles representing the association ends. As a result, multiplicity
incompatibility is checked for sequence diagrams on instance level.

7.3.2 The Use of Tbox Reasoning Tasks

Behaviour compatibility, whether it is on the instance or specification level, guarantees the
compatibility between PSMs of certain classes and receiving SD traces of instances of these
classes. Tbox coherence can be used to check this inconsistency. The PSM(s) are translated
to terminological knowledge as specified in Section 6.5.1. The SD traces are translated
using the translation of Section 6.6. However, for this inconsistency only the receiving SD
traces are relevant. Spanning functions are needed only taken into account detailed meta-
information. An example of such detailed meta-information are the receiving SD traces
needed to check the behaviour compatibility. This meta-information can be retrieved from
the encoded UML metamodel and the user-defined models through nRQL queries. The
output of these queries is used to encode the different SD sequences.

One could argue that such complicated manipulation and orchestration of queries and
spanning functions is not necessary for checking whether a certain SD trace is included in
a PSM. Checking the syntactical inclusion of such a trace in a PSM can be done by nRQL
queries. However, due to the usage of the subsumption relation, we go beyond a merely
syntactical inclusion check. Let us illustrate this by two examples.

Reconsider the protocol state machine diagram of Figure 2.14 expressing the valid call
sequences on an ATM class allowing a withdrawal transaction. In Figure 7.1, two separate
receiving SD traces for an ATM object are shown.

First the PSM and the SD traces are translated into terminological knowledge using the
translation defined in the previous chapter. The receiving SD traces for a given (set of)
object(s) can be retrieved by the following nRQL query. The connectableelement appearing
in the header of this query is a constant representing the objects for which the traces must
be searched.

ans(event1, op1, event2, op2, connectablelement)
← eventoccurrence(event1) ∧ coveredsub(event1, lifeline) ∧

represents(lifeline, connectableelement) ∧ (∃receivemessage.>)(event1) ∧
eventoccurrence(event2) ∧ coveredsub(event2, lifeline) ∧
represents(lifeline, connectableelement) ∧ (∃receivemessage.>)(event2) ∧
before(event1, event2)

167 7.3 Using our DL Framework Representing UML models

:ATM

verifyPIN(pin, aCard)

not VALID_PIN and
tries := 1

pin := readPIN()

verifyPIN(pin, aCard)

not VALID_PIN and
tries := 2

not VALID_PIN and
tries := 3

pin := readPIN()

verifyPIN(pin, aCard)

pin := readPIN()

pin := readPIN()

:ATM

verifyPIN(pin, aCard)

VALID_PIN and
tries := 1

pin := readPIN()

WITHDRAWAL and
transaction.card.account.

customer.age >=18

getAccountNbr()

Figure 7.1: Different SD traces.

Using a spanning function, the SD traces can be transformed into terminological knowl-
edge. Finally, the following Tboxes are generated. The first one, shown in the RACER
Fragment 7.1, contains the encoding of the call sequences of the PSM and the completeness
of this set of call sequences (statements (1) until (35)). It also contains the receiving SD
trace shown on the left-hand side of Figure 7.1 (statements (36) until (46)). The ovals on
the lifelines in Figure 7.1 indicate so-called state invariants. These invariants specify con-
straints on the state of a lifeline, i.e., they put restrictions on the values of the properties
of the objects represented by the lifeline.

The second Tbox contains the same encoding of call sequences of the PSM, i.e., state-
ments (1) until (35) of RACER Fragment 7.1, and also the receiving SD trace shown on
the right-hand side of Figure 7.1. The encoding of this SD trace is shown in the RACER
Fragment 7.2.

The reasoning task Tbox coherence can be used on both Tboxes. In both cases this
reasoning task checks if the PSM and the SD trace are behaviour compatible. In the first
case, the Tbox is incoherent resulting in a behaviour incompatibility. The reasoning not only
takes into account the sequencing of the operation calls but also the constraints specified.
The behaviour of the SD trace shown on the left-hand side of Figure 7.1, is incompatible
with the PSM call sequences, because the PSM specifies that after 3 times entering a PIN
code, the card is retained instead of asking the PIN again. The behaviour of the SD trace
shown on the right-hand side of Figure 7.1, is behaviour compatible with the PSM call
sequences. The corresponding Tbox is coherent resulting in a behaviour compatibility.

For other inconsistencies, for example, interaction inconsistencies, UML metamodel
information is also needed to be able to translate certain parts of UML models into termi-
nological knowledge. Consider the invocation interaction consistency as defined in Section
3.7.1. GCI’s can now be constructed for the different eventoccurrences. The traces belong-
ing to the child interaction are considered to be complete. If in this dissertation, we indicate
that a certain UML diagram or set of UML elements is considered to be complete, then it

Chapter 7. A DL Inconsistency Detection Approach 168

(1) (define-concept t1 (and (all op readPIN) (exactly 1 op)))
(2) (define-concept t2 (and (all op verifyPIN) (exactly 1 op)))
(3) (define-concept t3 (and (all op retainCard) (exactly 1 op)))
(4) (define-concept t4 (and (all op ejectCard) (exactly 1 op)))
(5) (define-concept t5 (and (all op cancel) (exactly 1 op)))
(6) (define-concept t6 (and (all op getAccountNbr) (exactly 1 op)))
(7) (define-concept t7 (and (all op getAmountEntry) (exactly 1 op)))
(8) (define-concept t8 (and (all op checkIfCashAvailable) (exactly 1 op)))
(9) (define-concept t9 (and (all op send) (exactly 1 op)))
(10) (define-concept t10 (and (all op dispensecash) (exactly 1 op)))
(11) (define-concept t11 (and (all op printReceipt) (exactly 1 op)))
(12) (define-concept g1 (and (not (some valid-PIN top)) (¡ tries 3)))
(13) (define-concept g2 (some valid-PIN top))
(14) (define-concept g3 (and (not (some valid-PIN top)) (= tries 3)))
(15) (define-concept g4 (some withdrawal top))
(16) (define-concept g5 (some checkcashavailable top))
(17) (define-concept g6 (not (some checkcashavailable top)))
(18) (define-concept g7 (some allowedwithdrawal top))
(19) (define-concept g8 (not (some allowedwithdrawal top)))
(20) (disjoint valid-PIN withdrawal checkcashavailable allowedwithdrawal)
(21) (implies t1 (all r t2))
(22) (implies t2 (all r (or (and g1 t1) (and g3 t8) (and g2 t9) (and g2 g4 t3))))
(23) (implies (and t1 g1) (all r t2))
(24) (implies t4 (all r t5))
(25) (implies t5 (all r (or (and g6 t9 (not g4)) (and g6 g4 t3) (and t6 g5))))
(26) (implies (and g5 t6) (all r (or (and t10 g7) (and g8 t9 (not g4)) (and g8 g4 t3))))
(27) (implies (and g7 t10) (all r t7))
(28) (implies t7 (all r (or t9 (and t3 g4))))
(29) (implies (or (and g8 g4 t3) (and g4 t3) (and g4 g6 t3) (and g2 g4 t3)) (and (all r t4)))
(30) (implies (and g3 t8) (all r (and t8 g3)))
(31) (implies (and g2 t9) (all r (and g2 t9)))
(32) (implies (and g6 t9) (all r (and g6 t9)))
(33) (implies (and g8 t9) (all r (and g8 t9)))
(34) (implies t9 (all r t9))
(35) (disjoint t1 t2 t3 t4 t5 t6 t7 t8 t9 t10)
(36) (define-concept m1 (and (all op readPIN) (exactly 1 op)))
(37) (define-concept m2 (and (all op verifyPIN) (exactly 1 op)))
(38) (define-concept cons1 (and (not (some valid-PIN top)) (= tries 1)))
(39) (define-concept cons2 (and (not (some valid-PIN top)) (= tries 2)))
(40) (define-concept cons3 (and (not (some valid-PIN top)) (= tries 3)))
(41) (implies m1 (some r m2))
(42) (implies m2 (some r (and m1 cons1)))
(43) (implies (and m1 cons1) (some r m2))
(44) (implies m2 (some r (and m1 cons2)))
(45) (implies (and m1 cons2) (some r m2))
(46) (implies m2 (some r (and m1 cons3)))

RACER Fragment 7.1: Racer expressions representing a PSM and SD trace.

169 7.4 Discussion and Related Work

(define-concept m1 (and (all op readPIN) (exactly 1 op)))

(define-concept m2 (and (all op verifyPIN) (exactly 1 op)))

(define-concept m3 (and (all op getAccountNbr) (exactly 1 op)))

(define-concept cons1 (and (some valid-PIN top) (some trans (some

transcard (some cardacc (some acccust (min age 18)))))))

(implies m1 (some r m2))

(implies m2 (some r (and cons1 m3)))

RACER Fragment 7.2: Racer expressions representing an SD trace.

is assumed that this diagram or set contains all relevant elements. The set of SD traces of
the parent interaction do not have to be complete, they only have to be included in the set
of SD traces of the child interaction. By translating both sets of SD traces into the same
Tbox, Tbox coherence can be used to check whether invocation interaction consistency is
guaranteed.

Observation interaction consistency can also be checked using Tbox coherence. For
this consistency check, only the event occurrences belonging to the child interaction and
denoting the receipt of messages invoking operations known to the parent interaction are
taken into account. Again a nRQL query can be defined to retrieve this information. This
information acts as input for the spanning functions.

Other inconsistencies that can be checked in the same way are interaction inconsistencies
on specification/instance level, invocation and observation inheritance inconsistencies and
instance behaviour incompatibility.

7.4 Discussion and Related Work

7.4.1 Related work

Related work defining different kinds of inconsistencies is discussed in Chapter 3. From this
discussion, we conclude that all those works use different ways to detect the inconsistencies
ranging from attributed graph grammars, over OCL, over CSP, XMI parsers and SQL to
name only a few. The related work presented in this section is divided into three categories.
The first two categories are previously defined in the introduction and in Spanoudakis and
Zisman [SZ01]. We do not consider the category human-based collaborative exploration
(described in [SZ01]) because the aim of this work is to provide formal definitions and de-
tection of inconsistencies. The model checking approach is already discussed in the previous
chapter.

Logic-based Approach

Finkelstein et al. [FGH+93] explain that consistency between partial models is neither
always possible nor is it always desirable. They present inconsistency handling between
Viewpoints, locally managed software models. Viewpoints and inter-Viewpoint rules are all
translated to first-order predicate logic, and inconsistencies are identified using a classical
logic theorem prover with the Closed World Assumption. The inconsistencies proved are
domain-dependent and are about syntactical and structural information of a certain domain.

Chapter 7. A DL Inconsistency Detection Approach 170

Specialised Forms of Analysis Approach

Ehrig and Tsiolakis [ET00] investigate the consistency between UML class and sequence di-
agrams. UML class diagrams are represented by attributed type graphs with graphical con-
straints, and UML sequence diagrams by attributed graph grammars. As consistency checks
between class and sequence diagrams only existence, visibility and multiplicity checking are
considered. In [Tsi01] the information specified in class diagrams and state diagrams is in-
tegrated into sequence diagrams. The information is represented as constraints attached to
certain locations of the object lifelines in the sequence diagram. The supported constraints
are data invariants and multiplicities on class diagrams and state and guard constraints on
state diagrams.

Fradet et al. [FMP99] use systems of linear inequalities to check consistency for multiple
view software architectures. The consistencies are specified for a particular application
domain, i.e., a software architecture. A software architecture is defined in their approach as
a specification of the global organization of software involving components and connections
between them. The views are represented by graphs and consistencies are defined as specific
relationships that should be fulfilled between certain domain-dependent nodes and edges.
These consistencies can be defined and detected in our approach by DL reasoning tasks and
nRQL queries.

In [KB01] a consistency checker is implemented using an XML parser and by translating
the structure of the XMI documents representing UML models into Prolog. Although there
is an UML XMI specification, every tool vendor has created his own XMI. As a result the
approach taken in [KB01] is very tool dependent. The checks are limited to syntactical
errors and completeness/omissions in UML class, state and sequence diagrams.

In [LCM+03] and [Lan03] inconsistencies and incompleteness issues between UML dia-
grams are presented and detected using relational databases and SQL. Only our structural
inconsistencies and to a certain extent some of our behavioural inconsistencies, can be
detected using their approach.

The VIEWINTEGRA approach proposed in [Egy01] checks consistency between differ-
ent UML diagrams through a direct comparison of the diagrams involved. Diagrams are
transformed to ’something alike’. For example, to compare UML state diagrams and se-
quence diagrams, sequence diagrams are first translated into a state diagram, which is then
compared to the original state diagram. Inconsistency rules are comparisons that describe
if and how much the diagrams differ. Only syntactical inconsistencies are detected.

7.4.2 Advantages and Limitations of our Approach

The advantages of using nRQL queries are quite clear. A nRQL query defining an inconsis-
tency and at the same time detecting the inconsistency provides the user with the concrete
model elements causing the particular inconsistency. The different modes of completeness
are very useful as explained in the first section. Different application domains can use dif-
ferent completeness degrees. A disadvantage of this flexibility is that the results of a query
in different degrees of completeness must be correctly interpreted. To be able to correctly
interpret these results, one must rather be an advanced user.

Next to the subset of our classified inconsistencies that can be detected by nRQL queries,
also so-called incompleteness issues can be detected by nRQL queries. Such incompleteness
issues are described in [KB01] and [Lan03]. An example of such an incompleteness is an

171 7.4 Discussion and Related Work

operation that is not called in any scenario. This can be easily checked by the following
query.

ans(op, (told-value(name has-name)))
← ownedoperation(cl, op) ∧ base(cl, connectableelement) ∧

represents(lifeline, connectableelement) ∧ eventoccurrence(event) ∧
receivemessage(event, m) ∧ not(signature(m, op))

The current disadvantage of inconsistency detection using Tbox coherence or Abox con-
sistency checking, is the lack of feedback given to the user. If a Tbox is not coherent, the
DL reasoning engine returns the set of unsatisfiable concepts. From this information only,
we are not able to deduce, e.g., in case of a behaviour incompatibility, which SD traces
conform to call sequences in the PSM. To be able to inform the user correctly, i.e., to back-
annotate the UML model with information concerning the cause of the inconsistency, two
items must be further investigated. First, current DL tools, such as Racer, should give
more and proper feedback on the cause of the satisfiability problem in case we check for
Tbox coherence or Abox consistency. Second, the necessary information for reconstructing
a UML model from a DL translation must be stored (including lay-out information of the
UML diagrams).

By using DLs as semantic domain for UML models, other properties and conformance
checks besides our defined inconsistencies, can be checked. An example is a conformance
check between sequence or communication diagrams at instance level and sequence or com-
munication diagrams at specification level. The interaction view as well as the commu-
nication view of sequence or communication diagrams at instance level is interpreted as
an instance of the interaction, resp. communication view of the corresponding diagrams
at specification level. Abox consistency can be used to check this conformance. Using
Tbox coherence, the conformance can be checked between the communication view of se-
quence or communication diagrams at specification level and corresponding class diagrams.
All diagrams are translated into terminological statements.

By translating constraints such as invariants and the corresponding diagram, e.g., a
class diagram, into a DL Tbox, the constraints can be checked for consistency with respect
to the class diagram. A constraint is consistent with respect to the class diagram if it can be
satisfied without contradicting the conditions imposed by the classes. The set of constraints
defined on a certain class can be checked for internal consistency. Furthermore, it would be
possible to check constraint equivalence, this boils down to equivalence of logical formulae.
Finally, the constraints used in guards on PSMs or on SD traces can be checked for mutual
exclusiveness.

7.4.3 Evaluation of Criterion #2

For each of the detection approaches introduced in this chapter, we can conclude that the
detection queries or evaluation functions have a precise semantics. The inconsistencies and
their detection are expressed in DLs terminological or assertional knowledge or in nRQL,
all having a precise semantics.

Table 7.3 gives an overview of the formal properties holding for the different detection
approaches. All these approaches are sound and decidable. Completeness can vary due to

Chapter 7. A DL Inconsistency Detection Approach 172

Metamodel DL Framework

Soundness yes yes

Completeness varying degree varying degree

Decidability yes yes

Table 7.3: Formal properties of detection approaches.

the different completeness modes of nRQL. Because nRQL queries are used in the spanning
functions of our DL framework, the second inconsistency detection approach also has a
varying degree of completeness. Depending on the completeness mode used by nRQL,
complete or rather incomplete knowledge will be translated into terminological knowledge.

7.5 Conclusion

In this chapter, we introduced two different ways to detect our classified inconsistencies.
A first way for detection is to query meta-information. This meta-information cannot be
obtained without a sophisticated DL query language. This requirement is motivated by pre-
senting an example of earlier work. We also introduced several requirements for such a query
language in the context of inconsistency detection. Based on these requirements, the authors
of Racer developed a query language for Racer, named nRQL. Several nRQL queries are
presented. In each of the queries a feature was needed corresponding to the introduced
requirements.

DLs as a semantic domain together with spanning functions can be used for the detection
of behaviourial inconsistencies. The different possible detection approaches of our classified
inconsistencies are summarised in a revisited classification of our inconsistencies.

The question remains whether DLs or DL systems can be used for the resolution of
inconsistencies. More precisely, is it possible to define resolution actions and to execute
these actions in a highly customisable, flexible and interactive way? This is the topic of the
next chapter.

Chapter 8

A Rule-Based DL Inconsistency
Resolution Approach

In this chapter, an inconsistency resolution approach using DLs is brought forward based
on the requirements introduced in Chapter 4. First, we show how resolution actions can
be defined as Tbox and Abox assertions (Section 8.1). Then, we briefly review the different
challenges an inconsistency resolution approach has to deal with (Section 8.2). Based on
these challenges, a motivation for using a rule-based approach is given (Section 8.3). Before
explaining the relation between DLs and rules (Section 8.5), we briefly introduce rule-based
systems (Section 8.4).

nRQL is not only a query language and mechanism but also offers some support for the
definition and application of rules. This rule part of nRQL is still in its infancy. First, we
specify the requirements for a DL rule-based system suited for the resolution of inconsis-
tencies and next, we show to which extent nRQL satisfies our requirements (Section 8.6).

Finally, related work is discussed and the DL rule-based inconsistency resolution ap-
proach is evaluated based on criterion #3 – precise definitions and management of interac-
tive inconsistency resolutions – of Chapter 4 (Section 8.7).

8.1 Definition of Resolution Actions

In this section, resolution actions are defined as assertions, or concept declarations or role
declarations.

8.1.1 At Abox level

Aboxes can represent user-defined models as instances of the UML metamodel or they
can represent user-defined models as instances of other UML user-defined models. For
example, the communication view of a sequence diagram at instance level can serve as the
interpretation of the communication view of a sequence diagram at specification level. In
both cases resolution of inconsistencies detected by queries on these Aboxes, boils down to
a certain set of Abox assertions.

In Chapter 4, we defined three different categories of resolution actions on metamodel
level: adding an instantiation of certain metamodel elements, deleting an instantiation of

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 174

a certain metamodel element and changing the references of an instantiation of a certain
metamodel element.

We show which Abox assertions can be used for each category of resolution actions. The
Racer syntax is used to introduce the different possible assertions. This will allow us to
use these assertions in the next sections and chapters without further explanation.

Add model element

Creating an instantiation of a UML metaclass corresponds to the creation of an instance of
a certain DL concept. The syntax for asserting an individual in Racer, is (instance In
C) declaring In as being an individual of the concept C. For example, (instance session
class) specifies that the individual session is an instance of the concept class.

Remove model element

Deleting an instantiation of a UML metaclass corresponds to the removal of an in-
stance of a certain DL concept. The syntax for removing an individual in Racer, is
(forget-concept-assertion In C) declaring the removal of In as being an individual
of the concept C. For example, (forget-concept-assertion verifyPIN operation)
specifies that the individual operation is being retracted as an instance of the concept
operation.

Change model element

Changing an instantiation of a UML metamodel element corresponds to changing its refer-
ences to other instances through certain meta-associations. The syntax for asserting that the
individuals In1 and In2 are related by the role R is (related In1 In2 R). For example,
the assertion (related session getcustomerspecifics ownedoperation) relates the in-
dividual session with getcustomerspecifics through the role ownedoperation. The syn-
tax for retracting a role assertion from an Abox is (forget-role-assertion In1 In2 R).
For example, the assertion (forget-role-assertion atm verifyPIN ownedoperation)
retracts the assertion that the individual atm and the individual verifyPIN are related to
each other through the role ownedoperation.

Assertions also exist for the addition and retraction of values for concrete domain at-
tributes. Concrete domain assertions can be added to the Abox using (constrained In
On An). This statement asserts that an individual In is related to a concrete domain
object On via an attribute An. Concrete domain predicates can be built and asserted
using the statement (constraints forms), where forms is a set of concrete domain pred-
icate assertions. For example, the statement (constrained verifyPIN verifyPINname
operationname) adds the attribute operationname to the individual verifyPIN. The as-
sertion (constraints (string= verifyPINname "verifyPIN")) expresses that the indi-
vidual verifyPIN has as name the string "verifyPIN".

It is sometimes necessary to group several of these primitive resolution actions, for
example in the context of a certain application domain. Examples of such groupings will
be shown in Section 8.6.1 and in the next chapter in the context of model refactorings.

175 8.2 Challenges of Inconsistency Resolution

8.1.2 At Tbox level

If DLs are used as semantic domain, additions, changes and deletions of semantical concepts
such as SD traces and PSM call sequences can be made on Tbox level. In Table 6.1, the
Racer syntax is stipulated for the addition of concept and role axioms. Such axioms
can be retracted from the Tbox by the general forget statement. Only explicitly stated
information can be forgotten.

However, inconsistencies detected in DL Tboxes representing a certain model, can be
resolved by adapting the Abox containing the model as instances of the UML metamodel
and regenerating the corresponding terminological knowledge. Only constraints represented
on the different models need to be adapted directly in the corresponding Tbox, because we
did not take into account a metamodel representation of a certain constraint language.
Consider for example, a sequence diagram that is specification behaviour incompatible
with a certain PSM because a message is missing in the sequence diagram. A possible
resolution is to add the missing message in the sequence diagram. In the corresponding
Abox instances of the relevant metaclasses can be created (e.g., an instance of Message,
instances of Eventoccurrence) and related to corresponding instances of metaclasses (e.g.,
the instance of Message is related to the correct instance of Operation and to the created
instances of Eventoccurrence).

8.2 Challenges of Inconsistency Resolution

We quickly restate the different challenges, first presented in Section 4.2, that are related
to the inconsistency resolution activity.

• Which resolution actions to choose can be dependent on the cause of an inconsis-
tency. However, this dependency cannot always be captured without extra knowledge
provided by the software developer. As a result, most of the time the execution of
resolution actions involves a certain amount of user interaction.

• Depending on the granularity of the resolution actions and the application domain
involved, it might be necessary to group and combine several resolution actions.
How these resolution actions are grouped or combined is not always fixed but can
be domain-dependent.

• Resolution actions can introduce new inconsistencies. The dependencies between dif-
ferent inconsistencies caused by resolution actions must be taken into account by an
inconsistency resolution approach.

8.3 Motivation for a Rule-Based Approach

In the remainder of this dissertation, an inconsistency resolution encompasses the detection
of a particular inconsistency and one possible way of resolving it.

Rule-based reasoning is used to imitate human thought and problem solving based on the
explicit representation of human knowledge as rules. A rule has the structure IF condition
THEN conclusion or a variation thereof. Rule-based systems provide an explicit abstraction
for representing rules. A rule can be used to represent a particular inconsistency resolution.

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 176

This means that the detection and the resolution actions of an inconsistency resolution are
encapsulated.

Each detected inconsistency can be resolved in several different ways. The selection of a
particular resolution for an inconsistency can depend on the particular state of the model.
For the most part, however, selecting a resolution is a matter of preference of the person
who is resolving the inconsistency. A very important characteristic of a rule-based system
is that the definition of a rule is separated from the strategy for selecting the rules to be
fired from the applicable ones.

The inconsistency resolution activity becomes even more complicated because resolving
a certain inconsistency can introduce other inconsistencies. In Section 4.2.3 a piece of a de-
pendency graph between inconsistencies and resolution actions is shown in Figure 4.3. Note
that when implementing such a dependency graph in an imperative programming language
using a traditional conditional statement, this results in a complex program which is not
robust to changes: similar to the different edges and nodes in the dependency graph, the
programmer has to order and nest conditional statements manually. Indeed, every possi-
ble situation in the model leads to a potentially different flow of inconsistency resolutions.
Moreover, the same inconsistency resolution can occur multiple times in different combi-
nations with other inconsistency resolutions. Rule-based systems dramatically boost reuse
of rules, since they only have to be defined once and the appropriate ones for a certain
situation are fired. As such, implicit flows of rules or, in our case, inconsistency resolutions
are constructed.

8.4 Rule-Based Systems

A rule-based system is employed for representing rules explicitly and overcoming the prob-
lems mentioned in the previous section. A rule-based system provides a language to define
rules which are modular structures for expressing rule-based knowledge. A rule states how
to infer new data or manipulate existing data. Although a rule resembles a conditional
statement from imperative programming languages, it is not activated in any predeter-
mined order relative to other conditional statements. On the contrary, a rule engine is
responsible for determining the set of applicable rules and the order in which they are fired.

A forward-chaining rule engine considers a rule to be applicable when changed data
matches its condition. If this rule is fired, the result is that its conclusion is evaluated for
each set of matching data. Backward-chaining engines attempt to prove a goal by finding
applicable rules that would conclude it. When such an applicable rule is fired, the rule
engine similarly tries to prove its condition — the new goal.

Typically, a rule engine employs a particular strategy for selecting and ordering certain
rules to be fired from all the applicable rules. This is done to limit the search space and
optimise the search process.

8.4.1 Inconsistency Resolution Rules

A generic inconsistency resolution rule has the form: IF inconsistency X occurs in
model M THEN change model M so that X is resolved. There are typically multiple
resolutions for a particular inconsistency and each one is represented by one rule. Hence,

177 8.5 Description Logics and Rules

all rules pertaining to a certain inconsistency X have the same expression inconsistency
X occurs in model M in their conditions.

The occurence of an inconsistency in a model is detected by querying the data repre-
senting the model, i.e., the model elements. A certain state of the model attests to the
presence of a particular inconsistency.

A rule’s conclusion states how to resolve the detected inconsistency. It consists of a
sequence of statements, where each statement is responsible for either adding data to the
model or removing data from the model. As such, the model elements are rearranged so that
the inconsistency is resolved. However, in order for a certain inconsistency resolution to be
applicable, some model elements typically need to be present or in a particular configuration.

For example, consider a rule for resolving the dangling feature reference inconsistency:
IF the dangling feature reference inconsistency is detected for an operation in a class

AND the operation is defined in another class
THEN add the operation to the first class

The condition of the rule is a conjunction. The first part of the conjunction takes care
of detecting the inconsistency. The second part of the conjunction establishes if the model
is in a particular situation, more specifically if the missing operation is already defined in
another class. If so, the inconsistency resolution of adding the missing operation to the
first class is applicable. This resolution, described in the conclusion of the rule, is executed
when establishing the condition succeeds. Note that the condition of the rule should in
fact be interpreted as for all operations and classes for which the dangling feature reference
inconsistency is detected. Then, the conclusion is executed for each operation and class pair
that fulfils the condition.

In the remainder of this chapter, we will investigate the relation between DLs and
rules and how rules can be defined on DL knowledge bases expressing the resolution of our
classified inconsistencies.

8.5 Description Logics and Rules

In the DL systems Classic and Loom, in addition to terminological knowledge and asser-
tional knowledge, rules can also be used to express knowledge.

Based on Loom’s rule system, it is possible to specify additional necessary conditions
for individuals which are explicitly mentioned in the Abox and are derived to be instances
of a certain defined concept. These necessary conditions are called implications in Loom.

In Classic, rules are applied to individuals explicitly named in the Abox. Rules are
applied in a forward chaining way. Two different types of rules are differentiated, description
rules and filler rules. All Classic rules have as their antecedent a named concept and are
fired on an individual when the individual is classified as an instance of the concept. The
consequent of a Classic description rule is a classic description, which, when the rule fires
on an individual, is merged into the description of the individual. The consequent of a
Classic filler rule is the name of a role and a Lisp function that will be invoked when the
rule fires. The function is passed the individual the rule fired on and the role named in the
consequent. It returns a list of new role fillers for that role and individual.

The simplest variant of such rules included in Loom and Classic, is an expression of
the form C ⇒ D, where C,D are concepts. The meaning of such a rule is if an individual

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 178

is proved to be an instance of C, then derive that it is also an instance of D. These rules
are called trigger rules.

As defined in [BCM+03], the semantics of a finite set of trigger rules can be described
operationally, by a forward reasoning process. Starting with an initial knowledge base, a
series of knowledge bases is constructed. Each knowledge base is obtained from a previous
knowledge base by adding a new assertion D(a) whenever a rule C ⇒ D exists and C(a) is
entailed by the latter knowledge base. Note that there is an important difference between
the trigger rule C ⇒ D and the inclusion axiom C v D. A trigger rule is not equivalent to
its contrapositive ¬D ⇒ ¬C, as opposed to the GCI C v D.

The presented query language nRQL is not only a query language but also provides
rules as a simple Abox augmentation mechanism. In the next section, we will present the
requirements for an ideal DL rule-based inconsistency resolution mechanism and we will
also investigate to which extent the current rule system of Racer can be employed.

8.6 Rule-Based DL System

Based on the challenges related to inconsistency resolution and by putting these challenges
in the context of the different inconsistency detection ways, we discuss the definition of
inconsistency resolution rules in detail. Next, we explain how an engine can select and
activate the inconsistency rules. From the definition of inconsistency rules, a set of require-
ments for a rule-based DL system is distilled. Finally, the existing nRQL environment is
presented and evaluated using the defined requirements.

8.6.1 Rule Definition

An earlier section pointed out the possible format of a generic inconsistency resolution
rule: IF inconsistency X occurs in model M THEN change model M. The rule’s con-
dition corresponds to the detection of an inconsistency, while it’s conclusion corresponds to
a resolution action or a group of resolution actions. Two kinds of rules can be distinguished,
rules on Abox assertions and rules on Tbox assertions. We will refer to the first kind as
Abox rules and to the second kind as Tbox rules.

Abox rules

In case we are able to detect inconsistencies with queries over an Abox, we can use such
a query as a rule condition. The conclusion of a rule consists of actions to be undertaken
on the Abox assertions, ensuring that the model’s state is altered in such a way that the
inconsistency is resolved. There are a number of important issues to be addressed. We
illustrate these issues with an example set of rules for resolving the dangling feature reference
inconsistency. Recall that a dangling feature reference occurs when an operation is not
known to a class on which it is called in a UML sequence or PSM diagram. Suppose a
dangling feature reference is detected on a UML sequence diagram. Two possible resolutions
are (1) if the operation is known to another class, move the operation to the class involved
in the inconsistency; (2) if the operation is known to another class, change the message such
that it sends the operation to the right object.

179 8.6 Rule-Based DL System

When successfully inferring a rule condition, its variables – if any – are bound to indi-
viduals representing UML metaclasses such as operations, classes, lifelines and so on. For
example, the conditions of the rules for resolving the dangling feature reference inconsis-
tency typically consist of the query for detecting this inconsistency: (check-DFR ?class
?op ?m). Note that this query has a name and three variables, which are the identifiers
preceded by a question mark. When this query is successfully inferred, the result is a set
of bindings for the variables, more specifically a set of class-operation-message tuples.

A rule’s conclusion typically consists of actions that are applied to each inferred binding
of the variables of the rule’s condition. Take, for example, the first resolution possibility for
the dangling feature reference inconsistency, i.e., simply adding the operation to the class in
question. This is (partly) achieved by the following action in the rule’s conclusion: (related
?op ?class2 ownedoperation). When the rule is fired, this expression is evaluated, which
leads to a number of concrete assertions being added. As remarked earlier in this chapter,
also removing existing assertions can be executed by a rule’s conclusion.

Conceptually, an inconsistency detection query would be a sufficient condition for in-
consistency resolution rules. However, conditions are usually not only used for checking the
situation, but also for retrieving information from the situation. To be able to resolve an
inconsistency extra information needs to be retrieved. This information helps in deciding
which resolution possibility should be chosen. This becomes apparent when revisiting the
previously stated resolution possibilities for the dangling feature reference inconsistencies.
Both resolution possibilities start with stating the following sentence: if the operation is
known to another class. In order to retrieve this information, the rule needs an additional
expression in its condition, for example (?op ?class2 ownedoperation). When this ex-
pression is successfully evaluated, the variable ?class2 is bound to the correct class(es) and
can be used in the conclusion.

We have already indicated that, more often than not, there are several possible resolu-
tions for resolving a particular inconsistency. In the case of the dangling feature reference
inconsistency, we suggested two possible solutions, but other solutions exist. In our ap-
proach, selecting one of these resolutions is up to the user. As such, our rules’ conditions
can contain expressions that in fact prompt the user for input. Depending on the answer,
typically a “yes” or a “no” or some other user input, inferring that expression succeeds or
fails. In our example rule, the expression (user-option-addOp) is added to the condition.

After considering all these issues, we get the rule below, which represents our first
inconsistency resolution for resolving the dangling feature reference inconsistency. The
entire and expression is the rule’s condition, whereas the last expression is an action of
the rule’s conclusion. Remark that we use in the rules the concrete syntax of nRQL and
Racer assertions.

(firerule

(and (check-DFR ?class ?op ?m)

(?op ?class2 ownedoperation)

(user-option-addOp)

)

((related ?op ?class ownedoperation))

)

Rule conclusions can become quite large when different atomic resolution actions are
combined. The following two rules represent the second resolution for the dangling feature

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 180

reference inconsistency. In particular, the first rule uses an existing lifeline to which the
message can be sent, whereas the second rule expresses the creation of a new lifeline which
has as base class the class owning the operation. Both rules prompt the user for input in
their condition.

(firerule

(and (check-DFR ?class ?op ?m)

(?m ?mend receiveEvent)

(user-option-addToLifeline ?lifeline)

(?mend ?lifelinec coveredsub)

)

((related ?mend ?lifeline coveredsub)

(forget-role-assertion ?mend ?lifelinec coveredsub))

)

(firerule

(and (check-DFR ?class ?op ?m)

(?class2 ?op ?ownedOperation)

(?m ?mend receiveEvent)

(?mend ?lifelinec coveredsub)

(user-option-addConn ?nameEl)

)

((related ?class2 (new-ind connel ?nameConn) base)

(related (new-ind lifeline ?nameConn) (new-ind connel ?nameEl) represents)

(related ?mend (new-ind lifeline ?nameConn) coveredsub)

(forget-role-assertion ?mend ?lifelinec represents))

)

The last rule contains the operator new-ind which creates a new Abox individual. After
having resolved the dangling feature inconsistency in one of the two latter ways, a dangling
association reference inconsistency can occur in case the association over which the message
is sent is not known to the new or reused lifeline.

Again different solutions are possible. An existing association can be used or a new one
can be created. The first rule below expresses the creation of a new association from the
target class to the source class, whereas the second rule uses the existing association if this
exists.

(firerule

(and (check-DAR ?assoc ?m)

(?m ?con connectorr)

(?m ?mendsend sendEvent)

(?mendsend ?lifelinesend coveredsub)

(?lifelinesend ?connectableelsend represents)

(?connectableelsend ?classsend base)

(?m ?mendreceive receiveEvent)

(?mendreceive ?lifelinereceive coveredsub)

(?lifelinereceive ?connectableelreceive represents)

(?connectableelreceive ?classreceive base)

(user-option-addAssoc ?assocname))

((related (new-ind assoc ?assocname) ?assocname name)

(related (new-ind assoc ?assocname)

(new-ind end ?classsend) memberend)

(related (new-ind assoc ?assocname)

(new-ind end ?classreceive) memberend)

(related ?class (new-ind end ?classsend) ownedattribute)

(related ?class2 (new-ind end ?classreceive)

ownedattribute)

(related ?con (new-ind assoc ?assocname)

associationtype)

(forget-role-assertion ?con ?assoc associationtype))

)

181 8.6 Rule-Based DL System

(firerule

(and (check-DAR ?m ?assoc)

(?m ?con connectorr)

(user-option-useAssoc ?assocuser)

)

(

(related ?m (new-ind connector ?assocuser) connectorr)

(related (new-ind connector ?assocuser) ?assocuser associationtype)

(forget-role-assertion ?m ?con connectorr)

)

)

Tbox rules

In case inconsistencies are detected by using DLs as a semantic domain, detection is done
using the default DL reasoning tasks executed on certain Tboxes or Aboxes.

Recall the behaviour incompatibility between a sequence diagram and a state machine
diagram. This inconsistency occurs when a certain sequence is defined in a sequence diagram
but not in the corresponding PSM diagram. To check for incompatible behaviour, coherence
of the Tbox containing the encoded SD traces and PSM call sequences, is checked. A rule’s
condition for resolving this inconsistency typically consist of a function (check-IBehaviour
?trace). This function evaluates the Tbox for consistency and we assume that it returns
the set of SD traces not belonging to the PSM. Other functions can be used to check other
inconsistencies based on the Abox consistency or Tbox coherence reasoning tasks.

Also in this case, the rule’s condition can be used for retrieving information from the
situation. If an Abox is evaluated, queries on this Abox can be included in the rules condi-
tions as explained in the previous section. The conclusions of such rules consist of actions
to be undertaken on the Abox assertions. Actions on Abox assertions in the conclusion of a
rule are also explained in the previous section.

Resolving inconsistencies detected by standard DL Tbox reasoning tasks is far more
complicated. Suppose in case of an incompatible behaviour that with respect to a PSM, two
message calls are inverted on a sequence in a sequence diagram causing this inconsistency.
A possible resolution is to invert the message calls on either the PSM or the sequence
diagram. User interaction is crucial in this case to determine where and how to resolve this
inconsistency. However, to be able to analyse the cause of this inconsistency, it should be
possible – exactly as in case an Abox is used – to retrieve extra information from the Tbox.
This can be achieved by Tbox queries such as atomic-concept-descendants asking which
concept names are descendants of a certain concept or by the so-called matching reasoning
task [BKBM99]. A relevant matching pattern in this context can be ∃r.∃r.X, where X is
a variable. This pattern matching problem will allow us to retrieve the messages called
after some other messages. Matching problems in DLs are theoretically well understood.
Nevertheless, still no implementation of a general matching algorithm exists.

A rule’s conclusion typically consists of actions adding or retracting Tbox assertions. A
possible rule for the resolution of an incompatible behaviour is stated below. It is assumed
that ?trace is a set of Tbox assertions. The last expression adds this set of assertions to the
Tbox.

(firerule

(and (check-IBehaviour ?trace)

(user-option-addTrace)

)

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 182

((?trace))

)

8.6.2 Rule Engine

The different rules for the resolution of inconsistencies are defined in so-called rule sets. For
each inconsistency a rule set is defined. This gives the inconsistency detection and resolution
environment and the user of this environment the flexibility to select the inconsistencies to
be checked. Depending on the application domain, the applicable rules can be fine-tuned
by using only subsets of the given rule sets. An example of fine-tuning the applicable rules
is shown in the next chapter.

A rule engine typically goes through the recognise-act cycle, which consists of the fol-
lowing steps [Jac86]:

1. matching: match conditions of rules against data

2. conflict resolution: if there is more than one rule that could fire, collect them in a
conflict set and decide which one to execute

3. execution: execute the rule, and go to step 1.

The cycle stops if no more rules become applicable, more specifically if the conflict set is
empty. The conflict set consists of instantiations, which are pairs of rules and variable
bindings derived from pattern matching.

In our approach we employ a forward-chaining rule engine since the engine has to be
activated when model elements change. As a result of firing a rule that resolves an inconsis-
tency, the model is changed anew, which again ensures that the rule engine looks for rules
that are applicable in the new situation. This cycle continues until there are no applicable
rules.

One of the criteria we established earlier in this section is that selecting one of the appli-
cable inconsistency resolutions is up to the developer. Therefore, after the rule engine has
determined the applicable rules, the developer is required to select the preferred resolution
of an inconsistency. The corresponding rule is subsequently actually fired.

Note that resolving an inconsistency might have as a side effect that another previ-
ously detected inconsistency is resolved. After each inconsistency resolution, the applicable
inconsistency resolutions are updated by the rule engine.

8.6.3 Requirements for Rule-Based DL System

From the different issues addressed in Section 8.6.1 and Section 8.6.2, the following set of
requirements for a rule-based DL system can be distilled.

A rule-based system supporting Abox rules must meet the following requirements:

• The condition of an Abox rule is a conjunction of Abox queries and user-input
prompts. The Abox queries are used to detect the inconsistency and to retrieve extra
information for its resolution. The user-input prompts serve two purposes. They let
the user decide which resolution to be chosen if several rules fire for the same bindings
and they prompt the user for additional input, if necessary.

183 8.6 Rule-Based DL System

• The conclusion of an Abox rule is a sequence of Abox assertions. These assertions
resolve the detected inconsistency and can only use variables to be bound in the
condition of the rule or constants.

• The rules work on explicitly stated knowledge in an Abox.

A rule-based system supporting Tbox rules must meet the following requirements:

• The condition of a Tbox rule is a conjunction of Tbox evaluation functions,
Tbox queries, user-input prompts and DL matching problems. The Tbox evaluation
functions detect a certain inconsistency, Tbox queries and DL matching problems are
used to retrieve additional information. The Tbox queries and DL matching problems
only use variables to be bound in the condition of the rules or concepts and roles
defined in the Tbox. In a Tbox rule, the user-input prompts also serve two purposes.
These prompts let the user decide which resolution to be chosen and they prompt for
additional user input.

• The conclusion of a Tbox rule is a sequence of Tbox assertions. These Tbox assertions
resolve the detected inconsistency.

• Tbox rules work on complete knowledge present in a Tbox.

8.6.4 nRQL Rules and Rule Engine

nRQL is not only a query language and environment but also provides rules as a simple
Abox augmentation mechanism.

nRQL rules have an antecedent (condition) and a consequent (conclusion). The an-
tecedent is a nRQL query body. nRQL query bodies correspond to Abox query bodies as
introduced in the previous chapter. It is not possible to include expressions prompting the
user for input in the condition of a nRQL rule. One possible practical solution is to replace
this expression by a query checking whether a certain special individual is present in the
Abox representing the choice of the user. The first rule introduced in Section 8.6.1 can be
rephrased in nRQL, using nRQL’s concrete syntax, as follows:

(firerule

(and (check-DFR ?class ?op ?m)

(?op ?class2 ownedoperation)

(?class2 class)

(?u user-option-addOp))

((related ?op ?class ownedoperation))

)

This rule is very similar to the original one, because we used in the previously defined
rules the syntax of nRQL as much as possible. The consequent of a nRQL rule is a set of
Racer Abox assertions as nRQL rules provide an Abox augmentation mechanism. These
assertions may reference the variables bound in the antecedent of the rule. These assertions
can also use the new-ind operator that creates a new Abox individual.

It is obvious that nRQL rules can be used to express the Abox rules (defined in the
beginning of this section).

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 184

The antecedent of a nRQL rule can also contain Tbox queries. Evaluation functions
or DL matching problems cannot be expressed in the antecedent of a nRQL rule. In the
expression (check-IBehaviour ?trace), it is assumed that the Tbox evaluation function
returns the trace not known in the PSM. However, as already observed as a disadvantage of
the evaluation functions implementing the standard DL reasoning tasks, no proper feedback
is returned by these functions. Currently the feedback given by the DL reasoners is far from
sufficient. Because the consequent of a nRQL rule is a set of Abox assertions, it is not possible
to state the addition or retraction of Tbox assertions in the consequent. At this moment,
it is not possible to express our above defined Tbox rules using the nRQL mechanism.

Does this mean that we only can support the resolution of inconsistencies that can
be detected using nRQL queries? In Chapter 10 we will only support the resolution of
inconsistencies that can be resolved using Abox rules in a semi-automatic way. The incon-
sistencies that can be resolved by using Tbox rules are only detected and must be manually
resolved. However, several work-arounds can be used to support Tbox rules with the avail-
able nRQL support. These are presented in Chapter 11 because further investigation is
necessary to conclude whether these work-arounds are sufficient for the resolution of the
relevant inconsistencies.

The nRQL rules are called simple, because they must be used in a monotonic way.
Applications have to use these rules in a correct way. If a statement is retracted in the
Abox that is previously used to fire a rule, the statements added by the conclusion of the
rule will not be retracted automatically.

When and how to apply a nRQL rule to add or remove some new assertions to a factbase
is completely under control of the user. Appropriate nRQL API functions are provided to
support the implementation of user-defined application strategies. In the next chapter,
an application strategy is discussed in the context of model refactorings and its concrete
implementation is shown in Chapter 10.

8.7 Discussion and Related Work

8.7.1 Related Work

Different techniques have been developed to cope with the problem of resolving inconsisten-
cies in software engineering. Synoptic is a technique developed by Easterbrook [Eas91] in
which stakeholders are expected to define and select resolution actions. In [SF97] a recon-
ciliation method is developed which uses distance metrics to indicate the type and extent of
inconsistencies. Based on these distances, actions are generated and proposed to the users
that can partially resolve the different types of model inconsistencies. van Lamsweerde et
al. [vLLD98] developed the technique called KAOS that uses divergence resolution patterns
but only specific kinds of such divergences can be handled. In these approaches, either the
stakeholder gets a lot of responsibility by defining the possible resolution actions, or the set
of actions is restricted to a specific domain such as, e.g., requirements. These approaches
also do not take into account that resolution actions can introduce other inconsistencies.

In [FGH+93], inconsistency handling between Viewpoints, locally managed software
models, is presented. Viewpoints and inter-Viewpoint rules are all translated to first-order
predicate logic, and inconsistencies are identified using the Closed World Assumption. A
meta-language based on first-order temporal logic, which uses a set of meta-level axioms, is

185 8.8 Conclusion

employed for defining inconsistency resolution rules. The main difference with our approach
is that the rules give the user a likely explanation for the occurence of an inconsistency,
such as typographical error or conflict between specification. Kozlenkov et al. [KZ04] use
abductive reasoning for establishing a user-defined goal consisting of sequences of conditions
required for the goal to be achieved. Our approach uses deduction rather than abduction
for the detection of inconsistencies. For inconsistency resolution Kozlenkov et al. use Prolog
rules that are only used as a querying mechanism on assertions as in our approach.

8.7.2 Evaluation of Criterion #3

In Chapter 4 requirements for an inconsistency resolution formalism are defined by criterion
#3.

The formalism must allow the definition of resolution actions. Section 8.1 shows that
the three categories of resolution actions defined in Chapter 4 can be defined in DLs and DL
systems. Due to the usage of rules, the detection part and the different resolution actions
of an inconsistency resolution are encapsulated.

The different dependencies between the resolution actions is supported in a natural
way in a rule-based approach. A rule engine is responsible for automatically selecting the
applicable rules, ordering and chaining them into one flow. An implementation of different
inconsistency resolutions can be found in Chapter 10.

Interactivity is also supported by constructs occurring in the rules conditions enabling
the selection by the developer of the preferred inconsistency resolution.

Due to the existence of the nRQL rule mechanism these requirements, except for the
interactivity, are satisfied for inconsistencies that can be defined on Abox assertions. In
Chapter 10 we show how we deal with this interactivity in our tool support.

For inconsistencies defined on Tboxes, it is not always possible to retrieve additional
information concerning the inconsistency. At this moment there is no nRQL or Racer sup-
port for this kind of rules.

8.8 Conclusion

In this chapter, we introduced a rule-based approach to resolve our classified inconsistencies.
First, we showed how addition and retraction of Abox and Tbox axioms can be used for
the definition of different resolution actions. We briefly repeated the different challenges
of inconsistency resolution. We argued that manually determining inconsistency resolution
scenarios that correspond to all possible situations is a daunting and unmanageable task.
The identified problems are exactly those that are addressed by rule-based systems. Hence
we presented inconsistency resolution rules. Two types of rules are recognised, Abox rules
and Tbox rules. A set of requirements for a DL rule-based system are distilled and compared
to the existing nRQL rule-based system.

In the next chapter we show how our inconsistency management approach can be used
in the domain of model refactorings. Behavioural consistencies, defined in our classificia-
tion, correspond to behaviour preservation properties in a model refactoring context and
the approach presented in this chapter can be used to support the execution of model
refactorings.

Chapter 8. A Rule-Based DL Inconsistency Resolution Approach 186

Chapter 9

Model Refactorings

In this chapter, we show how our ideas about inconsistency detection and resolution can be
applied to the domain of model refactorings. Conceptually, the chapter can be subdivided
into two parts.

In a first part, we show how some consistencies, defined earlier in a generalisation con-
text, express behaviour preserving properties when transposed to a model refactoring con-
text. First, a motivating example is presented (Section 9.1). Next, behaviour preservation
is discussed and behaviour preservation properties are defined (Section 9.2). We show that
the notions of consistency and preservation are closely related. Additionaly, we prove some
additional properties about the behaviour of classes that already obey certain consistencies
and preservation properties (Section 9.3).

In a second part of this chapter, we explore the idea of using the rule-based inconsistency
resolution approach, presented in the previous chapter, for supporting the execution of
model refactorings. The relationship between inconsistency resolution and refactorings is
introduced by a discussion on source code refactoring versus model refactoring and by the
in-depth description of one refactoring (Section 9.4). Finally, we present an analysis of a
set of model refactorings and open a discussion on different relevant issues in the context
of model refactorings through inconsistency resolution (Section 9.5). An implementation of
this approach is shown in the next chapter.

To conclude, related work concerning behaviour preservation issues in model refactoring
and model refactorings in general is discussed (Section 9.6).

9.1 Motivating Example

As a motivating example, consider the situation depicted in Figure 9.1.

9.1.1 Model Refinement

The class ATM (version 1.0) is refined into a subclass CardChargingATM (version 1.1) in
a behaviourally consistent way. This means that the behaviour of the CardChargingATM
class (expressed by means of a state machine or sequence diagram, for example) should spe-
cialise the behaviour of the ATM class under certain conditions as defined by our behaviour
(see Section 3.8.1), inheritance (see Section 3.9.1 and Section 3.9.2) and interaction (see
Section 3.7.1) consistencies.

Chapter 9. Model Refactorings 188

Model version 1.3Model version 1.2

ATM
version 1.0

CardChargingATM
version 1.2

behaviour
refinement

CardChargingATM
version 1.3

description of
class behaviour

evolved refined description
of class behaviour

?

Model version 1.0

ATM
version 1.0

Model version 1.1

ATM
version 1.0

CardChargingATM
version 1.1

behaviour
refinement

description of
class behaviour

description of
class behaviour

refined description of
class behaviour

refine

evolve

refactored description of
class behaviour

ATM
version 1.0

description of
class behaviour

refactor

Figure 9.1: Scenario of evolution of our motivating example.

This CardChargingATM denotes a special kind of ATM that allows the customer
to withdraw cash money, but also to charge “virtual” money to his/her bank card. The
behaviour of the CardChargingATM class, which is a subclass of ATM , is represented
by the state machine in Figure 9.2. An orthogonal composite state V erifyingTransaction
is added to the existing composite state GettingCustomerSpecifics (cf. Figure 2.14).
Its substate V erifyATMBalance is moved one level deeper into the new composite state
V erifyingTransaction. The customer still has to specify the account number and the
amount of cash for withdrawal. The same account number and amount will be used to
charge the customer’s bank card. Verifying if the customer’s account has sufficient funds and
if the transactions are allowed by the bank is now done in parallel. Once these checks have
been passed, the ATM dispenses the money and at the same time, the CardChargingATM
class, unlike its parent, the ATM class, charges the card.

Consider the invocation inheritance consistency relationship between the sequence di-
agram in Figure 2.12 and the PSM of CardChargingATM as described in Figure 9.2.
Remember that this relationship expresses that an instance of CardChargingATM must
be usable in each situation where an instance of ATM is required. To guarantee this con-
sistency relationship, each sequence of the ATM sequence diagram of Figure 2.12 should
be contained in the set of sequences of the CardChargingATM state machine diagram of
Figure 9.2. In our case, ATM and CardChargingATM do not obey this consistency, be-
cause an instance of CardChargingATM will withdraw money and it will always charge
a card. It is not possible to skip the charging of the card and immediately choose a new
transaction, which is the original behaviour of the ATM class.

9.1.2 Model Evolution

Starting from version 1.1, one can make further changes to the design model. For
example, we could continue to evolve the behaviour of the CardChargingATM class
by introducing a new state (ChargingAmountEntry) and transitions in the composite
state GettingCustomersSpecifics as shown in the state machine diagram in Figure 9.3.
This is an example of an evolution step where we have added new functionality to the
CardChargingATM class. The amount to be withdrawn and to be charged on the card can
now be different. This is not the case for the previous version of the CardChargingATM

189 9.1 Motivating Example

GettingCustomerSpecifics

AccountEntry

AmountEntry

cash := getAmountEntry()

 VerifyingTransaction

VerifyATMBalance VerifyWithdrawal

GiveCash

dispenseCash(cash)[allowWithdrawal]

allowWithdrawal := send(m1)[cashAvailable]

InitWithdrawal

cashavailable := checkIfCashAvailable(cash)

VerifyCharging CardChargingchargeCard()[allowCharging]InitCharging allowCharging := send(m2)

PINEntry ChoosingTransaction
[valid!PIN]

PrintReceipt

ReturningCard

ejectCard()

VerifyingPIN
verifyPIN(pin, aCard)

[not valid!PIN && tries < 3]

retainCard()[not valid!PIN && tries = 3]

RetainCard

printReceipt()

Error

Transactiondone

getAccountNbr()[WITHDRAWAL and CHARGING]

cancel()

[not allowCharging]

[not allowWithdrawal]

[not cashavailable]Idle
pin := readPIN()

Figure 9.2: UML protocol state machine for CardChargingATM class (version 1.1).

(version 1.1 of the design model).

9.1.3 Model Refactoring

We can also consider more restrictive model evolutions that have the purpose of improving
some design quality attributes without changing the specification of behaviour. Such model
evolutions are called model refactorings.

Refactorings are an essential tool for handling software evolution. Model refactorings
restructure a model while preserving behavioural properties of this model. Some model
refactorings are inspired by source code refactorings [Fow99], others are specifically defined
from the model point of view, e.g., state machine refactorings [BSF02].

For model refactoring, the idea of behaviour consistency is very important. If we know
that a given design model is behaviour consistent, and we perform a model refactoring,
then we expect the evolved design model to be behaviour consistent too. In other words,
the refactoring is assumed to preserve certain behaviour properties. Being able to verify or
guarantee that certain behavioural properties are preserved becomes crucial in this situation.

An example of the result of a complex model refactoring is shown in Figure 3.23 (version
1.3). This protocol state machine represents a refactored version of the one shown in Figure
9.3 (version 1.2). To obtain the new state machine from the original one, a sequence of
two refactorings has been applied, Move states into orthogonal composite state and Flatten
states.

The first refactoring, Move states into orthogonal composite state, can be seen as the
inverse of the Sequentialize concurrent composite state refactoring defined in [BSF02]. States
are moved into different regions of an orthogonal composite state. In our example the
simple state AmountEntry is moved into one region of the V erifyingTransaction state
and the state ChargingAmountEntry in the other region. The original state AccountEntry

Chapter 9. Model Refactorings 190

G
et

tin
gC

us
to

m
er

Sp
ec

ifi
cs

Ac
co

un
tE

nt
ry

Am
ou

nt
En

try

ca
sh

 :=
 g

et
Am

ou
nt

En
try

()

Ve
rif

yi
ng

Tr
an

sa
ct

io
n

Ve
rif

yA
TM

Ba
la

nc
e

Ve
rif

yW
ith

dr
aw

al

G
iv

eC
as

h

ca
sh

av
ai

la
bl

e
:=

 c
he

ck
IfC

as
hA

va
ila

bl
e(

ca
sh

) di
sp

en
se

C
as

h(
ca

sh
)[a

llo
w

W
ith

dr
aw

al
]

al
lo

w
W

ith
dr

aw
al

 :=
 s

en
d(

m
1)

[c
as

hA
va

ila
bl

e]

In
itW

ith
dr

aw
al

Ve
rif

yC
ha

rg
in

g
C

ar
dC

ha
rg

in
g

al
lo

w
C

ha
rg

in
g

:=
 s

en
d(

m
2)

ch
ar

ge
C

ar
d(

)[a
llo

w
C

ha
rg

in
g]

In
itC

ha
rg

in
g

C
ha

rg
in

gA
m

ou
nt

En
try

to
ch

ar
ge

 :=
 g

et
Am

ou
nt

En
try

()

PI
N

En
try

C
ho

os
in

gT
ra

ns
ac

tio
n

[v
al

id
!P

IN
]

Pr
in

tR
ec

ei
pt

R
et

ur
ni

ng
C

ar
d

ej
ec

tC
ar

d(
)

Ve
rif

yi
ng

PI
N

ve
rif

yP
IN

(p
in

, a
C

ar
d)

[n
ot

 v
al

id
!P

IN
 &

&
tri

es
 <

 3]

re
ta

in
C

ar
d(

)[n
ot

 v
al

id
!P

IN
 &

&
tri

es
 =

 3]

R
et

ai
nC

ar
d

pr
in

tR
ec

ei
pt

()

Er
ro

r

Tr
an

sa
ct

io
nd

on
e

ge
tA

cc
ou

nt
N

br
()[

W
IT

H
D

R
AW

AL
 a

nd
 C

H
AR

G
IN

G
]

ca
nc

el
()

[n
ot

 a
llo

w
C

ha
rg

in
g]

[n
ot

 a
llo

w
C

ha
rg

in
g]

Id
le

pi
n

:=
 re

ad
PI

N
()

Figure 9.3: State machine for evolved CardChargingATM class (version 1.2).

191 9.2 Behaviour Preservation

is split into two states (WithdrawalAccountEntry and ChargingAccountEntry). These
states are the “initial states” of the two different regions. As a result the previous initial
states, InitWithdrawal and InitCharging become superfluous and are deleted. Moving a
state into a certain region of an orthogonal composite state has some consequences. High-
level transitions (i.e., transitions originating from a composite state) originating on the
orthogonal composite state, are inherited by the moved states. By moving a state, if the
moved state becomes active, other states will be active too, one in each remaining regions.
As a result, if the AmountEntry state is active, the ChargingAmountEntry state can be
active too.

The second refactoring, Flatten states, flattens the states GettingCustomerSpecifics
and V erifyingTransaction into a new state also named GettingCustomerSpecifics that
is an orthogonal composite state.

After applying both refactorings, it is important to know that original behaviour has
been preserved. For example, in this case, we can formally prove that the sequences of
operations that can be invoked on the original class CardChargingATM (version 1.2) can
also be invoked on the refactored class CardChargingATM (version 1.3).

9.2 Behaviour Preservation

On the source code level, refactorings of an object-oriented program are restructurings that
preserve program behaviour. Despite the available tool support for source code refactorings
and also model refactorings, it is still an open research question how to define and check
behaviour preserving properties for (model) refactorings.

In order to determine whether a given model refactoring preserves behaviour, we need
to define precisely what this means. To achieve this, we will take an approach that is very
similar to the one taken in Chapter 3: just like the behaviour of a subclass can be consistent
with the behaviour of its superclass, the behaviour of a new version of a class can preserve
the behaviour of the original version. Even more, the different flavours of observation and
invocation consistency that were explored in Chapter 3 also make sense in an evolution
context. This will be formalised below.

Before doing this, however, we need to be clear about what it means to be “a new version
of a class”. We will adopt a very broad view here. It includes changes to the class itself
(renaming, adding, removing or modifying operations or attributes), or to its associated
behaviour (renaming, adding, removing or modifying PSMs or sequence diagrams). But
even more sophisticated changes can be envisioned, such as splitting a class into two or
more classes (each of these new classes is then considered to be a new version of the original
one), or combining two or more classes into a single merged version. Splitting or merging
sequence diagrams or PSMs can also be accommodated in this way.

We will now explain the correspondence between behaviour preservation and observa-
tion/invocation inheritance consistencies. Assume that we have a model M1 and a refactored
version M2 of this model. Observation call preservation defines that every call sequence
observable with respect to a class in M2 must result in an observable call sequence of its
corresponding class in M1.

Definition 71 Observation call preservation. Given c ∈ CM1, c′ ∈ CM2, and c′ is a
refactored version of c:

Chapter 9. Model Refactorings 192

A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is observation call preserving with a PSM πc =
(S, T, L, ρ,Λ) if and only if,
∀ µ′ : (valid(µ′, {ρ′}, πc′) ⇒ valid(µ′L, {ρ}, πc)).

A SD δ′ is observation call preserving with a SD δ if and only if,
∀O′ ∈ contained(δ′, {c′}) ∀ υ′ = υO′ ∈ δ′ (∃O ∈ contained(δ, {c}) ⇒ ∃υ′′O ∈ δ :
=υ(υ′′O/rec, υ′Eδ,{c}

/rec)).
A SD δ′ is observation call preserving with a PSM πc = (S, T, L, ρ,Λ) if and only

if,
∀ O′ ∈ contained(δ′, {c′}) ∀ υO′/rec =< e1, . . . , en > (with υO′ ∈ δ′) ∃ µc =< τ1, . . . , τm >:
(∀ τi ∈ µc : τi ∈ L ∧ m ≥ n ∃ σ : valid(µc, σ, πc) ∧ ∀i ∈ {1, . . . , n} ∃ j ∈ {i, . . . , m} :
τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µc ⇒ k > j) ∧ υO′/rec, µc are in strict
sequence)).

Remark that Definition 71 is almost identical to Definition 57. The main difference is that
the words observation consistent are replaced by observation call preserving. Also, c′ does
not represent a subclass of c anymore, but a new version of c in the refactored model.

Example 45 The behaviour of the class CardChargingATM specified by the refactored
PSM π1.3 of Figure 3.23 is not observation call preserving with respect to the PSM π1.2

of Figure 9.3. A first model refactoring presented here, moves some simple states into a
composite orthogonal state and a second refactoring flattens two states. The amount to be
charged on a card must not necessarily be entered after the amount to be dispensed (cf. π1.3).
However, this precedence constraint is required by π1.2.

Invocation call preservation guarantees that each call sequence invocable on the original
version of a class, must also be invocable on the corresponding class in the refactored
model. The definition of invocation call preserving is almost identical to Definition 56.
Also in this case, the main difference is that the words invocation consistent are substituted
by invocation call preserving and the class c′ represents a new version of the class c in the
refactored model.

Definition 72 Invocation call preservation. Given c ∈ CM1, c′ ∈ CM2, and c′ is a
refactored version of c:

A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is invocation call preserving with a PSM πc =
(S, T, L, ρ,Λ) if and only if,
∀ µ : (valid(µ, {ρ}, πc) ⇒ valid(µ, {ρ′}, πc′)) and for the PSM traces γ corresponding to µ
in πc and γ′ corresponding to µ in π′c, it holds that γ = γ′S.

A SD δ′ is invocation call preserving with a SD δ, if and only if,
∀O ∈ contained(δ, {c}) ∀ υO ∈ δ : (∃O′ ∈ contained(δ′, {c′}) ⇒ ∃ υ′O′ ∈ δ′ :
=υ(υO/rec, υ′O′/rec)).

A PSM πc′ = (S′, T ′, L′, ρ′,Λ′) is invocation call preserving with a SD δ if and only
if,
∀ O ∈ contained(δ, {c}) ∀ υO/rec =< e1 . . . en > (with υO ∈ δ) ∃ µc′ =< τ1 . . . τm >:
(∀ τi ∈ µc′ : τi ∈ L′ ∧ m ≥ n ∧ ∃ σ : valid(µc′ , σ, πc′) ∧ ∀ i ∈ {1, . . . , n} ∃ j ∈ {i, . . . , m} :
τj = (op, g, h) = label(ei) ∧ (∃τk = label(ei+1) ∈ µc′ ⇒ k > j) ∧ µc′ , υO/rec are in strict
sequence)).

193 9.3 Behaviour Preservation and Behaviour Inheritance Consistencies

C1

C'1

invocation
inheritance

consistency
C'2

invocation call
preservation

C2

?

C1

C'1

observation
inheritance

consistency
C'2?

C2
invocation

inheritance
consistency

C1

C'1

invocation
inheritance

consistency
C'2?

C2
observation
inheritance

consistency

Figure 9.4: Examples illustrating Proposition 1.

Referring to Example 45 above, the behaviour specified by the refactored PSM π1.3 is
invocation call preserving with the PSM π1.2.

Similar correspondences between observation/invocation behaviour consistencies and
behaviour preserving properties can be specified, if behaviour is specified by PSM(s) and se-
quence diagram(s) at specification level. A correspondence between observation/invocation
interaction consistencies and behaviour preserving properties can also be specified. In this
case, behaviour is described by sequence diagrams at specification level.

9.3 Behaviour Preservation and Behaviour Inheritance Con-
sistencies

Consider the class ATM version 1.0 and its subclass CardChargingATM version 1.1
in UML model version 1.1 (see Figure 9.1). Consider now the PSM π1 of the class
ATM shown in Figure 2.14. Assume that the PSM π1.1 is the extension of the PSM
π1 and the PSM shown in Figure 9.2. The PSM π1.1 expresses the behaviour of the class
CardChargingATM . The PSMs π1 and π1.1 are invocation inheritance consistent. The
PSM π1.3 is observation and invocation call preserving with the PSM π1.1. The ques-
tion remains if, based on this information, we can prove that the refactored version of
CardChargingATM version 1.3 is still (invocation or observation) consistent with the be-
haviour of ATM version 1.0.

Until now, we assumed that the PSMs expressed observable call sequences and invoca-
ble call sequences, while the sequence diagrams expressed observable traces and invocable
traces. In general, however, the set of invocable sequences of operation calls to a class c,
denoted by IS(c), is a subset of the set of observable call sequences of operation calls to
a class c, denoted by OS(c). This is stated in [EE95]. Abstracting away from SD traces
and PSM call sequences, we can define invocation inheritance consistency or invocation call
preservation as IS(c) ⊆ IS(c′), where c′ is subclass of c or where c′ is the refactored version
of c. Observation inheritance consistency or observation invocation call preservation can
be defined by OS(c′ | V) ⊆ OS(c), where V denotes the set that is the union of the set of
labels Lc and the set of event occurrences E =

⋃
∀δ∈∆M

Eδ,{c}, where c is a superclass of c′

or a previous version of c. The restriction U |L of a set of sequences U to a set L is defined
as U |L = {φ | ∃µ ∈ U : φ = µL}.

In general, the following properties can be proved:

Chapter 9. Model Refactorings 194

Proposition 1 Let c1 be a class, c′1 a subclass of c1, c2 an identical copy of c1 that is
contained in a different model version (e.g., ATM class 1.0 in model version 1.2 and ATM
class 1.0 in model version 1.3), and c′2 a subclass of c2 such that c′2 is a refactored version
of c′1. Let V1 = Lc1 ∪ E =

⋃
∀δ∈∆M

Eδ,{c1}, and V2 = Lc2 ∪ E =
⋃
∀δ∈∆M

Eδ,{c2}. (see also
Figure 9.4)

1. If c′1 and c1 are invocation inheritance consistent and c′2 and c′1 are invocation
call preserving
then c′2 and c2 are invocation inheritance consistent.

2. If c′1 and c1 are observation inheritance consistent and c′2 and c2 are invocation
inheritance consistent and IS(c1) = OS(c1)
then OS(c′1 | V1) ⊆ OS(c′2).

3. If c′1 and c1 are invocation inheritance consistent and c′2 and c2 are observation
inheritance consistent and IS(c1) = OS(c1)
then OS(c′2 | V2) ⊆ OS(c′1).

Proof 1 1. c′1 and c1 are invocation inheritance consistent, hence IS(c1) ⊆ IS(c′1). c′2
and c′1 are invocation call preserving, hence IS(c′1) ⊆ IS(c′2). Because c1 and c2 are
identical, we conclude that
IS(c2) = IS(c1) ⊆ IS(c′1) ⊆ IS(c′2)
This implies that c2 is invocation inheritance consistent with c′2.

2. c′1 and c1 are observation inheritance consistent, hence OS(c′1 | V1) ⊆ OS(c1). c′2 and
c2 are invocation inheritance consistent, hence IS(c2) ⊆ IS(c′2). Because c1 and c2

are identical, and given that IS(c1) = OS(c1), and, in general, IS(c′2) ⊆ OS(c′2) we
can conclude that
OS(c′1 | V1) ⊆ OS(c1) = IS(c1) = IS(c2) ⊆ IS(c′2) ⊆ OS(c′2)
This results in: OS(c′1 | V1) ⊆ OS(c′2).

3. c′1 and c1 are invocation inheritance consistent, hence IS(c1) ⊆ IS(c′1). c′2 and c2 are
observation inheritance consistent, hence OS(c′2 | V2) ⊆ OS(c2). Because c1 and c2

are identical, and given that IS(c1) = OS(c1), and, in general, IS(c′1) ⊆ OS(c′1), we
can conclude that
OS(c′2 | V2) ⊆ OS(c2) = OS(c1) = IS(c1) ⊆ IS(c′1) ⊆ OS(c′1)
This results in: OS(c′2 | V2) ⊆ OS(c′1).

From the first item of the proposition, we can conclude that the behaviour of the refac-
tored version 1.3 of class CardChargingATM is invocation inheritance consistent with the
behaviour of the ATM class as specified by the PSM π1.

The second item in the proposition means that the set of valid call sequences or traces
of the class c′1 under the projection of the methods known by c1, must be included in the
set of the call sequences or traces of the class c′2, which is the refactored or evolved version
of the class c′1. Depending on how the behaviour of the different classes is specified, possible
conclusions are:

1. Every valid call sequence of the PSM π′ of c′1, restricted to the operations known by
c1, is also a valid call sequence of the PSM of c′2;

195 9.3 Behaviour Preservation and Behaviour Inheritance Consistencies

C1

C'1

invocation
inheritance

consistency

C'2

invocation call
preservation

C2

?

C1

C'1

observation
inheritance

consistency
C'2

C2

?

invocation call
preservation

C1

C'1

invocation
inheritance

consistency
C'2

C2

?

observation call
preservation

Figure 9.5: Examples illustrating Proposition 2.

2. Assume the existence of sequence diagrams δ, containing instances of c1 and δ′, con-
taining instances of c′1 and δ”, containing instances of c′2. Then for each trace υ′ in
δ′, υ′Eδ,{c1}

is an SD trace in δ”;

3. Assume the existence of a sequence diagram δ containing instances of c′1 and a PSM
π′c′2

. Then each call sequence µ =< τ1 . . . τn > such that, for each i ∈ {1, . . . , n},
τi = label(ei) for receiving traces < e1, . . . , cn > in delta on instances of c′1, is also a
valid call sequence in π′c′2

.

The third item in the proposition means that the set of valid call sequences or traces
of the class c′2 under the projection of the methods known by c2, must be included in the
set of the call sequences or traces of the class c′1. As a consequence, the behaviour of the
refactored class c′2 is smaller than the behaviour of the original class. Depending on how
the behaviour of the different classes is specified, possible conclusions are:

1. Every valid call sequence of a PSM π′ of c′2, restricted to the operations known by c2,
is also a valid call sequence of a PSM of c′1;

2. Assume the existence of sequence diagrams δ, containing instances of c2 and δ′, con-
taining instances of c′2. Then for each trace υ′ in δ′, ν ′Eδ,{c2}

is an SD trace in a
sequence diagram δ”, containing instances of c′1;

3. Assume the existence of a sequence diagram δ for c′2. Then each call sequence µ =<
τ1 . . . τn > such that, for each i ∈ {1, . . . , n}, τi = label(ei) for receiving traces <
e1, . . . , en > in δ on instances of c′2, is also a call sequence in a PSM of c′1.

In the scenario described in Proposition 1 a certain subclass in a hierarchy is refactored.
We can prove similar properties when a superclass in a hierarchy is refactored.

Proposition 2 Let c1 be a class, c′1 a subclass of c1, c2 a refactored version of c1, and c′2
an identical copy of c′1 that is contained in a different model version. Let V1 = Lc1 ∪ E =⋃
∀δ∈∆M

Eδ,{c1}. (see also Figure 9.5)

1. If c′2 and c2 are invocation inheritance consistent and c2 and c1 are invocation
call preserving
then c′1 and c1 are invocation inheritance consistent.

Chapter 9. Model Refactorings 196

2. If c′1 and c1 are observation inheritance consistent and c2 and c1 are invocation
call preserving and IS(c1) = OS(c1)
then OS(c′2 | V1) ⊆ OS(c2).

3. If c′1 and c1 are invocation inheritance consistent and c2 and c1 are observation
call preserving and IS(c1) = OS(c1)
then OS(c2 | V1) ⊆ OS(c′2).

Proof 2 1. c′2 and c2 are invocation inheritance consistent, hence IS(c2) ⊆ IS(c′2). c2

and c1 are invocation call preserving, hence IS(c1) ⊆ IS(c2). Because c′1 and c′2 are
identical, we conclude that
IS(c1) ⊆ IS(c2) ⊆ IS(c′2) = IS(c′1)
This implies that c1 is invocation inheritance consistent with c2.

2. c′1 and c1 are observation inheritance consistent, hence OS(c′1 | V1) ⊆ OS(c1). c2

and c1 are invocation call preserving, hence IS(c1) ⊆ IS(c2). Because c′1 and c′2 are
identical, and given that IS(c1) = OS(c1), and, in general, IS(c2) ⊆ OS(c2), we can
conclude that
OS(c′2 | V1) = OS(c′1 | V1) ⊆ OS(c1) = IS(c1) ⊆ IS(c2) ⊆ OS(c2)
This results in: OS(c′2 | V1) ⊆ OS(c2).

3. c′1 and c1 are invocation inheritance consistent, hence IS(c1) ⊆ IS(c′1). c2 and c1

are observation call preserving, hence OS(c2 | V1) ⊆ OS(c1). Because c′1 and c′2 are
identical, and given that IS(c1) = OS(c1), and, in general, IS(c′1) ⊆ OS(c′1), we can
conclude that
OS(c2 | V1) ⊆ OS(c1) = IS(c1) ⊆ IS(c′1) ⊆ OS(c′1) = OS(c′2)
This results in: OS(c2 | V1) ⊆ OS(c′2).

The second item in the proposition means that the set of valid observable call sequences
or traces of the class c′2 under the projection of the methods known by c1, must be included
in the set of the observable call sequences or traces of the class c2, which is the refactored
or evolved version of the class c1. As a consequence, the behaviour of the subclass c′2 is
smaller than the behaviour of the refactored class viewed from the original class.

The third item in the proposition means that the set of valid observable call sequences
or traces of the class c2 under the projection of the methods known by c1, must be included
in the set of the call sequence or traces of the class c′2.

9.4 Model Refactoring through Rule-Based Inconsistency
Resolution

This section marks the second part of this chapter. In this part, we argue that our rule-based
inconsistency approach can be used for the execution of model refactorings.

9.4.1 Source Code Refactoring versus Model Refactoring

At source code level, refactorings are executed to eliminate a bad smell. A bad smell is
commonly defined as (local) structures in the code that suggest the possibility of refactoring

197 9.4 Model Refactoring through Rule-Based Inconsistency Resolution

[MT04]. Source code refactorings are defined on certain source code elements which are
chosen by the designer. For example, tool support for source code refactorings in Eclipse
[IBM04] lets the user decide on which source code element(s) a certain refactoring must be
executed.

Each source code refactoring description in [Fow99] contains a mechanics section. That
section gives a step-by-step description on how to carry out the refactoring. Each step
consists of a certain activity, for example, copy the body of the method. In most cases, this
step is followed by a description of corrections necessary to make the code compile. These
corrections not only affect the newly created elements but also existing elements, and for
each application of a refactoring, these corrections can be different. Consequently, although
a refactoring is defined on only those elements indicated by the user, it can affect different
elements throughout the source code.

The activity of how to carry out a model refactoring can also be described step by
step. Similar to the execution of source code refactorings, a certain step can affect several
elements in the model and introduce inconsistencies. The inconsistencies resulting from
the execution of a certain refactoring step, need to be resolved and (similar to corrections
in source code refactorings) inconsistency resolutions can affect not only the newly created
elements but also existing ones. We show that resolution of inconsistencies can be used for
the support of the execution of model refactorings.

In the remainder of this section, first, we motivate the particular set of refactorings
that we (re)designed at model level and next, we will give an in-depth description of the
execution of Move Operation. We have chosen this particular refactoring because, although
it is conceptually a small refactoring, it illustrates very well how inconsistency resolutions
can be used for the support of the execution of model refactorings. The description of our
remaining redesigned refactorings can be found in Appendix C. An implementation of our
inconsistency resolution approach in the context of model refactorings can be found in the
next chapter.

9.4.2 Refactorings Considered

Fowler [Fow99] designed a catalogue of source code refactorings. We reconsidered one or
two representative refactorings of each category defined by Fowler (see Section 9.5). There
are several reasons for considering only refactorings defined in [Fow99]:

• The refactorings defined by Fowler, are well-known and some of these refactorings
have already been defined at design level [SPLJ01].

• The corresponding model refactorings are model transformations that transform not
only the specification of the static structure as suggested by the UML drawings used in
Fowler. These refactorings affect also the specification of the behaviour of the system
under study.

• Because the source code refactorings defined in [Fow99] are well-known, it is obvious to
consider their corresponding model refactorings in view of exploring the link between
these refactorings and (generated) source code in the larger context of MDE.

In the remainder of this section, we show how resolution actions and rules can be used
for the support of the execution of Move Operation. We will explain the different steps

Chapter 9. Model Refactorings 198

executing this refactoring on UML models. We will investigate whether inconsistencies can
be introduced after each step in the execution and if so, we will focus on which inconsistencies
are introduced and how the resolution of these inconsistencies cause a transition to a next
step in the execution of the refactoring. Later on we will give an overview of the relation
between a larger set of refactorings and inconsistencies.

Figure 9.6 shows a simplified class diagram containing only the information needed in
the context of this section, and the impact of the model refactoring on this class diagram.

ATM
-id: Integer
-cash: Cash
+switchOn(): void
+switchOff():void
+getID(): Integer
+cardInserted(): void
+performStartup(): void
+performShutdown(): void
+readCard(): Card
+ejectCard(): void
+ dispenseCash(amount: Cash): Boolean
+acceptEnvelope(): void
+getAccountNbr(): Integer
+getAmountEntry(): Cash
+displayCash(amount: Cash): void
+send(m: Message): Boolean
+readPIN(): Integer
+displayMessage(message: String): void

Session

+performSession(): void
+sendToBank(m: Message): Boolean
+handleFailedTransaction(): void
+getCustomerSpecifics(): void

Transaction
+performTransaction(): Boolean
+getCustomerSpecifics(): void
+completeTransaction(): void

Withdrawal
+getCustomerSpecifics(): void
+completeTransaction(): void

1

0..1

0..1

1

0..1

1

<<added>>

Move getCustomerSpecifics()

Figure 9.6: Class diagram representing the relevant classes and executed refactoring.

9.4.3 Executing Move Operation

Suppose the sequence diagram in Figure 9.7 is a sequence diagram of an early version of the
design of our case study. Consider an evolution of this sequence diagram to the sequence
diagram shown in Figure 9.8 by moving the operation getCustomerSpecifics() from the
source class, i.e., Session, to the target class, i.e., Withdrawal. This model refactoring is
called Move Operation. The latter sequence diagram is similar to the previously discussed
one, shown in Figure 2.12.

In Figure 9.9, the decision diagram and the different activities of the Move Operation
refactoring are shown. We use activity diagrams as defined in the UML 2.0 to specify the
decision diagram of a model refactoring. The actions representing a refactoring step in the
diagram are marked by a S. We will now describe step by step the execution of this model
refactoring.

Declaring the operation in the target class
In our example, the operation getCustomerSpecifics() is declared in the class Withdrawal
(see Figure 9.6). The user has to specify which operation will be declared in which class.
No inconsistencies are checked after this step, because the declaration of a new operation
in a class does not cause any inconsistencies.

Copy the body of this operation to its new target In this step, answers to the
question how to reference the source object from the target class and the question how
to reference the referenced objects in the body of the operation from the target class need
to be given. Support for answering these questions can be delivered by an inconsistency

199 9.4 Model Refactoring through Rule-Based Inconsistency Resolution

atm:ATM :CustomerConsole s:Session

 :Withdrawal

1 : Withdrawal(atm, s, acard)

2 : performTransaction()

2.1 : getCustomerSpecifics()

2.1.1 : accnumber:=getAccountNbr()

2.1.1.1 : accnumber:=readAccountNbr()

2.1.2 : cash:=getAmountEntry()

2.1.2.1 : cash:=readAmount()

2.1.3 : bool:=checkIfCashAvailable(cash)

 :CashDispenser

2.1.3.1 : checkCash(cash)

2.1.4.1 : aBool:=send(m)

2.2 : completeTransaction()

2.1.4 : sendBool := sendToBank(m)

Figure 9.7: Sequence diagram for a withdrawal session scenario on an ATM.

resolution approach at model level. If the body of an operation at model level is copied
without considering these questions, different inconsistencies can occur.

At UML diagram level, copying the body of an operation implies adding the defined
body of the operation to (new) object(s) that are instances of the target class in a (new)
sequence diagram. This can be done in interaction with the user. Different possible in-
consistencies can occur now, i.e., instance specification missing, incompatible behaviour and
inheritance inconsistencies. Two inconsistencies of the category instance specification miss-
ing are relevant here, dangling feature reference and dangling association reference. The
possible occurrences of these inconsistencies are detailed in the next paragraphs.

A dangling feature reference occurs in this step, when one or more operations of the
source class are referenced by the target class. In order to remove this inconsistency, the
question how to reference the source object from the target class needs to be answered. Pos-
sible solutions in the context of this specific model refactoring are: (1) move the operation
to the target class as well, in this case the model refactoring Move Operation is executed
first for the operation in question; (2) create or use a reference, i.e., an association from the
target class to the source; (3) pass the source object as a parameter to the operation, in
this case the model refactoring Add Parameter (similar to the Add Parameter source-code
refactoring [Fow99]) is executed first. In our example, this inconsistency occurs because,
by copying the body of getCustomerSpecifics the operation sendToBank is called on the
instance of Withdrawal.

The rule representing the first possible solution was explained in the previous chap-

Chapter 9. Model Refactorings 200

s:Session

 :Withdrawal

1 : Withdrawal(atm, s, acard)

2 : performTransaction()

2.1 : getCustomerSpecifics()

 :CustomerConsoleatm:ATM :CashDispenser

2.1.1 : accnumber:=getAccountNbr()

2.1.1.1 : accnumber:=readAccountNbr()

2.1.2 : cash:=getAmountEntry()

2.1.2.1 : cash:=readAmount()

2.1.4.1 : aBool:=send(m)

2.1.3 : bool:=checkIfCashAvailable(cash)

2.1.3.1 : checkCash(cash)

2.2 : completeTransaction()

2.1.4 : sendBool := sendToBank(m)

Figure 9.8: Sequence diagram after the execution of Move Operation.

ter. The second and third possible solutions correspond to several composed inconsistency
resolution rules. The dangling feature reference inconsistency is resolved by changing the
message representing the operation call in such a way that it is received by the correct
object. The rules representing these resolutions are also discussed in the previous chapter.
As remarked in that chapter, these resolutions introduce a dangling association reference
inconsistency. In the case of this refactoring this inconsistency can be resolved by creating
or using an association from the target class to the source class. Two rules correspond to
these two resolution possibilities. These rules are also introduced in the previous chapter.

The third possible solution gives rise to the Add Parameter refactoring.
In our example, this inconsistency is resolved by sending the corresponding message to

the Session object. A dangling association reference is introduced and this inconsistency
can be resolved by sending the message over the existing association declared between the
Session and Withdrawal class (see Figure 9.6).

A dangling association reference occurs after the second step in this refactoring, when
objects are referenced in the body of the operation that are not known to the target class.
Again different solutions are possible: (1) an explicit association can be added to reference
the class in question; (2) a parameter can be added to the operation, which results in an
implicit association; (3) as the objects are known to the source class, operation calls can be
sent to the source class, but this involves the addition of different operations in the source
class, which are delegating operations.

This inconsistency occurs in our example. At this moment, there is no link between the
objects of the Withdrawal class and the ATM class. In our example, this inconsistency is
solved by adding an association between the classes Withdrawal and ATM .

201 9.4 Model Refactoring through Rule-Based Inconsistency Resolution

Declare the operation in the
target class

copy body of operation to
target class

move operation
to target class add parameter add reference delegate to

source class

remove source
operation

retain it as delegating
operation

dangling feature
reference

yes(1)no

dangling
association
reference?

yes(1) yes(2)

yes(4)
No

remove

retain

dangling feature
reference?

yes

behaviour
inconsistencies?

yes

add lifeline

yes(2)

add lifeline

yes(2)

dangling
association
reference?

no

no

synchronise sequence and
state machine diagrams

use existing
lifeline

yes(3)

use reference

yes(3)

use existing
lifeline

yes(1)

add
parameter add reference

yes(1) yes(2)

use existing
reference

yes(3)

dangling
association
reference?

add parameter add reference

yes(1)
yes(2)

yes(3)

use existing
reference

yes

no

S

S

S

S

Figure 9.9: Decision activities for Move Operation.

Chapter 9. Model Refactorings 202

The first rule introduced as a possible solution for the dangling feature reference incon-
sistency in the previous chapter represents the above presented solution (1). In the action
of the rule a new association is created and linked to the correct classes. This association
is used for typing the connector which links the relevant objects. The rule for the second
possible resolution is similar to the above presented rule for resolving a dangling feature
reference. The third possible solution is a composition of different solutions. First, the
dangling association reference is solved by using the reference between the target object
and the source object as the type of the connector and changing the object receiving the
message. This is described by the rule below. The execution of this rule will again result in
a dangling feature reference. By introducing the operation in the corresponding class, this
inconsistency can be solved.

(firerule

(and (check-DAR ?assoc ?m)

(?m ?con connectorr)

(?m ?mendsend sendEvent)

(?m ?mendreceive receiveEvent)

(?mendreceive ?lifelinereceive coveredsub)

(?mendsend ?lifelinesend coveredsub)

(?lifelinesend ?connectableelsend represents)

(?connectableelsend ?classsend base)

(?assoc ?end1 ownedAttribute)

(?end1 ?classsend definedType)

(?assoc ?end2 ownedAttribute)

(?end2 ?classsend ownedAttribute)

(?class ?end2 ownedAttribute)

(user-option-useLifeline ?lifeline)

(?lifeline ?connectableel represents)

(?connectableel ?class base)

(user-option-useAssocObj ?assocuser ?lifeline)

)

((related ?m (new-ind connector ?assocuser) connectorr)

(related ?mendreceive ?lifeline coveredsub)

(forget-role-assertion ?mendreceive ?lifelinereceive coveredsub)

(forget-role-assertion ?m ?con connectorr))

)

Incompatible behaviour and inheritance inconsistencies occur due to the fact that the
sequence diagrams and the state machine diagrams of the source and target class are no
longer synchronised. These inconsistencies can be resolved in this step, or after the last
step in the execution of this refactoring.

Remove the operation in the source class or retain it as a delegating operation
If the operation is removed from the source class, a dangling feature reference can occur
in the scenarios where the operation is sent to an object of the source class or in the
specification of the behaviour of the source class. In this case, the receiver of the operation
must be changed to the correct object that is an instance of the target class or such an
object must be created. In our example, the getCustomerSpecifics() operation is removed
from the Session class. As a result, a dangling feature reference occurs. The message can
be redirected to the object of type Withdrawal shown in the scenario in Figure 9.7. This
resolution can cause a dangling association reference if the target class cannot be reached
from the object invoking the operation or if the relationship on which the message is sent, is
not known between the objects. This inconsistency can be resolved by creating a reference
or using an existing one or adding a parameter to the operation in question.

203 9.5 Discussion on a Rule-Based Refactoring Approach

In case the operation is turned into a delegating method, a dangling association reference
can occur. Solving this inconsistency boils down to answering the question how to reference
the correct target object from the source object. Again different resolutions are possible. The
correct target object can be referenced through the creation of a new reference, or using an
existing reference or adding a parameter to the operation.

If there are still inheritance inconsistencies or incompatible behaviour, these inconsis-
tencies need to be resolved at the end of this step. The resolution of these inconsistencies
changes the relevant sequence and state machine diagrams.

9.5 Discussion on a Rule-Based Refactoring Approach

The previous section has illustrated with an example that executing a model refactoring boils
down to resolving a number of possibly recurring inconsistencies. The decisions that have
to be taken in order to execute the Move Operation model refactoring are depicted in the
activity diagram in Figure 9.9. However, even for a model refactoring as moderately complex
as this one is, this diagram is non-trivial. Note that when implementing the decision process
represented in the diagram in an imperative programming language using a traditional
conditional statement, this results in a program that is equally non-trivial: similar to the
activity diagram, the programmer has to order and nest conditional statements manually.
Every possible situation in the model to be refactored leads to a potentially different flow of
inconsistency resolutions. Moreover, the same inconsistency resolution can occur multiple
times in different combinations with other inconsistency resolutions. Although the previous
section only illustrated one model refactoring, we observe that the same inconsistencies
occur in multiple model refactorings. These decision diagrams are shown in Appendix C. As
such, a first important criterion when resolving inconsistencies as part of model refactorings
is reuse of inconsistency resolutions in and across model refactorings.

Similar to inconsistency resolution in general, each detected inconsistency can be re-
solved in several different ways and the selection of a particular resolution for an inconsis-
tency can depend on the particular state of the model. For the most part, however, selecting
a resolution is a matter of preference of the person who is executing the model refactoring.
Therefore, again similar to inconsistency resolution in general, we require choice points in
the flow of inconsistency resolutions where the refactorer is able to communicate his or her
preference for a particular resolution. This choice affects the subsequent flow of inconsis-
tency resolutions. As such, a second criterion we aim to address is support for user-guided
selection of inconsistency resolutions.

9.5.1 Evaluation

It is clear from the previous section that the process of detecting and resolving inconsisten-
cies until all (resulting) inconsistencies are eliminated, is useful not merely in the context of
inconsistency management but also in the support for applying refactorings. In this section,
we evaluate a particular set of model refactorings and the above introduced criteria.

Table 9.1 summarises which inconsistencies can be detected and resolved to support a
certain model refactoring. The rows contain the different refactorings we (re)designed at
model level so far. A X in a cell of the table indicates that the resolutions of the correspond-
ing inconsistency can be used to support the execution of the corresponding refactoring.

Chapter 9. Model Refactorings 204

This table indicates that executing the studied model refactorings consists indeed of resolv-
ing inconsistencies and that the same inconsistencies occur in different model refactorings.
The decision diagrams of the different model refactorings mentioned in Figure 9.1 can be
found in Appendix C.

Add Parameter

Extract Class

Move Operation
Pull up Operation

Push down Operation
Extract Operation

in
he

rit
an

ce
sp

ec
ific

at
io

n
in

co
m

pa
tib

ilit
y

be
ha

vio
ur

 s
pe

cif
ica

tio
n

in
co

m
pa

tib
ilit

y

da
ng

lin
g

ty
pe

 re
fe

re
nc

e
in

st
an

ce

sp
ec

ific
at

io
n

m
iss

in
g

Replace Conditional with
Polymorphism

× × × ×
× × ×
× × × ×

×

×

×
×

×
× × ×

×
×

××

×

×

Change Bidirectional
Association to Unidirectional

Move Attribute ××
×

×
×

×
×

××

Table 9.1: Analysis of relation between model refactorings and inconsistencies.

Some refactorings however, can be executed without this process of inconsistency detec-
tion and resolution. Consider a refactoring where a class is inserted in a hierarchy. In a first
step, the new class is created. This does not introduce any inconsistencies. A second step
is to add a generalisation relationship between this new class and the superclass. This also
does not introduce any inconsistencies. A third step is to add a generalisation relationship
between the subclass and the new class. Finally, the generalisation relationship between
the superclass and subclass can be removed without causing any inconsistencies.

The criteria identified in the beginning of this section, are fulfilled by our rule-based
inconsistency resolution approach. Rules representing the different inconsistency resolutions
are defined only once and the rule engine fires the ones that are appropriate for a certain
situation guaranteeing reuse of inconsistency resolution in and across model refactorings.

We now show that reuse of inconsistency resolutions such as described above is crucial
in the context of model refactorings, and thus motivates a rule-based approach. We present
an analysis of the relation between several model refactorings and inconsistency resolutions.
The results are shown in Table 9.2. This table presents the same 9 model refactorings as
before (colums), but this time in relation to the concrete inconsistency resolutions (rows)
that we have defined for supporting the execution of these model refactorings. These incon-
sistency resolutions are distilled from the decision diagrams in Appendix C and listed on
the right-hand side of Table 9.2. We discovered 17 different resolutions for 4 inconsistency
categories. The cells indicate if an inconsistency resolution has been employed to execute a
model refactoring. In some cases a particular resolution can occur several times in the same

205 9.5 Discussion on a Rule-Based Refactoring Approach

model refactoring, as is also illustrated in the Move Operation model refactoring presented
in Section 9.4. It is clear from the table that there is significant reuse of resolutions in and
across model refactorings. The number of times an inconsistency resolution is reused can
be calculated from this table by making the sum of the numbers of the row corresponding
to the inconsistency resolution. However, these numbers are lower bounds. Some resolu-
tions cause the execution of a model refactoring, e.g., S1 and some model refactorings are
composed of other refactorings. In the numbers shown in Table 9.2, we do not take into
account that in the execution of some model refactorings, other model refactorings need to
be executed. An exception is the Extract Class because this refactoring is a composition of
two other model refactorings.

specification
incompatibility

(SI)

dangling type reference
(DTR)

dangling association
reference

(DAR)

dangling feature
reference

(DFR)

Ad
d

Pa
ra

m
et

er

Ex
tra

ct
 C

la
ss

M
ov

e
O

pe
ra

tio
n

Pu
ll u

p
O

pe
ra

tio
n

Pu
sh

 d
ow

n
O

pe
ra

tio
n

Ex
tra

ct
 O

pe
ra

tio
n

Re
pl

ac
e

Co
nd

itio
na

l w
ith

Po
lym

or
ph

ism

Ch
an

ge
 B

id
ire

ct
io

na
l

As
so

cia
tio

n
to

 U
ni

di
re

ct
io

na
l

M
ov

e
At

tri
bu

te

S1
S2
S3

S5
S4

S6
S7
S8
S9
S10
S11
S12
S13
S14

1

1
1
1

1

1

1

1
1

1
1

1
1
1

3
3

1

1

2
2

1

1
1

1
1

1

1

2

2

2
2

1
3

1

2

1

2

3
3

1

S15
S16
S17

2
2

1

1

1
1

1
1
1

3
3

4
4
4

1
1

S1 →DFR, Move operation
S2 →DFR, Use existing lifeline
S3 →DFR, Add lifeline
S4 →DFR, Use existing operation
S5 →DFR, Add new operation
S6 →DFR, Encapsulate Attribute
S7 →DFR, Pull up operation
S8 →DFR, Abstract operation
S9 →DAR, Add parameter
S10→DAR, Add reference
S11→DAR, Use reference
S12→DAR, Delegate operations
S13→DTR, Add type
S14→DTR, Use existing type
S15→SI, Add parameter
S16→SI, Add reference
S17→SI, Use reference

Table 9.2: Analysis of reuse of inconsistency resolutions in and across model refactorings.

Note that the inconsistency resolutions belong to structural inconsistency categories. We
have omitted the behavioural inconsistencies that occur in the analysed model refactorings
since we did not include the resolution of these inconsistencies in our tool support (see next
chapter).

As already mentioned in the previous chapter, a rule-based system separates the defini-
tion of a rule from the strategy employed by a rule engine for selecting the rules to be fired.
Our rule-based approach to inconsistency resolution provides a mix between automation
and user input: the rule engine automatically finds all applicable rules in each situation

Chapter 9. Model Refactorings 206

and as such automatically constructs an implicit flow of inconsistency resolutions, whereas
the developer is able to select his or her preferred resolution out of the applicable ones.

9.5.2 Open Issues

The evaluation presented in the previous section, clearly shows that our rule-based inconsis-
tency resolution approach is useful in the context of applying a model refactoring. However,
some issues need to be discussed or need to be addressed by an extension of our approach.
In the remainder of this section, we will discuss two issues in depth and briefly describe the
remainder of the issues. The latter issues are outside the scope of this dissertation and are
described in detail as future work in the last chapter of this dissertation.

• The decision diagrams presented in Figure 9.9 and in Appendix C need to be inter-
preted as possible executions of the corresponding model refactorings. By drawing
these diagrams, we claim that an inconsistency resolution approach can be used to
support the application of these refactorings and that the same inconsistency resolu-
tions reoccur in and across different model refactorings. We do not claim that these
decision diagrams are complete and correct. These diagrams are the result of man-
ually redesigning the corresponding refactorings and, based on, e.g., application- or
system- or company-specific requirements, other resolutions than the ones specified in
the decision diagrams can be added. Remark that it is not easy to find all the relevant
places in the different diagrams where a new resolution needs to be added. In our
rule-based approach, a resolution corresponds to a rule that needs to be defined only
once and that will automatically become applicable.

• A refactoring is correct if it terminates, the model is syntactically correct and some
behavioural properties of the model are preserved [Por03]. Due to the fact that reso-
lutions can introduce new inconsistencies, a rule can be fired more than once. This
can introduce cycles leading to an infinite chain of resolutions. In our tool support
(see next chapter), the firing of the same rule on the same data is allowed only once
preventing such cycles. Formal techniques can be used to prove termination of the
rules. The syntactical correctness of the model is guaranteed because of the usage of
DL. As already explained, the UML metamodel is translated into concepts and roles,
called definitions, and the user-defined models are translated into assertions which
can be checked for conformance with the definitions using a standard DL reasoning
task. A last issue is to prove that the model refactoring preserves some behavioural
properties of the model. We addressed this issue in the first part of this chapter.

• The inconsistency resolutions implemented in our approach can be too fine-grained.
Depending on the application and system, it must be possible to group different
resolutions or to define new resolutions (see Section 11.2.4).

• Different rules can be fired at the same time, user interaction is used in our approach
to decide which inconsistency must be resolved first. As a result of the resolution of
a certain inconsistency, it can be that other inconsistencies are resolved as well. This
can happen in our approach as a side-effect of choosing a particular resolution. To find
an optimal ordering of the different rules, analysis of the dependencies between the
inconsistencies and between different resolution actions is needed (see Section 11.2.3).

207 9.6 Related Work

• Even with an optimal ordering of the rules, it is still possible that a lot of inconsis-
tencies are detected and for each inconsistency, a lot of resolutions are possible. The
question is how to manage all these inconsistency occurrences and their resolutions.
Several possibilities can be investigated (see Section 11.2.3).

• Other refactorings then the ones presented in this chapter and in Appendix C need
to be analysed in the context of our rule-based inconsistency resolution approach (see
Section 11.2.5).

• In the context of a refactoring, an inconsistency resolution can be the application of
a certain refactoring as shown in the Move Operation refactoring presented in Sec-
tion 9.4. The question remains how to support this by our rule-based DL inconsistency
resolution approach (see Section 11.2.5).

9.6 Related Work

Research on model refactoring is emerging. A set of basic UML refactorings is provided in
[SPLJ01] to improve the software design in a stepwise fashion. Model refactorings are de-
fined in [Por03] as a sequence of transformation rules. Reusability of refactoring steps across
different refactorings is not considered, whereas in our work inconsistency resolutions are
decidedly reused, not only conceptually but also their actual definitions as rules. Moreover,
the transformation rules in [Por03] are executed in the order they are defined and there is
no rule engine that chains rules, i.e., (re)activating rules when data is changed or created.

To the best of our knowledge, tool support for model refactorings is only discussed in
[BSF02] and [Ast02]. Boger et al. [BSF02] show how model refactorings can be integrated
in the Poseidon [gen05] UML refactoring browser. However, this plug-in is not available
anymore for Poseidon. Boger et al. define several model refactorings such as state machine
refactorings and activity diagrams. Whether these model refactorings can also be supported
through inconsistency resolution needs further investigation. Astels [Ast02] uses a UML tool
to perform source code refactorings more easily, and also to aid in code smell detection.
However, possible inconsistencies or problems are left for detection by the source code
compiler. A Move Method e.g., is done by just dragging the method in the corresponding
UML class diagram to the target class.

Surprisingly, none of the above approaches towards model refactoring takes behaviour
preservation into account. One of the reasons is that there is no generally accepted be-
havioural interpretation of UML models. Therefore, we consider this as an important
contribution of this dissertation. Few other works have been presented in the context of
behaviour preservation of refactorings. In [EHKG02], transformation rules are defined in
the context of model evolution. These rules express which operation are allowed on a certain
model and transform this model into another model preserving some property. However,
there is no rule engine chaining the rules. Some behavioural properties of source-code
refactorings have been defined in [MDJ02] and graph transformations have been defined
to support them. These properties are quite general. One property defined in [MDJ02],
call preservation, is refined by us into several possible behaviour preservation properties.
Van Gorp et al. [VSMD03] define source-consistent model refactoring contracts. These
contracts allow to compose refactorings and to check some program behaviour properties.

Chapter 9. Model Refactorings 208

By complementing their contracts with our consistencies a relation can be created between
the UML diagrams and source code.

9.7 Conclusion

In this chapter, we show how starting from some of our defined consistencies, similar defini-
tions of behaviour preservation properties can be derived between a model and its refactored
version. We also prove some additional properties regarding inheritance consistency and
behaviour preservation between a refined model and its refactored version.

In a second part of this chapter, we argue that the rule-based approach for inconsistency
resolution can be applied to the domain of model refactorings. We elaborate on a particular
model refactoring, Move Operation. We show that in order to execute this refactoring, a
chain of inconsistency detection and resolution steps is actually performed. Our rule-based
approach enables reuse of inconsistency resolutions in and across model refactorings and
support for user-guided selection of inconsistency resolutions. However, there are still some
open issues which we briefly described in this chapter, but that will be discussed in detail
in Chapter 11.

Until now, we discussed inconsistency detection, resolution and support for model refac-
torings on a conceptual level. How these activities are supported and how this support has
been implemented in a state-of-the-art UML CASE tool is explained in the next chapter.

Chapter 10

Proof-of-concept Tool Support

In the previous chapters we have shown how inconsistencies can be detected and resolved
using DLs. We observed, in the previous chapter, that these ideas can be used for the execu-
tion of model refactorings. The rule-based formalism presented, introduces some variability
in the implementation of the rule engine’s strategy. In this chapter, proof-of-concept tool
support is presented for demonstrating the detection and resolution of inconsistencies and
the execution of model refactorings. The tool support is a proof-of-concept because it is
a prototype tool and only a limited number of inconsistencies and model refactorings are
implemented.

First, we introduce our prototype tool (Section 10.1). Next, implementations of inconsis-
tency detection queries are shown (Section 10.2). Finally, we illustrate the implementation
of inconsistency resolution rules by using these rules for the implementation of model refac-
torings (Section 10.3). This chapter uses examples taken from our case study to illustrate
how the ideas presented in this dissertation can be implemented.

10.1 Introduction to RACOoN

In this section we introduce our proof-of-concept tool, called RACOoN, which stands for
Resolution Actions for inCONsistencies1. The tool is a proof-of-concept tool due to several
reasons: (1) it is a prototype tool; (2) only a representative set of inconsistency resolution
actions and model refactorings are implemented for demonstrating our work; (3) the user
interface of the tool can still be improved. Consequently, the tool can still be extended and
improved in various ways. The possible extensions and improvements are discussed in the
next chapter.

Our tool is a Poseidon [gen05] plug-in using Racer as DL reasoning engine. Poseidon
extended with this plug-in that uses Racer, serves as our inconsistency detection and
resolution environment. In the next section, we explain the architecture of our proof-of-
concept tool.

1Definition of racoon by the Encyclopædia Britannica: also called ringtail, any of two to seven species (de-
pending on the authority) of small, nocturnal carnivores constituting the genus Procyon (family Procyonidae)
and characterised by bushy, ringed tails.

Chapter 10. Proof-of-concept Tool Support 210

RACER INFERENCE ENGINE

INTERFACE

Tboxes Aboxes
Query and

Rule
Repository

RACER

POSEIDON

POSEIDON CORE

RACOoN plug-in

Queries Resolution
Actions

Rule
Processor ExtractorInconsistency

Detector

INTERFACE to RACER

User
Interface

Refactoring
Execution

Figure 10.1: Architecture of inconsistency detection and resolution environment.

10.1.1 Architecture

In [SVJM04], we set up a preliminary tool chain for the purpose of checking inconsistencies
between UML models. This tool chain has evolved into a Poseidon plug-in which was
initially developed by Jocelyn Simmonds [SB05]. We extended this plug-in with various
inconsistency detection queries, the ability to generate different Tboxes using spanning
functions and a rule-based resolution approach, and finally a model refactoring execution
engine.

Due to its plug-in mechanism and because it is a well-known UML CASE tool, Poseidon
is a suitable basis for our inconsistency detection and resolution environment. In Chap-
ter 5, we already motivated the choice of Racer as a DL system. The architecture of our
environment is depicted in Figure 10.1. This figure shows Poseidon and Racer as starting
elements of our environment. RACOoN is plugged into the Poseidon tool and contains six
components. Each of these components will be discussed below.

User interface Through the user interface of the plug-in, the tool can be configured and
the translation of the UML metamodel fragment can be loaded into Racer. Through
this interface the detection and resolution of particular inconsistencies on particular
UML models can be chosen and executed. Also the execution of model refactorings
can be controlled in this interface.

Extractor The extractor allows for the translation of the user-defined UML models into
Abox assertions. It also defines the spanning functions for the creation of Tbox state-
ments representing different interpretations of UML model elements.

Inconsistency detector The inconsistency detector communicates with Racer through
the interface to Racer to check whether certain inconsistencies, indicated by the user,
occur. It also processes the results returned by Racer.

Rule processor Different rule sets for the resolution of an inconsistency are defined by
the rule processor and activated by sending these rules to Racer. Different rule
engine strategies can be implemented in this component. We will explain one possible
strategy in Section 10.3.

211 10.1 Introduction to RACOoN

Figure 10.2: Screenshot of RACOoN ’s configuration pane in Poseidon.

Refactoring execution This component implements the execution of the model refactor-
ings. During this execution, a rule engine, defined in the rule processor, is called.

Interface to Racer This component enables the communication between the different
above presented components of the tool and Racer. Racer is available as a server
and it also offers an extensible Java client interface, called JRacer. Through this inter-
face, interactions between the reasoning engine and the plug-in can be implemented
straightforwardly.

Next to these components, the tool also contains a set of queries and resolution actions.
The queries are used to detect part of our classified inconsistencies, they are also used by
the spanning functions and in the resolution rules.

In Figure 10.2 a screenshot of RACOoN ’s configuration pane is shown. Through this
configuration pane, the Racer parameters – the IP address of the Racer server and its
port – can be dynamically changed. The Tbox containing the UML metamodel fragment
can also dynamically change.

CASE Tool Restrictions Due to the usage of Poseidon, some technical restrictions
must be taken into account. Most of these restrictions also apply to other commercial
UML CASE tools. Because the plug-in mechanism of Poseidon is used and Poseidon is
implemented in Java, our tool is also implemented in Java. All commercial CASE tools
– also Poseidon – still use the metamodel of the UML version 1.4. As a result queries on
the UML metamodel, including our inconsistency detection queries, are written using the
UML version 1.4. This does not derogate the proof-of-concept of our ideas. Compared to
the metamodels of the UML versions 1.x, the metamodel of the UML version 2.0 is mostly
changed for the representation of sequence diagrams. Lifelines are made explicit in version
2.0 while in the previous versions, a lifeline is an object of a certain type. Poseidon does not
support explicitly the role interaction interpretation of sequence diagrams. We restricted

Chapter 10. Proof-of-concept Tool Support 212

User can
select

inconsistency
checks

Explanation of
the selected

inconsistency
check

Results of the
inconsistency

check

readAccountNbr
operation is not

known by the class
CustomerConsole

Figure 10.3: Screenshot of RACOoN ’s inconsistency manager pane in Poseidon.

our support for inconsistency detection and resolution to sequence diagrams representing
object interactions.

In the remainder of this chapter, we will demonstrate how inconsistencies are detected
and how model refactorings are executed using our tool.

10.2 Inconsistency Detection in RACOoN

In Figure 10.3 a screenshot is shown of RACOoN ’s inconsistency manager pane. Our
catalogue of inconsistencies is shown in this pane. This catalogue is not hard-coded but can
be changed by the user and is loaded when the tool is started. Translating models from
Poseidon to Racer and checking properties on these models are independent activities.
The checks are executed on user-demand.

10.2.1 Querying the Metamodel

As explained in Chapter 7 our classified inconsistencies can be checked by executing
nRQL queries or by Tbox or Abox evaluation functions. If the user selects a check imple-
mented by a nRQL query, this query is retrieved from our query repository and processed by
the query processor. If an inconsistency occurs the inconsistency manager pane informs the
user and lists the UML elements involved in this particular occurrence of the inconsistency.

The screenshot of Figure 10.3 shows that there is a dangling feature reference in
the modelled sequence diagram. The operation named readAccountNbr is not known

213 10.2 Inconsistency Detection in RACOoN

to the CustomerConsole class while it is invoked on an object that is an instance of
CustomerConsole.

Before continuing with the implementation of inconsistency detection via our DL frame-
work, we discuss the possible impact of the different nRQL completeness modes on our
inconsistency detection tool support. This discussion is also relevant for inconsistency de-
tection via our DL framework.

10.2.2 Impact of nRQL Completeness Modes

In Chapter 7, we showed that it is possible to reason in different modes of completeness in
nRQL. What does this mean for inconsistency detection in our tool? Recall that reasoning in
an incomplete mode only uses the syntactic, told information from an Abox, while reasoning
in a complete mode uses this told information plus exploited Tbox information for all
concepts.

On the one hand, in RACOoN the translation of elements of a user-defined UML model
is based on the elements modelled in Poseidon. Poseidon and all current state-of-the-art
UML CASE tools allow the user to only create instances of metaclasses that are leafs of
metamodel inheritance hierarchies and each user-defined model element is an instance of a
certain metaclass. If we could specify in a CASE tool that, for example, an element i of a
model is an instance of the metaclass InstanceSpecfication and that this element is connected
to an instance c (the type of c is not known) via the meta-association classifierspec, the
following query

(retrieve (?x ?y)

(and (?x instancespecification)

(?x ?y classifierspec)

(?y classifier)))

returns NIL in an incomplete mode, and it returns the set {((?x i) (?y c))} in complete
mode.

On the other hand, our queries use those leaf metaclasses to navigate over the meta-
model. Using a metaclass that is not a leaf in an inheritance hierarchy together with
(in)completeness of querying, has an impact on the results of the query. Consider, for exam-
ple, the query detecting a dangling feature reference. If the metaclass BehaviouralFeature
would have been used in this query instead of Operation, the inconsistency detected in the
previous section would not have been detected in an incomplete mode. It would have been
detected in a complete mode. The operation in question (readAcountNbr) is modelled as
an instance of the metaclass Operation. An incomplete mode only takes this information
into account, while a complete mode also takes into account that Operation is a subclass
of BehaviouralFeature.

We can conclude that because our tool uses the information delivered by Poseidon and
our queries use metaclasses that are leafs in an inheritance hierarchy, the impact of reasoning
in an incomplete mode or complete mode has minor impact on the inconsistencies detected.
Further research is necessary to determine the precise impact of these reasoning modes.

10.2.3 DL Framework

If the inconsistency check is implemented through Tbox or Abox evaluation functions, an
appropriate Tbox or Abox is generated through the use of spanning functions. The Strategy

Chapter 10. Proof-of-concept Tool Support 214

public void spanningFunction(String instanceName) throws RacerException,

IOException {

processTransitions();

if (! (mappingTable.isEmpty())){

processSequences();

processDisjointness();

}}

Figure 10.4: Implementation of the translation of call sequences of a PSM.

pattern is used to implement the generation of the different Tboxes representing (complete)
sets of call sequences and SD traces.

The code fragment shown in Figure 10.4 shows part of the code implementing the
generation of a Tbox representing a set of call sequences. First the transitions are processed.
This activity is shown in Figure 10.5. For each transition the operation, precondition
and postcondition is retrieved. nRQL queries are used to retrieve the operations and the
preconditions and postconditions. In this version of the tool, we assume that the pre- and
postconditions are DL concepts because the automatic translation of OCL constraints to DL
statements is not yet implemented. Finally, the transition is translated into a DL concept.
This process results for the example in the RACER Fragment 6.3 in the generation of the
first 10 lines.

query for
transitions

processTransitions

retrieve operation

retrieve
precondtions

retrieve
postconditions

translate to DL

Figure 10.5: The activity of processing the transitions of a PSM.

215 10.3 Supporting Refactorings in RACOoN

A second step is to process the different call sequences and to put them in a sequence.
The method processSequences modelled in the activity diagram shown in Figure 10.6,
first retrieves the initial state of the PSM through a nRQL query. Secondly, the tran-
sitions outgoing this state are retrieved and each transition is processed by the activity
processSequence.

Get topstate

Get outgoing
transitions

processSequences

processSequence

Figure 10.6: The activity of processing the call sequences.

The activity processSequence is implemented by two methods: processSequence and
processCallSequences. Relevant fragments of these methods are shown in the code frag-
ment shown in Figure 10.7.

The method processSequence retrieves the target state of a given transition trans.
If this state is already known by the spanning function, the algorithm stops because the
transitions outgoing this state are already processed and translated into Tbox statements.
If the target state is not yet known, the transitions outgoing this target state are retrieved
and processed together with the transition trans in the method processCallSequences.
The method processCallSequences (shown in the code fragment in Figure 10.7) puts the
given transition trans in sequence with each transition from the string transitions. For
each such transition, the method processSequence is called again with the target state as
source state and the transitions as starting transition.

The translation of Tbox statements generated by this spanning function complemented
by a similar translation of SD traces can be used to check invocation or observation consis-
tency between a PSM and sequence diagrams or to check behaviour compatibility between
a PSM and relevant sequence diagrams.

10.3 Supporting Refactorings in RACOoN

Through the step-by-step execution of the model refactoring Move Operation, we will not
only show how our rule-based inconsistency resolution approach can be used in the context
of model refactorings, but also how inconsistencies are resolved in our approach.

Chapter 10. Proof-of-concept Tool Support 216

private void processSequence(State sourcestate, Transition trans) throws
 RacerException, IOException{
 String query = queryRepository.getQuery(_CC_TargetTrans(trans.getName()));
 String res = client.synchronousSend(query);
 String targetName = format(res);
 State targetstate = null;
 if (! (States.containsKey(targetName))){
 targetstate = new State(targetName);
 States.put(targetName, targetstate);
 String q = queryRepository.getQuery(_CC_TransState(targetName));
 String transitions = client.synchronousSend(q);
 processCallSequences(sourcestate, trans, targetstate, transitions);
 }
}

private void processCallSequences(State sourcestate, Transition trans,
 State targetstate, String transitions) throws RacerException,
 IOException{
 //for each transition
 if (!(mappingTable.containsKey(transName))){
 targettrans = new Transition(transName);
 mappingTable.put(transName, targettrans);
 } else{
 targettrans = (Transition)mappingTable.get(transName);
 }
 sourcestate.translateSequencetoDL(trans, targetstate, targettrans, getFlag());
 processSequence(targetstate, targettrans);

 String DLresult = sourcestate.finishTranslation();
 writer.write(DLresult);
}

First, get the target state
of transition trans

If target state is not yet processed,
get the outgoing transitions, otherwise

translation stops

For each transition, first translate the sequence
and next, process the next sequence

Figure 10.7: Code implementing the processing of a sequence.

217 10.3 Supporting Refactorings in RACOoN

In Figure 10.9 a screenshot is shown of RACOoN ’s refactoring-manager pane. The
catalogue of refactorings is shown in this pane. This catalogue is not hard-coded but can
be changed by the user and is loaded when the tool is started.

10.3.1 Move Operation Step-by-Step in RACOoN

We use in this section the same example as used in Section 9.4. The operation
getCustomerSpecifics is moved to the Withdrawal class.

If the user selects the Move Operation refactoring in the refactoring manager pane, the
first step of this refactoring is executed. The user is asked for the operation to be moved
and the target class. The specified operation is automatically added to the specified target
class.

In a second step the body (as specified in a certain sequence diagram) of the operation
is copied to the target class. This is done automatically. First, the user is asked for the
object that contains the body of this operation. Secondly, the user is asked for the object
where the body of this operation should be copied to. After copying the operation body, a
rule engine is invoked with the necessary nRQL rules. Each nRQL rule represents a possible
resolution of a certain inconsistency.

Remember that current nRQL rules do not support expressions prompting for user input
in their condition. How do we implement this user interaction? Because the condition of a
nRQL rule is an ordinary nRQL query, the conditions of all the rules are matched against
the data of the Abox. The list of returned bindings for each of the different rules is presented
to the user. This functionality is implemented by the method runIt modelled as an activity
in Figure 10.8.

runIt

check applicable
queries

present applicable ones
to the user

applicable rules

no applicable
rules executeRule

rule

Figure 10.8: Running a rule engine.

In the example, one occurrence of the dangling feature reference inconsistency and four
occurrences of the dangling association reference inconsistency are detected. These occur-
rences together with the proposed solutions are shown to the user (see right bottom corner
of Figure 10.9).

Chapter 10. Proof-of-concept Tool Support 218

Three different resolutions for the dangling feature reference inconsistency are proposed:
(1) add the operation to the class to which the operation is sent; (2) send the operation to
an existing object that is an instance of a class owning the operation; (3) send the operation
to a new object that is an instance of a class owning the operation. The different possible
resolutions for this inconsistency are shown in the right bottom corner of Figure 10.9.

Different resolutions
are presented to the

user

sendToBank
operation is not

known by the class
Withdrawal

User can
select a

refactoring

User can select a
resolution

Figure 10.9: Screenshot of rule instantiations.

The user has to select which rule instantiation, i.e., which inconsistency resolution, will
be chosen for a particular binding through the plug-in interface. We choose to send the
operation to the existing object of type Withdrawal. After the user has selected a possible
resolution, the method executeRule is executed (modelled as an activity in Figure 10.10).

First, user input is asked. In our example, we need to know to which existing object (or
lifeline) the operation must be sent. This user input is asserted as a new concept. The rule
is prepared and the correct rule instantiation is executed. The consequent of this particular
rule instantiation is added to the Abox. The user input assertions are removed from the
Abox. Because only one occurrence is resolved and resolution actions can introduce new
inconsistencies, the conditions of the rules are again matched against the changed Abox by
calling the method runIt again. Consequently, after each inconsistency resolution, the
applicable inconsistency resolutions are updated by the rule engine.

As a result of the resolution of this dangling feature reference inconsistency in our ex-
ample, an occurrence of the dangling association reference inconsistency is introduced. In
Figure 10.11, four different resolutions are proposed to the user: (1) add a new association;
(2) add a parameter; (3) add delegating operations, and, finally, (4) use an existing asso-

219 10.3 Supporting Refactorings in RACOoN

rule

ExecuteRule

rule : Rule

get user input

assert user input

execute rule in
Racer

runIt

Figure 10.10: Execution of a rule.

Dangling Association
Reference is introduced after
the solution of the dangling

feature reference

Figure 10.11: Screenshot of possible resolutions for the dangling association reference in-
consistency occurrences.

Chapter 10. Proof-of-concept Tool Support 220

Four occurrences of the
Dangling Association

Reference

Figure 10.12: Still four occurrences of the dangling association reference inconsistency.

ciation. Again, the user has to select which inconsistency resolution will be chosen for a
particular binding. We choose to use the existing association defined between the classes
Transaction and Session.

After this inconsistency resolution, the applicable inconsistency resolutions are updated
by the rule engine. This results in the detection of four occurrences of the dangling as-
sociation reference inconsistency. Three different resolutions for each occurrence of the
inconsistency are proposed: (1) add a new association; (2) add a parameter to the oper-
ation; (3) send operation calls to the source class. The possible resolutions are shown in
the right bottom corner of Figure 10.12. The fourth possible resolutions – use an existing
association – does not occur in the list of possible resolutions because there is no existing
association between the classes ATM and Withdrawal. In our example, we choose the first
resolution shown in Figure 10.12. First, user input is asked. In our example, we need to
know the name of the new association. This user interaction is shown in Figure 10.13. As
a result, a new association is created between the classes ATM and Withdrawal and that
particular occurrence of the dangling association reference is resolved.

By re-executing the rules after this resolution, three occurrences of the dangling associa-
tion reference inconsistency are still detected. There is one occurrence of this inconsistency
less because it was resolved in the previous step, but, next to the three possible resolutions
as proposed for the previous four occurrences of this inconsistency, a new possible resolu-
tion is added. Due to the previous resolution action, there exists an association between the
classes ATM and Withdrawal. The four possible resolutions for each remaining occurrence
of the dangling association reference are shown in Figure 10.14. This association can now
be used to resolve the other occurrences of the dangling association inconsistency.

As a last step of this refactoring the user has to decide whether to remove the operation
from the source class or retain it as a delegating method. Suppose the user decides to
remove the operation from the source class. This is done automatically. As a next step, the
rule engine is called again with the necessary rules. The different resolution steps are similar
to the ones discussed above and shown in the different figures (Figure 10.9, Figure 10.11,

221 10.3 Supporting Refactorings in RACOoN

Figure 10.13: Asking user input for a certain inconsistency resolution.

Still 3 occurrences of the
Dangling Association

Reference, but one extra
possible solution

Figure 10.14: Extra possible resolution for the remaining three occurrences of the dangling
association reference inconsistency.

Chapter 10. Proof-of-concept Tool Support 222

Figure 10.12, Figure 10.14).
In this section, we showed how the strategy presented in the previous chapter can be

implemented. Remark that at this moment, only the Abox assertions are changed. The
implementation of the visual changes in Poseidon is under construction. Issues not addressed
by this strategy, such as fine-grained resolutions, an optimal ordering of rules, managing a
lot of detected inconsistencies and the associated possible resolutions, are detailed in the
next chapter.

10.4 Conclusion

In this chapter, we introduced our prototype tool support for inconsistency management.
Due to the important role of inconsistency management in MDE, tool support for the
different activities of this process becomes indispensable. Our inconsistency management
environment consists of our tool RACOoN that uses Racer and that is plugged into Posei-
don. First, we introduced the architecture of RACOoN, our proof-of-concept inconsistency
detection and resolution tool. Because this tool is a proof-of-concept of the ideas presented
in this dissertation, no experiments with end-users can be done due to the rudimentary
user interface of our tool. In the next chapter, we will discuss possible improvements and
extensions to our tool.

Despite the different limitations of this environment, we were able to show (1) how our
inconsistency detection approach – as introduced in Chapter 7 – can be implemented and
captured by tool support; (2) how our inconsistency resolution approach applied to model
refactorings – discussed in Chapter 9 – can be implemented and captured by tool support.

Chapter 11

Conclusion

In this chapter, the conclusions of this dissertation are presented. First, the ideas and work
presented in this dissertation are summarised stressing our contributions (Section 11.1).
Finally, directions for future research are discussed (Section 11.2).

11.1 Summary and Contributions

The goal of this dissertation was to investigate inconsistencies in (evolving) object-oriented
software models and to address their definition, detection and resolution by developing a
coherent inconsistency management framework using a declarative formalism.

MDE is an approach to software engineering where the primary focus is on models.
Different views of the software system are covered by different models and these different
models can get refined or can evolve. Managing and synchronising the different models is
a complex task and inconsistencies can arise easily. As declarative formalism, Description
Logics are evaluated for the purpose of inconsistency definition, detection and resolution.
As a result, this work combines two fields from two different computer science disciplines,
inconsistency management, that is a research field in software engineering, and Description
Logics, that is a research field in artificial intelligence. In this summary the same sequence
of steps is followed as in the dissertation: first, the modelling language and the important
activities in the inconsistency management process are synthesised, next different criteria
for an inconsistency management environment are summarised, then Description Logics
and relevant systems are revisited, finally, we go back to the different identified criteria
and review to which extent DLs and their systems can be used to address the requirements
identified for each of these criteria. In each of the steps, we clearly indicate the contributions
of this dissertation.

The UML became the standard state-of-the-art modelling language and is heavily used
in current MDE approaches. Because of the standardisation and different revision cycles
of the OMG, the UML has become a huge language, full of compromises. Some people
consider this as an advantage because the UML has the potential to cover a broad range
of systems. However, this advantage is also a disadvantage. Because the UML is so huge,
it is difficult for a human to know it completely and inconsistencies can easily arise in its
abstract syntax and it is easy to make mistakes to its abstract syntax. UML also lacks a
precise semantics. In this dissertation, we go back to the basic features of the UML used in
the context of object-oriented modelling. We only consider a limited fragment of the UML

Chapter 11. Conclusion 224

abstract syntax. This fragment allows the expression of class diagrams, sequence (commu-
nication) diagrams and protocol state machine diagrams. We use relations to describe the
various abstract syntax elements. We also introduce a possible semantics for the described
behaviour of (interacting) objects. The goal of this formalisation is to have a clear, coher-
ent and unambiguous description of the UML fragment considered. This formalisation will
serve as a basis for the definition, detection and resolution of inconsistencies. This results
in our first contribution:

Contribution 1: A lightweight formalisation of a UML fragment representative for the
basic features of an object-oriented modelling language and serving as a basis for the

definition of certain activities of the inconsistency management process [VJM04], [VMJ06].

Different dimensions of consistencies are recognised in literature. One such dimension
is syntactic versus semantic consistency. Depending on the modelling language, application
domain and so on, syntax and semantics are distinctly defined. We define syntactic consis-
tency as the guarantee that a specification conforms to the abstract syntax of the modelling
language. Semantic consistency is defined as the complement of syntactic consistency. We
define violations of semantic consistency, i.e., semantic inconsistencies as violations that can
not be defined as conformance violations to the abstract syntax.

Based on literature studies and on the UML fragment considered, we define a two-
dimensional classification of domain-independent inconsistencies. The first dimension
is: structural versus behavioural, while the second dimension is: instance versus in-
stance/specification versus specification. Our classified inconsistencies are defined using
our formalisation of the UML fragment under consideration. The set of classified incon-
sistencies is not exhaustive but we believe that it is a representative set. This belief is
strengthened by the work of Lange et al. [LCM+03]. This work reports on an empirical
investigation of the occurrences of inconsistencies in the UML designs of six large-scale in-
dustrial cases. Our classified inconsistencies are a superset of the inconsistencies identified
in their research. This leads to our second contribution:

Contribution 2: An open, two-dimensional classification of precisely defined,
domain-independent inconsistencies [VMSJ03], [SVJM04], [MVS05].

Inconsistency management is an important issue in the context of MDE. Tool support
is needed for the different activities of this process. In our opinion, this tool support must
rely on a powerful formalism enabling the precise definition, detection and resolution of
inconsistencies. Inconsistency resolution is, as recognised in literature, a difficult issue. We
distill a set of inconsistency resolution challenges.

We propose the declarative formalism Description Logics to support static inconsistency
checking and resolution of UML models. Because the usage of DLs and their systems for
inconsistency definition, detection and resolution is an unexploited field, we first establish
possible criteria by which such formalisms can be evaluated.

Next, we introduce Description Logics, a family of logic languages. DLs have roots in
frames and semantic networks. It was recognised that frames could be given a semantics
relying on fragments of first-order logic. The basic inference task in Description Logics is
subsumption. DLs are useful in the design of knowledge-based applications. A DL knowl-
edge base has two components, a Tbox and an Abox. A Tbox contains general knowledge
about the problem domain (also called terminological knowledge) while an Abox contains

225 11.1 Summary and Contributions

knowledge specific to a particular domain (also called assertional knowledge). Most research
focuses on Tbox reasoning as opposed to Abox reasoning. Several DL systems were devel-
oped. We give a survey of the most important ones and choose the Racer system to be
used in our approach. We show that DL systems can play an important role in the context
of inconsistency management and that Tbox and Abox reasoning are both important in this
context.

A first step is to investigate the suitability of DLs as a representation language for
the abstract syntax of the UML fragment under consideration and as a possible semantic
domain for PSMs and traces modelled by sequence diagrams. This investigation resulted in
the definition of a DL representation framework. This leads to our third contribution:

Contribution 3: The representation of the abstract syntax of the UML fragment and the
representation of the semantics of PSMs and traces modelled by sequence diagrams by

well-defined DL Tboxes and Aboxes [VMSJ03], [VSM03], [Van04], [VMJ06].

Secondly, we investigate whether the standard DL reasoning tasks are sufficient for
the detection of our classified inconsistencies. We conclude that these reasoning tasks
are sufficient, but that enhanced reasoning on Aboxes using the standard reasoning tasks,
is necessary. DL systems can be equipped with DL query languages but at the time of
our survey of DL systems, no state-of-the-art DL system was equipped with such a query
language. This observation has led to the development of a sophisticated query language
for the Racer system by the Racer developers. Consequently, through our work we
contributed to the research in the field of Description Logics and associated systems.

Contribution 4: The definition of the detection of our classified inconsistencies through
standard DL reasoning tasks and a sophisticated query language developed by the

Racer authors based on, among other things, our concrete input [VSM03], [HMSW04].

In this dissertation, we focus on resolution actions as a means to resolve inconsisten-
cies. The resolution of inconsistencies introduces some particular challenges. Some of these
challenges are: the particular set of resolution actions that will be used to resolve an in-
consistency can be dependent on the cause of the inconsistency; the execution of resolution
actions on a model can introduce new inconsistencies. A final step is to investigate whether
DLs and their systems offer sufficient support to cope with these challenges. We conclude
that the standard reasoning tasks on DL terminological and assertional knowledge are not
sufficient, and we propose an additional rule-based approach. This approach allows us to
manage the different inconsistency resolution scenarios semi-automatically. This results in
the following contribution:

Contribution 5: A rule-based DL inconsistency resolution approach that automatically
chains the different possible inconsistency resolutions through the automatic detection of
inconsistencies, the proposition of solutions to the user and the execution of the selected

solution.

A last issue of research in this dissertation is the application of our ideas in the context of
model refactorings. Support for inconsistency management is not only useful in the context
of model development, but also in an evolution context. Model refactorings are the design-
level equivalent of source code refactorings. Refactorings restructure a model or source code

Chapter 11. Conclusion 226

improving some quality attributes of the software specification and preserving its behaviour.
Few works have been presented in the context of behaviour preservation of refactorings. In
this dissertation, we observe that there are behaviour preserving properties that correspond
to our defined behavioural consistencies. These consistencies are originally defined between
a superclass and a subclass in an inheritance hierarchy. We redefine them as behaviour
preservation properties between a class and its refactored version. If a certain consistency
exists between a superclass and its subclass and a certain behaviour preservation property
holds between this superclass, respectively subclass, and its refactored version, then certain
properties between the refactored version and the subclass, respectively superclass, can be
proven.

Contribution 6: Investigation of the correspondence between consistencies and
behaviour preserving properties leading to the proof of behaviour preserving properties

between refactored classes in an inheritance hierarchy [VJM04], [VMJ06].

We also show that support for inconsistency resolution can be used in the execution
of model refactorings. Refactorings can be executed stepwise [Fow99]. Each step consists
of some particular model or source code modifications. In a source code refactoring, after
each step, the code is compiled and tested [Fow99]. Many of the source code refactorings
can be rephrased into model refactorings. Some of the model modifications constituting a
model refactoring can be supported by inconsistency resolution. The “compile and test”
step defined in source code refactorings is replaced in the context of model refactorings by
the detection and resolution of inconsistencies. We show how our inconsistency resolution
approach can be used in the execution of model refactorings and in some cases, allows for
the semi-automatic execution of the refactoring.

Contribution 7: Application of our rule-based inconsistency resolution approach to the
execution of model refactorings, allowing a semi-automatic execution of these refactorings.

Tool support for inconsistency management is indispensable. Because tool support
is not a central issue in this dissertation, we developed a proof-of-concept inconsistency
detection and resolution tool, called RACOoN. The tool is integrated in Poseidon, a state-
of-the-art UML CASE tool, using Poseidon’s plug-in mechanism and it uses Racer as DL
reasoning engine. Because Poseidon is implemented in Java, our plug-in is also implemented
in Java. This proof-of-concept tool support shows how the ideas developed and explained
in this dissertation can be implemented. In particular, we show how inconsistencies can
be detected and how refactorings can be implemented using our inconsistency resolution
approach.

Contribution 8: Development of an inconsistency detection and resolution plug-in for
the state-of-the-art CASE tool Poseidon relying on Racer and acting as a

proof-of-concept of our ideas.

11.2 Future Work

In this section, some possible extensions and improvements to our work are identified.
New research areas related to this work are presented too. These areas are interesting to

227 11.2 Future Work

pursue, but are outside the scope of this dissertation. We discuss the relevant issues by
theme described in this dissertation: issues concerning the UML in Section 11.2.1, con-
cerning model refactorings in Section 11.2.5, concerning management of inconsistencies in
Section 11.2.3, concerning tool support in Section 11.2.2 and Section 11.2.4, concerning DLs
in Section 11.2.6.

11.2.1 Larger Set of UML Elements

In this dissertation, we restricted ourselves to the basic features of the UML in the context of
object-oriented software engineering. As previously stated, the UML is a huge language and
therefore other language elements can be taken into account. On the one hand, we believe
that our approach can be straightforwardly extended to the language elements of structural
diagrams such as component diagrams and composite structure diagrams. On the other
hand, some interesting research questions can arise for behavioural diagrams, e.g., for UML
activity diagrams. They are the most studied UML diagram after class diagrams, sequence
diagrams and state diagrams. Activity modelling is described in [Obj04e] as: “activity
modelling emphasises the sequence and conditions for coordinating lower-level behaviours,
rather than which classifiers own those behaviours. These are commonly called control flow
and object flow models. The actions coordinated by activity models can be initiated because
other actions finish executing, because objects and data become available, or because events
occur external to the flow.”. The part of the UML metamodel describing these activity
diagrams can be translated using the translation defined in Section 6.1. User-defined activity
diagrams can be interpreted as instances of this part of the UML metamodel. Using a DL
query language, it will be possible to detect certain inconsistencies. However, the question
arises which inconsistencies are important within these diagrams and which inconsistencies
can be defined between these diagrams and other kinds of UML diagrams. To be able
to answer this question, the different interpretations, i.e., the different possible semantics,
of this kind of diagram and their overlap with the other kinds of diagrams need to be
determined. Another question is whether DLs are sufficient to represent these semantics
and to verify the relevant inconsistencies.

11.2.2 Validation on Large-scale (Industrial) Cases

Until now, we only carried out experiments on small examples. It would be useful to validate
our approach on some large-scale industrial cases. This validation would provide us with
some empirical data. It would give DL researchers a better insight on the performance of
the inference algorithms. The data relevant for the software engineering community would
be the number of occurrences of particular inconsistencies in particular applications, the
definition of (domain-dependent) inconsistencies that are important to some applications
and some companies, which inconsistencies are the most important ones for which kind
of application. However, we believe that this validation would not contribute much to
fundamental research questions in inconsistency management. One exception is the question
how to manage the different inconsistencies and their many resolution possibilities (see
Section 11.2.3).

Chapter 11. Conclusion 228

11.2.3 Management of Inconsistencies and Inconsistency Resolutions

In Chapter 4, we introduced possible resolution actions and showed that there are depen-
dencies between the different resolution actions of inconsistencies. In [MTR05] critical pair
analysis is used to detect and analyse possible conflicts between refactorings. A similar
exercise can be done for the different resolution actions. Critical pair analysis can be used
to determine possible dependencies and conflicts between resolution actions.

In Chapter 8, we presented our inconsistency resolution approach. This approach detects
the inconsistencies automatically and, based on additional information, proposes resolution
actions to the user. This approach contributes to the management of the different detected
inconsistencies and their possible resolutions. However, it is still possible that a lot of
inconsistencies are detected and for each inconsistency, a lot of resolutions are possible.
The question is how to manage all these inconsistency occurrences and their resolutions.
Several possibilities can be investigated. One possibility is to use learning techniques where
the selection of particular resolution actions by the user in a particular context is learned
by the resolution approach. Another possibility is to use predefined resolution alternatives.
The user has to define different alternative resolution strategies depending on the context. A
constraint system can be used to determine the resolution strategy to be chosen. However,
we believe none of both approaches enables the automatic resolution of inconsistencies and
we even believe that full automatic inconsistency resolution is not desirable. For example,
if a new model element needs to be added, the user has to specify its name. A computer-
generated name can be used, but in that case, the user still has to edit the model if he/she
does not agree on the name.

11.2.4 Extending and Improving Tool Support

Our tool can be extended by implementing more inconsistencies and more model refactor-
ings.

Improvements can be made to the tool increasing the usability of the tool. Grundy et
al. [GHM98] claim that a key requirement for supporting inconsistency management is the
facilities for developers to configure when and how inconsistencies are detected, monitored,
stored, presented and possibly automatically resolved. Section 4.5 introduces such tool
support requirements that are briefly recapitulated here:

• It must be possible to create and remove inconsistency detection rules.

• The software developer must be able to decide when to check for inconsistencies and
which inconsistencies must be checked.

• It must be possible to add, remove or modify inconsistency resolution rules.

• The ordering and grouping of inconsistency resolution rules must be customisable.

• The resolution of inconsistencies demands a certain amount of user interaction.

The implementation of the first requirement results in an editor that allows the creation and
removal of inconsistency detection functions. How the user can edit inconsistency detection
queries or functions without DL knowledge must be investigated. In our tool, the user can
decide which inconsistencies must be checked and when the inconsistencies must be checked,

229 11.2 Future Work

fulfilling the second requirement. The interface implementing this functionality should still
be enhanced. The ordering and grouping of inconsistency resolution rules also requires an
editor. The user interaction demanded by the resolution of inconsistencies is supported by
our tool. This is demonstrated in Chapter 10. The ultimate goal of these requirements is
to make the tool as usable as possible for the average developer. An average developer is
a developer that is not acquainted with DLs, and that is not an expert in inconsistency
management. This requires a study of the interface by measuring the interface’s impact on
the quality of the activities executed by the developer. Empirical studies are necessary.

In Section 6.7, we discussed the relation between OCL and DLs and the translation,
if possible, from OCL constraints to DL expressions. We did not take into account this
translation in our tool support. As OCL version 2.0 has a metamodel that is integrated in
the UML metamodel, it must be possible to straightforwardly implement this translation.

11.2.5 Model Refactorings

Other refactorings than the ones presented in Section 9.5, in particular state machine refac-
torings, need to be analysed and, if possible, implemented using our rule-based inconsis-
tency resolution approach. By analysing and implementing refactorings, we can determine
if other inconsistencies then the classified ones are needed and we will get a better idea on
the number of resolution actions and rules that are necessary in the execution of certain
model refactorings. For each inconsistency occurring during the execution of a refactor-
ing, a certain amount of resolution actions are presented to the user. As already discussed
in Section 11.2.3, management strategies resulting in a more automatic execution of the
refactorings, need further investigation.

Another issue is the definition of other behaviour preservation properties. The question
also arises whether the fact that a certain behaviour property between a class and its
refactored version is required, can be used in the process of executing the refactoring. This
is particularly interesting for refactorings on state machines. Consider the refactoring Merge
States that merges several states to one state. During the execution of this refactoring only
a behaviour incompatibility can occur. To be able to support this refactoring in the same
way as we support, e.g., Move Operation, the required behaviour preservation properties
can be checked during refactoring. If these properties are violated, resolution actions for
these properties can be executed leading, together with user interaction, to the refactored
model.

11.2.6 Extensions to DLs and their Systems

In Section 7.4, the lack of proper feedback when using the reasoning tasks Tbox coherence
and Abox consistency was mentioned as one of the disadvantages of checking inconsistencies
through these reasoning tasks. Further research is necessary to cope with this problem.
The work done in [SC03] marks a promising start. It reports on reasoning services for the
debugging of ALC terminologies.

In Chapter 8, two kinds of DL rules are introduced. We also argued that current DL
systems do not support Tbox rules. Further research is necessary to support these rules.
However, using current techniques, it is possible to support these rules to a certain extent.
A first approach consists of weakening our behavioural inconsistencies in such a way that
they can be detected via the metamodel interpretation of the involved UML models. In

Chapter 11. Conclusion 230

this case, it is not possible to take into account the consistency of the specified constraints.
Another way is to convert the Tbox coherence reasoning task to the instance checking task
on Abox level by techniques such as Tbox internalisation [BCM+03]. Tbox internalisation
reduces the problem of reasoning with respect to a general Tbox to reasoning with a single
concept for expressive logics allowing the definition of a universal role [BCM+03]. SHIQ, for
example, is a logic allowing the definition of a universal role. The consequent of a nRQL rule
has as syntax a set of Abox assertional axioms. As a consequence no Tbox assertions can be
added or retracted from a certain Tbox. A work-around is to resolve such inconsistencies via
the metamodel interpretation of the involved UML models. This can only be achieved if a
metamodel for the used constraint language is integrated in the UML metamodel. However,
this involves an extra translation step, which involves storing tracking information and
introducing a possible performance penalty.

Appendix A

Racer Statements Representing
our UML 2.0 Fragment

In this appendix, the Racer statements representing our UML 2.0 fragment of the UML
2.0 metamodel are stated. The relevant elements of the different relevant packages of the
UML 2 Superstructure document are translated into Racer statements. For each set of
Racer statements, a reference to the corresponding, translated package is included.

(delete-all-tboxes)

(in-tbox UML2MetaModelTbox)

;

;The Classes package contains subpackages that deal with the basic

;modeling concepts of UML, and in particular classes and their relationships.

; pg. 25

;

;Subpackage KERNEL

;

;KERNEL - the Root diagram

; pg. 27

(define-primitive-role abstractownedelement :domain element :range element :inverse abstractowner

:transitive t :reflexive f)

(define-primitive-role ownedelement :domain element :range element :inverse owner)

(implies-role ownedelement abstractownedelement)

(implies element

(at-most 1 owner element))

(define-primitive-role relatedElement :domain relationship :range element)

(define-primitive-role source :domain directedrelationship :range element)

(define-primitive-role target :domain directedrelationship :range element)

;define-concept vervangen door implies in beide statements hieronder

(implies relationship

(and element

(at-least 1 relatedelement element)))

(implies directedrelationship

(and relationship

(at-least 1 source element)

(at-least 1 target element)))

;

;KERNEL - the Namespaces diagram

; pg. 31

;(define-primitive-role member :domain namespace :range namedelement)

;member in commentaar omdat het de verzameling (transitief) is van alle ownedmembers

(define-primitive-role ownedmember :domain namespace :range namedelement :inverse ownednamespace

:parent ownedelement)

(define-concrete-domain-attribute name :type string :domain namedelement)

(implies namedelement

Chapter A. Racer Statements Representing our UML 2.0 Fragment 232

(and element

(at-most 1 ownednamespace namespace)))

(implies namespace namedelement)

(define-primitive-role visibility :feature t :domain namedelement :range visibilitykind)

(equivalent visibilitykind (or public private))

(disjoint public private)

;

;KERNEL - the Multiplicities diagram

; pg. 40

(implies multiplicityelement element)

(define-concrete-domain-attribute lower :type integer :domain multiplicityelement)

(define-primitive-role upper :domain multiplicityelement :range (or Unlimitednatural LiteralInteger)

:feature t)

(define-concrete-domain-attribute value :type integer :domain LiteralInteger)

(disjoint Unlimitednatural LiteralInteger)

(define-primitive-role definedtype :domain typedelement :range type)

(implies typedelement

(and namedelement (at-most 1 definedtype type)))

(implies type namedelement)

(disjoint type typedelement)

;

;KERNEL - the Expressions diagram

;pg. 45

(define-primitive-role operand :domain expression :range valuespecification :parent ownedelement)

(implies expression valuespecification)

(define-concrete-domain-attribute symbol :type string :domain expression)

;

;KERNEL - the Constraints diagram

;pg. 53

(define-primitive-role constrainedelements :domain constraint :range element)

;

;KERNEL - the Instances diagram

;pg. 57

(define-primitive-role owningslot :domain instancespecification :range slot :inverse owningInstance

:parent ownedelement)

(define-primitive-role classifierspec :domain instancespecification :range classifier)

(define-primitive-role specification :domain instancespecification :range valuespecification

:parent ownedelement)

(define-primitive-role instance :domain instancevalue :range instancespecification)

(define-primitive-role slotvalue :domain slot :range valuespecification :parent ownedelement)

(define-primitive-role definingfeature :domain slot :range structuralfeature)

;define-concept vervangen door implies in de onderstaande 3 statements

(implies instancespecification (and namedelement (at-least 1 classifierspec classifier)

(at-most 1 specification valuespecification)))

(implies instancevalue (and valuespecification (exactly 1 instance instancespecification)))

(implies slot (and element (exactly 1 definingfeature structuralfeature)

(exactly 1 owningInstance Instancespecification)))

(disjoint instancespecification instancevalue slot)

;

;KERNEL - the Classifiers diagram

;pg. 61

(define-primitive-role featuremembers :domain classifier :range feature :inverse featuringclassifier

:parent ownedmember)

(implies classifier namespace)

(implies classifier type)

;define-concept vervangen door implies

(implies feature (and namedelement (at-least 1 featuringclassifier classifier)))

(define-primitive-role isgeneralization :domain classifier :range generalization :inverse specific

:parent ownedelement)

(implies-role specific source)

(implies-role specific owner)

(define-primitive-role generalclass :domain generalization :range classifier :parent target)

(implies generalization (and directedrelationship (exactly 1 generalclass classifier)))

(define-primitive-role direct-general :domain classifier :range classifier :parent general)

233

(define-primitive-role general :domain classifier :range classifier :transitive t)

(define-primitive-role inheritedmember :domain classifier :range namedelement

:parent ownedmember)

;

;KERNEL - the Features diagram

;pg. 71

(implies structuralfeature (and typedelement feature))

(define-primitive-role hasparameter :domain behaviouralfeature :range parameter :parent ownedmember)

;member verandert in ownedmember

(implies behaviouralfeature (and feature namespace))

(implies parameter (and typedelement namedelement (at-most 1 (inv parameter) behaviouralfeature)))

(disjoint structuralfeature behaviouralfeature)

;

;KERNEL - the Operations diagram

;pg. 76

(define-primitive-role formalparameter :domain behaviouralfeature :range parameter

:parent hasparameter :inverse ownerformalparam)

(define-primitive-role returnresult :domain behaviouralfeature :range parameter

:parent hasparameter :inverse ownerreturnparam)

(implies parameter (and (at-most 1 ownerformalparam behaviouralfeature)

(at-most 1 ownerreturnparam behaviouralfeature)))

(implies (and (some formalparameter paramater) (some returnparameter parameter)) bottom)

;

(define-primitive-role typeoperation :domain operation :range type)

(define-primitive-role isabstract :domain (or operation class))

(implies operation (and behaviouralfeature (at-most 1 typeoperation type)))

(define-primitive-role formalparameterop :domain operation :range parameter :inverse owneroperation

:parent formalparameter)

(define-primitive-role preconditionop :domain operation :range constraint :inverse precontext)

(implies-role preconditionop ownedmember)

(implies-role precontext ownednamespace)

(define-primitive-role postconditionop :domain operation :range constraint :inverse postcontext)

(implies-role postconditionop ownedmember)

(implies-role postcontext ownednamespace)

(implies (and (some precontext operation) (some postcontext operation)) bottom)

(implies constraint (and (at-most 1 postcontext operation) (at-most 1 precontext operation)))

(define-primitive-role redefinedelement :domain redefinableelement :range redefinableelement)

(define-primitive-role redefinedoperation :domain operation :range operation :parent redefinedelement)

;KERNEL - the Classes diagram

;pg. 80

(define-primitive-role allattribute :domain classifier :range property :inverse owningclassifier

:parent featuremembers)

(implies-role redefinedattribute redefinitioncontext)

(define-primitive-role redefinitioncontext :domain redefinableelement :range classifier)

(implies redefinableelement namedelement)

(define-primitive-role ownedattribute :domain class :range property :inverse owningclass

:parents(ownedmember allattribute))

(implies-role owningclass redefinedattribute)

(implies-role owningclass ownednamespace)

(implies-role owningclass featuringclassifier)

(implies property (and structuralfeature (some definedtype (or class primitivetype))))

(define-primitive-role subsettedproperty :domain property :range property)

(define-primitive-role redefinedproperty :domain property :range property

:parent redefinedelement)

(define-primitive-role direct-superclass :domain class :range class :parent general)

(define-primitive-role nestedclassifier :domain class :range classifier :inverse nestingclass

:parent ownedmember)

(implies-role classnestingclass ownednamespace)

(implies-role classnestingclass redefinitioncontext)

(define-primitive-role ownedoperation :domain class :range operation :inverse ownedclass

:parents(featuremembers ownedmember))

(implies-role ownedclass owningnamespace)

(implies-role ownedclass redefinitioncontext)

(implies-role ownedclass featuringclassifier)

(define-primitive-role memberassociation :domain property :range association :inverse memberend)

Chapter A. Racer Statements Representing our UML 2.0 Fragment 234

(implies-role memberend ownedmember)

;member verandert in ownedmember

(define-primitive-role owningassociation :domain property :range association :inverse ownedend

:parents(memberassociation owningnamespace featuringclassifier))

(define-primitive-role defaultvalue :domain property :range valuespecification :inverse owningproperty

:parent ownedelement)

(define-primitive-role opposite :domain property :range property)

(implies property (and structuralfeature (at-most 1 owningclass class)

(at-most 1 owningclassifier classifier)

(at-most 1 memberassociation association) (at-most 1 owningassociation association)

(at-most 1 defaultvalue valuespecification) (at-most 1 opposite property)))

(implies association (and relationship classifier (at-least 2 memberend property)

(at-least 1 endtype type)))

(define-primitive-role endtype :domain association :range type)

(implies class classifier)

(define-primitive-role aggregation :domain Property :range AggregationKind)

(equivalent AggregationKind (or none shared composite))

(disjoint none shared composite)

(disjoint association class property operation constraint instancespecification)

;

;KERNEL - the Datatypes diagram

;pg. 94

; the datatypes correspond to the concrete domains of Racer

(implies datatype classifier)

(implies primitivetype datatype)

(equivalent complexType (or primitivetype class))

;

;KERNEL - the Packages diagram

;pg. 99

(implies package namespace)

;

;Subpackage COMPOSITE STRUCTURES

;pg. 151

;

;COMPOSITE STRUCTURES - Connectors

;pg. 153

(define-primitive-role connectorends :domain connectableelement :range connectorend

:inverse roleelement)

(define-primitive-role connectortoends :domain connector :range connectorend)

(implies connectorend multiplicityelement)

(implies connector feature)

(define-primitive-role definingend :domain connectorend :range property)

(define-primitive-role associationtype :domain connector :range association)

(implies connectorend (and (at-most 1 roleelement connectableelement)

(at-most 1 definingend property)))

(implies connector (and (at-most 1 associationtype association)

(at-least 2 connectortoends connectorend)))

(define-primitive-role base :domain connector :range classifier :inverse roleofclassifier)

(disjoint connector connectorend operation class property)

;

;The Interaction package describes the concepts needed to express Interactions.

;pg. 404

(define-primitive-role ownedbehavior :domain classifier :range behavior :inverse contextbehavior)

(implies behavior (and class (at-most 1 contextbehavior)))

;pg. 405

(define-primitive-role fragment :domain interaction :range interactionfragment :inverse

enclosinginteraction :parent ownedmember)

(implies interaction (and behavior interactionfragment))

(implies executionoccurrence interactionfragment)

(implies eventoccurrence interactionfragment)

(implies stop eventoccurrence)

(implies interactionfragment (and namedelement (at-most 1 enclosinginteraction interaction)

(or interaction executionoccurrence eventoccurrence)))

;pg. 406

(define-primitive-role coveredlifeline :domain interaction :range lifeline :inverse ownedinteraction

235

:parent ownedmember)

(define-primitive-role coveredsub :domain eventoccurrence :range lifeline :inverse eventoccurrences

:parent covered)

(define-primitive-role covered :domain interactionfragment :range interactionfragment

:inverse coveredby)

;(define-primitive-role represents :domain lifeline :range object)

(define-primitive-role represents :domain lifeline :range connectableelement)

(define-primitive-role instance-of :domain object :range class)

(implies lifeline (and namedelement (exactly 1 ownedinteraction interaction)

(exactly 1 represents connectableelement)))

(implies eventoccurrence (exactly 1 coveredsub lifeline))

;pg. 407

(define-primitive-role sendevent :domain message :range messageend :inverse sendmessage)

(define-primitive-role receiveevent :domain message :range messageend :inverse receivemessage)

(define-primitive-role argumentv :domain message :range valuespecification :parent ownedelement)

(define-primitive-role signature :domain message :range namedelement)

(define-primitive-role connectorr :domain message :range connector)

(define-primitive-role messager :domain interaction :range message :parent ownedmember)

(define-primitive-role finishexec :domain eventoccurrence :range executionoccurrence :inverse finish)

(define-primitive-role startexec :domain eventoccurrence :range executionoccurrence :inverse start)

(define-primitive-role tbefore :domain message :range message :transitive t :inverse tafter)

(define-primitive-role before :domain message :range message :inverse after)

(implies-role before tbefore)

(implies message (and namedelement (exactly 1 interactionr interaction)

(at-most 1 sendevent messageend)

(at-most 1 receiveevent messageend)

(at-most 1 signature namedelement)

(at-most 1 connectorr connector)))

(implies messageend (and namedelement (at-most 1 sendmessage message)

(at-most 1 receivemessage message)))

(implies valuespecification (at-most 1 argumentv valuespecification))

(implies eventoccurrence (and messageend (at-most 1 before eventoccurrence)

(at-most 1 after eventoccurrence)))

(implies executionoccurrence (and (exactly 1 finish) (exactly 1 start)))

(disjoint interaction executionoccurrence eventoccurrence)

(disjoint lifeline message eventoccurrence)

;

;The StateMachine package defines a set of concepts that can be used for modelling

;discrete behaviour through finite state-transition systems.

;pg. 455

(implies statemachine behavior)

(implies protocolstatemachine statemachine)

(implies finalstate state)

(implies state vertex)

(implies vertex namedelement)

(implies initialstate vertex)

(define-primitive-role outgoing :domain vertex :range transition :inverse sourcevertex)

(define-primitive-role incoming :domain vertex :range transition :inverse targetvertex)

(define-primitive-role successor :domain vertex :range vertex :transitive t)

(define-primitive-role direct-successor :domain vertex :range vertex :parent successor)

(implies initialstate (at-most 0 incoming transition))

(implies finalstate (at-most 0 outgoing transition))

(implies region namedelement)

(define-primitive-role subvertex :domain region :range vertex :parent ownedelement)

(define-primitive-role transitions :domain region :range transition :parent ownedelement)

(define-primitive-role regions :domain statemachine :range region :parent ownedmember)

(define-primitive-role extendedregion :domain region :range region :transitive t)

(implies transition (and (exactly 1 sourcevertex vertex) (exactly 1 targetvertex vertex)

namedelement))

(implies protocoltransition (and transition (at-most 1 precondition constraint)

(at-most 1 postcondition constraint)))

(define-primitive-role precondition :domain protocoltransition :range constraint :inverse pre)

(define-primitive-role postcondition :domain protocoltransition :range constraint :inverse post)

(implies constraint (and (at-most 1 pre protocoltransition) (at-most 1 post protocoltransition)))

(implies (and (some pre protocoltransition) (some post protocoltransition)) bottom)

Chapter A. Racer Statements Representing our UML 2.0 Fragment 236

(define-primitive-role referredoperation :domain protocoltransition :range operation)

(disjoint protocolstatemachine protocoltransition state region constraint)

(disjoint initialstate finalstate)

;

;PACKAGE AUXILIARY CONSTRUCTS

;pg. 531

;

;Subpackage models

;pg. 535

(implies model package)

Appendix B

nRQL Inconsistency Detection
Queries

In this appendix, the nRQL queries that defined and detect the inconsistencies specified in
the second column of Table 7.2, and that are not yet described in Chapter 7 are described.
These queries are defined based on the concepts and roles defined in the Tbox shown in
Appendix A.

B.1 Dangling Type Reference

An operation has some formal parameters or return parameters that do not belong to a
certain model.

ans(op, p, atype)

← operation(op) ∧ formalparameter(op, p) ∧ definedtype(p, atype)

∧ member(op, amodel) ∧ not(member(atype, amodel))

The queries for the return parameters are similar.

ans(op, r, atype)

← operation(op) ∧ returnresult(op, r) ∧ definedtype(r, atype)

∧ member(op, amodel) ∧ not(member(atype, amodel))

B.2 Connector Specification Missing

B.2.1 Classless Connectable Element

The base class(es) of the connectable element are unknown.

ans(el)

← connectableelement(el) ∧ \(has known successor(el, base))

Chapter B. nRQL Inconsistency Detection Queries 238

ans(el, c, amodel)

← connectableelement(el) ∧ base(el, c) ∧ (not(member(c, amodel)))

B.2.2 Dangling Connectable Feature Reference

The operation called in a message is not known by any of the base classes (or by the
ancestors of the base classes) of the connectable element.

ans(m, op, c)

← message(m) ∧ signature(m, op) ∧ operation(op) ∧ receiveevent(m, mend) ∧
coveredsub(mend, lifeline) ∧ lifeline(lifeline) ∧ represents(lifeline, connectableel) ∧
base(connectableel, c) ∧ class(c) ∧ (\(has known successor(ownedoperation, op)) ∨
((not(ownedoperation(c, op))) ∧ (not(general(superc, c))) ∧ ownedoperation(superc, op)))

B.2.3 Dangling Connectable Association Reference

This inconsistency can occur if or the association typing the connector is not an element
of the model or there is no association typing the connector or the association typing the
connector does not exist between the base classes of the connectable elements involved in
the connector.

ans(c)

← connector(c) ∧ (\(has known successor(c, associationtype)) ∨
(associationtype(c, assoc) ∧ (not(member(assoc, m))) ∨
\(has known successor(assoc, member))))

ans(c, assoc, cl)

← connector(c) ∧ associationtype(c, assoc) ∧ base(c, cl) ∧ class(cl) ∧
owningassociation(end, assoc) ∧ (not(definedType(end, cl))) ∧
(not(general(supercl, cl))) ∧ definedType(end, supercl)

B.3 Instance Specification Missing

Classless Instance

A certain instance is not an instance of a class or it is an instance of a class not known by
the model.

239 B.3 Instance Specification Missing

ans(obj)

← instancespecification(obj) ∧ (\(has known successor(obj, classifierspec)) ∨
(classifierspec(obj, cl) ∧ ((not(member(cl, m))) ∨ \(has known successor(cl, member)))))

B.3.1 Classless Protocol State Machine

A PSM is associated to a class not known to the model.

ans(psm, cl, model)

← protocolstatemachine(psm) ∧ contextbehavior(psm, cl) ∧ (not(member(cl, model)))))

B.3.2 Dangling Feature Reference

The query searches for operations that are not known to the class of the state machine.

ans(psm, cl, op)

← protocolstatemachine(psm) ∧ contextbehavior(psm, cl) ∧
regions(psm, r) ∧ transitions(r, t) ∧ protocoltransition(t) ∧
referredoperation(t, op) ∧ (\(has known successor(ownedoperation, op)) ∨
((not(ownedoperation(cl, op))) ∧ (not(general(superc, c))) ∧ ownedoperation(superc, op)))

Preconditions are specified on a certain model element, e.g., a transition, and the in-
volved elements in the conditions belong to a class not belonging to the model.

ans(pt, cl, el, m)

← protocoltransition(pt) ∧ precondition(pt, constraint) ∧
constrainedelements(constraint, el) ∧ feature(el) ∧ featuringclassifier(el, cl) ∧
(not(member(cl, m)))

A similar query can be defined for the postconditions specified on a certain model
element.

B.3.3 Dangling Association Reference

The association typing the connector is not an element of the model or there is no association
typing the connector.

ans(l, assoc, m)

← instancespecification(l) ∧ (\(has known successor(l, classifierspec)) ∨
classifierspec(l, assoc) ∧ association(assoc) ∧ (not(member(assoc, m))))

Chapter B. nRQL Inconsistency Detection Queries 240

The association typing the connector does not exist between the classes of the objects
connected through the connector.

ans(c, assoc, cl)

← connector(c) ∧ associationtype(c, assoc) ∧ base(c, cl) ∧ class(cl) ∧
owningassociation(end, assoc) ∧ (not(definedType(end, cl))) ∧
(not(general(supercl, cl))) ∧ definedType(end, supercl)

B.4 Disconnected Model

A disconnected PSM is defined and detected by:

ans(state, psm)

← protocolstatemachine(psm) ∧ regions(psm, r) ∧ subvertex(r, initial) ∧
initialstate(initial) ∧ subvertex(r, state) ∧ (not(successor(initial, state)))

A disconnected sequence diagram is defined and detected by:

ans(l)

← lifeline(l) ∧ coveredsub(mend, l) ∧messageend(mend) ∧
(not((some receiveevent top)(mend)))

B.5 Specification Incompatibility

B.5.1 Multiplicity Incompatibility

In Chapter 7 a query is defined retrieving the lower bound of the multiplicity for a certain
association. The following query retrieves the objects connected through this association.
Remark that the upper bound of the association is verified by checking the consistency
between a Tbox and corresponding Abox.

ans(senderobj, objectsrec, assoc, connector)

← represents(lifelinesend, objects) ∧ classifierspec(objects, sendclass) ∧
eventoccurrences(lifelinesend, sendevents) ∧ receivemessage(sendevents, message) ∧
represents(lifelinereceive, objectsrec) ∧ classifierspec(objectsrec, receiveclass) ∧
eventoccurrences(lifelinereceive, receiveevents) ∧ sendmessage(receiveevents, message) ∧
connectorr(message, connector) ∧ associationtype(connector, assoc)

241 B.5 Specification Incompatibility

ans(senderobj, receivingcl, assoc)

← represents(l, obj1) ∧ connector(c) ∧ connectorends(obj1, end1) ∧
connectortoends(c, end1) ∧ represents(l, obj2) ∧ connectorends(obj2, end2) ∧ connectortoends(c, end2) ∧
associationtype(c, assoc)

B.5.2 Navigation Incompatibility

Messages are sent over a certain association that is not navigable.

ans(senderobj, receivingcl, assoc, assocend)

← represents(lifelinesend, objects) ∧ classifierspec(objects, sendclass) ∧
eventoccurrences(lifelinesend, sendevents) ∧ receivemessage(sendevents, message) ∧
represents(lifelinereceive, objectsrec) ∧ classifierspec(objectsrec, receiveclass) ∧
eventoccurrences(lifelinereceive, receiveevents) ∧ sendmessage(receiveevents, message) ∧
connectorr(message, connector) ∧ associationtype(connector, assoc) ∧
memberEnd(assoc, assocend) ∧ ownedAttribute(receivingcl, assocend) ∧ (not(Navigable(assocend)))

B.5.3 Abstract Object

An abstract class is instantiated.

ans(obj, abstractcl)

← classifierspec(obj, abstractcl) ∧ isAbstract(abstractcl) ∧ (not(general(abstractcl, subclasses))

Chapter B. nRQL Inconsistency Detection Queries 242

Appendix C

Decision Diagrams for Execution of
Model Refactorings

In this appendix, the decision diagrams of the 8 model refactorings specified in Table 9.1 are
shown. As already stated in Chapter 9, the goal of these decision diagrams is to show that
the same inconsistency resolutions reoccur in and across different model refactorings. We
stress that these diagrams have been designed manually and are not claimed to be complete.
These decision diagrams are modelled as UML 2.0 activity diagrams.

Create new
class

Choose attributes
to extract

Choose operations
to extract

Move Attribute Move
Operation

<<iterative>> <<iterative>>

S

S S

Figure C.1: Decision activities for Extract Class.

Chapter C. Decision Diagrams for Execution of Model Refactorings 244

Declare new operation
with added parameter

in class

Add parameter into
the operation

operation NOT implemented
in a superclass or subclass

operation implemented in
a superclass or subclass

Turn the old operation
into a delegating one

that calls the new operation

S

S

Dangling Type
Reference?

Add type

yes

Use existing
type

No

yes(2)

yes(1)

Choose operation and
target class S

Dangling Type
Reference?

Add type

yes

Use existing
typeNo

yes(2)yes(1)

S

operation part
of interface

Remove the old
operation S

operation NOT
part of interface

Dangling feature
reference?

Nouse the new
operation

Behaviour
inconsistencies?

yes

synchronise sequence and
state machine diagrams

yes

No

Copy old body over
the new operation

S

Figure C.2: Decision activities for Add Parameter.

245

Remove navigability from
associationend

Navigation
Conflict?

no
yes

Add parameter add reference use existing
reference

yes(1) yes(2)
yes(3)

move operation
to target class

add parameter add reference

Dangling feature
reference?

yes(1)no

Dangling association
reference?

yes(1)
yes(2)

No

yes yes

add lifeline

yes(2)

use existing
lifeline

yes(3) use existing
reference

yes(3)

add new
operation

yes(4)

S

Figure C.3: Decision activities for Change Bidirectional to Unidirectional Association.

Chapter C. Decision Diagrams for Execution of Model Refactorings 246

Create attribute in
target class

Remove attribute
from source class

(self)
encapsulate

attribute
add parameter add reference

Dangling feature
reference?

yes(1)no

Dangling
association
reference?

yes(1)
yes(2)No

yes

Behaviour
inconsistencies?

yes

add lifeline

yes(2) no

synchronise sequence and
state machine diagrams

use existing
lifeline

yes(3)

use existing
reference

yes(3) yes

S

S

Figure C.4: Decision activities for Move Attribute.

247

Create new operation
in superclass

Copy body of the
operation

Dangling feature
reference? Dangling association

reference?

Behavioural
inconsistencies?

yes

Pull Up
Operation

use referenceadd reference synchronise
sequence and state
machine diagrams

yes(1)

no

yes(1) yes(2)
No

yes
no

Remove operation in
each subclass

Declare operation
in superclass as

abstract

yes(2)

S

S

S

Figure C.5: Decision activities for Pull Up Operation.

Chapter C. Decision Diagrams for Execution of Model Refactorings 248

Declare target
operation as

abstract

Remove target
operation in
superclass

declare abstractremove

Dangling feature
reference? Behavioural

inconsistencies?
yes

No

No
add lifeline use existing

lifeline

yes(1)
yes(3)

synchronise sequence and
state machine diagrams

yes

Dangling
association
reference?

add parameter add reference

yes(1)
yes(2)

use existing
reference

yes(3)

No

S S

Declare method in all
subclasses

Copy body of target
operation into each

subclass S

S

Figure C.6: Decision activities for Push Down Operation.

249

Inconsistency
Resolution after

Adapting Sequence
Diagram

add parameter

Declare new
operation in target

class

Adapt/Create
sequence diagram

Dangling type
reference?

Dangling feature
reference

Declare
operation in
target class

Use existing
typeAdd type

Adapt/Create
sequence diagram

No yes(1) yes(2)

Dangling type
reference?

Use existing
typeAdd type

No
yes(1) yes(2)

Behaviour
inconsistencies?

No

synchronise sequence and
state machine diagrams

yes

No

add reference

Dangling association
reference?

yes(1)
yes(2)

No

yes

use existing
reference

yes(3)

use existing
lifeline

add lifeline

yes(1) yes(3)

yes(2)

Inconsistency Resolution after
Adapting Sequence Diagram

S

S

S

Figure C.7: Decision activities for Extract Operation.

Chapter C. Decision Diagrams for Execution of Model Refactorings 250

Part of a larger
operation?

Extract Operation
S

yes

Conditional at the top of
inheritance structure?

no

Move Operation
S

yes

create subclass
method S

copy body of the
leg of the

conditional S

move operation
to target class

add
parameter add reference

Dangling feature
reference?

yes(1)no

Dangling association
reference?

yes(1) yes(2)
No

yes yes

add lifeline

yes(2) use existing
lifeline

yes(3)
yes(3)

use existing
reference

no

<<iterative>>

Behaviour
inconsistencies?

synchronise sequence and
state machine diagrams

Behaviour
inconsistencies?

synchronise sequence and
state machine diagrams

remove copied
leg of conditional

Figure C.8: Decision activities for Replace Conditional with Polymorphism.

Bibliography

[AM00] João Araújo and Ana Moreira. Specifying the behaviour of UML collaborations
using Object-Z. In Michael Chung, editor, 2000 Americas Conference on Infor-
mation, Systems (AMCIS). AIS, 2000. Long Beach, California, USA. 152

[Ara98] João Araújo. Formalizing sequence diagrams. In Luis Andrade, Ana Moreira,
Akash Deshpande, and Stuart Kent, editors, Proceedings of OOPSLA’98 Work-
shop on Formalizing UML. Why? How?, 1998. Vancouver, Canada. 116

[Are00] Carlos Areces. Logic Engineering. PhD thesis, Institute for Logic Language and
Computation, University of Amsterdam, 2000. Amsterdam, The Netherlands. 16,
103, 105, 109

[Ast02] Dave Astels. Refactoring with UML. In M. Marchesi and G. Succi, editors, Pro-
ceedings International Conference eXtreme Programming and Flexible Processes
in Software Engineering, pages 67–70, 2002. Alghero, Sardinia, Italy. 207

[Baa91] Franz Baader. Augmenting concept languages by transitive closure of roles: An
alternative to terminological cycles. In Proceedings of twelfth International Joint
Conference on Artificial Intelligence (IJCAI1991), pages 446–451. Morgan Kauf-
mann Publishers, August 1991. Sydney, Australia. 105

[BBH93] Franz Baader, Martin Buchheit, and Bernhard Hollunder. Cardinality restrictions
on concepts. DFKI Research Report RR-93-48, Deutsches Forschungszentrum für
Künstliche Intelligenz, 1993. Kaiserslautern, Germany. 149

[BCM+03] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter
Patel-Schneider, editors. The Description Logic Handbook: Theory, Implementa-
tion and Applications. Cambridge University Press, 2003. 15, 103, 108, 110, 113,
115, 116, 119, 121, 178, 230

[BdV01] Patrick Blackburn, Maarten de Rijke, and Yde Venema. Modal Logic. Cambridge
University Press, 2001. 105, 116

[BE89] Alex Borgida and David W. Etherington. Hierarchical knowledge bases and ef-
ficient disjunctive reasoning. In Ronald J. Brachman, Hector J. Levesque, and
Raymond Reiter, editors, Proceedings of first International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR1989), pages 33–43. Morgan
Kaufmann Publishers, May 1989. Toronto, Canada. 118

BIBLIOGRAPHY 252

[Ber02] Daniela Berardi. Using DLs to reason on UML class diagrams. In Günther Görz,
Volker Haarslev, Carsten Lutz, and Ralf Möller, editors, Proceedings of Interna-
tional Workshop on Applications of Description Logics (ADL2002), volume 63 of
CEUR Workshop Proceedings, pages 1–11, 2002. Aachen, Germany. 128, 138, 154

[BH91] Franz Baader and Philipp Hanschke. A scheme for integrating concrete do-
mains into concept languages. DFKI Research Report RR-91-10, Deutsches
Forschungszentrum für Künstliche Intelligenz, 1991. Kaiserslautern, Germany.
116

[BHGS01] Sean Bechhofer, Ian Horrocks, Carole Goble, and Robert Stevens. OilEd: a
Reason-able Ontology Editor for the Semantic Web. In Franz Baader, Gerhard
Brewka, and Thomas Eiter, editors, Proceedings of Advances in Artificial Intelli-
gence, Joint German/Austrian Conference on Artificial Intelligence, volume 2174
of Lecture Notes in Computer Science, pages 396–408. Springer, September 2001.
Vienna. 122

[BHS05] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description Logics as ontology
languages for the semantic web. In Dieter Hutter and Werner Stephan, editors,
Festschrift in honor of Jörg Siekmann, volume 2605 of Lecture Notes in Artificial
Intelligence. Springer, 2005. 16, 103

[Bjo04] Russell C. Bjork. ATM Simulation. www.math-
cs.gordon.edu/local/courses/cs211/ATMExample/, December 2004. 19

[BKBM99] Franz Baader, Ralf Küsters, Alexander Borgida, and Deborah L. McGuinness.
Matching in Description Logics. Journal of Logic and Computation, 9(3):411–447,
1999. 181

[BL84] Ronald Brachman and Hector Levesque. The tractability of nsubsumption in
frame-based description languages. In Ronald Brachman, editor, Proceedings of
National Conference on Artificial Intelligence, pages 34–37. AAAI Press, August
1984. 105

[BMP+02] Jean-Paul Bodeveix, Thierry Millan, Christian Percebois, Christophe Le Camus,
Pierre Bazes, and Louis Ferraud. Extending OCL for verifying UML model consis-
tency. In Ludwig Kuzniarz, Gianna Reggio, Jean Louis Sourrouille, and Zbigniew
Huzar, editors, Blekinge Institute of Technology, Research Report 2002:06. UML
2002 Workshop on Consistency Problems in UML-Based Software Development.
Workshop Materials, 2002. 105

[Bra77] Ronald J. Brachman. What’s in a concept: Structural foundations for semantic
networks. International Journal of Man-Machine Studies, 9(2):127–152, 1977.
117

[Bri93] David Brill. Loom Reference Manual. University of Southern California, version
2.0 edition, December 1993. 120

[BSF02] Marko Boger, Thorsten Sturm, and Per Fragemann. Refactoring browser for
UML. In M. Marchesi and G. Succi, editors, Proceedings International Conference

253 BIBLIOGRAPHY

eXtreme Programming and Flexible Processes in Software Engineering, pages 77–
81, 2002. Alghero, Sardinia, Italy. 189, 207

[CC90] Elliot J. Chikofsky and James H. Cross. Reverse engineering and design recovery:
A taxonomy. IEEE Software, 7(1):13–17, 1990. 8

[CCDL01] Andrea Caĺı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini.
Reasoning on UML class diagrams in Description Logics. In Bernhard Beckert,
Robert France, Reiner Hähnle, and Bart Jacobs, editors, Proceedings of IJCAR
Workshop on Precise Modelling and Deduction for Object-oriented Software De-
velopment (PMD2001), 2001. 104

[CGL98] Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini. On the de-
cidability of query containment under constraints. In Proceedings of seventeenth
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, pages 149–158. ACM Press, June 1-3 1998. Seattle, Washington. 138

[CGLN01] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Daniele Nardi.
Reasoning in expressive Description Logics. In John Alan Robinson and Andrei
Voronkov, editors, Handbook of Automated Reasoning (in 2 volumes), pages 1581–
1634. Elsevier Science Publishers and MIT Press, 2001. 115

[CT04] Jordi Cabot and Ernest Teniente. Determining the structural events that may
violate an integrity constraint. In Thomas Baar, Alfred Strohmeier, Ana M. D.
Moreira, and Stephen J. Mellor, editors, Proceedings seventh International Con-
ference UML 2004, volume 3273 of Lecture Notes in Computer Science, pages
320–334. Springer, October 2004. Lisbon, Portugal. 148, 149

[Eas91] Steve Easterbrook. Handling conflict between domain descriptions with computer-
supported negotiation. Knowledge Acquisition, 3(3):255–289, 1991. 98, 184

[EE95] Jürgen Ebert and Gregor Engels. Specialization of object life cycle definitions.
Fachbericht Informatik 19/95, Universität Koblenz-Landau, Fachbereich Infor-
matik, 1995. Koblenz. 58, 72, 85, 95, 99, 193

[EFA+99] Wolfgang Emmerich, Anthony Finkelstein, Stefano Antonelli, Stephen Armitage,
and Richard Stevens. Managing standards compliance. IEEE Transactions on
Software Engineering, 25(6):836–851, 1999. 104

[Egy01] Alexander Egyed. Scalable consistency checking between diagrams-the viewinte-
gra approach. In M. Feather and M. Goedicke, editors, Proceedings of sixteenth
IEEE International Conference on Automated Software Engineering (ASE2001),
pages 387–390. IEEE Computer Society, November 2001. Coronado Island, San
Diego, CA, USA. 170

[EHHS02] Gregor Engels, Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Testing
the consistency of dynamic UML diagrams. In Proceedings sixth biennal world
conference on Integrated Design and Process Technology (IDPT 2002). Society
for Design and Process Science, June 2002. Pasadena, CA, USA. 3, 26, 98

BIBLIOGRAPHY 254

[EHK01] Gregor Engels, Reiko Heckel, and Jochen Malte Küster. Rule-based specification
of behavioral consistency based on the UML meta-model. In Martin Gogolla and
Cris Kobryn, editors, Proceedings fourth International Conference UML 2001,
number 2185 in Lecture Notes in Computer Science, pages 272–286. Springer,
October 2001. Toronto, Canada. 3, 80, 81, 151

[EHKG02] Gregor Engels, Reiko Heckel, Jochen Malte Küster, and Luuk Groenewegen.
Consistency-preserving model evolution through transformations. In Jean-Marc
Jézéquel, Heinrich Hußmann, and Stephen Cook, editors, Proceedings fifth In-
ternational Conference UML 2002, number 2460 in Lecture Notes in Computer
Science, pages 212–227. Springer, October 2002. Dresden, Germany. 3, 99, 207

[EKHG01] Gregor Engels, Jochen Malte Küster, Reiko Heckel, and Luuk Groenewegen. A
methodology for specifying and analyzing consistency of object-oriented behav-
ioral models. In Proceedings of eighth European Software Engineering Conference
held jointly with nineth ACM SIGSOFT International Symposium on Foundations
of Software Engineering (ESEC/FSE2001), pages 186–195. ACM Press, Septem-
ber 2001. Vienna, Austria. 12, 58

[EKHG02] Gregor Engels, Jochen Malte Küster, Reiko Heckel, and Luuk Groenewegen. To-
wards consistency-preserving model evolution. In Katsuro Inoue, Václav Rajlich,
and Mikio Aoyama, editors, Proceedings International Workshop on Principles of
Software Evolution, pages 129–132. ACM Press, 2002. Orlando, Florida. 12

[ET00] Hartmut Ehrig and Aliki Tsiolakis. Consistency analysis of UML class and
sequence diagrams using attributed graph grammars. In Hartmut Ehrig and
Gabriele Taentzer, editors, Joint APPLIGRAPH/GETGRATS Workshop on
Graph Transformation Systems, pages 77–86, March 2000. Berlin, Germany. 3,
26, 58, 84, 170

[FGH+93] Anthony Finkelstein, Dov M. Gabbay, Anthony Hunter, Jeff Kramer, and Bashar
Nuseibeh. Inconsistency handling in multi-perspective specifications. In Ian Som-
merville and Manfred Paul, editors, Proceedings of fourth European Software En-
gineering Conference (ESEC1993), volume 717 of Lecture Notes in Computer Sci-
ence, pages 84–99. Springer, September 1993. Garmisch-Partenkirchen, Germany.
104, 169, 184

[Fin00] Anthony Finkelstein. A foolish consistency: Technical challenges in consistency
management. In I. Ibrahim, J. Küng, and N. Revell, editors, Proceedings In-
ternational Conference Database and Expert Systems Applications (DEXA2000),
volume 1873 of Lecture Notes in Computer Science, pages 1–5. Springer, Septem-
ber 2000. London, UK. 3, 88

[FL79] Michael J. Fischer and Richard E. Ladner. Propositional dynamic logic of regular
programs. Journal of Computer and System Science, 18(2):194–211, 1979. 105,
115

[FMP99] Pascal Fradet, Daniel Le Métayer, and Michaël Périn. Consistency checking for
multiple view software architectures. In Oscar Nierstrasz and M. Lemoine, edi-
tors, Proceedings seventh European Software Engineering Conference, held jointly

255 BIBLIOGRAPHY

with the seventh ACM SIGSOFT Symposium on the Foundations of Software En-
gineering, volume 1687 of Lecture Notes in Computer Science, pages 410–428.
Springer, September 1999. Toulouse, France. 3, 170

[Fow99] Martin Fowler. Refactoring: Improving the Design of Existing Programs. Addison-
Wesley, 1999. 2, 7, 8, 189, 197, 199, 226

[Fow03] Martin Fowler. UML Distilled, A Brief Guide to the Standard Object Modeling
Language, Third Edition. Addison-Wesley, 2003. 24

[FST96] Anthony Finkelstein, George Spanoudakis, and David Till. Managing interfer-
ence. In Joint proceedings of second international software architecture workshop
(ISAW-2) and international workshop on multiple perspectives in software de-
velopment (Viewpoints ’96) on SIGSOFT ’96 workshops, pages 172–174. ACM
Press, 1996. New York, NY, USA. 10

[gen05] gentleware.com. Poseidon. http://www.gentleware.com/, April 8 2005. 14, 207,
209

[GHJV94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Languages and Systems. Addison-
Wesley, 1994. 89

[GHM98] John C. Grundy, John G. Hosking, and Warwick B. Mugridge. Inconsistency
management for multiple-view software development environments. IEEE Trans-
actions on Software Engineering, 24(11):960–981, 1998. 99, 228

[GLF03] Gonzola Genova, Juan Llorens, and Jose M. Fuentes. The baseless links problem.
In Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reggio, Jean Louis Sourrouille,
and Miroslaw Staron, editors, Blekinge Institute of Technology, Research Report
2003:06. UML 2003 Workshop on Consistency Problems in UML-Based Software
Development II. Workshop Materials. Department of Software Engineering and
Computer Science, Blekinge Institute of Technology, 2003. San Francisco, CA,
USA. 62

[Gli04] Birte Glimm. A query language for web ontologies. Technical report, Hamburg
University of Applied Sciences, June 2004. 162

[HDF00] Heinrich Hussmann, Birgit Demuth, and Frank Finger. Modular architecture for
a toolset supporting OCL. In Andy Evans, Stuart Kent, and Bran Selic, editors,
Proceedings third International Conference UML 2000, volume 1939 of Lecture
Notes in Computer Science, pages 278–293. Springer, October 2000. York, UK.
23

[HHS02] Jan Hendrik Hausmann, Reiko Heckel, and Stefan Sauer. Extended model rela-
tions with graphical consistency conditions. In Ludwik Kuzniarz, Gianna Reggio,
Jean Louis Sourrouille, and Zbigniew Huzar, editors, Blekinge Institute of Tech-
nology, Research Report 2002:06. UML 2002 Workshop on Consistency Problems
in UML-Based Software Development. Workshop Materials, pages 61–74. Depart-
ment of Software Engineering and Computer Science, Blekinge Institute of Tech-
nology, 2002. 3, 98

BIBLIOGRAPHY 256

[HK99] David Harel and Orna Kupferman. On the inheritance of state-based object
behavior. Technical report mcs99-12, Weizmann Institute of Science, Faculty of
Mathematics and Computer Science, 1999. 72

[HKS01] Jan Hendrik Hausmann, Jochen Malte Küster, and Stefan Sauer. Identifying se-
mantic dimensions of (UML) sequence diagrams. In Andy Evans, Robert France,
Ana Moreira, and Bernhard Rumpe, editors, Practical UML-Based Rigorous De-
velopment Methods - Countering or Integrating the eXtremists. UML2001 Work-
shop of the pUML-Group, volume P-7 of Lecture Notes in Informatics, pages
142–157. German Informatics Society, October 2001. Toronto, Canada. 136, 137

[HKT00] David Harel, Dexter Kozen, and Jerzy Tiuryn. Dynamic Logic. MIT Press, 2000.
116

[HLM99] Volker Haarslev, Carsten Lutz, and Ralf Möller. A Description Logic with con-
crete domains and role-forming predicates. Journal of Logic and Computation,
9(3):351–384, 1999. 113, 114, 118, 122

[HM00] Volker Haarslev and Ralf Möller. Expressive abox reasoning with number restric-
tions, role hierarchies, and transitively closed roles. In A.G. Cohn, F. Giunchiglia,
and B. Selman, editors, Proceedings of seventh International Conference on
Knowledge Representation and Reasoning (KR2000), pages 273–284. Morgan
Kaufmann Publishers, April 2000. Breckenridge, COL, USA. 114

[HM01] Volker Haarslev and Ralf Möller. RACER system description. In Rajeev Goré,
Alexander Leitsch, and Tobias Nipkow, editors, Proceedings Automated Reason-
ing, First International Joint Conference, (IJCAR2001), volume 2083 of Lecture
Notes in Computer Science, pages 701–706. Springer, June 2001. Siena, Italy.
118, 122

[HM03] Volker Haarslev and Ralf Möller. RACER User’s Guide and Reference Manual,
version 1.7 edition, March 2003. 122

[HMSW04] Volker Haarslev, Ralf Möller, Ragnhild Van Der Straeten, and Michael Wes-
sel. Extended query facilities for racer and an application to software-engineering
problems. In Volker Haarslev and Ralf Möller, editors, Proceedings of 2004 Inter-
national Workshop on Description Logics (DL2004), Whistler, British Columbia,
Canada, June 6-8, 2004, volume 104 of CEUR Workshop Proceedings, 2004. 14,
161, 162, 225

[HMW04] Volker Haarslev, Ralf Möller, and Michael Wessel. RACER User’s Guide and
Reference Manual, version 1.7.19 edition, April 2004. 130, 153

[Hor99] Ian Horrocks. FaCT and iFaCT. In Patrick Lambrix, Alexander Borgida, Maurizio
Lenzerini, Ralf Möller, and Peter F. Patel-Schneider, editors, Proceedings of 1999
International Workshop on Description Logics (DL1999), volume 22 of CEUR
Workshop Proceedings, pages 133–135, July 1999. Linköping, Sweden. 118, 121

[HR04] Michael Huth and Mark Ryan. Logic in Computer Science. Modelling and Rea-
soning about Systems. Cambridge University Press, 2004. 152

257 BIBLIOGRAPHY

[HS99] Ian Horrocks and Ulrike Sattler. A Description Logic with transitive and inverse
roles and role hierarchies. Journal of Logic and Computation, 9(3):385–410, 1999.
114

[HS03] Ian Horrocks and Ulrike Sattler. Decidability of SHIQ with complex role inclusion
axioms. In Georg Gottlob and Toby Walsh, editors, Proceedings of eighteenth
International Joint Conference on Artificial Intelligence (IJCAI2003). Morgan
Kaufmann Publishers, August 2003. Acapulco, Mexico. 112, 116

[HST99] Ian Horrocks, Ulrike Sattler, and Stephan Tobies. Practical reasoning for ex-
pressive Description Logics. In Harald Ganzinger, David McAllester, and Andrei
Voronkov, editors, Proceedings sixth International Conference on Logic for Pro-
gramming and Automated Reasoning (LPAR’99), number 1705 in Lecture Notes
in Artificial Intelligence, pages 161–180. Springer, September 1999. 115

[IBM04] IBM. The Eclipse Project. www.eclipse.org/downloads/, June 2004. 197

[Jac86] Peter Jackson. Introduction to Expert Systems. Addison-Wesley, 1986. 182

[K0̈4] Jochen M. Küster. Consistency Management of Object-Oriented Behavioral Mod-
els. PhD thesis, University of Paderborn, March 2004. Paderborn, Germany. 85,
99

[KB01] Torger Kielland and Jon Arvid Borretzen. UML consistency checking. Research
Report SIF8094, Institutt for datateknikk og informasjonsvitenskap, Oslo, Nor-
way, 2001. 85, 170

[Kna99] Alexander Knapp. A formal semantics for UML interactions. In Robert France
and Bernhard Rumpe, editors, Proceedings second International Conference UML
1999, volume 1723 of Lecture Notes in Computer Science, pages 116–130. Springer,
October 1999. Fort Collins, CO, USA. 152

[KRSH02] Ludwig Kuzniarz, Gianna Reggio, Jean Louis Sourrouille, and Zbigniew Huzar.
Consistency problems in UML-based software development: Workshop materials.
Research Report 2002-06, 2002. Available at http://www.ipdt.bth.se/uml2002/RR-2002-06-.pdf, De-
partment of Software Engineering and Computer Science, Blekinge Institute of
Technology, October 2002. 11, 12, 58

[KWB03] Anneke Kleppe, Jos Warmer, and Wim Bast. MDA Explained: The Model-Driven
Architecture: Practice and Promise. Addison-Wesley, 2003. 7

[KZ04] Alexander Kozlenkov and Andrea Zisman. Discovering, recording, and handling
inconsistencies in software specifications. International Journal of Computer and
Information Science, 5(2), June 2004. 3, 99, 185

[Lan03] Christian F.J. Lange. Empirical investigations in software architecture complete-
ness. Master’s thesis, Technische Universiteit Eindhoven, September 2003. Eind-
hoven, The Netherlands. 58, 170

BIBLIOGRAPHY 258

[LCM+03] Christian F.J. Lange, Michel R.V. Chaudron, Johan Muskens, L.J. Somers, and
H.M. Dortmans. An empirical investigation in quantifying inconsistency and in-
completeness of UML designs. In Ludwik Kuzniarz, Zbigniew Huzar, Gianna Reg-
gio, Jean Louis Sourrouille, and Miroslaw Staron, editors, Blekinge Institute of
Technology, Research Report 2003:06. UML 2003 Workshop on Consistency Prob-
lems in UML-Based Software Development II. Workshop Materials. Department
of Software Engineering and Computer Science, Blekinge Institute of Technology,
2003. 26, 58, 85, 170, 224

[LL99] Xuandong Li and Johan Lilius. Timing analysis of UML sequence diagrams. In
Robert France and Bernhard Rumpe, editors, Proceedings second International
Conference UML 1999, volume 1723, pages 661–674. Springer, October 1999.
Fort Collins, CO, USA. 26

[LMM99] Diego Latella, István Majzik, and Mieke Massink. Automatic verification of a
behavioural subset of UML statechart diagrams using the SPIN model-checker.
Formal Aspects of Computing, 11(6):637–664, 1999. 151

[LRW+97] Meir M. Lehman, Juan F. Ramil, P.D. Wernick, Dewayne E. Perry, and W. M.
Turski. Metrics and laws of software evolution - the nineties view. In Proceedings
fourth IEEE International Software Metrics Symposium (METRICS 1997), pages
20–32. IEEE Computer Society Press, 1997. 2, 8

[Lut01] Carsten Lutz. NExpTime-complete Description Logics with concrete domains.
In Rajeev Goré, Alexander Leitsch, and Tobias Nipkow, editors, Proceedings of
International Joint Conference on Automated Reasoning (IJCAR2001), number
2083 in Lecture Notes in Artifical Intelligence, pages 45–60. Springer, 2001. Siena,
Italy. 116

[Mac91] Robert MacGregor. Inside the LOOM description classifier. SIGART Bulletin,
2(3):88–92, 1991. 118, 120

[MCF03] Stephen Mellor, Anthony Clark, and Takao Futagami. Guest editor’s introduction:
Model-driven development. IEEE Software, 20(5):14–18, September/October
2003. 5

[MCV05] Tom Mens, Krzysztof Czarnecki, and Pieter Van Gorp. A taxonomy of model
transformations. In Jean Bezivin and Reiko Heckel, editors, Language Engineer-
ing for Model-Driven Software Development, number 04101 in Dagstuhl Seminar
Proceedings. Internationales Begegnungs- und Forschungszentrum (IBFI), Schloss
Dagstuhl, Germany, 2005. 7

[MD94] Jonathan P. Munson and Prasun Dewan. A flexible object merging framework.
In John B. Smith, F. Don Smith, and Thomas W. Malone, editors, CSCW ’94:
Proceedings of 1994 ACM conference on Computer supported cooperative work,
pages 231–242. ACM Press, 1994. New York, NY, USA. 92

[MDJ02] Tom Mens, Serge Demeyer, and Dirk Janssens. Formalising behaviour preserving
program transformations. In Andrea Corradini, Hartmut Ehrig, Hans-Jörg Kre-

259 BIBLIOGRAPHY

owski, and Grzegorz Rozenberg, editors, Proceedings of first International Con-
ference on Graph Transformation, volume 2505 of Lecture Notes in Computer
Science, pages 286–301. Springer, October 2002. Barcelona, Spain. 9, 207

[Men99] Tom Mens. Formal Foundation for Object-Oriented Software Evolution. PhD
thesis, Department of Computer Science, Vrije Universiteit Brussel, 1999. Brussel,
Belgium. 58

[Men02] Tom Mens. A state-of-the-art survey on software merging. IEEE Transactions
Software Engineering, 28(5):449–462, 2002. 92

[MT04] Tom Mens and Tom Tourwé. A survey of software refactoring. IEEE Transactions
on Software Engineering, 30(2):126–139, February 2004. 2, 8, 9, 197

[MTR05] Tom Mens, Gabriele Taentzer, and Olga Runge. Detecting structural refactoring
conflicts using critical pair analysis. Electronic Notes in Theoretical Computer
Science, 127(3):113–128, 2005. 228

[MVS05] Tom Mens, Ragnhild Van Der Straeten, and Jocelyn Simmonds. A framework
for managing consisency of evolving UML models. In H. Yang, editor, Software
Evolution with UML and XML, chapter 1. Idea Group Inc., 2005. 14, 58, 224

[Neb91] Bernhard Nebel. Terminological cycles: Semantics and computational proper-
ties. In J. F. Sowa, editor, Principles of Semantic Networks: Explorations in the
Representation of Knowledge, pages 331–361. Morgan Kaufmann Publishers, San
Mateo, CA, USA, 1991. chapter 11. 104

[NER00] Bashar Nuseibeh, Steve Easterbrook, and Alessandra Russo. Leveraging incon-
sistency in software development. IEEE Computer, 33(4):24–29, 2000. 10, 11,
88

[NJJ+96] Hans Nissen, Manfred Jeusfeld, Matthias Jarke, Georg Zemanek, and Harald
Guber. Managing multiple requirements perspectives with metamodels. IEEE
Software, 13(2):37–47, March 1996. 104

[NKF94] Bashar Nuseibeh, Jef Kramer, and Anthony Finkelstein. A framework for express-
ing the relationship between multiple views in requirements specification. IEEE
Transactions on Software Engineering, 20(10):760–773, 1994. 104

[Obj04a] Object Management Group. Unified Modeling Language 2.0.
http://www.omg.org/, December 2004. 19

[Obj04b] Object Management Group. Unified Modeling Language 2.0 Diagram Interchange
Final Adopted Specification. http://www.omg.org/cgi-bin/doc?ptc/03-09-01, De-
cember 2004. 23

[Obj04c] Object Management Group. Unified Modeling Language 2.0 Infrastructure Final
Adopted Specification. http://www.omg.org/cgi-bin/doc?ptc/03-09-15, Decem-
ber 2004. 22, 24

BIBLIOGRAPHY 260

[Obj04d] Object Management Group. Unified Modeling Language 2.0 OCL Final Adopted
Specification. http://www.omg.org/cgi-bin/doc?ptc/03-10-14, December 2004.
21, 22, 147, 149

[Obj04e] Object Management Group. Unified Modeling Language 2.0 Superstructure Final
Adopted Specification. http://www.omg.org/cgi-bin/doc?ptc/03-08-02, February
2004. 22, 31, 37, 42, 46, 50, 72, 146, 227

[Opd92] William F. Opdyke. Refactoring Object-Oriented Frameworks. PhD thesis, Uni-
versity of Illinois, 1992. Urbana-Champaign, IL, USA. 2, 8, 9

[Por03] Ivan Porres. Model refactorings as rule-based update transformations. In Perdita
Stevens, Jon Whittle, and Grady Booch, editors, Proceedings sixth International
Conference UML 2003, volume 2863 of Lecture Notes in Computer Science, pages
159–174. Springer, October 2003. San Francisco, CA, USA. 206, 207

[RBB+95] Lori Alperin Resnick, Alex Borgida, Ronald J. Brachman, Deborah L. McGuin-
ness, Peter F. Patel-Schneider, and Kevin C. Zalondek. CLASSIC Description
and Reference Manual for the Common Lisp implementation. AT&T Bell Labs,
Murray Hill, NY, USA, December 1995. Version 2.3. 118

[Rob97] Don Roberts. Pratical Analysis for Refactoring. PhD thesis, University of Illinois,
1997. Urbana-Champaign, IL, USA. 9

[Sat96] Ulrike Sattler. A concept language extended with different kinds of transitive roles.
In G. Görz and S. Hölldobler, editors, 20. Deutsche Jahrestagung für Künstliche
Intelligenz, number 1137 in Lecture Notes in Artificial Intelligence. Springer, 1996.
115

[Sat03] Ulrike Sattler. Description Logics for ontologies. In Aldo de Moor, Wilfried Lex,
and Bernhard Ganter, editors, Proceedings of eleventh International Conference
on Conceptual Structures (ICCS2003), volume 2746 of Lecture Notes in Computer
Science. Springer, July 21-25 2003. Dresden, Germany. 16, 103, 106, 107, 110,
112, 115, 130

[SB05] Jocelyn Simmonds and Maria Cecilia Bastarrica. Description Logics for consis-
tency checking of architectural features in UML 2.0 models. DCC Technical Re-
port TR/DCC-2005-1, Departamento de Ciencias de la Computacion, Santiago,
Chile, 2005. 210

[SC03] Stefan Schlobach and Ronald Cornet. Non-standard reasoning services for the
debugging of description logic terminologies. In Georg Gottlob and Toby Walsh,
editors, Proceedings of eighteenth International Joint Conference on Artificial In-
telligence (IJCAI2003), pages 355–362. Morgan Kaufmann Publishers, August
2003. Acapulco, Mexico. 229

[Sch91] Klaus Schild. A correspondence theory for terminological logics: Preliminary
report. In Proceedings of twelfth International Joint Conference on Artificial
Intelligence (IJCAI1991), pages 466–471. Morgan Kaufmann Publishers, August
1991. Sydney, Australia. 115, 117

261 BIBLIOGRAPHY

[SF97] George Spanoudakis and Anthony Finkelstein. Reconciling requirements: a
method for managing interference, inconsistency and conflict. Annals of Soft-
ware Engineering, 3:433–457, 1997. 98, 184

[Sim03] Jocelyn Simmonds. Consistency maintenance of UML models with Description
Logics. Master’s thesis, Department of Computer Science, Vrije Universiteit Brus-
sel, Belgium and Ecole des Mines de Nantes, France, September 2003. 157, 161

[SK03] Shane Sendall and Wojtek Kozaczynski. Model transformation: The heart and
soul of model-driven software development. IEEE Software, 20(5):42–45, Septem-
ber/October 2003. 1

[SKM01] Timm Schäfer, Alexander Knapp, and Stephan Merz. Model checking UML state
machines and collaborations. Electronic Notes in Theoretical Computer Science,
55(3), 2001. 3, 151

[SPLJ01] Gerson Sunyé, Damien Pollet, Yves LeTraon, and Jean-Marc Jézéquel. Refactor-
ing UML models. In Martin Gogolla and Cris Kobryn, editors, Proceedings fourth
International Conference UML 2001, volume 2185 of Lecture Notes in Computer
Science, pages 134–138. Springer, October 2001. Toronto, Canada. 197, 207

[SS89] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Ronald
Brachman, Hector Levesque, and Raymond Reiter, editors, Proceedings of first
International Conference on Principles of Knowledge Representation and Reason-
ing (KR1989), pages 421–431. Morgan Kaufmann Publishers, May 1989. Toronto,
Canada. 112

[SS00] Markus Stumptner and Michael Schrefl. Behavior consistent inheritance in UML.
In Alberto H. F. Laender et al. editor, Proceedings of nineteenth International
Conference on Conceptual Modeling (ER2000), volume 1920 of Lecture Notes in
Computer Science, pages 527–542. Springer, October 2000. Salt Lake City, Utah,
USA. 48, 72, 85

[SS02] Michael Schrefl and Markus Stumptner. Behavior consistent specialization of
object life cycles. ACM Transactions on Software Engineering and Methodology,
11(1):92–148, January 2002. 72, 85, 99

[SSS91] Manfred Schmidt-Schauss and Gert Smolka. Attributive concept descriptions with
complements. Artificial Intelligence, 48(1):1–26, 1991. 106, 115

[ST03] Perdita Stevens and Jennifer Tenzer. Modelling recursive calls with UML state
diagrams. In Mauro Pezzé, editor, Proceedings sixth International Conference
Fundamental Approaches to Software Engineering (FASE2003), held as part of the
Joint European Conferences on Theory and Practice of Software (ETAPS2003),
volume 2621 of Lecture Notes in Computer Science, pages 135–149. Springer,
April 2003. Warsaw, Poland. 48

[SVJM04] Jocelyn Simmonds, Ragnhild Van Der Straeten, Viviane Jonckers, and Tom
Mens. Maintaining consistency between UML models using Description Logic.
L’Objet logiciel, bases de données, réseaux, 11(1-2):231–244, March 2004. Lille,
France. 14, 58, 210, 224

BIBLIOGRAPHY 262

[SZ01] George Spanoudakis and Andrea Zisman. Inconsistency management in software
engineering: Survey and open research issues. In Chang S. K., editor, Handbook
of Software Engineering and Knowledge Engineering, volume 1, pages 329–380.
World Scientific Publishing Co., 2001. 2, 10, 11, 53, 87, 88, 104, 169

[Tob01] Stephan Tobies. Complexity Results and Practical algorithms for Logics in Knowl-
edge Representation. PhD thesis, RWTH-Aachen, 2001. Aachen, Germany. 115

[Tsi01] Aliki Tsiolakis. Semantic analysis and consistency checking of UML sequence
diagrams. Master’s thesis, Technische Universität Berlin, April 2001. Technical
Report No. 2001-06. 3, 170

[Uni04a] Universitatea Babes-Bolyai, Cluj - Napoca, Romania. OCLE, Object Constraint
Language Environment version 2.0. http://lci.cs.ubbcluj.ro/ocle/index.htm, De-
cember 2004. 23

[Uni04b] University of Southern California. Loom Knowledge Representation System 4.0.
http://www.isi.edu/isd/LOOM/, December 2004. 120

[Uni04c] University of Southern California. PowerLoom Knowledge Representation System
4.0. http://www.isi.edu/isd/LOOM/PowerLoom/index.html, December 2004.
120

[van02a] Wil M.P. van der Aalst. Inheritance of dynamic behaviour in UML. In Daniel
Moldt, editor, Proceedings of second International Workshop on Modelling of Ob-
jects, Components and Agents (MOCA2002), pages 105–120, August 2002. 72,
85

[Van02b] Ragnhild Van Der Straeten. Using Description Logic in object-oriented software
development. In Ian Horrocks and Sergio Tessaris, editors, Proceedings of 2002
International Workshop on Description Logics (DL2002), volume 53 of CEUR
Workshop Proceedings. CEUR Workshop Proceedings, April 2002. Toulouse,
France. 14

[Van04] Ragnhild Van Der Straeten. Inconsistency detection between UML models using
Racer and nRQL. In Sean Bechhofer, Volker Haarslev, Carsten Lutz, and Ralf
Möller, editors, Proceedings of 2004 third International Workshop on Applications
of Description Logics (ADL2004), volume 115 of CEUR Workshop Proceedings,
September 2004. 14, 225

[vdB01] Michael van der Beeck. Formalization of UML-statecharts. In Martin Gogolla and
Cris Kobryn, editors, Proceedings fourth International Conference UML 2001,
volume 2185 of Lecture Notes in Computer Science, pages 406–421. Springer,
October 2001. Toronto, Canada. 26

[Ver01] Kurt Verschaeve. UML - SDL Round-Trip Engineering Through Incremental
Translation of Changes. PhD thesis, Department of Computer Science, Vrije
Universiteit Brussel, February 2001. Brussels, Belgium. 26

263 BIBLIOGRAPHY

[VJM04] Ragnhild Van Der Straeten, Viviane Jonckers, and Tom Mens. Supporting model
refactorings through behaviour inheritance consistencies. In Thomas Baar, Al-
fred Strohmeier, Ana Moreira, and Stephen Mellor, editors, Proceedings seventh
International Conference UML 2004, volume 3273 of Lecture Notes in Computer
Science, pages 305–319. Springer, October 2004. Lisbon, Portugal. 14, 224, 226

[vLLD98] Axel van Lamsweerde, Emmanual Letier, and Robert Darimont. Managing con-
flicts in goal-driven requirements engineering. IEEE Transactions on Software
Engineering, 24(11):908–926, 1998. 3, 98, 184

[VMJ06] Ragnhild Van Der Straeten, Tom Mens, and Viviane Jonckers. A formal approach
to model refactoring and model refinement. Software and Systems Modeling, 2006.
to be published. 14, 224, 225, 226

[VMSJ03] Ragnhild Van Der Straeten, Tom Mens, Jocelyn Simmonds, and Viviane Jon-
ckers. Using Description Logics to maintain consistency between UML models.
In Perdita Stevens, Jon Whittle, and Grady Booch, editors, Proceedings sixth
International Conference UML 2003, volume 2863 of Lecture Notes in Computer
Science, pages 326–340. Springer, October 2003. San Francisco, CA, USA. 14,
58, 224, 225

[VSM03] Ragnhild Van Der Straeten, Jocelyn Simmonds, and Tom Mens. Detecting in-
consistencies between UML models using description logic. In Diego Calvanese,
Giuseppe De Giacomo, and Enrico Franconi, editors, Proceedings of 2003 Interna-
tional Workshop on Description Logics (DL2003), volume 81 of CEUR Workshop
Proceedings, September 2003. Rome, Italy. 14, 158, 161, 225

[VSMD03] Pieter Van Gorp, Hans Stenten, Tom Mens, and Serge Demeyer. Towards au-
tomating source-consistent UML refactorings. In Perdita Stevens, Jon Whittle,
and Grady Booch, editors, Proceedings sixth International Conference UML 2003,
volume 2863 of Lecture Notes in Computer Science, pages 144–158. Springer, Oc-
tober 2003. San Francisco, CA, USA. 207

[Wel95] Christopher A. Welty. An Integrated Representation for Software Development
and Discovery. PhD thesis, Rensselaer Polytechnic Institute, 1995. Troy, NY,
USA. 134

[Wes04] Michael Wessel. nRQL, http://www.sts.tu-harburg.de/r̃.f.moeller/racer/racer-
queries.pdf, March 30 2004. 147, 158, 161, 162

[WF94] Christopher A. Welty and David A. Ferrucci. What’s in an instance? Technical
Report 18, RPI Computer Science Department, 1994. 134, 150

[WGN03] Robert Wagner, Holger Giese, and Ulrich A. Nickel. A plug-in for flexible and
incremental inconsistency management. In Ludwik Kuzniarz, Zbigniew Huzar,
Gianna Reggio, Jean Louis Sourrouille, and Miroslaw Staron, editors, Blekinge
Institute of Technology, Research Report 2003:06. UML 2003 Workshop on Con-
sistency Problems in UML-Based Software Development II. Workshop Materi-
als, pages 78–88. Department of Software Engineering and Computer Science,
Blekinge Institute of Technology, 2003. 94

BIBLIOGRAPHY 264

[Wyd01] Bart Wydaeghe. PaCoSuite Component Composition Based on Composition Pat-
terns and Usage Scenarios. PhD thesis, Department of Computer Science, Vrije
Universiteit Brussel, November 2001. Brussels, Belgium. 26

Index

RACOoN, 209

an inconsistency resolution, 175

behaviour preservation, 191
invocation call preservation, 192
observation call preservation, 191

communication view, 37
conceptual classification of inconsistencies,

56
behavioural dimension, 56
instance dimension, 57
specification dimension, 57
structural dimension, 56

consistency dimensions, 11
evolution consistency, 12, 54
horizontal consistency, 11, 53
semantic consistency, 12, 56
syntactic consistency, 12, 55
vertical consistency, 12, 55

consistency maintenance, 88
construction rules, 89, 95

consistency versus inconsistency, 56

Description Logic system, 117
Classic, 118
Fact, 121
Kl-One, 117
Loom, 120
Racer version 1.7, 122
standard inference services, 124

Description Logics, 105
ALC(D), 112
SHIQ, 114
Tbox, 110
assertion, 107
concepts, 105
constructors, 105

DLs versus first-order logic, 108
GCI, 107
general role inclusion axioms, 112
interpretation, 107
inverse roles, 111
knowledge base, 107
number restrictions, 110
reasoning tasks, 109
role inclusion axioms, 111
roles, 105
transitive roles, 111

DL framework representing UML models,
150

encoding of UML elements
call sequence encoding, 139
encoding of OCL constraints, 148

literal, 148
pre-defined operations, 149

Instance level
communication view, 146
SD traces, 145

Specification level
communication view, 144
SD traces, 143

UML class diagram, 138
UML metamodel, 127

event occurrence equality , 42

inconsistency
connector specification missing inconsis-

tency, 60
classless connectable element inconsis-

tency, 61
dangling connectable association refer-

ence inconsistency, 62
dangling connectable feature reference

inconsistency, 61
dangling type reference inconsistency, 60

INDEX 266

disconnected model inconsistency, 68
inherited cyclic composition inconsis-

tency, 59
instance behaviour incompatibility, 83
instance specification missing inconsis-

tency, 63
classless instance inconsistency, 64
classless protocol state machine incon-

sistency, 64
dangling association reference incon-

sistency, 68
dangling feature reference inconsis-

tency, 65
interaction inconsistency, 73

invocation interaction inconsistency,
73

observation interaction inconsistency,
73

invocation behaviour inconsistency, 75
invocation inheritance inconsistency, 80
observation behaviour inconsistency, 76
observation inheritance inconsistency, 81
specification behaviour incompatibility,

76
specification incompatibility, 77

abstract object, 79
multiplicity incompatibility, 77
navigation incompatibility, 79

inconsistency detection classification, 155
inconsistency diagnosis activity, 87
inconsistency handling activity, 88
inconsistency management, 10
inconsistency resolution activity, 88
inconsistency resolution rule, 176
interaction view, 40

key criteria, 12, 99

model evolution, 188
model refactoring, 8, 189
model refinement, 187
model-driven engineering, 5

model, 5
model transformation, 7
UML, 6

resolution actions, 88, 89

rule-based DL system, 178
Abox rules, 178
Tbox rules, 181

rule-based system, 175
rule, 175
rule engine, 176
rule set, 182

SD trace, 42
subsequence, 42

SD trace equality, 42
sequence diagram

interaction between objects, 57
interaction between roles, 57

spanning function, 135
spanning objects, 134

UML 2.0, 21
specifications, 22

UML 2.0 diagrams, 24
class diagrams, 27
communication diagram, 37
PSM, 44
sequence diagram, 37
state machine diagram, 44

UML 2.0 elements
active state configuration, 49
association end, 32
attribute, 30
class, 34
composite orthogonal state, 49
composite state, 49
composition, 33
compound transition, 50
connectable element, 38
connector, 40
disjointness, 40
event occurrence, 42
generalisation, 35
high-level transition, 49
label, 48
link, 40
message, 42
multiplicity, 33
n-ary association, 32
navigability, 33
operation, 31

267 INDEX

postcondition, 31
precondition, 31
PSM, 48
PSM call sequence, 50
PSM trace, 50
receiving SD trace, 44
SD trace, 42
SD trace for a set of instances, 43
SD trace for a set of operations, 43
sequence diagram, 43
state configuration, 49
UML model, 51
valid call sequence, 50

	Table of Contents
	List of Figures
	List of Tables
	List of Racer Fragments
	Introduction
	Problem Statement
	Research Objectives and Approach
	Objectives
	Approach

	Model-Driven Engineering
	What is a Model?
	The Role of the UML in MDE
	Transformation of Models

	Model Refactoring
	Inconsistency Management
	Inconsistency Management Process
	Dimensions of Consistencies

	Key Criteria
	Contributions
	Outline

	Lightweight Formalisation of UML 2.0 Fragment
	Case Study Requirements
	UML 2.0 Specification
	A Metamodelling Approach
	The Four-Layer Metamodel Hierarchy
	Specifications
	UML 2.0 Diagrams

	Scope of UML 2.0 Fragment
	UML 2.0 Class Diagram
	UML 2.0 Sequence and Communication Diagram
	Communication View
	Interaction View

	UML 2.0 State Machine Diagram
	UML 2.0 Models
	Conclusion

	Conceptual Classification of Inconsistencies
	UML and Consistency
	Conceptual Classification Explained
	Overview
	Motivation
	Inconsistency Template

	Structural Specification Inconsistencies
	Inherited Cyclic Composition Inconsistency
	Dangling Type Reference
	Connector Specification Missing

	Structural Specification/Instance Inconsistencies
	Instance Specification Missing

	Structural Instance Inconsistencies
	Disconnected Model

	Behaviour and Behaviour Inheritance
	Behavioural Specification Inconsistencies
	Invocation/Observation Interaction Inconsistencies

	Behavioural Specification/Instance Inconsistencies
	Invocation/Observation Behaviour Inconsistencies
	Specification Behaviour Incompatibility
	Specification Incompatibility

	Behavioural Instance Inconsistencies
	Invocation Inheritance Inconsistency
	Observation Inheritance Inconsistency
	Instance Behaviour Incompatibility

	General Discussion
	Conclusion

	Inconsistency Handling
	Terminology
	Inconsistency Management
	Consistency Maintenance

	Resolution Actions
	Causes of Inconsistencies versus Resolution Actions
	Classification of Resolution Actions
	Dependencies between Resolutions of Inconsistencies

	Construction Rules
	Preservation of Observation/Invocation Consistency
	Preservation of Behaviour Compatibility
	Preservation of Structural Consistencies

	Discussion
	Conclusions
	Related work

	Key Criteria
	Criterion #1: Abstract Syntax and Semantics Representation
	Criterion #2: Precise Definitions of Inconsistencies and Inconsistency Detection
	Criterion #3: Precise Definitions and Management of Interactive Inconsistency Resolutions
	Tool Support Requirements

	Conclusion

	Introducing Description Logics
	Why Logic Formalism?
	Why Description Logics?
	Concepts, Roles and Knowledge Bases
	Reasoning Tasks
	Expressive Means in DLs
	Tboxes
	Number Restrictions
	Inverse Roles
	Transitive Roles
	Role Inclusion Axioms
	General Role Inclusion Axioms
	Concrete Domains

	Complexity of Reasoning in DLs
	SHIQ

	On the Relation between DL and Modal Logic
	Description Logic Systems
	Analysis Template for DL Systems
	Classic
	Loom
	Fact
	Racer version 1.7
	Discussion

	Conclusion

	Encoding of UML Model Elements
	Encoding of UML Metamodel
	Encoding
	Example
	Discussion

	Concepts versus Individuals
	Interpretation of UML Models
	Class Diagrams
	Sequence and Communication Diagrams
	Protocol State Machines

	Encoding of UML Class Diagrams
	Encoding of Protocol State Machines
	Call Sequence Encoding
	Adding State Information
	Discussion

	Encoding of Interactions
	At Specification Level
	At Instance Level

	Encoding of Constraints
	OCL versus DLs
	OCL Constraints Encoded in SHIQ(D-)

	A DL Framework Representing UML Models
	Discussion and Related Work
	Formalising Statecharts
	Formalising Interactions
	Symbolic Messages versus Parametrised Messages
	Evaluation of Criterion #1

	Conclusion

	A DL Inconsistency Detection Approach
	Conceptual Classification Revisited
	Querying the UML Metamodel
	Motivation for a DL Query Language
	Requirements for a DL Query Language
	nRQL
	Inconsistency Detection using nRQL

	Using our DL Framework Representing UML models
	The Use of Abox Reasoning Tasks
	The Use of Tbox Reasoning Tasks

	Discussion and Related Work
	Related work
	Advantages and Limitations of our Approach
	Evaluation of Criterion #2

	Conclusion

	A Rule-Based DL Inconsistency Resolution Approach
	Definition of Resolution Actions
	At Abox level
	At Tbox level

	Challenges of Inconsistency Resolution
	Motivation for a Rule-Based Approach
	Rule-Based Systems
	Inconsistency Resolution Rules

	Description Logics and Rules
	Rule-Based DL System
	Rule Definition
	Rule Engine
	Requirements for Rule-Based DL System
	nRQL Rules and Rule Engine

	Discussion and Related Work
	Related Work
	Evaluation of Criterion #3

	Conclusion

	Model Refactorings
	Motivating Example
	Model Refinement
	Model Evolution
	Model Refactoring

	Behaviour Preservation
	Behaviour Preservation and Behaviour Inheritance Consistencies
	Model Refactoring through Rule-Based Inconsistency Resolution
	Source Code Refactoring versus Model Refactoring
	Refactorings Considered
	Executing Move Operation

	Discussion on a Rule-Based Refactoring Approach
	Evaluation
	Open Issues

	Related Work
	Conclusion

	Proof-of-concept Tool Support
	Introduction to RACOoN
	Architecture

	Inconsistency Detection in RACOoN
	Querying the Metamodel
	Impact of nRQL Completeness Modes
	DL Framework

	Supporting Refactorings in RACOoN
	Move Operation Step-by-Step in RACOoN

	Conclusion

	Conclusion
	Summary and Contributions
	Future Work
	Larger Set of UML Elements
	Validation on Large-scale (Industrial) Cases
	Management of Inconsistencies and Inconsistency Resolutions
	Extending and Improving Tool Support
	Model Refactorings
	Extensions to DLs and their Systems

	Racer Statements Representing our UML 2.0 Fragment
	nRQL Inconsistency Detection Queries
	Dangling Type Reference
	Connector Specification Missing
	Classless Connectable Element
	Dangling Connectable Feature Reference
	Dangling Connectable Association Reference

	Instance Specification Missing
	Classless Protocol State Machine
	Dangling Feature Reference
	Dangling Association Reference

	Disconnected Model
	Specification Incompatibility
	Multiplicity Incompatibility
	Navigation Incompatibility
	Abstract Object

	Decision Diagrams for Execution of Model Refactorings
	Bibliography

