
PositionPaper:
FeatureInteractionin ComposedSystems

E. Pulvermüller
�

A. Speck
�

J.O. Coplien
�

M. D’Hondt
�

W. DeMeuter
�

�

Institutefor ProgramStructuresandDataOrganization
UniversiẗatKarlsruhe,Germany.
http://i44w3.info.uni-karlsruhe.de/� pulvermu

pulvermueller@acm.org
�

Intershop
Jena,Germany

http://www-pu.informatik.uni-tuebingen.de/users/speck

a.speck@intershop.com

�

Bell LaboratoriesLucent,
NapervilleIL, USA

http://www.bell-labs.com/� cope/

cope@research.bell-labs.com
�

Vrije UniversiteitBrussel,Belgium
http://prog.vub.ac.be/

mjdhondt@vub.ac.be

wdmeuter@vub.ac.be

Keywords: Featureinteraction,feature,feature
modeling,composition

Abstract

Featureinteractionis nothingnew andnot limited
to computerscience.Theproblemof undesirable
feature interaction (feature interactionproblem)
hasalreadybeeninvestigatedin thetelecommuni-
cationdomain.Ourgoalis theinvestigationof fea-
ture interactionin component-basedsystemsbe-
yondtelecommunication.Thepositionpaperout-
lines terminologydefinitions. It proposesa clas-
sificationto comparedifferenttypesof featurein-
teraction.

A list of examplesgiveanimpressionaboutthe

natureandtheimportanceof featureinteraction.

1 Intr oduction and Problem

The workshop“FeatureInteractionin Composed
Systems”dealswith a problemwhich is not new.
In fact, as opposedto that, it’s a problem even
olderthanhumanlife.

In the domainof telecommunicationthis prob-
lemwasexplicitely exploredfirst in thebeginning
1990susing the term “feature interactionprob-
lem”. In a seriesof workshops(thefirst washeld
in 1992)thedifficulty to manageimplicit andun-
foreseeninteractionsbetweennewly insertedfea-
turesandthebasesystemhavebeenexamined.

However, the problem is not limited to the
telecommunicationdomain. As opposedto that

feature interaction is an issue which occurs in
nearlyall domainsalthoughnot known underthe
name“featureinteraction”.

In the last two years we found a growing
awarenessof this problemin the domainof sys-
tem compositionfar beyond telecommunication
issues. With the emerge of aspect-orientedpro-
gramming it has becomeobvious that with the
growing numberof systemunits their interaction
is a problemof its own, requiringresearchby its
own. While AOP, CF, SOP, AP [1] and related
approachesreveal this problemit’s not limited to
thoseapproacheseither. It alreadyexistsin object-
orientedor component-orientedsystems,for in-
stance.

In many discussionswe foundthatalreadya lot
of work exists dealingwith featureinteractionin
variousdomainsand applying various program-
ming paradigms.

The workshopaims at collecting the different
problemsandto provideaplatformfor knowledge
transfer.

Someimportantquestionsare:

� What are suitable definitions for “feature”
and“featureinteraction”?

� Are thereany commonalitiesin thedifferent
problemsand/ or their solutions?

� How can the problems be categorised in
problemclasses?

� What is the influence of advancedsepara-
tion of concernsor component-basedap-
proachesto featureinteractionproblemsand
vice-versa?

While it is easyto composeasystemtechnically
it’shardlyexploredhow systemscanbecombined
in a way that theresultis a valid andalsoreason-
ablesystem.Thedeveloperfacesa lack of clearly
structuredcompositionandconnectionconcepts.

2 Terminology or “What is a
Feature?”

Whendiscussingaboutfeatureinteractionit’s im-
portantto considerexisting terminology.

In a seriesof workshopsthe feature interac-
tion problemhasalreadybeeninvestigatedin the
telecommunicationdomainsince1992.Thework-
shopstatementexplains that “feature interaction
occurswhenonetelecommunicationfeaturemod-
ifiesor subvertstheoperationof anotherone”.

A definition found in the telecommunication
communityis asfollows: “The featureinteraction
problemcan be simply definedas the unwanted
interferencebetweenfeaturesrunningtogetherin
a software system.” A simple examplegiven in
[9] is a mailing list echoingall emailsto all sub-
scribers.If oneof thesubscribershasenabledthe
vacationprogram(without first suspendingmes-
sagesfrom the mailing list) an infinite cycle of
mail messagesbetweenthemailinglist andtheva-
cationprogramwill occur.

In [10] a feature is definedas “an extension
to the basicfunctionality provided by a service”
while a serviceis explainedas“a coresetof func-
tionality, suchastheability to establisha connec-
tion betweentwo parties”.

While thesedefinitionsconcentrateontelecom-
munication,largeanddistributedsystemsor mul-
timediasystemsin particularthegoalof thiswork-
shopis the investigationof featureinteractionin
the domainof softwarecompositionandsystems
built from components.

We distinguishthe terms“feature”, “concern”
and “requirement”, “service”, “component” and
“aspect”accordingto ourexperiencesasfollows:

In [4] you may find the following explanation
for “features”: “A featureis somethingespecially
noticeable:aprominentpartor detail(acharacter-
istic). A featureis a main or outstandingattrac-
tion, e.g.aspecialcolumnor sectionin anewspa-
per or magazine”. Its origin is from Latin: “f ac-
tura” which meansthe “act of making” or from

2

“f acere”which means“to make,do”.
Accordingto thisdefinitionweusethetermfea-

turein abroadersensethanjustasanextensionto
somebasicfunctionality. It’s an observableand
relatively closedbehaviour or characteristicof a
(software)part. In software,it’s not just an arbi-
trary sectionin the codeexceptthis codesection
“makessomethingof outstandingattraction”.This
definition is fuzzy revealing the fuzzy natureof
features.Thisviewpoint is consistentwith thatex-
pressedin [2] whereafeatureis explainedas“any
partor aspectof aspecificationwhichtheuserper-
ceivesashaving a self-containedfunctionalrole”.

A featureis somethinganapplicationhasto do.
It maybecomposedfrom otherfeatures.A basic
featureshouldbeassmallaspossible(basicbuild-
ing blocks). Whata featuredoesshouldbedocu-
mented.This might bedoneeithermanually(the
implementeris forced to documentit) or by de-
riving it from the programstructureandprogram
flow.

We havea distinctionbetweenproblemdomain
featuresandfeatureson the implementationlevel
(cf. figure 1). Differentalternative implementa-
tion featuresmayrealisethehigher-level problem
domain features. Moreover, a problem domain
featuremay be implementedby oneor moreim-
plementationfeature.

A componentmay have several featuresand,
vice-versa, it realisesat least one feature (oth-
erwisethe componentis not useful). Moreover,
a componentimplementsfunctionality and has
non-functionalproperties(e.g. real-timeproper-
ties, platform). “Non-functional” is all which is
not implementeddirectly. Therefore,a compo-
nenthasnon-functionalpropertiesbut not imple-
mentsthose. Non-functionalpropertiesare ad-
ditional propertiesimplicitly resulting from the
code. However, a consequenceis that the devel-
opermayhaveto implementmechanismsto check
whethertherequirednon-functionalrequirements
aremet,i.e. youmayevenfind thenon-functional
propertiesin thecode.

A featuremaybeimplementedasfunctionality

Problem Domain

Implementation

Figure1: Levelsof Features

or may have a non-functionalnature. The term
“feature”capturesboth.

A featurehasthe property that it is a service
if it is localisedin onecomponentandif it refers
to somefunctionality. However, a featuremaybe
implementedin severalcomponents.In this case,
thefeatureis (implemented)cross-cutting.This is
morea questionof how a featuremay be imple-
mentedthanaquestionof thenatureof thefeature
itself. Aspectsarea notationwhich may be used
to expresscross-cuttingfeatures(primarily on the
implementationlevel). Therefore,the conceptof
aspectsis orthogonalto thenatureof features.

A requirementis somethinga stakeholderde-
mands and it refers to the problem domain
whereasafeatureis not limited to theproblemdo-
main. A requirementmayresultin oneor several
feature(s)in thefinal system.

A concernis somethingweareconcernedabout
(at the moment). Note that this is a temporal
statementwhile a featureis permanent.A feature
mightbecomeaconcernif somebodyis concerned
about. On the other hand,a developeror stake-
holdermaybe concernedaboutsomethingwhich
is not a feature.Therefore,not every concernre-
sultsin a feature.

We have to distinguishbetweenintendedin-
teractionsbetweenfeatures,interactionsbetween
featureswhich is not intentionalbut don’t resultin
errors(or mayevenhavepositiveside-effects)and
unintendedandundesirablefeatureinteractionnot
known in advanceand leadingto faulty applica-
tions. Figure2 shows a classificationschemeal-

3

Effect

Intentional
interaction

Unintentional
interaction

Desirable
effect

Desirable
effect

Undesirable
effect

Positive
interaction

Positive
side effect

Negative
side effect

Specification or
implementation

error

Figure2: FeatureInteractionClassification

lowing to classify, compareandassessa detected
interaction.

3 Examples for Feature Inter -
action (Problems)

In thefollowing someexamplesaboutundesirable
or unforeseenfeatureinteractionsarelisted.These
examplesareof differentapplicationdomainsgiv-
ing an impressionaboutthe rangeof occurrences
in practice.

� Examplewith modularisedCorbafunctional-
ity [5]

In order to keepan applicationindependent
from thecommunicationtechniquethecom-
municationcodemaybeseparatedin aspects
applyingaspect-orientedprogramming.
Whena client wantsto accessa serviceex-
posedby a specificserver the client has to
obtainan initial referenceto theserver. This
canbe doneeithervia a nameserver or via
a file-basedsolution(the referenceis stored
as a string in a file which is accessiblefor
clients and server). Aspectsrealising one

of thesetwo alternativesareexclusive. This
is alreadyknown at designandimplementa-
tion time. Let usassumethat this knowledge
wasnot capturedat designtime. As a con-
sequenceit might happenthat the developer
configuresthesystemduringthedeployment
phasewith bothmutualexclusive features.It
might happenthat even the compilation or
weaving doesn’t reportthisasanerror. How-
ever, the running systembehaves in an un-
foreseenway.
An approachto dealwith this problemmay
be found in [3]. Logical rules describethe
dependenciesbetweenthe aspects. During
run-timepre-andpost-conditionsassurethat
theselogical rulesarenot violated.

� Telecommunication

Featureinteraction is a typical problem in
the telecommunicationdomain. Due to high
competitionandmarket demandtelecommu-
nication companiesare urged to realise a
rapid developmentand deployment of fea-
tures.

A list of featuresin the telecommunication
domainmay be found at [8]. Examplesof
featuresareforwardingcalls,placingcallers
on hold, or blocking calls. It’s obvious that
someof thefeaturesleadto effectswhichare
unforeseenif combined.

Thereare multiple approachesto deal with
the problem in the telecommunicationdo-
main.In thementionedworkshopseries[7] a
platformisprovidedfor exchangingsolutions
in practiceandtheorie.

� Medicineandhumanbody

Featureinteractionis well-known in thecon-
text of health. For medicamentsa common
approachis to provide a standarddocumen-
tation (instruction leaflet) about the ingre-
dients, the applicationand it also lists the
known (potential) side-effects and interac-
tionswith othermedicamentsor partsof the

4

humanbody. Theseside-effects are more
or lessdangerous. The lists are developed
by meansof experimentsduring the devel-
opmentof themedicamentsandby meansof
experiencesandobservationsafterwards.

An example of a positive side-effect is a
medicamentcalled aspirin developedto be
usedagainstheadache.Experiencesandre-
searchproved that this medicamentaffects
the blood-picturein a way that it lowersthe
dangerof acardiacinfarction.

� Elevatorconfigurationasdescribedin [6]

In [6] a systemcalledVT is describedwhich
configureselevator systemsat the Westing-
houseElevatorCompany. An elevatorhasca-
bles which have someweight. This weight
influencesthe tractionratio neededto move
the car. The tractionratio influencesthe ca-
bleequipment(alsothecableweight).There-
fore, we have a circular featuredependency.
In casewe would like to improve the secu-
rity standardsandthereforeincreasethe ca-
ble quality (which resultsin a higher cable
weight)we have aninteractionwith thetrac-
tion ratio which might be unforeseenif this
dependency is notspecifiedanddocumented.
VT usesartificial intelligence(propose-and-
refine approach)to deal with this problem.
Individual designparametersandtheir infer-
encesarerepresentedasnodesin a network.

4 Summary and Conclusion

Featureinteractionis anissuein differentdomains
(not limited to computerscienceeven). Due to
the complexity it’s usually impossibleto foresee
all potential interactionsof the different features
within onesystem.However, it is possibleto ap-
proachtheproblemby identifyingasmany aspos-
sibleunforeseen(andmaybeundesirable)interac-
tions.

Softwarefeaturesmaybemodeledby meansof
asuitablenotationsimilarasdesignsmaybemod-
eled using UML. Notation may be found in the
domainengineeringdiscipline[1]. Eventheinter-
actionsor dependencies,respectively, of features
may be modeled. Incompatiblecombinationsor
default combinationsmaybedefinedalreadydur-
ing thedomainanalysisphase.

In this paperwe approachedthe terminology
andproposeda classificationschemeto compare
differentfeatureinteractiontypes.

Startingwith this workshopwe aim at building
a catalogueof problemsand potentialsolutions.
Although it is not expectedthat therewill be one
best,exact and generalsolution (approximative)
solutionsmayexist for certainproblemdomainsor
specificsystems.Researchresultsin thetelecom-
municationdomainareexpectedto behelpfulalso
for systemsbuilt from components.

Fromthiscatalogueweaimatanimprovedclas-
sification allowing to comparedifferent interac-
tion types or problemsand a comparative cata-
logueof solutions. We aim at unifying problems
andsolutionapproaches.

References

[1] K. CzarneckiandU.W. Eisenecker. Genera-
tive Programming - Methods, Tools, and Ap-
plications. Addison-Wesley, 2000.

[2] ESPRIT Working Group 23531,
http://www.dcs.ed.ac.uk/home/stg/

fireworks/workshop.html . FIREworks,
Workshop on Language Constructs for De-
scribing Features., 2001.

[3] H. Klaeren,E. Pulvermüller, A. Rashid,and
A. Speck.AspectCompositionapplyingthe
Designby ContractPrinciple. In Proceed-
ings of the GCSE’00, Second International
Symposium on Generative and Component-
Based Software Engineering, LNCS, Erfurt,
Germany, September2000.Springer.

5

[4] Merriam-Webster OnLine, http://www.m-

w.com/ . Merriam Webster’s Collegiate Dic-
tionary, 2001.

[5] E. Pulvermüller, H. Klaeren,andA. Speck.
Aspects in Distributed Environments. In
K. Czarnecki and U. W. Eisenecker, ed-
itors, Proceedings of the GCSE’99, First
International Symposium on Generative
and Component-Based Software Engineer-
ing, LNCS 1799,Erfurt, Germany, Septem-
ber2000.Springer.

[6] M. Stefik. Introduction to Knowledge Sys-
tems. Morgan KaufmannPublishersInc.,
1995.

[7] University of Glasgow,
http://www.cs.stir.ac.uk/ mko/fiw00/ .
Feature Interaction Workshop, 2001.

[8] University of Glasgow,
http://www.dcs.gla.ac.uk/research/hfig/

features.html . The Feature List, 2001.

[9] University of Strathclyde,
http://www.comms.eee.strath.ac.uk/˜fi/ .
Feature Interaction Group, 2000.

[10] University of Waterloo,
http://se.uwaterloo.ca/˜s4siddiq/fi/

fip.html . Feature Interaction Problem,
2001.

6

