
WS15. Workshop on Knowledge-Based
Object-Oriented Software Engineering

(KBOOSE)

Maja D’Hondt1, Kim Mens2, and Ellen Van Paesschen3

1 System and Software Engineering Lab
Vrije Universiteit Brussel

mjdhondt@vub.ac.be - http://ssel.vub.ac.be/members/maja/
2 Department of Computing Science and Engineering

Université catholique de Louvain
kim.mens@info.ucl.ac.be - http://www.info.ucl.ac.be/people/cvmens.html

3 Programming Technology Lab
Vrije Universiteit Brussel

evpaessc@vub.ac.be - http://prog.vub.ac.be/

Abstract. The complexity of software domains – such as the financial
industry, television and radio broadcasting, hospital management and
rental business – is steadily increasing and knowledge management of
businesses is becoming more important with the demand for capturing
business processes. On the other hand the volatility of software develop-
ment expertise needs to be reduced. These are symptoms of a very sig-
nificant tendency towards making knowledge of different kinds explicit:
knowledge about the domain or the business, knowledge about develop-
ing software, and even meta-knowledge about these kinds of knowledge.

Examples of approaches that are directly related to this tendency or
could contribute to it are knowledge engineering, ontologies, conceptual
modeling, domain analysis and domain engineering, business rules, work-
flow management and research presented at conferences and journals on
Software Engineering and Knowledge Engineering and Automated Soft-
ware Engineering, formerly known as Knowledge-Based Software Engi-
neering. Whereas this community already contributed for years to re-
search in knowledge engineering applied to software engineering but also
vice versa, this workshop intended to focus on approaches for using ex-
plicit knowledge in various ways and in any of the tasks involved in
object-oriented programming and software engineering. Another goal of
this workshop is to bridge the gap between the aforementioned commu-
nity and the ECOOP community .

On the one hand, this workshop was a platform for researchers interested
in the symbiosis of knowledge-based or related methods and technolo-
gies with object-oriented programming or software development. On the
other hand it welcomed practitioners confronted with the problems in
developing knowledge-intensive software and their approach to tackling
them.

The workshop’s URL is http://ssel.vub.ac.be/kboose/.



2 D’Hondt, Mens, Van Paesschen

1 Introduction

Knowledge in software applications is becoming more significant because the
domains of many software applications are inherently knowledge-intensive and
this knowledge is often not explicitly dealt with in software development. This
impedes maintenance and reuse. Moreover, it is generally known that developing
software requires expertise and experience, which are currently also implicit and
could be made more tangible and reusable using knowledge-based or related
techniques. These are general examples of how using explicit knowledge in a
multitude of ways and in all phases of software development can be advantageous.

Since object-orientation is derived from frames in frame-based knowledge
representations in Artificial Intelligence, object-oriented software development
in se has certain advantages for making knowledge explicit. A conceptual class
diagram, for example, models domain knowledge. Also, object-oriented programs
can be designed in such a way that certain knowledge is represented explicitly
and more or less separated from other implementation issues. However, knowl-
edge might require a more declarative representation such as constraints or rules,
thus requiring to augment object-oriented software development with these rep-
resentations. Examples are UML’s Object Constraint Language, or recent trends
in using business rules and ontologies.

This workshop is a contribution to ECOOP because knowledge-based or re-
lated approaches towards object-oriented programming and software develop-
ment are under-represented in this conference series. Object-orientation facili-
tates a more conceptual way of capturing information or knowledge, but current
object-oriented software development methodologies do not take advantage of
this property.

2 Workshop Goals and Topics

With this workshop we tried to provide a platform for researchers and practi-
tioners interested in knowledge-based or related approaches for object-oriented
programming or software development, to pursue and encourage research and
applications in this area, and to bridge the gap between the ECOOP commu-
nity and the long-standing community active in the conferences on Software
Engineering and Knowledge Engineering (SEKE) and Automated Software En-
gineering (ASE), formerly known as Knowledge-Based Software Engineering.
More specifically, this workshop wanted to address among others the following:

– identify and characterise
• object-oriented engineering tasks that can benefit from explicitly used

knowledge
• (knowledge-based) approaches that can support object-oriented engi-

neering tasks
• kinds of knowledge that are useful to make explicit
• how explicit knowledge can be used



WS15. KBOOSE 3

– look for a common life cycle which describes both the conventional software
construction and the knowledge-based software construction

– the symbiosis between knowledge-based or related approaches and object-
oriented programming

– industrial applications of explicit knowledge in object-oriented software

Topics of interest include, but are by no means limited to:

– software engineering tasks where explicit knowledge can be useful
• requirements engineering
• analysis
• design
• programme understanding
• reengineering
• reverse engineering
• software evolution
• software reuse
• ...

– approaches for making knowledge explicit
• knowledge engineering
• ontologies
• conceptual modeling
• domain analysis and domain engineering
• business rules
• workflow management
• ...

– how explicit knowledge can be used
• modeling
• enforcing
• checking and verifying
• ...

3 Workshop Agenda

The major part of the workshop consisted of group work, since we wanted to
avoid a conference-like workshop. Hence, each participant was granted a 1-slide
or 10-minute introduction to his or her work in relation to the workshop topics.
These introductions were followed by a general discussion about knowledge-based
object-oriented software engineering, where the topics proposed by the organ-
isers and the participants in pre-workshop e-mail discussions were considered.
These topics converged almost naturally to two main topics. In the afternoon
the workshop participants split up in two groups, one for each of the main top-
ics. One hour before the end of the workshop, a representative of each group
presented the results of the group discussions in a plenary session. Finally there
was a workshop wrap-up session.

While this section describes the workshop agenda, it also provides an accurate
overview of the structure of this report: summaries of the position papers (Sec.
4), discussion topics (Sec. 5), and an account of the discussions themselves (Sec.
6). A list of the participants is provided at the end.



4 D’Hondt, Mens, Van Paesschen

4 Summaries of the Position Papers

4.1 Facilitating Software Maintenance and Reuse Activities with a
Concept-Oriented Approach, Dirk Deridder

A major activity in software development is to obtain knowledge and insights
about the application domain. Even though this is supported by a wide range
of tools and techniques, a lot of it remains implicit and most often resides in the
heads of the different people concerned. Examples of such implicit knowledge
are amongst others the links between the different artefacts, and the knowledge
that is regarded common sense.

In our approach we will store this knowledge in an ontology, which is conse-
quently used as a driving medium to support reuse and maintenance activities.
For this purpose the different concepts, that are represented in the artefacts,
will be defined and stored in this ontology. Subsequently these concepts will be
’glued’ to the different (elements of) artefacts through extensional and inten-
sional concept definitions. This will enable a bi-directional navigation between
the concepts represented in the conceptual artefacts and their concrete real-
izations in the code which is needed for the intended maintenance and reuse
support.

An extended version of this position paper was accepted for presentation and
publication at the 5th Joint Conference on Knowledge-Based Software Engineer-
ing (JCKBSE2002), in Maribor, Slovenia. [3]

4.2 Domain Knowledge as an Aspect in Object-Oriented Software
Applications, Maja D’Hondt, and Maŕıa Agustina Cibrán

The complexity of software domains is steadily increasing and knowledge man-
agement of businesses is becoming more important. The real-world domains of
many software applications, such as e-commerce, the financial industry, television
and radio broadcasting, hospital management and rental business, are inherently
knowledge-intensive. Current software engineering practices result in software
applications that contain implicit domain knowledge tangled with the imple-
mentation strategy. An implementation strategy might result in a distributed
or real-time application, or in an application with a visual user interface or a
database, or a combination of above. Domain knowledge consists of a conceptual
model containing concepts and relations between the concepts. It also contains
constraints on the concepts and the relations, and rules that state how to infer or
“calculate” new concepts and relations [15]. There is a strong analogy between
the rules and constraints on the one hand, and Business Rules on the other.
Business Rules are defined on a Business Model, analogous to the conceptual
model of the domain knowledge.

A first problem is that real-world domains are subject to change and busi-
nesses have to cope with these changes in order to stay competitive. Therefore,
it should be possible to identify and locate the software’s domain knowledge
easily and adapt it accordingly while at the same time avoiding propagation of



WS15. KBOOSE 5

the adaptations to the implementation strategy. Similarly, due to rapidly evolv-
ing technologies, we should be able to update or replace the implementation
strategy in a controlled and well-localized way. A second problem is that the
development of software where domain knowledge and implementation strategy
are tangled is a very complex task: the software developer, who is typically a
technology expert but not a domain expert, has to concentrate on two aspects
of the software at the same time and manually compose them. This violates
the principle of separation of concerns [4] [14] [5], which states that the imple-
mentation strategy should be separated from other concerns or aspects such as
domain knowledge. In short, the tangling of domain knowledge and implementa-
tion strategy makes understanding, maintaining, adapting, reusing and evolving
the software difficult, time-consuming, error-prone, and therefore expensive.

4.3 Supporting Object-Oriented Software Development with
Intentional Source-Code Views, Kim Mens, Tom Mens, and
Michel Wermelinger

Developing, maintaining and understanding large software systems is hard. One
underlying cause is that existing modularization mechanisms are inadequate to
handle cross-cutting concerns. Intentional source-code views are an intuitive and
lightweight means of modelling such concerns. They increase our ability to under-
stand, modularize and browse the source code of a software system by grouping
together source-code entities that address a same concern. Alternative descrip-
tions of the same intentional view can be provided and checked for consistency.
Relations among intentional views can be declared, verified and enforced.

Our model of intentional views is implemented using a logic meta-programming
approach. This allows us to specify a kind of knowledge developers have about
object-oriented source code that is usually not captured by traditional program
documentation mechanisms. It also facilitates software evolution by providing
the ability to verify automatically the consistency of views and detect invalida-
tion of important intentional relationships among views when the source code is
modified.

An extended version of this position paper was accepted for presentation and
publication at the Software Engineering and Knowledge Engineering conference
(SEKE 2002) in Ischia, Italy [8].

4.4 Management and Verification of the Consistency among UML
models, Atsushi Ohnishi

UML models should be consistent with each other. For example, if a message
exists between class A and class B in a sequence chart, then a corresponding as-
sociation between class A and class B must exist in a class diagram. We provide
38 rules for the consistency between UML models as knowledge base. We can
detect the inconsistency between models with this knowledge base. We have de-
veloped a prototype system and applied this system to a couple of specifications
written in UML[13].



6 D’Hondt, Mens, Van Paesschen

4.5 Making Domain Knowledge Explicit using SHIQ
in Object-Oriented Software Development, Ragnhild
Vanderstraeten

To be able to develop a software application, the software developer must have
a thorough knowledge of the application domain. A domain is some area of
interest and can be hierarchically structured [15]. Domain knowledge specifies
domain-specific knowledge and information types that we want to talk about in
an application [15].

Nowadays, the de-facto modeling language used in object-oriented develop-
ment is the Unified Modeling Language (UML) [12]. A lot of domain knowledge
is implicitly and explicitly present in the models used throughout the Software
Development Life Cycle (SDLC) and in the different UML diagrams, or is only
present in the head of the software developers, or is even lost through the SDLC.
To make this domain knowledge explicit, we will use one language. Our goal is
to translate the different diagrams and write the additional domain knowledge
down in this language. We propose to use the Description Logic SHIQ and
extensions to make this knowledge explicit and to support the software modeler
in using this knowledge. These logics have quite powerful reasoning mechanisms
which can be used to check the consistency of the corresponding class and state
diagrams.

In this paper we give the translation of state diagrams and constraints written
in the Object Constraint Language (OCL) [6] and two examples of implicit
knowledge which is made explicit. In the first example, the consistency is checked
between a class diagram and a state diagram. In the second example, a change is
made to a first design model, this change makes some domain knowledge implicit.
By expressing this knowledge in the logic, the reasoning mechanism of this logic
can notify the designer if one of the “implicit” rules is violated.

Our final goal is to build an intelligent modeling tool which enables to make
implicit knowledge explicit and to use this knowledge to support the designer in
designing software applications. The advantages of such a tool is that reuse and
adaptability of software is improved and the understandability of the software
designs increases.

4.6 Declarative Metaprogramming to Support Reuse in Vertical
Markets, Ellen Van Paesschen

The implicit nature of the natural relationship between domain models (and
the corresponding delta-analyses) and framework instances in vertical markets,
causes a problematic hand-crafted way of developing and reusing frameworks.
Constructing a bidirectional, concrete, active link between domain models and
framework code based on a new instance of declarative metaprogramming (DMP)
can significantly improve this situation.

The new DMP instance supports a symbiosis between a prototype-based,
frame-based knowledge representation language and an object-oriented program-
ming language. This implies that framework code in the object-oriented lan-
guage co-evolves with the corresponding knowledge representation. Representing



WS15. KBOOSE 7

domain-dependent concepts in the same knowledge representation allows us to
transform delta-analyses into framework reuse plans, and to translate changes in
the framework code into domain knowledge adaptations, at a prototype-based
and frame-based level.

At the level of the domain-dependent concepts the separation of five kinds of
knowledge will be represented by KRS’, a dialect of the frame-based prototype-
based knowledge representation language KRS. To represent frameworks the new
instance of DMP provides a symbiosis between KRS’ and the object-oriented
programming language Smalltalk. By adding an intelligent component to this
instance at the level of KRS’, domain-dependent concepts and framework imple-
mentations can be coupled, making it possible to automatically translate frame-
work adaptations to the domain-dependent level, and to automatically plan reuse
of the framework based explicitly on the delta’s at the KRS’ level.

4.7 An Agent-Based Approach to Knowledge Management for
Software Maintenance, Aurora Vizcáıno, Jesús Favela, and
Mario Piattini

Nowadays, organisations consider knowledge, or intellectual capital, to be as im-
portant as tangible capital, which enables them to grow, survive and become
more competitive. For this reason, organisations are currently considering inno-
vative techniques and methods to manage their knowledge systematically.

Organisations handle different types of knowledge that are often inter-related,
and which must be managed in a consistent way. For instance, software engineer-
ing involves the integration of various knowledge sources that are in constant
change. Therefore, tools and techniques are necessary to capture and process
knowledge in order to facilitate subsequent development efforts, especially in
the domain of software engineering

The changeable character of the software maintenance process requires that
the information generated is controlled, stored, and shared. We propose a multi-
agent system in order to manage the knowledge generated during maintenance.
The roles of the these agents are summarised as follows consist of:

– Comparing new information with information that has already been stored
in order to detect inconsistencies between old and new information.

– Informing other agents about changes produced.
– Predicting new client’s demands. Similar software projects often require sim-

ilar maintenance demands.
– Predicting possible mistakes by using historic knowledge.
– Advising solutions to problems. Storing solutions that have worked correctly

in previous maintenance situations helps to avoid that due to the limited
transfer of knowledge companies are forced to reinvent new practices, result-
ing in costly duplication of effort.

– Helping to make decisions. For instance to evaluate whether it is convenient
to outsource certain maintenance activities.



8 D’Hondt, Mens, Van Paesschen

– Advising certain employee to do a specific job. The system has information
about each employee’s skills, their performance metrics, and the projects
they have worked on.

A multiagent system in charge of managing maintenance knowledge might im-
prove the maintenance process since agents would help developers find informa-
tion and solutions to problems and to make decisions, thus increasing organisa-
tion’s competitiveness.

5 Discussion Topics

Based on preliminary e-mail discussions, submitted workshop papers, short pre-
sentations and discussions during the morning session of the workshop, the fol-
lowing relevant discussion topics were identified.

5.1 Mapping between Knowledge Representation and
Object-Oriented Programs

This topic was explicitly addressed by several participants. Different kinds of
mappings can be imagined:

– two separate representations with an explicit link between them
– a code-generation approach where there is only the represented knowledge

from which code is generated automatically
– a symbiotic or reflective mapping between the knowledge representation lan-

guage and the object-oriented language
– an approach where the knowledge representation language and the object-

oriented language are actually one and the same language. (Note that this
is more than mere symbiosis: the languages have become –or were designed
to be – one and the same.)

5.2 How a Knowledge-Based Approach can Support Maintenance
of Object-Oriented Programs

Many participants addressed the topic of using a knowledge-based approach
to achieve, facilitate or advance software maintenance in general and software
evolution, reuse and understanding in particular.

5.3 Approaches and Techniques for Dealing with Knowledge-Based
Software Engineering

A whole range of different approaches towards KBOOSE were proposed or men-
tioned by the various participants:

– a rule-based backward chaining approach (e.g. Prolog)
– a rule-based forward chaining approach



WS15. KBOOSE 9

– a mixture of forward and backward chaining (found in many knowledge
systems)

– a frame-based approach (e.g. KRS [7])
– constraint solving
– description logics (these are limited but decidable subsets of first-order logic

with reasoning support)
– model checking
– an agent-based approach
– ontologies

Note that this topic is orthogonal to the previous two.

5.4 Consistency Checking

This was proposed by a number of participants as a means to support mainte-
nance of object-oriented programs. Therefore, this topic can be seen as a subtopic
of topic 5.2. Consistency can be checked between models (e.g. between different
kinds of UML design diagrams) or between the represented knowledge and the
implementation. If we consider source code as a model too, these two kinds of
consistency checking essentially boil down to the same thing.

5.5 Which Software Engineering Tasks can Benefit from a
Knowledge-Based Software Engineering Approach?

This topic is closely related to topic 5.2 as well. In fact, most participants men-
tioned that they used knowledge-based object-oriented software engineering to
support software maintenance, reuse, evolution and understanding. Of course,
knowledge-based software engineering may be useful for other tasks as well.

5.6 How can the Represented Knowledge be Used?

Again this topic is closely related to topic 5.2. Indeed, checking model consistency
is an interesting way of using the represented knowledge for achieving well-
designed or correct software.

5.7 Summary of the Discussion Topics

Looking back at all these discussion topics, given the fact that topics 5.5 and 5.6
are closely related to topic 5.2 and because topic 5.4 can be seen as a subtopic
of 5.2, we decided to focus on the first three topics only during the group discus-
sions. Furthermore, because of the orthogonality of the third topic with respect
to the first two, we decided to discuss only topics 5.1 and 5.2. However, the
two discussion groups were supposed to take a look at topic 5.3 too from the
perspective of their own discussion topic. More specifically, for topic 5.1 it was
important to know how the choice of a particular approach or technique might
affect or influence the chosen mapping. For topic 5.2 it was important to dis-
cuss which particular techniques could or should be used or avoided in order to
support software maintenance.



10 D’Hondt, Mens, Van Paesschen

6 Group Discussions

6.1 Mapping between Knowledge Representation and
Object-Oriented Programs

This group consisted of Maja, Ellen, Maŕıa Agustina, Theo, Andreas and Marie.

Interests of the participants in this topic comes both from a technology
and a problem-oriented point of view. Based on all the individual interests in
this particular discussion topic, we came up with the following issues:

domain and configuration knowledge In software applications many kinds
of implicit knowledge can be detected. Maja and Maŕıa Agustina both want
to represent domain knowledge and in particular business rules explicitly
and decoupled from the core application. Ellen wants to represent knowl-
edge in the context of families of applications (e.g. frameworks or product
lines) in vertical markets, among others knowledge about the domain, about
variabilities in the domain (also referred to as delta’s), and about the link
between the variabilities and the implementation for traceability. An ap-
propriate representation for these kinds of knowledge can be found in the
older hybrid knowledge representation systems which combine frame-based
and rule-based representations. The core application is implemented using
an object-oriented programming language. Hence the need arises for a sym-
biosis between frame-based and rule-based representation on the one hand,
and object-oriented programming on the other.

task knowledge Andreas is concerned with the task knowledge, in other words
the workflow or process, in software applications. Marie is working in the do-
main of medical diagnosis and treatment. They both observed that the task
of a software application crosscuts the entire implementation and thus be-
comes hard to maintain and reuse. Andreas remarks that it boils down to
explicitly representing component interactions, and that possibly temporal
logic would be a suitable medium. Issues that arise here are the ever ongoing
discussion of black-box versus white-box components, the level of granular-
ity of the interactions, and how to reverse engineer existing components to
obtain this representation of the interactions.

Symbiosis between Declarative and Object-Oriented Languages The
needs and interests of the participants pointed to a symbiosis between a declar-
ative language and an object-oriented language. A language symbiosis means
that the mapping of the declarative language onto the object-oriented language
is implemented and integrated in the latter. We must note, however, that declar-
ative is a paradigm rather than a language, and in order to discuss a symbiosis
between two languages, a concrete declarative language must be considered.
Possible candidates are:

– a truly declarative rule-based language, which means that the rule chaining
strategy is transparent, i.e. forward or backward chaining, or both



WS15. KBOOSE 11

– a constraint language with a constraint solver or truth maintenance system
– description logic with reasoning for ensuring consistency or classification

The main problem with a symbiosis between a declarative and an object-
oriented language is consolidating the behavioural aspect: message passing and
for instance rule chaining is hard to map. This is easily illustrated when one
considers a message send which is in fact mapped to a rule, where there is a
mapping between the parameters (including the receiver) of the message and the
variables of the rule. When the rule returns more than one result, the question is
how the object-oriented layer will deal with this since it only expects one result
from a message.

Theo mentioned by means of a concrete example that the ”holy grail” of
a perfect integration of a knowledge-based language with an object-oriented
language may be very hard to find. If one considers SQL, everyone will probably
agree that this is a declarative language which is very well-suited for reasoning
about knowledge stored in databases, but even this one is still not well-integrated
with imperative or object-oriented languages.

A possible strategy for facilitating the symbiosis might be to do a co-design
from scratch of a new object-oriented and declarative language that perfectly
integrates the two paradigms. But then the problem probably arises that the
language will not be generally accepted because it would be yet another ”aca-
demic” language.

Existing Systems with Language Symbiosis were considered in this dis-
cussion. We can distinguish between systems that provide a symbiosis between
two languages of the same paradigm, such as Agora [10], and systems or lan-
guages that unite multiple paradigms. Another distinction is the way the multiple
paradigms are combined. On the one side of the spectrum there are the mul-
tiparadigm languages such as C++ [2] and LISP. Then there are the systems
that implement one paradigm in a language based on another paradigm, which
in most cases makes the underlying language accessible in the language it im-
plements, and may even allow metaprogramming about the underlying language
in the language it implements. Examples are SOUL (Smalltalk Open Unifica-
tion Language), a logic programming environment implemented in Smalltalk [9];
SISC (Second Interpreter of Scheme Code) [11] and JScheme [1] both Scheme
interpreters written in Java.

6.2 How a Knowledge-Based Approach can Support Maintenance
of Object-Oriented Programs

This group – consisting of Kim, Miro, Atsushi, Ragnhild, Dirk, Aurora and Elke
– addressed discussion topic 5.2 (including topic 5.4 as a subtopic), which was
rephrased as follows:

How can a knowledge-based approach support software maintenance (in-
cluding evolution, reuse and understanding) and what particular tech-



12 D’Hondt, Mens, Van Paesschen

niques and approaches might be helpful in doing so (for example, consis-
tency checking among models)?

To structure the discussion, every member of the group was asked to explain
and discuss (in the context of knowledge-based software engineering)

1. what they understood by consistency checking, and optionally how they used
it and for which purpose

2. what representation they used to represent their knowledge and how the rep-
resented knowledge was actually connected to the underlying object-oriented
programs

After this, the different answers were merged which lead to the following
insights:

1. Consistency checking boils down to checking whether there are no contra-
dictions between models, where the implementation (i.e. source code) can
also be seen as a particular kind of model. Consistency checking is often
syntactic but can be semantic as well (an example of the latter was Ragn-
hild’s approach where the different models to be checked are mapped to the
same description logic and then the reasoning tools in that logic are used
to check for contradictions between the produced descriptions). All partici-
pants agreed that maintenance and reuse are the main goals of consistency
checking. But this does not imply that consistency checking is necessary for
maintenance and reuse.

2. Regarding the representation used to represent the knowledge we discovered
two different kinds of approaches. The difference seemed to be caused by the
different goals to support maintenance that were followed:
– One goal was mainly to collect information throughout the software devel-

opment life cycle mainly with the intention of consolidating the knowl-
edge that is in different people’s heads, thus contributing to a better
understanding of the domain. Both Dirk’s and Aurora’s approach were
examples of this. In Dirk’s case he represented the knowledge using an
ontology expressed in a frame-based language. In Aurora’s case, she used
an agent-based approach.

– A second goal was to check conformance between specific models with
the goal of improving the quality and correctness of the software. Kim’s,
Ragnhild’s and Atsushi’s approaches were examples of this. In all these
cases the knowledge was represented using a logic language (either a
Prolog-like language or a more restricted description logic) and a kind
of logic reasoning was used to check for consistency. In the ideal case
where the models to be checked were well-defined, perhaps with some
extra user-defined annotations attached to them, the corresponding logic
expressions can be generated and checked automatically. In the less ideal
case, model checking first requires us to describe the logic expressions
either manually, semi-automatically or based on heuristics.



WS15. KBOOSE 13

7 Conclusions

Although the main goals were rather well addressed and we are generally pleased
with the results, one has to bear in mind that it was but the first workshop on
Knowledge-Based Object-Oriented Software Engineering. Therefore, we passed
what one could call the exploratory phase: all topics and lines of thought that
came up were considered and elaborated upon, but we did not investigate every
nook and cranny of this field. For a possible next workshop related to this one, it
would be interesting to make a general classification of which particular software
engineering tasks may benefit from a particular knowledge-based technique or
approach. The results of this query could then very well serve as a starting point
for more specific in a series of workshops on Knowledge-Based Object-Oriented
Software Engineering.

References

[1] Ken Anderson, Tim Hickey, and Peter Norvig. The jscheme web programming
project. http://jscheme.sourceforge.net/jscheme/mainwebpage.html.

[2] James O. Coplien. Multiparadigm Design For C++. Addison-Wesley, 1998.

[3] Dirk Deridder. A concept-oriented approach to support software maintenance
and reuse activities. In 5th Joint Conference on Knowledge-Based Software En-
gineering (JCKBSE). IOS Press - Series ”Frontiers in Artificial Intelligence and
Applications”, 2002.

[4] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[5] W.L. Hürsch and C.V. Lopes. Separation of concerns. Technical report, North
Eastern University, 1995.

[6] A. Kleppe and J. Warmer. The Object Constraint Language: Precise Modeling
with UML. Addison-Wesley, 1999.

[7] Kris Van Marcke. The Knowledge Representation System KRS and its Implemen-
tation. PhD thesis, Vrije Universiteit Brussel, 1988.

[8] Kim Mens, Tom Mens, and Michel Wermelinger. Supporting object-oriented soft-
ware development with intentional source-code. In Proceedings of the 15th Con-
ference on Software Engineering and Knowledge Engineering (SEKE). Knowledge
Systems Institute, 2002.

[9] Kim Mens, Isabel Michiels, and Roel Wuyts. Supporting software development
through declaratively codified programming patterns. In Proceedings of the 14th
Conference on Software Engineering and Knowledge Engineering (SEKE). Knowl-
edge Systems Institute, 2001.

[10] Wolfgang De Meuter. The story of the simplest mop in the world, or, the scheme
of object-orientation. Prototype-Based Programming (eds: James Noble, Antero
Taivalsaari, and Ivan Moore), 1998.

[11] Scott G. Miller. Second interpreter of scheme code.
http://sisc.sourceforge.net/.

[12] The Object Management Group. The OMG Unified Modeling Language Specifi-
cation. http://www.omg.org.

[13] Atsushi Ohnishi. A supporting system for verification among models of the uml.
Systems and Computers in Japan, 33(4):1–13, 2002.



14 D’Hondt, Mens, Van Paesschen

[14] D. L. Parnas. On the criteria to be used in decomposing systems into modules.
Communications of the ACM, 15(12):1053–1058, 1972.

[15] A. Th. Schreiber, J. M. Akkermans, A. A. Anjewierden, R. de Hoog, N. R. Shad-
bolt, W. Van de Velde, and B. J. Wielinga. Knowledge Engineering and Manage-
ment: The CommonKADS Methodology. MIT Press, 2000.

Participant Names, E-Mail Addresses, and Affiliations

name e-mail and affiliation
Marie Beurton-Aimar Marie.Aimar@u-bordeaux2.fr

Université Bordeaux 2 - France
Miro Casanova mcasanov@vub.ac.be

Vrije Universiteit Brussel - Belgium
Maŕıa Agustina Cibrán mcibran@vub.ac.be

Vrije Universiteit Brussel - Belgium
Krzysztof Czarnecki czarnecki@acm.org

Daimler Chrysler - Germany
Dirk Deridder Dirk.Deridder@vub.ac.be

Vrije Universiteit Brussel - Belgium
Maja D’Hondt mjdhondt@vub.ac.be

Vrije Universiteit Brussel - Belgium
Theo D’Hondt tjdhondt@vub.ac.be

Vrije Universiteit Brussel - Belgium
Kim Mens Kim.Mens@info.ucl.ac.be

Université catholique de Louvain - Belgium
Atsushi Ohnishi ohnishi@acm.org

Ritsumeikan University - Japan
Elke Pulvermueller pulvermu@ipd.info.uni-karlsruhe.de

Universitaet Karlsruhe - Germany
Andreas Speck a.speck@intershop.com

Intershop Research - Germany
Ragnhild Van Der Straeten rvdstrae@vub.ac.be

Vrije Universiteit Brussel - Belgium
Ellen Van Paesschen evpaessc@vub.ac.be

Vrije Universiteit Brussel - Belgium
Aurora Vizcáıno avizcaino@inf-cr.uclm.es

Universidad de Castilla La Mancha - Spain


