
Seamless Integration of Rule-Based Knowledge and
Object-Oriented Functionality with Linguistic Symbiosis

Maja D’Hondt
∗

System and Software
Engineering Lab

Vrije Universiteit Brussel

mjdhondt@vub.ac.be

Kris Gybels
†

Programming Technology Lab
Vrije Universiteit Brussel

kgybels@vub.ac.be

Viviane Jonckers
System and Software

Engineering Lab
Vrije Universiteit Brussel

vejoncke@vub.ac.be

ABSTRACT
Software applications often contain implicit knowledge in
addition to functionality which is inherently object-oriented.
Many approaches and systems exist that focus on separat-
ing rule-based knowledge from object-oriented functionality
and representing it explicitly in a logic reasoning system.
Support for seamless integration of this knowledge with the
object-oriented functionality improves software development
and evolution. Our hypothesis is that a linguistic symbiosis
is required between the logic reasoning and object-oriented
programming paradigms in order to achieve seamless inte-
gration.

This paper presents a symbiotic extension of SOUL, a sys-
tem which implements a logic programming language and a
production system in Smalltalk. The presence of these two
logic reasoning systems in SOUL ensures a comprehensive
coverage of rule-based reasoning styles, more specifically for-
ward and backward chaining. Our approach is evaluated by
means of two case studies. We summarise a comprehensive
survey, which shows that existing systems do not fully sup-
port seamless integration.

Keywords
Rule-based systems, Multi-paradigm programming, Linguis-
tic symbiosis

1. INTRODUCTION
Software applications often consist of implicit knowledge.

Examples are policies, preferences, decisions, processes, work-
flows and so on. In this paper we focus on rule-based knowl-

∗Maja D’Hondt is a research assistant of the Flemish Insti-
tute for the Promotion of Scientific-Technological Research
in the Industry, Flanders, Belgium (I.W.T).
†Kris Gybels is a research assistant of the Fund for Scientific
Research, Flanders, Belgium (F.W.O.).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SAC’04, March 14-17, 2004, Nicosia, Cyprus
Copyright 2004 ACM 1-58113-812-1/03/04 ...$5.00.

edge where each rule is an atomic unit of knowledge that
state how to infer knowledge or initiate actions when cer-
tain conditions are satisfied [13].

When making rule-based knowledge explicit, the most
suitable representation for rules is logical implications in a
logic reasoning system [29]. A crucial advantage of such sys-
tems is that the flow of rules is automatically managed by a
rule engine. The software’s core application functionality, on
the other hand, is best expressed in an object-oriented pro-
gramming language. Hence, in this paper we are interested
in systems that support both paradigms – logic reasoning
and object-oriented programming.

Although our goal is to keep the two paradigms as dis-
tinct as possible in order to enhance modularity of rule-
based knowledge and object-oriented functionality, the two
have to be integrated at certain points in order to obtain
one software application. We identify four issues in inte-
grating the logic reasoning system and the object-oriented
programming language. However, the level of automation
and transparency of the integration can seriously affect the
development process: as the application evolves, an object-
oriented implementation may very well need to be partially
replaced by a logic reasoning representation, and vice versa
[31].

We conjecture that in order to support such evolution of
representation, a linguistic symbiosis [21] [30] [24] is required
to integrate the logic reasoning system and the object-oriented
programming language. This allows programs to call other
programs in a transparent and automatic way, irrespective
of the language they are implemented in. As a result, when
a program, originally implemented in one language, is in-
stead implemented in the other, the programs that use it do
not need to be adapted at all. However, a survey of exist-
ing systems shows that this seamless integration is not fully
supported by existing approaches [17].

While we have been able to reuse solutions provided by
previous research on linguistic symbiosis, we have to resolve
new problems caused by the paradigmatic distance between
a logic reasoning system and an object-oriented program-
ming language. We introduce linguistic symbiosis between
Smalltalk and SOUL [22], which provides a logic program-
ming language and a production system. We evaluate our
approach by means of two case studies. Most importantly,
this shows that our approach enables incremental develop-
ment and evolution.

The contribution of this paper is a model which covers



all the identified issues of seamless integration of a pure
object-oriented programming language and a logic reason-
ing system. We cover both forward and backward reasoning.
Furthermore, we provide an implementation of this model
in Smalltalk and SOUL.

First of all, this paper illustrates the challenges in in-
tegrating rules and object-oriented functionality (Sec. 2).
Next, we discuss SOUL and our symbiotic extension (Sec.
3). We briefly present the two case studies used for evalu-
ating our approach and discuss the results (Sec. 4). The
section on related work consists of a summary of a compre-
hensive survey (Sec. 5). Finally, we present our conclusions
and future work (Sec. 7).

2. INTEGRATING RULES AND OBJECTS
This section first provides some background information

on logic reasoning systems. Then, we explain and illustrate
the advantages of having a seamless integration between
logic reasoning systems and object-oriented programming
languages. Next we present and illustrate the four integrat-
ing issues we identified. Finally, we introduce the concept
of linguistic symbiosis.

2.1 Logic Reasoning Systems
Rule-based knowledge is most suitably represented in a

logic reasoning system. Two important classes are logic pro-
gramming languages and production systems [29]. Both use
implications for representing rules explicitly. Implications
are logic sentences of the form antecedent ⇒ consequent,
also known as conclusion IF premise 1 & ... & premise n.

In logic programming languages, backward chaining is used
to prove a conclusion by attempting to establish the premises.
The figure below illustrates traditional backward chaining.
A premise is established if a rule is found that can conclude

& &

QUERY

IF

IF

& ...
...

it. Traditional backward chaining is triggered by performing
a query which either results in a successful proof and a set
of bindings for any unbound variables in the query, or fails.

In traditional production systems, forward chaining is
triggered if a new fact is asserted and establishes a rule’s
premise. The figure below illustrates traditional forward
chaining. If all of a rule’s premises are established in this

& &

NEW FACT

IF

IF

&

way, the rule’s conclusion is generated and asserted as a new
fact. Again, this can result in other rules being triggered.

Later on in this paper, the above figures are extended to
show how traditional chaining and object-oriented message
passing are adapted to enable linguistic symbiosis.

2.2 Development with Seamless Integration
There exist guidelines and methodologies for developing

object-oriented software applications with explicit (business)
rules [31] [28] [16]. They stress that during application de-
velopment or evolution, an object-oriented implementation
may very well need to be partially replaced by a logic reason-
ing representation, and vice versa. Because such iterative or
incremental development is even more heavily promoted by
eXtreme Programming, this becomes an increasingly impor-
tant issue.

Consider a simplified e-commerce application which sup-
ports online business-to-customer sales. The Smalltalk im-
plementation of the example method price on instances of
Order below. This method obtains the total price of the
order and the discount to which the customer is entitled. It
subtracts the discount percentage from the total price and
returns the result.

price
^self totalPrice*(100-customer discount)/100

Conceptually, a number of rules describe how to derive a
customer’s discount. Initially, these can be implemented in
Smalltalk as a method on the class Customer which returns
a discount percentage based on properties of the customer or
other objects. In the example below, a discount of 5 percent
is returned if the customer is loyal.

discount
self isLoyal ifTrue:[^5].
...

As the rules evolve and increase in number, managing
the control flow manually becomes cumbersome. Therefore,
a logic reasoning system is employed for representing the
rules explicitly. The representation of such a rule in SOUL
is shown below. Note that SOUL will be presented in more
detail in Sec. 3.

?c discount=5 if ?c isLoyal

A seamless integration of the object-oriented program-
ming language and the logic reasoning system allows pro-
grams to call other programs in a transparent and automatic
way, irrespective of the language they are implemented in.
As a result, when a program, originally implemented in one
language, is instead implemented in the other, the programs
that use it do not need to be adapted at all. Hence, the im-
plementation of the first method price does not depend on
the actual representation of the discount rules. The invo-
cation of discount will be delegated to the object-oriented
language if it is implemented as a method and to the logic
reasoning system if it is represented as rules.

Note that although this simple example illustrates seam-
less integration, the single example rule is not meant to
demonstrate the need for logic reasoning.

2.3 Integration Issues
The four issues in integrating logic reasoning and object-

oriented programming are illustrated below.



discount is 5% if customer is loyal

customer is loyal if customer has charge card

rules

objects

ordercustomer

1. How are rules triggered? For example, an object
order calculates the price of the purchased items of
another object customer and discounts the price with
a certain percentage. The discount is inferred by the
rules, which somehow have to be triggered. This is
depicted by the black arrow starting from order.

2. How do rules refer to objects from the core
application? In the example, the rules refer to the
object customer. This is denoted by the white arrows.

3. How do rules invoke methods on objects in the
core application? The example shows that the rules
need information about the object customer in order
to infer the discount. The black arrow denotes the in-
vocation of the method that establishes whether cus-
tomer has a charge card or not. Somehow the result
has to be returned to the rules.

4. How are objects informed of the inference re-
sults of the rules? The object order needs to refer
to the inferred discount of customer, depicted by the
white arrow.

2.4 Linguistic Symbiosis
A linguistic symbiosis between two languages enables pro-

grams implemented in one language to call programs im-
plemented in another language transparently and automat-
ically. Transparency is achieved by hiding the mechanisms
used by the languages for invoking each other. Automation
is achieved by conceiving a one-to-one mapping between the
mechanisms of both languages for invoking their own be-
haviour. As such, linguistic symbiosis allows replacement of
parts of a program with another program implemented in a
different language, possibly of a different paradigm. This re-
placement does not require the first program to be adapted
at all. Systems that provide a linguistic symbiosis between
two languages usually implement one language in the other.

The term first appears in the work on a meta-object-
protocol-enabled interpreter written in C++, which can have
all of its parts replaced with parts written in the actual lan-
guage it interprets [21]. A similar scheme is presented in
the work on reflective extensions of open programming lan-
guages [30, 24]. In these approaches both languages are
object-oriented.

While we have been able to reuse solutions provided by
the aforementioned research on linguistic symbiosis, we are
also presented with issues which arise when integrating logic
reasoning with object-oriented programming. In the next

section we introduce our symbiotic extension of SOUL and
show how we deal with the four integration issues.

3. LINGUISTIC SYMBIOSIS IN SOUL
In this section we first introduce the logic reasoning sys-

tems which comprise SOUL. Then we explain how we ad-
dressed the four integration issues in order to achieve linguis-
tic symbiosis in SOUL: triggering rules and invoking meth-
ods are discussed together, followed by an explanation of
exchanging inference results and objects.

3.1 SOUL
SOUL implements logic reasoning in Smalltalk, consist-

ing of both a logic programming language and a production
system.

Over the years, a number of people have been involved in
the development and use of the Prolog-like logic program-
ming language of SOUL. It is used as a research platform
for applying logic programming to a number of software en-
gineering problems: explicitly representing domain knowl-
edge in object-oriented applications [18]; reasoning about
the design of object-oriented applications [33, 32]; checking,
enforcing and searching for occurrences of programming pat-
terns [22]; supporting evolution of software applications [23];
and architectural conformance checking [34]. Note that al-
though Prolog differs from standard backward-chaining rule-
based languages, they share the features that are relevant for
integrating backward-chaining logic reasoning with object-
oriented programming.

We developed the production system of SOUL to comple-
ment the goal-oriented style of logic programming with a
data-oriented and generative style of logic reasoning. It is
inspired by the new generation of production systems such
as OPSJ [8], JRules[9] and CafeRete[1], which in turn are
object-based versions of the older production systems OPS5
[12] and CLIPS [3].

The representation of rules is essentially the same for both
of SOUL’s logic reasoning systems, with the exception of
some specialised constructs inherent to Prolog-like logic pro-
gramming, such as the cut. A characteristic that SOUL has
in common with most systems that combine logic reasoning
and object-oriented programming, is the ability to reason
about objects instead of literals such as strings and num-
bers.

Neither the logic programming language nor the produc-
tion system of SOUL present contributions in se, since they
are based on existing, successful languages and systems.
Their combined presence in SOUL ensures a comprehensive
coverage of rule-based reasoning styles. Our contribution
is the integration of these rule-based reasoning styles with
object-oriented programming.

3.2 Triggering Rules and Invoking Methods
Our goal is fully automatic and transparent dispatching

between SOUL and Smallltalk. An object-oriented program
can dispatch a subtask to another object-oriented program,
or the exact same program can dispatch it to the logic rea-
soning system by triggering rules. Similarly, when the logic
reasoning system infers a goal or facts, it can either trigger
other rules, or the exact same rule can invoke a method.

Since backward and forward chaining have mostly differ-
ent dispatching strategies, we describe the two approaches
separately.



3.2.1 Backward Chaining
We obtain automatic dispatching by devising a one-to-one

correspondence between logic predicate names and method
names. In order to achieve this, we adapt the syntax of pred-
icates to resemble that of Smalltalk’s keyword-based method
invocation syntax. Hence, we write:

?c canBuy: ?p if ?c inEurope & ?p intlShipping

To obtain a transparent mapping between rules and meth-
ods in SOUL, the mechanisms used for invoking each other
are hidden. We do this by adapting standard method dis-
patching and rule chaining respectively. This is shown in
the figure below.

& &

QUERY

IF

IF

&

objects

rules

In SOUL, backward chaining is triggered from Smalltalk
when an undefined method is invoked. As a result, SOUL
performs a query whose predicate name equals the method
name. The receiver is bound to the query’s first variable
and the actual parameters are bound to the other query
variables. For example, the message canBuy: is sent to an
instance of Customer with an instance of Product as param-
eter, but Customer objects do not implement this method.
As a result, the query ?c canBuy: ?p is performed with
the instance of Customer bound to ?c and the instance of
Product bound to ?p.

In SOUL, the backward chaining rule engine first attempts
to establish a rule’s premise by finding a rule which could
prove the premise. When such a rule is not defined, SOUL
invokes a message whose name equals the predicate name
in the premise. The message is sent to the object bound to
the premise’s first variable. The actual parameters of the
message are the objects bound to the corresponding vari-
ables of the premise. For example, when trying to prove
the first premise of the aforementioned rule which concludes
canBuy:, but no rule is defined which can establish the
premise ?c inEurope, the message inEurope is sent to the
object bound to ?c.

3.2.2 Forward Chaining
For automatically invoking Smalltalk methods from SOUL,

the forward chainer uses the same mechanism as the back-
ward chainer: the one-to-one mapping from predicate names
to method names. However, an alternative mechanism is
used for triggering forward-chaining rules from Smalltalk.
Since objects are considered to be facts, their state changes
are monitored. SOUL interprets a change as a new fact

being asserted, which triggers the forward chainer automat-
ically and transparently. SOUL is able to restrict monitor-
ing to specific attributes of specific objects, which reduces
the number of times the forward chainer is triggered. Con-
sider the following example: SOUL monitors the attribute
chargeCard of instances of Customer. When an object’s
charge card is set, it triggers the forward chainer. The fig-
ure below illustrates (amongst others) how Smalltalk trig-
gers SOUL.

& &

NEW FACT

IF

IF

&

rules

objects

NEW

The figure also illustrates how SOUL invokes methods.
SOUL’s forward chainer attempts to establish a premise af-
ter a changed object is bound to one of its variables. This is
achieved by trying to invoke a message, which is similar to
the backward chainer’s approach. If this fails, the traditional
forward-chaining approach is taken. Once all the premises
of a rule have been established, the forward chainer tries to
conclude the rule by invoking a method. The method name
equals the predicate name in the conclusion and the objects
bound to the conclusion’s variables are again used as actual
parameters. If the method is not defined in the receiver’s
class, the bound conclusion is asserted as a new fact. To
illustrate this, consider the rule below.

?c isLoyal if ?c hasChargeCard

Since, the forward chainer is triggered because an instance
of Customer has changed, the object is bound to the variable
?c. The engine tries to establish the premise by invoking the
method hasChargeCard on the object. If this succeeds and
the rule fires 1, SOUL draws the conclusion by attempting to
invoke the method isLoyal on the Customer object bound
to ?c. If this fails, ?c is substituted by the Customer object
in the conclusion, and this is asserted as a new fact.

3.3 Exchanging Objects and Inference Results
Returning values from Smalltalk as a result of invoking

a method from SOUL occurs both in backward and for-
ward chaining. Exchanging values in the other direction
is typically only used in backward chaining, since the for-
ward chainer ”returns” values implicitly as side-effects of
drawing conclusions. Moreover, the way backward chain-
ing is triggered poses an additional challenge. Therefore

1Production systems do not fire all rules, but store them in
a conflict set and employ some strategy for selecting rules
to fire when chaining has stopped. SOUL also takes this
approach.



we first discuss returning objects from Smalltalk to SOUL
for both forward and backward chaining, then we elaborate
on returning inference results from SOUL to Smalltalk for
backward chainer alone.

3.3.1 Forward and Backward Chaining
When establishing a premise by invoking a method, ei-

ther true or false should be returned by Smalltalk, which is
interpreted as success or failure by the rule engine.

Non-boolean results from Smalltalk are returned to SOUL
using the equality construct =. In the example rule below,
totalPurchases is sent to an object bound to ?c and the
result is unified with ?p.

?c premierCustomer if
?c totalPurchases = ?p &
?p > 100

3.3.2 Backward Chaining
A triggered rule signals either success or failure to the

triggering method, which is interpreted as true or false by
Smalltalk.

Returning non-boolean values from SOUL to Smalltalk is
illustrated by the example rule below. This rule is triggered
when the undefined message discount is sent to an object
and a non-boolean result is expected. When the rule fires
because its premise is established, the right hand side of
the equality construct in the conclusion is interpreted as the
return value of the message send. Hence 10 is returned to
Smalltalk.

?c discount = 10 if ?c premierCustomer

Note that our symbiotic extension of SOUL allows queries
with unbound variables to be triggered from Smalltalk so as
to use the full power of the SOUL’s logic reasoning. In order
to do this, SOUL allows messages, which trigger backward
chaining, to be sent to or using uninitialised variables. The
rule engine binds solutions to those variables during the in-
ference process. For example, it is possible to implement the
method requestMultimediaComputer as shown below. The
temporary variable c is not initialised before invoking the
method.

requestMultimediaComputer
| c |
c multimediaComputer.
^c

This feature leads to a style of programming in Smalltalk
that is not natural to the language and thus reveals the
logic reasoning paradigm. Nevertheless, our experience is
that this mechanism is useful. We leave it up to the pro-
grammer to omit these constructs in order to maintain true
Smalltalk programming, or to employ them and take advan-
tage of SOUL’s full logic reasoning capabilities.

3.4 Implementation
As discussed, linguistic symbiosis in SOUL and Smalltalk

is done by transparently mapping methods and rules. Im-
plementing this thus required us to change the behavior of
method and rule lookup. Note that we did not have to add
language constructs as this would go against the idea of lin-
guistic symbiosis.

For triggering backward chaining the method lookup in
Smalltalk is changed, something that is quite easy to do

through its reflection capabilities. When the default lookup
does not find a method for a message, a doesNotUnderstand:

message is sent. The method for doesNotUnderstand: nor-
mally signals an error, but we changed it so that it translates
the message to a rule invocation. As SOUL does not sup-
port reflection we had to change the rule lookup in SOUL
itself. In both cases the lookup happens at run-time and
is late bound. For triggering forward-chaining rules from
Smalltalk specific attributes of certain objects are moni-
tored. The monitors are installed before the application
is run, but can be changed at run-time. We used AspectS,
a framework for aspect-oriented programming in Smalltalk,
to implement the monitors [25].

Late binding, reflection, aspect-oriented programming, or
even one language being implemented in the other are by no
means necessary for implementing linguistic symbiosis. For
example, in combinations of C++ with other languages and
in .NET, language combination is done by mapping them all
to a single virtual machine which supports language inter-
operation. One could also take two languages with compilers
implemented in C and combine those, although this would
present some extra difficulties in allowing values from the
one language to be used in the other. The way the combi-
nation is implemented is not central to the idea of linguis-
tic symbiosis and it does not add more execution overhead,
what is crucial is the idea of making it as transparent as pos-
sible which happens mostly on the language design rather
than implementation level. Our discussion of our particular
prototype implementation is thus brief, we refer to the paper
SOUL and Smalltalk - Just Married [20] for more details.

4. EVALUATION
First of all, in this section we briefly introduce the two case

studies we performed and the criterium used to evaluate our
approach. Then we describe the most notable results of the
evaluation.

4.1 Case Studies
In what follows, the numbers are approximations and lines

of code are always counted without comments and blank
lines.

4.1.1 E-Commerce
The first case study consists of developing a software ap-

plication from scratch, a modest e-commerce application.
The functionality we implemented is based on that of exist-
ing online business-to-customer stores. However, function-
ality concerned with persistency, distribution, user interface
and such is omitted from this case study. The implemented
functionality comprises 300 lines of code organised in 30
classes.

The domain of e-commerce typically contains many busi-
ness rules [19]. We represented 25 rules for price discounting,
lead time to place an order, cancelling orders, creditworthi-
ness, delivery restrictions.

4.1.2 Version Management
The second case study consists of an in-depth analysis of

an existing, complex software application, Store, a version
management system for Smalltalk. This system is widely
used with Cincom’s VisualWorks, and integrated develop-
ment environment for Smalltalk. A comprehensive user guide
is available, although the code itself is not so well-documented.



Store consists of 250 classes and 70 extensions to existing
classes in VisualWorks, which adds up to more than 25000
lines of code.

Store is not developed with explicit rules in mind, but we
identified several sources of implicit, rule-based knowledge.
For the case study we concentrated on policies for user man-
agement and ownership, and on load analysing. The poli-
cies concern blessing levels, merging, ownership, packages,
prerequisites, publishing and versions. Load analysing is a
very generative process which starts with analysing a top-
level component and propagates to its (nested) parts. These
functionalities are implemented in 350 lines of code organ-
ised in 20 classes. From these two areas we distilled close to
70 backward and forward chaining rules respectively, which
are triggered in approximately 200 places in the code.

4.1.3 Evaluation Criterium
The main criterium used for evaluating our approach is

the level of change propagation as a result of changing the
implementation language of a certain sub task of the soft-
ware application. We do not consider changes for making a
certain sub task modular in the implementation. Once a cer-
tain sub task is modularised using the procedural abstrac-
tions of the paradigm (object and methods in the object-
oriented programming language, rules in the logic reasoning
system), we attempt to express it in the other language. Ob-
viously, this is only performed in cases where it is desirable
to do so. For example, in the second case study, we first iden-
tified sources of implicit rule-based knowledge, implemented
in Smalltalk, and attempt to express them in SOUL. After
this change of implementation language, we note how this
change propagates to other places in the code.

4.2 Incremental Development
During application development or evolution, an object-

oriented implementation may very well need to be partially
replaced by a logic reasoning representation and vice versa,
which we refer to as incremental development and evolution
(Sec. 2.2).

The evaluation shows that when a certain sub task, origi-
nally implemented in one language, is instead implemented
in the other, the programs that use it do not need to be
adapted at all. In other words, change propagation as a re-
sult of incremental development and evolution is non-existent
due to linguistic symbiosis.

Previous versions of SOUL, as well as other systems we
surveyed, have to cope with the change propagation issue,
since client code that activates a certain sub task is different
depending of the implementation language of the sub task.
Hence, a change of implementation language propagates to
the client code.

4.3 Unanticipated Object Attributes
Another form of change propagation occurs when rules

evolve and as a result certain object attributes – properties
of and relations between objects – have to be added to the
object-oriented functionality.

Modern production systems express facts as object at-
tributes and perform actions on these attributes in the con-
clusion of a rule. Hence, if rules change and object attributes
are not anticipated in the object model, this change propa-
gates to the object-oriented functionality. In our approach,
this change does not propagate because object attributes

that are not reflected in the object model are asserted as
facts.

4.4 Extending Object Interfaces
The premises of a rule consist of expressions about objects.

These premises can be established by invoking a method. A
noticeable issue when developing applications with explicit
rules is the need to extend object interfaces in order to pro-
vide the appropriate methods. This is an aesthetic change
since It is usually possible to obtain the information using
the existing object interface and some operators provided
by the rule language (such as the equality construct). How-
ever, this leads to an object-oriented programming style in
the rule language. It is more elegant to extend the object
interfaces and provide methods that immediately answer the
appropriate question.

Since different rule sets are often used to represent alterna-
tive policies or requirements, this practice results in object
interface extensions for each rule set. We observe that a
mechanism for managing these extensions together with the
corresponding rule sets would be useful.

5. RELATED WORK
This section gives a compressed account of a full-fledged

survey described in [17].
The surveyed systems all integrate a logic reasoning sys-

tem with an object-oriented programming language. Most
systems are extensions of standard object-oriented program-
ming languages with a forward-chaining production system.
The following are commercial systems: OPSJ from Produc-
tion Systems Technology [8], JRules from ILOG [9], Cafe
Rete from Haley [1], Blaze Advisor from HNC [5] and Quick-
Rules from Yasutech [11]. Non-commercial systems are Com-
monRules [2], Jess [10] and NeOpus [27]. KnowledgeWorks
[7] and Aion [6] are representation languages consisting of
rule-based and object-oriented programming features. Pro-
log++ [26] is an object-oriented extension of Prolog. Kiev
[4] extends an object-oriented programming language with
logic programming.

For each integration issue discussed in Sec. 2.3, we sum-
marise the different approaches. The sign at the beginning
of each approach (+, ± or −) indicates its level of trans-
parency and automation. Note that these are generalisa-
tions of the mechanisms provided by the surveyed systems,
and that subtleties are lost.

1. triggering rules

+ Transparent rule triggering is supported (Kiev and
Prolog++).

± A special function or construct is provided to trigger
the rule engine (KnowledgeWorks and Aion).

− Logic reasoning is implemented as a library in the
object-oriented programming language and the li-
brary’s API is called to set up the rule engine and
to trigger the rules (OPSJ, JRules, Cafe Rete,
Blaze Advisor, QuickRules, Jess and Common-
Rules).

2. objects in rules

+ A mechanism is provided to generate the objects
of a specific class as possible solution values for



a logic variable, and message passing is used to
manipulate the objects which maintains encapsu-
lation (NeOpus).

± Object state can be manipulated directly which breaks
encapsulation (OPSJ, JRules, Cafe Rete, Quick-
Rules, Jess, Aion, KnowledgeWorks, and Blaze
Advisor), though this can be avoided in some of
these systems as they also support invoking meth-
ods from the logic base.

− A specification is required for mapping objects to
traditional facts (CommonRules).

3. invoking methods

+ The logic reasoning system is extended to allow
snippets of object-oriented code in the rules which
are evaluated by executing them in the object-
oriented language (OPSJ, JRules, Cafe Rete, Quick-
Rules, Aion, KnowledgeWorks, Prolog++ and Kiev).

± Special predicates are provided to invoke object-
oriented behaviour (Jess).

− Mappings of predicates to methods of specific classes
must be defined (CommonRules).

4. inference results in objects

+ Inference results are side-effects of the methods in-
voked by the rules (OPSJ, JRules, Cafe Rete,
QuickRules, Blaze Advisor, Jess, Aion and Knowl-
edgeWorks).

± In addition to the above, a list of changed objects
is returned (QuickRules).

− Inference results are returned as logic variables and
their bindings (Kiev and Prolog++).

Kiev and Prolog++ do provide transparent and automatic
approaches to most of the issues above where other systems
do not. However, Prolog++ is basically a logic program-
ming language extended with object-oriented programming
features. Therefore, it merely simulates object-oriented pro-
gramming while maintaining an inherently logic program-
ming style. When developing object-oriented software ap-
plications, a full-fledged object-oriented language and devel-
opment environment are needed.

Of all systems Kiev comes closest to SOUL with respect to
the mechanisms for linguistic symbiosis, but Kiev only pro-
vides backward chaining. Kiev seems promising, but only
limited documentation and use of the system is provided
which makes it hard to investigate. A subtle but impor-
tant difference is our mechanism for mapping the results of
the query to the implicit return value of the message send.
This is lacking in Kiev, which breaks transparency and thus
inhibits incremental development and evolution.

6. DISCUSSION
We can extract from our experience with SOUL and Smalltalk

some observations on how to integrate an object-oriented
programming language and two important classes of logic
reasoning systems seamlessly through linguistic symbiosis.
Most importantly, rather than using library calls or adding
new language constructs, the syntax of the two languages
needs to be made more alike to allow the transparent invo-
cation of methods and rules. The impact of this change is

especially evident in the Smalltalk and SOUL case, whereas
combining Java and Prolog has less of an impact as their
syntaxes are already quite alike. Still, syntactic support for
the concept of having a receiver for a predicate or message
needs to be added. In some of the systems we surveyed this
is done for the logic reasoning language. However, they do
not exploit this to a full two-way symbiosis: the language in-
tegration is typically more seamless in the direction towards
the object-oriented language. As most systems use Java as
the object-oriented language, we suspect that Java’s lack of
reflection is to blame for this imbalance: while reflection
is not necessary to make the changes to method lookup, it
is more difficult to do without it. Hence many surveyed
systems use a library-calling approach to achieve the inte-
gration. We chose to use Smalltalk exactly for its support of
reflection and because its syntactic constructs focus on the
essence of object-oriented programming.

7. CONCLUSIONS AND FUTURE WORK
The differences in integration between the logic reasoning

systems is due to the type of rule chaining employed: back-
ward or forward chaining. Since SOUL implements both
approaches this paper presents a comprehensive coverage of
rule-based reasoning styles and how to integrate them seam-
lessly with object-oriented programming languages.

SOUL’s logic reasoning is based on widely-used languages,
more specifically Prolog and state-of-the-art production sys-
tems, hence it has the same expressiveness.

Only one feature is introduced in SOUL that breaks trans-
parency: uninitialised temporary variables for representing
unbound logic variables in Smalltalk. It is the programmer’s
choice to omit this feature in order to maintain transparency,
or to employ it in order to enable SOUL’s full logic reasoning
capabilities.

We evaluated our approach by conducting two case stud-
ies. We conclude that the seamless integration facilitates in-
cremental development of object-oriented applications with
explicit rules. Moreover, we found that our production sys-
tem with its use of traditional facts in addition to objects
provides an elegant solution to unanticipated object attributes.
On the other hand, the evaluation also revealed a few op-
portunities for improvement, such as support for specialised
configuration of the default integration and support for man-
aging the object interface extensions required by the ever-
evolving rules.

Future work consists of realising the proposed improve-
ments. We observe that aspect-oriented programming tech-
niques can contribute here, as is validated by earlier exper-
iments with existing aspect-oriented languages for connect-
ing rules to object-oriented applications [14, 15]. In this
work, however, the rules are not expressed in a logic reason-
ing system. Therefore, we plan to extend SOUL with the
necessary aspect-oriented mechanisms for fully supporting
unanticipated evolution of rules.

8. ACKNOWLEDGMENTS
We thank Theo D’Hondt for proofreading this paper. We

are also grateful to Wim Lybaert, Michel Tilman and Roel
Wuyts for their help with the case studies. We thank the
anonymous reviewers for their comments.



9. REFERENCES
[1] Cafe Rete. Web Site of The Haley Enterprise Inc. at

http://www.haley.com.

[2] CommonRules. Web Site of IBM Research,
http://www.research.ibm.com/rules/commonrules-
overview.html.

[3] CLIPS 6.0, 1993. User Guide by Joseph C.
Giarratano, NASA.

[4] Kiev 0.9, 1998. Language Specification by Maxim
Kizub, http://forestro.com/kiev/ kiev.html.

[5] Developing Real-World Java Applications with Blaze
Advisor, 1999. Technical White Paper from HNC
Software Inc.

[6] Aion 9.0 Rules Guide, 2001. User Guide from
Computer Associates.

[7] LispWorks KnowledgeWorks and Prolog, 2001. User
Guide from Xanalys Inc.

[8] OPSJ 4.1, 2001. Manual by Charles L. Forgy from
Production Systems Technologies Inc.

[9] JRules 4.0, 2002. Technical White Paper from ILOG.

[10] Jess 6.1, The Rule Engine for the Java Platform,
2003. User Guide by Ernest J. Friedman-Hill, Sandia
National Laboratories.

[11] QuickRules 2.5, 2003. Application Developer Manual
from YASU Technologies Inc.

[12] L. Brownston, R. Farrell, E. Kant, and N. Martin.
Programming Expert Systems in OPS5: An
Introduction to Rule-Based Programming.
Addison-Wesley, 1985.

[13] Business Rule Group. Defining Business Rules: What
Are They Really?, 2001.
http://www.businessrulesgroup.org/.

[14] M. A. Cibrán, M. D’Hondt, and V. Jonckers.
Aspect-oriented programming for connecting business
rules. In Proceedings of the 6th International
Conference on Business Information Systems, 2003.

[15] M. A. Cibrán, M. D’Hondt, D. Suvée,
W. Vanderperren, and V. Jonckers. JAsCo for linking
business rules to object-oriented software. In
Proceedings of International Conference on Computer
Science, Software Engineering, Information
Technology, e-Business, and Applications
(CSITeA’03), 2003.

[16] C. Date. What not How: The Business Rules Approach
to Application Development. Addison-Wesley, 2000.

[17] M. D’Hondt. A survey of systems that integrate logic
reasoning and object-oriented programming. Technical
report, Vrije Universiteit Brussel, 2003.

[18] M. D’Hondt, W. D. Meuter, and R. Wuyts. Using
reflective logic programming to describe domain
knowledge as an aspect. In First Symposium on
Generative and Component-Based Software
Engineering, 1999.

[19] B. N. Grosof, Y. Labrou, and H. Y. Chan. A
declarative approach to business rules in contracts:
courteous logic programs in XML. In In Proceedings of
the first ACM conference on Electronic commerce,
pages 68–77. ACM Press, 1999.

[20] K. Gybels. Soul and smalltalk - just married:
Evolution of the interaction between a logic and an
object-oriented language towards symbiosis. In
Proceedings of the Workshop on Declarative
Programming in the Context of Object-Oriented
Languages, 2003.

[21] Y. Ichisugi, S. Matsuoka, and A. Yonezawa. A
reflective object-oriented concurrent language without
a run-time kernel. In Proceedings IMSA: Reflection
and Meta-Level Architectures, 1992.

[22] K. Mens, I. Michiels, and R. Wuyts. Supporting
software development through declaratively codified
programming patterns. In Proceedings of the 13th
SEKE Conference, 2001.

[23] T. Mens and T. Tourwe. A declarative evolution
framework for object-oriented design patterns. In
Proceedings of Int. Conf. on Software Maintenance,
2001.

[24] W. D. Meuter. The story of the simplest mop in the
world, or, the scheme of object-orientation.
Prototype-Based Programming (eds: James Noble,
Antero Taivalsaari, and Ivan Moore), 1998.

[25] R. Hirschfeld. Aspects – Aspect-Oriented
Programming with Squeak. In Lecture Notes in
Computer Science: Objects, Components,
Architectures, Services, and Applications for a
Networked World: International Conference
NetObjectDays (NODe 2002), Erfurt, Germany, pages
216 – 232. Springer-Verlag Heidelberg, 2002.

[26] C. Moss. Prolog++, The Power of Object-Oriented
and Logic Programming. Addison-Wesley, 1994.

[27] F. Pachet and J.-F. Perrot. Report on the néopus
system experience.

[28] R. G. Ross. Principles of the Business Rule Approach.
Addison-Wesley, 2003.

[29] S. Russel and P. Norvig. Artificial Intelligence, A
Modern Approach. Prentice Hall, 1995.

[30] P. Steyaert. Open Design of Object Oriented
Languages. PhD thesis, Vrije Universiteit Brussel,
1994.

[31] B. von Halle. Business Rules Applied. Wiley, 2001.

[32] R. Wuyts. Declarative reasoning about the structure
of object-oriented systems. In Proceedings of
TOOLS-USA ’98, 1998.

[33] R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

[34] R. Wuyts and K. Mens. Declaratively codifying
software architectures using virtual software
classifications. In Proceedings of TOOLS Europe’99,
1999.


