Explicit Domain Knowledge in Software Applications :

Maja D’'Hondt
System and Software Engineering Lab
Vrije Universiteit Brussel, Belgium

mjdhondt@vub.ac.be

ABSTRACT

This research is concerned with representing knowledge about
the domain of software applications independently and sep-
arately from other concerns of the software — henceforth re-
ferred to as the implementation strategy — at the imple-
mentation level. As a result both the domain knowledge
and the implementation strategy become more reusable and
maintainable because changes made in the one part do not
propagate to the other. Additionally, the average software
developer — who is typically not a domain expert — does not
have to deal with the domain knowledge and vice versa. For
expressing domain knowledge in a suitable medium we in-
vestigate existing hybrid knowledge representation technolo-
gies that use frames and rules for representing knowledge.
For composing the domain knowledge and the implemen-
tation strategy into a operational software application that
exhibits the required behavior, we are inspired by the prin-
ciples Aspect-Oriented Software Development.

1. TECHNICAL PROBLEM

The complexity of software domains is steadily increasing
and knowledge management of businesses is becoming more
important. The real-world domains of many software ap-
plications, such as e-commerce, the financial industry, tele-
vision and radio broadcasting, hospital management and
rental business, are inherently knowledge-intensive. Cur-
rent software engineering practices result in software appli-
cations that contain implicit domain knowledge tangled with
the implementation strategy. An implementation strategy
might result in a distributed or real-time application, or in
an application with a visual user interface or a database,
or a combination of above. Domain knowledge consists of a
conceptual model containing concepts and relations between
the concepts. It also contains constraints on the concepts
and the relations, and rules that state how to infer or ”cal-

*This research is funded by het Instituut voor de bevordering
van Wetenschappelijk en Technologisch onderzoek in Viaan-
deren (IWT)

culate” new concepts and relations [25]. There is a strong
analogy between the rules and constraints on the one hand,
and Business Rules on the other. Business Rules are defined
on a Business Model, analogous to the conceptual model of
the domain knowledge.

A first problem is that real-world domains are subject to
change and businesses have to cope with these changes in
order to stay competitive. Therefore, it should be possible
to identify and locate the software’s domain knowledge eas-
ily and adapt it accordingly while at the same time avoid-
ing propagation of the adaptations to the implementation
strategy. Similarly, due to rapidly evolving technologies,
we should be able to update or replace the implementation
strategy in a controlled and well-localized way. A second
problem is that the development of software where domain
knowledge and implementation strategy are tangled is a very
complex task: the software developer, who is typically a
technology expert but not a domain expert, has to concen-
trate on two aspects of the software at the same time and
manually compose them. This violates the principle of sep-
aration of concerns [8] [22] [10], which states that the imple-
mentation strategy should be separated from other concerns
or aspects such as domain knowledge. In short, the tangling
of domain knowledge and implementation strategy makes
understanding, maintaining, adapting, reusing and evolv-
ing the software difficult, time-consuming, error-prone, and
therefore expensive.

The cause of this problem can be found in current soft-
ware development methodologies. Older software develop-
ment methodologies such as OOSE [13] and Booch [4], and
even the newer standard Rational Unified Process [24] em-
ploy a use case-driven approach as a result of which do-
main knowledge and implementation strategy are modelled
together from the start. Other approaches to software de-
velopment such as domain engineering [20] [14] try to take a
whole family of applications into account by allowing antic-
ipated variations of (among others) domain knowledge, but
do not offer an explicit and separate model of the real-world
domain knowledge.

Note that knowledge elicitation is not the major issue in this
problem and not an ingredient in the answer to tangled and
implicit domain knowledge in software applications. Domain
knowledge is currently already elicited from the stakehold-
ers, but unfortunately in this process it is not separated from
the other requirements of the application (which may lead



to a specific implementation strategy) and modelled explic-
itly. Moreover, domain knowledge is quite tangible since it
contributes actively to the behavior of the application.

2. EXAMPLES OF DOMAIN KNOWLEDGE
IN SOFTWARE APPLICATIONS

To clarify our above description of domain knowledge, two
small representative case studies that are used in this re-
search are briefly presented here. They are both based on
existing industrial applications, but scaled down without re-
ducing the inherent complexity related to this research topic.
The first case study is an e-commerce application for an on-
line book and cd shop. The second case study is an applica-
tion for the management and support of planning television
programs for broadcast companies. These cases provide a
balanced combination of domain knowledge and implemen-
tation strategy: in e-commerce applications there are ob-
viously technological challenges such as transactions, repli-
cation, remote procedure calling and concurrency, whereas
the second case study has to deal with a visual user interface
and persistency.

2.1 e-Commerce

The domain of a the first application contains for example
the obvious concepts customer, shopping cart, product (of
which book and cd are specializations), customer profile,
and some obvious relationships between them. Constraints
on this static domain model are for example ”a customer
can buy at most 10 products at the same time” or ”if the
purchased products are shipped, the order cannot be can-
celled”. Related to calculating the price of an order there
are a number of rules such as ”if a customer has previously
bought 10 products, he or she is entitled to a 10% discount
on the next order”, ”if it is Christmas, everybody gets a 5%
discount” and ”if a customer’s last purchase was a cd in the
category of classical music, then he or she gets a discount of
15% on the next classical music ¢d”. It becomes interesting
when one thinks of the possible interferences of these rules
and constraints and how to deal with them. What happens
when a customer who has already purchased more than 10
products orders something during Christmas?

2.2 Broadcast Planning

In the domain of broadcasting there are concepts such as
transmission (a time slot in the schedule), program (con-
crete program to be broadcasted), contract (for programs
that were purchased), tape, snap (a rebroadcast), trailer
(announcement for a number of programs), group of pro-
grams, chain of programs, and so on. Again, there are rela-
tionships between these concepts, some more obvious than
others. Constraints limit the scheduling of these concepts,
for example stating that ”a snap should always be sched-
uled after its original” and that ”the contract should be
valid for the period in which the program will be broad-
casted’. When a scheduled entity is moved in the program
schedule a number of rules become active, such as ”if the
anchor of a chain of programs is moved, the entire chain has
to be moved”. Again, the rules and constraints interact: if
the rules dictate that other programs have to be moved as
a result of the move of a program, all the constraints have
to be checked on these programs as well.

3. SCOPE, GOALS, AND HYPOTHESIS

According to the technical problem described earlier, the
domain knowledge and the implementation strategy of soft-
ware applications should be represented as separated as pos-
sible. Although this principle can and should be applied
throughout the entire software development life cycle, we
will concentrate on representing domain knowledge and im-
plementation strategy separately at the implementation level.

Object-oriented programming languages are the state of the
art today for expressing the implementation strategy. Given
the structure of concepts and relations and the declarative
nature of the constraints and the rules, a suitable repre-
sentation will be selected from existing hybrid (i.e. frames
and rules) knowledge representation languages for express-
ing domain knowledge. Purely static representation of do-
main knowledge will not suffice since it has a very active
role to play in achieving the overall behavior of the sys-
tem. Therefore, suitable reasoning mechanisms have to be
selected for checking the constraints and chaining the rules.
A combination of forward and backward reasoning seems a
good candidate for the latter.

Our research hypothesis is Using knowledge representation
technologies for expressing domain knowledge of a software
application explicitly and separately from the implementa-
tion strategy of the software application which is expressed
in a standard (object-oriented) programming language will
improve software understandability, software maintenance
and software reuse. Although it is difficult to test subjec-
tive properties such as improved understandability, it was
already shown in [30] that an explicit model of the domain
knowledge achieves exactly this. Furthermore, we will show
that the separation of domain knowledge and implementa-
tion strategy reduces the propagation of changes from the
one part to the other, thus facilitating maintenance. Finally,
the AOSD community among others, promotes decomposing
parts of the software into loosely coupled and independently
evolvable components because it improves reusability.

Whereas the aforementioned suite of technologies achieves
the desired separation or decomposition of explicitly de-
scribed domain knowledge from the implementation strat-
egy, it does not consider the composition of the two in order
to achieve a working software application. Since the struc-
tural part of the domain knowledge should be mapped onto
the implementation strategy and the operational part should
be dynamically inserted in very specific places in the imple-
mentation strategy, we will look at Aspect-Oriented Soft-
ware Development technologies [2] because they achieve ex-
actly this. In these technologies, aspects such as error han-
dling, error reporting, persistence and so on, are expressed in
an aspect language separate from the implementation strat-
egy. A weaver composes the aspect with the implementa-
tion strategy which results in an executable program. A
weaver uses join points which indicate dynamic places in
the implementation strategy where the aspect should be in-
serted. We believe that in some cases the ”weaving” of do-
main knowledge and implementation strategy will be quite
straightforward, but that in others it will benefit from ap-
plying ideas if not actual techniques from aspect-oriented
programming. An original contribution of this research is to
consider domain knowledge as an aspect [6] [7]. We are cur-



rently investigating the suitability of existing AOSD tech-
nologies for composing domain knowledge with implemen-
tation strategy. The goal is to come up with a required set
of features to achieve this. A slightly more adventurous and
ambitious side track of this story is the idea that weaving
is a knowledge-intensive process (as is also shown in [28]).
Therefore we will investigate the advantages of using the
same knowledge representation language as meta-language
for guiding the composition.

4. PLAN, METHOD AND CONTRIBUTION

The following sections correspond to the most important
steps in this research project.

4.1 Representing Domain Knowledge
After a literature study of hybrid knowledge representa-
tion systems containing representation mechanisms for both
frames and rules, the following minimal set of features for
representing domain knowledge was decided upon:

e basic frame-based representation, with frames having
slots that can contain values or rules (specifying how
to infer values), and daemons that watch the slots and
trigger rules when slots are accessed or changed

e prototype-based frames, as in KRS [1§]

e a mixture of forward and backward chaining rules

We will further investigate if a constraint checker or truth
maintenance systems is required. If possible, an existing
system will be reused, but given the context in which it has
to operate it is more likely that we will implement a light-
weight knowledge representation system with the above fea-
tures.

4.2 Composing Domain Knowledge and Im
plementation Strategy

This step in the research project consists of two parts: first,
investigating the suitability of existing AOSD technologies
for composing domain knowledge with the implementation
strategy, and second, establishing a symbiosis between the
selected knowledge representation system (KRS) and the
object-oriented programming language (OOPL) for facili-
tating the composition of domain knowledge and implemen-
tation strategy.

4.2.1 AOSD technologies

Currently we are investigating the state of the art in AOSD
technologies such as HyperJ [21], AspectJ[16], Composition
Filters [3] and Demeter [17]. The goal is to find out how
well they support composing domain knowledge and imple-
mentation strategy using the small case studies explained
above. The result will be a set of necessary features that
are required for composing domain knowledge and imple-
mentation strategy. Since it is very likely that this set will
contain features from the different approaches — some AOSD
approaches have different capabilities that complement each
other well — we predict that no single approach will be most
suitable.

4.2.2 Symbiosis between a KRS and a OOPL

For enabling the composition of domain knowledge and im-
plementation strategy, the symbiosis between the chosen
knowledge representation system and the object-oriented
programming language will have to be investigated. Re-
search on symbiosis between two object-oriented languages
is already conducted in [26]. A similar configuration was al-
ready successfully developed at our computer science depart-
ment, more specifically logic meta-programming [28] [31]
where a logic language serves as a meta-language to reason
about object-oriented base code, which can be used for ex-
ample to enforce architectural or design choices in the code
[32]. Moreover, a simple prototype of a forward-chaining
rule-based meta-language for an object-oriented base lan-
guage was also developed for reasoning with design knowl-
edge for interactively supporting framework reuse [19].

4.3 Validation

For the proof of concept using the developed artifact we will
take the industry as laboratory approach. Through contacts
with industrial partners, several case studies will be set up.
One of our partners is a Belgian company that has been
making software for managing everything related to televi-
sion or radio broadcasting for a decade. It counts among
its customers many major European broadcast companies
as well as others outside Europe.

Moreover, our ideas and findings are and will be subject to
inspection by the international research community. After
gaining experience in organizing workshops through the co-
organisation of the ECOOP 00 Workshop on Aspects and
Dimensions of Concerns [27] and the ECOOP ’01 Workshop
on Feature Interaction in Composed Systems [23], we will
now organize the workshop on Knowledge-Based Object-
Oriented Software Engineering at ECOOP ’02. Participa-
tion through technical papers and posters will be continued.

5. RELATED WORK

Apart from the aforementioned technologies and approaches
that will be actively (re)used in this research project, some
other work is also relevant.

GeoObjects is a project we were involved in together with
an industrial partner specialized in producing and maintain-
ing digital geographic data to be used in Geographic Infor-
mation Systems. In this project we delivered a means for
describing quality constraints, used for checking the well-
formedness of the geographic data, in an application in-
dependent, modular and declarative way on a conceptual
model of the geographic data. This representation of the
quality constraints is translated by means of a code genera-
tor into a classical programming language which has access
to the actual geographic data via API calls [29] [5].

There is some work done on Business Rules, where rules and
constraints are modelled separately from the core applica-
tion at the specification level. At the design and implemen-
tation level patterns are provided for making the business
rules as reusable and maintainable as possible [15]. How-
ever, the business rules are still tangled in the implementa-
tion strategy and not expressed declaratively. We still need
to look into approaches such as CommonRules[12] and Busi-
ness Rule Beans[11].



There are other efforts that advocate the explicit modelling
of domain knowledge. The framework for requirements mod-
els (RMF) represents real-world knowledge explicitly in the
requirements specification [9]. In [1] the authors argue that
conventional software engineering and knowledge engineer-
ing are complementary and both essential for developing the
increasingly larger systems of today. They propose a single
common life-cycle methodology. These approaches, how-
ever, do not offer support at the implementation level.

6. CONCLUSION

We are currently halfway through this research project. The
exploratory phase is coming to an end and all the ideas
that we picked up on the way are beginning to crystallize
into a coherent research topic, goal and plan. It is time
to make some final decisions before developing an artifact
that will be used as proof of concept. Once this artifact, a
development environment in this case, is tuned at the hand
of the academic case studies described earlier, it is ready
to be used with an industrial case in order to validate our
work.

7. ACKNOWLEDGMENTS

We would like to thank the reviewer of this paper for the
valuable comments and suggestions.

8. REFERENCES
[1] F. Alonso, N. Juristo, J. L. Maté, and J. Pazos.
Software engineering and knowledge engineering:
Towards a common life cycle. The Journal of Systems
and Software, 33:65-79, 1996.

[2] Aspect-Oriented Software Development.
http://www.aosd.net/.

[3] Lodewijk Bergmans and Mehmet Aksit. Composing
crosscutting concerns using composition filters.
Communications of the ACM, 44(10):51-57, 2001.

[4] G. Booch. Object-Oriented Analysis and Design with
Applications. Benjamin/Cummings, 1994.

[5] M. Casanova, M. D’Hondt, and T. Wallet. Explicit
domain knowledge in geographic information systems.
In Proceedings of the 14th Conference on Software
Engineering and Knowledge Engineering (SEKE ‘01).
Knowledge Systems Institute, 2001.

[6] M. D’Hondt and T. D’Hondt. Is domain knowledge an
aspect? In ECOOP 99, Workshop on Aspect-Oriented
Programming, 1999.

[7] M. D’Hondt, W. De Meuter, and R. Wuyts. Using
reflective logic programming to describe domain
knowledge as an aspect. In First Symposium on
Generative and Component-Based Software
Engineering (to appear), 1999.

[8] E. W. Dijkstra. A Discipline of Programming.
Prentice-Hall, 1976.

[9] S. J. Greenspan, J. Mylopoulos, and A. Borgida.
Capturing more world knowledge in the requirements
specification. In Proceedings of the 6th International
Conference on Software Engineering (ICSE ’82), 1982.

[10] W.L. Hiirsch and C.V. Lopes. Separation of concerns.
Technical report, North Eastern University, 1995.

[11] IBM. Business Rule Beans.
http://www.research.ibm.com/AEM /brb.html.

[12] IBM. CommonRules.
http://www.research.ibm.com/rules/commonrules-
overview.html.

[13] I. Jacobson, M. Christerson, P. Jonsson, and
G. Overgaard. Object-Oriented Software Engineering.
Addison-Wesley, 1992.

[14] K. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson. Feature-oriented domain analysis (foda)
feasibility study. Technical report, Software
Engineering Institute, Barnegie Mellon University,
Pittsburgh, Pennsylvania, 1990.

[15] Gerti Kappel, S. Rausch-Schott, Werner
Retschitzegger, and Markku Sakkinen. From rules to
rule patterns. In Conference on Advanced Information
Systems Engineering, pages 99-115, 1996.

[16] G. Kiczales, E. Hilsdale, JJ. Hugunin, M. Kersten,
J. Palm, and W. Griswold. An overview of aspectj. In
Proceedings of the 15th European Conference on
Object-Oriented Programming (ECOOP ‘01), 2001.

[17] Karl Lieberherr, Doug Orleans, and Johan Ovlinger.
Aspect-oriented programming with adaptive methods.
Communications of the ACM, 44(10):39-41, 2001.

[18] K. Van Marcke. The Use and Implementation of the
Representation Language KRS. PhD thesis, Vrije
Universiteit Brussel, 1988.

[19] W. De Meuter, M. D’Hondt, S. Goderis, and
T. D’Hondt. Reasoning with design knowledge for
interactively supporting framework reuse. In
Proceedings of the Second International Workshop on
Soft Computing Applied to Software Engineering
(SCASE ‘01), pages 31-36, 2001.

[20] J.M. Neighbors. Draco: A method for engineering
reusable software systems. In Domain Analysis and
Software Systems Modeling. IEEE Computer Society
Press, 1991.

[21] Harold Ossher and Peri Tarr. Using multidimensional
separation of concerns to (re)shape evolving software.
Communications of the ACM, 44(10):43-50, 2001.

[22] D. L. Parnas. On the criteria to be used in
decomposing systems into modules. Communications
of the ACM, 15(12):1053-1058, 1972.

[23] E. Pulvermueller, A. Speck, M. D’Hondt, W. De
Meuter, and J. O. Coplien. Report from the
ecoop2001 workshop on feature interaction in
composed systems. In Workshop Reader of the 15th
European Conference on Object-Oriented
Programming (ECOOP ‘01). Springer-Verlag, 2001.

[24] Rational Software Corporation. Rational Unified
Process.
http://www.rational.com/products/rup/index.jsp.




[25]

[26]

[27]

[28]

[29]

[30]

[31]

32]

A. Th. Schreiber, J. M. Akkermans, A. A.
Anjewierden, R. de Hoog, N. R. Shadbolt, W. Van
de Velde, and B. J. Wielinga. Knowledge Engineering
and Management: The CommonKADS Methodology.
MIT Press, 2000.

P. Steyaert. Open Design of Object Oriented
Languages. PhD thesis, Vrije Universiteit Brussel,
1994.

P. Tarr, M. D’Hondt, L. Bergmans, and C. Videira
Lopes. Report from the ecoop2000 workshop on
aspects and dimensions of concern: Requirements on,
and challenge problems for, advanced separation of
concerns. In Workshop Reader of the 1th European
Conference on Object-Oriented Programming
(ECOOP ‘00), pages 203—240. Springer-Verlag, 2000.

K. De Volder. Type-Oriented Logic Meta
Programming. PhD thesis, Vrije Universiteit Brussel,
1998.

T. Wallet, M. Casanova, and M. D’Hondt. Ensuring
quality of geographic data with uml and ocl. In Third
International Conference on the Unified Modeling
Language (<<UML >>2000), pages 225-239.
Springer-Verlag, 2000.

C. A. Welty. An Integrated Representation for
Software Development and Discovery. PhD thesis,
Rensselaer Polytechnic Institute, 1995.

R. Wuyts. A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation. PhD thesis, Vrije Universiteit

Brussel, 2001.

R. Wuyts and K. Mens. Declaratively codifying
software architectures using virtual software
classifications. In Proceedings of TOOLS Europe’99,
1999.



