Making Software Knowledgeable

[Extended Abstract]

Maja D’Hondt
System and Software Engineering Lab
Vrije Universiteit Brussel
Belgium

mjdhondt@vub.ac.be

The complexity of software domains — for example the fi-
nancial industry, television and radio broadcasting, hospital
management and rental business — is steadily increasing and
knowledge management of businesses is becoming more im-
portant with the demand for capturing business processes.
Software domains such as the ones mentioned above, are in-
herently knowledge-intensive but this domain knowledge is
often hard to detect in the resulting application. This is be-
cause the domain knowledge is not separately and explicitly
dealt with, but implemented together with the implementa-
tion strategy of the application. This also results in changes
to the domain knowledge propagating to the implementa-
tion strategy. Hence, current software engineering practices
result in software applications where domain knowledge is
implicit and tangled in the implementation strategy, thus
encumbering understandability, maintenance, adaptability,
and reuse. A second problem is that the development of soft-
ware where domain knowledge and implementation strategy
are tangled is a very complex task: the software developer
who is typically not a domain expert has to concentrate on
two aspects of the software at the same time, and moreover
manually compose them. This violates the principle of sepa-
ration of concerns [5] [9], that states that the basic algorithm
should be separated from other concerns or aspects.

A category of applications where separating explicit do-
main knowledge would be advantageous is concerned with
support of a real-world task and management of real-world
information, such as software for banks, hospitals or televi-
sion broadcasters. For example, in the latter domain there
exists software for the support of seasonal and daily plan-
ning of the broadcasts. Such an application typically con-
sists of domain knowledge about the kinds of programs that
exist (films, series, commercials) and planning rules and
constraints (children’s programs should be scheduled before
8pm, moving a program results in moving the commercials
that are scheduled in its breaks, a film should be broad-
cast in the period for which its contract is valid). This do-

Permission to make digital or hard copies of all or part of this work for

main knowledge is typically tangled with the implementa-
tion strategy, which is concerned with for example the user
interface and persistency. These are appropriately imple-
mented using object-oriented programming and techniques
such as design patterns (model-view-controller, bridge) [8],
whereas the domain knowledge ideally should be expressed
in a declarative medium using rules and constraints.

Another example is distributed applications, where the
domain knowledge of the application and distribution issues
such as transactions, replication, remote procedure calling
and concurrency control are also difficult to separate.

The goal of this research is to express domain knowledge
in software applications explicitly and as separated as pos-
sible from the implementation strategy. Athough some (do-
main) knowledge is notoriously hard to elicit and capture,
as was discovered in building expert systems, the domain
knowledge we intend to make explicit is quite tangible as is
illustrated by the aforementioned examples. In fact, the do-
main knowledge is currently ”implemented” using a (object-
oriented) programming language. When expressed in a suit-
able medium, domain knowledge consists of concepts and
relations between the concepts, constraints on the concepts
and the relations, and rules that state how to infer new con-
cepts and relations [12].

We are inspired by Aspect-Oriented Programming [10] [1],
where aspects such as error handling, error reporting, syn-
chonisation and so on, are expressed in an aspect language
separately from the implementation strategy. A weaver com-
poses the aspect with the implementation strategy which re-
sults in an executable program. A weaver uses join points
which indicate places in the implementation strategy where
the aspect should be inserted. An original contribution of
this research is to consider domain knowledge as an aspect
[6] [7]. We believe that in some cases the ”weaving” of do-
main knowledge and implementation strategy will be quite
straightforward, but that in others it will benefit from ap-
plying ideas if not actual techniques from aspect-oriented
programming.

Our research hypothesis is Ezpressing domain knowledge
of a software application explicitly and separately in a suit-
able medium alongside the implementation strategy of the
software application which is expressed in a standard (object-

personal or classroom use is granted without fee provided that copies areoriented) programming language will improve software un-
not made or distributed for profit or commercial advantage and that copies derstandability, software maintenance and software reuse.

bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee.
Copyright 2001 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

Although it is difficult to test subjective properties such as

improved understandability, it was already shown in [15]
that an explicit model of the domain knowledge achieves

exactly this. Furthermore, we will show that the separation
of domain knowledge and implementation strategy reduces
the propagation of changes from the one part to the other,
thus facilitating maintenance. Finally, modularity in soft-
ware applications where the parts are as independent and
loosely coupled as possible improves reusability.

The most tangible contribution of this research will be
a programming environment where it is possible to express
domain knowledge and implementation strategy separately,
both in a suitable medium. For expressing domain knowl-
edge, we are exploring existing frame-based knowledge rep-
resentation languages that employ production rules, devel-
oped in the field of AI. The implementation strategy will be
implemented using a standard object-oriented programming
language. Hence, we will not contribute to advances in either
one of these areas, but more to their combination. As men-
tioned earlier, we believe that composing domain knowledge
with the implementation strategy is in some cases similar
to aspect weaving. Moreover we claim that this process is
knowledge-intensive (as is also shown in [4]). Therefore we
will investigate the advantages of using the same knowledge
representation language as meta-language for guiding the
composition. In this configuration, a symbiosis between the
chosen knowledge representation language and the object-
oriented programming language is indispensable for fluently
addressing elements of one language in the other. Research
on symbiosis between two object-oriented languages is al-
ready conducted in [13]. A similar configuration was already
successfully developed at our computer science department,
more specifically logic meta-programming [4] [17] where a
logic language serves as a meta-language to reason about
object-oriented base code, which can be used for example
to enforce architectural or design choices in the code [16].
Moreover, a simple prototype of a rule-based meta-language
for an object-oriented base language is also developed in [3]
for reasoning with design knowledge for interactively sup-
porting framework reuse. These past experiences offer an
excellent starting point for the artefacts that will have to be
developed in the context of this research.

For the proof of concept using the developed artifact we
will take the industry as laboratory approach. Through con-
tacts with industrial partners, several case studies will be set
up. One of our partners is a Belgian company that has been
making software for managing everything related to televi-
sion or radio broadcasting for a decade. It counts among
its customers many major European broadcast companies
as well as others outside Europe.

Moreover, our ideas and findings are and will be subject to
inspection by the international research community. After
gaining experience in organising workshops through the co-
organisation of the ECOOP 00 Workshop on Aspects and
Dimensions of Concerns [14] and the ECOOP ’01 Workshop
on Feature Interaction in Composed Systems [11], we will
now organise the workshop on Knowledge-Based Object-
Oriented Software Engineering at ECOOP ’02 [2]. Participa-
tion through technical papers and posters will be continued.

1. REFERENCES
[1] Web site of Aspect-Oriented Software Development:
http://www.aosd.net
[2] Web site of the ECOOP workshop on Knowledge-Base
Object-Oriented Software Engineering:

http://infoweb.vub.ac.be/ mjdhondt/KBOOSE/index.htm

[3] De Meuter, W., D’Hondt, M., Goderis, S.: Reasoning
with design knowledge for interactively supporting
framework reuse. In Proceedings of the Second
International Workshop on Soft Computing Applied
to Software Engineering (2001)

[4] De Volder, K.: Type-Oriented Logic
Meta-Programming. PhD thesis, Vrije Universiteit
Brussel, Belgium (1998)

[5] Dijkstra, E. W.: A discipline of programming.
Prentice-Hall (1976)

[6] D’Hondt, M., D’Hondt, T.: Is domain knowledge an
aspect? Aspect-Oriented Programming Workshop,
ECOOP (1999)

[7] D’Hondt, M., De Meuter, W., Wuyts, R.: Using
reflective logic programming to describe domain
knowledge as an aspect. In First Symposium on
Generative and Component-Based Software
Engineering (1999)

[8] Gamma, E., Helm, R., Johnson, R., Vlissides, J.:
Design Patterns, Elements of Reusable
Object-Oriented Software. Addison-Wesley (1995)

[9] Hiirsch, W.L., Lopes, C.V.: Separation of Concerns.
Technical report, North Eastern University (1995)

[10] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C., Loingtier, J., Irwin, J.: Aspect-oriented
programming. In Proceedings of ECOOP (1997)

[11] Piilvermiiller, E., Speck, A., D’Hondt, M., De Meuter,
W., Coplien, J.: Report from the ECOOP2001
Workshop on Feature Interaction in Composed
Systems. In Workshop Reader of ECOOP,
Springer-Verlag (2001)

[12] Schreiber, G., Akkermans, H., Anjewierden, A., de
Hoog, R., Shadbolt, N.; Van de Velde, W., Wielinga,
B.: Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press (2000)

[13] Steyaert, S.: Open design of object-oriented
languages, a foundation for specialisable reflective
language frameworks. PhD thesis, Vrije Universiteit
Brussel, Belgium (1994)

[14] Tarr, P., D’Hondt, M., Bergmans, L., Lopes, C.V.:
Report from the ECOOP2000 Workshop on Aspects
and Dimensions of Concern: Requirements on, and
Challenge Problems for, Advanced Separation of
Concerns. In Workshop Reader of ECOOP,
Springer-Verlag (2000)

[15] Welty, C. A.: An Integrated Representation for
Software Development and Discovery PhD thesis,
Rensselaer Polytechnic Institute, USA (1995)

[16] Wuyts, R.: Declaratively codifying software
architectures using virtual software classifications. In
Proceedings of TOOLS Europe (1999)

[17] Wuyts, R.: A Logic Meta-Programming Approach to
Support the Co-Evolution of Object-Oriented Design
and Implementation PhD thesis, Vrije Universiteit
Brussel, Belgium (2001)

