
Ensuring Quality of Geographic Data with UML

and OCL?

Miro Casanova, Thomas Wallet, and Maja D'Hondt

System and Software Engineering Laboratory

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels Belgium

mcasanov j twallet j mjdhondt@vub.ac.be

Abstract. Geographic data is the backbone of sophisticated applica-

tions such as car navigation systems and Geographic Information Sys-

tems (GIS). Complexity quickly arises in the production of geographic

data when trying to ensure quality. We de�ne quality as the integrity and

well-formedness of the contents of the geographic data, usually enforced

by external applications where constraints ensuring quality (referred to

as quality constraints) are implicit, low-level and scattered throughout

the application code. This has signi�cant consequences with respect to

manageability, adaptability and reuse of these constraints.

This paper explains our use of UML class diagrams as conceptual model

for geographic data, and how we exploited the Object Constraint Lan-

guage (OCL) for describing the quality constraints in an explicit, declar-

ative and high-level way. As our use of OCL is slightly di�erent than

it was originally intended, we present our adaptations and explain the

main issues of evaluating the resulting OCL.

We are con�dent that our speci�c application of OCL can be put to use

in other domains where complex constraints need to be expressed in a

knowledge-oriented domain.

1 Introduction

This paper recounts how we use class diagrams from the Uni�ed Modeling Lan-

guage to represent geographic data in a conceptual model, and how the Object

Constraint Language can be exploited to describe quality criteria on this domain

in the form of complex constraints.

Section 2 gives a general overview of the domain of geographic data, describes

the challenges in its production process, and reports on the current practices and

their problems. It becomes clear that most diÆculties are encountered ensuring

the quality of the produced geographic data. Such quality is indeed de�ned by

means of implicit domain constraints which are generally expressed in a low-level

and implementation-dependent way, thus hard to localise, understand and mod-

ify. We explain how to overcome these drawbacks: a high-level representation of

? This research, in collaboration with Tele Atlas Data Gent NV, is part of the project

GeoObjects (IWT 990025), funded by the Flemish Institute for the Improvement of

the Scienti�c-Technological Research in the Industry (IWT).

2

the domain knowledge is required, accompanied by a high-level, unambiguous,

explicit and modular representation of the quality ensuring constraints (hereafter

referred to as quality constraints). In this research, we use the class diagrams

from UML together with a subset of OCL to achieve this. Considering the sub-

tle di�erences between our application of OCL and the way OCL is usually

employed, we had to make some adaptations in order to express elegantly the

quality constraints. These adaptations are described in Sect. 3, where they are

also extensively illustrated with real-world examples taken from the domain of

geographic data.

This research is the by-product of a project we are involved in with TeleAtlas

{ an important supplier of geographic data in Europe { as the other partner.

Since our partner manipulates a vast amount of geographic data, the checking

of the quality constraints in OCL should be performed automatically. Although

the development of an OCL evaluator is still ongoing work, we discuss some

pertinent issues in evaluating OCL in Sect. 4.

In Sect. 5 we touch upon a few more advanced adaptations to OCL. We

conclude in Sect. 6 that although this research originated in the domain of geo-

graphic data, we strongly believe that the results can be reused in other domains

where complex constraints need to be expressed on a conceptual, knowledge-

oriented model. In addition to this we provide some issues about our ongoing

work, and hint at related work performed by other research groups or companies.

2 Quality of Geographic Data

2.1 Geographic Data

Digital geographic data, and especially data concerned with the road network,

is used in sophisticated applications such as Geographic Information Systems

(environmental planning and control, alarm call and dispatch), Fleet Manage-

ment Systems, car navigation and geo-marketing. Suppliers of geographic data

are responsible for the production process, which consists of capturing the real-

world geographic data and storing it in a persistency layer. The source material

typically comes from satellite images, scanned maps, Global Positioning System

data, and so on. Since this may lead to mistakes creeping into the geographic

data, an important and ever continuing concern in the production process is

quality assurance.

The most widely accepted format for geographic data is the Geographic Data

Files (GDF) standard [GDF], which has been created in order to improve the

eÆciency of capturing and producing road related geographic information. GDF

achieves this eÆciency by providing a common reference model on which clients

can base their requirements and suppliers can base their product de�nition. The

foundation of the GDF standard consists of a general, non-application speci�c

planar-graph representation of the real world. On top of this model, a road

network speci�c application model has been built. The last model describes

real-world concepts in the domain of geographic road network data, as well as

attributes of these concepts and relations between these.

3

2.2 Challenges in Producing Geographic Data

The geographic data market is highly competitive. Factors that determine suc-

cess are among others adaptability,
exibility and time to market. Moreover,

enormous e�ort goes into eliminating errors and inaccuracies in the contents of

the geographic data in order to guarantee high quality and reduce maintenance.

Quality of geographic data is de�ned here as the integrity and well-formedness

of the data, and is speci�ed at the hand of speci�c domain constraints. The

importance of delivering high-quality geographic data is easily understood when

thinking of the consequences of using data of poor quality in applications such

as car navigation and alarm call and dispatch.

2.3 Current Practices and Their Drawbacks

Although most suppliers of geographic data use the high-level and implemen-

tation independent GDF standard for interchange and as a common reference

model, we observe that in practice no actual model is actively and explicitly

employed in the production process. In other words, an implicit mental picture

is used instead of a tangible high-level representation of the geographic data and

the corresponding quality constraints. The only tangible model of geographic

data in current practices is its speci�c implementation in a �le system, a com-

mercially available database or any other medium. Since there is the inevitable

impedance mismatch between the high level and the implementation level, the

concepts, attributes, relations and quality constraints residing in the high level

are irretrievably lost in the actual production process.

More speci�cally, in today's production processes, high quality of the geo-

graphic data is usually ensured by a pool of software applications that check

the quality constraints. Since these applications can only operate on a low-

level description of geographic data, the quality constraints are consequently

described on an equally low level, i.e. in terms of the actual implementation of

the geographic data. This approach results in a tangling of the implicit quality

constraints in the application code, hence causing them to be non-modular and

hard to localise. This has signi�cant consequences with respect to manageability,

adaptability and reuse of the constraints, making the production process prone

to mistakes and resulting in increased time to market.

2.4 Setting an Approach to Satisfy the Requirements

From the previously described drawbacks of the current approaches we observe

that we need a high-level, conceptual description of the knowledge in the domain

of geographic data. Preferably this model should be based on a standard, such

as GDF, to facilitate exchange. But more importantly, the conceptual nature

of the model will ensure implementation independence and a close match with

reality to minimise loss of information.

Current descriptions of geographic data, with GDF as representative exam-

ple, are compatible with the philosophy of object-orientation: geographic features

4

or concepts can be mapped to classes, whereas relations between concepts cor-

respond to associations between classes. Because of this, but also because it is

a standard in modelling, UML was selected in this project for representing a

conceptual model of the geographic data.

The quality constraints that reason about the geographic data should also

be expressed explicitly on a conceptual level for the same reasons. But there are

other requirements involved: they need to be described in a modular manner, al-

lowing for easy localisation and
exible manipulation of a particular constraint.

Additionally, we should be able to change a quality constraint without this hav-

ing to a�ect other constraints. Moreover, the medium for expressing these con-

straints should embody a level of intuitiveness and declarative power comparable

to that of natural language, yet be formal and unambiguous.

These requirements and the fact that the quality constraints reason about

domain knowledge that is described in UML class diagrams, point to the use

of UML's accompanying OCL [KW99] [UML1.3]. OCL is used to express con-

straints on UML models by attaching constraints to classes (class invariants),

operations on classes (pre- and postconditions), and more. This means that OCL

has built-in constructs for navigating UML models, more speci�cally class di-

agrams. OCL ful�ls our desires for a formal and unambiguous language, while

still being relatively simple and intuitive.

3 Using OCL for Quality Constraints

We present in Sect. 3.1 parts of the conceptual model, both to illustrate the

result of modelling geographic data in UML class diagrams, and to provide a

context for the examples we use later on, which are realistic examples directly

taken from the domain of geographic data.

In Sect. 3.2 to 3.5 we present a set of adaptations to OCL as well as their

motivating reasons.1

We will elaborate on the consequences of these adaptations for the semantics

of OCL in Sect. 4.

3.1 The Conceptual Model in UML

We will discuss one theme of geographic data here in order to use this through-

out the rest of the paper as the entirely realistic context in which the example

quality constraints are de�ned. It concerns Relationships, where a relation-

ship refers to a real-world entity that needs to be represented as a mutual link

between concepts and may indicate the sequence of those concepts. We will

discuss two kinds of relationships: the �rst is Manoeuvre, where we can distin-

guish PriorityManoeuvre, RestrictedManoeuvre and ProhibitedManoeuvre,

1 Note that as a starting point only a subset of OCL is selected since not all of

its language constructs are required. For example, constructs related to pre- and

postconditions are discarded.

5

and the second is ServiceBelongingToServices. Figure 1 shows the relevant

part of the Relationship hierarchy.2

PriorityManoeuvre ProhibitedManoeuvre RestrictedManoeuvre

ServiceBelongingToService Manoeuvre

Relationship

Fig. 1. The Relationship hierarchy.

Manoeuvre. A Relationship such as Manoeuvre forms a link between a num-

ber of RoadElements and a Junction, where the order of these concepts is im-

portant. A Manoeuvre indicates a certain path that can be followed by a vehicle.

Figure 2 depicts the exact associations between the concepts that are involved.

Moreover, it also shows the relations between RoadElement and Junction.

{ordered} partOf
contains

from via to

beginJunction

viaJunction

via
1

1 0..*

0..*
2..n

Manoeuvre

PriorityManoeuvre

Junction RoadElement
0

1
1 0..*

endJunction 1

Fig. 2. The relationship Manoeuvre and its relation to RoadElement and Junction.

A PriorityManoeuvre represents a manoeuvre that has priority over other

manoeuvres at an intersection. A ProhibitedManoeuvre indicates a manoeuvre

that is prohibited, whereas a RestrictedManoeuvre is obligatory. Note in Fig.

2 that a PriorityManoeuvre has exactly two RoadElements which it refers to,

thereby overriding Manoeuvre's behaviour.

ServiceBelongingToService. Another kind of relationship is

ServiceBelongingToService, which represents the fact that two Services

functionally belong to each other. Examples of services are Restaurant,

RestArea, PetrolStation, AirlineAccess, Airport, etc. When a

Restaurant belongs to a RestArea, they are linked together by a

2 Since the applied modelling method in itself is outside the scope of this paper, we

only show the resulting conceptual model of the examples of geographic data that

are described.

6

ServiceBelongingToService relationship. Likewise, a PetrolStation can be-

long to a RestArea. Figure 3 shows the conceptual class diagram. A special kind

of Service is EntryPoint, which denotes a location from which one has to leave

the publicly accessible road network in order to a enter a Service. Most services

are connected to the EntryPoint via a ServiceBelongingToService.

ServiceBelongingToService
partOf

contains0..*
2..n

Service

Restaurant Airport AirlineAccess EntryPoint...

Fig. 3. The relationship ServiceBelongingToService and its relation to Service.

3.2 Constraints on Multiple Classes

The original purpose of OCL is to write local constraints on parts of the UML

model, such as class invariants, pre- and postconditions on operations, etc. In

our context, where we use UML class diagrams to represent a knowledge model,

we need OCL to express global constraints that may potentially reason about

the entire model. Below is an excellent example of a constraint that expresses

some characteristic of geographic data that cannot be restrained to one single

concept or class of the conceptual model.

Constraint. A road-element shall not be the �rst road-element of a restricted-

manoeuvre and a prohibited-manoeuvre in case both these manoeuvres refer to

the same via-junction.

It is clear that this constraint reasons about the concepts

RestrictedManoeuvre and ProhibitedManoeuvre, and that neither one can

be preferred over the other to serve as main context. Nevertheless, if we would

choose for example the �rst concept as context, the constraint in current OCL

would be:

context RestrictedManoeuvre inv:

ProhibitedManoeuvre.allInstances->forall(p : ProhibitedManoeuvre |

self.viaJunction = p.viaJunction implies self.from <> p.from)

This constraint shows signs of imbalance: there is an implicit looping over

all instances of RestrictedManoeuvre, whereas for ProhibitedManoeuvre the

loop is expressed explicitly, using the undesirable allInstances construct.3 We

would like to use this built-in language construct for all classes that occur in a

3 In OCL speci�cations [UML1.3], it is explicitly said that the use of allInstances

is problematic and is discouraged in most cases.

7

constraint. This issue was introduced in [GKR99], where they propose to allow

multiple type names after the keyword context.We adopted a di�erent notation,

illustrated in the new version below of the example constraint:

RestrictedManoeuvre.viaJunction = ProhibitedManoeuvre.viaJunction

implies RestrictedManoeuvre.from <> ProhibitedManoeuvre.from

We use the name of the class of the conceptual model to denote the context

and at the same time as the contextual instance. Note that as a result of this

notation the reserved word self becomes obsolete.

3.3 Constraints on Multiple Instances

Class invariants in the original OCL speci�cations are meant principally to allow

manipulation of one instance of a class at a time,4 whereas our quality constraints

require access to more than one instance of the same class at the same time

in order to express some characteristic about them. The following constraint

exempli�es this (see class diagram on Fig. 3):

Constraint. Every airport which is in relation with an airline-access, shall also

be related to an entry-point of this airline-access. Consequently, this airline-

access itself relates to at least one entry-point.

The services Airport, AirlineAccess and EntryPoint are related through

some ServiceBelongingToService relationships. More speci�cally, a �rst one

connects Airport and AirlineAccess. The constraint expresses that this should

imply the connection by means of a second ServiceBelongingToService be-

tween Airport and EntryPoint of the AirlineAccess. The last two services are

in turn connected by a third relationship. The main context of this constraint is

the class ServiceBelongingToService. However, this constraint involves three

di�erent instances of this class, which cannot be expressed gracefully, as is shown

below:

ServiceBelongingToService.allInstances->exists(s1 |

ServiceBelongingToService.allInstances->exists(s2 |

ServiceBelongingToService.allInstances->exists(s3 |

<expression with s1 s2 s3>)))

Again, the undesirable explicit iteration over all instances with allInstances

is required because di�erent instances need to be referred to in the same con-

straint. Therefore we propose the introduction of identi�ers in the context of a

constraint. The syntax we adopt is:5

constraint :: ('id' idDecl 'in')? exp

idDecl :: <name> (',' <name>)* (':' <type>)? '=' exp (';' idDecl)*

4 It is however possible to refer to multiple instances of a same class, but this can only

be achieved in a complex way using the undesirable construct allInstances.
5 Syntax de�nitions are given in extended BNF.

8

An identi�er consists of a name, an initial value, and an optional type.

The identi�er can be referred to several times within a constraint by means

of its name, thus accessing its value. This value cannot be altered since con-

straints are side-e�ect free due to their declarative nature. The initial value

of an identi�er can be any valid OCL expression, including navigation paths

such as Manoeuvre.contains->first and Manoeuvre.contains->select(m |

m.oclIsTypeOf(RoadElement)).

Consequently, the previous constraint can be expressed as follows:

id s1, s2, s3 : ServiceBelongingToService in

<expression with s1 s2 s3>

Note that our notion of identi�ers closely resembles that of the let expression

presented in [CHH+98] and adopted in the speci�cation of OCL 1.3 [UML1.3].

It is not clear though if this construct can only be used as an abstraction and

reference mechanism for expressions that are used more than once in a constraint,

or if the semantics also allows it to express constraints about di�erent instances

of the same class, as does our approach.

In any case, our syntax adaptation is equally suited to name a repeated

expression in a particular constraint and refer to it in this constraint. This avoids

repeatedly writing long and complicated navigation paths, an advantage when

trying to reduce the complexity and length of constraints, and thus the chance

of making mistakes.

3.4 Dot and Arrow Notations

In [KW99] and [UML1.3] navigation through elements of a model is achieved

through navigation paths using dot and arrow notations. Associations or at-

tributes on a class in the user-de�ned model are accessed through the

dot notation as in the following expressions: Manoeuvre.contains,

RoadElement.boundedBy, etc. OCL contains a set of prede�ned classes and

corresponding operations. Examples of these operations are attributes and

supertypes de�ned on OclType, whose instances are all the types (user-de�ned

or prede�ned) existing in the UML model, and oclIsTypeOf de�ned on OclAny

which is the superclass of all types. Another category of prede�ned OCL classes

is the Collection hierarchy. This class and its subclasses Set, Sequence and

Bag, have prede�ned operations such as size and isEmpty, but also for instance

select and forall which iterate on all elements of a Collection. Inconsis-

tency results from the fact that the notation for applying operations from the

Collection hierarchy is the arrow operator, whereas for the other prede�ned

operations it is also the dot operator.

Therefore it is complicated to distinguish when an OCL prede�ned operation

or a user-de�ned property is used. The fact that many OCL prede�ned classes

or operations have a pre�x Ocl highlights this.

We adopted a more consistent notation, which is easier to understand for

users of OCL, and easier to evaluate. Our notation stresses the di�erence be-

tween user-de�ned and prede�ned properties by using the dot notation to express

9

navigations from the former and the arrow notation from the latter, even if it

does not concern an instance of the Collection hierarchy.

3.5 Accumulators

The accumulator concept, used in the prede�ned iterate operation for itera-

tions over a Collection, lacks a clear de�nition in [KW99] and [UML1.3]. For

this reason we adopted the following syntax for the single parameter

oclExpression of this iterate operation:

oclExpression :: <name> (',' <name>)* accumulator '|' expression

accumulator :: '[' <name> (':' <type>)? '=' expression ']'

accumulator is assigned an initial value before the iteration mechanism.

Then for each iteration step, the result of the evaluation of the expression fol-

lowing the horizontal bar is assigned to the accumulator. At the end of all the

iterations, the current value of the accumulator is returned as the result of the

evaluation of the iterate operation.

Our experience highlighted the fact that accumulators are necessary for con-

text propagation in iterations. However accumulators must be expressed with a

procedural-like syntax which de�nitely contrasts with the relatively intuitive and

declarative way to write constraints with OCL. The following example presents

a constraint where the use of an accumulator is needed. In the same time it

shows that such a constraint requires a procedural-like syntax, thus loosing part

of the intuitiveness and declarativity of OCL.

Constraint. The set of road-elements which a manoeuvre refers to is contin-

uous, meaning that it is an ordered set of road-elements and that each road-

element, except for the last, has exactly one junction in common with the fol-

lowing road-element.

id res = Manoeuvre.contains in

res->subSequence(2,res->size)->iterate(item

[path = Sequence{res->at(1).endJunction}] |

if path->isEmpty

then Sequence{}

else

if item.beginJunction = path->last

then path->append(item.endJunction)

else

if item.endJunction = path->last

path->append(item.beginJunction)

else Sequence{}

endif

endif

endif)->notEmpty

10

As presented in Fig. 2, a Manoeuvre refers to a sequence of RoadElements

through the association contains, and each RoadElement has two extremities

(startJunction and endJunction). We iterate over this sequence (except its

�rst RoadElement, which is the starting point), to check if each of its elements

(represented by the identi�er item) have a shared extremity with the previous

one. The accumulator path is used to store the continuous sequence of shared

extremities already encountered. Particularly, path->last is the extremity of

the previous RoadElement that should be shared with the current element. Con-

sequently, either the beginJunction, either the endJunction of the current

element must be equal to this extremity, otherwise the continuity is broken.

When the continuity is broken, a null sequence (Sequencefg) is assigned to the

accumulator path. For simpli�cation we suppose here that we know that the

�rst RoadElement of the sequence is linked to the second by its end junction.

4 Evaluating Constraints

In this section we explore the main issues of evaluating constraints which are

expressed using our modi�ed version of OCL (as proposed in Sect. 3). For a

further description of OCL evaluation issues, we refer to [HHK98].

4.1 Checking Navigations Paths

OCL constraints make extensive use of navigation path expressions, referring to

associations, attributes or methods described in the UML class diagrams of the

conceptual model. For this reason an important issue in constraint evaluation

is the checking of navigation path validity against the conceptual model. Such

checking must actually be done statically, in order to avoid run-time interrup-

tions of costly quality routines due to type errors.

Whereas classical OO-language type checking is typically performed through

the checking of property names, return types and parameter types, the type

checking on OCL constraints is based on checking navigation paths against asso-

ciations described in the conceptual model (according to role names, association

cardinalities, etc.). Note however that dot and arrow notations, in the way we

adopted them (see Sect. 3.4), involve a simple mechanism of navigation path

checking. When type checking a constraint, a property of an expression accessed

using the dot notation is checked in the user-de�ned conceptual model in UML

(for searching the speci�ed property, its return type, etc.). In a similar way, an

operation of an expression accessed using the arrow notation is checked in the

UML class diagram of the prede�ned OCL types.

4.2 Evaluating Constraints on Multiple Classes

As explained in Sect. 3.2, our OCL can be used for expressing constraints on

several classes. The mechanism of evaluating an OCL constraint depends on the

number of classes it involves. Based on the checking of navigation paths, classes

11

involved can be identi�ed. The constraint evaluation is achieved in as many

evaluation loops as the number of classes involved. Evaluation loops are nested

loops which aim to evaluate the given OCL constraint for each permutation of

the instances of the classes involved, as shown in the following example:

RestrictedManoeuvre.viaJunction = ProhibitedManoeuvre.viaJunction

implies RestrictedManoeuvre.from <> ProhibitedManoeuvre.from

In such case, the constraint will be evaluated through two evaluation loops,

the �rst one over the RestrictedManoeuvre instances, and the second one,

nested within the �rst one, over the ProhibitedManoeuvre instances. For each

loop iteration the constraint will be evaluated with the current pair of instances.

4.3 Evaluating Constraints with Identi�ers

Constraints with identi�ers (as presented in Sect. 3.3) are evaluated through the

same evaluation loop mechanism. Evaluation of a constraint with identi�ers is

equivalent to the evaluation of that same constraint with the references to the

identi�ers within the constraint textually replaced by their value. For instance,

the constraint below will be evaluated in exactly the same way as the constraint

given in Sect. 4.2.

id rm = RestrictedManoeuvre ; pm = ProhibitedManoeuvre in

rm.viaJunction = pm.viaJunction implies rm.from <> pm.from

However, when having two or more global identi�ers with the same initial

value, as in the following example, the evaluation mechanism is slightly di�erent.

id re1, re2 = RoadElement in

<some_constraint_using_re1_and_re2>

Evaluation of such a constraint will be achieved through two nested evalu-

ation loops, each over all instances of the class RoadElement. The reason for

having two identi�ers (re1 and re2) with the same value (RoadElement) is to

be able to refer to two instances of the same class which are guaranteed to be

distinct.

5 Advanced Adaptations to OCL

We already proposed some syntactic modi�cations to OCL and de�ned infor-

mally their procedural semantics. However we plan some further modi�cations

that will simplify the process of writing and reusing quality constraints on geo-

graphic data, by introducing constraint referencing and composition as well as

parametric constraints.

12

5.1 Referencing Constraints

In OCL speci�cations [UML1.3], a constraint name can optionally be written

after the inv keyword. Because we chose to not link explicitly a context to

each constraint, we had to replace this way of naming a constraint. That is the

reason why we propose a mechanism for naming each constraint within its OCL

de�nition. Sections 5.2 and 5.3 will highlight the interest of referencing such

names in other OCL constraints.

The naming mechanism is compulsory for each constraint de�nition and is

done through the following syntax:6

constraint :: <name> ':' constraintBody

The following constraint illustrates the naming mechanism:

A restaurant-service shall always be referred to by a service-belonging-to-

service relationship in which the other object is an entry-point

entryPointBelongsToRestaurant :

id s = ServiceBelongingToService.services in

s->select(s1 | s1->oclIsTypeOf(Restaurant))->notEmpty implies

s->select(s2 | s2->oclIsTypeOf(EntryPoint))->notEmpty

5.2 Parametric Constraints

Let's consider the three following constraints (see class diagram on Fig. 3):

1- A restaurant-service shall always be referred to by a service-

belonging-to-service relationship in which the other object is an entry-

point

2- An airline-access-service shall always be referred to by a service-

belonging-to-service relationship in which the other object is an entry-

point

3- An airport-service shall always be referred to by a service-belonging-

to-service relationship in which the other object is an entry-point

Since only the class name changes, it is useful to factor it out of the OCL

constraint de�nition, enabling us to write the OCL rule only once and reuse it

with di�erent classes. To achieve this we propose to have parametric OCL con-

straints. As with C++ templates, such constraints take one or more parametric

types as arguments that can be used in the OCL expressions composing the

parametric constraint.

It is important however to provide a way to bound the parametric types of a

parametric constraint to avoid a de�ned parametric constraint from being used

6 This is a simpli�ed syntax. The complete syntax, allowing parametric constraints,

will be presented in Sect. 5.2

13

with any parametric type. Inspired by Pizza7 [OW97] we speci�ed a bounding

mechanism for parametric types through a where clause. For instance, para-

metric types can be bounded in the where clause using some prede�ned OCL

operations such as supertypes (to get the direct superclasses of a class), name

(to get the name of a class) or allSupertypes (to get all the ancestor classes

of a class). Note that a where clause can only hold meta-constraints on the

parametric types.

The syntax for parametric constraints is given below:

constraint :: <name> parametrics? ':' constraintBody

parametrics :: '<' <parametric> (',' <parametric>)* '>' whereExp?

whereExp :: 'where' expression

parametric :: "@" "a"-"z" ("a"-"z" | "A"-"Z" | "0"-"9" | "_")*

The following example shows the OCL de�nition of a parametric constraint

that can be used for the three constraints given at the beginning of this subsec-

tion:

entryPointBelongsToService<@param>

where @param->supertypes->includes(Service) :

id s = ServiceBelongingToService.services in

s->select(s1 | s1->oclIsTypeOf(@param))->notEmpty implies

s->select(s2 | s2->oclIsTypeOf(EntryPoint))->notEmpty

The where clause of this example speci�es that the parametric type of the

constraint (@param) must be a direct subclass of the class Service.

To obtain a concrete constraint out of a parametric constraint, its parametric

type(s) must be �lled in. This can be done within a new OCL constraint by

referencing the parametric constraint with the % symbol. For instance, the �rst

of the three previous constraints is obtained as follows:

entryPointBelongsToRestaurant :

%entryPointBelongsToService<Restaurant>

Checking the validity of such an expression will be achieved by evaluating

the where clause of the parametric constraint with the Restaurant type.

We can construct an OCL constraint that can be evaluated by textually

assigning the parametric type of the constraint to a given type. This means that

the above constraint is equivalent to:

entryPointBelongsToRestaurant :

id s = ServiceBelongingToService.services in

s->select(s1 | s1->oclIsTypeOf(Restaurant))->notEmpty implies

s->select(s2 | s2->oclIsTypeOf(EntryPoint))->notEmpty

7
Pizza is an extension to Java, which o�ers parametric and bounded parametric types.

14

5.3 Constraints Composition

In geographic data quality, quality constraints are often reused or grouped to-

gether. Composing existing quality constraints reduces copy-pasting, or rewrit-

ing of parts or entire OCL constraints. With the referencing mechanism intro-

duced in the previous subsection, it becomes relatively straightforward to realise

constraint composition. As explained before, existing constraints can indeed be

reused within any OCL expression by referencing them with the % symbol.

For instance we can compose the three constraints of the previous subsection

into a more general one as follows:

entryPointBelongsToAllServices :

%entryPointBelongsToService<Restaurant>

and

%entryPointBelongsToService<AirlineAccess>

and

%entryPointBelongsToService<Airport>

This is a basic example of an and composition, but more complicated com-

positions can be created, using the full expressive power of OCL.

It is important to note that composite constraints are always independently

evaluated, i.e. only their �nal result is used to compose the �nal constraint. This

mechanism enables powerful features for reusing or grouping constraints.

6 Conclusion

6.1 Ongoing Work

We are currently applying the results presented in this paper to the develop-

ment of an OCL evaluator. Our objective is to provide an eÆcient way for

checking OCL constraints on the extensive geographic data of our industrial

partner TeleAtlas. The resulting OCL evaluator will be integrated into a dis-

tributed quality assurance system for the geographic data production process of

TeleAtlas.

6.2 Related Work

UML is well suited for modelling on a conceptual level, as is described in

[BFS99]. Therefore, UML class diagrams, conforming to the principles of entity-

relationship modelling, are frequently used for modelling domains that consist

of large amounts of static knowledge.

A body of work exists concerning OCL and its syntax and semantics per-

formed by the Software and Systems Engineering Research Group at the Uni-

versity of Kent, Canterbury [HHK98] [CHH+98] [GKR99]. A few other research

groups and companies are working on OCL improvements. The Klasse Objecten

[KO] holds pointers to most of these projects.

15

6.3 Conclusion

This paper reports on the exploitation of OCL to describe quality ensuring

constraints on a domain which is essentially knowledge-oriented. This domain is

represented at a conceptual level by means of UML class diagrams. The source

of inspiration for this work is the domain of geographic data where constraints

embody criteria for the integrity and well-formedness, in other words quality of

the vast amount of knowledge.

Although this use of OCL results in an explicit, high-level and unambiguous

description of the quality constraints, some adaptations to the syntax and seman-

tics, and some additional language constructs were necessary. Once more, these

adaptations originated and were established in the domain of geographic data.

Nevertheless they are of a general kind and therefore applicable in other domains

that require conceptual modelling of extensive amounts of domain knowledge,

enriched with quality ensuring constraints. Examples of such domains are broad-

cast management for television and radio stations, and resource schedulers, for

instance for the management of passengers, cargo, transport and so on at airports

and railways.

7 Acknowledgments

Viviane Jonckers and Tom Toutenel reviewed earlier drafts of this paper. We

thank them for their corrections and valuable comments.

References

[BFS99] G. Booch, M. Fowler, K. Scott. \UML Distilled: A Brief Guide to the

Standard Object Modeling Language". Addison-Wesley. 1999.
[CHH+98] F. Civello, A. Hamie, J. Howse, S. Kent, M. Mitchell. \Re
ections on the

Object Constraint Language". In Post Workshop Proceedings of UML98.

Springer Verlag, June 1998.
[GDF] \The Geographic Data Files Standard". Committee for Road Transport

and TraÆc Telematics of the Comit�e Europ�een de Normalisation.
[GKR99] S. Gaito, S. Kent, N. Ross. \A Meta-model Semantics for Structural

Constraints in UML". In H. Kilov, B. Rumpe, and I. Simmonds editors,

Behavioural speci�cations for businesses and systems, chapter 9, pages

123-141. Kluwer Academic Publishers, Norwell, MA, September 1999.
[HHK98] A. Hamie, J. Howse, S. Kent. \Interpreting the Object Constraint Lan-

guage". In Proceedings of Asia Paci�c Conference in Software Engineer-

ing. IEEE Press, July 1998.
[KO] Klasse Objecten group. http://www.klasse.nl
[KW99] A. Kleppe, J. Warmer. \The Object Constraint Language: Precise Mod-

eling with UML". Addison-Wesley, 1999.
[OW97] M. Odersky, P. Wadler. \Pizza into Java: Translating theory into prac-

tice". In Conference Record of POPL 97': The 24th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages

146-159, Paris, France, 15-17 January 1997.
[UML1.3] \UML 1.3 Speci�cations" (including OCL). http://www.omg.org/uml

