
Integrating an Explicit Knowledge Model into Geographic Information Systems∗

Miro Casanova, Thomas Wallet and Maja D’Hondt

System and Software Engineering Laboratory
Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels Belgium

E-mail:mcasanov | twallet | mjdhondt@vub.ac.be

Abstract

Geographic Information Systems (GIS) require the
power of sophisticated database management systems for
efficiently managing the persistency and consistency of
huge amounts of data. A pool of software tools takes care
of the production process, which consists of editing, visu-
alising and selecting geographic data. However, thequality
of the data – its well-formedness and integrity – is not so
easily ensured. Quality is represented by declarative ex-
pressions that constrain the relations between concepts of
the geographic domain knowledge. However, there exists
a mismatch between this implicit model which takes into
account the spatial and multi-dimensional character of the
data, and the format in which the geographic data is actu-
ally stored in the database. Current practices have shown
that hard coding these quality ensuring constraints using
software engineering results in a loss of expressiveness and
even accuracy. Therefore, in this research, we envisioned a
co-existence of the usual components of a GIS with an ex-
plicit representation of the geographic domain knowledge
and constraints, for which we employed knowledge engi-
neering techniques. In this paper we illustrate and validate
our ideas at the hand of theGeoObjectsSystem, a GIS we
developed together with our industrial partner,TeleAtlas.

1. Introduction

In this section we explain the state of the art in devel-
oping GIS’s. We continue by showing that ensuring qual-
ity of geographic data is essential and that current practices
have difficulties achieving this. Our contribution is to use
an explicit model of the geographic domain knowledge and
the quality ensuring constraints, thus combining knowledge

∗This research, in collaboration withTele Atlas Data Gent NV, is part of
the projectGeoObjects (IWT 990025), funded by theFlemish Institute for
the Improvement of the Scientific-Technological Research in the Industry
(IWT).

engineering with sofware engineering techniques. Finally
our industrial partner is introduced and the structure of the
paper is layed out.

1.1 State of the Art

Digital geographic data, and especially data concerned
with the road network, is used in sophisticated applica-
tions such as Geographic Information Systems (GIS) for
environmental planning and control, alarm call and dis-
patch, and Fleet Management Systems, car navigation and
geo-marketing. The data is modelled as a general, non-
application specific planar-graph representation of the real
world. On top of this model, a road network specific appli-
cation model has been built.

Suppliers of geographic data are responsible for the pro-
duction process of geographic data, which consists of cap-
turing and storing the real-world geographic data. There
are typically three important parts in the production pro-
cess: software tools for editing, visualising and selecting
the geographic data. The editing tool supports the insertion
and correction of geographic data. The source material typ-
ically comes from satellite images, scanned maps, Global
Positioning System data, but most frequently these data are
entered manually. The visualisation tool is in charge of giv-
ing a graphical representation of the geographic data, dis-
playing it as a map. The selection tool is responsible for
selecting some part of the geographic data, corresponding
to a region of the map that is represented by the data. Due
to the spatial and multi-dimensional character of geographic
data, this selection process is particularly complex and re-
quires specific spatial query mechanisms. In the remainder
of this paper we will use the termsoftware componentsto
refer to the database and production tools a GIS typically
consists of.

In the past, the storage and efficient handling of spa-
tial data were only possible in dedicated systems, especially
built to serve as a GIS. Those systems provided their own
spatial data types, spatial query functions, and a suite of
software tools. Nowadays, most database suppliers are ex-

tending their Data Base Management System (DBMS) with
spatial data types and functions enabling spatial queries.
Moreover, a DBMS has the enormous advantage of pro-
viding the typical database functionalities for persistency,
consistency, transactions, optimised querying and so on.
These functionalities are absolutely essential when devel-
oping large and efficient data-oriented software systems.

1.2 Quality of Geographic Data

The use of the source material in the production process
described above indicates that many mistakes may creep
into the geographic data. Therefore, one of the major chal-
lenges in the production process of geographic data is en-
suring its quality, which we define here as the integrity and
well-formedness of the geographic data, and should not be
confused with consistency of the data. The importance of
delivering high-quality geographic data is easily understood
when thinking of the consequences of using data of poor
quality in applications such as car navigation and alarm call
and dispatch. Quality is defined by means of implicit con-
straints on the concepts and relations of the geographic do-
main knowledge.

There exists a mismatch between the geographic domain
knowledge which takes into account the spatial and multi-
dimensional character of the data, and how the geographic
data is actually stored in the database. Moreover, when ex-
amining current practices we find that the domain knowl-
edge is mostly never explicitely used or modelled, and that
the constraints are described in natural language and man-
ually implemented together with the production tools using
software engineering techniques. This approach results in
a tangling of the implicit quality constraints in the applica-
tion code, hence causing them to be non-modular and hard
to localise. This has significant consequences with respect
to manageability, adaptability and reuse of the constraints.
In addition to this, because the constraints are inherently
declarative, they lose expressiveness and even some of their
original meaning in a procedural medium.

1.3 Our Contribution

In this paper we argue that in addition to the aforemen-
tioned software components, i.e. the database and the pro-
duction tools, a GIS also requires an explicitknowledge
modeland correspondingconstraints, as shown in Fig. 1.
The knowledge model is actually a representation of the do-
main knowledge, in this case the geographic data, whereas
the constraints are a declarative, high-level, unambiguous,
explicit and modular representation of the quality ensuring
domain constraints. Hence, a GIS not only consists of soft-
ware engineering components, but also incorporates domain
knowledge for which knowledge engineering mechanisms

constraint

knowledge model

selection

tool

visualisation

tool

editing

tool

geographic

database

quality

check

tool

KE

SE

Figure 1. The general architecture GeoOb-
jects system.

are needed.
The following section elaborates on the separation of

the knowledge model and the constraints from the soft-
ware components of a GIS. Section 3 then describes how
the knowledge model and the constraints are linked to these
other software components and make them operative. It is
important to note that through this link, the high-level con-
straints are able to be checked on the geographic data in the
database, and all the software tools use the concepts of the
knowledge model instead of the implementation-dependent
format of the database.

This research is the by-product of a project we are in-
volved in with TeleAtlas– an important supplier of geo-
graphic data world-wide – as the other partner. In this con-
text, the existing GIS of TeleAtlas was adapted to incor-
porate the ideas presented here. The resultingGeoObjects
system, a real-world GIS which integrates knowledge engi-
neering techniques and software engineering techniques as
described above, will be used throughout the paper to illus-
trate and validate our ideas.

2. Explicit Knowledge Model and Constraints

As argued in the previous section, the model of the do-
main knowledge of geographic data should be modelled ex-
plicitly, and separated from the software components of a
GIS. As a result, the constraints that dictate the quality of
the geographic data can be expressed on this model in a

high-level and implementation-independent manner. The
rest of this section first explains what the knowledge model
contains and how it is modelled, and then illustrates the con-
straints and how they help to ensure quality.

2.1. Knowledge Model

The most widely accepted model for geographic data is
the Geographic Data Files (GDF) standard [GDF], which
has been created in order to improve the efficiency of cap-
turing and producing road related geographic information.
GDF achieves this efficiency by providing a common ref-
erence model on which clients can base their requirements
and suppliers can base their product definition. The foun-
dation of the GDF standard consists of a general, non-
application specific planar-graph representation of the real
world. On top of this model, a road network specific appli-
cation model has been built. The last model describes real-
world concepts in the domain of geographic road network
data, as well as attributes of these concepts and relations
between these.

To illustrate the concepts in the geographic domain
knowledge that are described by the GDF standard, consider
RoadElementandJunction. The relation between them is
that aRoadElementhas one or twoJunctionsand that a
Junctionhas at least oneRoadElement. Attributes ofRoad-
Elementare the average speed allowed of vehicles travel-
ling along it, whether it is currently under construction or in
the planning stage, and its direction of traffic flow. AMa-
noeuvreforms a link between a number ofRoadElements
and aJunction, where the order is important. AManoeuvre
indicates a certain path that can be followed by a vehicle.
A RestrictedManoeuvrerepresents a manoeuvre that is re-
stricted, which means a vehicle is only allowed to take this
manoeuvre and no other. AProhibitedManoeuvreindicates
a manoeuvre that is prohibited. Figure 2 shows a real-world
situation consisting of severalJunctions, RoadElementsand
aManoeuvre, whereas Fig. 3 depicts the corresponding part
of the knowledge model. In this last figure it becomes ap-
parent that in the particular case of the GeoObjects system,
we used theUnified Modeling Language(UML) [FS99] for
our knowledge model because it is suited for describing the
geographic entities and relationships.

2.2. Constraints

Even if the knowledge model is a high-level representa-
tion of real world geographic entities, it does not contain
all the necessary domain knowledge to reach the desired
degree of quality. It is not possible to describe all the ex-
isting relationships among the entities of the domain in just
the knowledge model described above, only some very lim-
ited kind of domain restrictions. Due to this, an additional

Figure 2. Real-world situation representing
Junctions (black dots), RoadElements (the
line connecting two dots) and a Manoeuvre
(the sequence of arrows).

1 1

1

viaJunction

Prohibited

Manoeuvre

Restricted

Manoeuvre

RoadElement

Junction

beginJunction endJunction

to
via 0..*

1
1

Manoeuvre

from

Figure 3. Part of the knowledge model repre-
senting the concepts Junction, RoadElement
and different kinds of Manoeuvres, and the
relations between them.

medium is needed for describing the constraints.

?

Figure 4. A non-continuous set of RoadEle-
ments.

Let us illustrate the requirements of the constraint
language with an example. AManoeuvre is the path
that a vehicle has to follow for going from one point to
another, so it is normal to model aManoeuvreas a set of
RoadElements(see Fig. 3). However, there is a restriction
in the geographic domain that cannot be represented in
the model, which is that the sequence ofRoadElements
should be continuous, i.e. that the end of aRoadElement
should coincide with the beginning of the following one.
Intuitively, this means that the vehicle, while performing
theManoeuvre, cannot ‘’jump” from one point to another,
as seen in Fig. 4. As this situation might well be present in
the geographic data due to inprecisions in the production
process described in Sect. 1, there is definitely a need for
constraints declaring that this situation is faulty. Constraint
checking mechanisms, as described in Sect. 3, must then
ensure that these constraints are true for all the data in the
database. The constraint used to find situations such as the
one depicted in Fig. 4 is

The RoadElements to which a Manoeuvre refers shall be
a continuous set of RoadElements

which is related to the following constraint:

A continuous set of RoadElements is an ordered set of
RoadElements. For each RoadElement in the set, except
for the first and the last, the beginJuncion and endJunction
must be the same Junction as the beginJunction or end-
Junction of the next and/or the previous.

A last example is:

A RoadElement shall not be the first RoadElement of a
RestrictedManoeuvre and a ProhibitedManoeuvre in case

both these manoeuvres refer to the same viaJunction.

A RestrictedManoeuvreis a path ofRoadElementsbe-
tween a starting and an ending point that a driver is obliged
to follow when he drives from this starting point to this
ending point, whereas aProhibitedManoeuvreis a path of
RoadElementsthat it is forbidden to drive on. AviaJunction
is a RoadElement’s Junctiongiven as a passing point of a
given manoeuvre. The knowledge model contains different
classes (RestrictedManoeuvre, ProhibitedManoeuvre, etc.)
and different relations between them (viaJunction, from,
etc.) that represent the different elements of this constraint
(see Fig. 3).

Given the declarative nature of the constraints, we use
UML’s accompanyingObject Constraint Language(OCL)
[KW99] with some adaptations [CWD00] as the declara-
tive language for the constraints in the GeoObjects system.
OCL provides the appropriate expressiveness to write con-
straints in a high-level language that can reason on concepts
of the knowledge model. The previous constraint can then
be expressed in OCL as follows:

context RestrictedManoeuvre inv:
ProhibitedManoeuvre.allInstances

->forall(p : ProhibitedManoeuvre |
self.viaJunction = p.viaJunction
implies self.from <> p.from)

In the following section we explain how these constraints
written in OCL are managed by the GeoObjects system so
that they can be used to ensure the quality of the geographic
data in the database.

3. Integrating the Knowledge Model and Con-
straints into the Software Components

In this section we present how we integrated the knowl-
edge model and the constraints into the software compo-
nents. We first show how the knowledge model is made op-
erational by implementing it in an API, and how the other
software components employ it to access the geographic
data in the database. Furthermore we describe how the con-
straints are integrated into this by a quality check tool that
uses executable check routines, which are generated from
the constraints.

3.1 Integrating the Knowledge Model

Since the knowledge model is obviously compatible with
the object-oriented paradigm, it is implemented using soft-
ware engineering techniques as part of the object-oriented
API, which will be the connection between the geographic
data and the rest of the software components of the GIS.

geographic

database

knowledge model

API

integration

into API

modify

create

retrieve

Figure 5. Knowledge model integration.

When a software tool uses the API to retrieve some geo-
graphic data from the database, the classes representing the
domain knowledge concepts in the knowledge model are in-
stantiated, and the resulting objects are initialised with the
database results. Hence, it can be said that the geographic
database’s API is a software component that really contains
the knowledge model. Fig. 5 schematically presents where
the knowledge model is integrated into the GeoObjects sys-
tem.

The presence of the API makes the extraction and ma-
nipulation of geographic data from the database transparent
for the rest of the software components of the GIS, such
as the selecting, editing, visualising and quality checking
tools. As a result the set of software tools that compose the
GIS can access the data no matter how it is stored in the geo-
graphic database. Moreover, the fact that the construction of
the API is based on the knowledge model’s concepts gives
the advantage of dealing directly with a high-level represen-
tation of the geographic data.

3.2 Integrating the Constraints

The constraints should be checked at different moments
on the GIS to ensure that the geographic data fulfills the
requested quality criteria. Therefore it is crucial to integrate
the constraints into a software component in the GIS that
can use the API to access to the database. This component
is thequality check tool(Fig. 6). Since the constraints are
specified on the level of the knowledge model in a first order
predicate logic language, they will need to be translated to
a form more usable by this quality check software tool.

However, having those constraints expressed in OCL is
not very useful for the quality check tool, because they are
at that moment non-executable. Moreover, the constraints

geographic

database

API

quality

check

tool

integration to create

check routings (executable code)

constraint

Figure 6. Constraints integration.

need to have access to the database, for retrieving the data
corresponding to the domain knowledge concepts they rea-
son about. Therefore we developed a specific translation
engine (called BREK), that automatically translates con-
straints written in OCL intocheck routines, which are ex-
ecutable pieces of code. The check routines also contain
the appropriate API calls for retrieving the correct data be-
fore checking if it complies to the quality. The translation
engine carries out different operations, and uses compiling
techniques to realise this translation [AU77]. It starts with
lexical and syntactical analysis of the OCL constraints, and
generates the corresponding abstract syntax tree. This syn-
tax tree is type-checked to be sure that it complies to the
OCL syntax and to make sure that the navigation via the
concepts and relations in the knowledge model are correct.
The final operation consists in the automatic generation of
source code out of the syntax tree and some of the type in-
formation. Figure 7 shows the control flow of these oper-
ations. Briefly, the code generation is based on generating
loops on the instances of the classes that are involved in the
constraint and are retrieved by the API from the database.
For every association, method or attribute of an instance,
a method of the corresponding object given by the API is
called. Finally, the result is stored as a boolean, which rep-
resents whether the checked data has been consistent with
the constraint or not. Thus, the check routines are actually
compilable code modules that are generated for each OCL
constraint.

The quality check tool manages these check routines,
which enables the user to select the appropriate constraints
to be checked and select a part of the geographic database,
and then run the corresponding check routine on the se-
lected data.

4. Conclusion

We have argued that software engineering mechanisms
are not sufficient neither adequate by themselves to en-

AST

AST + type

information

textual constraint (OCL)

lexical/syntactical analysis

type checking

code generator

check routine

(executable code)

BREK

Knowledge

Model

Figure 7. The control flow in the BREK.

sure a high degree of quality of the geographic data. We
have shown as well that knowledge engineering techniques
are suitable, in cooperation with software engineering tech-
niques, to achieve our final goal. We validate our ideas by
implementing them in the GeoObjects system that has been
explained throughout the paper.

We use a knowledge model to explicitly represent geo-
graphic domain knowledge, and constraints to specify re-
strictions on the knowledge model in order to guarantee
quality. The benefit of this in comparison with the current
practices in building GISs is that we have a high-level rep-
resentation of the geographic domain knowledge and con-
straints, and as a consequence allows it to be used as a fun-
damental part in the process of ensuring quality. Further-
more, having modular and high-level constraints is better
than having them hard coded in the application code of the
GIS, to facilitate maintenance and evolution.

The knowledge model is implemented as part of the
API, thus inserting the domain knowledge into the software
components of the GIS. This makes manipulating the geo-
graphic data transparent for the rest of the software compo-
nents of the GIS. Since each software component of the GIS
has to use the API in order to retrieve geographic data from
the database, it implies that they use geographic data ex-
pressed in a high-level manner as opposed to the low-level
query normally performed on a database. Consequently, if
the software components are written in a high-level manner,
they will be easier to evolve, maintain or reuse.

References

[AU77] Alfred V. Aho, Jeffrey D. Ullman. ‘’Princi-
ples of Compiler Design”. Addison-Wesley,
1977.

[CWD00] M. Casanova, T. Wallet, M. D’Hondt. “En-
suring Quality of Geographic Data with
OCL and UML”. In Proceedings of the
3rd International Conference on the Unified
Modeling Language : Advancing the Stan-
dard. UML 2000, York, UK. Pages 225-
239. Springer, 2000.

[GDF] “The Geographic Data Files Standard”.
Committee for Road Transport and Traffic
Telematics of the Comité Euroṕeen de Nor-
malisation.

[KW99] A. Kleppe, J. Warmer. “The Object Con-
straint Language: Precise Modeling with
UML”. Addison-Wesley, 1999.

[MS95] Mark Stefik. ”Introduction to Knowledge
Systems”. Morgan Kauffman, 1995.

[FS99] Martin Fowler, Kendall Scott. ”UML
Distilled Second Edition: A Brief
Guide To The Standard Modeling
Language”.Addison-Wesley. 1999.

