
Vrije Universiteit Brussel
Faculty of Science

Department of Computer Science
System and Software Engineering Lab

Dynamic Integration, Composition,
Selection and Management of Web

Services in Service-Oriented Applications

An Approach using Aspect-Oriented Programming

Bart Verheecke
September 2006

A dissertation submitted in partial fulfilment of the requirements of the degree of
Doctor of Science

Advisor: Prof. Dr. Viviane Jonckers

Vrije Universiteit Brussel
Faculteit Wetenschappen

Vakgroep Informatica
Laboratorium voor Systeem en Software Engineering

Dynamische Integratie, Compositie,
Selectie en Management van Web Services

in Servicegeoriënteerde Applicaties

Een benadering gebruikmakend van Aspectgeoriënteerd
Programmeren

Bart Verheecke
September 2006

Proefschrift ingediend met het oog op het behalen van de graad van
Doctor in de Wetenschappen

Promotor: Prof. Dr. Viviane Jonckers

Abstract

Web service technology is an open standards-based mechanism for communication over
a network. Web services are simple, self-contained applications that perform functions,
from simple requests to complex business processes. Client applications can integrate an
existing Web service and communicate with it over a network, regardless of the hardware
or platform used on either side of the wire. As Web services enable computer-to-computer
communications in a heterogeneous environment, they are ideally suited for the Internet.
We have observed that the implementation and deployment of a service-oriented application
where several third-party Web services need to integrated, pose a variety of challenge.

The main concern of the research presented in this dissertation is the dynamic integra-
tion, composition, selection and management of Web services in client applications. The
current approaches dealing with these processes fall short in providing the needed runtime
flexibility to deal with various events in a dynamic services environment. Web services
get hard-wired in the client, or only limited flexibility is provided to integrate functionally
equivalent services. There is no explicit support for key requirements such as compositional
mismatches, hot-swapping and service compositions. Furthermore, if client applications
want to take into account Quality-of-Service properties in order to select the most optimal
service for a given request, there is no way to enforce selection policies without explicitly
providing code in the client in advance. Finally, we observe that invoking third-party ser-
vices is far more complicated than making local method invocations. A variety of concerns
needs to be dealt with, including exception handling, billing, logging, service monitoring,
authentication, etc. All of these concerns need to be reflected in the code of the client.
Current approaches require that code dealing with these concerns is provided explicitly
and in advance, leading to tangled and scattered code while not being able to deal with
unanticipated concerns.

In this dissertation we propose a mediation framework that takes care of all service
related concerns for a client application. The framework, called Web Services Management
Layer (WSML) introduces a flexible service redirection mechanism that allows for the run-
time integration of services and compositions while taking into account selection policies
and enforcing a range of client-side management concerns. As a lot of code dealing with the
various identified service concerns results crosscutting in the client at those places where a
service functionality is required, we opt to employ Aspect-Oriented Programming (AOP)
to achieve a better separation of concerns. Service communication and composition details,
selection policies and service management concerns are all ideal candidates to be modular-
ized in aspects. As the WSML requires a lot of runtime flexibility, we opt to use a dynamic
AOP approach, which allows for the hot deployment of aspects. The WSML offers support
during the development, deployment and runtime cycle of service-based applications. To
avoid that WSML administrators require aspect-oriented knowledge, the use of aspects is
hidden by using aspect libraries and by doing automatic generation of aspect code. A pro-
totype of the WSML has been developed in Java and JAsCo, a dynamic AOP language,
and is deployed on a broadband provisioning platform of Alcatel.

Abstract

Web service technologie is een op open-standaarden gebaseerd mechanisme voor com-
municatie over netwerken. Web services zijn alleenstaande, zelfstandige applicaties die ver-
scheidene functies uitvoeren, gaande van het afhandelen van simpele requests tot complexe
bedrijfsprocessen. Klantapplicaties kunnen op eenvoudige wijze een Web service integr-
eren en ermee communiceren, onafhankelijk van de technologieën die aan elke zijde van
het netwerk gebruikt worden. Aangezien Web services de communicatie tussen computers
in een heterogene omgeving mogelijk maken, zijn ze uitermate geschikt voor het Internet.
We hebben vastgesteld dat het ontwikkelen en beheren van servicegeoriënteerde applicaties
waar verscheidene Web services van derde partijen moeten gëıntegreerd worden, heel wat
uitdagingen stellen.

De hoofdinteresse van het onderzoek dat gepresenteerd wordt in deze thesis, is de dy-
namische integratie, compositie, selectie en management van Web services in klantappli-
caties. De huidige benaderingen voor deze processen voorzien niet de nodige runtime flex-
ibiliteit om te kunnen inspelen op de veranderingen die plaatsgrijpen in een dynamische
serviceomgeving. Web services worden hardgecodeerd in de klantapplicatie, of enkel een
beperkte flexibiliteit is aanwezig om functioneel equivalente services te integreren. Er is
geen expliciete ondersteuning voor compositionele mismatches, dynamisch wisselen tussen
services en servicecomposities. Verder kunnen klanten geen niet-functionele servicekwaliteit
in acht nemen tijdens het service-selectieproces, tenzij hiervoor expliciet en op voorhand ex-
tra code in de klantapplicatie voorzien wordt. Tenslotte stellen we vast dat de invocatie van
een service die onder het beheer van een derde partij valt, veel ingewikkelder is dan de in-
vocatie van een lokaal object. Er dient rekening gehouden met verscheidene zaken zoals het
afhandelen van uitzonderingen en fouten, betalingen, logging, monitoring, beveiliging, etc.
Elk van deze concerns vereist extra code in de klant en de huidige benaderingen vereisen dat
deze code op voorhand wordt voorzien op alle plaatsen waar service functionaliteit vereist
is, wat leidt tot crosscutting code. Bovendien is het zeer moeilijk om concerns af te dwingen
die niet op voorhand geanticipeerd zijn.

In deze thesis stellen we een mediatie framework voor dat zich tot doel stelt
alle servicegerelateerde zaken voor klantapplicaties af te handelen. Het framework,
Web Services Management Layer (WSML) genoemd, introduceert een flexibel service-
redirectiemechanisme dat runtime-integratie van services en composities realiseert. De
WSML neemt de niet-functionele servicekwaliteit in acht tijdens het serviceselectieproces en
biedt ondersteuning voor het afdwingen van verscheidene managementconcerns. Aangezien
veel code die voorzien wordt in de klant voor deze concerns, crosscutting is, stellen we
voor om aspectgeoriënteerd programmeren (AOP) aan te wenden om een betere modular-
isatie van de concerns te verkrijgen. Service-communicatiedetails, composities, selectieregels
en managementconcerns zijn ideale kandidaten om in aspecten gemodulariseerd te worden.
Aangezien de WSML in ruime mate flexibel moet zijn om veranderingen in de serviceomgev-
ing op te vangen, maken we gebruik van een dynamische AOP-benadering, die toelaat om
aspecten at runtime toe te voegen aan het systeem. De WSML geeft ondersteuning aan
de applicatieontwikkelaar, zowel tijdens de ontwikkeling van de applicatie als at runtime.

Om te vermijden dat administrators aspectgeoriënteerde kennis nodig hebben, wordt het
gebruik van aspecten verborgen door middel van automatische generatie van aspect code
en het gebruik van aspectbiblioheken. Een prototype van de WSML is ontwikkeld in Java
en JAsCo, een dynamische AOP-taal, en is ingezet op een breedband provisioning platform
van Alcatel.

Acknowledgements

Writing this dissertation has been possible thanks to the help and support of many
people. First and foremost, I would like to thank Prof. Dr. Viviane Jonckers for giving me
the opportunity to obtain my Ph.D and for supporting me these past years. Next, I would
like to express my appreciation to the persons I have worked with during the course of this
dissertation: for the IWT Mosaic project I worked together with Maŕıa Agustina Cibrán.
A lot of the research described in this dissertation has been conducted in collaboration with
her, for which I am very grateful. I want to thank Wim Vanderperren for his input on
the aspect-oriented research and his invaluable technical support on JAsCo. I also want to
express my gratitude to Ragnhild Van Der Straeten and Viviane Jonckers for proofreading
this dissertation.

I would like to thank my Ph.D. committee members for taking the time to read this
dissertation in detail and for providing me with valuable comments. Apart from my advisor
Prof. Dr. Viviane Jonckers, the committee members are Prof. Dr. Bart Dhoedt, Prof.
Dr. Theo D’Hondt, Prof. Dr. Geert-Jan Houben, Prof. Dr. Welf Löwe, Prof. Dr. Mario
Südholt and Dr. Wim Vanderperren.

My other colleagues have always kept me motivated while helping in many ways. So
thanks to Davy Suvee for implementing the incredible .NET QuoteWeb interface and for
providing many apple diversions at the lab, and Bruno De Fraine for helping me to master
Latex. Also thanks to Matthieu, Dennis, Niels and especially Maja and Ragnhild for putting
up with the many lively research debates with Agus while writing their own theses in
our open-plan office. In addition, I really appreciated the many medical chats with Dr.
Ragnhild.

Next, I am extremely grateful for my family and friends who have supported me. My
parents have always been there for me and helped in any way they can. Special thanks to
my father for keeping me motivated when this was badly needed. He and my mother gave
me the opportunity to study and to pursue any degree I wanted and they always supported
any decision I made. I would like to thank Leen for being there for me these last years and
for her moral support whenever I needed it. Also many thanks to Patje, Fredje and Dani-L.
I realise how privileged I am to have so many friends who are part of my life and kept on
motivating me during the last stressful months. A special thanks also to all my droomhuis
roomies. Finally, thanks to Chantalle for the design of the cover page.

This research has been funded by the Institure for the Promotion of Innovation through
Science and Technology in Flanders (IWT) and the Research Foundation Flanders (FWO).

Contents

Table of Contents i

List of Figures vi

List of Tables vii

List of Code Fragments ix

1 Introduction 1
1.1 Context . 2
1.2 Problem Statement . 3

1.2.1 Integration of Web services . 3
1.2.2 Selection of Web services . 4
1.2.3 Client-side Management of Web services 4

1.3 Research Objectives and Approach . 5
1.3.1 Objectives . 5
1.3.2 Our Approach . 6

1.4 Contributions . 13
1.5 Outline . 15

2 Web Services Technologies 17
2.1 Introduction . 18
2.2 Web Services Definition . 19
2.3 Web Services Interaction . 20

2.3.1 RPC-based interaction . 20
2.3.2 Document-based interaction . 21

2.4 The Web Services Protocol Stack . 21
2.4.1 The Transport Layer . 22
2.4.2 The Format Layer . 22
2.4.3 The Message Layer . 23
2.4.4 The Description Layer . 25
2.4.5 The Publication Layer . 27

2.5 The Web Services Protocol Stack Revisited 28
2.6 Web Services Development . 30

2.6.1 Tool Support . 30
2.6.2 Java Web Services . 30
2.6.3 Microsoft .NET . 31

ii CONTENTS

2.7 Related Middleware Technologies . 32
2.7.1 CORBA . 32
2.7.2 DCE . 32
2.7.3 DCOM . 32
2.7.4 Java RMI . 32
2.7.5 ebXML . 33
2.7.6 Comparison . 33

2.8 Conclusions . 33

3 Dynamic Web Service Environments 35
3.1 Running Example . 36
3.2 Introduction to Dynamic Service Environments 37
3.3 Service Integration Process . 38

3.3.1 Analysis of Requirements . 38
3.3.2 Evaluation of Current Practices . 40
3.3.3 Table of Comparison . 48

3.4 Service Selection Process . 48
3.4.1 Analysis of requirements . 48
3.4.2 Evaluating current practices . 50

3.5 Client-Side Service Management Process . 50
3.5.1 Analysis of Requirements . 50
3.5.2 Evaluation of Current Practices . 51
3.5.3 Table of Comparison . 54

3.6 Conclusion . 54

4 Web Services Management Layer 57
4.1 Introduction . 58
4.2 Usage Scenarios . 60

4.2.1 Web Services Mediator . 60
4.2.2 Web Services Broker . 61
4.2.3 Web Services Grid . 61
4.2.4 Web Services Intermediary Stub . 61
4.2.5 Web Services Ubiquitous Environments 62

4.3 Development quality attributes . 63
4.4 WSML Architecture . 64
4.5 Aspect-Oriented Programming in the WSML 66

4.5.1 Introduction to AOP . 66
4.5.2 Motivation for AOP in the WSML 67
4.5.3 WSML Architecture Based on Dynamic Aspects 69
4.5.4 JAsCo . 71

4.6 Conclusions . 76

5 Dynamic Integration of Web Services 79
5.1 Service Types . 80
5.2 RPC-based Web Services . 82

5.2.1 Mappings . 82
5.2.2 Dynamic Binding . 82

CONTENTS iii

5.2.3 Hot-Swapping . 87
5.2.4 Changeable endpoint references . 89
5.2.5 Exception Handling . 91
5.2.6 Conditional Service Binding . 93
5.2.7 Multiple Services Binding . 94
5.2.8 Summary . 96

5.3 Asynchronous Web Services . 96
5.3.1 Introduction . 96
5.3.2 Asynchronous Service Redirection Aspects 98

5.4 Conversational Web Services . 99
5.4.1 Introduction . 99
5.4.2 Conversational Web Services . 102
5.4.3 Conversational Service Types . 103
5.4.4 Stateful Aspects . 104
5.4.5 Conversational Service Redirection Aspects 104
5.4.6 Dealing with Multiple Conversational Web Services 106

5.5 Service Compositions . 109
5.5.1 Introduction . 109
5.5.2 Service Composition Redirection Aspects 109
5.5.3 Relation with Web Services Composition Languages 112

5.6 Related Work . 114
5.6.1 Adaptive Integration Approaches . 114
5.6.2 Aspect-Oriented Composition Approaches 115
5.6.3 Semantic Approaches . 116

5.7 Conclusions . 117

6 Web Services Selection 119
6.1 Introduction . 120
6.2 Service Selection Policies Classification . 121
6.3 Towards a flexible implementation of selection policies 123
6.4 Selection Based on Quality of Service . 124

6.4.1 Non-Functional Properties . 124
6.4.2 QoS Service Monitoring . 127
6.4.3 QoS Service Selection . 132
6.4.4 Selection for Service Compositions 138

6.5 Request/Response Initiated Service Selection 140
6.5.1 Service Selection Based on Client Requests 140
6.5.2 Response-Based Selection . 144

6.6 Context-Based Service Selection . 144
6.6.1 Example . 144
6.6.2 Client-Context Monitoring Aspect 145

6.7 Related Work . 147
6.7.1 QoS-enabled Service Repositories . 148
6.7.2 QoS-based Service Selection Frameworks 148
6.7.3 Request/Response Initiated Selection Approaches 149

6.8 Conclusions . 150

iv CONTENTS

7 Client-Side Web Services Management 151
7.1 Introduction . 152
7.2 Examples of Management Concerns . 153

7.2.1 Billing . 153
7.2.2 Caching . 157

7.3 Feature Interaction . 163
7.4 Conditional Management Concerns . 165
7.5 Meta-level Management Concerns . 166
7.6 Distributed Management Concerns . 168
7.7 Related Work . 169
7.8 Conclusions . 170

8 Development and Deployment of a Prototype 173
8.1 Introduction . 174
8.2 Travel Agent Example . 174
8.3 Implementation of WSML Aspects . 176

8.3.1 Overview . 176
8.3.2 Aspect Skeleton Generation . 177
8.3.3 Semantic Matchmaking for Service Mappings 178
8.3.4 High-level Service Composition Specification 181
8.3.5 Aspect Template Library . 183

8.4 Stakeholders . 185
8.5 Prototype . 187

8.5.1 Overview . 187
8.5.2 Design . 187
8.5.3 Realisation of Quality Development Attributes 191
8.5.4 Synergy between WMSL Research and JAsCo Research 194

8.6 WSML Deployment on SEP . 195
8.7 Discussion on AOP in Enterprise Service Bus (ESB) 199
8.8 Conclusions . 200

9 Conclusions 203
9.1 Summary and Contributions . 204
9.2 Future Work . 207

9.2.1 High-Level Business Rules Language 207
9.2.2 Usability Analysis . 208
9.2.3 Process Description Language . 209
9.2.4 Performance Modelling . 209
9.2.5 Distributed WSML . 209

List of Figures

1.1 The Web Services Management Layer . 7
1.2 Just-in-time Integration of Web Services with WSML 9

2.1 Service-Oriented Architecture . 18
2.2 The Web Services Protocol Stack . 21
2.3 The different parts of WSDL document to describe a Web service 26
2.4 The Web Services Stack (revisited) . 29

3.1 Invoking a Web service Using a Dynamic Proxy 45
3.2 Invoking a Web service using DII . 47
3.3 SOAP Message Handlers at Client and Service Side 53

4.1 The WSML Interfaces . 59
4.2 The WSML as Mediation Layer and/or Service Broker 60
4.3 The WSML as Intermediary Component in a Client/Server Model 62
4.4 The WSML in a Ubiquitous Environment 63
4.5 Modularised Architecture of the WSML . 65
4.6 Detailed Architecture of the WSML with Aspects 70
4.7 JAsCo Runtime Architecture . 75

5.1 Two Possible Mappings for the Hotel Service Type 83
5.2 Listings for the Figures . 84
5.3 Dynamic Service Binding using Redirection Aspects 85
5.4 Hot-swapping Services through Around Advice Chaining 88
5.5 Exception Handling of Services using a Fallback Aspect 92
5.6 Multiple Services Binding in the WMSL . 95
5.7 The Different Parts of a Service Redirection Aspect 97
5.8 Holiday Service Composition . 110
5.9 A Service Type is mapped to a Web Service or a Service Composition . . . 112

6.1 Service Monitoring and Service Selection Aspects in the WSML 124
6.2 Monitoring a Web Service with Virtual Mixins 129
6.3 Cooperation of multiple Selection Policies 139
6.4 Two Scenarios for Service Selection Based on Client Requests 142
6.5 Client-Context Monitoring Aspect . 146

7.1 Enforcing Service Payment Procedures through Billing Aspects 155
7.2 Global Caching of Service Results through a Caching Aspect 160
7.3 Local Caching of Service Results through a Caching Aspect 162

vi LIST OF FIGURES

7.4 Functional and Meta-level for Joinpoints . 167

8.1 Possible Scenario for Travel Agent Application 175
8.2 WSML Matchmaking Algorithm . 179
8.3 Implementing and Deploying Redirection Aspects 186
8.4 Implementing and Deploying Selection and Management Aspects 186
8.5 Conceptual UML Class Diagram of the WSML 189
8.6 WSML Layered Architecture . 190
8.7 WSML Monitoring Console . 192
8.8 Alcatel Bell Service Enabling Platform (SEP) 197
8.9 WSML-SEP integrated platform . 198
8.10 Applicability of AOP in SOA . 200

List of Tables

2.1 Comparison of Different Middleware Technologies 34

3.1 Comparison of Different Service Integration Approaches 48
3.2 Comparison of different Service Management Approaches 54

5.1 Comparison of Evaluated Web Service Composition Approaches 116

6.1 QoS Service Selection . 122
6.2 Service Selection Based on the Client or the Service 122

8.1 Degrees of Mismatching between Service Types and Web Services 180

viii LIST OF TABLES

Code Fragments

3.1 Invoking a Web Service in Java . 52
4.1 JAsCo Aspect implementing an AccessManager 73
4.2 Connector for the AccessManager Aspect 74
5.1 Service Redirection Aspect for Hotel Service A 86
5.2 Connector for Hotel Service A . 87
5.3 Service Redirection Aspect with Changeable Endpoint References 90
5.4 Connector for Hotel Service A with Endpoint Reference Setting 90
5.5 Fallback Aspect for Hot-swapping . 92
5.6 Conditional Binding with a Service Redirection Aspect 94
5.7 Asynchronous Invocation of a Web Service 99
5.8 Asynchronous Web Service Redirection Aspect 100
5.9 Conversational Service Redirection Aspect 105
5.10 Pro-actively Login in all Web Services Through Broadcasting 107
5.11 Conversational Replay Aspect . 108
5.12 A Service Composition Redirection Aspect for Hotel Service B 110
5.13 A Service Composition Redirection Aspect for Holidays Bookings 111
6.1 Monitored Web Service Virtual Mixins Interface 130
6.2 Service Monitoring Aspect with Virtual Mixins 131
6.3 Connector for Monitoring Aspect . 132
6.4 Service Selection Aspect for an Imperative Policy 135
7.1 Service Payment Aspect for Pay-per-use . 156
7.2 Billing Connector for Service Payment Aspect 157
7.3 Billing Aspect for Booking Fees . 158
7.4 Service Caching Aspect . 161
7.5 Global Caching Connector for the Service Caching Aspect 161
7.6 Local Caching and Billing Connector for Service Caching Aspect 165
8.1 XML Deployment Descriptor for a Caching Aspect 184
8.2 XML Configuration Descriptor for an instance of a Caching Aspect 184

x CODE FRAGMENTS

Chapter 1

Introduction

2 Chapter 1. Introduction

1.1 Context

A Service-Oriented Architecture (SOA) is an architectural style for application integration.
Its goal is to achieve loose coupling among interacting software agents, based on the notion
of services [PG03]. A service is a unit of work done by a service provider to achieve a desired
end result for its customers. One of the most suited technologies to realise a SOA is Web Ser-
vice Technology because of its hardware and platform independent nature. Essentially, Web
service technology provides a reasonably lightweight and open standards-based mechanism
for computer-to-computer communications in heterogeneous environments. Web services
are self-contained, self-describing modular components that communicate with clients us-
ing XML messages. Although a single Web service can implement and provide some useful
functionality, the true value of Web services is realised when multiple Web services are
composed together to offer some added value in a client application or another Web service.
Possibly, a composed application or service needs to connect to a large collection of remotely
hosted and managed Web services.

Web service technology has advantages in multiple domains. In the most straightfor-
ward scenario, a remote Web service is simply used to provide some fundamental piece of
functionality to a client application. If the missing functionality is already available, it is
more efficient to reuse it instead of rewriting it from scratch. Similar to the reuse of existing
components in Component Based Software Development (CBSD), Web service technology
can be adopted to reuse existing software components. The philosophy of CBSD is even
taken to a next level, as Web services are already deployed components, realising resource
sharing and component reuse in a hardware and platform independent manner.

Composing Web services together in a more complex fashion to realise a SOA also has
potential in the Enterprise Application Integration (EAI) domain as Web services can enable
interoperability between individual applications. The wide adoption of custom software
throughout virtually every department of most companies has resulted in a vast array
of useful but isolated islands of data and business logic [MSDN04]. Due to the varied
circumstances under which each was developed, and the ever-evolving nature of technology,
it is a complex task to create a functional assembly from these applications. By exposing the
functionality and data of each existing application as a Web service it becomes possible to
create a composite application that uses this collection of services to integrate an apparently
disparate group of existing applications. As such, Web service technology is also a powerful
approach to constitute end-to-end workflow solutions. These mechanisms are appropriate
for long-running scenarios such as those found in business-to-business (B2B) scenarios. As
different companies expose their business functionality to customers, a global market of
services is realised. Service clients can then browse public market places to find services
offering specific business functionality and integrate with them.

Basically, there are two ways to create a SOA: the first scenario involves the imple-
mentation of an inter- or intra-organisational process with a fixed number of partner roles.
Based on a choreography or workflow specification, each partner implements a Web service
to fulfil a specific role in the business process. Any modification to the process implementa-
tion in a later stage requires a new agreement between the partners before the modification
can be deployed. The second scenario takes more advantage of the loosely coupled nature

1.2 Problem Statement 3

of Web services: an application is built independently from any concrete services; partner
roles are specified that need to be filled in by concrete services at runtime. In this approach,
just-in-time integration of services becomes crucial: the entire process of service discovery,
selection, composition and integration is deferred until runtime. This dissertation focuses
on the second scenario: a client application is developed independently of the concrete Web
services it requires; only at runtime, concrete third party Web services are integrated in the
client.

1.2 Problem Statement

An impressive range of both commercial and open-source development tools enable the
creation, deployment and management of Web services at the server-side [Chin03, KR03,
Kirt00], but the dynamic integration of Web services at the client-side remains a hot research
topic. After studying the current standards and practices in Web services, we observe a
number of shortcomings that hamper the deployment of a SOA in a continuously evolving
service environment. Although loose coupling is one of the key principles of a SOA and
Web Service technology, we observe that service clients still need to co-evolve with the Web
services they communicate with. We identified the following client-side issues:

1.2.1 Integration of Web services

Client applications that integrate Web services using current technologies are rather inflex-
ible as they hard-wire references in the client application and offer only limited, anticipated
support to redirect calls to other semantically equivalent services. This is however a serious
limitation: because the context of Web services is an ever-changing business environment,
the client application is not flexible enough to deal with changes in the functionality, dis-
placement or usage of the integrated Web services. After all, services can become unavail-
able due to unpredictable network conditions or service failures, new services can become
available and old ones can be taken out of business.

Furthermore, services can have incompatible interfaces requiring glue code in order to
be integrated. It is also possible that services only offer partial compatibility, or that
multiple services need to be combined together in a composition in order to be functionally
compatible with the client. At the moment, a client application can only deal with these
issues if code is explicitly provided in advance for these purposes. However, the code of
the client application cannot deal with unanticipated events, code reusability is impossible
as the code is context specific and last but not least, the code is hard to maintain as it
may get spread around in the client at every place service functionality is needed. A more
flexible service integration mechanism is needed that can adapt to these constant evolutions
without having to stop, or worse, rewrite the client application code.

4 Chapter 1. Introduction

1.2.2 Selection of Web services

A second limitation encountered is that services can only be selected based on the func-
tionality they offer. However, with a powerful and flexible service integration mechanism
in place, the need arises to specify selection policies that guide the process of determining
the most appropriate service for a given client request, based on non-functional properties.
With the appearance of loosely coupled Web service technology, selection becomes more
important as the whole integration and composition process becomes volatile. Today, selec-
tion might be based on the fact that all services must belong to a specific business partner,
but tomorrow services need to offer a specific Service Level Agreement (SLA) in order to
become eligible. Current service documentation does not support the explicit specifica-
tion of non-functional requirements such as constraints based on Quality-of-Service, classes
of service, access rights, pricing information, etc. The explicit specification of these non-
functional properties at the service-side in a precise and unambiguous way would allow for a
more intelligent and customised selection and integration of services at the client-side. This
way, client applications are able to base their decision on business requirements in order
to integrate the services that best fit the applications needs. Also Web service behavioural
properties such as the actual response time or the uptime over the last month may be
candidates to guide the selection process. In that case, more advanced monitoring of the
services is required. Again, these requirements may evolve over time: today the fastest
service might be preferred, but tomorrow the cheapest service might be more appropriate.
At the moment, there is no uniform way to represent and specify these selection policies,
independently from the client application, and to enforce them in the client at runtime. A
more advanced mechanism dealing with service selection is needed.

1.2.3 Client-side Management of Web services

To aid in the construction of large-scale distributed systems, many software developers have
adopted middleware approaches. Middleware facilitates the development of distributed soft-
ware systems by accommodating heterogeneity, hiding distribution details, and providing
a set of common and domain specific services. However, as pointed out in [CBR03], mid-
dleware itself is becoming increasingly complex; so complex in fact that it threatens to
undermine one of its key aims: to simplify the construction of distributed systems. Addi-
tionally, [ZJ03] describes that the sheer volume of middleware standards and technologies
as being a contribution to this complexity. Middleware particularly suffers from increased
complexity when addressing concerns of a crosscutting nature.

In case of Web services, service invocation become increasingly complex as additional
code is required to deal with various management concerns. Besides the fact that one is
dealing with remote procedure calls, the issue arises that the client application is becoming
dependent on services that are not under control of the owner of that application. This is
referred to as organisational fragmentation of the application: the application becomes a
multi-partner process, introducing a wide range of issues, including latencies, asynchronous
Web service invocations, a myriad of separate failure nodes, security issues, etc. [Szyp01].
An important obstacle arises as the Web service most likely enforces a set of concerns on
the client: e.g., the communication with the service needs to be encrypted, the client needs

1.3 Research Objectives and Approach 5

to authenticate itself, payments are needed before the service can be used, etc. All of these
concerns will need to be reflected in the code of the client. And as the services belong to
different domain controllers, these requirements might change independently, on a frequent
basis and even without notice.

Another issue involves the set of concerns the client wants to enforce to guide the service
invocation process, for instance to deal with service failures. Other examples include the
deployment of a caching mechanism to avoid expensive calls over the network, or the use
of pre-fetching mechanism to avoid long waiting times. For low-level concerns such as
providing a client ID in every message sent from a client to a service, message handlers
provide a limited solution, as this approach provides a mechanism for adding, reading
and manipulating the header blocks of the messages sent to and received from services.
However, higher-level concerns whose deployment is not limited to the message handling
level are not supported. To deal with issues such as multiple advanced billing scenarios,
additional code has to be included in the client application, possibly resulting scattered and
tangled with code addressing other issues. Even if this code is encapsulated in a separate
reusable module, its execution has to be triggered repeatedly from the different points in
the application where Web service functionality is required. As a consequence, management
code results duplicated and scattered over the application, becoming an obstacle for future
maintenance. Furthermore, these dependencies create a burden for the developer, as he has
to reconfigure, stop and sometimes even rewrite client code whenever the service changes.
A flexible client-side management mechanism is required to deal with these concerns in a
transparent way for the client application.

1.3 Research Objectives and Approach

1.3.1 Objectives

The observation that service clients need to co-evolve with the Web services they integrate
with is not surprising as it is practically impossible to eradicate incompatibilities between
two independent parties through standardisation. Despite the wide variety of available
standards and the continuous investment in standardisation initiatives, there will always
arise problems due to political, technical, geographical or philosophical boundaries and due
to required adaptations to the context in which the application is deployed. Instead of
relying completely on standardisation it is a good design practice to assume incompati-
bilities will arise, and to put mechanisms into place to easily resolve them. However, the
current Web service integration approaches fail largely in providing such mechanisms. Our
goal is not to merely fix the flaws in the current Web services stack and technologies, but
to provide a solution for dealing with dynamic and heterogeneous services environments
without depending on the current status of the Web services standards, as they will evolve
tremendously over the next years.

A global objective of this dissertation is to develop a mediation framework for the
integration, composition, selection and client-side management of Web services targeted at
a continuously evolving service environment. This framework must offer support during
the development, deployment and runtime cycle of service-based applications while meeting

6 Chapter 1. Introduction

real-world requirements. The premise of this dissertation is that Web services are offered
on a network, typically the Internet, by a series of third-party service providers, while
imposing restrictions and requirements on their clients. It is up to the clients to comply with
these requirements trough mediation rather than standardisation. Therefore, the proposed
framework must allow for the complete decoupling of the Web services consumed in a client
application and adapt to any requirements and evolution in these requirements, imposed
by the service environment.

We observe that code dealing with service integration and composition result scattered
and tangled in the client application. Furthermore, the enforcement of various selection
policies and client-side service management concerns clutters the client code even more.
As each of these concerns may evolve independently, we strive to a better separation of
concerns [Parn72] in the implementation. To obtain our global objective, we propose to
adopt Aspect-Oriented Programming (AOP) principles [KLM+97, EFB01, FICA04]. With
AOP, crosscutting concerns are modularised in additional module constructs, named aspects.
These aspects can be woven into the core application at well-defined points. We claim
that service communication and composition details, selection policies and management
concerns are all suitable candidates to be modularised in aspects. In addition, the runtime
adaptations required in our service context can be realised by exploiting dynamic aspect-
oriented technologies. With dynamic AOP, aspects can be introduced in the core application
using runtime weaving techniques. By adopting dynamic AOP, the necessary flexibility is
provided for successfully realising just-in-time service integration and to adapt to changes
in the service environment. This leads us to the following thesis hypothesis:

“By modularising service related concerns into aspects and by exploiting dynamic
aspect-oriented technologies, a reusable mediation framework for the just-in-time
integration, composition, selection and client-side management of Web services
in a continuously evolving service environment is realised.”

1.3.2 Our Approach

1.3.2.1 Web Services Management Layer (WSML)

To address the shortcomings of existing Web service integration approaches, which are anal-
ysed in detail in chapter 3, we propose an architectural framework for the mediation of Web
services in client applications. An abstraction layer, called Web Services Management Layer
(WSML), is placed in between the client and the world of Web services, as depicted in Fig-
ure 1.1. On the left-hand side, the client requests service functionality without referencing
the concrete Web services. The WSML is responsible for intercepting the client requests and
choosing the most appropriate service available on the right-hand side or combining a num-
ber of services together in a composition, invoke them in a manner that complies with any
management requirements imposed by service providers and return the results to the client.
Using the WMSL for service-oriented applications has the advantage that more robust and
flexible applications can be developed without having to rewrite service-related code. Fur-
thermore, replacing the Web service-specific invocations with generic service requests and
extracting all extra web-service selection and management code from the client applications

1.3 Research Objectives and Approach 7

Web Service

Client Web Service

Web Service

WSML

Service
Integration

Service
Composition

Service
Selection

Service
Management

Figure 1.1: The Web Services Management Layer

facilitates future maintenance of the client application code. The main architecture of the
WSML is presented in chapter 4.

In short, the WSML is responsible for the entire process of discovery, selection, compo-
sition, integration and client-side management of all Web services consumed in the client
application. The WSML approach builds on top of existing Web service standards, and fits
into the paradigm of the Enterprise Service Bus (ESB). An ESB is software infrastructure
that simplifies the integration and flexible reuse of business components using a SOA. The
WSML, with its capability to dynamically connect, mediate and control the communication
between service requestors and service providers, fits perfectly in this vision. The WSML
can run in the same environment as the client or it can be deployed on a different machine
as a dedicated server. The latter scenario has advantages in a large-scale environment were
multiple clients need to be managed.

To realise a flexible and dynamic service framework, we argue that Aspect-Oriented
Software Design (AOSD) principles [KLM+97, EFB01] can be of great benefit. Using
current approaches, code tackling different service related concerns, results tangled and
scattered in the client. Using Aspect- Oriented Programming (AOP), these concerns can
be nicely modularised and can evolve independently of the client. Furthermore, by using a
dynamic AOP technology, these concerns can be plugged in and out at runtime, depending
on the client and service environment. Chapter 4 gives an overview of the principles of AOSD
and argues why AOP is a suited technology to implement the WSML. Also, the dynamic
AOP language, JAsCo [SVJ03], is presented. With JAsCo, aspects can be specified in a
reusable way, and deployed at runtime using dedicated connectors. The JAsCo technology

8 Chapter 1. Introduction

is based on a genuine runtime weaver [VS04, DVS05] that supports the physical weaving,
unweaving and reweaving of aspects at runtime, even at previously unadvised joinpoints.
The code examples, given in the remaining chapters are given in JAsCo, unless indicated
otherwise, and the prototype of the WSML is implemented in this language. The prototype,
and the tool support offered in our framework during the development, deployment and
runtime cycle of a SOA are discussed in chapter 8.

1.3.2.2 Just-in-time Integration of Web Services with WSML

When the WSML intercepts a generic service request from a client, it must redirect this
call to the most appropriate service. First, a pool of functionally compatible services must
be available. Services are found on the network through a service discovery process. Next,
functionally compatible Web services are integrated during a service integration process.
After this, the WSML is able to redirect client calls to these integrated services. The
WSML will decide which of the services in the pool is the most appropriate based on a
set of, possibly cooperating, selection policies. This process results in the selection of the
most optimal service, which will be addressed in the service invocation process. Alongside
these processes, the WSML is also involved in the client-side management of all registered
services.

Figure 1.2 depicts the development, deployment and runtime stages of a client appli-
cation cooperating with the WSML. In the development phase, the client application is
implemented and required service functionality is described by Service Types, i.e. abstract
service interfaces that do not reference concrete services. At deployment time, the client ap-
plication is deployed, together with the WSML hosting the service type(s). Next, concrete
Web services can be integrated and addressed at runtime. This just-in-time integration
process of Web services consists of four steps:

Service Discovery: Available Web services are discovered on the network using an
automated look-up mechanism or a registration process. Typically, service providers register
their services in a registry or repository where potential clients can find them.

Service Integration: A matchmaking process will determine the level of compatibility
between the service types and the found Web services. A mapping process is needed to
resolve incompatibilities between both parties. In a composition process multiple services
are composed together to offer the required functionality.

Service Selection: Whenever multiple Web services or service composition are avail-
able to deliver the functionality described by a service type, a selection process is needed to
determine which service(s) are most appropriate. This process is based on a set of selection
policies, specified by the client application.

Client-Side Service Management: To cope with the more complex nature of service
invocations, additional management concerns including security, logging and payments need
to be enforced in the client.

Each of the processes will be discussed in further detail in the next four subsections.

1.3 Research Objectives and Approach 9

Web Service Discovery

Service Type
Specification

Client Application
Development

Client Application
Deployment

Service Type
deployment

Web Service
Lookup

Web Service
Registration

Web Service Integration

Client Application
Service Request

Web Service
Invocation

Web Service
Client-Side

Management

Service Selection
Policy Specification

Management
Concern Specification

Web Service
Selection

Development

Deployment

Runtime

Web Service
Matching Web Service

Composition

Web Service
Mapping

Figure 1.2: Just-in-time Integration of Web Services with WSML

10 Chapter 1. Introduction

1.3.2.3 Dynamic Service Discovery

Integrating a remote Web service in a client application starts with the process of service
discovery¸ i.e., finding somewhere a service that actually delivers the functionality needed
in the client. A Web service broker can be used for this purpose: the broker looks up a
suitable Web service in a repository or registry and returns information to the client about
the service so that the client can invoke it. This process depends heavily on the available
service documentation: the more information is available in the repository, the easier it
becomes to find the service that best fits the needs of the client. Adequate service docu-
mentation includes business information about the service provider, the service interface,
the semantics of the offered functionality, technical binding details, etc. At the moment,
Universal Description, Discovery, and Integration (UDDI) [BCC+04b] is the standard to
discover Web services. The UDDI specification defines open, platform-independent stan-
dards that enable businesses to share information in a global business registry, discover
services on the registry, and define how they interact over the Internet.

Currently, only private UDDI-based repositories are used, but it is expected that over
time public repositories will become widely available. Typically, browsing for compatible
Web service is done manually at development time of the client. Using taxonomies and
classification schemas, compatible services can be found and integrated. Automating this
process is a research domain on its own. Approaches can be found in the ontology domain:
by semantically annotating all service capabilities [ABH+02, PV04] and by advanced query-
ing of the repository, compatible services can be looked up. Researching more advanced
service documentation, and automating service discovery is not part of this dissertation.
For the main part of this work, we assume a mechanism is in place to create a service pool
of functional compatible or partially compatible Web services. This mechanism can be a
manual process where Web services are looked up in UDDI-like repository and added to the
pool. Or it can be a more automated process, for instance based on ontologies. While it
is not part of the core of this dissertation, we have done experiments [CVS+04b] with en-
riching Web service documentation and service requests by adding ontological data in order
to assist in the process of service discovery and integration. These results are described in
chapter 8.

1.3.2.4 Dynamic Service Integration

With a service pool of compatible services available to the client, a mechanism is needed to
integrate and invoke these services at runtime. Current integration approaches are typically
based on client-side proxies: a proxy is generated at client-side based on a functional service
description in the Web Services Description Language (WSDL) [CCMW03]. WSDL provides
an abstract way to describe the capabilities of Web services. It describes for service clients
how to format service requests, and how service responses will look like. WSDL also defines
a service’s binding to a network transport protocol, usually HTTP. This information suffices
to create a client proxy that acts as a local representative of the remote service. By invoking
a method on this proxy, a Service-Oriented Access Protocol (SOAP) [GHM+03] message
is created and sent to the service and the result is passed back to the client. However,
this results in a tight coupling between the client and the service, as the service interface

1.3 Research Objectives and Approach 11

is hard-coded in the client. Even more flexible solutions such as dynamic proxies and
dynamic interfaces [Sun05] which allow for more decoupling still put many restrictions: only
services that exactly implement the same interface can be integrated, or they leave the whole
mapping between interface differences to the client. In our approach, the WSML takes care
of the integration in a completely transparent way for the client. The client communicates
with abstract service types that are mapped by the WSML to concrete services. Any kind
of service that offers the required functionality can be addressed as our mechanism offers
full support for compositional mismatches, i.e., allowing for the integration of services with
different interfaces; and for service compositions, i.e. services that collaborate together to
offer the required functionality to the client. The mechanism also supports conversational
messaging, i.e., when both the client and the service need to keep track of the state of the
conversation, for instance to improve performance, or to implement specific business logic.

With our approach, the application becomes more flexible as it can continuously adapt
to the changing business environment and communicate with new services that were un-
known or unavailable at deployment time. By realising full decoupling between the client
and the services, hot-swapping can be realised when a service becomes unreachable due to
network conditions or service-related problems. In the WSML, we modularise Web service
communication details and composition patterns in redirection aspects, and we exploit ad-
vanced dynamic AOP techniques to realise this integration mechanism. The results of this
research are the subject of chapter 5.

1.3.2.5 Dynamic Service Selection

With the powerful service integration mechanism of section 1.3.2.4 in place, the need arises
to specify service selection criteria. As such, applications are able to base their decision on
business requirements in order to integrate the services in a more intelligent and customised
fashion. A selection policy specifies a constraint that should be enforced by the service in-
tegration mechanism. We have identified different kinds of selection policies, based on the
kinds of events that may trigger a policy. Policies can be triggered due to client-side events,
service-side events, or they can be based on non-functional properties advertised in service
documentation or even on the runtime behaviour of the services. Depending on the type of
selection policy, more advanced service documentation might be required. The documen-
tation provided in WSDL format for example, does not support the explicit specification
of non-functional requirements. Research efforts, e.g. the Web Services Offering Language
(WSOL) [TPP03], are currently undertaken to provide a more expressive documentation
language. In this dissertation we do not attempt to enhance the service documentation but
expect that the current efforts will ultimately lead to a standardisation process. Our ap-
proach focuses on enforcing the selection policies at runtime and it is assumed this process
can be made compatible with any kind of documentation format.

A selection policy can specify a hard constraint on an individual service or might specify
a soft constraint on multiple services. Some constraints can be enforced at any given
moment while other ones only over a period of time. In our approach, selection policies
can be specified independently of the client, and enforced at runtime without changing any
code in the client or service. At specification level, policies are specified in a dedicated XML
configuration language, and at the implementation level, selection aspects represent policies.

12 Chapter 1. Introduction

Encapsulating selection policies in aspects has the advantage that the code representing
the policy is modularised, and that they remain a first-class entity in the code. Using
dynamic AOP, the policies can be enabled and disabled at runtime, reflecting at any time
the business requirements of the client. To monitor the behavioural properties of services
over time, we propose a mechanism based on monitoring aspects to introduce measuring
points non-invasively. By providing a library of reusable monitoring and selection aspects in
the WSML, service selection becomes possible through configuration and administration of
the WSML, rather than through additional implementation efforts. This also eliminates the
requirement for the administrator of the WSML to have aspect-oriented knowledge, which
enhances usability. Chapter 6 discusses our research on service selection and monitoring.

1.3.2.6 Client-side Service Management

To cope with the more complex nature of service invocations, additional client-side code
dealing with various management concerns is required. As these concerns may vary over
time, a flexible mechanism is needed to enforce these concerns non-invasively. We propose a
mechanism, complementary to SOAP message handlers, that deals with higher-level client-
side management concerns. Again, we opt to cope with these concerns by modularising them
in management aspects and deploy them for those services that require it at runtime by using
dynamic AOP. While SOAP message handlers can only be triggered when messages come
in or are sent out to a service, our approach is more flexible as it benefits from the richer
expressiveness available in AOP languages. Using aspects to implement the management
concerns has similar benefits as using selection policies: each concern is cleanly modularised
in one aspect, non-anticipated concerns can be implemented in aspects and enforced in an
oblivious manner in the client, and code reusability is achieved by generalising the concerns
in patterns. An aspect library is available for a wide range of concerns, and configuration
using an XML configuration language allows for the instantiation and deployment of the
aspects. Again, this eliminates the need for the WSML administrator the have aspect-
oriented knowledge.

An important issue that arises when various concerns are introduced in the system at
runtime, possibly at the same points in the system, is feature interaction as a result of the
fact that the concerns are not always orthogonal [Za03]. For example, if a billing mechanism
is enforced to pay the service before it is invoked, and a caching mechanism retrieves cached
results instead of actual invoking that service, then it is possible that both concerns interfere
with each other. In AOP, several approaches have been proposed in order to make the
composition of aspects more explicit, examples are Strategic Programming Combinators
[LVV03] and treating aspect composition as function composition [WKL03]. In the WSML,
a programmatic approach of JAsCo for explicitly representing aspect compositions, named
combination strategies, is employed to avoid interaction issues.

Client-side management of Web services is the topic of chapter 7. Examples of supported
management functionalities are:

• Caching: to avoid slow response times, lost packages, congested networks, and reduce
the network traffic a caching mechanism can be considered. Instead of invoking the

1.4 Contributions 13

services each time the application requests specific service functionality, the results
are retrieved from a cache.

• Billing: services can have a variety of billing strategies. The client application might
want to control how billing is applied, for instance for auditing purposes. Analogously,
services might need to be billed as a requirement for their integration with a client
application.

• Logging: many industries are required to provide tracing and logging capabilities for
accounting as well as regulatory purposes.

• Versioning: new versions of a Web service, offering new capabilities, might be in-
troduced alongside an older version, or replacing it.

• Fallback: a variety of client-side scenarios are possible to recover from a service
failure, including compensation handling, hot-swapping to another service, sending of
notification, etc.

• Security: Web services can use several security mechanisms (e.g., WS-Security) de-
pending on the environment where they are deployed. Data sent over the network can
be encrypted and user authentication and authorisation might be required.

1.4 Contributions

The following are the contributions of this dissertation:

• An analysis is made of the requirements needed for Web services middleware in dy-
namic service environments and it is shown how current approaches and state-of-the
art tools fail in achieving these requirements

• Based on this requirements analysis, an architecture for a reusable service mediation
framework, is designed. This framework is targeted at the the integration, compo-
sition, selection and management of Web services in service-oriented applications.
Aspect oriented design principles are adopted to implement this framework and em-
ploy dynamic AOP technologies for flexible and dynamic configuration and to deal
with evolutions in the service environment.

– A dynamic service integration mechanism for Web services with support for
compositional mismatches, service compositions, synchronous and asynchronous
communication and conversational messaging is realised. This AOP-based mech-
anism works completely transparent for the client.

– A service selection mechanism is proposed to guide the runtime selection of
services based on the client or service context, and on non-functional and be-
havioural service properties. Using aspects, selection policies are enforced and
monitoring points are installed at runtime in a non-invasive manner.

14 Chapter 1. Introduction

– A client-side service management mechanism for the enforcement of various ser-
vice and client-side driven concerns is proposed. Management aspects are em-
ployed to enforce these concerns obliviously in the client and explicit combination
strategies help in resolving feature interaction problems.

• A prototype of the WSML written in Java and JAsCo and running on a production
scale server has been developed. Tool support is available for the development of
service-oriented applications in Eclipse, a state-of-the-art IDE. Runtime configuration
of the WSML is possible through web-based administration interfaces and XML-based
configuration languages.

• The WSML is successfully deployed on a Service Enabling Platform (SEP), an open
telecom platform for broadband service delivery of Alcatel Bell. The WSML is in-
tegrated in a SEP prototype to facilitate the integration with different content and
mobile phone providers by using Web service technologies and dynamic AOP.

These contributions are presented in various research conference and journal papers, both
in the Web service and in the aspect-oriented community. First, the Web service related
publications are listed: the main idea of introducing a mediation framework for Web services
at the client-side and the adoption of aspect-oriented principles for its implementation were
first introduced at, and published by [CV03] and in more detail at [VCJ03], focusing mainly
on the dynamic integration mechanism. These results were updated and republished in
[VCV+04]. The approach using aspects for client-side management concerns and solutions
for feature interaction were presented at, and published by [CVJ03]. Adopting AOP for
Web service selection and monitoring was the subject of a second publication at [VCJ04].
All of these topics were merged, updated and published in [CVV+06]. More advanced
redirection using stateful aspects for conversational messaging was presented in a paper
published at [VJ05]. The research results using ontologies for service documentation and
integration appeared in the proceedings of [CVS+04b].

Publications in the aspect-oriented community include an analysis of the applicability
of dynamic aspect technologies for Web services management at [VC04] and the explicit
representation of business rules and selection policies by aspects for service composition
at [CV05]. An experience report of the deployment of the WSML in a telecom environ-
ment was also presented at [VC05]. A complete high-level overview of the applicability of
several aspect categories to unravel crosscutting concerns in Web services middleware is
given in [VVJ06]. Validation of the research was possible through various formal research
demonstrations at [VSV+04], [CVS+04a] and [VSC+04]. The WSML was also the subject
of two demonstrators for the mid-term and end-term review of the industrial IWT-project
MOSAIC1, in collaboration with telecom partner Alcatel Bell.

1The research presented in this dissertation is partially conducted with the support of the Flemish Govern-
ment Project MOSAIC, funded by the “Institute for the Innovation of Science and Technology in Flanders”
(IWT) (“Instituut voor de aanmoediging van Innovatie door Wetenschap en Technologie in Vlaanderen”)

1.5 Outline 15

1.5 Outline

The diagram on the next page outlines the remainder of this dissertation.

Chapter 2 – Web Services Technology
The key principles of Service-Oriented Architecture (SOA) are explained in this chap-
ter, together with Web services as the middleware technology to achieve platform and
hardware independent application integration. The current Web services stack is dis-
cussed, as well as the available tool support to implement and deploy Web services.
The chapter concludes with a comparison of related middleware approaches.

Chapter 3 – Dynamic Web Services Environments
This chapter starts with the introduction of a running example of a travel agent ap-
plication, deployed in a dynamic environment where changes occur continuously in the
service environment, the network and the client. Therefore, the service integration
process, the service selection and the client-side management of the Web services need
a high level of flexibility. An evaluation of current practices is made with respect to
the identified requirements and it is illustrated how these approaches fail at providing
the needed flexibility to deal with any environmental changes.

Chapter 4 – Web Services Management Layer
To deal with dynamic service environments, we introduce a mediation framework for
Web services, called Web Services Management Layer (WSML). This chapter presents
several usage scenarios, the pursued development quality attributes and a high-level
architecture for the framework. To avoid crosscutting code, we opt for a dynamic
Aspect-Oriented Programming (AOP) approach. An introduction and motivation to
AOP and an architecture of the WSML, based on aspects are presented. Also, the
dynamic AOP language JAsCo is introduced.

Chapter 5 – Dynamic
Service Integration

Chapter 6 – Web
Service Selection

Chapter 7 – Client-
Side Service Manage-
ment

Continued on next page

16 Chapter 1. Introduction

Chapter 5 – Dynamic
Service Integration
Just-in-time integration
of Web services while
avoiding hard-wiring
service interfaces in
clients, is the topic of
this chapter. Redirection
aspects modularising ser-
vice communication and
composition details are
introduced and the usage
of aspects in scenarios,
such as asynchronous and
stateful conversational
messaging are discussed.

Chapter 6 – Web Ser-
vice Selection
To realise more intelligent
service selection, policies
are enforced to guide the
selection process. A cat-
egorisation of policies is
made, and for each cate-
gory it is shown how as-
pects are used to enforce
them. Optionally, moni-
toring aspects are used to
setup measurement points
in the system to collect
any required monitoring
data.

Chapter 7 – Client-
Side Service Manage-
ment
Several service manage-
ment concerns need to
be enforced in the client
when dealing with Web
service invocations. In this
chapter we discuss how
modularising concerns in
aspects helps in avoid-
ing crosscutting code and
how each concern can
be enforced non-invasively
at runtime while avoiding
conflicts.

Chapter 8 Prototype
This chapter starts with an overview on how an implementation for the WSML as-
pects can be made. Several options including semantic matchmaking, high-level ser-
vice composition specifications and aspect libraries are discussed. Next, a prototype
of the WSML framework, implemented as a proof-of-concept in Java and JAsCo, is
presented. Its architecture, the provided tool support and the realised development
quality attributes are discussed. As a case study, the WSML prototype has been inte-
grated with the Service Enabling Platform (SEP) of Alcatel Bell, a provisioning system
for broadband Internet applications.

Chapter 9 Conclusions
This chapter concludes the dissertation. An overview of our ideas is given and future
work is discussed.

Chapter 2

Web Services Technologies

Abstract The key principles of Service-Oriented Architecture (SOA) are explained in this
chapter, together with Web services as the middleware technology to achieve platform and
hardware independent application integration. The current Web services stack is discussed,
as well as the available tool support to implement and deploy Web services. The chapter
concludes with a comparison of related middleware approaches.

18 Chapter 2. Web Services Technologies

Service Broker

Service Client Service Provider

Find Publish

Bind

Figure 2.1: Service-Oriented Architecture

2.1 Introduction

A Service-Oriented Architecture (SOA) is essentially a collection of services and service
clients that communicate with each other. The communication can involve either simple
data passing or it can involve two or more services coordinating some activity. A SOA is
called service-oriented because the central idea is that a service client needs a particular set
of services in order to operate. Before the client can request the service, it needs to find a
service provider. A service broker typically operates a repository to provide this location
service. Upon request, the service broker returns a document that allows the client to first
locate and then bind to the provider. Thus, the three key roles in an SOA are service client,
service broker and service provider. Three fundamental operations exist: publish, find and
bind. Service providers publish services to a service broker. Service clients find required
services using the service broker and bind to them. This is depicted in Figure 2.1.

Service-oriented architectures are not a recent invention. In the past, clients accessed
services using a tightly coupled, distributed computing protocol, such as Common Object
Request Broker Architecture (CORBA), Java Remote Method Invocation (RMI), The Open
Group Distributed Computing Environment (DCE) or Microsoft Distributed Component
Object Model (DCOM). While these protocols are very effective for building a specific
application, they limit the flexibility of the system. The tight coupling used in these ap-
proaches limits the reusability of individual services. Each of the protocols is constrained by
dependencies on vendor implementations, platforms, languages, or data encoding schemes
that severely limit interoperability. And none of these protocols operate effectively over
the Web. As a result, these systems are expensive to implement and create proprietary
one-to-one connections. The consequence was a multitude of Electronic Data Interchange
(EDI) standards, with a distinct system for every industry.

One of the challenges of performing integration using these traditional middleware tech-
nologies is the lack of a universal protocol. With the advent of Web Services, the SOA
concept has been more widely adopted because of the use of standards-based technologies.
Web Services are based on the Extensible Markup Language (XML), a common language for
describing data and the Service-Oriented Access Protocol (SOAP), which has become the
primary de facto standard protocol for performing integration between multiple platforms
and languages.

2.2 Web Services Definition 19

2.2 Web Services Definition

Web Services Technology allows applications to expose their business functionality as a
service to be invoked by other applications over a network, in a platform, language and
vendor independent manner. A Web service is a self-contained, modular application that
can be described, published, located, and invoked over a network using industry standards.
Web services do not provide a user interface, but instead, share business logic, data and
processes through a programmatic interface across a network. Web services are characterised
by a great interoperability and extensibility as they can be combined in a loosely coupled
way in order to achieve complex operations. As such, organisations can communicate data
without needing to know any details about each other’s IT infrastructure behind the firewall.

It is a misconception that Web services are a reincarnation of distributed object technol-
ogy [Vogels03]. Web services allow for the creation of distributed systems, as do CORBA,
Java RIM and DCOM. The big difference is that Web services can be based on exchanging
XML documents rather than doing invoking Remote Procedure Calls (RPCs) on distributed
objects. Fundamental to Web Services is the notion that everything is a service, publishing
an API for use by other services on the network and encapsulating implementation details.
Programs providing simple services can interact with each other in order to deliver sophis-
ticated added-value services. Essentially, the term Web services describes a standardised
way of integrating Web-based applications using a series of XML standards over a network.
The following standards make up the most basic form of the Web services protocol stack
(Each of these standards will be discussed in more detail in the next section):

• Service Oriented Access Protocol (SOAP) used to transfer the data between
the entities.

• Web Services Description Language (WSDL) used for describing the services

• Universal Description, Discovery and Integration (UDDI) used for listing
what services are available.

A simple definition for Web Services from Gartner reads: “loosely coupled software compo-
nents that interact with each other via standard Internet technologies”. In 2002 the Word
Wide Web (W3C) consortium undertook an effort to standardise Web Services and their
vocabulary. The Web Services Architecture Working group finished in January 2004 and
published a Web Service Glossary [W3C04]. This document defines Web Services as follows:

“A Web service is a software system designed to support interoperable machine-
to-machine interaction over a network. It has an interface described in a
machine-processable format (specifically WSDL). Other systems interact with
the Web service in a manner prescribed by its description using SOAP-messages,
typically conveyed using HTTP with an XML serialisation in conjunction with
other Web-related standards.”

Because of their platform and vendor-neutral characteristics, Web Services have the
advantage to succeed as middleware technology in the heterogeneous Internet environment.
The following are the key properties of Web Service Technology:

20 Chapter 2. Web Services Technologies

• Loosely Coupled: Two systems are considered loosely coupled if the only mandate
imposed on both systems is to understand the self-describing service interfaces and the
messages sent between them. It also means that each system exists independently of
the other systems it interacts with. This allows individual pieces of the application to
be modified without impacting unrelated parts. Tightly coupled systems on the other
hand, impose a significant amount of customised overhead to enable communication
and require a greater understanding between the systems. Web Services are considered
loosely coupled because of their use of open standards and how they interoperate.

• Universal Data Format: By adopting existing, open XML-based standards over
proprietary, closed-loop communication methods, any system supporting the same
open standards is capable of communicating and understanding autonomous and dis-
parate systems that are exposed as Web Services. The broad industry adoption of
these standards avoids that companies need proprietary technologies that may lock
them in.

• Ubiquitous Communication: A wide variety of platforms and devices are being
connected with each other over the Internet, therefore providing a ubiquitous com-
munication channel. These platforms are becoming more diverse and employing stan-
dardised communication over existing ubiquitous transport protocols such as HTTP
guarantees their interoperability. As will be discussed later, Web Services can run on
a variety of communication protocols.

The Web services standards are maintained by independent, non-profit standards organi-
sations composed of a diverse membership to drive re-use and interoperability. Members
submit various requirements for the standards and agree to a specification after many review
phases, resulting in free and open standards upon which any group can build Web service-
compliant applications and tools. A few of the major Web services standards groups are
the World Wide Web Consortium (W3C), OASIS and the Web Services Interoperability
Organization (WS-I).

2.3 Web Services Interaction

A Web service typically exposes coarse-grained enterprise services that encapsulate some
core business. A Web service client can communicate with a Web service in two patterns:
RPC-based and document-based.

2.3.1 RPC-based interaction

With the RPC-based interaction, the operations of the publicly exposed interface of the Web
service map directly to discrete operations exposed by the underlying application. The XML
of the SOAP messages exchanges is formatted to map to the discrete operations exposed by
that application. Typically, service invocations occur over a synchronous transport protocol
such as HTTP, where the SOAP request and response uses the protocol-level request-and-
response. However, asynchronous interaction patterns and other transport protocols are

2.4 The Web Services Protocol Stack 21

HTTP - SMTP - FTP - etc

XML

SOAP

WSDL

UDDI Discovery

Description

Messaging

Format

Transport

Figure 2.2: The Web Services Protocol Stack

also possible to form synchronous request-response interaction patterns [Tyagi04]. RPC is
a traditional programming model and is at the moment the most popular interaction model
for Web services.

2.3.2 Document-based interaction

Document-based interaction is a fairly new concept. In a document-based interaction, the
service consumer interacts with the service using documents that are meant to be processed
as complete entities. In other words, the document represents a complete unit of informa-
tion and may be completely self-describing. These documents are typically formatted as
XML but documents can also be sent in other formats. Such document-based interactions
are typically long-lived in nature. Because the response cannot be returned immediately
document-based message exchanges are typically asynchronous. The effort and complexity
involved in building a document-oriented Web service is usually more than the effort in-
volved in using an RPC-based architecture. This is because it involves extra steps, such as
designing the schema for the documents that will be exchanged, negotiating and arriving at
an agreement with business partners on that design, and validating the document against
the schema [Tyagi04].

2.4 The Web Services Protocol Stack

In this section we take a closer look at the different layers upon which Web services tech-
nology is built. Figure 2.2 charts the used protocols in a Web Service Stack. Each of the
following subsections deals with one layer of the stack. A reader who is already familiar
with a concept can skip that particular section.

22 Chapter 2. Web Services Technologies

2.4.1 The Transport Layer

The Transport Layer defines how messages are sent from one service to another over the
network. The upper layers of the Web Services stack do not pose any restrictions on which
transport protocol is used, but typically HyperText Transfer Protocol (HTTP), is employed.
HTTP is an application-level communication protocol for distributed, collaborative, hyper-
media information systems and is being used since 1990 on the World Wide Web. It is a
generic, stateless, request/response protocol. A feature of HTTP is the typing and negoti-
ation of data representation, allowing systems to be built independently of the data being
transferred [FGM+99]. HTTP communication usually takes place over TCP/IP connec-
tions. The default port is TCP 80 [RP94]. As a result, Web services running over HTTP
can straightforwardly bypass the firewall of an enterprise, as port 80 is usually open to ac-
cess the World Wide Web. Other possible transport protocols for Web Services include the
Simple Mail Transfer Protocol (SMTP), File Transfer Protocol (FTP), and Java Message
Service (JMS). Most of the discussions and examples in this dissertation assume HTTP as
transport protocol as it is the most commonly used and preferred choice of protocol with
current SOAP-based systems.

2.4.2 The Format Layer

The information sent between two Web services is formatted using the eXtensible Markup
Language (XML), a specification for defining and organising structured data in text format.
XML is a markup-language that can be used to create self-describing, modular documents
(data), programs, and even other languages, commonly referred to as XML grammars.
The real value of XML is not in its innovativeness but rather its industry acceptance as a
common way of describing and exchanging data between otherwise incompatible systems
[Ngh02]. Every major vendor has announced support for XML in one form or another, and
innovative uses for XML are emerging almost daily.

A well-formed XML document follows the syntax of XML and can be completely pro-
cessed by an XML parser. If there are syntax errors in the document, then a parser typically
rejects the entire document. A valid XML document is a well-formed document that can
also be verified against a set of constraints, defined on the individual elements in the docu-
ment through document type definitions (DTDs) and XML schemas. A DTD is an external
document that acts as a template against which an XML document is compared. While
DTDs are useful for data enforcement and validation of XML documents, they have a num-
ber of critical shortcomings. To address several issues and shortcoming of DTDs1, the W3C
produced the XML schema specifications [FW04]. XML schemas do provide support for
namespaces, predefined and user-defined data types. With XML Schema, one can express
syntactical, structural and value constraints applicable to the elements, e.g. to specify what
elements are allowed in the documents, whether they are mandatory, and if there is an
upper bound on the number of an element’s occurrence.

Because XML is a text-based language, it is verbose and therefore human readable. As
1As described in [Ngh02], DTDs lack support for data types, data formats and namespaces (i.e. a

mechanism to avoid name collisions, similar to the concept of packages in Java). Additionally, SOAP, one
of the cornerstone technologies of Web Services, prohibits the use of DTDs in the document declarations

2.4 The Web Services Protocol Stack 23

a downside, documents with complex data sets can quickly become very large. As it was
never designed with conciseness of encoding or efficiency of parsing in mind, its usage for
messaging purposes in Web services does have a performance impact. Web Services do
suffer form poor performance compared to other distributed computing approaches such
as RMI, CORBA, or DCOM. Data is represented inefficiently, and binding requires more
computation. Research initiatives are undertaken to improve performance. For instance,
the Fast Infoset standard draft specifies a binary format for XML infosets that is an efficient
alternative to XML [STP04]. Fast infoset documents are faster to serialise and parse, and
smaller in size, than the equivalent XML document. Note that the flexible and extensible
nature of XML also is a weakness: without a standardisation process, different formats for
the same data structures emerge, which results again in incompatibilities [Ngh02].

2.4.3 The Message Layer

The Message Layer of the Web Services stack consists of the Service-Oriented Access Proto-
col (SOAP) [GHM+03]. SOAP is a specification that defines the XML format for messages
sent between Web services and clients. SOAP originally meant Simple Object Access Proto-
col, but the term has been unofficially redefined to mean Service-Oriented Access Protocol.
It is a lightweight communication protocol, without any advanced features. SOAP is built
on a messaging concept of passing XML documents from a sender to a receiver, also known
as the endpoint. Any link in the processing chain that is not the endpoint is referred to
as an intermediary [Ngh02]. The SOAP specifications allow an intermediary to process a
SOAP message partially before passing it to the next link in the processing chain (which
can be another intermediary or the endpoint).

A SOAP document is composed of three sections: the envelope, the header, and the
body. The envelope is the container for the other elements in the SOAP message and
provides a mechanism to identify the contents of a message and to explain how the message
should be processed. The header element makes it possible to extend SOAP messages
while still conforming to the SOAP specification, for instance to include authentication
information or to specify an account ID for a pay-per-use Web service. The SOAP body
contains the actual content that is being sent.

SOAP also specifies a transport binding framework with support for HTTP, SMTP, JMS
and others. To encode data types SOAP provides a serialisation framework. Since SOAP
had to support multiple languages and operating systems, it had to define a universally
accepted representation for different data types such as float, integer, and arrays. Data can
be passed using these SOAP encoding rules, but it can also be passed using a literal XML
document that validates against some XML Schema. These two options are commonly
referred to as encoded and literal2.

Services may be designed to work on the raw XML payload, but it is more common
for the payload to be mapped or bound directly to data types in the host language. This
mapping is called deserialisation and is possible regardless of whether the payload is a

2The WS-I organisation (WS-I) has defined a number of profiles that specify how one should develop
Web services to be interoperable. Encoded is not considered WS-I compliant. However, all current toolkits
support it.

24 Chapter 2. Web Services Technologies

literal XML document or SOAP encoded as both support common features found in the
type systems of most programming languages and databases. This includes simple types
such as strings, integers, and floats, and complex types, such as structures and arrays. More
complex data types (such as a Hotel class) require custom coding. The reverse process of
mapping objects again to XML, for instance to send a response to the client, is called
serialisation. Toolkits are available to automate this process, a well-known example in Java
is the Axis SOAP toolkit [Apa02]. Typically, a similar serialisation/deserialisation process
takes place at the client side. This is further discussed in chapter 3.

SOAP supports three categories of communication schemes:

• RPC Style Messaging: The SOAP RPC representation defines a programming con-
vention that represents RPC requests and responses. Using SOAP RPC, the developer
formulates the SOAP request as a method call with zero or more parameters. When
the payload is constructed into a single structure the outermost element represents
the name of the method or operation, and the innermost elements represent the pa-
rameters to the operation. The SOAP response is similar with an outermost element
named in relation to the method name and the innermost parameters representing
zero or more return parameters.

• Document Style Messaging: SOAP also supports more loosely coupled communi-
cations between two applications. The SOAP sender sends a message and the SOAP
receiver determines what to do with it. It is entirely up to the SOAP receiver to
determine, based on the contents of the message, what the sender is requesting and
how to process it.

• SOAP with Attachments: By attaching additional files to a SOAP message, non-
XML data can be transported between the client and a service. This specification
uses MIME or DIME to encode messages.

Given the fact that there are two options to encode a SOAP message (literal and encoded),
and that there are two major communication options (RPC and document) there are four
combinations of binding style and data encoding. Many misconceptions exist on the impact
of these different options on the interaction model (see section 2.3) of the Web service,
mainly because of their unfortunate terminology. However, both concepts are orthogonal:
RPC versus document does not imply that RPC-style should be used for RPC interaction
models and that document- style should be used for document or messaging interaction
models. It only indicates the formatting and the representation of the SOAP message on
the wire. Which one is used is just a configuration option with no effect on the behavioural
characteristics of the Web service3. For instance, in the .NET framework a variant of

3This does not imply that it is irrelevant for the Web services developer which option he/she chooses.
Document-Encoded is never used in practice, but the other three combinations each have their own strengths
and weaknesses with respect to overhead in the resulting SOAP message, affecting performance of the Web
service; the XML validation process of the SOAP message; the human-readability of the SOAP message; the
complexity of the WSDL-file that describes the Web service; platform support; etc. An analysis is made in
[Butek05]

2.4 The Web Services Protocol Stack 25

Document-Literal, called Wrapped Document-Literal4 is used, but .NET clients and .NET
Web services do communicate by default via an RPC programming model.

The implementation of SOAP toolkits by different vendors results in some interoper-
ability issues, mainly caused by the infancy of the specification.

2.4.4 The Description Layer

The Web Services Description Language (WSDL) [CCMW03] was created in response to
the need for unambiguously describing the various characteristics of a Web service. WSDL
provides the grammar to describe the details of the Web service’s publicly exposed interface,
such as how it should be invoked, and supplies necessary information for the client to use in
the service invocation. Minimally, the client will need to know the signature of the service,
the wire protocol to be used to send the invocation message, and the location of the service
[Tyagi04]. In essence, WSDL defines a contract that a provider is committed to support
and describes how clients need to format their service requests over different protocols or
encodings. WSDL is used to describe what a Web service can do, where it resides, and how
to invoke it. In order to separate implementation from interface, WSDL does not specify
how a Web service is implemented.

The interaction between the Web service and the service client can be characterised
as a series of message exchanges: the Web service accepts the incoming message, may
return an outgoing message or may throw an exception message. Each type of message
can be described further by listing the data-types and order of its parameters. When
the service has multiple methods, it is possible that some methods exchange the same
messages and that some data types are common across messages. All of these elements are
specified in the abstract description of a WSDL document. Additionally, a WSDL document
contains binding and address information for the Web service, in a second logical part of the
document: the concrete description. This part specifies the exact network address of the
Web service, also known as the Web service endpoint, and the specific protocols the Web
service understands. So, the abstract description specifies the what part, and the concrete
description specifies the where and how parts. This is depicted in Figure 2.3.

Toolkits are available that support the automatic generation and parsing of WSDL-
documents, although, due to the immaturity of the tools, the generated files might still
require manual tweaking, not in the least to fix incompatibilities between different vendors
[Ngh02]. Therefore, Web services developers should still understand the structure of a
WSDL document. The definitions element is the root element containing the remaining
five elements; it defines the name of the service and declares the namespaces used throughout
the document. The following elements make up the rest of the document. First we list the
elements belonging to the abstract description of a Web service (the what part):

• The types element contains the platform- and language-independent data type defi-

4To eliminate weaknesses of the other combinations, Microsoft has introduced a new variation, called
Wrapped Document-Literal. There exists no specification of it, but it is used in the .Net framework. At
the moment, Document-Literal and Wrapped Document-Literal are considered the best options in most
circumstances.

26 Chapter 2. Web Services Technologies

WSDL Document

Abstract Description

Types

Messages

Port Types
Operations

Concrete Description

Bindings
Operations

Services
Ports

what part

how part

where part

Figure 2.3: The different parts of WSDL document to describe a Web service

nitions used by the Web service

• The message elements contain input and output parameters for the service, and
are used to describe different messages that the service exchanges. A message is sent
between the requester and the provider (or vice versa). Each message element declares
a name, value(s), and the type of each value; it does not specify whether the message
is for input or output as this is the role of the next element.

• The portType element represents a collection of one or more operations, each of
which has an operation element. Each operation element has a name value and
specifies which message (from the message element) is the input and which is the
output. An operation can be one-way, request-response, solicit-response, and notifi-
cation. The latter two are simply the ”inverse” of the first two, the only difference
being whether the end point in question is on the receiving or sending end of the
initial message.

The following elements make up the concrete description of a Web service:

• The binding element represents a particular portType implemented using a specific
message and network protocol (the how part). In the WSDL-SOAP binding it is
indicated whether the service uses RPC-style or document style messaging, and if
they have a literal use or encoded use (see previous section 2.4.1.3). If a service
supports more than one protocol the WSDL document includes a listing for each. In
the remainder of this dissertation, we assume SOAP over HTTP as the binding of
choice.

2.4 The Web Services Protocol Stack 27

• The service element represents a collection of port elements, each of which represents
the availability of a particular binding at a specified endpoint, usually specified as a
URL where the service can be invoked. So, a port describes a network location for a
binding (the where part).

2.4.5 The Publication Layer

This Publication Layer of the Web Services stack allows for the publication of Web services
on a central market place where other parties can find and use them. Universal Description,
Discovery, and Integration (UDDI) [BCC+04b] is a specification for repositories of Web
services and their metadata. A UDDI repository contains entries about businesses, the
services these businesses provide, and information on how those services can be accessed.
Businesses use UDDI to register information about themselves and the services they offer
in white, yellow, and green pages.

• The white pages contain general information about businesses, such as their names,
text descriptions, contact information and other unique identifiers.

• The yellow pages classify businesses into taxonomies according to their industries,
products/services, and locations. Examples include the Standard Industrial Code
(SIC), the North American Industrial Classification System (NAICS) and the Univer-
sal Standards Products and Services Classifications (UNSPSC).

• The green pages specify the technical details of invoking specific Web services,
including the address of the service, parameters, etc.

The entries in a UDDI directory are not limited to Web services; UDDI entries can be for
services based on email, FTP, CORBA, RMI, or even the telephone. Both private and
public UDDI repositories exist. Anyone can publish an entry in a public registry, which
has no process to ensure the validity of its entries. Because an entry is not validated, there
may be questions as to whether the business actually exists, whether the services are even
provided, and whether the services are delivered at an acceptable level. Microsoft and IBM
are UDDI operators of two public repositories, called business registries, which are the first
public implementations of the UDDI specification5. A private UDDI on the other hand
offers a company greater control over access to its system and its applications metadata,
as it is easier to enforce certain criteria on an entry before it is published in the repository.
Different variations exist [NGW04]:

• EAI registry. This is useful for large organisations that want to publish commonly
used services by various departments or divisions.

• Portal UDDI. The registry is located behind a firewall. Therefore, the external users
can search for entries, but only the operators of the portal can publish or update the
entries in the portal.

5The Microsoft and IBM business registries are discontinued as of January 2006

28 Chapter 2. Web Services Technologies

• Marketplace UDDI. Only members of the marketplace (typically a closed environment)
can publish and search for services. This type of registry is appropriate for vertical
industries. The marketplace operator can establish qualifying criteria before an entry
is added to the repository and can then provide additional fee-based services such as
certification, billing, and non-repudiation.

The UDDI data model includes an XML schema that provides four major elements
[NGW04]:

• The businessEntity element represents the owner of the services and includes the
business name, description, address, contact information categories, and identifiers.
Upon registration, each business receives a unique businessKey value that is used
to correlate with the business’s published service.

• The businessService element has information about a single Web service or a group
of related ones, including the name, description, owner, and a list of optional bind-
ingTemplate elements. Each service is uniquely identified by a serviceKey value.

• The bindingTemplate element represents a single service and contains all the re-
quired information about how and where to access the service. Each binding template
is uniquely identified by a bindingKey value.

• The tModel element, short for technical model, is primarily used to point to the
external specification of the service being provided. For a Web service, this element
should ideally point to the WSDL document that provides all the information needed
to unambiguously describe the service and how to invoke it. If two services have the
same tModel key value, then the services can be considered semantically equivalent.
This feature is discussed later on in Chapter 3, section 3.3.2.1.

Using a service repository such as a UDDI provides a level of indirection required for dy-
namic binding in clients. This is further discussed in the next chapter. Note that although
WSDL and UDDI are part of the fundaments of Web Services, their use is not obligatory.
A small Web service architecture consisting of a limited set of services, may not require
a central repository to keep track of the available Web services. And a service that does
not have a WSDL description can still be invoked using SOAP if its description is made
available to the client by some other means. Therefore, Web Services are also referred to
as XML Web Services, or SOAP Web Services.

2.5 The Web Services Protocol Stack Revisited

One of the advantages of Web services is that they rely on SOAP as a lightweight commu-
nication protocol. SOAP does not contain any advanced features. For this reason, SOAP is
extensible through its header mechanism. Over the years, several new standards or propos-
als have been suggested in the Web services context. These standards are referred to as WS*
standards, and providing an overview is almost an impossible task. Many of these standards

2.5 The Web Services Protocol Stack Revisited 29

Figure 2.4: The Web Services Stack (revisited)

are still in their infancy compared to more mature distributed computing open standards
such as CORBA. This wide range of standards is also called “acronym hell” because of
the many new abbreviations they introduce. The following picture gives an overview of
the current Web Services stack6. It is not intended as a complete categorisation, but only
lists the most important standardisation efforts. Over the next chapters we will come back
to some relevant standards when discussing service integration, selection and client-side
management.

6Data Source: The Service-Oriented Architecture Practice Portal, February 2005

30 Chapter 2. Web Services Technologies

2.6 Web Services Development

2.6.1 Tool Support

Since the advent of Web Services, a lot of tools have been made available to develop and
deploy Web services. Tool support is available in Integrated Development Environments
(IDE) such as Eclipse and Visual Studio.NET to straightforwardly deploy applications as
a Web service on an application server. Typically, this process is as easy as selecting
the appropriate functionality that needs to be exposed by the Web service, for instance,
in an object-oriented application, selecting all public methods of a class. The developer
does not need to write any infrastructure code as the tool will automatically generate a
WSDL-file and deploy the Web service on a server. These tools also work with existing
applications: both applications written in popular languages such as Java and C/C++,
and legacy systems can be easily Web service enabled.

During Web service development, a strong focus on the design phase of the Web service
architecture is required. The design defines the services, data types, and message formats,
and how they interact. The design can be created in modelling or other graphical tools,
but Web services require that the design also be represented in WSDL documents, as these
document serve as the interface towards other components and services in the architecture.
This design practice is commonly referred to as WSDL-first development or contract-first
development. A mayor advantage of this approach is that it should result in more stable
WSDL documents.

Nowadays, Web services are primarily developed on two platforms: Java and .NET. We
will briefly discuss the characteristics of both platforms.

2.6.2 Java Web Services

Web Service support is provided in the Java 2 Platform, Enterprise Edition platform (J2EE)
through a set of APIs and tools that allow developers to design, develop, test and deploy
both Web services and their clients. The three most important API’s are:

• Java API for XML-based RPC (JAX-RPC) provides a platform for building
Web services applications by hiding from the application developer the complexity of
mapping between XML types and Java types and the lower-level details of handling
XML and SOAP messages. JAX-RPC introduces a method call paradigm by providing
two programming models: a server-side model for developing Web service endpoints
using Java classes or stateless EJBs, and a client-side model for building Java clients
that access Web services as local objects. In spite of its name, it supports both RPC-
based and document-based interaction style Web services. It has become the most
popular way to deal with Web services in Java [LS05]. The next release, version 2.0,
will be renamed JAX-WS.

• Java API for XML Processing (JAXP) supports the processing of XML docu-
ments using DOM, SAP and XSLT. The JAXP API enables applications to parse and

2.6 Web Services Development 31

transform XML documents independently of a particular XML processing implemen-
tation.

• SOAP with Attachments API for Java (SAAJ) enables developers to produce
and consume messages conforming to the SOAP 1.1 specification and SOAP with
Attachments note.

Both commercial and open-source tools with Web services support are available. Web
Services can be deployed on a wide range of J2EE compatible application servers.

2.6.3 Microsoft .NET

The .NET Framework is a common environment for building, deploying, and running Web
services and web applications. It is developed and supported only by Microsoft but inter-
operability is guaranteed through the Web services standards. Two major tools exist:

• Visual Studio.NET is a multi-language development tool. The supported languages
are: Visual Basic, Visual C++, and C#. Third parties support other languages.

• The .NET Framework is a standards-based, multi-language application execution
environment that handles essential plumbing chores and eases deployment. The .NET
Framework improves the reliability, scalability, and security of an application. It
includes several parts: the Common Language Runtime (CLR), a rich set of class
libraries for building XML Web Services, and ASP.NET for building dynamic web
pages.

The initial advantage of .NET over Java was that Visual Studio.NET was the first to hide
away all complexities of making Web service calls. By simply tagging any function call
with a special attribute (called WebService), all infrastructure code to make the actual
call is automatically generated. Nowadays, Java tools are also available that allow for
easy deployment of Web services, so this advantage does not come into play anymore.
Both platforms have their advantages and disadvantages, but it is outside the scope of this
dissertation to go into detail on this. Important to remember is that there are different Web
services implementations supporting the SOAP, WSDL, UDDI standards, and therefore
both claim interoperability. In reality however, interoperability issues do arise, so developers
need to take special precautions when working in mixed environments. In the remainder of
this thesis, we will refer respectively to Java Web Services and .NET Web Services when
the distinction needs to be made.

In the next chapter, we focus on the development of Web services clients, more specif-
ically in the context of dynamic environments. We finish this chapter with an overview of
some related middleware technologies.

32 Chapter 2. Web Services Technologies

2.7 Related Middleware Technologies

2.7.1 CORBA

Common Object Request Broker Architecture (CORBA) is an open standards-based ap-
proach for distributed computing. The Object Management Group (OMG) developed the
specification for CORBA and specified the Internet InterORB (IIOP), the standard com-
munication protocol between Object Request Brokers (ORB). With CORBA, client and
servers can be written in any programming language. This is possible because objects
are defined with a high level of abstraction provided by the Interface Definition Language
(IDL). A compiler is used to do the mapping between an IDL file and a specific programming
language. In order to enable IDL to be translated into various languages, it is limited to
concepts found in all supported languages, thus representing a least common denominator.
The communication between objects, clients and servers are handled to ORBs. In order to
enable communication, compatible ORBs are needed on both sides of the connection. More
complex features are offered through a variety of services. The latest CORBA specification
can be found at [VIN97].

2.7.2 DCE

The Distributed Computing Environment (DCE) is a suite of technology services developed
by The Open Group for creating distributed applications that run on different platforms.
The framework includes a remote procedure call (RPC) mechanism known as DCE/RPC,
and a variety of more advanced services dealing with security, authentication, naming direc-
tories, threading, distributed files, scalability and fault tolerance. The Open Group DCE
RPC specification is available at [RKF92].

2.7.3 DCOM

The Microsoft Distributed Component Model (DCOM) allows calls to remote objects by
using a layer that sits on top of the DCE RPC mechanism and which interacts with the
COM runtime services of the Windows operating system. A DCOM server publishes its
methods to the clients by supporting multiple interfaces. These are written in DCE IDL. A
compiler, similar to the CORBA compiler, creates stubs and skeletons and registers them
in a system registry. The protocol used is Object Remote Procedure Call (ORPC). Because
of the binary level specification of DCOM, various languages can be used to code the server
objects. DCOM supports a distributed garbage collection. Although DCOM is primarily
associated with Windows, ports are available for other operating systems as well.

2.7.4 Java RMI

With Remote Method Invocation (RMI), distributed Java applications can be created, in
which the methods of remote Java object can be invoked from other Java virtual machines,
possibly on different hosts. RMI uses object serialisation to marshal and unmarshal param-

2.8 Conclusions 33

eters and supports true object-oriented polymorphism and distributed garbage collection.
The protocol used for the communication is the Java Remote Method Protocol (JRMP).
No abstract description language is used to describe the remote objects. Clearly, Java is
needed on both ends of the connection. Java RMI is part of the Java language specification
and the latest 1.5 version can be found at [WAL98].

2.7.5 ebXML

Electronic business XML (ebXML) is a set of specifications that enables business to collab-
orate using XML-based technologies. With ebXML, businesses can find each other online
and conduct business based on well-defined XML messages within the context of standard
business processes, which are governed by standard or mutually negotiated partner agree-
ment. ebXML can be considered a top-down approach for business integration, whereas
Web services is a bottom-up approach [San03]. Though ebXML is an approved, robust
standard, its applicability is far narrower than Web Services. As an evolution of EDI, it
primarily addresses the B2B domain only. More details can be found in [HHK02].

2.7.6 Comparison

These middlewares can be considered similar as they follow a universal client/server ar-
chitecture to make distributed systems. The differences are found in the different features
that are supported as well as the level of complexity. They result in a tight coupling and
the same middleware technology is needed on both sides of the wire. In addition, these
middlewares are typically used for intranet applications, as it not straightforward to cross a
firewall. More complex procedures like HTTP tunnelling could make this possible though.
Note that the usage of one middleware technology in a system does not necessarily exclude
another one. For instance, an existing CORBA-based application can be easily exposed as
a Web service. Table 2.1 shows the parallels between the discussed middlewares and Web
services. For an in-depth discussion, we refer the interested reader to [RAJ98].

2.8 Conclusions

Web services technology provides interoperability between software applications running
on disparate platforms. Web services use open XML-based standards and protocols. By
utilising HTTP, Web services can work through many common firewall security measures
without requiring changes to the firewall filtering rules. The real value of Web services is
not its innovative character but rather its industry acceptance as a common way to realise
hardware and platform independent application integration. In recent years, many tools,
both commercial and open-source have been made available to implement service-oriented
applications. These tools hide away the complexity of writing and using Web services from
application developers, which further drives adoption of the technology.

Web services standards for more advanced features such as transactions are currently
non-existent or still in their infancy compared to more mature distributed computing open

34 Chapter 2. Web Services Technologies

Table 2.1: Comparison of Different Middleware Technologies

CORBA RMI DCE DCOM ebXML Web
Services

Publication COS
Naming

Java
Registry

CDS System
Registry

ebXML
registry

UDDI

Description CORBA
IDL

Java
Interface

DCE IDL DCE IDL CPP WSDL

Messaging GIOP Stream PDU / ebXML
Mes-
saging,
SOAP

SOAP

Format CDR Serialized
Java

NDR / XML XML

Transport IIOP JRMP RPC CO ORPC HTTP,
SMTP, ...

HTTP,
SMTP, ...

standards such as CORBA. It is expected, however, that over time more standards for these
features will emerge. A disadvantage of Web services is the poor performance, compared
to other distributed approaches such as RMI, CORBA and DCOM. But also here, research
and new approaches are being proposed to improve the wire efficiency of XML messaging.

Chapter 3

Dynamic Web Service
Environments

Abstract In this chapter a running example that will be used throughout the remainder
dissertation is introduced. Next, requirements for the service integration process, the ser-
vice selection process and the client-side management process of Web services are defined,
with respect to changes and evolutions that may occur in the Web services environment,
the individual web services, the network and the client environment. An evaluation is made
of existing Web service technologies and approaches against the defined requirements. This
evaluation targets tools and technologies available for the client-side development of a SOA
using object-oriented programming languages and that are based on the Web services stan-
dards introduced in the previous chapter.

36 Chapter 3. Dynamic Web Service Environments

3.1 Running Example

Nowadays, if a person wants to book a holiday via the Internet, he or she does not have a
single point of entry to start searching for information and to make reservations. A wide
variety of web sites is available on the web, each providing travel information and allowing
for online bookings. However, a person needs to browse all of these web sites, get acquainted
with the different user interfaces and layouts, and repetitively enter search criteria such as
the destiny, dates, number of persons, etc.) in order to compare different offerings. This
reduces to a large extent the usability of the Internet for this task. Portal sites and web
sites comparing pricing information of several shopping sites can reduce this negative impact
somewhat. However, only sites included in these portal sites can be compared, and typically,
these sites are only available in large countries with a high Internet penetration.

If one wants to create a system linking the different systems of multiple holiday operators
in order to deliver a unified end-user experience, one has to integrate the different back-end
systems, a process that will lead to a variety of integration and compatibility issues. Web
service technology is an ideal middleware technology for this scenario. The rest of this
dissertation will use the travel agent system as a running example. We assume holiday
operators make three different kinds of Web services available:

• Hotel Services: a Web service that returns a list of hotels in a specific destination.
A destination can be a country or a city. The service can also return a list of hotels
with available rooms for a given period of time or a given number of nights. A hotel
reservation can be made for a given hotel and a given period. Additional search and
reservation constraints can be specified including the rating, price range, accessibility
and extra services.

• Flight Services: a Web service that returns a list of possible flights from a given
departure city to a given destination at a given date. The service can look for avail-
able seating, and make and cancel reservations. Additional search and reservation
constraints can be specified including class, food type, seating preference, etc.

• Car Services: a Web service that returns a list of cars that can be rent at a given
destination for a given period of time. The service can look for available cars and make
and cancel reservations. Again, additional constraints can be specified including the
type of vehicle, insurance options, etc.

The travel agent needs to integrate with multiple of these Web services in order to offer a
wide variety of holidays via its web site to its customers. Depending on continuously evolving
business requirements and changing network and service conditions, different services will be
integrated at a given time. However, automating this process is far from straightforward: the
Web services belong to different domain controllers and as a result might differ on several
points including syntactical and semantical differences in the service interface, security
measurements, Quality-of-Service, billing mechanisms, etc. All of these variations need to
be reflected in the travel application, which clearly is a hindrance for a smooth integration
process.

3.2 Introduction to Dynamic Service Environments 37

3.2 Introduction to Dynamic Service Environments

Web services do not have a user-interface but a programmatic interface. They are typically
integrated in one or more client applications, such as the travel agent application described
above. Based on the standards discussed in chapter 2, development tools have been made
available to create clients that communicate with Web services. Typically, proxies are
created at the client side to represent the remote Web service, and it is up to the client to
manage these proxies. This is a practical and suitable solution for a SOA consisting of a
small number of services, for example in intranet environments where the services remain
under control of the same body that controls the client. If any changes need to be made to
the system, they will need to be applied in a controlled manner to deal with changes in the
service that might break the client. In large-scale systems, the number of needed proxies
will grow, and if the Web services belong to different controllers, they will require more
management.

A SOA consisting of these so-called third party Web services poses additional require-
ments on the underlying middleware technology, and this is the subject of this chapter. A
suitable middleware technology requires a high level of flexibility to deal with a wide variety
of runtime changes. These runtime changes can occur everywhere in the environment. In
the following subsections we identify a set of requirements based on events that can take
place in the environment. We distinguish the following four environments:

• Web Services Environment: the Web service environment is defined as all Web
services available in the SOA, including both the services of the third-party service
environment and the management services environment. Each Web service is possibly
hosted by a different provider, and can therefore evolve independently. Web services
can be added all the time to the environment, and existing ones may be removed.

• Individual Web Service: a Web service may be subjected to a number of changes,
ranging from physical relocation of the service, to changes in the Web service inter-
face or its behaviour. Furthermore, a service may be temporarily unavailable due to
maintenance or failures. A Web service is documented by a functional and, optionally,
a non-functional description.

• Network Environment: a remote Web service is reachable over a network. This
can be the unpredictable Internet or a controlled, shielded intranet where certain
assumptions regarding reliability or speed can be made. Network failures, congestion,
loss of packages, routing issues, etc. can result in communication failures with a
remote service.

• Client Environment: the environment in which the client is deployed may vary too.
Clients can run on different platforms and devices, affecting the way communication
with the service environment will take place. Also the state of the client, possibly
depending on the end-user status, may affect service communication.

In this chapter, the applicability of the current Web services technologies and practices
is analysed with respect to runtime changes and evolutions that may occur in any of the

38 Chapter 3. Dynamic Web Service Environments

four environments listed above. This evaluation targets tools and technologies available for
the client-side development of a SOA using object-oriented programming languages such
as Java and C#. The evaluation is not exhaustive, but focuses on approaches 1) made
available by industry and/or standardisation bodies, 2) that are common practice today
and 3) that are based on SOAP, WSDL and UDDI. In the following section, we define
the requirements for the service integration process and discuss current approaches, based
on proxies and dynamic interfaces. Requirements for the service selection process and the
lack of current approaches is the subject of section 3.4. A requirements analysis for service
related management concerns and a discussion of current approaches, including message
handlers, is presented in section 3.5. Finally, we conclude in section 3.6.

3.3 Service Integration Process

3.3.1 Analysis of Requirements

We define the service integration process as the process of finding a Web service that is able
to provide the functionality needed by the client and integrating that service in the client
for the purpose of invoking it. The collection of all compatible services that are integrated
in the client is called the service pool. We will now lists the client requirements needed to
deal with specific events in the service environment, the individual services and the network
that have an impact on this service discovery and integration process.

Category: Services Environment - Event: Multiple Services Available

Dynamic Binding: The client must be able to address all compatible services available in
the service environment. Full support for dynamic integration of Web services requires
dynamic binding of a concrete Web service implementation with the client. By fully
decoupling the client and the services, client requests can be redirected to multiple
Web services and unanticipated Web services can be integrated on the fly.

Hot-swapping: at any time it must be possible to switch between available services in the
service pool. We make the distinction between client-initiated hot-swapping and
transparent hot-swapping, where the client is unaware of the process of service
switching.

Category: Services Environment - Event: Partial Service Matches

Reusable Service Composition: Composing Web services is the process of orchestrating
multiple services in order to let them work together in some way to perform the needed
functionality. This is required when no service can deal with a client request on its
own. A composition can be the combination of one service doing some pre-processing
or conversion of data before passing it on to the main service, but it can also be a
complete workflow where multiple services representing different business identities
collaborate in a business process. Composition should be adaptable to deal with
short-term changes and should be able to evolve to embrace long-term changes.

3.3 Service Integration Process 39

Multiple Services Binding: binding multiple services at the same moment to a client is
an alternative solution when the services present in the service environment only offer
partial matches. In this case, the Web services are complementary to each other and
any request coming from the client is redirected only to one of the services at a given
moment. This contrasts to service composition, where the services have to collaborate
to offer the needed functionality.

Conditional Service Binding: A conditional binding between a Web service and the
client implies the binding only takes place if the Web service is able to handle the
current client request. The characteristics of the request are tested against some
condition evaluating whether the service can handle the request and thus allowing or
disallowing a binding with the client.

Category: Services Environment - Event: Service added or removed

Service Discovery: A service look-up mechanism makes it possible to find new services
available in the service environment and remove old ones that are no longer available.
If no look-up system is needed or available, a registration mechanism can be used to
set up a pool of services that are functionally compatible with the client.

Service Matching: a mechanism is needed to be able to categorise the available services
based on their functional compatibility with the client requests.

Category: Individual Web service - Event: Functional Mismatches

Interface Mapping: If there are mismatches between the requested functionality by the
client and the functionality offered by the service, a mapping is needed to mediate
between the two parties and resolve any incompatibilities. Mismatches can occur
both on the syntactic and semantic level. Other features dealing with functional
mismatches are service composition and multiple service binding.

Category: Individual Web service - Event: Service Versioning

Notification or Detection: Whenever a service provider changes the interface, behaviour
or non-functional documentation of its service, the client must be able to detect these
changes and resolve any incompatibilities, for instance by redoing the mapping pro-
cess. Support for notification and detection is further discussed together with service
selection (chapter 6).

Category: Individual Web service - Event: Service de-localisation

Dynamic endpoint references: The most rudimentary form of runtime flexibility is of-
fering support for delocalisation of Web services. If a remote Web service moves
to another location, this change needs to be reflected in the client by updating the
corresponding service endpoint reference.

40 Chapter 3. Dynamic Web Service Environments

Category: Individual Web service - Event: Latencies; Long running processes

Asynchronous Communication: As performance is a weak point in Web service com-
munication, and as services may implement long-running business processes, it might
be better to invoke services asynchronously, thus not blocking the client while waiting
for a service response.

Category: Individual Web service - Event: Message Protocol

Conversational Messaging: In more complex service-client interactions, the service
might keep state of the conversation with its clients. In that case, the client must
follow the intended communication protocol as specified by the service. Otherwise
the service invocation will result in runtime exceptions.

Category: Individual Web service - Event: Failures; Anomalies; Maintenance

Exception Handling: Because of the complex nature of distributed computing, a large
variety of errors and unexpected situations can occur. For instance, there can be
problems with the connection, serialisation, deserialisation, low-level socket problems,
issues with the parsing of the WSDL file or the service can return declared exceptions
or exceptions of unexpected situations. Also more advanced exceptions related to
security issues such as expired sessions or content may occur and the client must deal
with all of these exceptions.

Hot-swapping: In case of service failures or maintenance, another compatible service can
be addressed.

Category: Network Environment - Event: Failures; Anomalies; Maintenance

Hot-swapping: In case of network failures another compatible service, preferably on an-
other network, must be addressed. In case of general network failure, adequate ex-
ception handling is needed.

3.3.2 Evaluation of Current Practices

3.3.2.1 Proxies

Currently, WSDL (see section 2.4.1.4) is the standard description language for Web services.
A typical usage of a WSDL description is to generate a client-side proxy out of it. A
proxy class defines methods that represent the actual methods exposed by the remote Web
service. This principle is based on the Proxy design pattern [GHJ95]. The proxy acts as a
surrogate or placeholder for the remote Web service and the local components of the client
can communicate with this local proxy. Although a proxy acts as an implementation of

3.3 Service Integration Process 41

the Web service class, it is not a pure class instance. When a proxy method is invoked,
the proxy will transparently initiate the communication with the service by serialising this
method invocation into a SOAP message and sending it to the actual Web service. Upon
receiving response, it will deserialise the response back into the client application runtime
environment and return it to the method invoker. As this process happens in a transparent
manner for the component that invokes the proxy, it hides the complexity by treating the
Web services as regular internal software components. Programmers do not need to take
into account that they are actually dealing with remote procedure calls (RPCs). Typically,
the generated proxy supports the ability to invoke the Web service both in a synchronous
or an asynchronous manner. For instance, the proxy of a hotel Web service providing a
method bookRoom, would contain three methods:

• bookRoom: starts the synchronous method invocation of the Web service bookRoom
method.

• beginBookroom: starts the asynchronous method invocation of the Web service
bookRoom method.

• endBookRoom: used to obtain the result of an asynchronous method invocation of the
Web service bookRoom method.

Tool support1 is available for developers to automate the process of creating proxies from
an available WSDL document. Besides creating a proxy, the tool will also make a mapping
for all elements in the WSDL document into the destination language. For instance, in
Java a mapping is made between XML schema types and Java classes and a mapping is
made between WSDL operations and Java methods. This mapping is used at runtime to
determine which XML Schema type or Java class should be used when serialising between
Java and XML. The mapping between Java methods and WSDL operations is used when
there are overloaded methods.

This RPC programming model of invoking Web services, fits perfectly in the object-
oriented programming paradigm and this immediately explains the popularity of the ap-
proach: languages such as Java and C# all provide mechanisms to serialise objects into
SOAP messages and back. For instance, in Java, JAX-RPC (see section 2.6.2) creates a
Java object for each XML element, building a directed, acyclic graph when serialising to
RPC/encoded SOAP messages, or a tree when using document/literal SOAP messages.
As denoted in [LS05], JAX-RPC essentially makes SOAP messaging look like Java RMI.
Primitive types and collections are natively supported. For user-defined types (such as a
Hotel class or a Flight class), typically only the member fields that are publicly accessible
(e.g. using the JavaBean convention of getters and setters) are serialised and deserialised.
An important side effect of user-defined types is that the client needs to understand the
custom types to be able to make use of the Web service, which makes it less accessible in
the first place. What’s more, analysis of user-defined data types could reveal inaccuracies

1WSDL2Java is a command-based tool used to translate WSDL to Java. The counterpart in .NET
is WSDL.exe that translates a WSDL file to any of the available .NET languages, including C#, Visual
basic.NET and JScript.NET

42 Chapter 3. Dynamic Web Service Environments

and integration issues: one implementation’s serialisation might not match another’s deser-
ilisation [GGT03]. And there are also performance implications: for every new data type
the proxy class has more work to do when it serialises and deserialises the SOAP message
and therefore could contribute to slower response times.

As described in section 2.3, Web service communication does not necessarily have to
be RPC-based. It could also be document-based: instead of sending a SOAP message that
represents a method invocation, a whole document is sent to the service for processing. The
proxy approach is also suited for this kind of communication, although there are some trade-
offs when dealing with large and complex XML documents [Ana05]. A proxy for a document-
based hotel Web service can have a method process (ReservationDocument) and a Java
wrapper for the ReservationDocument can be generated at client-side. [TYAIG04] contains
an overview of different strategies to realise document-style Web services.

The next two subsections introduce two proxy approaches: static proxies and dy-
namic proxies. A short description of their typical usage is given, together with an
evaluation with regard to the requirements of dynamic web environments of Table 3.2.

A) Static Proxies

A static proxy, also known as a stub, is a proxy created at development time, representing
a single Web service. In Visual Studio.NET 2003 [Ms03], the development suite of the .NET
framework, the developer has to provide a web reference of the Web service to the tool.
Then, the WSDL document of the Web service is automatically looked up, analysed and
code for a proxy class is generated. Typically, various parameters can be set to indicate
which parts of the WSDL file need to be generated into the destination language. The
proxy class defines methods that represent the actual methods exposed by the remote Web
service. The instantiation of the proxy is very straightforward as it boils down to a simple
instantiation of a regular class.

Using static proxies does not offer any runtime flexibility, as there is no decoupling
between the service interface and the service implementation: the proxy generated at client
side reflects the interface specified at service side. If the developer needs to find a service, he
can use a UDDI registry and do keyword-based searches. This approach is most appropriate
for small applications integrated with one or a small number of fixed services running on
the same machine or in a controlled environment such as an intranet. The main advantage
of static proxies is that the client does not need to parse the WSDL file when the service
functionality is requested at runtime, which boosts performance. On the downside, if the
remote WSDL file changes, the proxy has to be re-generated and the type mapping has
to be redone, requiring changes in the client code. Also, if the client uses n Web services,
all the n proxy stubs need to be maintained at the client side. If one of the Web services
changes its specification or behaviour, it will break the client application.

The only level of flexibility offered in this approach is the location of the Web service
endpoint: by using a variable or a configuration file it is possible to defer the specification of
the actual location of the service endpoint to deployment time. Obviously, the Web service
at the specified endpoint must have exactly the same WSDL description that was used to
generate the proxy. Syntactic or semantic differences between the Web service interface and
the actual implementation will result in runtime exceptions or incorrect behaviour of the

3.3 Service Integration Process 43

client. Binding of unanticipated services at runtime and transparent hot-swapping is not
possible. There is also no explicit support for conversational messaging: the client needs to
make sure it follows a specified conversational protocol by invoking the proxy in the right
order. Failure in doing so will result in runtime errors.

A primitive form of service composition is supported as WSDL allows for the definition of
different port types, each with a different binding. Suppose HotelService1 takes in a zip code
to return a list of hotel descriptions and HotelService2 takes in a hotel description to return
an indication on room availability. If a programmer wants to combine the functionality of
these two services in a simple composition, he has to integrate and manage two proxies in its
client. Furthermore, a HotelDescription obtained from HotelService1 cannot be passed
on as a parameter to HotelService2, even if they are identical types. The reason is that both
Web services are distinct identities described by their own WSDL files and therefore each
proxy will have its own representation of the HotelDescription in a separate namespace,
even if they are serialised into identical XML structures2. Solutions include copying values
between instances of the different HotelDescription classes or manually changing the
proxy code generated by the tool to make sure both services share the XML structure of
the data type and the namespace.

A solution for .NET described in [Lind05] suggests defining a single interface WSDL
file at client-side with a binding for each of the concrete Hotel Services and generating a
proxy out of that WSDL file. However, this still does not achieve any encapsulation in the
client application. The client is still aware of the two separate bindings, as there are two
different proxy classes. The client is also well aware that the two services live in separate
locations, since the client still needs to configure and maintain explicitly the URLs of the
endpoints used to access the services. At the same time, there is nothing to indicate to
the client application that the two services were implemented separately, at different times,
by different teams. The only benefit is that types can be shared between the two Web
services in the client code, which eliminates configuration efforts or data structure copying
efforts. Note that this approach only works if both Web services use the same shared types,
an assumption that does not hold in our heterogeneous service environment. Finally, this
approach leaves the specification of the composition, i.e. how the services should work
together, entirely to the client.

B) Dynamic Proxies

A more advanced approach to integrate Web services is dynamic proxies [Sun05]. In-
stead of creating a proxy class from a WSDL-document, only interfaces and mappings are
generated. For example, the Wsdl2java tool in Java can translate a WSDL document au-
tomatically into Java Interfaces. The client is programmed against these Java interfaces.
This is depicted in the upper part of Figure 3.1. Next, at runtime, a look-up mechanism
will provide an actual instance of the Web service interface. A dynamic proxy class is used
to create a type safe proxy object for an interface without requiring generation of a proxy at
compile time. This principle is based on the Factory Pattern [GHJ95]. In the middle part

2A new version of the Microsoft R© .NET Framework 2.0 will offer more support for sharing types between
Web services. When generating proxies from multiple WSDL files of different Web services it will be possible
to signal the tool that any common types should be shared between the generated proxies. Common types
are elements with the same local name and namespace, defined in the same schema file.

44 Chapter 3. Dynamic Web Service Environments

of the figure, the role of factory is played by a registry that retrieves the WSDL file of the
service, generates a proxy from this file and return it to the client. An implementation of
such a registry, is for instance provided in Systinet Server for Java [Sys05], so programmers
do not have to implement this mechanism from scratch. Once, the factory has returned a
valid proxy, the client can invoke methods on it, which will result in the invocation of the
remote Web service. This is shown in the lower part of Figure 3.1.

This approach, which requires more complex code than static proxies, offers better
support to decouple the service interface from the service implementation. The service
interface is wired in the client at compile time but the binding with the actual service is
deferred to runtime by means of a service factory that looks up the WSDL file, parses it
and generates a proxy. This approach is less performing than static proxies, but offers more
flexibility. At runtime, a new Web service, matching the integrated service interface can be
integrated by requesting a new proxy to the service factory. As such, the process realises
dynamic bindings with support for dynamic endpoint references.

The approach does not offer support for glue code, hot-swapping, conversational mes-
saging or multiple service bindings. Making a binding to a syntactically or semantically in-
compatible service will result in runtime exceptions or unexpected behaviour. It is assumed
that a WSDL document is stable, as prescribed by the WSDL-first development approach
of Web services. This concept is further strengthened by the concept of tModels in UDDI
(see section 2.4.1.5). The idea is to fix industry specific service interfaces and post them
in a UDDI registry, using tModels. Web services can refer in their WSDL-documentation
to a tModel. As such it becomes possible to dynamically look-up Web services complying
with a specific tModel and integrate them on the fly. This approach assumes some kind
of standardisation process for service interfaces, something that has not happened yet, and
very well may never happen.

Note that changes in a service interface (and thus in the WSDL file) will still break
the client application. In this respect, it is important to point out that document-style
interaction is preferred over RPC-style interaction, as document-style interaction offer better
abstraction and better withstands changes to the underlying implementations [Burn03].
There are no methods, parameters and return types that can differ from what is expected
in the client. However, the format of the exchanged XML-documents might still differ and
evolve as the Web services change, and again, the client needs to adapt to these changes. It
is a development choice of the Web service developer to adopt one or the other interaction
model, and as indicated earlier, document-style services are harder to implement, as they
require more design planning. In the end, the client might need to adapt to either of the two
interaction models, and possibly, in a mixed environment there might be RPC-based and
document-based Web services both offering the same functionality, a situation that cannot
be handled by a single proxy.

As a matter a fact, it can be argued that using proxies for RPC-style Web services com-
munication forces a too restricted view on Web services as being some kind of distributed
objects. As discussed in [Vogels03], there are fundamental differences between them: Web
services do not have the notion of objects, object references, factories, life cycles and they
are typically stateless. The problem is that looking at Web services as plain XML docu-
ment processors does not offer any help for developers in actually building Web services

3.3 Service Integration Process 45

Client Application
Development

Client Application
Deployment

WSDL to Java
Conversion

Development

Runtime: Service lookup

Runtime: Service invocation

WSDL Hotel
WebService

Documentation

Client Hotel
Service
Proxy

Mapping

Client Registry HotelWebService

Lookup(hotelProxy)

getWSDL()

generateProxy()

return hotelServiceProxy

HotelService
Proxy

getHotel()

<<SOAP MESSAGE>>

getHotel()

return hotelValue

<<SOAP MESSAGE>>
return hotelValue

Client

<<interface>>
HotelService

Proxy

HotelWebService

Figure 3.1: Invoking a Web service Using a Dynamic Proxy

46 Chapter 3. Dynamic Web Service Environments

and clients. By providing a proxy-based infrastructure, tool support can be provided and
traditional procedure calls can be applied to Web services. After all, it is easier for a de-
veloper to work in his/her native object-oriented programming language and not having to
deal with raw XML documents.

An example of how far one can go in forcing the distributed objects view on Web services
is presented in [RS05]. The approach discussed in this paper makes the public methods of
user-defined types returned by Web services available in the client. For example, if a client
retrieves an instance of the class Hotel from a Web service, then the client could directly call
the bookRoom method on this object. While this approach builds further the object-oriented
paradigm, it is clear that it completely breaks the concept of loose-coupling and language
independence of the Web service paradigm.

In [LS05] the opposite argumentation is made: the authors make the case that making a
mapping between XML Schema and an OO language such as Java in the proxy approach is
inherently flawed because it is too complex and brittle. This is caused by the fundamental
differences between the type system of XML Schema and Java. Problems include the fact
that some XML elements cannot be straightforwardly mapped to a Java class and vice-versa;
XML names cannot always be mapped to Java Identifiers; serialisation of enumerations,
graphs of objects and Java exceptions can be an issue; etc. To overcome these problems,
the authors propose a lightweight SOAP stack for Java, called Alpine, that takes an XML
centric approach. No mapping is provided but instead access to the SOAP messages is
provided using XML support libraries.

3.3.2.2 Dynamic Invocation Interface (DII)

An alternative to proxies for service invocations is Dynamic Invocation Interfaces (DII)
[Sun05]. With DII, a client application can call a remote procedure even if the signature
of the remote procedure or the name of the service is unknown until runtime. In contrast
to a static or dynamic proxy client, a DII client does not require runtime classes generated
by a tool. However, the source code for a DII client is more complicated than the code
for the other two types of clients. During runtime, the client needs to supply the name of
the operation or the names and values of arguments. Next, the WSDL document from a
specified URL is downloaded, the correct operation is selected, the arguments are mapped
and the target Web service is called. With DII clients, no runtime classes generated by
mapping tools are required like it is the case with proxies. In JAX-RPC, this is done in
three steps (see also Figure 3.2:

1. Creating a Call Object: The Call object represents all information needed to
invoke the operation on the Web service.

2. Filling the Call with actual values: all information about parameters and values
of the service operation in addition to operation name need to be provided, including
the operation to invoke, the port type for the service, the address of the endpoint, the
name, types, and modes (in, out, in-out) of the arguments and the return type.

3. Invoke operation: after all this information is provided, the Call object can now
invoke the target operation.

3.3 Service Integration Process 47

Main

Call

HotelWebService

addParameter() *

setPortTypeName()

setOperationName()

setProperty() *

invoke()

setReturnType()

getWSDL()

invokeMethlod()
<<SOAP Message>>

return result

<<SOAP Message>>return result

Figure 3.2: Invoking a Web service using DII

Using DII realises a very flexible form of dynamic binding. The client can specify at
runtime service related items including the endpoint reference and method signature. The
advantage of using a DII Call interface is that a client can call a remote procedure without
development-time knowledge of the WSDL URL or the Web service operations’ signatures.
This makes the code easy to adapt if the Web service details change [Port03]. Using a
service factory, a service instance and call instance are created. It is entirely up to the
client to determine which method to invoke with the appropriate parameters, and there are
no guidelines on how to resolve this: the client should retrieve this information by other
(unspecified) means. Clearly, this high flexibility results in more complex code. Also, this
approach does not offer explicit support for hot-swapping, service composition, conversa-
tional messaging or multiple service bindings. Code needs to be explicitly provided in the
client implementation to anticipate these concerns. Only limited support for syntactical
mismatches is available, as the method signature does not need to be fixed. Making a bind-
ing to an incompatible service will result in runtime exceptions or unexpected behaviour.
All exception handling must be provided manually.

48 Chapter 3. Dynamic Web Service Environments

3.3.3 Table of Comparison

Table 3.1 compares the different Web service integration approaches. A (+) indicates full
support for the requirements identified in Section 3.3.1, a (+/-) indicates partial support,
possibly through additional mechanisms, and a (-) indicates there is no support at all as
the developer needs to deal with the requirement by explicitly providing code.

Table 3.1: Comparison of Different Service Integration Approaches

Static
Proxies

Dynamic
Proxies

DII

Discovery - +/- +/-
Matching - - -
Mapping - - +/-
Changeable endpoint ref. + + +
Dynamic binding - + +
Multiple Services Binding - - -
Conditional Service Binding - - -
Asynchronous communication + + +
Reusable Service Composition - - -
Notification / Detection - - -
Transparent Hot-swapping - - -
Conversational Messaging - - -
Exception Handling -/+ -/+ -/+

3.4 Service Selection Process

3.4.1 Analysis of requirements

We define the Service Selection Process as the process of selecting the most appropriate Web
service amongst all integrated Web services in order to deal with a specific client request.
We now list the requirements for an advanced service selection process flexible enough to
deal with evolutions in the service, network and client environment.

Category: Services Environment - Event: Multiple Services Available

Service Selection Enforcement: Based on a set of selection policies as specified by the
client, the most appropriate service must be selected from the set of compatible ser-
vices to deal with the client requests for some service functionality.

Category: Individual Web Service - Event: Service properties or behaviour changes

3.4 Service Selection Process 49

Notification or Detection: Changes in the service properties or behaviour must be no-
ticed by the client in order to trigger the selection process as these changes may alter
which of the available service is the most appropriate. Possibly, some changes such as
the average monthly response time are only noticed after a period of time.

Category: Network environment - Event: Network influences service reachability

Notification or Detection: Changes in the network must be noticed by the client in
order to trigger the selection process as the network influences greatly the availability
and reachability of the services.

Category: Client environment - Event: Client specifies a new selection policy

Selection Policy Specification: The client specifies policies that drive the runtime se-
lection of the services. These policies may be based on the context of the client,
the context of the service, or based on non-functional or behavioural properties of
the service. The specification of the most appropriate service may change over time
depending on changes in the client and/or service environment.

Advanced Deployment: as policies can be based on service documentation, behaviour,
service-context or client-context, an advanced deployment mechanism is needed to
enforce the policy at runtime.

Reusable implementation: Code enforcing a policy must be reusable in different con-
texts.

Service Monitoring: if the policy involves service behavioural properties, a service mon-
itoring mechanism is required to measure the behaviour of the Web service(s).

Category: Client environment - Event: Client specifies multiple selection policies

Feature interaction control: In case of multiple selection policies, feature interaction
control is necessary in case of interference between the policies. Multiple policies
must cooperate to select the most appropriate service to deal with a client request.

Category: Client environment - Event: Client changes one ore more selection policies

Hot Deployment: New policies must be deployed and enforced at runtime to accommo-
date to changes in the specification of the selection policies of the client.

50 Chapter 3. Dynamic Web Service Environments

3.4.2 Evaluating current practices

Evaluating the support for service selection, is quite straightforward as there are to our
knowledge no standards or common approaches for this purpose. Doing service selection
with proxies or DII is possible, but has to be implemented manually. For instance, if a
client primarily communicates with HotelServiceA, but resorts to HotelServiceB for backup
reasons, then the client will have to maintain two proxies and the logic to switch between
the two proxies has to be provided manually. If more backup services are added later
on, the code has to be changed. Furthermore, more advanced selection policies based on
non-functional service properties or service behaviour may be applicable to select the most
appropriate proxy. These policies, driven by constantly evolving business requirements,
might need data from various sources including the Web service documentation, the Web
service behaviour or the client state. All these points need to be intercepted to gather
the required data, which becomes an impossible task if the system needs to deal with
unanticipated selection policies.

We assume there are multiple reasons for the lack of more sophisticated selection mech-
anisms. First of all, doing dynamic discovery and integration is quite complex and cum-
bersome as illustrated in the previous section; and second, current service documentation
in WSDL format does not support non-functional properties. But besides these technical
and practical obstructions there is also the fact that up until now there has not been any
need for dynamic selection, as today SOAs are realised in a hard-wired fashion. First, busi-
ness agreements are made, followed by an implementation process involving all partners.
Selection will become more important as Web services are combined in a temporal fashion.

3.5 Client-Side Service Management Process

3.5.1 Analysis of Requirements

Web services technology is simple: it only provides the necessary protocols to exchange XML
documents, unlike other distributed object technologies (see section 2.7) that offer support
for advanced features such as reliability and transactions. This simplicity means that many
of the more complex distributed applications cannot be easily built without adding other
technologies to the basic Web services [Vogels03]. We assume that over time, these features
will become available in an interoperable manner, just as it is the case with WS-Security
[ADH+02], a recent standard dealing with security extensions for Web services. It is not
our objective to investigate or analyse any standards or specifications for a specific concern,
nor do we attempt to propose our own. In this dissertation we focus on mechanisms to
enforce these concerns dynamically in the client. The concerns may be imposed by the
client, or by the service. We now list the requirements for this management process.

Category: Individual Web Service - Event: Service enforces Management Concern

Management Concern Enforcement: Invoking a service may impose a number of re-
quirements and restrictions which the client must comply with before being able to

3.5 Client-Side Service Management Process 51

invoke the service. Examples include authentication, encryption and payment pro-
cedures. These criteria, referred to as service-imposed management concerns, may
change over time, even without notice.

Exception Handling: In case of faults during service invocation, management related
concerns need to be adequately dealt with.

Reusable implementation: Code enforcing a management concern must be reusable in
different contexts.

Category: Individual Web Service - Event: Service enforces multiple concerns

Feature interaction control: In case of multiple management concerns, feature interac-
tion control is necessary to deal with possible interference.

Category: Individual Web Service - Event: Service changes concern(s)

Hot Deployment: New concerns must be deployed at runtime to avoid communication
errors with the services and to avoid a negative impact on the client application.

Notification or Detection: Changes in the client-side management requirements must
be noticed by the client.

Category: Client environment - Event: Client enforces one or more concern(s)

Management Concern Enforcement: A client can specify additional management con-
cerns, such as pre-fetching or caching. These criteria, referred to a client-imposed man-
agement concerns, can evolve too when the client or business environment changes.

System-wide triggering: Possibly, specific elements of the client-context need to be
passed along in order to be able to enforce the concern.

3.5.2 Evaluation of Current Practices

3.5.2.1 Manual Configuration

Some toolkits allow creating proxies or call objects that can be further configured. Code
fragment 3.1 shows a typical piece of Java code required to invoke a remote Web service.
The code deals with various concerns including redirection, user authentication, the actual
invocation, logging and exception handling. Clearly, the code for each of these various
concerns is tangled. Moreover, in other places in the core application where a service
invocation is required, similar or even identical code can be found: the code is also scattered.

In the code fragment, a simple form of authentication is used, but possibly the commu-
nication with the service needs to be encrypted, or the service needs to be paid in advance.

52 Chapter 3. Dynamic Web Service Environments

1 Import javax.xml.rpc.Stub;

2

3 Public class HotelClient {

4

5 private String endpoint, username, password;

6

7 public static void main {String[] args} {

8 try {

9

10 endpoint = args[0];

11 Stub proxy = createProxy ();

12 proxy.setProperty (Stub.ENDPOINT_ADDRESS_PROPERTY, endpoint);

13 HotelInterface hotelService = (HelloInterface) proxy;

14

15 hotelService.setProperty (Stub.USERNAME_PROPERTY, username);

16 hotelService.setProperty (Stub.PASSWORD_PROPERTY, password);

17

18 Hotel hotel = hotelService.getHotel Park Hotel, Bruges);

19

20 log (HotelService invoked);

21 }

22

23 catch (Exception ex) {

24 ex.printStackTrace();

25 }

26 }

27

28 private static Stub createProxy () {

29 return (Stub) {new MyHotelService_Impl().getHotelInterfacePort();

30 }

31 }

Code fragment 3.1: Invoking a Web Service in Java

3.5 Client-Side Service Management Process 53

Client Web Service

Custom
Code

Handler
Code

Handler
Code

Custom
Code

Figure 3.3: SOAP Message Handlers at Client and Service Side

All these concerns, enforced by the Web service, will be reflected in the code of the client.
Therefore, the client is obliged to co-evolve with the service, even while loose-coupling is
one of the key features of Web service technology.

3.5.2.2 SOAP Message Handlers

Another way to do client-side management of Web services is through Message Handlers,
a mechanism to customise the SOAP messages sent to and from a Web service. Remember
from section 2.4.1.3 that SOAP messages contain a body and a number of (optional) head-
ers. The latter contain application-specific meta-data, such as security-related information.
Handlers provide a mechanism to access, insert and remove these headers from a SOAP
message. Handlers also have access to the rest of the SOAP message, including the body,
so handlers can be used for example to encrypt and decrypt the data in the body of the
message. Handlers are organised into chains and can be used both at the client-side and
service-side as depicted in Figure 3.3. Chained handlers are invoked in the order in which
they are configured. When a handler completes its processing, it passes the result to the
next handler in the chain.

In JAX-RPC, a handler must implement a specific interface with specific methods to
handle requests, responses and faults. Next, the handler must be registered at a specific po-
sition in the chain of a client proxy or service endpoint. This can be done programmatically
or though deployment descriptors. It is possible to pass objects between handlers of the
same chain to share state information specific to one request, but a handler always remains
stateless [MTSM03]. Useful scenarios for message handlers include security (e.g. encryption
and decryption of messages), processing of metadata (e.g. including headers with context
information), data validation (e.g. validating a message against an XML schema before
it is being processed), handling data content (e.g. handling attachments) and optimising
performance (e.g. caching frequently accessed results in the server).

Developers write handlers as individual units that do not need to be aware of other
handlers and are thus reusable. Also, because handlers are combined in chains, the order has
to be explicitly configured, which can be crucial in some scenario’s. For example, if a client
sends an encrypted request in a compressed format, the handlers on the service side must
first decompress and then decrypt the input [MTSM03]. Message handlers are very suited for

54 Chapter 3. Dynamic Web Service Environments

specific service management concerns dealing with reading or manipulating SOAP headers,
however, higher-level concerns whose deployment is not limited to the message handling level
are not supported. To deal with these issues, additional code has to be included in the client
application, possibly resulting scattered and tangled with code addressing other issues. Even
if this code is encapsulated in a separate reusable module, its execution has to be triggered
repeatedly from the different points in the application where Web service functionality is
required. As a consequence, management code results duplicated and scattered over the
application, becoming an obstacle for future maintenance.

3.5.3 Table of Comparison

Table 3.2 compares the different client-side Web service management approaches. A (+)
indicates full support for the requirements identified in Section 3.5.1, a (+/-) indicates
partial support, possibly through additional mechanisms, and a (-) indicates there is no
support at all as the developer needs to deal with the requirement by explicitly providing
code.

Table 3.2: Comparison of different Service Management Approaches

Manual
Configuration

SOAP
Handlers

SOAP
Handlers with
deployment
descriptors

Exception Handling - +/- +/-
Client-imposed Management +/- +/- +/-
Service-imposed Management +/- +/- +/-
Reusable implementation - + +
Hot deployment - - +
Feature Interaction Control - +/- +/-
System-wide triggering - - -

3.6 Conclusion

Each of the existing service integration approaches has its own advantages and disadvan-
tages, and they have proven to be worthwhile in existing Web service applications, where
Web services and their clients are developed at the same time, possibly by the same team, or
where there are pre-existing agreements between all parties. Various tools, made available
by both vendors and the open-source community help in creating object-oriented clients
via proxies or DII. These tools provide the infrastructure that allows traditional procedure
calls to be applied to Web services. It remains open for debate if these tools do not limit
the potential of the Web services technology as Web services are all about interoperability

3.6 Conclusion 55

and heterogeneity, and viewing Web services as distributed objects with a set of remote
methods does not favour these two elements.

Either way, the existing approaches do not offer the required flexibility to integrate a
client with a wide variety of existing third party Web services in a dynamic Web service
environment. Services do get hard-coded in the client, or only limited support is given to
integrate services with deviant interfaces or to compose services together in a transparent
way for the client. For service selection, no support is given to specify policies and to do
any runtime redirection. Finally, support for client-side management concerns is provided
through message handlers. This is only a useful approach for concerns that only need to be
applied locally in one part in the client and where access to the message fields is sufficient.
To address these shortcomings, we introduce our approach in the next chapter.

56 Chapter 3. Dynamic Web Service Environments

Chapter 4

Web Services Management Layer

Abstract To deal with dynamic service environments, we introduce a mediation frame-
work for Web services, called Web Services Management Layer (WSML). This chapter
presents several usage scenarios, the pursued development quality attributes and a high-
level architecture for the framework. To avoid crosscutting code, we opt for a dynamic
Aspect-Oriented Programming (AOP) approach. An introduction and motivation to AOP
and an architecture of the WSML, based on aspects are presented. Also, the dynamic AOP
language JAsCo is introduced.

58 Chapter 4. Web Services Management Layer

4.1 Introduction

To address the shortcomings of the existing Web service integration approaches, we propose
an architectural framework for the mediation of Web services in client applications. More
concretely, all service related code is removed from the client application and placed in a
mediation layer, called Web Services Management Layer (WSML). The WSML is de-
ployed in between the client application and the service environment and its overall goal is to
mediate between the (possibly static) client application and this constantly evolving service
environment. This approach offers the following advantages for the client application:

• The client application becomes more flexible as it can transparently adapt to the
changing business and service environment and communicate with new services and
service compositions that were unknown or unavailable at deployment time.

• By weakening the link between the application and the service, hot-swapping func-
tionality becomes possible. When a service becomes unreachable due to network con-
ditions or service-related problems, this mechanism enables switching to other services
or service compositions, based on a set of selection policies.

• Replacing the Web service-specific invocations with the generic request of service
functionality and extracting all extra web-service selection and management code
from the client applications facilitate future maintenance of the application code.

When deployed in a SOA, the WSML will reside in the centre of the SOA with interfaces
on its four boundaries, as depicted in Figure 4.1. Each quadrant will involve different
stake-holders fulfilling another role. On the west border, communication with the client
environment takes place. The client environment consists of one or more clients requesting
service functionality. The WSML redirects these client requests to the third-party service
environment at the east border . The third-party service environment consists of a number
of third-party service providers, each providing a number of services. These services remain
under control of the service providers. Additionally, a number of management services re-
side in the management services environment on the south border. Management services
offer generic functionality including AAA, accounting, logging, billing, etc. These services
may be hosted by third-party service providers, or can be deployed in the client domain.
On the north border, the administrative environment resides, responsible for configuration,
signalling and event handling coming from both the client and third party service environ-
ment. Note that although communication with the four borders may involve Web services
technology, this is not necessarily the case. In the remainder of this dissertation, the con-
vention is followed that all illustrations including the WSML, will depict the elements of
the environment in their corresponding quadrant.

The philosophy of our approach is that the client application is developed while leaving
out all service related concerns. The service concerns will be entirely dealt with by the
WSML. For this purpose, the WSML must be instantiated and configured to the needs
of the client. Ideally, this can happen entirely at the administrative level, meaning no
coding efforts or expert skills of the WSML are required. As will be explained in Chapter 8,
automatic code generation and reusable templates are used for this purpose. Note that each

4.1 Introduction 59

Figure 4.1: The WSML Interfaces

of the four quadrants may be managed and controlled by a different organisation. Possibly,
the quadrants of the north, south and west border may be under the same organisational
control implying that the entities responsible of developing, deploying and maintaining the
client application, are also in control of administering the WSML and/or maintaining the
(local) management Web services. However, it should be noted that the philosophy of our
approach is that, if the entities are not the same, they are not required to be sharing the
same technical knowledge of the other systems. This implies that the developer of the
client does not require to have in-depth technical knowledge about the implementation of
the WSML and vice versa. The WSML can be configured and deployed on an administrative
level, requiring only business knowledge from the client (e.g. the knowledge of which kinds
of non-functional service properties are to be preferred when selecting a service and which
management concerns need to be enforced), while the WSML can operate to a large extent
without knowledge about the client implementation. Some exceptions exist, for instance if
services are to be selected based on client context, information of this context has to be
made available in the WSML.

Before discussing the architecture of the WSML, we first list a number of envisioned
usage scenarios in the following section. Next, the development quality attributes of the
WSML are listed in section 4.3 and its main architecture is presented in section 4.4. As
already hinted before, our approach relies heavily on aspect-oriented principles: in section
4.5, we give a general introduction to AOP and a motivation why AOP is an ideally suited
paradigm to realise the WSML. The section ends with a detailed overview of the architecture
of the WSML, based on aspects. We conclude this chapter with an introduction to JAsCo,
the dynamic AOP language used to implement a prototype of the WSML, and present
conclusions in section 4.6.

60 Chapter 4. Web Services Management Layer

Web Service

Remote
Client

Web Service

Web Service

WSML

Local
Client

networknetwork

Figure 4.2: The WSML as Mediation Layer and/or Service Broker

4.2 Usage Scenarios

4.2.1 Web Services Mediator

As indicated before, the primary usage of the WSML is to act as a mediation layer between
the client and the services and to manage and to configure the client-side usage of those
services. Changes in the service or network environment only have an impact on the WSML
while the client application remains unaware of any changes. This scenario is suited to deal
with services in a fragmented environment with multiple independent domain controllers
and unreliable network conditions. Two setup variations are possible: the WSML serves a
single application and runs with that application in a single environment or, in a large-scale
setup the WSML is deployed as a server, with the possibility to serve multiple clients. Both
setups are depicted in Figure 4.2.

Example: a company relies on external shipping handlers to deliver its products to
the customers. Each handler is specialised in dealing with specific product deliveries in
specific areas, so depending on the product and its destination, a specific shipping handler
is addressed. The company can integrate its software with the shipping Web services to
get pricing information, place orders and follow-up deliveries. The WSML is used in this
scenario to mediate between the different shipping service interfaces and deal with additional
non-functional requirements. For instance, when a shipping service changes its WSDL-file,
or installs a different login mechanism or requires a stronger encryption protocol to encrypt
its messages.

4.2 Usage Scenarios 61

4.2.2 Web Services Broker

The WSML acts as an application-tailored broker for Web services. Client requests are
redirected to the most appropriate services in the resource pool, based on the required
service levels, cost structures, policies, and priorities specified by the client. This scenario
has the advantage that the client can reduce the negative impact of “bad services”, i.e.
services that are often unreachable or provide unreliable results. Reconfiguring the WSML
can easily change the runtime characteristics of the client.

Example: a software company delivers stock quotes to its customers and relies on
a wide range of different Web services to provide the stock information. These services
are in high competition with each other and offer various delivery schemes, ranging from
delayed stock quotes provided at specific intervals to real-time up-to-date quotes. Different
pricing schemes are also possible, including micro payments per requested stock to monthly
or annual subscriptions. In this scenario, the WSML is used to address the appropriate
stock service(s) taking into account the client subscription, the payment schemes and the
reliability of the stock information amongst others.

4.2.3 Web Services Grid

By presenting the available services as a pool of heterogeneous system resources, a grid
can be created that handles all client requests. Grid computing allows you to unite pools
of servers, storage systems, and networks into a single large system This resource-level
virtualisation is ideally suited when multiple services are available and it is of no importance
which concrete services handle the client requests.

Example: An application involved in life sciences, such as genome research and phar-
maceutical development, can use parallel and grid computing to process, cleanse, cross-
tabulate, and compare massive amounts of data. The WSML can be used to distribute
requests evenly over all available services to optimise processing of the data or to optimise
requests for information spread over many data repositories by broadcasting the requests
and merging the results.

4.2.4 Web Services Intermediary Stub

Web service communication between two (legacy) systems can be intercepted by the WSML
for a wide variety of reasons including re-routing, monitoring and other management con-
cerns as depicted in Figure 4.3.

Example: Consider an existing proprietary client application that communicates with
a server using Web service technology to request video downloads. By deploying the WSML
in between the client and the server it can become possible to for instance count the number
of downloads, store this information in a database, and update a billing server. Neither the
client, nor the server needs to be changed for this. Therefore, this scenario is suited to
adapt or extend existing legacy software.

62 Chapter 4. Web Services Management Layer

Management
Web Service

Client Web Service

Management
Web Service

Management
Web Service

WSML

Figure 4.3: The WSML as Intermediary Component in a Client/Server Model

4.2.5 Web Services Ubiquitous Environments

The philosophy of writing an application once and deploying it many times, in different en-
vironments is a noble one, but difficult to achieve. The WSML offers support for ubiquitous
computing as the mediation capacities of the WSML can make a client application adapt
to different environments, as depicted in Figure 4.4. By taking into account the different
characteristics of the client environment, more efficient service selection and communication
can be done.

Example: Consider a video player application, showing movies originated from external
Web services. If the video player runs on a digital media centre connected to a broadband
internet connection, it is able to show any kind of movie, regardless the quality and size of
the movie file. It might therefore prefer to communicate with Web services offering movies in
the best resolution at an affordable price. On the other hand, if the same application is run
on a mobile device with a wireless connection, more restrictions apply. Only movies with a
low resolution can be played and only small files can be transferred over the low bandwidth
connection. Furthermore, the device has limited processing and memory resources and a
limited power source. Now, the application will have to choose a movie Web service that
offers the movie in a compatible format, in a low resolution and in a small-sized file. The
WSML can be used to adapt to the different devices and environments the client application
is deployed in, and based on that, select the most appropriate Web services. In this setup,
the WSML also optimises communication patterns over the expensive wireless network, for
instance by pro-actively removing unreachable Web services or caching service results.

4.3 Development quality attributes 63

Web Service

Web Service

Web Service

WSML

ADSL
Network

Wireless
Network

Mobile
Device

DVD
Player

Figure 4.4: The WSML in a Ubiquitous Environment

4.3 Development quality attributes

The requirements we pursue for the WSML follow automatically from the analyses made in
Chapter 3 in the context of dynamic Web services environments. However, before drawing
up an architecture for the WSML and finding a suitable implementation technology, we
will discuss overall development quality attributes, we pursue too. A first category includes
quality attributes dictated by the Web services context:

- Web Services standards compliance: as the philosophy of the WSML is to realise
integration of Web services “as-is”, the existing standards are to be re-used. It is outside
the scope of this dissertation to propose new standards or adaptations of existing standards
to realise the WSML. Instead, we opt to benefit from the work already realised by current
Web services standardisation efforts and to comply with the existing Web services stack
and to allow for extensions by future standards.

- Performance and scalability: making a mediation framework that is configurable at
runtime requires inevitably a very flexible runtime adaptation mechanism, which can affect
performance and scalability of the framework. As it was mentioned in Chapter 2, perfor-
mance is one of the weaknesses of Web services technology, partially because of the verbose
nature of XML. Most performance gains can be realised by optimising the (de)serialisation
and the compactness of the SOAP messages. Therefore, the performance goal of our frame-
work is to achieve results comparable to existing integration approaches. Scalability will
be dealt with by the underlying server platform, and the scalability of our overall approach
should be limited by that platform, and not by our framework on top.

Next, we also pursue a set of development qualities, intrinsic to the development of a
framework:

64 Chapter 4. Web Services Management Layer

- Reusability: designing and implementing a middleware framework is a complex task,
therefore the WSML must be a domain independent mediation platform for Web services
reusable in multiple scenarios. The WSML must be a generic framework that can be
deployed and configured for a single concrete client application or groups of applications.
As such, context-dependent code must be limited as much as possible.

- Runtime Configurability: the WSML must be completely configurable at run-
time for a specific context. Optionally, this requires specifying unanticipated configuration
settings that need additional code to be inserted at runtime. By introducing additional ab-
straction levels, this configurability must become preferably an administrative effort rather
than an implementation effort. We envision different kinds of configuration approaches,
including an administration interface directed to humans, an administration service and a
dedicated configuration language.

- Runtime Extensibility: As it is impossible to develop a framework able to deal
with all current and future service management concerns, extensibility of the framework is
of vital importance. Also, as the WSML is central hub in SOA, possibly executing long-
running business processes or critical applications, it is no option to stop and rewrite the
code. The framework should therefore be extensible at runtime to incorporate and enforce
new service concerns.

In order to achieve a framework that is reusable and flexible enough to deal with runtime
changes, clean modularisation of the code is of vital importance. The next section introduces
the architecture of the WSML, where all service related concerns are modularised in separate
modules.

4.4 WSML Architecture

The WSML is a mediation framework for Web services for service integration, selection
and client-side management that takes care of service integration issues, enforces a set of
service selection policies and client-side service management concerns and must function
transparently for the client. The service concerns must be enforced at runtime and possibly
they were unanticipated at development time or deployment time. Therefore, we need to
modularise every concern in separate modules and have a flexible mechanism to dynamically
deploy these modules. Figure 4.5 illustrates the architecture of the WSML. The left-hand
side of the figure illustrates an application requesting Web service functionality. In order to
make it possible for the application to make requests without referencing concrete services
the Service Type concept is introduced. A service type represents some abstract service
functionality without referencing concrete services. The right-hand side shows semantically
equivalent services that are available to answer the request. Semantically equivalent services
are services that offer the same functionality but can differ in the way they provide it, such
as method names, number of parameters, etc. Note that Web services B1 and B2 need to
cooperate together in a composition. Inside the WSML, separate modules take care of the
service integration, service selection and service management process:

• Service Integration Module: The integration module realises the redirection of
client invocations on the service type towards a functionally compatible Web service.

4.4 WSML Architecture 65

Web
Service A

Service
TypeClient

Web
Service B1

Service
Selection
Aspect
Service

Selection
Aspect
Service

Selection
Policy

Service
Selection
Aspect
Service

Selection
Aspect
Client-Side

Management
Concern

Administration
Service

WSML

Service
MappingService

Mapping

Service
Repository

Selection and
Monitoring

Module

Client-Side
Management

Module

Service
Integration

Module

Service
Mapping

Service
MappingService

MappingService
Compositions

Web
Service B2

Figure 4.5: Modularised Architecture of the WSML

If needed, a mapping is made between the service type interface and the Web service
interface. Optionally, multiple services are combined in a service composition to offer
the functionality needed by the client. New services can be integrated at runtime.

• Selection and Monitoring Module: This module enforces a set of selection policies
that are used by the integration module to redirect client request to the most appro-
priate service. These policies can be determined and change at runtime. Optionally,
service monitoring is needed to collect the necessary data to enforce the selection
policies.

• Client-Side Service Management Module: Various client-side service concerns
are dealt with in the management module. Examples include caching, logging, billing,
pre-fetching and exception handling. Which concerns are to be enforced can vary at
runtime. Furthermore, anticipated concerns may be added and feature interaction
issues must be taken into account.

A big issue in this framework are the interaction between the modules. The red lines in
the Figure indicate some of the possible interactions. Each module needs to communicate
with the other modules, or even with the client or the remote Web services, possibly in an

66 Chapter 4. Web Services Management Layer

unanticipated fashion. Using traditional software engineering approaches, code implement-
ing these concerns will result tangled and scattered with other concerns. Our approach is
to use Aspect-Oriented Programming (AOP), a software engineering paradigm that aims
at achieving a better separation of concerns. An introduction to AOP and a detailed moti-
vation to use AOP in the WSML are the subject of the next section.

4.5 Aspect-Oriented Programming in the WSML

4.5.1 Introduction to AOP

Aspect Oriented Programming (AOP) [KLM+97, EFB01, FICA04] is a software engineer-
ing paradigm that aims at achieving a better separation of concerns [Parn72], a crucial
property for realising comprehensible and maintainable software. Software development
addresses multiple concerns, both at the user/requirements level and the design/implemen-
tation level. Often, the implementation of one concern will result scattered throughout the
rest of the implementation. These concerns are called crosscutting because the concern
virtually crosscuts the decomposition of the system. What is crosscutting is a function of
the particular decomposition of the system and the underlying support environment. A
particular concern can be crosscutting in one view of an architecture while being localised
in another [FICA04].

Using traditional software engineering methodologies, the implementation of a cross-
cutting concern will result tangled and scattered, meaning the code for different concerns
becomes intermixed, possibly at multiple places in the system. Because the crosscutting
concerns are spread and repeated over several modules in the system, it becomes very
hard to add, edit, verify, test or remove such concerns individually. Moreover, the scat-
tered and tangled code seriously hampers the evolution of (1) the concerns and (2) the
base application. Typical examples of crosscutting concerns are debugging concerns such
as logging [KLM+97] and contract verification [VSJ03], security concerns [DJ04] such as
confidentiality and access control, and business rules [CDJ03, DJ04, OT01] that describe
business-specific logic.

The goal of AOP is to allow developers to cleanly modularise crosscutting concerns.
Therefore, AOP introduces an additional module construct, named an aspect. Traditional
aspects consist of two main parts: a pointcut definition and an advice. Points in the
program’s execution where an aspect can be applied are called joinpoints. The pointcut
language allows for a quantified description of a set of joinpoints where the aspect should
be applied. The advice is the concrete behaviour that is to be executed at a certain pointcut,
typically before, after or around the original behaviour identified by the joinpoints. The
additional logic defined in a before or after advice has to be executed before or after the
original behaviour respectively. An around advice replaces the original behaviour, but is still
able to invoke it if necessary. The advice language typically consists of the host language
augmented with a limited number of special keywords that offer aspectual reflection and
control over the execution of the original joinpoint. In order to apply the advices at the
joinpoints specified in the aspect’s declared pointcut(s), the aspect needs to be weaved
with the base application. Traditionally, weaving takes place at compile-time, which means

4.5 Aspect-Oriented Programming in the WSML 67

that the advices are inserted into the target application at the source or byte-code level.
Currently, more advanced approaches allowing to weave in aspects at runtime at previously
unadvised joinpoints are pursued too [VS04]. Other techniques are also possible, for instance
in Steamloom, weaving of advices is postponed until runtime by introducing AOP concepts
into the execution model underlying the virtual machine [BHMO04].

Although AOP is a rather new paradigm, numerous aspect-oriented approaches have
been proposed and are currently reaching maturity. These include AspectJ [KHH+01],
HyperJ [TOH+99], Adaptive Programming [LOO01], Composition Filters [BA01], As-
pectWerkz [Boner04], JBoss/AOP [FR03], Spring/AOP [JHA+05] and JAsCo [SVJ03].
Most approaches focus on object-oriented software development (OOSD), while some, in-
cluding the latter three, also offer support for component-based software development
(CBSD). Similar to OOSD, several concerns are encountered in CBSD that crosscut multi-
ple components in the system. In [SVJ03] it is argued that combining the AOSD and CBSD
principles is a valuable contribution to both paradigms. Firstly, integrating the principles of
AOSD in CBSD helps in achieving better separation of concerns over multiple components.
And secondly, integrating CBSD principles in AOSD is valuable as well as CBSD puts a
lot of stress on the plug-and-play characteristic of components; for example, it should be
possible to extract a component from a particular composition and replace it with another
one. Introducing a similar plug-and-play concept in AOSD, makes aspects reusable and
their deployment easy and flexible. AOP approaches supporting CBSD typically have some
kind of deployment constructor that is used to deploy a reusable aspect in a specific context.
As services are the logical extension of components in a distributed fashion, AOP can also
help in achieving better separation of concerns in this context.

4.5.2 Motivation for AOP in the WSML

As indicated before in Figure 4.5, using traditional software approaches, the client code deal-
ing with the various service integration, composition, selection and management concerns,
as discussed in detail in chapter 3, results scattered and tangled in the client code.

Service Integration: When using current approaches based on traditional software
engineering approaches, the service integration process takes either place at development
time (e.g. using static proxies), or it takes place at runtime (e.g. using dynamic proxies or
DII) but leaving all coding efforts to the programmer. The code, necessary to setup a proxy
or dynamic interface, and to invoke a Web service, can become quite complex, especially if
a robust implementation is necessary. This service integration code will appear at any place
in the client where service functionality is required. As a result, changes and evolutions in
the service interface will need to be reflected at all these places in the client code. Glue code,
dealing with mismatches and typically written on a per service-basis, will result scattered in
the client and there is no or very limited possibility for code reuse as code is implemented for
a specific context. Furthermore, similar to the plug-and-play characteristics of components,
services should be interchangeable at runtime. But replacing one service with another
functionally equivalent service may again require changes at multiple locations in order to
deal with variations in the interfaces. In case service compositions are needed to fulfil the
functionality needed in the client, the situation is aggravated, as at those places in the
client, multiple proxies will need to be maintained. As each proxy represents a service

68 Chapter 4. Web Services Management Layer

that possibly belongs to a different provider, each proxy may impose further requirements
or restrictions. For instance, as discussed in Chapter 3, section 3.3.2, data retrieved from
one service cannot be straightforwardly passed along to a next service, but may require
additional configuration efforts or data structure copying efforts.

Service Selection: Taking into account not only the functional compatibility of a
service, but also expressing requirements on the non-functional level, will inevitably result
in more complex client code. Selection policies expressing Quality-of-Service criteria the
services needs to uphold, or taking into account the client requests or the client state
to select the most optimal service will require data from a variety of places, resulting
in scattered and tangled code. For instance, monitoring logic, required to observe the
service behaviour in order to determine fair and neutral QoS descriptions requires multiple
measurement points in the system. Furthermore, these data must be fed into a selection
mechanism that enforces a set of selection policies determining the most optimal service
at any given time. As selection policies are driven by businesses requirements, they can
be regarded as business rules [Bus00] that tent to evolve more frequently than the core
application functionality, as discussed in [CDJ03]. It is crucial to separate them from the
core application in order to trace them to business policies and decisions, externalise them
for a business audience and change them whenever deemed necessary. Selection policies
thus need to be kept separated from the services and the applications that integrate them
in order to enhance maintainability, reusability and adaptability. Using traditional software
approaches, monitoring and selection logic will result tangled and scattered in the client at
those places where service functionality is needed. In this context it is important to note
that it is required to not only encapsulate the code implementing the policy, but also the
code that links the policy to the client code, as this linking code may result crosscutting
as well. In addition, it is impossible to anticipate each and every kind of policy and which
kind of monitoring it will require. A system that is able to access all available data and
runtime events in an oblivious manner is required. This system must be able to introduce
all required monitoring points and enforce selection policies at runtime, while encapsulating
code in first-order entities.

Service Management: the wide range of management concerns a service might impose
on its clients, including authentication, encryption, payments will be reflected in the code
of the client. Therefore, the client is obliged to co-evolve with the service, even while loose
coupling is one of the key features of Web service technology. These concerns, together with
the management concerns imposed by the client, including logging, caching and pre-fetching
will result in tangled and scattered client code. This was also illustrated in Code fragment
3.1. Note that similar to selection policies, the management concerns that need to be
enforced in the client will vary over time. For instance, enforcing some kind of caching makes
sense in case of network bottlenecks while monitoring is only necessary when the service
behaviour needs to be analysed. Finally, some complex kinds of service management need
to be implemented in a distributed manner. Examples include distributed monitoring where
monitoring points are set up in the client, the network layer and the service environment,
or advanced transactional management. Implementing these concerns in an encapsulated
manner is impossible with traditional software practices.

An important criterion that was mentioned in each of the three identified categories is the
possibility to enforce concerns dynamically. Due to the evolving nature of the Web services

4.5 Aspect-Oriented Programming in the WSML 69

environment, it is desirable to plug in and out the integration, selection and management
code at runtime. Either to swap services, reflect business changes for selection policies or to
enforce client-side management concerns, there is a need to dynamically alter the service-
related code of the client. It is impossible to anticipate all kinds of possible alterations
needed in the client in the future, so hard-coding each concern at all possible places where
the concern might seem applicable and making sure that the concern captures all data that
is possibly relevant (e.g., name, target, arguments and possible exceptions), is impossible.

By opting for an AOP approach, each of the aforementioned concerns can be cleanly
modularised in separate modules, i.e. the aspects, and enforced in the code in an
oblivious manner enhancing the evolution and maintenance of the code. Early AOP ap-
proaches weave aspects with the core application at compile time, which requires recom-
piling the application every time a set of aspects have to be integrated or removed. This
approach is not suitable in a service-oriented environment where applications need to min-
imise as much as possible their downtime. Therefore, an AOP technology that provides
support for runtime addition and removal of aspects is more appropriate. With a dynamic
AOP-approach it becomes possible to anticipate changes in the client, network and service
environment without having to stop and alter the code of the client application. With dy-
namic AOP, the aspects can be plugged in and out at runtime, and as such enforce various
selection policies and management concerns in the client. This is particularly important in
critical applications dealing with long-running intra- or inter-organisational processes that
cannot be stopped easily. This is the main focus of the remainder of this thesis.

While some requirements such as the dynamic binding of Web services could also be
realised using other approaches (for example a regular Object-Oriented framework that
exploits late binding), we observe that for many others, including the enforcement of unan-
ticipated selection and management concerns, the use of AOP has many clear advantages
that no other approach offers. The fact that we want to enforce these crosscutting concerns
in an oblivious manner by inversion-of-control indicates AOP is an ideal approach. While
we could emulate this also with OO by extensively adopting the Observer Pattern [GHJ95]
(i.e. by making everything observable and having observers that register themselves where
needed), it is clear that we are in this case in fact making or own pseudo AOP-approach,
which will be less powerful and expressive than a dedicated AOP technology. As we wanted
to use a unifying technology to realize all concerns, we have adopted AOP, not only for the
selection and management concerns, but also for the dynamic integration of Web services.
As we will discuss in the next chapters ,the flexible runtime capabilities of dynamic AOP
allowed us to realize all identified requirements in a natural fashion, omitting the need to
resort to another approach.

4.5.3 WSML Architecture Based on Dynamic Aspects

By modularising every service related concern in the WSML in separate reusable aspect,
the advantages AOP offers in the OOSD and CBSD context are also applied in the Web
services context: each concern is modularised in a first-class entity in a reusable manner,
and can be applied at runtime at every possible joinpoint that can be described by the
pointcut language of the used AOP language. Figure 4.6 illustrates the architecture of the
WSML. Aspects are used for implementing the generic functionality of the management

70 Chapter 4. Web Services Management Layer

Web
Service A

Service
TypeClient Web

Service B

Web
Service C

CB

CC

Service
Selection
Aspect

CACACS
CACA

ch5

ch6 ch7

Service
Selection
Aspect
Service

Selection
Aspect

Service
Selection
Aspect
Service

Selection
Aspect

Management
Concern
Aspect

Administration
Service

CM

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

Service
Repository

CA

Figure 4.6: Detailed Architecture of the WSML with Aspects

layer while deployment descriptors (indicated with C) specify when these aspects need to
be deployed. This is depicted in Figure 4.6. In the WSML, we distinguish three categories
of aspects:

• Service Redirection Aspects: Web service communication details and service com-
position details are encapsulated in redirection aspects. By employing the dynamic
capabilities of an AOP technology, a flexible integration and redirection mechanism
for Web services and service compositions is realised. This is the topic of the next
chapter.

• Selection and Monitoring Aspects: Service selection policies, encapsulated in
selection aspects implement a generic selection mechanism that can be easily enforced
and configured at runtime. Additional monitoring aspects are used to gather service
behaviour data to drive the selection process. This is further discussed in chapter 6.

• Client-Side Service Management Aspects: management aspects deal with a
wide variety of client-side service management concerns such as caching, logging,
billing and exception handling. These concerns can be enforced at runtime, while
taking into account possible feature interaction issues. Management is the subject of

4.5 Aspect-Oriented Programming in the WSML 71

chapter 7.

There is lively ongoing debate in the AOP-community on what is exactly crosscutting. In
[FECA04], the two main properties required for AOP are identified as being quantifica-
tion and obliviousness. The quantification property implies that aspects are added to an
application via quantified program statements, i.e. statements that have effect on many
places in the underlying code. Obliviousness states that one cannot tell that the aspect
code will execute by examining the body of the base application. This is exactly what is
necessary to achieve better separation of concerns. In case of the service redirection aspects
in the WSML, we find that the obliviousness property is only partially fulfilled. After all,
requesting some service functionality is part of the client logic, unlike for instance adding an
optional caching or selection concern. However, the added complexity of setting up prox-
ies or dynamic interfaces, doing mappings through context specific glue code, composing
services together, etc. is not part of the client logic. While we do not claim that AOP is
the only way to achieve better separation of concerns in this particular case, we do have
chosen for a symmetrical approach where the three identified service concern categories are
implemented in aspects, particularly because all concerns require dynamic plug-and-play
characteristics. As we will illustrate in Chapter 5, a lot of features required for a dynamic
service integration mechanism are readily available in a dynamic AOP technology such as
JAsCo. For the selection and management aspects both the quantification and obliviousness
properties hold as these concerns need to be applied in multiple places in the client, network
or service environment, requiring static or even dynamic quantification, while applying them
obliviously avoids tangled and scattered code.

Before continuing with the technical details of chapters 5 to 7, we will first conclude this
chapter with a relative brief introduction to JAsCo, the dynamic AOP-language chosen to
implement the prototype of the WSML. All coding examples in the next chapters are given
in JAsCo, therefore a basic introduction to the language and its runtime characteristics
can be useful for readers unfamiliar with the JAsCo technology. JAsCo was chosen as an
implementation technology because of its dynamic capabilities combined with the possibility
to write reusable aspects independently of their deployment context. Also, JAsCo is being
developed in the same lab as the WSML, which resulted in a setup where new features of
JAsCo could immediately be deployed and tested in an extensive AOP-centered framework
and vice versa, lacking features that were desired in the WSML context and beneficial to
the AOP capabilities of JAsCo, could be implemented more easily and rapidly in JAsCo.

4.5.4 JAsCo

4.5.4.1 The JAsCo Language

JAsCo [SVJ03, Van04, VVSV03] is a dynamic AOP language, originally targeted at
component-based software engineering. JAsCo enables weaving advices to sets of join-
points in a base application so that the advices are executed before, around or after the
execution of the joinpoints. The main contributions of the JAsCo language with respect
to other AOP approaches are its highly reusable aspect modules and its strong aspectual
composition mechanism for managing combinations of aspects. The JAsCo technology sup-

72 Chapter 4. Web Services Management Layer

ports dynamic integration and removal of aspects with minimal performance overhead. The
JAsCo language is an aspect-oriented extension for Java that stays as close as possible to the
original Java syntax and concepts. It introduces two important additional entities: aspect
beans and connectors:

• Aspect Beans: an aspect bean is an extended version of the standard Java bean com-
ponent that is able to contain several hooks that capture the crosscutting behaviour.
Hooks define when the normal execution of the system needs to be intercepted in an
abstract way. In addition, hooks specify the extra behaviour that needs to be executed
at that moment in time.

• Connectors: a connector is responsible for connecting an aspect bean to a concrete
context. Furthermore, expressive combination strategies and precedence strategies
can be defined in order to manage the collaboration of several aspect beans and
components. As such, a partial solution for the notorious feature interaction problem
[PSC+01] is provided.

An aspect bean is an extended version of a regular Java bean that is specified independently
of concrete component types and APIs, which makes it highly reusable. An aspect bean
contains one or more logically related hooks that describe the crosscutting behaviour itself.
The advices of a hook are used to specify the various actions that a hook needs to execute
when the hook is triggered. Hooks are able to define three main types of advice (i.e. before,
around and after), and four more advanced advices:

• before(): the advice is executed before the joinpoint is executed.

• around(): the advice is executed around the joinpoint.

• around returning(TypeX): the advice is executed around the joinpoint when an
object of TypeX is returned. As such, the return value of the joinpoint can be altered.

• around throwing(ExceptionX): the advice is executed around the joinpoint when
an exception of type ExceptionX is thrown. The thrown exception can be altered
re-thrown, or a normal result can be returned instead.

• after(): the advice is executed after the joinpoint regardless of how the joinpoint
executes (i.e. whether a normal result or an exception is executed).

• after returning(TypeX): the advice is executed after the joinpoint when an object
of TypeX is returned. The type Object can be used to capture all returns.

• after throwing(ExceptionX): the advice is executed after the joinpoint when an
exception of type ExceptionX is thrown. The type Exception can be used to capture
all exceptions.

Code fragment 4.1 illustrates an aspect bean that captures a basic access control security
concern. The crosscutting behaviour, in this case intercepting the method invocation and

4.5 Aspect-Oriented Programming in the WSML 73

1 class AccessManager {

2 PermissionDb p_db = new PermissionDb();

3 User currentuser = null;

4 Vector listeners = new Vector();

5

6 public boolean login(User user, String pass) {}

7 public void logout() {}

8

9 hook AccessControl {

10 AccessControl(method(..args)) {

11 execution(method);

12 }

13

14 isApplicable() {

15 return !p_db.isRoot(currentUser);

16 }

17

18 around() {

19 if(p_db.check(thisJoinPointObject,currentuser))

20 return proceed();

21 else throw new AccessException();

22 }

23 }

24 }

Code fragment 4.1: JAsCo Aspect implementing an AccessManager

throwing an exception when the current user does not have the required credentials, is
captured in the AccessControl hook (lines 9 to 23). A hook includes a special kind of con-
structor that defines in an abstract way when the hook has to be triggered (lines 10-12). A
constructor receives several abstract method parameters that are bound to one or more con-
crete methods at the time the aspect is deployed. The constructor body specifies when the
hook needs to be triggered. In the case presented in Code fragment 4.1, the AccessControl
hook is triggered whenever one of the methods bound to the abstract method parameter
method is executed.

JAsCo supports more involved triggering conditions in a constructor body, for example
control flow conditions that can be combined using logical operators. Often, the execution
of a hook does not simply depend on conditions about the static and dynamic program
information that are defined in a constructor. The isApplicable method is able to specify
an additional triggering condition using the full expressiveness of Java (lines 14-16). In
many scenarios the conditions that determine whether a hook should be triggered cannot
be specified in a hook constructor. For example, a hook implementing an anniversary
discount business rule is only triggered when the current date is the client’s birthday. The
isApplicable method allows specifying these additional conditions. In our example, the
AccessControl hook is triggered whenever the current user is not the root user. Checking
access for the root user is useless because by definition this user has access to the complete
system.

The AccessControl hook defines an around advice that contains the main access control
behaviour (lines 18-22). The thisJoinPointObject keyword makes it possible to fetch the

74 Chapter 4. Web Services Management Layer

1 static connector PrintAccessControl {

2 AccessManager.AccessControl control =

3 new AccessManager.AccessControl(Printer.doJob(PrintJob));

4 control.around(); //optional

5 }

Code fragment 4.2: Connector for the AccessManager Aspect

target object of the currently encountered joinpoint. As such, the advice makes sure that
whenever the user does not have the correct permissions to access the target object of
the current method invocation, an exception is thrown. Otherwise, the original execution
continues by employing the proceed keyword. In case other aspects are also applicable
to the same joinpoint, the proceed method proceeds to the next aspect’s around advice,
realising a chain of around advices that ends at the method originally replaced.

This aspect is reusable because the application context is not hard coded. Furthermore,
by defining the abstract context in a constructor, JAsCo is able to guarantee type safety.
For instance, a hook can specify that it expects a method with an object of type integer as
first argument. When the hook is deployed, this abstract context can be statically checked.
This is in contrast to typical framework-based approaches such as JBoss/AOP [FR03],
Spring/AOP [JHA05] and AspectWerkz [Boner04]. In these approaches, the aspect has to
include possible type-unsafe casts. In order to further increase the aspect reusability, an
aspect bean is also able to defer the implementation of context-specific behaviour to the
definition of the connector using refinable methods. As such, JAsCo aspect beans are able
to support aspectual polymorphism [MO03].

Abstract aspects are deployed onto a concrete context using a connector. A connector
can explicitly instantiate and initialise one or more hooks. Code fragment 4.2 illustrates a
connector that instantiates the AccessControl hook onto the doJob method of the Printer
component. As a result, the method abstract method parameter of the AccessControl
hook is bound to the doJob method. The hook is thus triggered whenever that doJob
method is executed and the current user does not have root permissions. Note that in
JAsCo it is also possible to bind abstract method parameters to several concrete methods.
Moreover, JAsCo connectors also support wildcards to easily specify a range of methods for
aspect application.

By default, all defined advices of a hook are executed when the hook is triggered.
Optionally, a connector can selectively specify which advices have to be executed (line 5).
When several hooks are instantiated in a connector, this mechanism enables specifying the
precedence of the hooks on a per-advice type basis. In addition, connectors are also able to
specify more expressive combination strategies in order to manage the cooperation among
several aspects that are applicable at the same joinpoint. A combination strategy acts like
a filter on the list of applicable hooks and is implemented using plain Java. An example of
a combination strategy is a mutual exclusion strategy that specifies that whenever a certain
hook is triggered, other hooks cannot be triggered. These precedence and combination
strategies offered by JAsCo are an important step towards solving the well-known aspect-
oriented feature interaction problem [PSC+01].

4.5 Aspect-Oriented Programming in the WSML 75

JAVA Class

joinpoint

joinpoint

joinpoint

JAsCo
Connector
Registry

Cab

Aspect A

Aspect B

Aspect CCC

Figure 4.7: JAsCo Runtime Architecture

4.5.4.2 JAsCo Runtime Infrastructure

The JAsCo technology is originally based on a new, backward compatible component model
where traps that enable aspect interaction are already built-in. Ideally, new software is
shipped employing this new component model. This way, attaching and removing aspects
to components does not require any adaptation whatsoever to the target classes. Of course,
expecting all components to be developed using this new component model is rather utopian.
Therefore, it is also possible to automatically transform a regular Java class into a JAsCo
class by employing a pre-processor that inserts the traps using byte-code adaptations.

The JAsCo technology is also very flexible to support unanticipated runtime changes.
Connectors and their corresponding aspect instances can easily be loaded and unloaded at
runtime by using the JAsCo runtime infrastructure API. In addition, JAsCo includes a very
flexible system for remotely (from outside the application) adding and removing connectors.
The main advantage of this trapped component model consists of the portability of the
approach. JAsCo does not depend on a specialised virtual machine nor on some custom
interfaces only available at certain systems. For example, a runtime environment optimised
for embedded systems (JAsCoME) and an implementation of JAsCo for the .NET platform
have been realised [VVSV03]. The drawback of a trapped approach is of course that a
performance overhead is experienced for all these traps, even if no aspects are applied.

JAsCo employs a central connector registry that manages registered connectors and
aspects at runtime. This connector registry serves as the main addressing point for all
JAsCo entities and contains a database of connectors and instantiated aspects. Whenever
a connector is loaded into or removed from the system at run-time, the connector registry
is notified and its database of registered connectors and aspects is automatically updated.
The left-hand side of Figure 4.7 illustrates a JAsCo-enabled class from which the joinpoint
shadows are equipped with traps. As a result, whenever a joinpoint is triggered, its execution
is deferred to the connector registry, which looks up all connectors that are registered for
that particular joinpoint. The connector triggers the advices of the applicable aspects.

76 Chapter 4. Web Services Management Layer

To improve the runtime performance of JAsCo, the Jutta and HotSwap systems were
introduced in [VS04]. Jutta is an aspect-oriented just-in-time compiler that is able to gen-
erate a highly optimal code fragment containing the combined aspectual behaviour for a
certain joinpoint. HotSwap is a runtime instrumentation framework that is able to insert
traps at only those joinpoints where aspects are applied. With HotSwap, physical weaving,
unweaving and reweaving of aspects at runtime at previously unadvised joinpoints becomes
possible. When aspects are added or removed, the corresponding traps are added or re-
moved. By employing Jutta and HotSwap, JAsCo is able to significantly improve on current
state-of-the-art dynamic AOP approaches, like AspectWerkz and JBoss/AOP, performance-
wise. JAsCo is even able to improve on the statically weaved language AspectJ in some
cases [VS04]. All code examples in this dissertation are based on JAsCo version 0.8.6.

Two advanced extensions of JAsCo are also applied in this thesis: stateful aspects and
distributed aspects. To avoid that this first introduction to JAsCo gets overloaded, we will
introduce the technical details of these two extensions at the moment we first need them.
Stateful aspects are therefore introduced in Chapter 5 in the context of stateful service
conversations. Distributed aspects are discussed in Chapter 7.

4.6 Conclusions

In this chapter we have introduced the outlines of our approach: we propose to remove all
service related code from a client application and put it in a separate module, called Web
Services Management Layer (WSML). The WSML is responsible for taking care of all service
concerns, including finding and integrating functionally compatible services. Additionally,
the WSML takes care of selection, monitoring and other client-side management concerns
for the client. As a result, the client code is not cluttered anymore with service specific
code. The WSML can be deployed in various scenarios. The most obvious one is where the
WSML acts as a service mediator or service broker, with an option of running the WSML
as part of the client, or in a remote setup, where the WSML acts as a server for possibly
multiple clients.

As the code, dealing with various service related code, ends up scattered and tangled
with code dealing with other concerns, we suggest to use Aspect Oriented Programming
(AOP) to cleanly modularise each concern in a separate entity, called aspect. AOP identifies
scattered and tangled code as crosscutting concerns. By moving these concerns into aspects,
the base code is freed from this additional code, and the aspects can be deployed obliviously
at the places where needed. A pointcut language allows specifying the joinpoints, i.e. those
places in the base code where an aspect should be triggered. To ensure that we can introduce
and remove at runtime the aspects, which encapsulate the service related concerns, the need
for a dynamic AOP approach was identified. The concrete dynamic AOP approach chosen
in the context of this thesis is JAsCo. We have discussed the JAsCo language, which mainly
introduces two concepts on top of Java: aspects and connectors. The aspects contain the
crosscutting concern in a reusable manner, while connectors are used to deploy one or more
aspects in a specific context. Finally, a brief discussion on the runtime infrastructure of
JAsCo was made.

4.6 Conclusions 77

Now that we have introduced our main approach (WSML), the paradigm for its imple-
mentation (AOP) and a concrete technology (JAsCo), we can discuss each of the identified
aspect categories in more detail. Aspects for service integration is the subject of the next
chapter, aspects for service selection and monitoring are presented in chapter 6 and aspects
for management concerns are considered in chapter 7.

78 Chapter 4. Web Services Management Layer

Chapter 5

Dynamic Integration of Web
Services

Abstract Just-in-time integration of Web services while avoiding hard-wiring service inter-
faces in clients, is the topic of this chapter. We discuss in detail how dynamic integration of
Web services is realised by employing AOP-techniques in the WSML. Service types are intro-
duced as a generic description of the service functionality required by the client application
but without any reference to concrete services. Client requests on service types are redi-
rected to the appropriate Web services or service compositions through service redirection
aspects. These aspects modularise all service communication or composition details. We
will illustrate how dynamic binding, asynchronous communication, stateful conversational
messaging, and reactive compositions are realised using AOP.

80 Chapter 5. Dynamic Integration of Web Services

5.1 Service Types

A primary goal of a dynamic redirection mechanism for Web services is avoiding that
concrete service interfaces get hard-wired into the client. Therefore, service requests have
to be formulated in the client application in an abstract way and it is up to the WSML
to redirect these requests to a concrete service. To this end, we introduce Service Types.
A service type is a generic description of the service functionality required by the client
application but without any reference to concrete services. A service type can be considered
a contract specified by the application towards the services and allows hiding the syntactical
differences between semantically equivalent services. While still complying with the same
service type, Web services based on RPC-based interaction might differ on the following
levels:

• Web method names

• Synchronous / Asynchronous methods

• Parameter types & return types

• Semantics of parameters & return values

• Method call sequencing

• Etc.

By introducing Service Types, the heterogeneity of concrete services can be hidden.
This approach differs from the concept of tModels (see section 3.3.2.1) where the services
must have identical interfaces. Suppose the HotelServiceType for the case study introduced
in section 3.1 specifies the following methods:

• HotelList getHotels (BeginDate, EndDate, CityCode)

• Reservation bookHotel (BeginDate, EndDate, HotelCode)

Client applications can invoke the methods of the HotelServiceType whenever they want
to retrieve a list of hotels in a city, check for room availability and make a reservation.
How invoking the service type methods will result in the invocation of one (or possibly
multiple) Web services is of no interest to the client. In a black-box fashion, the service
type encapsulates all service related behaviour and exposes a functional interface to the
client. At the implementation level, this interface can be made available in two ways:

• Local Object: the WSML is part of the runtime environment of the client and any
defined service type is provided as a class that can be instantiated. Requesting service
functionality is possible by simply instantiating the service type class and invoking
a method on it. One could look at the service type as an advanced service proxy, a
local representative of all remote Web services offering the service type functionality.

5.1 Service Types 81

• Remote Web Service: a service type is deployed as a Web service on the WSML,
running as a server, and possibly hosting multiple clients. Requesting service function-
ality involves invoking the Web service representing the service type. This approach
fits in the vision that everything realised by using or composing one or more Web
services is exposed again as a value-added Web service.

These two approaches map to the distinction made in Figure 4.2 of chapter 4, where the
WSML runs together with a local client, or as a dedicated server. Note that if the WSML is
running in server setup, some of the issues the WSML is intended to address, may reoccur
between the client and the WSML. For instance, an unreliable network connection between
the client and the WSML server will result in issues that clearly cannot be addressed by
the WSML. Therefore, the WSML server setup should preferably be used in a controlled
environment such as an intranet, where the WSML can be used as the communication
gateway between the local clients and the the Web services on the internet.

Now, as a service type can be instantiated, it should exhibit some behaviour. This is
the default behaviour of the service type, and will be executed whenever no Web service or
service composition associated with the service type is available or able to return a valid
result. Possible default behaviours for a service type include:

• Throwing an exception

• Returning a default value

• Invoking a default Web service

• Etc.

Specifying a new service type boils down to specifying a set of methods with their
appropriate parameters and return types as they would fit into the client, together with
the default behaviour of each method. Clearly, the client must be adapted to this default
behaviour: if for instance the service type returns a NoServicesAvailableException by
default, then the client should know how to deal with this exception. Note that while a
service type is intended to hide away all service related concerns, it might not accomplish
this completely: if for instance no Web service is available to deal with a request, this will
still have an impact on the client, i.e. by throwing the aforementioned exception.

Based on the requirements for a flexible service integration mechanism targeted at dy-
namic service environments as discussed in section 3.3, we will now continue with a discus-
sion on how we realise dynamic binding of Web services using aspect-oriented techniques.
First, we deal with basic Web services engaging in simple request-response communication
in the next section. More advanced Web service communication patterns are discussed in
subsequent sections: asynchronous communication in section 5.3, conversational messaging
in section 5.4 and finally, service compositions in section 5.5. Related work and conclusions
are presented respectively in sections 5.6 and 5.7.

82 Chapter 5. Dynamic Integration of Web Services

5.2 RPC-based Web Services

5.2.1 Mappings

Suppose two semantically equivalent services HotelServiceA and HotelServiceB offer the
functionality described in the HotelServicetype.

HotelServiceA provides the methods:

• HotelList listHotels (CityCode, BeginDate, endDate)

• Reservation bookHotel (Date, Nights, HotelCode)

HotelServiceB provides the methods:

• HotelList getHotels (BeginDate, EndDate, CityName)

• Reservation bookHotel (BeginDate, EndDate, HotelCode)

Another service CityCodeLookupService offers the functionality for converting a given city
name into a city code and vice versa.

• CityCode getCityCode (CityName)

• CityName getCityName (CityCode)

As one can see, the operations do differ as they have different names or vary in the
parameters they accept. Figure 5.1 shows how the operation getHotels of the HotelSer-
viceType can be mapped onto two concrete Web service interactions. In the first example,
both the name and the order of the arguments of the service type differ from the ones
specified in HotelServiceA. More complex mappings may require additional pre-processing
of the parameters, e.g. to convert a begin date and an end date provided by the bookHotel
service type method into a begin date and a number of nights as required by HotelServiceA.
Additionally, also post-processing of the returned result may be required, i.e. to convert
the result provided by the Web service into a result expected by the service type.

In the second mapping a simple service composition is needed, as HotelServiceB requires
the city code to be converted into a city name first. This additional method is provided
by the third service CityCodeLookupService. We leave the discussion of this composition to
section 5.5.

5.2.2 Dynamic Binding

To enable the redirection of requests on the HotelServiceType to concrete hotel Web services,
Service Redirection Aspects are introduced. They specify what behaviour to execute, in
this case which concrete methods to invoke on a specific Web service, when some service
functionality is requested in the application.This behaviour is specified in aspect hooks;

5.2 RPC-based Web Services 83

Client WSML

getHotels (beginDate, endDate, cityCode)

return result

WSML HotelServiceA

listHotels (cityCode, beginDate, endDate)

return result

WSML HotelServiceB

getHotels (beginDate, endDate, cityName)

return cityName

CityCode
LookupService

getCityName (cityCode)

return result

Figure 5.1: Two Possible Mappings for the Hotel Service Type

84 Chapter 5. Dynamic Integration of Web Services

Control Flow going from entity A to entity BA B

A

B
Aspect B is deployed by Connector C and is
triggered by an event in entity A (1)

DE

1
Aspect D is deployed by Connector E and is
triggered by the same event in entity A

C

A
D

Aspect D is deployed by Connector
C and is triggered by an event in
entity A and an event in entity B and
exhibits some behaviour on entity E

C

2

If Aspect B and D specify around advices,
Aspect D is executed when Aspect B proceeds
the around chain (2)

B

2

A

B
Aspect B is deployed by Connector C and is
triggered by the occurence of an event in entity A

DE

1
Aspect D is deployed by Connector E and is
triggered by the same event in entity A

C

If the aspects specify the same kind of advice, the
order in which the aspects are executed is
indicated by the priority indicated next to the arrow

E

Control Flow fails going from entity A to entity BA B

Figure 5.2: Listings for the Figures

5.2 RPC-based Web Services 85

WSML

Hotel
Service A

Hotel
Service B

class ClientApplication {
 ...
 hotelServiceType.getHotels
 (beginDate, endDate, cityCode);
 ...
}

Hotel Service
Redirection
Aspect BCB

class HotelServiceType {
 getHotels (beginDate, endDate, cityCode);
 bookHotel (beginDate, endDate, hotelCode);
}

Hotel Service
Redirection
Aspect ACA

Figure 5.3: Dynamic Service Binding using Redirection Aspects

there is a hook for each request the Web service can fulfil. As such, a service redirection
aspect encapsulates all communication details for a specific Web service. In case of our
example, there will be one redirection aspect for HotelServiceA and one for HotelServiceB.
JAsCo aspects are specified without referencing concrete context information: a connector
is used to provide this context information and to specify exactly where advice behaviour
of the aspect hooks has to be executed. In our case, a service redirection aspect has to be
triggered each time the methods getHotels and bookHotel are called in the application.
This is depicted in Figure 5.3. The full lines indicate the control flow and the dashed lines
indicate the hooking of an aspect on one or more joinpoints (in this case on all methods of
the HotelServiceType class). The complete list of notations is included in Figure 5.2.

Code fragment 5.1 shows an example implementation of the HotelServiceA redirection
aspect in JAsCo. The aspect contains two hooks: one for the getHotels request (lines 4
to 17) and one for the bookHotel request (lines 19 to 33). Each hook defines, besides
a constructor, an around advice which is going to invoke the actual web method of the
corresponding Web service using a static proxy (line 11 and lines 27). If the invocation of
the Web service fails for whatever reason, exception handling is specified in the catch blocks.
We come back to this in the next section. Note that the advice can contain additional pre-
processing code (e.g. in line 26 a parameter required by the Web service is calculated)
or post-processing code (e.g. to convert the result returned by a Web service to a format
expected by the client). In case multiple advices require the same glue code, it is possible
to specify a specific method in the aspect for this purpose to avoid code duplication.

86 Chapter 5. Dynamic Integration of Web Services

1 Class HotelServiceARedirection {

2 Proxy proxy = new Proxy (http://www.hotel.com/service.wsdl);

3 ...

4 hook GetHotelsHook {

5 GetHotelsHook(method (Date beginDate, Date endDate, String cityCode)) {

6 execution(method);

7 }

8

9 around() {

10 try {

11 return proxy.getHotels(cityCode, beginDate, endDate);

12 }

13 catch (Exception e) {

14 return proceed();

15 }

16 }

17 }

18

19 hook BookHotelHook {

20 BookHotelHook(method (Date beginDate, Date endDate, String hotelCode)) {

21 execution(method);

22 }

23

24 around() {

25 try {

26 int nights = endDate - beginDate;

27 return proxy.bookHotel(cityCode, beginDate, nights);

28 }

29 catch (Exception e) {

30 return proceed();

31 }

32 }

33 }

34 }

Code fragment 5.1: Service Redirection Aspect for Hotel Service A

In our example, a static proxy is used for the service invocations for three reasons: 1)
Performance: static proxies perform better than dynamic proxies or DII as it is not necessary
to analyse the WSDL-file or generate client-side code at runtime. 2) Simplicity: using static
proxies results in clean and less complex code, enhancing readability and maintainability.
3) Static typing: as the type of the proxy is static, it is possible to do service method look-
up at compile-time, unlike with DII. This facilitates implementing the aspect and reduces
runtime errors. Also, whenever the WSDL-file of a service changes, the static proxy can be
regenerated, and any mismatches that occur due to changes in the interfaces can be more
easily detected and resolved at compile time, before redeploying the aspect.

Now we need a connector to deploy the service redirection aspect for the corresponding
service type(s). This way, JAsCo connectors encapsulate all deployment details. Code
fragment 5.2 illustrates the HotelServiceAconnector, which specifies the mapping between
the requests of HotelServiceType and the aspect of Code fragment 5.1. This connector
instantiates the hooks defined in the aspect, which results in the execution of the around

5.2 RPC-based Web Services 87

1 static connector HotelServiceAconnector {

2 HotelServiceARedirection.GetHotelsHook getHotelsHook =

3 new HotelServiceARedirection.GetHotelsHook

4 (HotelList HotelServiceType.getHotels (Date, Date, String));

5 HotelServiceARedirection.BookHotelHook bookHotelHook=

6 new HotelServiceARedirection.BookHotelHook

7 (Reservation HotelServiceType.bookHotel (Date, Date, String));

8 getHotelsHook.around(); //optional

9 bookHotelHook.around(); //optional

10 }

Code fragment 5.2: Connector for Hotel Service A

behaviour specified in those hooks, as soon as a service type request is performed.

As one service redirection aspect encapsulates all communication details for one Web
service, it is easy to accommodate to Web service versioning. If an integrated service
changes for instance its interface or the message format it expects, then these changes only
need to be reflected in the corresponding aspect. Of course, the service can only change
within the boundaries specified by the service type. The service can no longer be integrated
in the client if it does not deliver the required functionality anymore. Determining this
“compatibility” is a complex process, as it requires analysing the semantics of the service
type and the Web service. This is discussed in chapter 8. The other way around is also
possible: a Web service may provide the functionality needed by the service type, but might
need additional information to do so. For instance, to book a hotel room, a hotel service
might require the birth date of the customer. It is very well possible that this information
is somewhere available in the client system, but if it is not passed along as a parameter of a
service type request, it cannot be made available to the Web service. Using traditional OO,
this can only be fixed by storing the data explicitly somewhere to make it available at the
moment of the service invocation, or by passing it along as an extra parameter of the service
type, which will undoubtedly involve changes in multiple places in the client. Using AOP,
the service redirection aspect can be used to capture the unavailable data in the client in an
oblivious way without having to adapt the client code, and pass this context along to where
it is needed. Capturing unavailable data that otherwise requires crosscutting changes in an
application is an approach also suggested in [CDS03] for the purpose of gathering business
rules related data.

5.2.3 Hot-Swapping

Hot-swapping means the replacement of a software program or a part of a program while
the whole software system remains in operation [FGWP01]. In the Web service context,
this means that one service is replaced by another without having an impact on the client.
Problems inherent to the process of hot-swapping include the Referential Transparency
Problem, indicating that all objects receiving a handle to an object that is about to be
hot-swapped, need to be updated with a reference to the new object; the State Transfer
Problem stating that the state of an module that is replaced, needs to be transferred to the
new module for consistency reasons; and the Mutual Referential Problem, indicating that if

88 Chapter 5. Dynamic Integration of Web Services

WSML

Web
Service A

3Redirection
Aspect A

Client

Web
Service C

Redirection
Aspect C

7
Cc

CA

1

10

Redirection
Aspect B

4

6

9

CB
Web

Service B
5

8

Service
Type

2

Figure 5.4: Hot-swapping Services through Around Advice Chaining

a module depends on other modules, multiple modules must be swapped in one transaction
and the order of swapping may be important.

In our running example, whenever the client application invokes the HotelServiceType,
either HotelServiceA or HotelServiceB should be addressed. By default, the “first” ser-
vice redirection aspect is triggered, and its corresponding Web service is invoked. If the
invocation is successful, the result is returned to the client method that invoked the Ho-
telServiceType. If the invocation fails (e.g. because the network or the Web service is
down), the second redirection aspect is triggered and as a result, the next Web service is
invoked. In case of consecutive failures, this process is repeated until all Web services are
tried. If the last one is tried and fails too, the default behaviour of the service type, as
described in section 5.1, is executed. This whole process, as depicted in Figure 5.4, happens
in a transparent way for the client application and is straightforwardly realised by an AOP
technique called Around Advice Chaining. Because there are multiple service redirection
aspects present, there are multiple around behaviour methods employed on the same join-
point. Around advice chaining means that the firstly specified around method is executed
first. If this around method invokes the original behaviour, the second around behaviour is
executed instead of the original behaviour and so on. In Code fragment 5.1 this is realised
in lines 14 and 30 by using the proceed keyword, which indicates to proceed with the around
advice chain and thus, to continue with the next service redirection aspect.

5.2 RPC-based Web Services 89

The JAsCo connectors realise a dynamic binding between the client application and
the Web services. If a Web service is temporarily unavailable, a service redirection aspect
can be taken out of the chain by disabling the corresponding connector. As such, it is
very easy to avoid unnecessary calls to unreachable Web services. This means that the
proposed hot-swapping mechanism can pro-actively select the most optimal services, and
therefore minimise the impact of a switch on the application performance. Furthermore,
as JAsCo allows for the runtime deployment of aspect beans and connectors, it becomes
possible to dynamically alter which services are integrated. By creating a new redirection
aspect and corresponding connector at runtime, a new Web service can be included in the
around chain. As such, our approach can easily cope with the volatility of a Web service
environment while leaving the client application untouched. Additionally, it is also possible
to realise client initiated hot-swapping with this approach. By providing a mechanism that
can be used by the client to notify that a hot-swap is desired, the appropriate connectors of
the redirection aspects can be enabled or disabled. It is also possible to dynamically alter
the order of the around chain in order to put more appropriate services at the beginning of
the chain. This is the subject of chapter 6.

In our solution, the referential transparency problem is circumvented through the use
of service types, as no object in the client refers directly to a Web service. The mutual
referential problem is not applicable as Web services are independent autonomous modules,
and we assume no existing dependencies. The state transfer problem can however be an
issue. Up until now we assumed simple request-response communications between the
WSML and the Web services: a hot-swap can take place at any time. If more advanced
business processes need to be executed between services that keep state, switching to another
service becomes more difficult. It is clear that in this case, a hot-swap cannot take place at
any moment and that compensation actions might be required to rollback the state of the
service and maybe even the state of the application. This is discussed in section 5.4.

5.2.4 Changeable endpoint references

You may already have noted that the redirection aspect shown in Code fragment 5.1 contains
a static proxy in line 2 to invoke the Web service. Static proxies already support changeable
endpoint references (see section 3.3.2.1) by using a variable or a configuration file. If for
instance in line 2 a variable was used instead of a hard-coded reference, then it is possible
to assign a new value for the endpoint reference whenever the service is relocated. At
deployment time, the endpoint reference can be passed from the connector to the aspect
through an explicit constructor. The advantage is that the aspect does not need to be
updated and recompiled. To detect service re-locations at runtime, a dedicated advice can
be triggered whenever the service is about to be relocated, and update the reference in the
aspect.

Code fragment 5.3 contains an updated version of the Service Redirection Aspect. A
dedicated setProxy method (lines 4 to 6) updates the endpoint address of the proxy. Ad-
ditionally, a new endpointChangedHook (lines 15 to 19) is added. This hook is triggered
whenever a new endpoint needs to be set. The following Code fragment shows the connector
for this aspect.

90 Chapter 5. Dynamic Integration of Web Services

1 Class HotelServiceARedirection {

2 Proxy proxy;

3

4 void setProxy (String newEndpoint) {

5 proxy = new Proxy (endpoint);

6 }

7

8 public HotelServiceA (String newEndpoint) {

9 setProxy (newEndpoint);

10 }

11

12 hook getHotelsHook {...}

13

14 hook bookHotelHook {...}

15

16 hook endpointChangedHook {

17

18 after () {

19 setProxy (newEndpoint);

20 }

21 }

22 }

Code fragment 5.3: Service Redirection Aspect with Changeable Endpoint References

1 static connector HotelServiceAconnector {

2 HotelServiceARedirection serviceA =

3 new HotelServiceARedirection (http://www.hotel.com/Service.wsdl);

4 HotelServiceARedirection.getHotelsHook getHotelsHook =

5 new HotelServiceARedirection.getHotelsHook

6 (HotelList HotelServiceType.getHotels (Date, Date, String));

7 HotelServiceARedirection.bookHotelHook bookHotelHook =

8 new HotelServiceARedirection.bookHotelHook

9 (Reservation HotelServiceType.bookHotel (Date, Date, String));

10 HotelServiceARedirection.endpointChangedHook endpointChangedHook =

11 new HotelServiceARedirection.endpointChangedHook

12 (wsml.WebService.setProxy (String));

13 }

Code fragment 5.4: Connector for Hotel Service A with Endpoint Reference Setting

5.2 RPC-based Web Services 91

In lines 2 and 3 of Code fragment 5.4 the explicit constructor of the HotelServiceA aspect
is called with the URI of the proxy as a parameter. The two first hooks are instantiated
and specify the respective HotelServiceType methods as joinpoints, similar to what we did
in Code fragment 5.2. The third hook (lines 10 to 12), which contains the advice to set
the endpoint reference, defines as a joinpoint the moment the endpoint reference changes.
The code example assumes the WSML is notified of this change and hooks on this moment.
This could be realised through the WS-Eventing standard [BCC+04c] that makes it possible
for clients to subscribe to event messages coming from a service. If the Web service does
not offer such functionality, periodical polling can be done to detect changes (e.g. if the
URI contains a forward reference to the new location of the service). Another approach
is employing a distributed joinpoint model, where the aspect directly hooks on joinpoints
specified remotely on the Web service. This advanced AOP approach is further discussed
in chapter 7.

5.2.5 Exception Handling

The proposed service integration mechanism is very straightforward, easy to understand
and realise. However, the service redirection aspects as proposed in section 5.2.2 actually
encapsulate two separate concerns: firstly, they encapsulate all communication details for
a Web service, but secondly, they also contain the implementation dealing with service
invocation failures. In the Code fragment 5.1, the catch blocks (lines 13 to 15 and lines
28 to 30) specify that whenever the service invocations generates an exception, the next
service is invoked using the proceed() method. While this may be valid behaviour in many
cases, it might be too restrictive in others. A more flexible approach is to split up the code
in service redirection aspects, which only contain code to invoke a service, and in fallback
aspects, which specify what to do in case of an invocation failure. This is achieved by
changing Code fragment 5.1 so that an exception is thrown whenever the service invocation
fails. Without any fallback aspect into place, this exception will be returned to the client.
Any next call from the client application on the service type will continue to be redirected
to the same service, even if it fails.

Deploying a fallback aspect to intercept the exception can change this behaviour. Fig-
ure 5.5 displays the case where a fallback aspect catches any service invocation exception
and then continues the redirection chain, thus realising hot-swapping functionality. In the
picture, WebServiceA fails to return a valid result and the fallback aspect continues the chain
by proceeding to WebServiceB that does return a result. If one wants to capture possible
exceptions that are thrown in RedirectionAspectB, the fallback aspect should be applied
there too. An alternative is to deploy the fallback aspect on the service type itself. As the
service redirection aspects specify advices around this service type, any exception occurring
in the redirection aspects is captured. As a concrete example, consider the next Code frag-
ment showing a fallback aspect for hot-swapping that limits the redirection chain to a fixed
length, and thus limiting the number of service invocation retries. Lines 11 to 15 show an
around throwing advice that is triggered as soon as a ServiceInvocationException occurs
in the joinpoint. If the number of retries is lower than the maxInvocations the chain is
continued (line 13), otherwise the exception is simply re-thrown (line 14).

When a Web service invocation fails, the hot-swapping aspect continues the chain until

92 Chapter 5. Dynamic Integration of Web Services

WSML

Web
Service A

3Redirection
Aspect A

Client

Web
Service B

Redirection
Aspect B

Service
Type

6
CB

CA

1

9

Fallback
Aspect

4

5

7

8

Cf

2

Figure 5.5: Exception Handling of Services using a Fallback Aspect

1 class HotSwappingAspect {

2 private static int maxInvocations = 3;

3

4 hook InvocationHook {

5 int invocation = 0;

6

7 InvocationHook(method(..args)){

8 execution(method);

9 }

10

11 around throwing(ServiceInvocationException e) {

12 if (invocations++ < maxInvocations)

13 return proceed();

14 else throw e;

15 }

16 }

17 }

Code fragment 5.5: Fallback Aspect for Hot-swapping

5.2 RPC-based Web Services 93

a working Web service is found. The next time the service type is invoked, the chain will
be triggered again in the same fashion. This means that all the services that resulted in an
exception will be retried first. This behaviour may be undesired, especially as invocations
on unavailable Web services result in an exception after a, possibly lengthy, time-out period
has gone by. A straightforward solution is to remove the corresponding service redirection
aspects temporarily from the chain or to move them to the back of the chain. With JAsCo,
this is achieved by simply disabling or reordering the connectors. The implementation of
the fallback aspect can be adjusted to realise this through a dedicated connector API.

Examples of other possible fallback behaviour that can be nicely modularised in aspects
include:

• Invocation Retrying: instead of continuing with the next available Web service, a
fallback aspect could be deployed to retry the same Web service a number of times.
This aspect would look identical to the hot-swapping aspect of Code fragment 5.5,
except in line 12, it should state to invoke the joinpoint again. In JAsCo this is
possible as follows:
textttthisjoinpoint.invokeAgain().

• Service Monitoring: as a service invocation failure might imply something is wrong
with the Web service, a monitoring aspect could temporarily remove that service from
the chain and start to periodically check the service for availability. Monitoring is
further discussed in Chapter 6.

• Administrator Alert: an aspect can be deployed to raise an alert as soon something
goes wrong. For instance, an email message could be sent to an administrator to
indicate the problem.

Fallback aspects are a first example of management concerns that can be straightforwardly
encapsulated in aspects. Chapter 7 will illustrate more cases, including client-side manage-
ment issues such as service billing, broadcasting and caching.

5.2.6 Conditional Service Binding

In specific scenarios not all available Web services can deal with all kinds of requests:
each service may be specialised in a subset of the possible client requests. For instance,
HotelServiceA deals only with hotels in Europe while HotelServiceB handles hotels in Africa.
In this case, the parameter values of the client requests (e.g. the CityCode or CityName
parameters in the methods of the HotelServiceType) must be taken into account by the
service binding mechanism. This means that we need a more fine-grained control over when
a hook in our service redirection aspect should be triggered. Otherwise said: if multiple
aspects are present on a joinpoint, a condition evaluation is needed to determine which
aspect advice(s) should be triggered.

In AspectJ, a condition can be added to the pointcut specification using an if pointcut
designator. In JAsCo an condition check can be added to a hook. Code fragment 5.6
shows an extended version of the getHotelsHook of Code fragment 5.1. In lines 8 to 10 an

94 Chapter 5. Dynamic Integration of Web Services

1 ...

2 hook getHotelsHook {

3 getHotelsHook(method (Date beginDate, Date endDate, String cityCode)) {

4 execution(method);

5 }

6

7 isApplicable() {

8 return isValidDestination(cityCode);

9 }

10

11 around() {...}

12 }

Code fragment 5.6: Conditional Binding with a Service Redirection Aspect

isApplicable method is added containing a condition check on the hotel location. This
condition is checked before the advice in the corresponding hook is triggered. In the method
body it is calculated whether the current parameter(s) are valid input for the Web service.
A method provided in the aspect can do this evaluation, or it may be left to a Web service
method. At first it might seem strange to invoke a Web service to check whether that service
can deal with the provided input. However, taking into account that a Web service can
trigger a long-running business process, or can require a payment, it is worth considering
to do pre-validation of the input.

Using the isApplicable method filters the Web services at two levels: first, services are
pro-actively filtered out by enabling or disabling connectors as explained before. Second,
the conditions of the remaining services are checked against the current request. Only the
services that are left over are candidates to be invoked, as only their corresponding aspects
are considered. Otherwise said: only service redirection aspects with enabled connectors
and conditions that evaluate to true remain in the redirection chain.

5.2.7 Multiple Services Binding

It is also possible to realise multiple services binding with service redirection aspects. Re-
member from chapter 3 that this involves the binding of multiple complementary Web
services to the client at once. In our example HotelServiceType method getHotels can be
redirected to HotelServiceA, a Web service providing fast results and method bookHotel
can be redirected to HotelServiceB, being the cheaper Web service. Obviously, this kind
of binding is achieved at the connector level of our approach, as the connectors bind the
client with the redirection aspects that invoke the Web services. Up until now we used one
connector to link a whole redirection aspect to a service type. However, it is also possible to
use a different connector for each service type request. This way it becomes possible to use
several parts of multiple services to provide the functionality of one Service Type at a given
time, thus enabling multiple services binding. The HotelServiceType example is depicted in
Figure 5.6: two connectors per Service Redirection Aspect are used to bind the two hotel
Web services to the client. Which service is invoked for either request depends on which
connectors are enabled or disabled and the order of the connectors. Note that with multiple
services binding there are x sets of connectors to be maintained and ordered: Ca1. . . Cy1 to

5.2 RPC-based Web Services 95

WSML

Hotel
Service A

Hotel
Service B

class ClientApplication {
 ...
 hotelServiceType.getHotels
 (beginDate, endDate, cityCode);
 ...
}

Hotel Service
Redirection
Aspect B

class HotelServiceType {

 getHotels (beginDate, endDate, cityCode);

 bookHotel (beginDate, endDate, hotelCode);

}

CB1

Hotel Service
Redirection
Aspect A

CA1

CB2

CA2

Figure 5.6: Multiple Services Binding in the WMSL

96 Chapter 5. Dynamic Integration of Web Services

Cax. . . Cyx with x equal to the number of service type methods and y equal to the number
of Web services linked to the service type (in our example: x=2 and y=2). 1

5.2.8 Summary

Before moving on to the more advanced kinds of Web service interactions, we briefly sum-
marise the mechanism as described up until now. Figure 5.7 illustrates how a service
redirection aspect looks like. There is a Hook for each service type method. This hook
consists of a constructor, an optional applicability method and an around advice. As soon
as a service type is invoked by the client, the connector triggers the applicability condition
in case of conditional binding to check if the Web service is suitable for the request at
hand. If so, the around advice is executed. An optional pre-processing step consists of glue
code for the parameters. It maps the parameters provided by the client to the parameters
expected by the Web service. Next, the Web service is invoked, and optionally the result
is mapped back in a post-processing step. Finally, the result is passed back to the client.
In case of an error in this process, an exception is thrown. If this exception is not caught
in a fallback aspect (for example to retry the process or proceed to the next service), the
exception is passed back to the client. If no service is available or the last service is tried
and has failed, the default behaviour as specified in the service type is executed.

Remember from section 2.3 that more advanced Web services might prefer to commu-
nicate by exchanging XML-documents with their clients. For instance, booking a hotel
would not involve invoking a bookHotel method but rather sending a HotelReservation
document. As stated in Chapter 3, while reviewing proxies, Web services using document-
style interaction abstract away the underlying service implementation and better withstand
changes to that implementation [Burn03]. The proxy approach is also suited for this kind
of communication. For example, a proxy for a document-based hotel Web service can have
a method
textttprocess (ReservationDocument) and a Java wrapper for the ReservationDocument
can be generated at client-side. So, in the redirection aspect, the document can be prepared
as required and then sent to the Web service. Any result can be translated back into an
element of the client language.

5.3 Asynchronous Web Services

5.3.1 Introduction

Up until know only synchronous Web service invocations are discussed. In synchronous
invocation, the client sends a request to the service and then halts operation while waiting for
a service response. However, synchronous invocation is not suitable when the service must
perform a very complex computation or when the service will respond after an undetermined

1The current implementation of the WSML, version 0.5.1, supports both regular dynamic binding and
multiple services binding. This means that for a service type with x methods, x+1 connectors maintain the
binding with one Web service: 1 connector for a regular dynamic binding and x for the multiple services
binding. In case of y Web services there are y(x+1) connectors in x+1 sets.

5.3 Asynchronous Web Services 97

Service Redirection Aspect

ServiceType Method Hook

Pre Processing *

Return Statement

Hook Constructor

Applicability Statement *

Around Advice

* = optional

Web
Service

5

1

Service
Type

2

7

4

3
6

Connector

Service Invocation

Post Processing *

Figure 5.7: The Different Parts of a Service Redirection Aspect

98 Chapter 5. Dynamic Integration of Web Services

delay, for instance because it started a long-running business process, possibly involving
human action. The client would wait until it finally received the response, blocking other
processes, wasting system resources and keeping an unused transport channel open. In these
cases, asynchronous invocation is more appropriate. In asynchronous invocation, the client
does not wait for the service response. It can continue independent computation until the
response is received. This way, the client becomes event driven and uses its resources more
efficiently by processing responses when they are ready.

Typically, the sender will send its service request to a message handler who will put it in
an outgoing message queue and return control back to the client so it can continue further
processing. Each message will get an ID to map it to the result returned by the service. A
pool of threads manages this message queue. There are two possible mechanisms for getting
the results of asynchronous invocation: polling and call-backs. The call-back mechanism fits
better the object orientation paradigm, using client listeners, referred to as call-backs. These
call-backs are notified by the service side when the results to an asynchronous invocation
are ready. With the polling mechanism the client periodically requests the service for a
response.

A common way to do asynchronous invocations based on call-backs is based on begin
and end methods (see also section 3.3.2.1). The begin method starts the asynchronous
communication with the Web service method while the end method is used to get the result
of the asynchronous call. The begin method will return an AsynchronousConversation
object, which acts as a handle for an asynchronous invocation once it has started. Using
this interface, the client can obtain information about the invocation state or register the
callback that will get called once the response comes asynchronously from the service.
The class implementing the callback needs to provide some methods that will be called
in specific events (i.e. when the result is received, when the operation times out, etc.).
Code fragment 5.7 shows the simplified code of a client application invoking the bookHotel
method of HotelWebServiceA asynchronously, using Systinet Server for Java [Sys05]. The
asynchronous invocation is started (line 6) and a callback is set (line 7). In this case, the
same class is registered to be called back when the invocation returns (lines 11 to 15) or
when the invocation times out (lines 18 to 21).

5.3.2 Asynchronous Service Redirection Aspects

Our dynamic service binding mechanism can be adjusted to cope with asynchronous Web
service invocations. Firstly, the communication between the client and the service type
needs to become asynchronous to allow the client to continue processing while waiting for a
service response. And secondly, the client needs to know how and when it should collect the
service result. For this purpose, the service type must provide a begin and end method for
each request. Code fragment 5.8 shows an Asynchronous Service Redirection Aspect with a
hooks for both the begin and end methods. The around advice for the begin method (lines
10 to 20) invokes the Web service (line 12) and additionally a client object is registered
for the callback (line 13). Whenever the result becomes available, the callback object is
notified. The callback object can retrieve the result by invoking the end method on the
service type. This causes the around behaviour of the end hook to be executed (lines 32 to
35) where the result is fetched from the Web service.

5.4 Conversational Web Services 99

1 public class Client extends GenericAsyncCallback {

2

3 // asynchronously call service

4 private void doAsyncInvocation() throws Exception {

5 HotelServiceA proxy = (HotelServiceA) Registry.lookup(WSDL_URL, HotelService.class);

6 AsynchronousConversation async = proxy.beginBookHotel(args);

7 async.setCallback(this);

8 }

9

10 // implementation of the callback

11 public void onResponse(AsyncConversation async) {

12 Reservation response = proxy.endBookHotel(async);

13 async.finish();

14 System.out.println("Response received: " + response.toString());

15 }

16

17 // implementation of the time out

18 public void onTimeout (AsyncConversation async) {

19 System.out.println(method invocation timed out);

20 async.finish();

21 }

22 }

Code fragment 5.7: Asynchronous Invocation of a Web Service

When the end method is invoked, a mechanism is required to keep track of which service
redirection aspect was triggered for the service invocation. Assume a hot-swap takes place
between the invocation of the begin method and the end method of the service type. This
would lead to an erroneous redirection of the end method at the moment the result becomes
available. This can be easily avoided by using the isApplicable() construct of JAsCo. It
can be used to test if the AsynchronousConversation object belongs to the corresponding
redirection aspect (lines 28-30).

Note that our approach can also be deployed to use asynchronous services for syn-
chronous service types and vice versa: an synchronous Web service could provide the func-
tionality for an asynchronous service type (the result would be available immediately) or
an asynchronous Web service could be used with an synchronous service type (the service
type would halt the client until it receives the asynchronously fetched result).

5.4 Conversational Web Services

5.4.1 Introduction

Web services are generally considered to be stateless: there is no shared context between
the client and a Web service, and a Web service can deal with each individual request of a
client without needing any state information. However, in practice Web services can often
maintain state or resources on behalf of an individual service client or within a particular
business context across multiple interactions. For example, the FlightService in our case
study (see section 3.1) implements an airline reservation system and needs to be able to

100 Chapter 5. Dynamic Integration of Web Services

1 Class AsyncHotelServiceARedirection {

2 Proxy proxy; //client proxy of HotelServiceA

3 Set conversations;

4

5 hook BeginBookHotelHook {

6 BeginBookHotelHook (method(args, Callback subj)) {

7 execution(method);

8 }

9

10 around() {

11 try {

12 Async async = return proxy.beginBookHotel(args);

13 async.setCallback (subj);

14 conversations.add (async);

15 return async;

16 }

17 catch (Exception e) {

18 throw new (ServiceFailureException (HotelServiceA, e);

19 }

20 }

21 }

22

23 hook EndBookHotelHook {

24 EndBookHotelHook(method(Async async)) {

25 execution(method);

26 }

27

28 isApplicable() {

29 return conversations.contains (async);

30 }

31

32 around() {

33 conversations.remove (async);

34 return proxy.endBookHotel(async);

35 }

36 }

37 }

Code fragment 5.8: Asynchronous Web Service Redirection Aspect

5.4 Conversational Web Services 101

maintain the status of flight reservations across multiple independent interactions of each
customer and therefore needs to identify which state (i.e. which reservation) needs to
be queried or updated. There is a discussion in the Web services community whether
Web services should be stateful or stateless. In [Vogels03] the view that Web services
have no notion of state is given and that interaction with Web services is stateless. In
[PWWR03], contextualisation is proposed as a way of modelling stateful interactions with
stateful services. A consensus is that Web services themselves should remain stateless while
possibly acting upon stateful resources and manipulating them based on the messages they
send and receive. The responsibility for the management of the state is delegated to another
component such as a database or a file system. As pointed out in [FFG04], statelessness
in the implementation of the service itself tends to enhance reliability and scalability: a
stateless Web service can be restarted following failure without concern for its history of
prior interactions, and new copies of a stateless Web service can be created and destroyed
in response to changing load. Thus, statelessness is generally viewed as good engineering
practice for Web service implementations.

Web services that interact with stateful resources will need to provide explicit state
information in the messages exchanged with their clients. Typically, correlation information
is added explicitly in the messages for this purpose. For instance, a Reservation ID could
be passed along explicitly in the parameters between the client and the FlightService. Some
consider this correlation data at the application level burdensome in the client application
and therefore, techniques for implicit correlation and session creation have been proposed.
These approaches include using features of the underlying communication protocol (e.g.
cookies with HTTP). All these approaches have not led to an agreed upon convention or
standard that promotes interoperability between clients, stateful Web services and other
stateful resources.

One suggested approach is the WS-Resource Framework (WSRF) [WSRF05] to model
stateful resources in Web services. The state is kept in a separate entity, called a resource,
which stores all state information. Each resource has a unique identifier, so clients can en-
gage in stateful interaction with a Web service by instructing it to use a particular resource.
A pairing of a Web service with a resource is called a WS-Resource. The WS-Resource is
described by a WSDL-file so that clients can query and manipulate the resource through
message exchanges. WSRF uses the Implied Resource Pattern [FFG04], which relies on WS-
Addressing to reduce the client burden while not limiting to a specific transport protocol
or requiring unique support in the Web services client runtime. WS-addressing [BCC+04a]
is a more powerful mechanism for addressing entities managed by a service than what is
possible using URIs. A WS-Addressing endpoint reference can contain additional refer-
ence properties, in this case a stateful resource identifier that allows for the unambiguous
identification of a stateful resource.

WSRF-based Web services follow the Factory Pattern: clients must invoke a dedicated
method to receive a WS-Addressing endpoint reference. This method is referred to as the
WS-Resource factory. The returned endpoint reference points to a new WS-Resource, which
has been composed from a newly created stateful resource and its associated Web service.
The client must recognise that the endpoint reference is a WS-Resource-qualified endpoint
reference. This reference contains a stateful resource identifier in its reference properties
component, and the client must redirect all communication with the service using that

102 Chapter 5. Dynamic Integration of Web Services

endpoint reference and include the stateful resource identifier in the SOAP header of all
messages it exchanges with the service.

In this context, the importance of the reliability of the network should be underlined.
One of the fallacies of [Deu91] states the network is assumed to be reliable, something that
does not hold as Web services are most often accessed over unreliable, stateless protocols
such as HTTP. When a client invocation that changes the state of a Web service resource
fails, the client cannot make assumptions anymore on the state of the Web service resource,
as the service may have processed the request before the failure, or the request could
have been lost before reaching the service. It is important to employ a reliability protocol
such as WS-Reliable Messaging (WSRM) [BBC+05] or WS-Atomic Transactions (WSAT)
[CCF+05] to ensure that non-idempotent operations of stateful Web service are executed
reliably.

5.4.2 Conversational Web Services

From the introduction above it is clear that the client needs to perform certain actions in
a specified order. First the client must invoke the WS-Resource factory and then redirect
all messages to the received endpoint reference. Next, a conversational protocol imposed
by the service and its underlying business process, may further restrict the communication.
For example, the FlightService can specify that clients must either create a new Reservation
account or login using their existing account. Next, clients can browse for available flights
and add or remove flight segments to their reservation. Once a client has finished detailing
his flight itinerary, he/she must checkout, do a payment, and logout.

− Login (userName, password)

− newReservation (Name, Address, Phone)

− openReservation (ReservationNumber)

− browseFlights (Source, Destination)

− addFlightSegment (FlightNumber, Date)

− removeFlightSegment (FlightNumber, Date)

− checkout (ReservationNumber)

− payment (ReservationNumber, BankCardDetails)

− logout (userName)

Services that engage in such a conversation with their clients are referred to as conversa-
tional services. In [FFG04] a conversational service is defined as a service that implements
a series of operations such that the result of one operation depends on a prior operation
and/or prepares for a subsequent operation. The service uses each message in a logical
stream of messages to determine the processing behaviour of the service. The behaviour of
a given operation is based on processing preceding messages in the logical sequence.

5.4 Conversational Web Services 103

This communication protocol complicates the scenario to achieve dynamic service bind-
ing and hot-swapping. After all: switching from one service to another in the middle of a
conversation is not straightforwardly possible. In our example, it is required that the client
logs in on the service, starts a new reservation, browses for flight segments, add one or more
to the itinerary, checks out and finally logs out. The client needs to execute these methods
in the specified order on the same Web service, except in the case where the Web service
resource can migrate to another service, a scenario that is not further discussed here.

5.4.3 Conversational Service Types

The dynamic service integration mechanism described in section 5.2 does not guarantee
that each request will be redirected to the same service, as hot-swapping takes place in a
transparent way. We will need to adapt our approach to ensure that when the client starts to
communicate with one particular service, all subsequent messages will be redirected to (the
same instance of) the same service. First, we will make our service types conversational-
aware. An initial service type request will start a multi-step conversation between the
service and the client. As shown above, the service will maintain a conversational state
with the client (e.g. through a WS-Resource). This initial request typically returns some
form of conversation ID (e.g. a stateful resource qualifier, or a session ID) and any further
communication message must somehow carry this ID (e.g. explicitly in the parameters or
implicitly in the SOAP header). A service type request can have any of the following three
roles in a conversation:

• Start: this request starts a new conversation. Each call on this request creates a new
conversation context and an accompanying unique conversation ID. In our example,
this is the login method.

• Continue: this request is part of a conversation in progress. The conversation ID is
used to correlate each call to an existing conversation. This includes methods that
are intended to be called subsequent to the conversation’s start and before its finish
as well as requests for responses with additional information, requests for progress or
status, and so on.

• Finish: this request finishes an existing conversation. A call to a finish request
marks the conversation for destruction. At some point after a finish method returns
successfully, all data associated with the conversation’s context is removed. In our
example, this is the logout method.

Next, we have to make sure that the binding of the Web services through service redirection
aspects respects the communication protocol. The aspects will need to maintain state about
the conversation it is having with the Web services. This can be realised by making the
redirection aspects stateful.

104 Chapter 5. Dynamic Integration of Web Services

5.4.4 Stateful Aspects

Most of the current joinpoint approaches feature a dynamic joinpoint model, i.e. a model
where the joinpoints are runtime events of the program execution. As such, it becomes
possible to invoke aspect behaviour based on runtime types, call-stack context (e.g. As-
pectJ’s cflow() pointcut [KHH+01]), dynamically evaluated expressions, etc. Describing
the applicability of aspects in terms of a sequence or protocol of run-time events however, is
generally not supported. With the exception of the cflow() pointcut, the pointcuts of cur-
rent mainstream AOP languages cannot refer to the history of previously matched pointcuts
in their specification. In order to trigger an aspect on a protocol sequence of joinpoints,
one is obliged to program code for maintaining a state regarding the occurrence of relevant
joinpoints, as such implementing the protocol by hand. Explicit protocols are nevertheless
frequently encountered in a wide range of fields such as Component-Based Software Devel-
opment [FS02], data communications [Tane88] and business processes [ACD+03] such as
Web services conversations.

In [VSCD05] it is argued that protocols are valid targets for aspect application, and that
it is desirable to support them in the pointcut language itself while delegating the actual
control-mechanism implementation to the weaver. An extension of the JAsCo programming
language for stateful aspects was proposed. An implementation based on a deterministic
finite automaton, has been made and added to the current version. With JAsCo stateful
aspects it is possible to describe a protocol-based pointcut expression. Every line in the
expression defines a new transition within the protocol. Each transition specifies one or
more destination transitions that are matched after the current transition is fired. On every
transition, advices can be attached which are executed when the transition fires. This
principle is illustrated by an example in the next section.

5.4.5 Conversational Service Redirection Aspects

Code fragment 5.9 shows a conversational service redirection aspect for the FlightService.
This aspect keeps track of the state of the conversation, and only allows to progress in the
conversation based on the specified protocol in lines 5 to 12.

Each of the advices (lines 19 to 26) contains code responsible for invoking the FlightSer-
vice. This is analogue to the code of the service redirection aspects as presented in section
5.2. However, only if a transition with the corresponding name is fired, the advice is trig-
gered. This way, the conversation protocol is enforced in the client. Only if the client first
invokes the login on the service type, the corresponding advice in line 19 will be triggered
and the service will be invoked. This is specified in the first line of the protocol in line 7.
Next, the user can start a new reservation (line 8), or open an existing one (line 9), add
flight segments to his itinerary (line 11), or remove them again (line 13). Next, the user can
checkout (line 14), do a payment (line 15), and finally, log out (line 16). If the client invokes
a method not conforming this conversation, the service will not be invoked, as no advice
will be triggered. Using a stateful aspect ensures that the service will only be invoked if the
client has the correct conversation history with that service. This mechanism also avoids
unnecessary calls to the service: adding a flight segment without a valid login would result
in an exception anyway: this mechanism avoids the call altogether. It is also possible to

5.4 Conversational Web Services 105

1 Class FlightServiceARedirection {

2 FlightService proxy;

3

4 Hook BookFlightHook {

5 BookFlightHook (methodA(args)... methodH(args)) {

6

7 login:exection(methodA) > newReservation || openReservation;

8 newReservation:execution(methodB) > addFlightSegment;

9 openReservation:execution(methodC) >

10 addFlightSegment || removeFlightSegment || checkout;

11 addFlightSegment:execution(methodD) >

12 addFlightSegment || removeFlightSegment || checkout;

13 removeFlightSegment:execution (methodE) > addFlightSegment || checkout;

14 checkout:execution (methodF) > payment || logout;

15 payment:exection (methodG) > logout;

16 logout:execution (methodH) > login;

17 }

18

19 around login () {... }

20 around newReservation () {... }

21 around openReservation {} {...}

22 around addFlightSegment () {... }

23 around removeFlightSegment () {... }

24 around checkout() {... }

25 around payment () {... }

26 around logout (){... }

27

28 around complement() {

29 throw new CommunicationException (the conversation protocol was not followed);

30 }

31 }

Code fragment 5.9: Conversational Service Redirection Aspect

106 Chapter 5. Dynamic Integration of Web Services

specify an advice on the complement of the protocol as shown in lines 28 to 30. In this
example, an exception is thrown if the conversation protocol is not respected.

Clearly, a new instance of the stateful redirection aspect is needed for each new conver-
sation. A typical aspect language implementation, such as JAsCo, allows advanced control
over the instantiation of the aspects. In this case, we want to instantiate a redirection as-
pect whenever the start request occurs and an ID is assigned. Any further communication
with this ID needs to be redirected to the same redirection aspect instance. JAsCo allows
specifying custom aspect factories for this purpose. Our custom factory creates an aspect
instance for the start request, and couples this instance to the conversation ID calculated by
the Web service. Any next request on the service type belonging to the same conversation
will be redirected to the appropriate instance.

As mentioned before, many implementations of conversational Web services apply the
factory pattern. A special service instance factory provides a method to create instances
of the service for a specific conversation. When the client invokes this method, a specific
endpoint reference is sent back. All future communications need to be sent to this reference.
This approach, as for instance applied in BEA WebLogic Server, is completely compatible
with our proposed client-side redirection mechanism, as it can be specified in the appropriate
around advices to invoke the service via a particular endpoint reference.

5.4.6 Dealing with Multiple Conversational Web Services

In case multiple flight Web services are available, multiple stateful redirection aspects as
shown in Code fragment 5.9 will be present. When the client starts to communicate with
one particular service, all subsequent messages need to be redirected to (the same instance
of) the same service. Otherwise said, a running conversation is redirected to one service,
but a new conversation, marked by the start request, may be redirected to another one. As
the hot-swap does not happen immediately, we refer to this process as delayed hot-swapping
for Web services. For instance, if the service used for current conversations becomes too
expensive, future conversations can be redirected to a cheaper service, while the current
conversations are still settled with the more expensive service. Again, this can be realised
by simply reordering the JAsCo connectors.

A problem with delayed hot-swapping is that it does not offer a solution for imminent
issues such as service failures. Only start-requests can be hot-swapped, the continuing
requests and final requests need to be redirected to the same service. If that service fails no
other services can be addressed to deal with the request. The reason is because no other
redirection aspect will have made the transition to the required state in the conversation
protocol. Immediate hot-swapping for these requests can still be made possible with two
approaches: Pro-active conversational synchronisation and reactive conversational replay.
With pro-active conversational synchronisation the conversational state with all available
Web services is synchronised. In case of our example, the start request (i.e. the login) is
broadcasted to all available services. This can be simply realised with an around advice in
a special dedicated broadcast aspect. If Code fragment 5.10 is applied on the login request,
then the proceed() in line 3 will trigger the around chain and the login advice of each
redirection aspect will be triggered. The disadvantage is that the client is automatically

5.4 Conversational Web Services 107

1 around () {

2 for (int i=0; i<nbrOfAvailableServices; i++)

3 proceed();

4 }

Code fragment 5.10: Pro-actively Login in all Web Services Through Broadcasting

logged in on all services, while not all of them might be used. Furthermore, this approach is
only valid up to a specific point in the conversation. For instance, broadcasting the checkout
request to all available services is not favourable, as the user would end up with multiple
flight reservations. Finally, this approach generates a lot of network traffic overhead.

A better alternative is reactive conversational replay. The conversation being executed
with one service is saved, and in case a hot-swap is required, replayed on another service.
Again, aspects are ideally suited for this purpose: a dedicated aspect can monitor all points
where data is passed on to the service and store it for possible future usage. If a service
invocation fails, and a hot-swap is needed, the aspect is triggered to replay the conversation.
Code fragment 5.11 shows a näıve implementation of a generic advice that records the
conversation between the client and the service type using Java reflection and context
information of the joinpoint. The RecordHook (lines 10 to 19) is triggered before each
method invocation on the service type and stores both the request name and the arguments
of the request. In case of a failure, the PlayHook (lines 21 to 40) is triggered, disables the
service that caused the exception (i.e. disable the corresponding connector) and replays the
conversation on the service type (lines). Another service redirection aspect will be triggered
and invoke another Web service. The whole conversation will be replayed and the stored
conversation will be flushed. A FlushHook (lines 42 to 50) can also flush the conversation
in specific points in the conversation, i.e. to avoid that a payment is done multiple times.

With this replay aspect it becomes possible again to do hot-swapping in a transparent
way for the client. Note that this mechanism assumes all services behave exactly in the
same way. Suppose another flight service is addressed which does not offer a particular flight
segment as specified earlier by the client. In that case replaying the conversation will fail
and the client will need to restart the conversation. To avoid these problems the number of
hot-swaps should be kept to a minimum. The distinction must be made between necessary
hot-swaps (e.g. initiated because of unavailability of a service) and optional hot-swaps (e.g.
initiated because another service becomes cheaper). In the latter case, it might be better
to delay the hot-swap to avoid problems impacting the client.

Also note that any uncompleted conversation on a failing service might need to be rolled
back. If a Web service offers a compensation method, it can be invoked to roll back previous
actions as soon as the service becomes available again. Note that a service might define a
penalty rate, i.e. a price the client needs to pay the service provider when he/she cancels
the service request after the time-out period to rollback has expired. A fallback aspect
could for instance be defined to trigger whenever a service invocation fails, poll it at regular
intervals to check its availability, and invoke a compensation method as soon as the service
becomes available again.

108 Chapter 5. Dynamic Integration of Web Services

1 Class ConversationalReplayAspect {

2 List methods;

3 List parameters;

4

5 public flushConversation() {

6 methods = new List();

7 parameters = new List();

8 }

9

10 hook RecordHook {

11 RecordHook (method (args)) {

12 execution(method);

13 }

14

15 before() {

16 methods.add (thisJoinPoint.getName());

17 parameters.add (thisJoinPoint.getArgumentsArray());

18 }

19 }

20

21 hook PlayHook {

22 PlayHook (method (args)) {

23 execution(method);

24 }

25

26 around throwing (ServiceInvocationException e) {

27 try {

28 wsml.WebService.disableService (e.getServiceName);

29 Class serviceType = Class.forName (name);

30 for (int i = 0; i < methods.size(); i++) {

31 Method method = serviceType.getMethod (methods[i]);

32 method.invoke (parameters[i]);

33 }

34 flushConversation();

35 }

36 catch (Exception e) {

37 throw new Exception (The conversation could not be replayed);

38 }

39 }

40 }

41

42 hook FlushHook {

43 FlushHook (method (args)) {

44 execution(method);

45 }

46

47 before () {

48 flushConversation();

49 }

50 }

51 }

Code fragment 5.11: Conversational Replay Aspect

5.5 Service Compositions 109

5.5 Service Compositions

5.5.1 Introduction

Web service composition involves composing applications and processes using Web services
technologies without regard to the details and differences of those environments. Otherwise
said, service composition is the orchestration of a number of existing services to provide a
richer composite service assembled to meet the requirements of the client. The composition
can be the combination of one service doing some pre-processing or conversion of data
before passing it on to the main service, but it can also be a complete workflow where
multiple services representing different business identities collaborate in a business process.
As explained in [CJ01], a differentiation can be made between pro-active compositions and
reactive compositions. Pro-active compositions are composed off-line for deployment in a
stable, always-up, resource rich platform. Typically, the composition is specified with a
fixed set of partners in mind. Possibly, the Web services are even implemented after the
specification of the composition in some orchestration or workflow language, to make sure
that the Web services will exactly fulfil their role in the composition. Any modification
to the process implementation in a later stage typically requires a new agreement between
the partners before the modification can be deployed. Reactive compositions on the other
hand are compound services that are created on the fly based on more volatile partner
agreements, often optimising for real-time parameters such as available network width.
Reactive compositions reference partner roles that are filled in at runtime. Our dynamic
service binding mechanism supports both kinds of compositions, making it possible for
compositions to be adaptable, as for instance, non-responding services in the composition
can be replaced by a semantically equivalent one. The compositions can also deal better
with long-term changes and evolution, as the composition is modularised as a first-class
entity: a composition aspect can be easily changed and recompiled without affecting the
rest of the system.

5.5.2 Service Composition Redirection Aspects

To illustrate support for compositions, consider our running holiday planning example.
Remember from the mapping in section 5.2.1, that invoking HotelServiceB requires the
conversion between a city code, as provided by the client, and a city name, as expected by the
service. A second service, called CityCodeLookupService, offers this conversion functionality.
The two Web services can be easily combined as shown in Code fragment 5.12. An around
advice (lines 10 to 13) can contain multiple service invocations, and as such, the composition
is modularised as a series of Java statements. By implementing and deploying a service
composition redirection aspect, one is specifying a pro-active composition: by compiling
the aspect and instantiating it by means of a connector, a fixed composition is deployed for
a service type. If any of the Web service in the composition change, the composition needs
to be adapted. Note that, as the binding mechanism as explained in section 5.2 is reused,
hot-swapping still remains possible if multiple service compositions and/or Web services are
present for the service type.

To create reactive compositions that not reference concrete services, the aspect could

110 Chapter 5. Dynamic Integration of Web Services

1 Class HotelServiceBRedirection {

2 HotelProxy hotelProxy;

3 ConversionProxy conversionProxy;

4

5 hook getHotelsHook {

6 getHotelsHook(method (Date beginDate, Date endDate, String cityCode)) {

7 execution(method);

8 }

9

10 around() {

11 String cityName = conversionProxy.getCityName (cityCode);

12 return proxy.getHotels(beginDate, endDate, cityName);

13 }

14 }

15

16 hook bookHotelHook {...}

17 }

Code fragment 5.12: A Service Composition Redirection Aspect for Hotel Service B

WSML

2

Holiday
Service Type

1

12

Flight
ServiceX

5Flight
Redirection
Aspect X4

Cx

Hotel
ServiceY

8Hotel
Redirection
Aspect Y7

Cy

Car
Service Type

Car
ServiceZ

11Car
Redirection

Aspect Z10
Cz

3 6 9

Flight
Service Type

Hotel
Service Type

Holiday
Composition
Redirection
Aspect A

CA

Client

Figure 5.8: Holiday Service Composition

5.5 Service Compositions 111

1 Class HolidayComposition {

2 HotelServiceType hotelST;

3 FlightServiceType flightST;

4 CarServiceType carST;

5

6 hook BookHolidayHook {

7 BookHolidayHook (method (String homeCode, String destCode,

8 String hotelCode, Date beginDate, Date endDate)) {

9 execution(method);

10 }

11

12 around() {

13 FlightReservation flightReservation;

14 HotelReservation hotelReservation;

15 CarReservation carReservation;

16

17 flightReservation=flightST.bookFlight (homeCode, destCode);

18 if (flightReservation!=null)

19 hotelReservation = hotelST.bookHotel (beginDate, endDate, hotelCode);

20 if (hotelReservation!=null)

21 carReservation = carST.bookCar (BeginDate, endDate);

22 return new Object[] {flightReservation, hotelReservation, carReservation);

23 }

24 }

Code fragment 5.13: A Service Composition Redirection Aspect for Holidays Bookings

be adjusted to reference service types again. For instance, assume the client prefers to
deal directly with a HolidayServiceType combining the hotels, flights and cars services.
Figure 5.8 shows how invoking the HolidayServiceType, indirectly triggers the invocation of
FlightServiceX, HotelServiceY and CarServiceZ trough the respective service types. In the
Figure, the lines indicating returned values are omitted for clarity reasons.

Code fragment 5.13 shows a naive around advice to book a complete holiday. After
booking the flight (line 17), the hotel (line 19) and the car are booked (line 21). A more
advanced composition could allow for more customization from the client perspective.

Invoking service types from within a service composition allows for the specification
of a composition in a generic way without hardwiring concrete service interfaces. It also
avoids the explosion of the number of service compositions that need to be specified in case
multiple partners are available to play a specific role in a composition. By specifying for
each individual service type which service(s) and composition(s) can be used a request, a
temporal composition is created that best fits the criteria of the client. The complete redi-
rection mechanism, supporting transparent mappings between service types, Web services
and service compositions is illustrated in Figure 5.8. A service type is either fulfilled by a
single concrete Web service, or by a service composition. A composition is composed out
of concrete Web services and/or service types.

An important implication of reactive compositions is that a temporal composition is
“created” at the moment a client request comes in. Each service type the composition
refers to is a partner role which is being filled in be a concrete service. As service types

112 Chapter 5. Dynamic Integration of Web Services

Service
Type

Web
Service

Service
Composition

Web
Service

Service
Type

Figure 5.9: A Service Type is mapped to a Web Service or a Service Composition

support transparent hot-swapping, introducing the concept of dynamic partner roles: each
partner in a reactive composition can be replaced by another one. In case of stateless
communication, this hot-swap does not have an impact on the composition. However, as
explained in section 5.4, in case of stateful communication it can become a problem. If
a hot-swap occurs it might be needed to replay the conversation on the new service and
specify additional compensating actions.

5.5.3 Relation with Web Services Composition Languages

A lot of research is going on in the field of service composition. High-level composition
languages have been proposed: among them are the Web Services Conversation Language
(WSCL) [BBB+02], Yet Another Workflow Language (YAWL) [AH05] and the Web Ser-
vices Business Execution Language (WS-BPEL) [ACD+03]. These high-level composition
languages have as a goal to specify, and possibly execute, business processes by combining
several Web services together. These languages can be divided into orchestration languages
and choreography languages. Web service orchestration describes executable business pro-
cesses that interact with Web services in a certain prescribed order. As such, the advices
of our service composition redirection aspects specify an orchestration. Choreographed
processes on the other hand only describe the publicly visible behaviour of the messages
exchanged between Web services. They do not fully specify the internal business logic of the
processes, and are therefore not executable. Choreography’s usefulness lies in the ability to
validate the business protocol of a Web service. The specification of the stateful FlightSer-
vice in section 5.4 requiring to log in, browse for flight segments, etc. is a good example of
a choreography protocol.

Most service composition approaches realise centralised composition by specifying a
centralised workflow with a number of service participants. This composition is typically
deployed on a central engine. WS-BPEL [ACD+03] is becoming the de-facto standard for
specifying centralised business processes. It supports the definition of both executable busi-
ness process and abstract business process by providing mechanisms to specify common core
concepts of both types of processes with essential extensions for each process. Executable

5.5 Service Compositions 113

business process is defined as the model of the internal, actual behaviour of a participant in
a business interaction (i.e. orchestration), while abstract business processes define mutually
visible message behaviour of each party involved (i.e. choreography). Besides offering some
way to model the business logic, composition languages may also offer support for advanced
constructs such as transactions, exception handling, state, etc.

These languages are complementary to our approach where aspects are used to enable
flexible mediation between Web services and clients. In our approach, the actual business
process is part of the client, although it is possible to express more complicated business
process constructs in the aspects, including more advanced control flow such as conditional
executions, loops and parallel branching. Other features such as exception handling, com-
pensations, stateful context, etc. are supported through additional aspects, as explained
before. The result will be a collection of aspects working together to realise a composition.
This more decentralised approach differs from dedicated composition languages such as
WS-BPEL where all concerns are tangled and scattered in one big monolithic specification.

The main purpose of the WSML approach is to avoid the tangling and scattering of
service-related code in an application integrating with multiple services. As a BPEL-like
process communicates also with a set of Web services, the same issues arise: code dealing
with various concerns such as exception handling, access control, authentication, business
rules, etc. often does not fit into the process-oriented modular structure of a web service
composition and as a result, this code is scattered around the processes and tangled with the
specification of other concerns within a single process. Furthermore, composition languages
such as WS-BPEL only support predefined and static composition logic: the composition
is fixed and cannot be altered, again limiting its usability in a dynamic Web services en-
vironment. As discussed in the next section, some AOP extensions for BPEL have been
proposed to tackle these issues.

As WSML and BPEL are complementary, they can be easily integrated with each other.
Service types as offered by the WSML can be integrated in a BPEL process and fulfil the
specified partner roles. As a service type can be exposed as a Web service, this does not pose
any technical issues. A result of this integration is that all service-related concerns, which
are tangled and scattered in the composition can be removed from the composition and mod-
ularised into aspects. The BPEL specification will only contain the core composition, which
can than be easily changed at runtime by deploying WSML aspects. Redirection aspects
can be used to integrate semantically equivalent services in BPEL, something that is not
possible by default because BPEL offers no support for glue code to deal with compositional
mismatches. The WSML selection and management aspects can be used to enforce selec-
tion policies and other client-side management concerns in a non-invasive manner without
polluting the core composition.

Another approach is to integrate a service composition specified in BPEL in the WSML
and fulfil the functionality required by a service type. A WS-BPEL engine is able to inter-
pret a BPEL specification, and expose that composition itself as a Web service. Therefore,
redirecting a client request to a BPEL composition is not more difficult than redirecting to
a regular Web service. In the prototype, discussed in section 8.4, it is shown how a business
process engine is integrated in the WSML. The advantage is that more complicated com-
positions can be specified in a dedicated language such as BPEL and that this composition

114 Chapter 5. Dynamic Integration of Web Services

can be integrated in a client through the WSML.

5.6 Related Work

5.6.1 Adaptive Integration Approaches

There are many composition approaches and dedicated languages to specify service com-
positions, workflows and business processes using Web services. We limit the discussion to
approaches focussing on adaptations and runtime flexibility.

The Web Services Invocation Framework (WSIF) [APA03] supports a Java API for
invoking services irrespectively of how and where they are provided. WSIF mostly focuses
on making the client unaware of service location migrations and changes in protocols. This is
done by using WSDL as a normalised description for disparate software modules. Different
middleware technologies including SOAP, Enterprise Java Beans and Java Message Service
can be used amongst others. Our approach is complementary to the work realised by
WSIF, as the WSML focuses on hiding away both syntactic and semantic differences of
Web services. Services using the WSIF and described using WSDL can be integrated in the
WSML too.

In traditional workflow systems, the need for adaptability and flexibility is provided
using a variety of implementation approaches, [CIJ+00][EH99][HHJ+99]. Their main con-
tributions are formally founded methods to make the workflow process capable of efficiently
adapting the tasks to be performed and their execution order (e.g. adding or removing tasks,
changing control flow paths, etc.) in reaction to changes in the environment conditions like
changes in the type of the participants, their role in an organisation and the infrastructure
reconfiguration. The process adaptations can be classified according to whether they are
performed at design-time or runtime and either at the process schema or process instance
level. For instance, eFlow [CIJ+00] is an approach that supports the specification, enact-
ment, and management of composite e-services, modelled as processes that are enacted by
a service process engine. It uses several constructs to achieve adaptability, including dy-
namic service selection and binding, parallel execution of multiple equivalent services, etc.
A migration manager assists users to modify running process instances without violating a
predefined set of behavioural consistency rules. But adaptability remains insufficient and
vendor specific [EMP05, KB04]. Moreover, many adaptation triggers, like infrastructure
changes, considered by workflow adaptation are not relevant for Web services as services
hide all implementation details.

In [SGHS05] a software architecture, called Aspect-Oriented Web Services (AOWS), is
presented. It is targeted at describing crosscutting concerns between web services to give
more complete description of Web services, supporting richer dynamic discovery and seam-
less integration. An implementation is made on the .NET platform and all AOWS subsys-
tems and their relationships have been formally modelled. While aiming to achieve similar
goals as the WSML, AOWS does not support third-party independent services as services
need to be modelled in an AOWSDL language, and registered in a dedicated AOUDDI
registry. Clients communicate with AOconnectors, which address the Web services through

5.6 Related Work 115

adaptors; if necessary multiple services are bundled in an AOComposite. The aspectual
features of the AOWS framework are used to provide more efficient and effective dynamic
description, discovery and integration. Similar as in our approach, service related code is
extracted from the client, and the client only needs to communicate with the AOconnectors.

5.6.2 Aspect-Oriented Composition Approaches

The most well-known approach for Web services composition is the Web Services Business
Process Execution Language (WS-BPEL) [ACD+03], presented before as an XML-based
specification language for business processes. Because of the limitations discussed in sec-
tion 5.5.3 (namely the lack of support for crosscutting concerns and the impossibility to
dynamically change a composition), some aspect-oriented extensions for BPEL were recently
proposed. With Ao4BPEL [CM04], aspects can be (un)plugged into the composition process
at runtime. Since BPEL processes consist of a set of activities, joinpoints in AO4BPEL are
well-defined points in the execution of the processes: each BPEL activity is a possible join-
point. The attributes of a business process or certain activity can be used as predicates to
choose relevant joinpoints. Since BPEL processes are XML documents, XPath [23], a query
language for XML documents, has been chosen as the pointcut language. Like AspectJ and
JAsCo, AO4BPEL supports before, after and around advices. An advice in AO4BPEL is
an activity specified in BPEL that must be executed before, after or instead of another
activity. When the advice logic cannot be expressed in BPEL syntax, it is possible to use
code segments in Java by using JBPEL, although this breaks the portability of the BPEL
process. As a proof-of-concept, a BPEL engine is made aspect-aware by adding an aspect
manager to it and by extending the process interpreter function to check before and after
each activity whether an aspect is present. The main advantage of the AO4BPEL approach
is that both the composition and the aspect advices are written in the same language, re-
quiring the programmer to only learn one technology. In the WSML, aspects are written in
JAsCo, while the client can be implemented in any other kind of language on any kind of
platform. On a downside, the pointcut language of AO4BPEL is less expressive than the
JAsCo pointcut language used in the WSML. Another recent WS-BPEL extension is Adap-
tiveBPEL [EMP05]. It is closely related to AO4BPEL but adds policy-driven adaptations
and selection of aspects to enable client-specific customisation of Web services.

In [CE05] an aspect-oriented approach to compose dynamically Web Services in a de-
centralised manner is proposed, in contrast to the WSML, which realises centralised com-
position. Aspect-Sensitive Services (CASS) is a distributed aspect platform that targets
the encapsulation of coordination, activity life-cycle and context propagation concerns in
service-oriented environments. CASS also has the notion of redirection aspects. All web
services need to be CASS-enabled, and aspects are deployed on different domain controllers
for each composition context. This approach is therefore not suited in an environment with
independent service providers.

In [SFCV+05] we have made an evaluation of FuseJ [SDV06], as another approach for
decentralized composition. FuseJ is an architectural description language aiming at the uni-
fication of aspects and components. The motivation behind FuseJ is that all new approaches
introducing new programming languages or frameworks for modularising crosscutting con-
cerns will treat aspects as a different kind of entity. However, the behaviour implemented

116 Chapter 5. Dynamic Integration of Web Services

Table 5.1: Comparison of Evaluated Web Service Composition Approaches
FuseJ WS-BPEL AO4BPEL CASS WSML

Seamless AOP + - +- +- +-
Explicit process description support - + + + -

Reusable composition +- +- +- n/a +-
Selective composition + - +- + +
Dynamic composition + - +- + +
Automatic discovery + - - - +

Compatibility requirements +- + + +- +-

by aspects is not that different from ordinary component behaviour. Both implement some
functionality required within the application and only the way in which they interact with
other software entities differs. FuseJ proposes to apply aspect-oriented composition mech-
anisms upon existing module constructs. As such, independently specified components can
be deployed in both a regular and an aspect-oriented fashion, achieving a seamless inte-
gration between aspects and components. While not targeted at service composition, we
have evaluated FuseJ as a composition approach and compared it with WS-BPEL, WSML,
Ao4BPEL and CASS. We briefly discuss the evaluation criteria as listed in Table 5.1, bor-
rowed from [SFCV+05]. Seamless AOP indicates whether explicit aspect constructs are
used and exposed to the user of the approach. The (+/-) for the WSML results from the
fact that the use of AOP hidden for the administrator of the WSML but there are still
explicit aspect constructs in the implementation. Explicit process description support de-
notes whether explicit constructs are present to specify processes, something the WSML
does not support. Reusable compositions (whether services are hard-wired in the composi-
tion or not), selective composition (indicating if partner services can be selected based on
predefined conditions), dynamic composition (specify whether services can be hot-swapped)
and automatic discovery (indicating if services can be looked up and integrated at runtime)
are all supported. For the compatibility requirements (indicating whether the approach
imposes specific requirements on the Web services), the WSML received a (+/-) as auto-
matic discovery and matchmaking is only possible if services are semantically annotated (as
discussed in section 8.3.3).

5.6.3 Semantic Approaches

Ontologies are a key enabling technology for a Semantic Web [BFD99, MPM+05] of ser-
vices whose properties, capabilities, interfaces, and effects are encoded in an unambiguous,
machine-understandable form. The realisation of the Semantic Web is underway with the
development of markup languages such as DAML-S [ABH+02]. DAML-S is an ontology-
based approach to the description of Web services developed as part of the DARPA agent
markup language program [HM00]. DAML-S aims at providing a common ontology of
services and its ultimate goal is to provide an ontology that allows agents and users to dis-
cover, invoke and compose Web services. Currently the structure of the DAML-S ontology
is threefold and consists of a service profile for advertising and discovering services, a process
model which gives a detailed description of a service’s operation and a service grounding

5.7 Conclusions 117

which provides details on how to interoperate with a service via message exchange.

The Web Service Modelling Framework (WSMF) [FB02] provides an approach based on
Semantic Web technology for developing and describing Web services and their composition.
The aim of WSMF is to enable fully flexible and scalable e-commerce based on web services.
Goal repositories are used to define the problems that should be solved by web services;
they are specified in terms of pre-conditions and post-conditions of services together with a
service model. WSMF aims at strongly de-coupling the various components that implement
a Web service application while at the same time providing a maximal degree of mediation
between the different components. WSFM builds on comprehensive ontologies such as
DAML-S and provides the concepts of goal repositories and mediators to solve complex
service requests.

While not being the core focus of this dissertation, we have extended our service inte-
gration mechanism with support for the Semantic Web by documenting Web services and
service types with the Web Ontology Language (OWL) [BSP+01], a successor of DAML-S.
A matchmaking algorithm to determine compatibility between them has been developed
and is discussed in section 8.3.3.

5.7 Conclusions

In this chapter we have presented our approach for dynamic integration of Web services
and compositions. Client applications communicate with a generic service type and client
requests are redirected at runtime to one of the available semantically equivalent Web ser-
vices. At implementation level, service communication details are modularised in service
redirection aspects. This AOP mechanism realises a mapping between the service types and
the concrete Web services, offers support for dynamic binding and hot-swapping through
around advice chaining. Additional exception handling is dealt with in separate dedicated
fallback aspects. Conditional bindings and multiple service bindings are possible trough the
expressivity of an AOP pointcut language and the fine-grained deployment mechanism as
provided by connectors. Support for conversational messaging is provided through stateful
aspects. With stateful aspects, the conversation protocol between the client and a Web ser-
vice is mapped to a protocol-based pointcut expression. As such, the conversation protocol
is enforced in the client. In this case, hot-swapping is supported by synchronising the con-
versation between multiple services, or by replaying the conversation on another equivalent
service.

Finally, service compositions are supported by modularising composition details in the
redirection aspects. Concrete Web service interfaces are not hard-wired in the composition
by referring back to service types. As such, reactive compositions, where each partner in
the composition is determined at runtime, are made. As Web services are used in an unpre-
dictable network environment such as the internet, the service composition can adapt itself
to temporarily unreachable services that belong to different domain controllers. A complex
long running composition needs to dynamically adapt itself to short-term changes, for in-
stance by replacing a non-responding service by a semantically equivalent one. Selecting
the most appropriate service for a given role based on a set of service selection policies is

118 Chapter 5. Dynamic Integration of Web Services

the subject of chapter 6. Long-term evolvability is supported by only specifying the core
service composition in a redirection aspect. If the core composition itself changes, the cor-
responding aspect can be easily rewritten and recompiled on the fly. This as a result of the
composition being a first-class identity: one composition is modularised logically and phys-
ically in one reusable aspect. Any other management concern such as logging, monitoring,
billing, security, caching, etc. can be easily added through additional aspects whenever the
business environment requires doing so. This is the subject of Chapter 7.

Chapter 6

Web Services Selection

Abstract In this chapter, the service integration process is made more intelligent by incor-
porating a more advanced service selection mechanism. The client application can specify a
set of selection policies that are enforced are enforced to select the most appropriate service
for a given client request. A categorisation of selection policies is made based on the location
of the required triggering points, and for each category it is shown how aspect-oriented pro-
gramming is used to implement them in a modular fashion. Optionally, monitoring aspects
are used to setup measurement points in the system to collect any required monitoring data.

120 Chapter 6. Web Services Selection

6.1 Introduction

In the previous chapter we demonstrated how a flexible dynamic binding mechanism for
Web services is realised using aspect-oriented programming techniques. The next step is
to make this mechanism more intelligent and customisable by incorporating non-functional
requirements as part of the client requests. This is important in order to cope with the
volatile nature of the business environment of a SOA. Non-functional requirements can
guide the process of selecting the most appropriate Web service for a given service request:
today, the client might prefer a Web service because it belongs to a specific business partner,
but tomorrow the service is required to offer a specific service-level agreement to become
eligible. In order to cope with the evolving business environment, it must be possible for
client applications to specify their non-functional requirements as service selection policies
when requesting service functionality. These selection policies must be decoupled from
the Web services and the client as they are driven by business requirements and need
to dynamically reflect changes in the environment. Keeping selection policies separately
enhances maintainability, reusability and adaptability.

One limitation of the current service documentation in WSDL (see section 2.4.1.4) is
that it only allows for the description of service functionality while not offering support for
the specification of non-functional properties. Many WSDL extensions such as the Web
Service Offering Language (WSOL) [TPP03] are however being proposed that enable the
specification of non-functional properties on Web services. Using a dedicated language to
specify these properties enables service providers to describe the Quality-of-Service (QoS)
of their services. Clients can base their selection process on this description: for exam-
ple, selection policies could be specified to take into account the cost or physical distance
of a Web service. Some other non-functional properties of a service can however not be
described but need to be determined at runtime by doing service monitoring. These prop-
erties are based on the runtime characteristics of the services and we refer to them as service
behavioural properties. Examples of such properties are average response time, number of
successful invocations, network bandwidth and service reliability. Other selection policies
can be based on the state of the client, or even the Web service itself. As argued in Chapter
3, current Web service integration approaches provide little or no support for the runtime
enforcement of selection policies during the service binding process. The programmer needs
to provide code for this purpose manually and switch between the service proxies present
in the client.

In this chapter we will illustrate how aspects are ideally suited to modularise service
selection policies and service monitoring concerns. These selection aspects will guide the
dynamic service binding and as a result, whenever a client invokes a service type, the
most appropriate service will be invoked. We identify several categories of Web services in
section 6.2. Next, section 6.3 discusses the applicability and advantages of AOP for service
monitoring and selection. A first category of service selection, based on QoS, is presented
in section 6.4. The subsequent section deals with selection based on client requests and
service responses. Selection based on client or service context are discussed in section 6.6
and related work and conclusions are presented respectively in section 6.7 and section 6.8.

6.2 Service Selection Policies Classification 121

6.2 Service Selection Policies Classification

Service selection policies can be classified as imperatives and guidelines. An imperative is a
constraint on a service that has to be satisfied at all time, i.e. it is an invariant. Imperatives
can describe absolute conditions (e.g. the cost of the service can not exceed a fixed amount,
the response time of a service can not drop under some threshold, etc.), or can involve
interrelationships with other services or the system (e.g. a service needs to be cheaper than
the average of the cost of all registered services). In order to get approved for selection and
integration, a Web service has to comply with all specified imperative selection policies.
At the moment a service does not satisfy at least one imperative selection policy, it is
disapproved or disqualified and therefore not considered to be invoked any longer.

To determine which service to address if two or more services are approved, guidelines
are employed. A guideline specifies that, if multiple approved services are available for the
required functionality, one is preferred over the other (e.g. the cheapest service or the service
with the highest encryption level). This implies that services are compared with each other
and a ranking is made. This is an application of the well-known multi-criteria problem
[BV85]. Note however that, if an approved service does not satisfy a specific guideline, e.g.,
it is not the cheapest at a given moment in time, it might still be considered for selection
later on, if it becomes the cheapest service available or if cheaper services fail. We can
deduce two elements from a selection policy specification:

• Triggers: The policy is triggered whenever an environmental change occurs that
affects the constraint’s enforcement. One can locate these triggering points in various
places ranging from the client, throughout the network, and to the actual Web services.

• Action: A selection policy’s action typically includes qualifying, disqualifying, and
prioritising services for the current or future client requests.

We have identified several categories of selection policies as depicted in Table 6.1 and Ta-
ble 6.2. The first table lists the most common selection policies, namely those based on
the QoS. Several kinds of imperatives and guidelines can be specified on the non-functional
service properties. We make the distinction between two kinds of properties: firstly, there
are documented properties advertised in the service documentation (for example, constrain-
ing the cost to use a Web service). The triggering points’ location of policies specified on
these properties will depend on the kind of property, the documentation, and the notifica-
tion mechanism used by the service. Secondly, there are service behaviour-based properties
indicating properties that need to be monitored at runtime over a period of time (for ex-
ample, the downtime in the past month). Typically a set of measurement points to collect
the required QoS data is required to enforce service behaviour-based properties.

A second main category are selection policies that are based on context. In case of
policies based on the client-context, the constraint applies to explicit or implicit client-side
business logic, for example: “If the client application’s user has a gold subscription, use the
fastest service.” The triggering points reside in the client. On the other hand, the policy
could be based on explicit or implicit service-side business logic, for example: “During peak
hours, the service’s capacity is limited to a certain number of requests for each client.” The
triggering point depends on the documentation and notification mechanism the service uses.

122 Chapter 6. Web Services Selection

Table 6.1: QoS Service Selection

Non-Functional QoS Properties
Documented Service Behavioural

Static QoS Im-
peratives

A static invariant applied on
a documented service property.
Service approval is determined
by evaluating one service at a
time.

A static invariant applied on
a monitored service property.
Service approval is determined
by evaluating one service at a
time.

Dynamic QoS Im-
peratives

A dynamic invariant applied
on documented service prop-
erty. Service approval is deter-
mined by evaluating all services
at a time.

A dynamic invariant applied
on monitored service property.
Service approval is determined
by evaluating all services at a
time.

QoS Guidelines Service ranking is made based
on a documented service prop-
erty.

Service ranking is made based
on a monitored service prop-
erty.

Qos Normalized
Guidelines

Service ranking is made based on a set of normalized doc-
umented and/or monitored service properties.

A third category are policies that apply on the client requests and/or service responses.
The type of client request may guide the selection process. For instance, hotel descriptions
are retrieved from the fastest service, while hotel bookings are made on the cheapest one.
Policies can also be applied on the service responses, for instance retrieving hotel descrip-
tions from the service that returns the longest hotel list. In the latter case it is possible that
multiple services are invoked, but only filtered results are returned to the client. Table 6.2
lists selection policies based on state and requests/responses.

Table 6.2: Service Selection Based on the Client or the Service

Client Web Service
Context The client context determines

which services or set of services
to select.

The service context determines
whether that services is se-
lected.

Request-
Response

The client request determines
which services or set of services
to select.

The response returned by a ser-
vice is evaluated before being
returned to the client.

6.3 Towards a flexible implementation of selection policies 123

6.3 Towards a flexible implementation of selection policies

After having identified what selection policies are, the challenge is how to implement them
flexibly while avoiding changes in the client application every time the business requirements
change. Previous work by Cibrán et al. [CDJ03, CDS03, CSH+04] focuses on decoupling the
business logic rules in the context of software applications developed using object-oriented
or component-based software development techniques. These applications have substantial
core application functionality and are normally driven by business policies. Thus, they need
to constantly cope with changes in the business requirements embodied in their policies. In
this context it is increasingly important to consider business rules as a means to capture
some business policies explicitly. A business rule is defined by the Business Rules Group as
a statement that defines or constrains some aspect of the business. It is intended to assert
business structure or to control the behaviour of the business [Bus00]. As business rules
tend to evolve more frequently than the core application functionality [Hall01, KRRS96],
it is crucial to separate them from the core application, in order to trace them to business
policies and decisions, externalise them for a business audience, and change them. Con-
trary to typical approaches in the field that only focus on decoupling the business rules
themselves [RDR+00, GKPG+05], this work identifies the need to decouple the code that
links the business rules to the core application functionality. This linking code crosscuts
the core application and thus need to be separated in order to achieve highly reusable and
configurable business rules. That research shows how AOP (and in particular JAsCo) is
ideal to decouple the crosscutting business rules links.

Successful experiments using AspectJ [KHH+01] and JAsCo (see section 4.5.4) were
performed achieving the identified requirements. In the Web services context, selection
policies are driven by business requirements and need to dynamically reflect the changes
in the environment, analogously to business rules. The same way AOP resulted ideal to
separate business rules links and connect them with the core application, we claim AOP
can be successfully used to plug-in and out selection policies that govern the selection and
monitoring of services.

We propose service selection aspects that cleanly modularise selection logic that is able
to approve or select the most appropriate Web service for a given business requirement.
Each selection policy is represented by one aspect; it maps the triggers to joinpoints and
the actions to advices. For example, a selection aspect can implement a simple policy
stating a service’s maximum allowed price. A change in the pricing of the Web service will
trigger this selection aspect, resulting in the qualification or disqualification of the Web
service as specified in the advice of the aspect. More complex scenarios involve service
behaviour-based policies, based on data monitored over a period of time. By using service
monitoring aspects, the monitoring logic that would otherwise remain scattered over the
client application, is modularised in one place, and monitoring points can be easily set up
in a non-invasive way. As such, the monitoring aspects are employed for observing system,
environmental and service changes and are also able to monitor the execution of the services
themselves.

The use of selection and monitoring aspects in the context of the WSML is depicted in
Figure 6.1. Whenever a change in the QoS of a Web service occurs (step 1), a monitoring

124 Chapter 6. Web Services Selection

Web
Service A

Service
Type

Web
Service B

Web
Service C

CA

CB

CC

Service
Selection
Aspect

Service
Monitoring

Aspect
CM

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

WebService
QoS

Repository
2

34
CS

5

1

Client

Figure 6.1: Service Monitoring and Service Selection Aspects in the WSML

aspect will detect this change, e.g. by monitoring the runtime behaviour of the Web service
or by polling specific service properties (step 2). The monitoring aspect will compute and
store a new property value in the QoS repository (step 3) where it is available for selection
aspects. One or more selection aspects are triggered by these property changes (step 4) and
re-evaluate if the service (and possibly other services) needs to be qualified, disqualified or
re-prioritised (step 5). Alternatively, changes in the client or service context or specific client
requests or service results may also trigger the selection. These scenarios are not depicted.
In the following subsections we will discuss the various selection policies categories in depth.

6.4 Selection Based on Quality of Service

6.4.1 Non-Functional Properties

Functional requirements define what a software application is expected to do. Non-
functional requirements define how the software operates or how the functionality is ex-
hibited [Chung91]. Non-functional requirements, such as accuracy, security, cost and per-
formance, state global constraints on how an application should exhibit its functionality.

6.4 Selection Based on Quality of Service 125

Using traditional software engineering approaches, functional requirements are implemented
gradually into the software application during the software development phases. At the end
of the development, all functional requirements are implemented in such a way that the
software satisfies the requirements as designed during the first development phases. Non-
functional requirements, however, do not follow the same implementation manner as the
functional requirements. The term non-functional implies fairly complex functions that
need to be implemented in order to provide and enforce a certain property [LSS05]. So
they are usually satisfied to a certain degree as a consequence of the design decisions that
were taken for implementing the software functionality. The problem of a non-functional
property is not its possibly complex functional implementation, but the explicit or implicit
reference to this implementation spread across the several functional modules of an applica-
tion. In order to avoid the mixture of both functional and non-functional properties tangled
in the same code fragments we need to have a good separation of these concerns, as offered
for example by AOP.

Systems that use a number of Web services can specify certain requirements on the
non-functional properties of these services as selection policies. As applications are sub-
ject to changing business requirements and changing third-party Web service providers,
the incorporated policies must be able to adapt to these changes. Existing state-of-the-art
technologies for publishing and finding services, such as WSDL and UDDI use static descrip-
tions for service interfaces. WSDL documentation is insufficient for this purpose because
WSDL cannot express non-functional properties and doing key-based searches in UDDI reg-
istries does not take into account non-functional criteria. As a result, the approaches that
use these technologies to integrate services do not take into consideration dynamic service
selection based on the assessment of non-functional properties. At the moment, a lot of
research is being done to describe Quality of Services (QoS), which allows to define the
concept of service quality. Several languages are being proposed to build a QoS Ontology,
which defines the semantics of QoS parameters and their relationships. A non-exhaustive
list of QoS related languages currently under development, includes The Hierarchical QoS
Markup Language (HQML) [GNYW01] , the Web Ontology Language (OWL-S) [BSP+01],
The Web Service Level Agreement (WSLA) [KL03] The Web Services Offering Language
(WSOL) [TPP03] and the Web Service Modeling Framework (WSMF) [FB02] .

Examples of QoS properties for Web services include, but are not limited to:

• Scalability: Scalability qsc(ws) of a Web service is the ability of providers to consis-
tently serve the requests despite variations in the volume of requests in a given period.
Scalability is defined in a range [0,1] and is related to the service performance (see
next section) [Ran03].

• Maximum Response Time: Maximum Response time qmaxRes(ws) is the guar-
anteed maximum time required to complete a client request. It is measured from
the moment the request arrives at the service and the moment the result leaves the
service.

• Maximum Throughput: The maximum throughput qmaxThr(ws) is the maximum
number of simultaneous requests of Web services served in a given period with the
guaranteed response time.

126 Chapter 6. Web Services Selection

• Availability: The availability qav(ws) is the probability that the Web service will be
available at some period of time. Larger values represent that the service is always
ready to use while smaller values indicate unpredictability service availability [MN02].

• Time-to-Repair: Related to the service availability is the Time-to-Repair (TTR)
value. TTR represents the time it takes to repair a service that has failed. Ideally
smaller values of TTR are desirable [MN02].

• Accessibility: The accessibility of a Web service qacc(ws) represents whether the
Web service is capable of serving the client’s requests [SA03]. It may be expressed
as a probability measure denoting the success rate or chance of a successful service
instantiation at a given time [MN02]. There could be situations when a Web service
is available but not accessible because of high volume of requests. This property is
therefore related to the scalability.

• Transactions: Web services providing an undo procedure to rollback the service
execution in a certain period without any charges can be an important selection
criterion [LNZ04]. This transactional property can be evaluated in two dimensions:
whether an undo procedure is supported and what the time-out of the undo procedure
is. The first is denoted by qtx(ws)=0/1 where 1 indicates support and 0 lack of
support and the latter is denoted by qcons(ws), indicating the duration where an undo
is allowed.

• Pricing: the cost, qpr(ws), of the service execution of a Web Service as specified by
the provider. Web services either directly advertise the pricing information of their
services, or they provide means for potential clients to inquire about it. Related to
pricing are the Compensation Rate qcomp(ws), the percentage of the original price
that will be refunded when the service provider cannot honour the committed service,
and the Penalty Rate qpen(ws), the percentage of the original price the client needs
to pay the service provider when he/she cancels the service request after the time-out
period for transaction to rollback has expired [LNZ04].

By using a Web service that has the QoS described by some documentation language,
we can use these properties to enforce selection policies that guide the service integration
process. It is important that these properties are described in terms of a QoS ontologi-
cal model. After all, conflicts in the semantics between the client and the different service
providers may occur. An ontology defining a basic set of QoS parameters and their relation-
ships, together with the possibility to extend an ontology with domain-specific parameters
is required. Already, multiple ontologies for Web services have emerged, each introduc-
ing their own semantics, relationships and categorisations [BBD+05], [OWL-S05], [LNZ04],
[PSL03], [TBE05]. The QoS properties of the Web services can be stored in a central QoS
registry, similar to a UDDI registry. We do not propose our own documentation language
to describe non-functional properties but assume that over time a standard will emerge for
this purpose, similarly to what happened for Web services security with the WS-Security
standard [ADH+02].

Finally, note that the documentation as obtained by the service provider may not be
neutral. One is relying on the documentation as provided, which may be undesired depend-
ing on the nature of the provided information: e.g. billing information versus guaranteed

6.4 Selection Based on Quality of Service 127

uptime per month. In the first case, the information will most likely be accurate, but in
the second case, the provider might provide too optimistic numbers. In the latter case, one
could turn to specially dedicated third-party QoS monitoring services that endorse or rate a
particular service independently, or one could gather monitoring data oneself, as described
in the next section.

6.4.2 QoS Service Monitoring

6.4.2.1 Introduction

Service monitoring is a term typically used in the larger context of the server-side pro-
cess of testing, debugging, deploying and observing the functionality and performance of
running Web services in order to provide the optimal quality-of-service to its customers.
The importance of this process is underlined by the fact that several companies have made
it their core competence. While not totally unrelated, we use this term in a slightly dif-
ferent context: service monitoring as the client-side process of monitoring the behaviour
and/or performance of the available Web services in the service environment from the client
point of view in order to select the most optimal one. Suppose the client application of
our holiday operator (see section 3.1) only wants to communicate with hotel Web services
that return a result in 5000 milliseconds, in order to offer an optimal end-user experience.
As mentioned in the previous section, the client could rely on the non-functional service
documentation describing the QoS, or it could monitor the available Web service itself and
use the monitored data for the selection process. Doing active monitoring in the client has
the advantage that the data is collected from the actual consumption of the service and
therefore will always be up-to-date and objective. Examples of monitored properties for
Web services include, but are not limited to:

• Actual throughput: The actual throughput of a Web service is the actual number
of consumers accessing a particular Web service in a given period of time. In a multi-
organisational setup, this number cannot be measured from the client point-of-view
but needs to be provided by the service provider. A single instance of the WSML is
only capable of monitoring the throughput of requests passing through it.

• Performance: The performance of a Web service represents how fast a service request
can be completed. It can be measured in terms of throughput, response time, latency,
execution time, transaction time, etc. [LNZ04, MN02, SA03] In general, faster Web
services should provide higher throughput, faster response time, lower latency, lower
execution time, and faster transaction time. Network factors will have a direct affect
on this property when measuring performance from the client point-of-view.

• Execution Time: The execution duration qex(ws) measures the expected delay
in seconds between the moment when a request is sent and the moment the re-
sult is retrieved. The execution duration is computed using the expression qex(ws)
= qprocess(ws) + qtrans(ws), with qprocess(ws) being the actual processing time and
qtrans(ws) being the actual transmission time. From the client point-of-view only the
qex(ws) can be measured without knowing the individual values of qprocess(ws) and
qtrans(ws).

128 Chapter 6. Web Services Selection

• Processing Time: The time qprocess(ws) the service takes to process the result. It
is calculated as qprocess(ws) = ti(ws) - td(ws) with td(ws) the timestamp when the
request entered the Web service and ti(ws) the timestamp when the result was sent
out. The processing time can only be measured by the service provider or through
active monitoring by the underlying middleware.

• Regulatory: Regulatory of a Web service is a quality aspect dealing with issues of
conformance of services with the rules, the law, compliance with standard, and the
established Service Level Agreement. The regulatory can be determined by ratings the
WSML keeps over time for each provider, based on its own experiences. Additionaly,
these ratings can be combined with additional ratings from other clients or based
on heuristics such as continuous usage or based on third-party monitoring services
[TBE05].

• Reputation: The reputation qrep(ws) of a service is a measure of its trustworthiness.
It mainly depends on the clients’ experiences of using the service. The value of the
reputation is defined as the average ranking given to the service by clients.

• Consumption Rate: The consumption rate is obtained by the ratio of the actual
throughput to the number of hits of a Web service. The number of hits can for
instance be determined by the number of times the WSDL file of the service has been
retrieved. Alternatively, the consumption rate can be obtained by the ratio of the
actual throughput to the maximum throughput [TBE05].

• Reliability: Reliability is the quality aspect of a Web service that represents the
degree of being capable of maintaining the service and service quality. The number
of failures per month or year represents a measure of reliability of a Web service. In
another sense, reliability refers to the assured and ordered delivery for messages being
sent and received by service clients and service providers [MN02].

• Stability: The stability of a Web service is the change cycle of a Web service [Ran03],
it is the measure of the frequency of change related to the service in terms of its inter-
face, QoS information and/or implementation. The value of the stability is defined as
the number of times a Web service changed by the provider in specific time interval.

Leaving the monitoring to the client requires a complex framework is set up for this purpose.
If large number of service providers need to be polled constantly this monitoring framework
might become quite complex. Furthermore, this framework should be able to deal with
a large level of flexibility. The client might be interested in fast services one day, but
prefer more reliable services tomorrow. Using traditional software engineering approaches,
it would not be straightforward to introduce the, possibly unanticipated, monitoring logic at
run-time in a non-invasive way. Encapsulating the monitoring concern in reusable aspects
has the advantage that monitoring logic can be dynamically deployed in order to intercept
Web service communication and start generating monitoring data.

6.4 Selection Based on Quality of Service 129

WebService
Name
Endpoint
...
getName()
getEndpoint()
...

Monitored
WebService

Name
Endpoint
Invocations
Failures
ExecutionTime
...
getName()
getEndpoint()
getInvocations()
increaseInvocations()
...

+ + =
<<interface>>
Monitored
WebService

getInvocations()
increaseInvocations()
...

Monitoring
Aspect

Invocations
Failures
ExecutionTime

Figure 6.2: Monitoring a Web Service with Virtual Mixins

6.4.2.2 Service Monitoring Aspects

A monitoring aspect can be used to encapsulate all monitoring logic. The aspect can be
deployed at a wide variety of measurement points by specifying appropriate joinpoints in
the environment. When a monitoring aspect is deployed to collect data, it should make
that data available for the selection aspects in order for them to reason over. This might be
achievable by hooking the selection aspects on the monitoring aspects, but conceptually this
concept is difficult to understand. The concept of aspects-on-aspects, defined in [DFS02]
as aspects being ”visible” for other aspects, is supported in some AOP languages such as
JAsCo, but may result in technical difficulties, e.g. to do debugging. A second approach is
to store the collected data in a collection somewhere, so that other aspects can access it. In
this case, the wsml.WebService class, representing a Web service in the WSML, is a good
candidate to host the data collection. Through dedicated getter and setter methods such
as addProperty (name, value) and getProperty (value) the properties can be added
(by monitoring aspects) and queried (by selection aspects). Although following object-
oriented principles, this still leaves the conceptual problem that the values of the properties
(which are part of the crosscutting monitoring concern), are not stored in the aspect itself,
but rather outside it. Note also that the monitoring aspect frequently needs access to the
values (e.g. to calculate an average result), so one might decide to keep also a copy of the
values in the aspect itself, leading to data redundancy. A third approach is called Mixins,
an AOP approach that allows inserting an implementation of an interface in target classes
so that other aspects can depend on that. In AspectJ [KHH+01], this feature is known
as Intertype Declarations. This is ideal for communicating information, such as monitoring
data, between aspects.

Figure 6.2 shows a WebService class that is “extended” with a MonitoredWebService
mixin interface through the MonitoringAspect. This aspect contains the implementa-
tion of the methods specified in the interface. Code fragment 6.1 shows an example of a
MonitoredWebService interface providing methods to get and set the execution time of
the service invocations, and methods to get and increment the number of invocations and
invocation failures on that Web service. This interface can be inserted into a target class by
simply declaring both a hook that implements this interface and a corresponding connector.

130 Chapter 6. Web Services Selection

1 interface MonitoredWebService extends jasco.runtime.mixin.IMixin {

2 public int getExecutionTime();

3 public int getInvocations();

4 public int getFailures();

5 public void setExecutionTime (int speed);

6 public void incrementInvocations();

7 public void incrementFailures();

8 }

Code fragment 6.1: Monitored Web Service Virtual Mixins Interface

In our example, the wsml.WebService class is the target class.

The implementation of this interface is provided in an aspect, as shown in the next
Code fragment. The first hook (lines 3 to 23) shows an IntroduceHook with a straight-
forward implementation. There are three attributes for the execution time, the number of
total invocations and the number of failed invocations and corresponding getter and setter
methods. A second InvocationHook (lines 25 to 51) contains the actual monitoring logic.
The three advices in this hook will be triggered whenever a Web service invocation occurs.
First, a before advice will increase the invocations counter and start a timer (lines 33 to 38).
Second, an after returning advice will stop the timer and update the execution time (lines
40 to 44). In case of an invocation failure (which will result in an exception as shown in
section 5.2.5 of the previous chapter), an after throwing advice will be triggered to update
the failures counter (lines 46 to 50).

The connector deploying the Monitoring Aspect is shown next in Code fragment 6.3.
First, the IntroduceHook is deployed, and introduces the MonitoredWebService interface
in the WebService class. The perobject keyword indicates a unique hook instance will
be created for every target object instance. This avoids that the attributes in the hook
are shared amongst multiple WebService objects. Note that in JAsCo this introduction
happens through lazy evaluation for performance reasons: the hook instance is only created
the first time one of the methods of the introduced interface is called. In lines 4 and 5
the InvocationHook is deployed on all methods of the HotelService proxy (see section
3.3.2.1), causing the monitoring to be performed for this particular Web service. Note
that through the use of wild cards, a more fine-grained control over the deployment of the
monitoring concern is possible. The perall keyword ensures a new hook instance is created
for each encountered joinpoint.

Actually, the MonitoredWebService interface should only contain the getter methods,
and expose those to the outside world. The setter methods should be either private, or
non-existing as the InvocationHook should be able to directly manipulate the appropriate
variables. However, in JAsCo this is impossible as variables that are global to an aspect
are shared amongst all aspect instances. As a result, in the InvocationHook (lines 33 and
34 of Code fragment 6.2) aspect reflection is needed to determine on which Web service the
invocation took place. This makes the aspect code less comprehensible and reusable.

In this example the measured execution time is the sum of the time to serialise the
request into a SOAP message, the time to sent the message over the network, the time it
takes by the service to process the request, the time to send the result back over the network

6.4 Selection Based on Quality of Service 131

1 class MonitoringAspect {

2

3 hook IntroduceHook implements MonitoredWebService {

4

5 private int executionTime= 0;

6 private int invocations = 0;

7 private int failures = 0;

8

9 IntroduceHook(void method(..args)) {

10 introduce(method(args));

11 }

12

13 public int getExecutionTime() {return executionTime };

14

15 public void setExecutionTime (int lastExecution) {

16 if (executionTime==0)

17 executionTime= lastExecution;

18 else executionTime=

19 ((executionTime * (invocations-1)) + lastExecution) / invocations;

20 }

21 public int getInvocations () {return invocations};

22 public void incrementInvocations() {invocations++};

23 ...

24 }

25

26 hook InvocationHook {

27

28 private long startTimer = 0;

29

30 InvocationHook(method(..args)){

31 execution(method);

32 }

33

34 before () {

35 MonitoredWebService ws = (MonitoredWebService)

36 WSML.getWebService (thisJoinPoint.getClassName());

37 ws.incrementInvocations();

38 startTimer = System.currentTimeMillis();

39 }

40

41 after returning (Object result) {

42 ws = ...

43 stopTimer = System.currentTimeMillis();

44 ws.setExecutionTime (stopTimer startTimer);

45 }

46

47 after throwing(ServiceInvocationException e) {

48 ws = ...

49 ws.incrementFailures();

50 throw e;

51 }

52 }

53 }

Code fragment 6.2: Service Monitoring Aspect with Virtual Mixins

132 Chapter 6. Web Services Selection

1 static connector IntroduceMixin {

2 perobject MonitoringAspect.IntroduceHook introduce =

3 new MonitoringAspect.IntroduceHook(* WebService.*(*));

4 perall MonitoringAspect.InvocationHook invocation =

5 new MonitoringAspect.InvocationHook(* HotelService.* (*));

6 }

Code fragment 6.3: Connector for Monitoring Aspect

to the client plus the time to deserialise the SOAP message back into object(s). A more
advanced aspect could make the distinction between them and measure more detailed and
accurately. The added complexity in this case is that more measurement points are needed,
in a distributed fashion: for instance, to measure the service response time, measurement
points in the service are needed. This type of distributed monitoring is further discussed in
Chapter 7.

To ensure that the data describing the QoS of the available Web services is fair and ac-
curate, the best option is to have information from multiple places. Besides the information
provided in the service documentation, and monitored data, one could also consult feed-
back from other clients. For example, pricing information can be provided by the service
provider, performance can be computed by monitoring aspects, while service reputation
can be based on clients’ feedback. Frameworks, as described in [LNZ04] and [TBE05], can
be installed that allow clients to enter their feedback. Possibly, additional mechanisms are
needed to prevent manipulation of the data.

6.4.3 QoS Service Selection

Given the detailed service information made available either through service documenta-
tion, feedback or through advanced monitoring, and given the fact that this information is
obtained in a fair and open manner, a more intelligent and client-tailored service selection
procedure based on QoS, can be realised. In the next subsections, we will discuss the various
QoS policies from Table 6.1 the client can specify to guide the selection process and show
how aspect-oriented programming is ideally suited to implement the policies.

6.4.3.1 Static Imperatives

A first category of QoS policies includes static imperatives. A policy can constrain the value
of a non-functional property of the service by specifying fixed minimum and/or maximum
boundaries. This policy states that a functionally compatible Web service, will only be
addressed if a specific property value of the Web service falls in specific range. For instance,
one could state that the price of using the Web service should have an upper limit of
0,10 euro per invocation. If the price is higher, the service is disqualified until the price
changes. In that case, the qualification status will be re-evaluated. A selection aspect can
be implemented to enforce this policy. From the policy specification we can deduce the
joinpoints and advices of the aspect:

Identification of joinpoints: Remember from chapter 5 that clients communicate

6.4 Selection Based on Quality of Service 133

with service types (see section 5.1) and that, using a dynamic binding mechanism one of
the available Web services is addressed to deal with a client request. The policy stated
above is clearly specified on the level of the service type: all Web services registered for the
service type must have the service property in between specific boundaries. Therefore, a first
joinpoint will be the moment a new Web service is registered for the service type. A second
joinpoint is the moment one of the registered Web services changes its QoS, either explicitly
by changing its documentation, or implicitly, by changing its (non-functional) behaviour.
In that case, the service property constrained by the policy may change, requiring a re-
evaluation of the service’s approval or disapproval status. To detect changes in the service
documentation, there are basically two practical solutions: notification or polling. In case
of notification, the Web service notifies the client (in our case the WSML) about a change
in its QoS (e.g. using WS-eventing [BCC+04c]). In case of polling, the documentation of
the Web service could be polled with regular intervals. In either case, the moment when
the change is detected, will be a joinpoint for the selection aspect. When the property is
monitored dynamically, the joinpoint will be the moment the monitoring aspect calculates
and saves a new value of the property.

Identification of advices: The action is to disapprove or approve the Web service
based on the condition evaluation. As explained in Chapter 5, the dynamic binding mech-
anism to integrate a Web service into the client relies on service redirection aspects and
connectors. The connectors hook the redirection aspects on one or more service types.
Whenever a client invokes the service type, a redirection aspect is triggered and a Web
service is invoked. By default, the connectors are ordered in the way they were added to
the system. As result the same service will always be addressed by default. Changing
the binding mechanism to incorporate selection policies involves changing the connectors,
for instance if a service is too expensive, disabling its connector and thus preventing the
corresponding Web service from being invoked.

A selection aspect can be written that hooks on the identified joinpoints, while imple-
menting an after advice that enables or disables a service redirection connector depending
on the evaluation of the service property. An aspect implementing a pricing imperative and
an aspect realising a response time imperative are in essence the same. A generic selection
aspect for both purposes can be implemented, and next, configured through a connector.

6.4.3.2 Collaboration Between Multiple Imperatives

The selection aspect described above will filter out services and up until now it was assumed
that only one policy, and thus one aspect was deployed at a given moment. In a real world
situation however, it is obvious that multiple policies will be specified and that these policies
may interfere with each other. If we assume multiple imperatives are defined, then a Web
service needs to be approved by all of them. If at least one imperative disapproves the
service, it will be disqualified. To realise this, the selection aspects will need to cooperate
in order to come up with a single list of approved services (which may be reordered by
an additional guideline policy as we show later on). The most elegant way is that each
aspect stores its own list of approved and disapproved services, and remains unaware of the
existence of other selection aspects, hence promoting modularity of the code. The following
code example shows a simplified version of a basic selection aspect that allows approving

134 Chapter 6. Web Services Selection

and disapproving the services registered for a service type according to the values of a
particular property.

In the ServicePropertyImperative aspect, the hooks WebServiceAddedHook (lines 13
to 21) and PropertyChangedHook (lines 23 to 32) approve or disapprove a Web service
depending on the value of the property the policy is initialised with. Their corresponding
after advices are executed when a new Web service is registered for the first time or when the
value of the observed property changes. The evaluation of the service property with respect
to the minimum and maximum boundaries is done through a dedicated compare method.
This method is not included in the Code fragment. Property values can be compared
with each other when the classes that represent them implement the java.lang.Comparable
interface. This interface imposes a total ordering on objects of a class that implements it.
This ordering is referred to as the class’s natural ordering, and the compareTo method is
referred to as the natural comparison method.

The GetApprovedServicesHook (lines 34 to 45) realises cooperation of multiple de-
ployed selection aspects. The hook is able to retrieve only those Web services that satisfy
all selection policies among the ones registered for a particular service type. First, in line
40, the proceed method continues with the enforcement of other selection policies. Next, in
lines 41 and 42, all services disapproved by the current policy are removed from the list. As
a result, only services approved by all policies is returned. This hook will be triggered at
the moment a list of all approved services is needed (e.g. to enable/disable connectors, to
order them according to a guideline, to show them in a GUI, etc.). The attributes in lines
3 to 5 can be specified in a connector. For instance, the selection policy to approve hotel
services based on price can be realised by a connector deployed on the HotelServiceType,
with a minimum of 0 euro, a maximum of 1 euro for property price. Additionally it should
be specified what to do with a service if the constrained property is not defined (i.e. approve
or disapprove such a service).

Note that if a new Web service is registered, service behavioural properties such as
the average speed property will not be set until the service is invoked at least once. As a
result, these services have no reputation yet, which prevents them from being selected. To
circumvent this problem, their monitoring could be based on dummy invocations and/or
their selection could be based on the recommendations or endorsement by trusted third
parties using more advanced selection policies. We would also like to point out that selection
policies can be specified individually at the level of each service type request to realise an
even more fine-grained selection. For instance, for browsing hotels the fastest service could
be preferred, while for making reservations, the cheapest service could be favoured.

As multiple selection policies are specified on the same service type, this could imply
a certain performance overhead at run-time. It is important to consider that searching for
the “best” solution can be computationally expensive. Moreover, because the “best” might
change over time, unwanted oscillations can seriously affect the overall performance of the
application. Consider a dynamic (monitored) property of a service that changes frequently
(e.g. the response time of a ping1 signal of the Web service server). In that case, it might

1Pinging is used to check for basic 2-way connectivity between two computers. It is the process of
sending signals (packets) to another computer, typically a server, on a network to see if it sends a return
or an ’echo.’ If the signals ’time-out’ the remote computer may down, it might be disconnected from the

6.4 Selection Based on Quality of Service 135

1 class ServicePropertyImperative {

2

3 private List approved, disapproved;

4 private Object minimum, maximum;

5 private String property;

6

7 public void checkWebService (WebService ws) {

8 if (compare (minimum, ws.getProperty (property), maximum))

9 approved.add (ws);

10 else disapproved.add (ws);

11 }

12

13 hook WebServiceAddedHook {

14 WebServiceAddedHook (method(Webservice ws)){

15 execution(method);

16 }

17

18 after () {

19 checkWebService (ws);

20 }

21 }

22

23 hook PropertyChangedHook {

24 PropertyChangedHook (method(String mproperty, ..args)){

25 execution(method);

26 }

27

28 after() {

29 WebService ws = (WebService) thisJoinpointObject;

30 checkWebService (ws);

31 }

32 }

33

34 hook GetApprovedServicesHook {

35 GetApprovedServicesHook (method()){

36 execution(method);

37 }

38

39 around() {

40 List listPreFiltered = (List)proceed();

41 List myApprovedServices = (List)approved.clone();

42 myApprovedServices.retainAll(listPreFiltered);

43 return myApprovedServices;

44 }

45 }

46 }

Code fragment 6.4: Service Selection Aspect for an Imperative Policy

136 Chapter 6. Web Services Selection

be necessary to limit the number of evaluations. Preventing the monitoring aspect from
updating the property too often is one way; only evaluating and updating the preference
ranking in the selection aspect after a number of property updates is another. A dedicated
aspect could be used to categorise all services according to their properties (e.g. fast and
cheap, slow and expensive, etc.) and specify the policies based on these categories.

6.4.3.3 Dynamic Imperatives

The imperatives discussed earlier represent selection policies that express a constraint on a
service property whose value needs to be situated in between statically specified boundaries.
These boundaries remain fixed. A problem that may occur is that the Web services evolve
and over time all get disqualified. Consider the constraint specifying that the response time
of a service must be lower than 100 ms. This policy can work well for some time, but it is
possible that over time all services become disqualified due to increased service loads and
network congestions. In order to avoid this situation, a dynamic policy can be specified
stating that only Web services with a response time at most 50 ms slower than the highest
response time measured in the last 24h are qualified. This policy ensures that the slowest
Web services are disqualified without the risk of having no service at our disposal at all.
We can adjust our selection aspect of Code fragment 6.4 to deal with dynamic boundaries.

Identification of joinpoints: The joinpoints are the moment when a new Web service
is registered, when the property of a registered Web service changes and when a registered
Web service is removed.

Identification of advices: Whenever the aspect is triggered through one of the three
identified joinpoints, it will have to calculate new minimum and maximum derived values
for the boundaries. After all, each of the three identified events has a possible impact on
the boundaries. In the advice, an iteration over all registered Web services is necessary to
obtain the property and to calculate the boundaries. If one of the boundaries has changed, a
second iteration is needed to re-evaluate all Web services and to qualify or disqualify them.
The issue that too many evaluations may occur and that they might be computationally
expensive is even worse in this case, so it might be necessary to take into account a buffer
on the boundaries. In between this buffer the boundary limits may vary without requiring
re-evaluation of all Web services.

Up until now, the order in which the imperative policies are employed does not matter.
Each imperative policy filters out Web services it considers “bad”, and the order in which
this occurs is of no importance. This commutative behaviour of the selection policies is an
important property of our solution, as an AOP language does not always support aspect
precedence and combination strategies to deal with feature interactions. However, in the
case of dynamic boundaries, the order does matter. Consider four Web services with a price
of respectively 0.5, 1.0, 1.5, and 4.0 euro. A static imperative states that services cannot
cost more than 2 euros. A dynamic imperative states that the price of any service cannot be
more of the average of all services. If the dynamic imperative is employed first, the average

network, or there is a problem with the network itself. Massive variations in the ping value may for instance
occur in case of heavy server loads or fluctuations in the network connectivity.

6.4 Selection Based on Quality of Service 137

is 3,5 euro, filtering out only service 4. If the static imperative is employed first, the average
is 1 euro, filtering out services 2, 3 and 4. It will depend on the context which situation
is preferred. The advantage of the second scenario is that the peak of the Web service 4
is not taken into account and therefore the calculated value better represents the average
price of the remaining services. In case more dynamic imperative policies are specified,
the complexity increases more, as the ordering of execution of each policy will result in
a different outcome. A simple solution could be to detect and reject multiple of these
conflicting aspects as they are deployed. Another possibility is to indicate at configuration
or at deployment time a conflict is detected and make the ordering of the enforcement of
the selection aspects explicit. As mentioned earlier, we can describe aspect ordering in
the JAsCo language trough connector priorities or connector combination strategies and
therefore implementation of these solutions is possible.

6.4.3.4 Guidelines

Specifying one or more imperatives will reduce the number of Web services that are can-
didates to be addressed. However, the chance is small that the size of the subset of Web
services that survives all imperative filters is exactly one. Therefore, a guideline can be
used to determine which service in the subset is preferred over another. Otherwise said,
the non-functional properties of the service can be used to make a preference ranking. A
straightforward example of a guideline is to prefer services with a high average response
time in the last month. A monitoring aspect can deliver this data, and a selection aspect
can order the services.

Identification of joinpoints: The joinpoints identified for an imperative policy are
also applicable here: whenever a new service is registered and whenever its property changes,
the policy needs to be triggered. Additionally, when a service is removed, it will have to be
removed from the preference ranking.

Identification of advices: When the aspect is triggered, it should execute some eval-
uation and make a ranking of the available Web services. Using the dynamic service binding
mechanism of Chapter 5, this ranking can be made by simply reordering the connectors of
the service redirection aspects. If multiple joinpoints are applicable on the same joinpoints
(as is the case with service redirection aspects), then the order of the connectors will de-
termine which aspect will be triggered first. Therefore, a service redirection aspect with
a corresponding connector with a higher priority will be executed before one with a lower
priority. Another approach besides connector priorities is connector combination strategies,
which are used to control the execution sequence of connectors. This is further discussed
in Chapter 7 for management purposes. How the evaluation should be done depends on
the kind of guideline, the natural comparison method of the java.lang.Comparable interface
can be reused for this purpose.

Again it is possible to implement a generic aspect that does not depend on a specific
property, ranking services according to price or according to speed is a similar process. A
generic selection aspect can be configured by specifying which property should be used for
the ranking, how the ranking should be done (e.g. ascending or descending) and what to
do in case the property is not specified for a service (e.g. give it the highest or lowest

138 Chapter 6. Web Services Selection

priority). Additionally it should be taken into account that properties of multiple services
are not always comparable: they might have different units or they may be specified against
a different reference schema or even use completely different QoS ontologies. Conversions
might be required in that case.

6.4.3.5 Collaboration between Multiple Guidelines

Unlike imperative selection aspects, only one guideline can be applied on a set of Web
services. If a ranking is made on one property, adding a second guideline ordering on another
property will undo the ordering done by the first guideline. If a preference ranking is to be
made while considering multiple QoS properties, a solution is to compute an open and fair
QoS value for each Web service, based on all QoS properties. Then, a preference ranking can
be made based on those values. Calculating a QoS value can be done by constructing the
normalisation of a matrix out of all the properties of the services as described in [LNZ04]
and [TBE05]. A QoS matrix is constructed with x rows and y columns where x equals
the number of Web services and y the number of considered properties. On this matrix,
a series of normalisations are applied. The purposes of normalisation are to allow for a
uniform measurement of service qualities independent of units, to provide a uniform index
to represent service qualities for each provider and to provide a threshold regarding the
qualities. In [LNZ04], the client expresses his preferences by specifying an array where each
element represents a weight assigned to a property. By applying this array on the matrix,
individual QoS values can be calculated for each Web service. Alternatively, in [TBE05],
a matchmaking algorithm is presented based on Euclidean distance measuring [Dun02].
Similarity distance measure is used to solve the problem of finding the relative difference
between two values. In this case, the client preferences with respect to the ideal properties
of a Web service are expressed in a vector. The Web service with a smaller Euclidean
distance is preferred over a service with a larger distance.

Figure 6.3 shows a scenario where three selection policies work together. Six functionally
equivalent Web services (Ca . . . Cf) are present in the system. Their QoS is defined by
five properties (q1 . . . q5). First, a static imperative analyses property q2 of each Web
service with respect to statically defined boundaries through function f1, resulting in the
disqualification of Web services Cb and Cd. Next, a dynamic imperative analyses property
q5 of each Web service to define dynamic boundaries and evaluates each Web services with
respect to these boundaries. This results in the disqualification of Web service Cc. Finally,
a guideline will prioritise the remaining three Web service by calculating a normalised QoS
value of the remaining properties q1 , q3 and q4 for each Web service. This results in a
ranking where Ce is assigned priority 1, Ca priority 2 and Cf priority 3.

6.4.4 Selection for Service Compositions

As described in section 5.5, it is also possible to dynamically bind service compositions to
a service type. In that case, the redirection mechanism will have to choose between all
functionally equivalent service compositions and/or Web services. Additionally, in case of
reactive compositions, each role in the composition may be fulfilled by a different service at a
given moment. The selection mechanism introduced in this chapter can be reused for service

6.4 Selection Based on Quality of Service 139

CbCa

Cc

Cd Cf
Ce

Ca

Cc

Cf
Ce

Ca

Cf
Ce

Ce CfCa

Static Imperative
(Filter)

Dynamic Imperative
(Filter)

Guideline
(prefence ranking)

1 2 3

p={q1, q2, q3, q4, q5} f1(q2) p={q1, q3, q4, q5} f2(q5) p={q1, q3, q4}

f3(q1, q3, q4)

Figure 6.3: Cooperation of multiple Selection Policies

compositions. The only difficulty is defining an accurate QoS description of the composition.
This is needed to verify whether a set of services selected for composition satisfies the QoS
requirements for the whole composition. If such a description is available, the selection can
be done as before: for instance, if the cheapest service functionality is preferred, then a
service composition, which costs amount to 1 euro is cheaper than a single service doing the
same thing for 2 euro. Describing the QoS of a service composition is done by aggregating
the QoS dimensions of the individual services. For some properties such as service cost this
is straightforward, but for other properties, especially the behavioural ones, the situation is
more complex. For instance, calculating the execution time will require taking the control
flow of the composition into account. It is outside the scope of this dissertation to discuss
the functions required to calculate the QoS of a service composition. The interested reader is
referred to [JRM04]. This paper focuses on QoS aggregation based on abstract composition
patterns like sequence, loop and parallel executions.

We have done experiments in [VSCV+05] with Adaptive Programming as a technique
to calculate service composition properties. Adaptive Programming (AP) [LOO01] aims at
providing support for a very different kind of crosscutting concerns than the ones tackled
by typical aspect-oriented approaches. When an operation involves a set of cooperating
classes, one can either localise this operation in one class or split the operation over the set
of associated classes. Localising the operation in one class causes hard-coded information
about the structural relationships between these classes and is as such a violation of the
well-known Law of Demeter [LH89]. The other alternative, namely distributing the opera-
tion over the set of involved classes, conforms to the Law of Demeter, but causes the logic
of the desired behaviour to be spread over different classes making evolution very difficult.

140 Chapter 6. Web Services Selection

To capture an operation that involves several cooperating classes, AP introduces adaptive
visitors, which allow visiting the objects contained within an application without explic-
itly describing the structural relationships among these objects. Traversal strategies are
responsible for specifying the abstract visiting process for an adaptive visitor.

In the case of service composition, the logic to calculate a service composition property
depends on the property values of the services it is composed of, as well as the behaviour of
the composition itself, possibly in an unanticipated fashion. While it was possible to calcu-
late simple service composition properties by using the visitor pattern [GHJ95], this imple-
mentation led to a lot of visitor classes, containing in many cases duplicated processing logic.
In addition, the implementation of these visitors had to be manually adapted whenever the
property data structure changed as unanticipated properties could not be calculated. In or-
der to keep the implementation of the visiting process reusable and structure-shy, adaptive
visitors, implemented as JAsCo aspects are employed. With a JAsCo Adaptive Program-
ming extension [VSCV+05] it is possible to implement an adaptive visitor as a regular
JAsCo aspect. These visitors will visit each service of the composition in order to calculate
a value for the service composition. While we have implemented a set of reusable adaptive
visitors which allow calculating the sum, average, minimum, maximum, etc. of composi-
tions, we envision more complicated properties can be calculated in a similar fashion. The
visitors are resistant to structural changes in the property data structure of the WSML,
reusable for multiple types of properties and combination strategies can be employed to
guide how the visiting process must be executed.

6.5 Request/Response Initiated Service Selection

By employing the selection policies presented in the previous section, a particular service is
chosen regardless of the client. Without taking into account the current client state, or the
particular request that is being handled, a most optimal service is selected pro-actively. In
this section, we discuss the case where the client requests and their arguments are taken into
account (in subsection 6.5.1) and where service responses influence the selection process (in
subsection 6.5.2).

6.5.1 Service Selection Based on Client Requests

6.5.1.1 Example

A more advanced scenario is a selection policy that chooses a service depending on the
information provided in the request from the client application. Suppose the hotel service
providers from our case study each represent different hotel companies, and therefore have
different price offerings for the same information. For example, HotelServiceA offers dis-
counts when booking hotels in Europe, but it is very expensive for hotels outside Europe.
HotelServiceB on the other hand is specialised in U.S. based hotels, but is more costly in
booking European hotels as it is required to charge additional booking fees. In this case,
the parameter values of the client requests (e.g. the CityCode or CityName parameters
in the methods of the HotelServiceType) must be taken into account when choosing the

6.5 Request/Response Initiated Service Selection 141

cheapest service for the request. This scenario differs from the selection policies discussed
in the previous section, as these policies can be enforced pro-actively: filtering out services
by imperatives or prioritising services can take place at any time, and as a result identical
client requests may be redirected to different services at different times. In the current
scenario, the client request needs to be analysed first, in order to select the optimal service.

6.5.1.2 Conditional Binding

A first attempt to realise this kind of selection in a modularised fashion with aspects is
re-using the conditional binding mechanism as presented in Chapter 5. Remember from
section 5.2.6 that this mechanism enforces a conditional check to evaluate client requests
before the service is being addressed, to avoid calls to services that are unable to deal
with a specific request. Whenever a client issues a request, each available Web service
is analysed by means of a conditional check in the service redirection aspects, and those
services that cannot deal with the request are taken out of the redirection chain. The same
mechanism could be used to check for additional constraints, enforced by selection policies.
A drawback of this solution is that two concerns are encapsulated inside one aspect. Namely,
both the redirection mechanism for a Web service and the selection logic for the service are
encapsulated inside a single aspect. Furthermore, the selection logic will need to be present
in all service redirection aspects, leading to code redundancy.

A logical next step is decoupling the selection logic from the redirection aspect. This
promotes the reusability of the same selection aspect for multiple services. Encapsulat-
ing this selection policy in a separate aspect requires having access to the context of the
joinpoint, i.e. the parameters of the client request. We identify two possible scenarios as
depicted in Figure 6.4. Scenario A shows a Service Selection Aspect hooking on the Service
Redirection Aspects to control the further execution of these aspects. In Scenario B a Se-
lection Strategy is deployed to control which Service Redirection Aspect is preferred for a
particular client request. We discuss both scenarios in the next sections.

6.5.1.3 Scenario A: Aspects on Aspects

Identification of joinpoints: A set of possible joinpoints where the arguments can be
intercepted is the service redirection aspects themselves (scenario A of Figure 6.4). As such,
the selection aspect will interfere with the execution of a redirection aspect as it might
prohibit the execution of a redirection advice (e.g. because the service is too expensive) or
prefer one redirection advice over another advice (e.g. because one service is faster than
another). Aspects that interfere with other aspects are better known as aspects on aspects,
defined in [DFS02] as being ”visible” for other aspects. The ServiceSelectionAspect of
Figure 6.4 encapsulates an imperative constraint on the request arguments. The selection
aspect triggers whenever a service redirection aspect is executed. This scenario can be
implemented in an AOP language supporting aspects-on-aspects such as JAsCo. In our
case, the selection aspect will hook on the advice of the service redirection aspect.

Identification of Advices: If the advice of a service redirection aspect is executed,
the selection aspect will replace this behaviour by means of an around advice. In this

142 Chapter 6. Web Services Selection

Web
Service A

Service
Type

Web
Service B

CA

CB

Service
Selection
Aspect

Selection
Strategy WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Client

CS

Scenario A

Scenario B

Figure 6.4: Two Scenarios for Service Selection Based on Client Requests

around advice the context of the original joinpoint of the redirection aspect, namely the
provided arguments of the client request, are checked against the imperative constraint.
If the arguments are valid the selection policy should not interfere and let the original
redirection aspect proceed with its redirection logic and continue with the invocation of the
Web service. Or, if the selection policy disapproves the service for the current context, it
will block further invocation of the service by not proceeding the redirection but rather
throwing an exception. As explained in Chapter 5, section 5.2.5 a fallback aspect can be
used to capture any exceptions generated during the redirection process. The fact that a
selection aspect prohibits the invocation of a Web service can be treated as just-another kind
of exception. The fallback aspect can capture this exception, and continue with another
service redirection aspect. In that case, the selection aspect can again interfere and analyse
the applicability of the service for the request.

Note that the example given above includes an imperative constraint. A guideline
constraint complicates the situation because in that case, the redirection aspects need to be
reordered according to some preference ranking, based on an evaluation of the arguments’
requests. This is not possible with this solution, as the selection aspect is triggered after
a redirection aspect is already triggered. In that case, it can simply block the further
execution; re-ordering the aspects is not possible anymore. Therefore, we turn to scenario
B.

6.5.1.4 Scenario B: Aspect Combination Strategies

Another solution is applying the selection logic at the level of the service type and treating
it as a problem of feature interaction (scenario B of Figure 6.4). Indeed, all available
service redirection aspects hook on the service type, and we want to solve the problem of

6.5 Request/Response Initiated Service Selection 143

deciding which aspect should actually be triggered. Otherwise said, which of the aspects
should be triggered at a certain joinpoint, and in which order. This is referred to in the AOP
community as aspect interaction and aspect composition problems [PSC+01], describing the
issue on how aspects, which are all implemented in isolation, should be deployed together
without interfering, but rather cooperate together. One simple AOP technique to achieve
this is already explained in Chapter 5: with around advice chaining, all available service
redirection aspects are placed in a logical chain: the chain is continued when a redirection
aspect fails to invoke a service. A second technique we already employed is connector
priorities in JAsCo. By assigning a (global) priority index to a connector, its corresponding
aspect always has precedence over one with a lower priority index. This technique was used
to implement the guidelines in previous section.

However, in the case of selection policies that need to work on a per-joinpoint basis,
more advanced strategies are needed. To resolve this, a more expressive way of declaring
how the aspects should cooperate is required. For example, specifying that when aspect
A is triggered, aspect B cannot be triggered for this joinpoint, or that one aspect has
priority over another. Making this possible in an AOP implementation can be done by
introducing new keywords in the language: for instance, adding a new connector keyword
exclude which specifies that aspect A excludes aspect B. However, as discussed in [Van04]
other aspect combinations require additional keywords and it seems impossible to be able
to define all possible combinations in advance. A more flexible and extensible system is
proposed in JAsCo that allows defining a combination strategy using regular Java. A
CombinationStrategy interface is introduced that needs to be implemented by each con-
crete combination strategy. A JAsCo combination strategy works like a filter on the list of
hooks that are applicable at a certain point in the execution.

The combination strategies as available in version 0.8.6 of JAsCo, however, only have
access to the hooks belonging to the connector it is specified upon. What is needed here
is combination strategy that works on all hooks of a particular joinpoint and not just
the ones that were instantiated together with the combination strategy as it is working
now. This would imply that hooks can be added to the combination strategy in more
than one connector. At the moment, the hooks are instantiated in the connector and
added directly to one combination strategy by passing the hooks in the constructor of the
combination strategy. Thus, the combination strategy is only accessible from one connector
that instantiates the hooks. Therefore we propose a combination strategy that is accessible
from multiple connectors by offering an extended interface that allows to add hooks.

In languages lacking the possibility to describe combination strategies, one would have
to resort to using the reflection capabilities of the AOP language, as a workaround to reason
about the aspects and their applicability and to modify their interactions. For example,
in JAsCo the connector registry can be consulted and modified, in AspectWerkz [Boner04]
a manager class for aspects can be consulted and most other AOP languages offer similar
infrastructures.

144 Chapter 6. Web Services Selection

6.5.2 Response-Based Selection

As described earlier, the QoS is an important driver to prefer one service over another. If the
QoS is described in the service documentation, the client can make certain assumptions on
the service and its delivered functionality. The QoS description may also include assertions
over the response the service returns, for instance: the FlightService provider may state
that the seat availability for its flights is not older than 15 minutes. This assertion is
important to avoid that end-users attempt to book flights that are no longer available. An
additional policy could be implemented to do quality tests on the results and verify the
QoS. In case of approval, the result is passed back to the client, in case of disapproval, the
result is discarded and another service is invoked. Again, aspects are ideal to encapsulate
this constraint checking after service invocations.

Identification of joinpoints: an aspect that will check the results of a service invo-
cation will be enforced for a given service type. As soon as a service redirection aspect
has invoked a service, and is about to return this result to the client, this result-checking
aspect will need to interfere. Therefore, the methods of the service type on which the result
constraints apply, will be joinpoints for the new aspect.

Identification of advices: as the result of a service invocation is to be intercepted,
an around returning advice is appropriate to check the result and continue the returning
of the result in case of an approval, or to do something else (e.g. pass the result to a next
service by continuing the service redirection chain) in case of a disapproval. Note that this
aspect will not interfere with a fallback aspect (Chapter 5, section 5.2.5) as a fallback aspect
contains around throwing advices, i.e. advices that are only triggered when an exception is
thrown in the joinpoint. So, if a service invocation succeeds, the result-checking aspect is
executed to check any constraints on the service. If a service invocation fails, the fallback
aspect is executed to deal with the exception: both types of aspects are complementary.

An interesting application of result-based service selection is result averaging, i.e. in-
voking a set of services and taking the average of the results. Suppose the travel agent of
the running example wants to include weather information to the pages with holiday desti-
nations. To include accurate temperate information, it could invoke three weather services
and take the average of the three returned results.

6.6 Context-Based Service Selection

6.6.1 Example

The selection policies identified up until now are based either on QoS (section 6.4) or by
analysis of client requests or service responses (section 6.5). A category that has not been
discussed yet is service selection based on the client context or end-user preferences. The
client context can also influence the Web service selection process: for instance, in a ubiqui-
tous environment, the holiday booking application could run on either a mobile device with
limited processing power, a narrow-band wireless network connection and a small display,
or it could run on a standard computer with more resources and a large display. Depending
on this setup, the application should address Web services that return limited results (e.g.

6.6 Context-Based Service Selection 145

short hotel descriptions with low resolution pictures) in the first case versus Web services
that provide extensive results (e.g. detailed descriptions with multiple high resolution pic-
tures). Other examples of client contexts that can influence the selection process include
end-user properties (e.g. a user with a gold subscription may access Web services that
allow the booking of VIP arrangements), and specific other related non-functional require-
ments (e.g. certain communication patterns such as payments that require stronger security
measurements).

6.6.2 Client-Context Monitoring Aspect

Again, a solution based on AOP has the advantage that selection policies can be encap-
sulated in separate aspects in a flexible manner independently of that client, but more
importantly, the client application can be obliviously observed by an aspect. A change
in the client context can be detected immediately by a monitoring aspect, as depicted in
Figure 6.5, and as such, the service selection process can be triggered. This illustrates the
usability of AOP for context passing.

Identification of joinpoints: Evidently, the monitor aspect has joinpoints in the client
application at those places where context changes can be detected. These joinpoints will
have to be identified depending on the intended scenario: in the example where the holiday
application runs on different systems this will be the moment the system starts up, in the
example with different end-user subscriptions it will be the moment a new user logs on, or
when the user changes its subscription status. Clearly, our AOP-approach is only capable
of capturing context information that is somewhere available in the environment. Note that
this is the first time, the link between the client and the WSML (i.e. the service types),
is not sufficient to communicate all service-related issues, i.e. the current client-context is
not passed along to the WSML. Without AOP, one would need to resort to re-factoring of
the object-oriented client code as at those places where a client context transition occurs,
additional information should be passed along explicitly to the WSML, for example as an
additional parameter in a service type request. However, this is highly unwanted: besides
the fact that the client code needs to be changed, it will also result in tangled service
selection code in the client, at all places where context-changes may occur. And if later on,
the selection policies change, this would result in redundant information being passed along
to the WSML. An alternative, such as the Observer Pattern [GHJ95] is no solution for this
problems, the code still needs to be re-factored as classes where context changes occur need
to become Subjects where Observers can subscribe to.

Identification of advices: As shown in Figure 6.5, the solution presented here maps
each client context to a different set of applicable selection policies. If a context transition
happens in the client (step 1), the monitoring aspect unloads the corresponding selection
aspects of the last context and loads the corresponding aspects of the new context (step
2). For instance, if the client runs on a mobile device, a guideline policy ordering services
on size of the results is employed together with an imperative disregarding all services that
return results in rich text formatting as the mobile device cannot show these results. When
the client runs on a normal computer, price might be the main concern, and therefore an
imperative restricting the costs is enforced. This modular approach has as advantage that
the selection aspects remain totally independent of the client application and its contexts.

146 Chapter 6. Web Services Selection

Client

Web
Service A

Service
Type

Web
Service B

Web
Service C

CA

CB

CC

Client
Monitoring
Aspect

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

1 CM

Service
Selection
Aspect
Service
Selection
Aspect
Service
Selection
Aspect

CS

Service
Selection
Aspect
Service
Selection
Aspect
Service
Selection
Aspect

CS

3

4

2

Figure 6.5: Client-Context Monitoring Aspect

The logic to monitor the different client contexts is encapsulated in a separate client context
monitoring aspect. As a result, the service selection aspects for imperatives and guidelines
as introduced in the QoS context in section 6.4.3, can be reused. In the picture, the service
selection aspects are triggered by a change in the Web service environment (step 3), after
which the appropriate service is selected (step 4). Examples of other monitoring aspects
include aspects that observe the properties of the end-user logged on into the system, and
aspects that monitors security-related contexts. If different context observing aspects are
deployed at the same time, they impose different selection policies, which can collaborate
if they impose constraints on similar services.

The presented solution does not incorporate a strict mapping between the particular
Web service and the context of the program. Having an explicit mapping between the
context and the concrete Web services would require a revision of those mappings each
time a new service is introduced. One way of keeping a more direct mapping is introducing
an index reflecting how well a Web service is suited for each client context. One or more
monitoring aspects could maintain these indexes.

An important consideration is how the client and the WSML are set up. If we assume the

6.7 Related Work 147

client and the WSML run on the same host, i.e. on the same virtual machine, the monitoring
aspect can run locally. However, if the client and the WSML run in a distributed setup (as
depicted in Chapter 4, Figure 4.2), then the joinpoints reside in the client, while the advices
are executed in the WSML: in that case, we need explicit support for distribution in our
AOP-approach. Few AOP-approaches offer this support, namely D [Vid97], JAC [PSDF01],
DJ-cuter [NST04] and JAsCo. With a distributed AOP-approach it is possible that aspects
intercept joinpoints executing on other hosts (i.e. distributed joinpoints) and to execute
advices on other hosts (i.e. distributed advices). The Distributed JAsCo implementation
(DJAsCo), which we employ here, and its corresponding AWED language are described in
detail in [BSV06].

In DJAsCo, it is possible to specify remote joinpoints by simply adding
joinpointhost(HostAddress) in the hook constructor of an aspect. The HostAddress
is the IP address and an optional port of the remote host. So in this case, the monitoring
aspect would run in the WSML, and the client is a joinpoint host. Specifying multiple
clients to be monitored is possible using logical operators. In order to execute advice that
trigger on remote joinpoints, the joinpoint information is distributed to all interested hosts
(in our case from the clients to the WSML). To this end, the JAsCo connector registry
(see Chapter 4, section 4.5.4.2) has been adapted to intercept all joinpoints, prepare them
for transmission2 and send them to the remote hosts. Note that in a distributed setup,
each host maintains its own connector registry, as a central approach would not scale and
become a performance bottleneck. More advanced features of distributed AOP, including
aspect distribution and aspect context sharing, are discussed in Chapter 7 in the context of
Web services management.

Similar to client-based service selection, it is also possible that the service(s) themselves
select the most optimal service. This “service-based” service selection seems to be more
appropriate in a more controlled environment than the original setup of this dissertation of
having independent third-party services. Nevertheless, a policy could state that a service
will distribute its resources evenly over a set of (possibly fixed) clients. In order for the
client to make sure this policy is enforced, it requires runtime service information. Analogue
to what we discussed above for client-based selection, a dedicated monitoring aspect with
remote joinpoints inside the service could be used for this purpose. Alternatives include
relying on notifications from the service or on the documentation.

6.7 Related Work

Most related approaches on Web services selection for SOAs is QoS-based, thus covering the
same grounds as the selection mechanism described in section 6.4. Most of these approaches
suggest to advertise the QoS of the services together with the QoS preferences of the client

2The current DJAsCo implementation version 0.8.6 uses Java Serialization to transmit objects from one
host to another. To locate and send joinpoint information to other interested remote hosts, the JGroups
framework is employed [Ban02]. JGroups is a well-known toolkit for reliable multicast communication. In
addition, JGroups supports a wide range of network protocols, which makes the system independent of
specific network technologies.

148 Chapter 6. Web Services Selection

in a common ontology, and to use centralised matchmaking mechanisms to find the most
optimal service. Our approach does not focus particularly on proposing new ontology
models or matchmaking algorithms, but rather on enforcing selection policies non-invasively
in the client for third-party Web services and compositions. Therefore, we will discuss the
related work more in terms of how each approach affects the Web services and the client
implementation.

6.7.1 QoS-enabled Service Repositories

A first category includes approaches that offer a QoS-enabled service registry or reposi-
tory. Instead of looking up a service in a UDDI using only a functional description, these
registries or repositories also take into account QoS preferences of the client. The QoS-IC
Framework has been recently proposed in [TBE05] as a centralised repository to store all
QoS specifications of services. It tracks changes in QoS properties and notifies the clients
in case of changes. The QoS properties are grouped in two groups: obtained QoS proper-
ties and computed QoS properties, which map to the documented properties (section 6.4.1)
and service behavioural properties (section 6.4.2) of our approach. When service providers
publish their services, or when clients look up services in this repository, they must extend
their SOAP messages with QoS specifications. The repository models all QoS data in an
ontology, manages updates of the QoS properties and notifies clients. A validation man-
ager validates business information and verifies provider’s claims of QoS properties. The
matchmaker algorithm is based on the Distance Measure Function [Dun02]. QoS-IC relies
on UDDI for functional service matching; meaning only services with the same interface
can be integrated. Glue code and service compositions are not supported. These limita-
tions do not apply for the WSML. Furthermore, when the QoS-IC framework returns the
most optimal service, it still needs to be integrated in the client (e.g. using proxies). An-
other disadvantage is that clients need to do a service look-up with both a functional and
a non-functional part in its body. However, as we argue that the non-functional part tends
to evolve faster than the functional part, we have separated the two in our solution: the
client specifies a functional request and passes it along to the WSML. Next, the WSML
will, while considering non-functional selection policies, address the appropriate service. If
necessary, the WSML could still be made compatible with the QoS-IC approach: clients
can send their functional request to the WSML, which will add a non-functional part to
the message (based on the specified policies) and pass the request along to an intelligent
third-party broker to obtain the most appropriate service.

6.7.2 QoS-based Service Selection Frameworks

A second category includes approaches where clients communicate through a framework
that takes care of the selection process, similar to what we propose with the WSML. The
advantage of these approaches is that the service integration is done by the framework,
and that this framework acts on behalf of the client, but independently from it. In [MS04]
an agent-based solution for QoS-based service selection is presented. Agents represent
autonomous service clients and providers and collaborate to dynamically configure and
reconfigure services-based software applications. Agencies gather QoS data from agents,

6.7 Related Work 149

and store, aggregate, and present it back to the agents. This approach is made in the
Web Services Agent Framework (WSAF). WSAF incorporates service selection agents that
use a QoS ontology and an XML policy language that allows service clients and providers
to expose their quality preferences and advertisements. An agent exposes the services’
interface, while augmenting it with agent-specific methods. These methods are used by the
client to specify its QoS preferences prior to using the service’s methods. This is similar
to the service types in our approach, which also mediate autonomously between the client
and the available services. In the WSML, clients can also express their selection policies
in a dedicated XML configuration language which will result in the instantiation of one or
more selection and monitoring aspects, as shown in Chapter 8. The behaviour of the agents
can be changed through scripting, but the paper is not clear on how much flexibility this
offers in terms of changing the quality-degree matching process. WSAF relies on UDDI
for service matching, resulting again in the limitation that the framework can only address
services with the same interface. It uses dynamic proxies for this purpose.

GlueQoS [WTM+04] provides an mediation mechanism to support the dynamic manage-
ment of QoS features between consumers and providers. The approach provides a declarative
language for specifying the QoS feature preferences and conflicts, and a middleware-based
resolution mechanism, GlueQoS Policy Mediator (GPM), that reasons using these specifi-
cations. GlueQoS is an extension of the WS-Policy [BCH+03] language. They assume fixed
ontologies of features and their interactions explicitly and a-priori defined. Both on the
client and server side a GPM is responsible for negotiating QoS settings at service integra-
tion time, using a policy mediation meta-protocol. The GPM determines a compatible QoS
feature composition, when possible, and otherwise declares that the partner’s policies are
incompatible. This is done at runtime in an open dynamic environment, thus liberating the
deployment expert from considering all possible client-server QoS pairings, and certainly
also liberating the application developer from tangling application logic with QoS consid-
erations. This promising approach does however not fit the premises of our dissertation as
a GPM must be deployed in all Web services in order to work with this approach.

6.7.3 Request/Response Initiated Selection Approaches

Another category of related work encompasses approaches that strive at providing person-
alised services for a particular context. This relates to our selection mechanism based on
client requests and service responses (section 6.6). In [BW03] an approach is discussed where
client requests are annotated explicitly with user-specific preferences. The requests are ex-
panded with information found in user profiles and domain knowledge and are matched
with Web services that are semantically described. Their approach is mainly targeted at
allowing human interaction to inject personalisation in the service selection process and
does not deal with ontologies or interoperability issues. In that paper, the distinction is
made between hard constraints and soft constraints. Hard constraints cover the required
service functionality for a specific client request (e.g. select a flight service that can book a
flight to New York next Monday) while soft constraints cover additional requirements that
can be relaxed (e.g. prefer a non-stop flight). An algorithm is presented where semantically
described services are looked-up through keyword-based searches. Next, the services are
evaluated by matching their method signatures with the specified hard constraints, and

150 Chapter 6. Web Services Selection

afterwards a ranking is made based on the soft constraints. No implementation of the ap-
proach is available, so it is unclear to which extend such a context-tailored selection process
can be automated without end-user intervention.

Another approach to get personalised behaviour is to make the Web services context-
aware by submitting the context inside the request. In [KK04], a context framework is
proposed to facilitate the development and deployment of context-aware adaptable Web
services. Web services are provided with context information about clients that may be
utilised to provide a personalised behaviour. This setup does not match the premise of this
dissertation, as it requires adaptations to the third-party Web services in function of the
client.

6.8 Conclusions

This chapter discusses our approach for customised service selection in the WSML. Selection
policies are decoupled from the client application and enforced through selection aspects.
One aspect encapsulates one policy: the triggering points in the environment where changes
happen that influence the enforcement of a policy map to joinpoints of the aspects, and the
advices contain code to approve, disapprove and/or re-prioritise Web services. A variety
of selection policies are discussed, including selection based on Quality of Service, service
behavioural properties, service and client context, client requests and service results.

To monitor service behavioural properties and to detect service and client context
changes, we suggest employing monitoring aspects. As such, monitoring points can be
introduced in the environment non-invasively. In the case of remote triggering points (e.g.
in a third party web service or in a remote client), one can apply a distributed joinpoint
model. Note that approach is only realistic when both hosts belong to the same organisation.
Another solution is to use a notification mechanism such as Web Services (WS)-Eventing
or a polling mechanism to detect remote changes and trigger advices accordingly.

Using aspects to implement the selection policies has the advantage that policies are
treated as first-class identities. One aspect represents one policy as a logical unit. Even
though a policy might need data from various places to execute, it isn’t scattered among
multiple points in the code. This modularisation makes it easier to implement and maintain
policies. Furthermore, aspects can enforce a wide range of unanticipated policies in a unified
manner without having to stop the client or rewrite any code. Aspects can generalise many
policies in a reusable manner. For instance, consider a policy that states, “Whenever a
property changes above a specific threshold, the policy should decide on disqualifying the
service.” Implementing the policy in an aspect creates a library of reusable aspects that
can be easily instantiated in a specific context.

Chapter 7

Client-Side Web Services
Management

Abstract Several service management concerns need to be enforced in the client when
dealing with Web service invocations. In this chapter we discuss how modularising each
concern in aspects helps in avoiding crosscutting code and how each concern can be enforced
non-invasively at runtime. Also conditional, meta-level and distributed service management
concerns are considered.

152 Chapter 7. Client-Side Web Services Management

7.1 Introduction

To aid in the construction of large-scale distributed systems, many software developers have
adopted middleware approaches. Middleware facilitates the development of distributed soft-
ware systems by accommodating heterogeneity, hiding distribution details, and providing
a set of common and domain specific services. However, as pointed out in [CBR03], mid-
dleware itself is becoming increasingly complex; so complex in fact that it threatens to
undermine one of its key aims: to simplify the construction of distributed systems. Addi-
tionally, [ZJ03] describes that the sheer volume of middleware standards and technologies
as being a contribution to this complexity. Middleware particularly suffers from increased
complexity when addressing concerns of a crosscutting nature.

In case of Web services, service invocations become increasingly complex as additional
code is required to deal with various management concerns. For example, the client is
required to make a payment before the service can be invoked, or the client needs to au-
thenticate itself, or needs to encrypt all SOAP messages. These concerns are imposed by the
service provider and additionally, the client might also deploy some concerns, for instance
doing pre-fetching or caching to optimise performance. Many of these concerns cannot be
easily modularised and therefore become entangled in the system, thus decreasing under-
standability and potential for reuse.

Furthermore, it will vary over time which concerns are required to be enforced. There-
fore, a flexible mechanism is needed to enforce these concerns non-invasively. In this chapter,
we propose a mechanism based on AOP that deals with a variety of service management
concerns. We opt to cope with these concerns by modularising them in management as-
pects. Using dynamic AOP, the concerns are only deployed at runtime for those services
that require them. While SOAP message handlers (see section 3.5.2.2) can only be triggered
when messages come in or are sent out to a service, our approach is more flexible as it ben-
efits from the richer expressiveness available in an AOP pointcut language. Using aspects
to implement the management concerns has similar benefits as for selection policies: each
concern is cleanly modularised in one aspect, non-anticipated concerns can be implemented
in aspects and enforced in an oblivious manner in the client, and code reusability is achieved
by generalising the concerns in patterns.

In Chapter 5, we already discussed some concerns, including exception handling, con-
versational messaging, etc. In Chapter 6 we discussed service monitoring for the purpose
of realising a more intelligent selection mechanism. In this chapter, we discuss some other
concerns and implement them with a mechanism that builds on top of the service redirection
mechanism introduced in Chapter 5. The next section presents some management examples
that are modularised in aspects: billing concerns are discussed in section 7.2.1 and global
and local caching solutions are presented in section 7.2.2. The subsequent sections discuss
more advanced management topics. In section 7.3, feature interaction between multiple
concerns is discussed, section 7.4 covers the conditions that may trigger the enforcement of
a concern, meta-level management concerns are discussed in section 7.5 and approaches to
realise distributed management are the topic of section 7.6. Related work is presented in
section 7.7 and we conclude in section 7.8.

7.2 Examples of Management Concerns 153

7.2 Examples of Management Concerns

7.2.1 Billing

7.2.1.1 Introduction

To get revenues, service providers may charge clients for the use of their Web services.
Typical examples of payment schemes are pay-per-use, where the client pays for the actual
usage of the service, and subscription models, where the client buys access to the service
for a period of time. Several variants including pre- and post billing, micro-payments,
charge-per-items, etc. are possible.

Typically, it is up to the service provider to keep track of the payments and charge the
client for the correct amount (although dedicated brokerages that take care of billing can
be used too). At the client side, a billing mechanism is also required. First of all, it is
highly likely that the client must include additional information (such as a client ID) in
each of the messages it sends to the service. Next, if an automated payment mechanism is
put into place, the client needs to make the actual payment, for instance using a dedicated
bank Web service. Which bank service is to be used may depend on the service provider.
And finally, in case of post-paid payment models, the client might want to keep track of its
usage of the service for auditing purposes to check whether the service provider takes on
correct billing procedures.

Billing can become quite complex for the client, as each service provider might enforce
different procedures, using different protocols and different third-party bank services. Fur-
thermore, it is possible that the client application will charge its respective customers for
the usage of the Web services. The Travel Application of section 3.1 uses a third party hotel
service for hotel reservations. If that service charges a fixed fee for each booking, the travel
application may charge this cost to its own customers. Depending on the kind of customers
this amount may vary: e.g. VIP customers may get a discount. This simple example illus-
trates that billing can become complex, and may require interaction with several parts of
the client, besides the obvious communication with the Web services. As billing is a service
related concern, the WSML is ideally suited to deal with it independently from the client
application and the concrete Web services used.

Depending on the applicable business model, payments may be reversed. Instead of
getting paid, the Web services may need to pay the client application to be integrated. The
travel agent lists all available hotels it retrieves from the hotel services. Service providers
that prefer a higher position in the list submitted to the customers may need to pay for
this as it increases the possibility that the customer will use their service. In this setup,
the WSML will need to keep track of this payment information, and bill each Web service.
It is also possible that the WSML acts as a wholesale broker (see section 4.2.2). In that
case, it might offer a specific functionality to its customers for a fixed price, and buy this
functionality from third-party services that are in competition with each other.

Finally, we would like to point out that billing becomes even more complex when taking
into account Service Level Agreements (SLA). If a service provider describes its Quality of
Service (QoS) and an SLA between the client and the service exists, it is not uncommon

154 Chapter 7. Client-Side Web Services Management

that the service provider needs to pay a compensation rate if it does not meet its agreed
upon QoS. As discussed in section 6.4.2.1, constant monitoring can be used to determine
this, for instance by monitoring aspects. Alternatively a third party Web Service Auditor
could be used to make sure response rates are in line with what is defined in the SLA.

7.2.1.2 Billing Aspects

A simple billing mechanism, where the client is charged for each invocation of a single
service can be straightforwardly implemented using message handlers. A billing message
handler is triggered each time a message passes the handler chain. However, in more
complex cases with multiple services as described above, this basic triggering mechanism
is not sufficient and the expressiveness of an AOP pointcut language is needed. Suppose
the Hotel, Flight and Car Services start charging additional booking fees to their clients to
compensate for administrative costs. These variable fees are to be paid after a booking is
made and a corresponding confirmation is sent to the client. The travel application does
not support this natively and only charges its customers for the costs of the purchased items
(the hotel booking, flight reservation and car renting). The travel application decides to
charge these additional booking fees to its customers, unless they make three bookings in a
row. In that case, regular customers get 50% discount if they make three bookings while for
VIP customers the fees are completely annulled. The VIP status of customers is internal
information for the travel agent and is never communicated to the Web services.

Figure 7.1 shows our solution, using a separate PayPerUseBillingAspect to pay the Web
services and a TravelFeeBillingAspect to charge the customers of the travel agent for the
booking fees. The PayPerUseBillingAspect is triggered every time a booking is done on a
particular Web service, and a corresponding bank service is invoked to make the payment.
The TravelFeeBillingAspect is triggered every time a customer logs in and makes a booking
(no matter what kind of booking) and calculates the applicable booking fee total.

7.2.1.3 Pay-Per-Use Billing Mechanism

First, we discuss the actual payments done from the client to the Web services by the
PayPerUseBillingAspect. This aspect is shown in Code fragment 7.1: a billHook (lines
5 to 24) is triggered whenever a booking is made on a hotel, flight or car service and an
after advice makes the payment. The actual bank service to be used may vary for each
service; therefore a dedicated method (lines 10 to 12) can be used to set the appropriate
bank service. If necessary a BankServiceType could be used to avoid hardwiring of the bank
service interface in the billing aspect. The amount the aspect needs to pay depends on the
billing mechanism of the service:

• Fixed cost: The cost is fixed and therefore determined at the moment the Pay-
ment mechanism is enforced. For instance, a method setCost() can be pro-
vided in the aspect; it can be called from the connector at deployment time of a
PaymentPerUseAspect instance.

• Fixed cost varying over time: the cost is looked up each time a payment is to be

7.2 Examples of Management Concerns 155

Client

Hotel Web
Service A

Service
Type

Hotel Web
Service B

Hotel Web
Service C

CA

CB

CC

TravelFee
Billing
Aspect

WSML

Service
Redirection
Aspect A

Service
Redirection
Aspect B

Service
Redirection
Aspect C

CS

Bank Web
Service

PayPerUse
Billing
Aspect

Cp

Figure 7.1: Enforcing Service Payment Procedures through Billing Aspects

156 Chapter 7. Client-Side Web Services Management

1 class PayPerUseBillingAspect {

2 BankService bankservice;

3 int cost;

4

5 hook BillHook {

6 BillHook (method(..args)){

7 execution(method);

8 }

9

10 public void setBankService (String URL)

11 bankService = new BankService (URL);

12 }

13

14 public void setCost (int newCost)

15 cost = newCost;

16 }

17

18 after() {

19 ((WebService) thisJoinPointObject).getCost(thisJoinpoint.getName());

20 String from = TravelAgent;

21 String to = serviceName;

22 bankService.makePayment (from, to, cost);

23 }

24 }

25 }

Code fragment 7.1: Service Payment Aspect for Pay-per-use

made. Changes in the cost can be detected by polling or notification mechanisms, for
instance enforced by a monitoring aspect as described in Chapter 6, section 6.4.2.2.

• Variable cost: the cost depends on which functionality of the service is invoked
and/or how it is invoked. Additional code is required to determine the actual cost. In
the Code fragment, line 16 looks up the cost using a dedicated operation provided by
the Web service (the argument is the name of the method originally invoked on the
service). Alternatively, the costs can be advertised in the documentation, or it can be
included in the message containing the service results.

The generic billing aspect, as shown in Code fragment 7.1, can be deployed and cus-
tomised for all services that adopt the same type of billing. In case the invocation of the
web method fails (e.g. due to a service of network failure), an exception is thrown and the
after advice of the BillHook is not executed. As a result, no billing will take place.

The connector in Code fragment 7.2 deploys the Service Payment Aspect for each book-
ing performed on HotelServiceA using the * quantifier. The methods setBankService and
setCost are invoked once at the moment the connector is initialised.

7.2.1.4 Discount Booking Fee Mechanism

Next, we deal with the charging of the fee from the travel application to its customers by
credit card. Code fragment 7.3 shows a stateful aspect counting the number of bookings,

7.2 Examples of Management Concerns 157

1 static connector BookPaymentconnector {

2 PayPerUseBillingAspect.BillHook billHook =

3 new PayPerUseBillingAspect.BillHook (* HotelServiceA.book* (*));

4 billHook.setBankService (http://www.NationalBank.be/webService);

5 billHook.setCost(5);

6 }

Code fragment 7.2: Billing Connector for Service Payment Aspect

and applying the additional fees the moment the customer of the travel application checks
out. A first hook (lines 5 to 11) registers the individual booking fees of each Web service.
The second hook (lines 13 to 26) is stateful and registers a logged in customer and if that
customer executes three bookings, a discount is given. The third hook (lines 28 to 38) is
triggered whenever the customer checks out and an amount is charged on his or her credit
card. An around returning advice will update the amount charged to the customer by
adding the correct booking fees.

Deploying this aspect enforces payments of booking fees enforced by the Web services
in the travel application, while it was not originally designed for it. In our example, the
bookMethod in the BookHook and DiscountFeeHook will map to the bookMethods pro-
vided in the Hotel-, Flight- and CarServiceType, the login method of the DiscountFeeHook
will hook on the travelLogin method residing in the Travel Agent Application to al-
low customers to login the system, and the travelCheckoutMethod will map to the
travelCheckout method in the client that is used by customers to checkout and pay for
their booked holiday.

7.2.2 Caching

7.2.2.1 Introduction

In environments where resources such as the network bandwidth are limited (e.g. wireless
connections) or where communication with Web services is expensive, it can be a good
option to cache service results. Instead of actually invoking a Web service when the client
requests this, a result stored in a cache is returned instead. Another important criterion
to opt for caching is the fact that one of the biggest drawbacks of using Web services is
performance (see Chapter 2). Two main types of caching are possible:

• Output caching: the results of service requests are stored in a server’s cache. Sub-
sequent client requests for the same service functionality with the same parameters
will get the values cached on the server without actually invoking the service methods.
For instance, Web services deployed in .NET have native support to be equipped with
an output cache.

• Client caching: the results of service requests are stored in a client’s cache. Sub-
sequent client requests for the same service functionality will not be sent to the Web
service, but rather, the values cached in the client will be reused. Data that is used
often but does not change frequently is a good candidate to be stored in client cache.

158 Chapter 7. Client-Side Web Services Management

1 class TravelFeeBillingAspect {

2 private int feeTotal;

3 private Customer customer;

4

5 hook BookHook (bookMethod(args)) {

6

7 after() {

8 WebService ws = WSML.getWebService (thisJoinPoint.getClassName());

9 feeTotal += ws.getProperty(BookingFee);

10 }

11 }

12

13 hook DiscountFeeHook (bookMethod(args), travelLogin (Customer c) {

14 login:execution (loginMethod) > booking;

15 booking:execution(bookMethod)[3] > login;

16

17 after login() {

18 customer=c;

19 }

20

21 after booking() {

22 if (customer.isVIP())

23 feeTotal = 0;

24 else feeTotal = feeTotal/2;

25 }

26 }

27

28 hook CheckoutHook (travelCheckoutMethod(args)) {

29 CheckoutHook (method(..args)){

30 execution(method);

31 }

32

33 around returning (int result) {

34 total = result + feeTotal;

35 feeTotal = 0;

36 return total;

37 }

38 }

39 }

Code fragment 7.3: Billing Aspect for Booking Fees

7.2 Examples of Management Concerns 159

In the context of the WSML, we are interested in enforcing client caching. Enforcing
a cache is a service-related concern that should have no impact on the client application.
As an illustration, remember our Travel Agent Application wants to collect a description
and room availability for a given hotel. The hotel description is rather static and will not
change very often while the room availability changes constantly. The client application
wants to retrieve both pieces of data, and inside the WSML, a cache can be employed for
hotel descriptions, while up-to-date room availability information can be retrieved from the
appropriate Web service. In the next two subsections we show two possible approaches
relying on caching aspects.

7.2.2.2 Global Caching Mechanism

A caching aspect works in a similar way as the regular service redirection aspects from Chap-
ter 5 (section 5.2.2), with the difference that it fetches its results from a cache database
instead of invoking the Web service itself. When using global caching, one cache database
is employed for all services that realise the same service type. Figure 7.2 shows a Cachin-
gAspect deployed in the WSML. When a client request comes in (step 1), the CachingAspect
is triggered (step 2) and looks up if it has valid results in its cache (step 3). A cached result
is valid if it was obtained for an identical client request and if the result has not expired.
If a valid result is available, it is returned to the client. Otherwise, the chain of available
service redirection aspects is started (step 4). In this particular case, Web service B answers
the request and returns a result (step 5 to 10).

Code fragment 7.4 shows a possible implementation of a caching aspect. The after
returning advice of the CacheUpdateHook (lines 4 to 20) is triggered after a service has
been invoked and a result is returned to the client. The advice stores the intercepted result
in a cache and returns it back to the client. The isApplicable statement (lines 13 to
15) ensures that this is only done when the cache does not already contain a valid result.
The RetrieveCachedResultHook (lines 22 to 34) defines an around advice that is triggered
whenever a cached result is to be returned to the client instead of actually invoking a Web
service.

By deploying the aspect above on one or more methods of a service type, one is enforcing
a global cache: first the cache is checked whether a valid result is available. If that is the case,
the result is returned, otherwise the default service redirection mechanism proceeds, and
the obtained result is stored in the cache. This is for example done in Code fragment 7.5 for
the getHotels method of the HotelServiceType. Note that the Payment-per-use mechanism
using the PaymentPerUseAspect of the previous section continues to work correctly in the
presence of the caching aspect: only when no cached value is available the actual service is
invoked and the billing is done. This is because both the caching and the billing aspect are
deployed on separate joinpoints.

7.2.2.3 Local Caching Mechanism

A local caching mechanism is a caching mechanism deployed for each Web service individ-
ually. The result of a concrete invocation on a particular service is cached so that it can

160 Chapter 7. Client-Side Web Services Management

WSML

Client
Global
Cache

3Caching
Aspect

Client

Web
Service B

7

Cc

10

Redirection
Aspect A

4

6

9

CA
Web

Service A
5

8

Service
Type

Redirection
Aspect B

2

1

CB

Figure 7.2: Global Caching of Service Results through a Caching Aspect

7.2 Examples of Management Concerns 161

1 class CachingAspect {

2 CacheTable cache;

3

4 hook CacheUpdateHook {

5 CacheUpdateHook (method(..args)){

6 execution(method);

7 }

8

9 public void setExpirationTime(float expTime) {

10 cache.setExpirationTime(expTime);

11 }

12

13 isApplicable() {

14 return !(cache.hasValidResult(method, args));

15 }

16

17 after returning(Object result) {

18 cache.storeResult(result, args);

19 }

20 }

21

22 hook RetrieveCachedResultHook {

23 RetrieveCachedResultHook (method(..args)){

24 execution(method);

25 }

26

27 isApplicable() {

28 return cache.hasValidResult(method, args);

29 }

30

31 around() {

32 return global.cache.getResult(args);

33 }

34 }

35 }

Code fragment 7.4: Service Caching Aspect

1 static connector GlobalCachingConnector {

2 CachingAspect.CacheUpdateHook cachingHook =

3 new CachingAspect.CacheUpdateHook

4 (String HotelServiceType.getHotels(Date, Date, String));

5 CachingAspect.RetrieveCachedResultHook cacheRetrieveHook =

6 new CachingRedirectionAspect.RetrieveCachedResultHook

7 (String HotelServiceType.getHotels(Date, Date, String));

8 cachingHook.setExpirationTime(15);

9 }

Code fragment 7.5: Global Caching Connector for the Service Caching Aspect

162 Chapter 7. Client-Side Web Services Management

WSML

Client

Web
Service B

9

12

Redirection
Aspect A

2

6

11 CA Web
Service A

5

10

Service
Type

Redirection
Aspect B

1

Client
Local
Cache

4Caching
Aspect

Cc

3

Client
Local
Cache

8Caching
Aspect

Cc

7

CB

Figure 7.3: Local Caching of Service Results through a Caching Aspect

be reused for future requests. Figure 7.3 illustrates how the local caching works: whenever
a service redirection aspect invokes a Web service, the caching aspect checks for a cached
result first. If a cached result is available that satisfies the requirements, this value is re-
turned and the service is not invoked. If no valid cached value is available for the request,
the web method is invoked and the local cache is updated with the new result. In case the
web method invocation fails, the next redirection aspect is triggered. This mechanism can
easily be deployed by tweaking the global caching solution: the same caching aspect is used
but deployed using a different kind of connector. Instead of hooking on the service type,
the aspect must now hook on the method(s) that invoke the Web service.

A problem that arises in this scenario is feature interaction: both the PaymentPerUse-
Aspect and the CachingAspect hook on the same joinpoint, but a natural conflict exists
between the two concerns. This is further discussed in the next section. Another example
of a concern that can be used to optimise performance is pre-fetching where a service invo-
cation that will possibly take place in the future is already executed to enhance performance
from the client-point of view. This is also a crosscutting concern, as it is triggered based
on specific client or service behaviours. For instance, if the customer requests the hotel
availability for a given period, the system can already pre-fetch available flight seats too.

7.3 Feature Interaction 163

The presented mechanism also functions for management concerns enforced by the ser-
vice provider. Assume the HotelService provider adopts the WS-Security standard to pro-
vide quality of protection through message integrity, message confidentiality, and single
message authentication [ADH+02]. The Travel Agent Application may prefer to enforce
higher security measurements for its VIP customers and decide that if the logged in cus-
tomer has indeed the VIP status, a binary security token needs to be encoded and attached
to all SOAP messages sent to the HotelService. An aspect is ideally suited to implement
this behaviour non-invasively, something that is not possible with message handlers, as the
customer’s VIP status is unavailable context information. As a Web service will employ
some advertisement mechanism (e.g. through its documentation) which additional WS*
standards are enforced, the WSML can operate a polling or notification mechanism to de-
tect which management concerns need to be deployed. For instance, the mechanism can be
used to detect that a Web service changes its encryption level and automatically deploy a
dedicated encryption aspect.

In the next sections we discuss feature interaction between multiple management con-
cerns; in section 7.4 we elaborate on conditional management concerns; meta-level concerns
are the topic of section 7.5 and approaches for distributed management are discussed in
section 7.6.

7.3 Feature Interaction

Multiple management concerns can interfere with each other, especially the ones enforced
by the service upon the client and the ones enforced by the client itself. For example, a
privacy concern that makes sure no private client information is sent to the services, may
conflict with the payment requirements of the Web service. The term feature interaction
[Za03] is used to reflect how feature combinations affect each feature’s ability to function
as it would separately. Feature interactions can be complex, subtle, and very difficult to
identify. The effect of a feature is positive (〉 0) when it acts to satisfy some non-functional
requirement, negative (〈 0) when it prevents other components from satisfying functional or
non-functional requirements and zero (0) when there is no observable change. The following
are possible interactions that may occur between two features [WTM+04].

• Orthogonal: Two features A, B are orthogonal if their combined contribution to
requirements fulfilment is exactly equal to the sum of their individual contributions.
These features could reasonably be combined together or individually.

• Complements: Two features are complementary if their combined contribution is
greater than the sum of their individual contributions. It is advantageous to combine
these features together but they may be deployed individually.

• Dependent: A feature A is dependent on feature B if their combined effect is positive
but the individual effect of A is non-positive. Feature A should only be deployed with
feature B.

• Conflicts: Two features conflict if their combination has a negative effect on the
behaviour of the application. The deployment of one feature should exclude (XOR)

164 Chapter 7. Client-Side Web Services Management

the deployment of the other. The decision that an effect is negative is arbitrary but
may include effects such as introducing deadlock or putting data in inconsistent states.

• Prevents: A feature A prevents feature B if their combined effect is equal to the
individual effect of A. The deployment of A excludes B from effecting the system
regardless of policy. This is different from conflicting because the effect is confined to
the features themselves.

• Equivalent: Two features are equivalent if their individual effects are qualitatively
the same. There is no need to deploy these features together but remote partners
might only support one of them.

The problem of feature interaction also occurs in AOP, as multiple non-orthogonal as-
pects can be deployed at the same time in the same application. Several approaches have
been proposed in order to make the composition of aspects more explicit, examples are
Strategic Programming Combinators [LVV03] and treating aspect composition as function
composition [WKL03]. In our framework, a programmatic approach, called aspect com-
bination strategies, is used. As an example, assume the PaymentPerUseAspect and the
CachingAspect are deployed locally on HotelServiceA. Both aspects are specified on the
same joinpoint and will conflict with each other. To ensure that billing is not performed
when the result is retrieved from the cache, several approaches can be employed. As each
aspect implements the crosscutting concern independently we do not want to explicitly tan-
gle code dealing with conflicts in one or more aspect implementations. Therefore, we prefer
dealing with the feature interaction on the deployment level. As most AOP approaches
have an explicit or implicit deployment descriptor, it is a good idea to deal with possible
conflicts there. For instance, in JAsCo connectors one can specify precedence for multiple
aspect advices, and as such specify explicit ordering of advice execution in a single connec-
tor. Additionally, more advanced control is introduced by aspect combination strategies.
As we already briefly discussed in section 6.5.1.4, aspect combination strategies can be used
to specify how interfering aspects should cooperate. Making this possible in an AOP imple-
mentation can be done by introducing new keywords in the language: for instance, adding a
new connector keyword exclude which specifies that aspect A excludes aspect B. However,
as discussed in [Van04] other aspect combinations require additional keywords and it seems
impossible to be able to define all possible combinations in advance. A more flexible and
extensible system is proposed in JAsCo that allows defining a combination strategy using
regular Java. A CombinationStrategy interface is introduced that needs to be implemented
by each concrete combination strategy. A JAsCo combination strategy works like a filter
on the list of hooks that are applicable at a certain point in the execution. A predefined
strategy is the exclusion strategy, which we need in the case of the PaymentPerUseAspect
and the CachingAspect. This combination strategy, as deployed in Code fragment 7.6 en-
sures that the advices of the billing hook are excluded when the advices of the caching hook
are applicable. As a result, the billing advices are only executed when the concrete Web
service is invoked and not when the result is returned from the cache.

Both the conflicts, prevents and equivalent interactions can be solved in a similar way.
Other combination strategies include the TwinCombinationStrategy [Van04] making sure
that whenever one aspect is deployed, the other one is deployed too. This can enforce the
depends feature interaction.

7.4 Conditional Management Concerns 165

1 static connector LocalCachingAndBillingConnector {

2

3 CachingAspect.CacheUpdateHook cachingHook =

4 new CachingRedirectionAspect.CacheUpdateHook

5 (String HotelServiceA.getHotels(cityCode, beginDate, endDate));

6

7 CachingAspect.RetrieveCachedResultHook cacheRetrieveHook =

8 new CachingAspect.RetrieveCachedResultHook

9 (String HotelServiceA.getHotels(cityCode, beginDate, endDate));

10

11 PaymentPerUseAspect.BillHook billHook =

12 new PaymentPerUseAspect.BillHook

13 (String HotelServiceA. .getHotels(cityCode, beginDate, endDate));

14

15 ExcludeCombinationStrategy excludeBilling =

16 new ExcludeCombinationStrategy(cacheRetrieveHook, billHook);

17 addCombinationStrategy(excludeBilling);

18 }

Code fragment 7.6: Local Caching and Billing Connector for Service Caching Aspect

While advice precedence and aspect combination strategies prove to be sufficient in
most cases, they have the drawback that removing or adding an aspect involves rewriting
and recompiling the connector and re-instantiating the aspects. In some situations, this
expressive way of specifying aspect execution order is not required: a simple ordering of
the connectors is enough. Furthermore, in some cases it is more important to instantiate
aspects in separate connectors in order to allow for a fast addition, removal, enabling and
disabling of individual aspect instances, as it is the case in the WSML. To facilitate the
management of these connectors, connector priorities and connector combination strategies
were added to JAsCo. Connector priorities control the execution order of advices that are
instantiated in separate connectors and defined on the same joinpoint. This feature was
already used to implement service selection guidelines (see section 6.4.3.4) where they were
used to make a preference ranking of service redirection aspects. Connector combination
strategies on the other hand, make it possible to filter the list of all connectors at each
encountered joinpoint. They allow for the addition and removal of aspects independently
of each other in a much easier way while it is still possible to express aspect interactions in
a modular fashion. While all the approaches for feature interaction can be applied at once,
experience has proven that this complicates matters, as it becomes very difficult to reason
about how multiple aspects relate with each other and how they will be executed.

7.4 Conditional Management Concerns

Modularising crosscutting service management concerns in aspects has the advantage that
an expressive pointcut language can be used to deploy the concern where needed. Otherwise
said, the developer has large control over how, where and when the concerns are enforced.
Examples of enforcing the caching at the level of a service type and at the level of an
individual Web service were given. It can also be possible to enforce the concern at the
composition level, i.e. only when that composition is executed, the concern is triggered. In

166 Chapter 7. Client-Side Web Services Management

general, management concerns can be deployed on any of these three levels:

• Service type level: the concern is triggered before, around and/or after one or more
service types are invoked.

• Service composition level: the concern is triggered before, around and/or after
one or more service compositions are invoked.

• Web service level: the concern is triggered before, around and/or after one or more
Web services are invoked.

While this already offers a reasonable level of fine-grained control over the deployment of
the concerns, it is possible that additional constraints are to be enforced. For instance, it
could be desired to deploy a caching mechanism on a specific service type, only when the
execution time of the available Web services becomes too long. For this, we need even more
fine-grained control over when the caching aspect will be triggered. In AspectJ [KHH+01],
an if pointcut designator can be used to test some condition. In JAsCo, the isApplicable
condition in the aspect hooks is the most obvious location to add additional constraints. In
this case however, the condition resides in the aspect code together with the crosscutting
concern. To promote code reusability, aspect inheritance can be used. The main logic can
reside in the super aspect, while a variety of conditional solutions can be implemented in
sub aspects. Another way to implement a more generic conditional caching aspect is using
an abstract method in the isApplicable and refining it in the connector or using a façade
interface for implementing the conditional check. Still, the AspectJ approach where the
condition is part of the pointcut specification is more favourable.

A less implementation-oriented approach is treating the conditions as business rules
[Buss00]. As discussed earlier when introducing selection policies (see section 6.3), business
rules are intended to assert business structure or to control the behaviour of the business,
so the statement to only enabling a cache when services become too expensive or too slow
can be treated as a business rule. As argued before, it is crucial to separate them from
the core application and externalise them. Cibrán et al. [CDJ06] introduce a higher-level
business rule language to specify business rules, after which they are translated into, possibly
aspect-oriented, code.

7.5 Meta-level Management Concerns

The management concern examples discussed up until now somehow all interfere with the
control flow from the client to the Web service(s). Either some billing functionality is added
when a service is invoked or, a service invocation is replaced by a look-up in a cache. Other
management concerns however, work on the meta-level, or on a mixture of both levels.
These three categories are depicted in red in Figure 7.4. The top half of the picture shows
the functional level of the WSML with a service type, redirection aspect with corresponding
connector, and a proxy to invoke a Web service (i.e. the entities we have been discussing up
until now). In the WSML however, each of these entities is represented by an instance of a
corresponding meta-level class. These classes are responsible for generating and deploying

7.5 Meta-level Management Concerns 167

WSML

Service
Type

Web
Service

Client

Service
Redirection
Aspect

Web
Service

Service
Type

Service
Mapping

CS Proxy

Service
Composition

functional level

meta level

Man.
Aspect

BCB

Man.
Aspect

C

CC

Man.
Aspect

ACA

Figure 7.4: Functional and Meta-level for Joinpoints

the functional entities (something we will discuss in more detail in Chapter 8, section 8.4.2)
and to store meta-data for those entities (e.g. the properties of a Web service are stored in
a WebService instance).

We distinguish three kinds of management concerns, depending on where their joinpoints
reside and where the advices execute. First, we have the functional aspects (category A)
that are triggered by events at the functional level and have advices that are also specified
on the functional level. Examples include all management concerns discussed earlier in this
chapter. A second group of aspects include the hybrid aspects that work on both levels
(category B). For example, the service monitoring aspects of Chapter 6 that measure the
execution time of a service are triggered at the functional level, but they store their results
on the meta-level (inside an instance of a WebService class using mixins). Service selection
aspects also belong typically to category B. For instance, a selection aspect is triggered by
an event on the meta-level (e.g. a change of a service property) causing a rearrangement of
the service redirection aspects on the functional level. Finally, aspects in category C include
meta-level aspects, whose joinpoints and advices both reside at the meta-level. An example
includes a price composition aspect, which calculates the price for a service composition
based on the price of the individual services it is composed of. This aspect will be triggered
whenever the price of one of the services changes and set the corresponding meta-data of
the service composition.

An important consideration is that in some cases there is no symmetrical quantification
possible on both levels. For instance, hooking on the Web service invocation of HotelSer-
viceA can be done by making the methods of the corresponding proxy as joinpoints. But
hooking on the moment when the price of HotelServiceA changes (which is on the meta-
level) means only one particular instance of the WebService class will need to act as a

168 Chapter 7. Client-Side Web Services Management

joinpoint. An example of this quantification issue occurs in Chapter 6, Code fragment 6.31

for a monitoring aspect as one hook hooks on the functional level and the other one on the
meta-level. Not all AOP languages support hooking on instances. In that case, the aspect
will be triggered for any instance of the class and the aspect should check if it is the right
one, causing a performance overhead.

7.6 Distributed Management Concerns

Depending on both the setup scenario of the WSML and the service environment, it can
be useful to deploy management concerns in a distributed manner, meaning they are not
merely enforced for and by the client application. For instance, in Chapter 6, section 6.4.2,
service monitoring was defined as the client-side process of monitoring the behaviour and/or
performance of the available Web services in the service environment from the client point
of view in order to select the most optimal one. The monitoring concerns described in
that section were enforced locally in the WSML by aspects. In this section, we discuss
two solutions. Firstly, by introducing distributed joinpoints it becomes possible to setup
measuring points in the services themselves. This is for instance useful to realise a more
fine-grained measurement of the service execution time. By installing joinpoints on the
moment a message arrives at the service, and the moment when a message leaves the service,
it becomes possible to make the distinction between the service processing time and the
network transmission time. Distributed joinpoints can also be useful for logging, support
for business activities, load balancing, etc. Note that this requires code to run on the
service provider platform. In the WSML prototype it is required that JAsCo is deployed
on every remote host where joinpoints are to be specified. Also, in order to cope with
network failures and package losses, a reliable communication protocol such as WS-Reliable
Messaging [BBC+05] is needed.

Secondly, aspect advices can also be made distributed, meaning the advice is executed
on one or more remote hosts. For instance, the distributed monitoring aspect with mea-
surement points in the service could trigger an advice running on the service side to notify
the provider in case of slow downs in the service performance. Clearly, these kinds of dis-
tributed AOP solutions create a tighter coupling between Web services and clients, which
was initially what we wanted to resolve. However in an intranet solution, where services
are deployed in a Enterprise Service Bus (ESB), AOP can be very suited to modularise
concerns that crosscut service boundaries. Another scenario where distributed advices are
useful is replication: in a large setup, multiple instances of the WSML may be required to
serve a wide range of clients. In that case, management, selection and monitoring aspects
may need to be synchronised with each other.

1In that code example, this issue does not have any ramifications: the monitored properties are added to
each Web service instance on the meta-level through the IntroduceHook. Only those Web services that are
actually monitored through the second Monitorhook on the functional level, will have actual values stored
for those properties.

7.7 Related Work 169

7.7 Related Work

A lot of research is going on in the Web service context and numerous vendors are cur-
rently working on dedicated Web service management platforms. However, most of these
approaches focus on the server-side management of Web services. They allow developers
to build and deploy Web services and also provide management capabilities such as load
balancing, concurrency, monitoring, error handling, etc. Our approach provides support
for the client applications that want to integrate and manage different third-party Web
services.

A wide range of application servers is currently being extended with aspect-oriented
support. As such, crosscutting concerns can be more easily implemented and deployed on
the server. Java Aspect Components (JAC) [PDS+04] provides distributed and dynamic
AOP programming. AspectWerkz [Boner04] has been integrated in various application
servers. JBoss AOP [BB03] is a Java-based aspect oriented framework that can be used
in any programming environment or integrated in the JBoss application server. Lasagna
[Truy04] is aspect-oriented middleware for context-sensitive and dynamic customisation of
distributed services. PRISMA [PRJL04] is a conceptual model which enables the description
of distributed software architecture by combining CBSE and AOSD. The PROgrammable
extenSions of sErvices system (PROSE) [PGA02] is a dynamic weaving tool that allows
inserting and withdrawing aspects to and from running applications. MIDleware Adaptive
Services (MIDAS) [PAG03] is a system based on PROSE that allows applications to self-
organise into spontaneous information systems, but without relying on a fixed infrastructure.
Spring [JHA+05] is a layered Java/J2EE application framework. A central focus of Spring
is to allow for reusable business and data access objects that are not tied to specific J2EE
services. Such objects can be reused across J2EE environments (web or EJB), standalone
applications, test environments, etc. without any hassle. An extensive evaluation of these
approaches, including the WSML, can be found in [LPP+05]. This report compares these
approaches on three criteria, flexibility, reliability and performance. Flexibility is the ability
of a platform to accommodate large scale customisation, configuration and extension both
statically and dynamically; reliability is the ability to eliminate inconsistencies that might
be inadvertently introduced by such customisation; and performance is the ability of a
platform to perform its tasks with adequate speed and minimum consumption of resources.

At the time this research started, the idea of applying AOP concepts explicitly in the
context of Web services concerns was quite innovative and thus not many approaches had
been proposed focusing on this combination. Arsanjani et al. [AHM+03] have also identified
the suitability of AOP to modularise the heterogeneous concerns involved in Web services.
They refer to approaches like AspectJ and the Hyper/J which, in contrast to JAsCo, only
allow static aspect weaving. As a challenge for the Web service research, they also identify
the need to create software that meets constraints beyond simple functional correctness,
in order to satisfy service level agreements. Thus, Web services need to include both
conventional functional interfaces and non-functional interfaces that permit control over
performance, reliability, availability, metering, auditability and level of service. Recently,
a specific Aspect-Oriented Framework for Web Services [AoF4WS] supporting on-demand
context-sensitive security has been presented in [MMN+06].AoF4WS argues that flexible
security schemes are needed in many Web services applications and that security mecha-

170 Chapter 7. Client-Side Web Services Management

nisms need to be customised to the continuously changing requirements of Web services.
The AoF4WS uses aspect-oriented programming and frames. Aspects provide flexibility to
the framework, and frames adjust aspects to specific requirements.

Filman et al. [FBL+02] propose dynamic injectors to introduce aspects into a given
component configuration. They incorporate dynamic injectors into OIF (Object Infrastruc-
ture Framework), a CORBA-based system for distributed applications. Technically, OIF
generates enhanced CORBA stubs and skeletons that are able to incorporate one or more
dynamic injectors. This allows for the dynamic injection of independent behaviours on
both sides of the communication path between system components, novel communication
channels among injectors and between such injectors and the application itself. The main
purpose of OIF is to enforce ilities, such as like reliability, availability, responsiveness, per-
formance, security, and manageability in the system. In WSML, we could support similar
dynamic injectors by implementing a dynamic SOAP extension handler as well. This would
present the advantage of integrating better with the existing Web Services infrastructure
and would not require dynamic byte-code weaving (as JAsCo). Adopting an AOP approach,
however, allows us to exploit an expressive language for selecting joinpoints and executing
advices, which would need to be implemented manually with the SOAP handler approach.
Another major advantage of AOP is that the joinpoints can identify any kind of method
call or execution, even those within the client application and the WSML framework.

Aspects are also employed in other middleware approaches. DADO [WJD03] exploits
aspects to add security, performance monitoring, and caching examples to CORBA based
applications. Duclos et. al. [DEM02] shows how aspects can be used to provide security,
transactional semantics, and object persistence to applications using a CORBA Component
Model. It is also worth mentioning that the use of aspect-like mechanisms for security and
transactions, particularly, is not without controversy [Gar03, KG02, WTM+04].

7.8 Conclusions

In this chapter we have extended our framework with support for various client-side service
management concerns. Examples of concerns that were modularised in aspects have been
given, including billing, caching and broadcasting. One aspect encapsulates one reusable
concern. A library of reusable aspects that offer a wide variety of management concerns is
envisioned: these aspects can be instantiated in a concrete deployment context by means
of a separate connector. In the next chapter, we discuss how this step can be automated,
hiding away any aspect-oriented details from the administrator of the system.

Using aspects to implement the management concerns has the same advantage as using
aspects for selection policies and monitoring concerns: each concern is treated as a first-
class identity, cleanly modularised in a single logic unit even though a concern might be
triggered by various triggering points and may have an effect on multiple places in the
system. Non-invasive runtime enforcement of the concerns becomes possible when a dynamic
AOP technology is employed. Also, context passing becomes much easier as triggering points
can be set up at those places where the context needs to be retrieved without having to
change any code.

7.8 Conclusions 171

Using the expressivity of an AOP pointcut language, fine-grained control over where a
management concern needs to be deployed, becomes possible. Concerns can be deployed
at the service type, composition and individual service level. Additional conditions can
be added by sub-classing aspects, or by externalising these conditions as business rules.
In case several concerns interfere with each other, their interaction can be made explicit
through various aspect combination strategies. At the moment these strategies need to
be provided manually, meaning that if they are not put into place, interference can occur.
Finally, aspects are also suited to deal with distributed concerns, where either or both the
joinpoints and the advices are distributed. Distributed joinpoints and advices are useful
in scenarios for distributed monitoring, logging, load-balancing, replication, etc. As such,
AOP can be very suited to modularise concerns that crosscut service boundaries.

172 Chapter 7. Client-Side Web Services Management

Chapter 8

Development and Deployment of a
Prototype

Abstract This chapter starts with an overview on how an implementation can be made
for the WSML aspects modularising service redirection, selection and client-side manage-
ment concerns. Several options including automatic aspect code generation through se-
mantic matchmaking, high-level service composition specifications and aspect libraries are
discussed. Next, a prototype of the WSML framework, implemented as a proof-of-concept
in Java and JAsCo, is presented. Its architecture, the provided tool support and the realise
development quality attributes are discussed. As a case study, the WSML prototype has
been integrated with the Service Enabling Platform (SEP) of Alcatel Bell, a provisioning
system for broadband Internet applications.

174 Chapter 8. Development and Deployment of a Prototype

8.1 Introduction

In the previous three chapters it was shown how aspects are used to realise dynamic service
integration, compositions, selection and client-side management. Writing, compiling and
deploying these aspects for Web service concerns is a process that can be largely automated.
As a proof-of-concept, a prototype implementing the proposed WSML mediation framework
has been developed in Java and JAsCo. This is the main topic of this chapter. First, we
discuss in the next section how a client application such as the Travel Agent Application
can benefit and make use of all three aspect categories at once. In section 8.3 we answer
the question how an aspect implementation can be obtained. We discuss the options of
manual implementation, automatic code generation and the usage of aspect templates. The
WSML plays an important role in this process as it is the framework containing, managing
and enforcing these aspects in the client. In section 8.4 we discuss the prototype of the
WSML, implemented in Java and JAsCo and the realised and envisioned tool support for
our framework. In that section the role of the WSML in the development process of the
client will be discussed as well and we list how the overall pursued WSML development
quality attributes have been achieved. In section 8.5 we discuss how the WSML prototype
has been deployed on the Services Enabling Platform (SEP) to enable third-party service
provisioning in a broadband context. This was done for a mid-term and end-term review
demonstrator of the IWT Mosaic project in cooperation with Alcatel Bell.

8.2 Travel Agent Example

Each of the three previous chapters focusses on a particular subset of service related con-
cerns a client application has to deal with when integrating with one or more Web services:
service integration and composition was discussed in chapter 5, service selection in chapter 6
and additional management concerns in chapter 7. In an actual setup, all of these concerns
will come together, as shown in an example in Figure 8.1. The figure depicts the travel
agent client on the left side, requesting holiday information to a HolidayServiceType. These
client requests are either redirected to one of the available HolidayRedirectionAspects that
communicate with HolidayServices, or they are redirected to a HolidayCompositionAspect.
A HolidaySelectionAspect is employed to make that selection. Additionally, a HolidayFall-
backAspect is used to capture any exceptions that arise somewhere in the service invocation
process, and to redirect the client request to another service. A HolidayMonitoringAspect
monitors the speed of the individual HolidayServices.

The HolidayCompositionAspect composes Hotel -, Flight- and CarWebServices into a
composition. This is done by referring to dedicated service types instead of hard-wiring
concrete services into the composition. The HotelServiceType is equipped with a Cachin-
gAspect to store service results, and a LoggingAspect to keep a log of all communication
with HotelServices. Finally, the CarServiceType has another SelectionAspect specified on
it, to select the most appropriate CarService for any request. Note also that the client can
also directly invoke the HotelServiceType and the FlightServiceType if that is necessary.

The various aspects, as shown in the example above, modularise a wide variety of
service related concerns. They are either very specific aspects, such as service redirection

8.2 Travel Agent Example 175

Holiday
ServiceX

Holiday
Redirection

Aspect

WSML

Holiday
Service

Type Holiday
Composition
Redirection

Aspect

Client

Holiday
Selection
Aspect

Holiday
Monitoring

Aspect

Holiday
Fallback
Aspect

Holiday
Redirection

Aspect
Hotel

Service
Type

Flight
Service

Type

Holiday
Redirection

Aspect

Hotel
Redirection

Aspect

Holiday
Redirection

Aspect

Holiday
Redirection

Aspect

Holiday
ServiceX

Holiday
Service

Holiday
ServiceX

Holiday
ServiceX

Hotel
Service

Holiday
Redirection

Aspect

Holiday
Redirection

Aspect

Flight
Redirection

Aspect

Holiday
ServiceX

Holiday
ServiceX

Flight
Service

Holiday
Redirection

Aspect

Holiday
Redirection

Aspect

Car
Redirection

Aspect

Holiday
ServiceX

Holiday
ServiceX

Car
Service

Car
Selection
Aspect

Hotel
Caching
Aspect

Hotel
Logging
Aspect

Car
Service

TypeControl flow
from client to web services

Additional non-functional
selection and management

Figure 8.1: Possible Scenario for Travel Agent Application

176 Chapter 8. Development and Deployment of a Prototype

aspects that modularise communication details for concrete services, or they are reusable
aspects, containing for instance some generic caching logic. All these aspects reside in
the WSML framework. Its main purpose is to enforce all the service related concerns
for one or more clients. For the administrator of the WSML the usage of aspects as an
implementation technology of the WSML should be hidden and enforcing a concern will
be done on administration level rather than on implementation level. Before discussing
the WSML framework and its prototype, we give an overview of the various approaches to
implement the WSML aspects.

8.3 Implementation of WSML Aspects

8.3.1 Overview

We distinguish three possible scenarios to obtain aspect implementations and their corre-
sponding deployment descriptors, i.e. the connectors:

Manual Aspect Implementation

A first approach is to implement all service related aspects manually alongside the client
code. The most rudimentary tool support needed is a dedicated aspect compiler and a tool
to weave in the aspects in the base code. However, more advanced tool support is desired as
writing and deploying aspects can become complex. First of all, the aspect code as shown in
the previous chapters are over-simplifications to focus on the AOP concepts explained. But
the reality is that the actual code is more complex. For instance, the caching aspect shown in
Chapter 7, Code fragment 7.4, contains 28 lines, while the caching aspect as deployed in the
WSML prototype contains 4 times as many lines. A second issue is debugging. Traditional
runtime debugging tools referring to a specific line in the applications’ code will refer to
the wrong line as the base implementation has changed by the aspects woven into the code.
An example of dedicated AOP tool support is the JAsCo plugin for the Eclipse IDE. This
tool allows for the generation of aspect and connector skeleton code and doing in-depth
analysis of the deployment of the aspects: for instance it is possible to do introspection on
a joinpoint to see which aspects are deployed on it. Reducing aspect implementation efforts
can be done in two ways: automatic aspect code generation, and aspect reuse through
configuration of aspect templates.

Automatic Aspect Generation

Complete automatic generation of aspects and connectors is only possible in specific
cases. For instance, automatically generating a completely functional caching aspect out
of higher-level cache specification is a research topic on its own, and is something that
is the subject of Model Driven Architecture (MDA) approaches. On the other hand, a
higher-level description of a mapping between a service type and a web service, or even a
service composition can be automatically translated into a service redirection aspect and
a corresponding connector (as shown in Chapter 5). Automatic code generation of service
redirection aspects can be realised in many ways, as we will discuss further in subsection
8.3.3 where we present our approach on doing automatic service mappings by semantically
annotating both service types and Web service interfaces. Specifying high-level service

8.3 Implementation of WSML Aspects 177

compositions in UML and making a translation into aspects is discussed in section 8.3.4.

Configuration of Aspect Templates

A third option is to provide a generic set of reusable aspects, implementing concerns
such as caching, selection policies, logging and monitoring, and instantiate those aspects in
a specific context by supplying additional configuration details, e.g. deploying a cache of a
certain size, with a specific expiration time on a concrete Web service. By accompanying
an aspect implementation with a deployment descriptor, automatic code generation for
connectors can be done to deploy the aspect in a specific context. We discuss our approach
to realise a template library for service selection and management concerns in subsection
8.3.5. But first, we discuss the most rudimentary form of code generation, i.e. generation
of aspect skeletons.

8.3.2 Aspect Skeleton Generation

As hinted above, for service redirection aspects, we opt for automatic generation of the
aspect code and their corresponding connectors. Remember from Chapter 5, that a redi-
rection aspect links a service type with a Web service. This was depicted in detail in Figure
5.6. To generate an aspect implementation, the following is needed:

• Web Service Proxy: to communicate with the Web service, the aspect will reference
a proxy to that service. The proxy can be generated using a WSDL2Java tool, as
discussed in section 3.3.2.1

• Service Mapping: A hook is generated for each service type method. Each of
the hooks contains a constructor and an around advice, where the code to invoke
the Web service resides. This advice contains some pre-processing, the invocations,
post-processing and a return statement. The pre- and post-processing are optional.

• Service Composition: In case of a composition, the advices will contain invocations
to multiple web services and/or service types and contain a workflow on how to pass
on results from one service to another and/or how to combine all service results in
one single return statement.

• Conditional Binding: An optional statement can be used to determine the appli-
cability of a service.

Given a service type specification and a URL to a WSDL file, it is possible to generate
the skeleton of the aspect and the connector. The advice bodies will be missing from the
generated code, as these contain the mappings or the composition. Generating code for
the actual service mapping is more difficult as it requires semantic understanding to map a
client request to a service invocation. To generate a composition, we somehow need to have
a composition specification. The easiest way is to provide the mapping or the composition
as a Java implementation: an aspect skeleton is automatically generated, and the service
mapping or composition is provided by a programmer in Java. Alternatively, the mapping
or composition could be provided as a series of statements that can be translated into Java

178 Chapter 8. Development and Deployment of a Prototype

code. A statement can be a web service invocation, a service type invocation, the definition
of a variable or a custom statement (i.e. hand-written JAsCo code). Based on this series
of statements, automatic code generation of the aspects and connectors can be done.

8.3.3 Semantic Matchmaking for Service Mappings

Completely automating the service mapping is only possible when both the service type
and the Web services are semantically annotated. A semantic description of both parties
helps in determining whether a bookHotel method in a HotelServiceType means the same
as a makeRoomReservation method in a HotelService. As recognised by the Semantic
Web community [BFD99], the WSDL service descriptions are not expressive enough and
thus it is required to enrich these descriptions with semantic information [MPM+05]. We
have done experiments by adopting domain-specific ontologies, which constitute the base
for the documentation of the semantics of both service types and Web services. We have
chosen ontologies defined in the OWL language [BSP+01] since it supplies web service
providers with a core set of mark-up language constructs for describing the properties
and capabilities of their web services in unambiguous, computer-interpretable form. This
language is suggested for standardisation by the W3C. Domain specific ontologies contain
the definition of all the concepts in the applicable domain (for instance the travel agent
domain). Once the domain ontology is defined, matchmaking is done as follows:

1. Determining Compatibility Between Service Types and Web Services

The service types requests and the web services operations are mapped to the concepts
in the common ontology to define their semantics: operation, inputs, outputs, effects and
preconditions are linked to their meanings represented as concepts in the shared ontology.
The concepts to which each element maps can be related, belonging to the same hierarchy
of concepts or can be unrelated, belonging to unrelated hierarchies. In OWL-S, Service
Profiles are used to describe service requests as well as service advertisements. Service
types are mapped to the service request part of the Service Profile and concrete Web
services are mapped to service advertisements. The enriched service descriptions serve as
a base to perform compatibility checks between the service requests, i.e. service types, and
the service advertisements, i.e. concrete web services. Note that if the providers of the
descriptions used different travel agent ontologies, a mapping would be needed to specify
their correspondence.

2. Determining Compatibility Between Service Types and Web Services

At service integration time (i.e. when a new service is integrated in the WSML for a
given service type), the compatibility between that service type and the new Web service
is determined. A service type request can be fulfilled by a web service invocation if they
have the same semantics. This is determined by checking the links to the shared ontology
and the relation between the concepts in the ontology itself. For instance, if the service
operations and the service type requests point to the same concepts in the ontology, the

8.3 Implementation of WSML Aspects 179

Figure 8.2: WSML Matchmaking Algorithm

service is compatible with the service type. Otherwise, the relations between the concepts to
which the service operations and the service type requests are mapped need to be analysed
further: three different degrees of matching can occur as identified in [Ver04]. The degree
of matching is based on the definition of subsumption of ontological concepts. Concept A
subsumes another concept B if the extension of B is a subset of that of A. This means that
the logical constraints defined in the term of the concept B logically implies those of the
more general concept A. For example, the concept Building subsumes the concept Hotel, in
the travel agent ontology. The degrees of matching between a service type request and a
web service are listed in Table 8.1. Additional semantic incompatibilities that may occur
between arguments are listed too.

The algorithm for automatic discovery implemented as part of the WSML considers
these differences and a set of configuration parameters to decide whether a given service
or composition can fulfil the functionality requested by the client application through the
corresponding service type: for each request of the service type a matching operation is
searched in the web service based on the semantics of the operation. For the closest match,
the input and output parameters, preconditions and effects are compared. This process
is based on the matching algorithm described by Paolucci et al. [PKP+02]. Figure 8.2
illustrates the algorithm as part of the WSML. On the left the OWL-S documentation
of three available web services and one service type is fed into the algorithm. For each
method of the service type and the web service, filters on the operation, output, input,
effect and preconditions will eliminate incompatible services based on subsume, plugin or
exact matchmaking. If necessary, a (de)composition and transformation filter will also try to
suggest a possible match. The algorithm gives as output all possible matches. The algorithm
is configurable to enable or disable any of the filters, and to specify the allowed distance
between concepts in the ontology. For our experiments, the RACER [HM01] ontology
reasoner was used.

180 Chapter 8. Development and Deployment of a Prototype

Table 8.1: Degrees of Mismatching between Service Types and Web Services

Name Description Example
Subsumption Any of the ontological con-

cepts, to which the op-
erations, inputs and out-
puts of the service type are
mapped, subsumes the con-
cepts mapped to the web ser-
vice invocation.

The HotelServiceType re-
quests a hotel description,
but the web service returns a
building description.

Plug-in Any of the ontological con-
cepts for the operations, in-
puts and outputs of the web
service, subsumes the con-
cepts mapped to the service
type request.

The HotelServiceType re-
quests a hotel description,
but the web service only
returns Bed&Breakfast
descriptions.

Exact match The elements are mapped to
exactly the same concept in
the ontology. They are com-
pletely equivalent.

Composition The input or output provided
is different, but semantically
equivalent. Some elements
can be composed to form
the required argument on the
other side.

The HotelServiceType checks
hotel available by providing a
begin and end date, while a
service takes in a begin date
and number of nights.

Decomposition The number of arguments re-
quired is different but seman-
tically equivalent. An ar-
gument can be decomposed
to obtain the required argu-
ments that the service is ex-
pecting.

The HotelServiceType books
a hotel by providing an in-
stance of a Hotel class, while
a service takes in a String
containing a hotel name.

Transformation The representation ontology
can be used to convert input
and output parameters that
match to the exact same on-
tological concept, but are rep-
resented differently.

A Date object provided by
the HotelServiceType needs
to be decomposed into 3
strings representing the day,
month and year

8.3 Implementation of WSML Aspects 181

3. Generating Glue Code

Determining the compatibility between a Web service and the service type ensures that the
service can be used to fulfil the functionality expressed in the service type. In case of an
exact mapping, there is no problem and the service mapping will only consist of a mapping
between the service type methods and Web service operations. In case of Subsumption or
Plugin mismatching it is important to realise that the service might not exactly return a
compatible result, so glue code is needed to filter out incompatible results (e.g. if hotel
descriptions are requested, all building descriptions should be filtered out in case of Sub-
sumption). In case composition, decomposition or transformation of the input or output is
required, specific glue code will be needed. This glue code is part of the service mapping
and must be included in the service redirection aspects. These results have been published
in [CVS+04b], but fully automating glue code is part of future work.

8.3.4 High-level Service Composition Specification

Similar to service mappings, it is possible to specify a service composition in Java, or
as a series of statements, and translate this specification into an aspect. However, Java
is a general-purpose language, lacking specific composition constructs, while specifying a
composition as a series of statements may lack the required expressivity to specify complex
compositions, including conditional loops, parallel branching, etc. There are dedicated com-
position and workflow languages for Web services available, such as WS-BPEL [ACD+03],
Web Services Conversation Language (WSCL) [BBB+02], Yet Another Workflow Language
(YAWL) [AH05]. In [Rol05], it was researched how the Unified Modeling Language (UML)
[FS97] is suited to specify service compositions and how a translation to WSML aspects
can be made. UML is the de-facto standard for modelling software applications. Several
diagrams can be specified at various levels of detail: high-level models do not contain any
implementation details, while implementation models are more detailed, containing arte-
facts targeted at a specific implementation language. Implementation models map to a
specific language such as Java, C++, or in this case, WSML aspects.

A Web service composition is a special kind of business process where the different part-
ners in the process are Web services. While standard UML can represent business processes,
it does not have specific provisions for Web services, such as service invocations, messages
and process instance IDs. In [Rol05] an extension of UML is proposed by specifying a
new profile, i.e. a collection of related extensions, targeted towards a specific application
domain. Profiles respect the semantics of UML constructs, but extend them or add addi-
tional constraints. The proposed extension is targeted at expressing several composition
constructs:

• Static web service structure: class diagrams (extended with stereotypes, tagged
values and constraints) represent the composition interface and the interfaces of its
partners. These interfaces are based on service types.

• Web service interactions: activity diagrams model web service interactions. Three
kinds of communication can occur between clients and compositions or between com-
positions and partners: receive, return and invoke.

182 Chapter 8. Development and Deployment of a Prototype

– Receive: client that invokes an operation on the composition. This happens
transparently by invoking the service type.

– Return: composition that returns a value to the client. A return action must
follow a receive action, and only if the operation of the receive action does not
have a return type of void.

– Invoke: composition that invokes an operation on a partner.

• Control flow: activity diagrams provide constructs for sequential, conditional, and
parallel execution. Loops can be modelled implicitly, by drawing a path that starts
and ends at A.

• Event handling: both message-based and time-based events are supported. They
are represented as a stereotyped conditional statement. Each branch must start with
a receive or an acceptTime action. The branch with the event that is triggered first
gets executed.

• Exception handling: the exception handling mechanism is based on try/catch
blocks in classical programming languages. UML 2.0 activity diagrams fully sup-
port this. The throwException action specifies which kind of exception to throw.
Exception handling activities catch errors thrown by an action or a nested activity.
If no handler is defined for an activity, exceptions propagate to the enclosing nesting
level.

• Transaction management: long-running transactions are supported through com-
pensation handlers. A compensation handler can be associated with a nested trans-
action. It is the responsibility of the parent transaction to invoke the compensation
handler.

• Process composability: activities can be nested. A nested activity can contain
actions (which cannot be decomposed any further) or other activities. Nested activities
can be invoked by the callNested action. This can be compared to invoking a function
in a classical programming language.

• State: compositions can define variables that are globally accessible to all activities.
Both static and instance-level variables can be declared. The assign action assigns
values to variables.

• Composition instance identity: each receive action (except for the one that starts
the composition) contains a correlation expression, which extracts identifying data
from an incoming message.

A mapping is provided to translate a service composition specified in the high-level UML
model into the WSML aspects that were discussed in section 5.6. At the moment, this
mapping is done manually.

8.3 Implementation of WSML Aspects 183

8.3.5 Aspect Template Library

Code generation for the aspects for service selection (Chapter 6) and management concerns
(Chapter 7), is more difficult. Complete automatic aspect code generation requires a model
or higher description of the specific concern, an approach taken in Model Driven Architec-
ture (MDA). Through a series of refinements, such a model can be translated into a code
for a specific platform or technology. This is outside the scope of this dissertation. In our
approach, we opt to provide a library of reusable aspects that can be configured for a partic-
ular context. Aspect implementations of a variety of selection and management concerns are
provided, and connector code for a specific context is automatically generated. For instance,
a connector for a generic caching aspect can be generated by specifying for which concrete
service invocations caching is required and what the expiration time of the cache is. In our
approach, an aspect implementation is accompanied by an XML deployment descriptor for
a particular concern. This descriptor file contains additional information required to deploy
the concern and describes which additional properties need to be specified. Otherwise said,
it contains all information required to generate a connector. In the current prototype, ex-
pert knowledge about the WSML is needed to implement additional aspects and add them
to the library. A possible approach to facilitate this, might be to provide WSML API’s or
to specify design patterns for the aspects. This is subject of further research.

As an example, consider the caching mechanism discussed in Chapter 7, section 7.2.2. A
library of several caching variants is made available as templates: for example, the library
can contain a generic CachingAspect and a ConditionalCachingAspect variant that only
caches when a certain condition is fulfilled, e.g. only to do caching if the Web service speed
drops below a certain threshold. Next, a deployment descriptor is made for each aspect, as
illustrated in Code fragment 8.1 for the ConditionalCachingAspect. The descriptor specifies
general information (lines 2 to 5), where each aspect hook needs to be deployed (lines 7
to 17), and which additional parameters values need to be specified when the aspect is
instantiated (lines 19 to 30).

In most cases, the deployment of one or more hooks will depend on the parameter values
specified at aspect instantiation time. For instance, caching when a HotelWebServiceA is
invoked will require that the CacheHook hooks on the method
“ * HotelWebServiceA.*(*)”. For this purpose, keywords (indicated with the % sign) are
introduced. For instance, the %invocation% keyword in line 14 indicates that this keyword
needs to be replaced by the signature of a concrete service type, service composition or Web
service invocation. This signature can be composed using the parameters in line 20 to 22.
The other parameters (lines 23 to 29) are used to pass along to the aspect constructor.

When a concern needs to be deployed, it suffices to specify an instance in an XML
configuration descriptor, as shown in Code fragment 8.2. Besides a name and an indication
of which template is instantiated, it suffices to provide a value for the set of parameters to
generate the connector. In this example, a HotelDescriptionCache is setup for the method
getHotels of the HotelServiceType. With this approach, the usage of aspects as an imple-
mentation technology is hidden away.

Note that also for the specification and deployment of the actual service types, service
compositions and Web services, dedicated XML configuration files can be specified. This

184 Chapter 8. Development and Deployment of a Prototype

1 <template

2 name="ConditionalCaching"

3 description="return cacheresults"

4 package="templates.caching"

5 priority="4">

6

7 <hooks>

8 <hook

9 name = "ConditionalCacheHook"

10 init="true"

11 aspectFactory="perobject">

12 <methods>

13 <method

14 signature="%invocation%"/>

15 </methods>

16 </hook>

17 </hooks>

18

19 <parameters>

20 <parameter name="type"/>

21 <parameter name="name/>

22 <parameter name="operation"/>

23 <parameter name="expireTime"/>

24 <parameter name="alwaysCache"/>

25 <parameter name="property"/>

26 <parameter name="type "/>

27 <parameter name="minimum"/>

28 <parameter name="maximum" />

29 <parameter name="ifUndefined"/>

30 </parameters>

31 </template>

Code fragment 8.1: XML Deployment Descriptor for a Caching Aspect

1 <templateInstance

2 name="HotelDescriptionCache"

3 template="ConditionalCaching">

4

5 <parameters>

6 <type=ServiceType>

7 <name=HotelServiceType>

8 <operation=getHotels>

9 <expireTime="20"/>

10 <alwaysCache="true"/>

11 <property="executionTime"/>

12 <type="Float"/>

13 <minimum="10"/>

14 <maximum="45"/>

15 <ifUndefined="true"/>

16 </parameters>

17 </templateInstance>

Code fragment 8.2: XML Configuration Descriptor for an instance of a Caching Aspect

8.4 Stakeholders 185

way, the whole configuration of the WSML can be done through these files. Additionally, a
specific “snap-shot” of the running WMSL can be made persistent by saving the complete
configuration back to XML files. As such, the configuration files are XML representations
of the various entities in the WSML.

8.4 Stakeholders

Due to the organisational defragmentation of a SOA, there may be multiple parties involved
in dealing with the WSML. Typically, the WSML will be part of the client environment, as
the WSML will act as a service agent for the client, taking care of all service related concerns.
At the moment the client is developed, the required service types must be configured, so
that the client be programmed against this set of service types. When the client is deployed
together with the WSML and the client invokes a service type, the default behaviour of that
service type (see Section 5.1) will be executed. This behaviour can be changed by further
configuring the WSML: i.e. by deploying redirection, selection and management aspects.
Ideally, the use of aspect-oriented techniques must be hidden from the WSML administrator.
Figure 8.3 shows our approach for the realisation of redirection aspects. Either a mapping
or a composition is specified as a series of higher-level statements, or semantic matchmaking
is done based on the semantic description of a service type and Web service. Based on this
process, an XML Descriptor (see Section 8.3.5) is generated which can be used to generate,
compile and deploy redirection aspects and connectors. The WSML administrator involved
in this process only needs to know the service type specification and the WSDL description
of the Web service and optionally its semantic description. The prototype (see Section 8.5)
of the WSML supports this scenario and illustrates that the aspect implementation can be
completely hidden from the administrator. Note that the stakeholder involved in this process
is not necessarily part of the client environment. For instance, in an intranet environment,
one WSML may be used to service multiple clients, and it may act as the sole gateway for
communication with external third-party Web services. In that case, the administrator of
the WSML will be involved in looking up compatible services, specifying mappings and/or
compositions and configuring the WSML accordingly, without having in-depth knowledge
about the individual client applications on the intranet.

For the selection and management concerns, a different approach is followed as doing
automatic code generation of these aspects is outside the scope of this dissertation. As
mentioned before, for these aspects we propose a reusable and extensible aspect library.
While instantiating these aspects can be done at the administration level, similar to the
redirection aspects, the process of extending the library is more difficult, as it requires
more in-depth knowledge of the WSML implementation. This is depicted in Figure 8.4.
As we will discuss in Future Work (see Section 9.2), this proces can be optimized by
facilitating the implementation efforts for the developer by providing additional tool support
and API’s. Another possibility is to research the automatic generation of aspect code. The
stakeholder involved in deploying the selection policies and management concerns may need
business knowledge about the client (e.g. to know which services to prefer) and possibly
the network and service environment (e.g. to know wich kinds of management concerns
to enforce). In the next section, we discuss the concrete implementation of the WSML

186 Chapter 8. Development and Deployment of a Prototype

Figure 8.3: Implementing and Deploying Redirection Aspects

Figure 8.4: Implementing and Deploying Selection and Management Aspects

8.5 Prototype 187

supporting automatic generation of redirection aspects, and the usage of a reusable library
for selection and management aspects.

8.5 Prototype

8.5.1 Overview

A fully functional prototype of the WSML has been developed in the context of the IWT1

Mosaic project and is available at [Ver03]. This prototype is implemented in Java and
uses JAsCo for implementing the aspects. The WSML is the supporting framework for the
various aspects discussed in the previous chapters. A key requirement for the WSML was
hiding for the end-user of the system that aspects are used as an implementation technology.
The WSML offers support in the various stages of development, deployment and runtime
of the client application:

1. Development: During the development stage the client application is implemented
and any service functionality required needs to be specified as service types. A service
type can be integrated in the client, either as a local class, or remotely, as a web
service. Dedicated tool support is available for this purpose.

2. Deployment: At deployment time, the client application is deployed together with
the WSML. When running locally, the client and the WSML run on the same vir-
tual machine. When running remotely, the WSML runs as a server, independently
of the client(s). A pool of available web services can be registered with the WSML
through XML configuration descriptors and linked to one or more service types. Ad-
ditionally, compositions, selection policies and client-side management concerns can
be configured.

3. Runtime: at runtime, any client requests on the service types are transparently redi-
rected to available web services or service compositions. All specified selection policies
and management concerns are enforced non-invasively. Tool support is available at
runtime to monitor and administer the system.

8.5.2 Design

Figure 8.5 shows a conceptual UML class diagram of the WSML architecture. Every entity
shown on the diagram is part of the WSML, except the client and Web service, which are
depicted in grey. On the right hand side the functional level is shown, with from top the
bottom first the redirection mechanism, then the service selection mechanism and finally, at
the bottom, the client-side management concerns2. The left hand side of the picture shows
the meta-level, a collection of classes in the WSML that create and represent the entities at

1IWT: Institute for the Innovation of Science and Technology in Flanders” (“Instituut voor de aan-
moediging van Innovatie door Wetenschap en Technologie in Vlaanderen” in Dutch)

2While we could have used a UML class notation for every entity at the right-hand side, we have opted to
keep the graphical notation of the aspects and connectors as used in the previous pictures in this dissertation.

188 Chapter 8. Development and Deployment of a Prototype

the functional level. The classes on the left-hand side are concrete resident WSML classes.
The entities on the right hand side are generated, compiled, loaded and instantiated at
runtime by instantiating a class on the left-hand side.

At the moment a new instance of the ServiceType class on the left hand side is created,
a new template class <T>ServiceType on the right-hand side is generated and compiled.
Then, client(s) can instantiate that service type class and start invoking it to request service
functionality. But first, Web services need to be registered. Any WSDL-exposed Web service
can be registered, by instantiating a new WebService instance on the left hand side. This
will generate a proxy on the right hand side. The proxy is the local representative of the
remote Web service. Next, service mappings can be specified to map a service type interface
to the service interface or multiple services can be composed in a composition for a service
type. Either way, a service redirection aspect will be generated and compiled out of this,
and a set of corresponding connectors will be generated too. As explained in Chapter 5,
section, 5.2.7, n+1 connectors will be present with n being the number of requests in the
service type. The connectors hook on the service type(s) the mapping or composition is
specified for. As a result, the redirection aspect will be triggered as soon the service type
is invoked by the client and the Web service(s) will be invoked through their proxies. Any
meta-data for the service types, mappings, compositions and Web services, including their
descriptions and properties are stored in the class instances on the left hand side.

Each instance of the SelectionPolicyTemplate class on the left hand side repre-
sents a SelectionPolicyAspect on the right hand side. When a new instance is cre-
ated, a corresponding aspect is compiled. As we noted before, there is no automatic
generation of this kind of aspects done in the current prototype. All instances of the
SelectionPolicyTemplate class make up the library of available selection policy templates.
Deploying a template in a concrete context is done through the SelectionPolicyInstance
class. At the moment a new instance of this class is created, a new connector is generated
and deployed. This connector instantiates the corresponding SelectionPolicyAspect and
hooks on whatever Object in the system needed to enforce the policy. When the aspect
is triggered, it will enable, disable and/or make a new ranking of the connectors of the
redirection aspects and as such qualify, disqualify and prioritise the available Web services.

For the management concerns, a similar approach is followed as for the selec-
tion policies. Each ManagementConcernTemplate on the left hand side represents
a ManagementConcernAspect on the right hand side. A deployment of a template
in a concrete context is realised by instantiating the ManagementConcernInstance
class, which will generate an appropriate connector. This connector instantiates the
ManagementConcernAspect and hooks on any possible Object(s) in the system. The ef-
fect of a ManagementConcernAspect is not shown, as there is no visualisation possible as
the effect is unrestricted.

From this explanation it follows that configuring and administering the WSML is done
by instantiating the classes on the left-hand side and by manipulating these class instances.
As depicted on the top left corner of Figure 8.5 this can be done by various means, in-
cluding administration services, an administration console and an XML parser. We discuss
these management tools in more detail, using Figure 8.6, which shows the complete layered
architecture of the WSML prototype, based on Java and JAsCo. The picture shows the five

8.5 Prototype 189

CC

Service
Type

Web
Service

Service
Composition

Functional-level

SelectionPolicy
Template

SelectionPolicy
Instance

<T>
Selection

Policy
Aspect

*

*

1

*

*

*

C

<<invokes>>

*1

 <<generates>>
<<storesMetaDataFor>>

<<generates>>

*

1 <<compiles>>

<<generates>>
 <<wraps>>

 <<storesMetaDataFor>>

<<instantiates>>
 <<invokes>>

<<instantiates>>

<T>
ServiceType

T

<<hooks>>

<<generates>>

 <<wraps>>

 <<generates>><<storesMetaDataFor>>

Service
Mapping

*

*

 <<generates>>
<<storesMetaDataFor>>

<<generates>>
 <<wraps>>

<<triggers>>

C

<<instantiates>>

T

ManagementConcern
Template

ManagementConcern
Instance

<T>
Management

Concern
Aspect*

1

<<compiles>>

<<generates>>
 <<wraps>>

C

<<instantiates>>

T

<<toggles>>
 <<ranks>>

<<hooks>>

<<hooks>>

<<triggers>>

<T>
Service

Redirection
Aspect

T

Administration
Service

XML
Parser

<<creates>>
 <<creates>>
<<configures>>
 <<destroys>>

<<triggers>>

Object

Re
di

re
ct

io
n

Se
le

ct
io

n
M

an
ag

em
en

t

Administration
Console

Cient

Web
Service

<T> Proxy T

Meta-level

Figure 8.5: Conceptual UML Class Diagram of the WSML

190 Chapter 8. Development and Deployment of a Prototype

Web Services Management Layer

Java Virtual Machine

Application
Server JAsCo

Racer

Pluggable
Server
Layer

Pluggable
Transport

Layer

SOAP
Message
Processor

Web service
Runtime

Environment

Pluggable
Server
Layer

Aspect
Generator

Connector
Generator

JAsCo
Loader

Core Registries

WSML registry

Management
Concern
Registry

Selection
Policy

Registry
Service

Type Registry
Web Services

Registry

Service
Matchmaking

Algorithm

Runtime
Weaver

Connector
Registry

Ontology
Reasoner

Administration
Services

Administration
Console

Monitoring
Console

XML
Parser

Eclips
IDE Plugin

Service
Composition

Engine

Server
Management

Console

Service
Discovery

Mechanism

Service
Type

Generator

Eclipse

Eclipse
SDK

Core Registries

WSML registry

Management
Concern
Registry

Selection
Policy

Registry
Service

Type Registry
Web Services

Registry

1

2

3

4

0

Figure 8.6: WSML Layered Architecture

layers of the architecture; the WSML is depicted in the middle, running on a Java Virtual
Machine (level 0).

Level 1: Underlying technologies

JAsCo: JAsCo, depicted on the right hand side, is used as the aspect-oriented extension
of Java. It is plugged into the WSML using a dedicated loader used to compile aspects and
connectors, load and unload aspects and combination strategies, temporarily enable and
disable connectors, and do inspection of the connector registry. Two other JAsCo related
entities in the WSML are the aspect and connector generators used for automatic code
generation.

Application Server: on the left hand side of Figure 8.6, the application server resides.
It is used to deploy service types as web services when running in server mode, and to
generate the necessary client proxies for remote web services. In the WSML prototype,
the Systinet Server for Java [Sys05] is used, a platform-independent server for creating,
deploying and managing Web services in Java applications. A pluggable server layer is used
to connect the WSML with the server, so other servers can be used too.

Level 2: The WSML Core

WSML Core Registries: Four registries contain the deployed service types, selection
policies, management concerns and an internal representation of the registered Web services
as shown on the left-hand side of the conceptual UML-class diagram of Figure 8.3. The

8.5 Prototype 191

WSML registry is the core of the WSML, containing links to each of the registries, the
server, the console, etc.

Level 3: Additional Service Functionalities

Service Discovery Mechanism: A discovery mechanism can be used to find available
web services on the network, for instance by querying a UDDI registry, or maintaining its
own repository.

Description Logic Reasoner: In order to realise automatic mapping between service
types and web services, a semantic description is required of both sides. Concepts are stored
in an ontology and a matchmaking algorithm determines the compatibility between a given
service type and a service by querying the ontology using a reasoner, such as Racer.

Service Workflow Engine: A dedicated engine, for instance based on a business
process language such as WS-BPEL is used to compose services together in an advanced
manner by specifying complex workflows. This engine exposes the composition as a Web
service that can be registered for a service type.

Administration Services: The WSML can be administered through a set of ad-
ministration Web services. These services can be invoked from within the client, other
applications, the Eclipse plugin, the administration console , other applications or even
the third-party Web services (e.g. to announce unavailability, versioning information or
changing QoS, etc.).

Level 4: Management Tools

Consoles: The administration console is a web-based tool to administer the WSML.
The GUI is used to specify new service types, register third-party Web services, specify
mappings between service types and Web services, compose services together, and enforce
selection policies and management concerns. Two versions are available: a .NET version,
developed in Visual Studio.NET and implemented in ASP.NET and C#, and a Java version,
implemented with Java Servlets. Additionally, a console is available to monitor the running
system. A screen-shot of the WSML Monitoring Console is shown in Figure 8.7.

XML Parser: As mentioned before, the WSML can also be configured through XML
deployment and configuration descriptors. This is particularly useful for persistent deploy-
ment of a specific configuration. Service types, web service mappings, compositions, policies
and management concerns can all be specified in XML descriptors and loaded at deployment
time or runtime.

Ecplise Plugin: a plugin for the Eclipse IDE allows implementing a client application
in close cooperation with the WSML. Service types can be specified through wizards in
Eclipse, integrated in the client and the client can be deployed together with the WSML,
both locally and remotely.

8.5.3 Realisation of Quality Development Attributes

With our approach, we realise the development attributes of the WSML defined in Chapter
4, section 4.3, as follows:

192 Chapter 8. Development and Deployment of a Prototype

Figure 8.7: WSML Monitoring Console

- Web Services standards compliance: The WSML approach fully supports existing
Web services standards. First of all, communication with the surrounding quadrants of the
WSML environment takes place using Web service technology:

• Both third-party Web services and management Web services that have a WSDL-
described interface can be integrated in the WSML: a WSDL2Java tool analyses the
WSDL-file and generates a proxy which is being addressed from within the redirection
aspects.

• Communication with the client occurs with service types, which can be deployed as
WSDL-described Web services towards the client(s).

• Administrative WSML tasks can be done through dedicated administrative Web ser-
vices which can be straightforwardly integrated in third-party applications or services.

Furthermore, additional concerns, enforced by a third-party service provider, that adopts
a WS*-standard, can be implemented in the client using dedicated management aspects.
New standards and specification could be supported through the extensible management
template library.

- Performance and scalability: runtime flexibility and configurability is typically a
trade-off against performance of the system. The WSML offers dynamic binding of Web
services and runtime integration of unanticipated services. Furthermore, the binding mech-
anism takes a set of selection policies into account and enforces additional client-side man-
agement concerns when the service is invoked. As we discussed in Chapter 4, section 4.5.4.2,

8.5 Prototype 193

the infrastructure of JAsCo consists of a runtime weaver. Instead of inserting traps at every
possible place where an aspect possibly will trigger, a highly optimised code fragment is
directly inserted into the target joinpoints. This code fragment directly invokes all appli-
cable advices in the correct sequence and thus avoids the indirection through the JAsCo
run-time infrastructure. As a result, triggering a dynamically inserted aspect does not
cause any considerable overhead than a regular method invocation. In [VS04] performance
tests of JAsCo indicated that it performed similar to a static weaving approach as AspectJ.
Therefore, we can conclude that the level of indirection created by the redirection aspects
is completely negligible considering the time consuming process of (de)serialising service
requests and sending SOAP messages over the network.

Furthermore, the WSML can enhance performance, for instance by monitoring service
execution time and pro-actively selecting the best performing services. Pro-active, meaning
this selection process takes place even before the client makes a service request. Other
approaches to deal with performance issues are hot-swapping, exception handling, broad-
casting and caching, all concerns that have been modularised in the WSML by aspects and
that can be used to optimise the functional flow from the client to the service and back.
As triggering an aspect is as computationally expensive as a simple method invocation,
scalability of the system will not be limited by the WSML or the JAsCo implementation,
but rather by how many requests an as Web service deployed service type can handle, which
is determined by the application server, the VM and the hardware platform.

Another facet of performance is the deployment time of the framework. As deploying
the WSML requires an extensive amount of code generation and compilation of Java classes
and JAsCo aspects, it can be a very lengthy process to deploy the framework with large
configuration files. To reduce the deployment time, the WSML will analyse at deployment
time the loaded configuration files and compare them with configuration files that were
used in previous runs and not re-generate and recompile classes and/or aspects if this is not
necessary.

The other development attributes, being reusability, configurability and extensibility are
mainly realised because of the high-level of modularisation of the code, achieved through
the adoption of an aspect-oriented approach.

- Reusability: the WSML has been designed to contain no context specific code: the
basic framework is completely reusable and is intended to be instantiated for a specific
context. For this purpose, it will automatically generate and deploy service types, service
redirection aspects and connectors. Additionally, a library of generic aspects implementing
service selection policies and management concerns is available, which can be instantiated
through a configuration process.

- Configurability: the WSML is completely configurable at the administrative level.
First, at deployment time, all specified XML configuration files for service type, compo-
sitions, services, selection policies and management concerns are loaded. At runtime, the
configuration can be altered through administration services, a web-based console, and
additional XML files.

- Extensibility: the framework is mainly extensible through the addition of aspects and
combination strategies. By adding new aspects and complementing deployment descriptors,

194 Chapter 8. Development and Deployment of a Prototype

unanticipated concerns and policies can be added to the framework. Aspect inheritance and
aspectual polymorphism are useful here.

8.5.4 Synergy between WMSL Research and JAsCo Research

While applying AOP in the context of SOAs offers several advantages to realise the require-
ments and development attributes of the WSML, there was also feedback loop towards the
AOP community. The WSML research served as a useful complex and dynamic testing
environment for different AOP features. Several required features were identified during
the realisation of the WSML and were incorporated in later JAsCo implementations. An
overview was published in [AOSD05-2]. First of all, we have identified various scenario’s
where deploying aspects on aspects was needed, for instance in the case of selection aspects
(see section 6.5.1.3). Also, a new feature was needed that allows for the re-invocation of
the original method that triggered an aspect around chain, for instance for fallback aspects
(see section 5.2.5). For this purpose, the JAsCo language was extended with a new method
invokeAgain, in order to allow for invocation of the original method that triggered the
aspect chain all over again. AspectWerkz has recently identified the need for such a fea-
ture and added the invokeOriginalMethod construct, which allows skipping the rest of
the advices and calling the original method directly [DFS04]. An identified disadvantage of
this feature is that it is not always clear to understand its effect, i.e., which method will be
the one invoked again, especially in the case of having aspects deployed on other aspects.
When looking in isolation to the fallback aspect, it is not straightforward to identify the
method that originated the aspect chaining. Thus, analysability of aspects is reduced since
knowledge about “where” the aspects are hooking is needed to understand the behaviour
of the aspect itself.

A problem with JAsCo after advices was that, by default, these advices were not trig-
gered when the joinpoint caused an exception. However, the monitoring aspect (see section
6.4.2.2) counting the number of failed service invocations needs to be triggered after an
exception has been thrown. Without a dedicated after throwing advice, this should be
implemented with an awkward and counterintuitive around advice that continues with the
execution of the original joinpoint and has a try catch block around it. This was changed
and after advices are now triggered even when an exception is thrown in the joinpoint, simi-
lar to AspectJ after advices. Also dedicated after throwing and after returning advices were
added, allowing for more control over when an after advice should be triggered. Similarly
around returning and around throwing advices were added. This made the implementation
of several WSML aspects much more elegant and intuitive.

An important issue arose as aspects can be temporarily enabled and disabled with a
dynamic AOP approach. In a complex setup as the WMSL we encountered several situations
where this enabling or disabling required the execution of some behaviour belonging to
the crosscutting concern. For instance, disabling a service selection aspect requires re-
approving all Web services that were previously disapproved. For this purpose, the JAsCo
runtime environment now throws an event whenever an aspect is added, removed, enabled or
disabled. Inside the aspect, additional behaviour can be specified that needs to be executed
in these cases.

8.6 WSML Deployment on SEP 195

Another identified feature that was added to JAsCo are the complement keyword for
stateful aspects (Chapter 5, section 5.4.5); connector priorities (Chapter 6, section 6.4.3.4)
and connector combination strategies (Chapter 7, section 7.3). These features are included
in the JAsCo language in order to improve modularity of crosscutting concerns and evolv-
ability of the overall solution. They allow the addition and removal of aspects independently
of each other in a much easier way while it is still possible to express aspect interactions in
a modular way.

Finally, we improved the aspect runtime environment as the JAsCo connector registry
looks for new connectors with specified intervals, allowing for easy loading and removal
of aspects at runtime. However, in the context of the WSML, a tighter control on the
addition and removal of connectors is needed. The WSML is an aspect-oriented layer on
top of the JAsCo runtime environment that controls the compilation and instantiation of
aspects and the automatic generation and compilation of the connectors. Therefore, we
decided to disable the hot-deployment of connectors and replace it by a mechanism that
delegates the control of loading and unloading connectors to the WSML by means of the
use of the Connector Registry API. This mechanism also had the advantage that it avoids
the possibility of loading illegitimate connectors and aspects into the system. Before, it was
possible to load malicious aspects that were not fully tested and that could crash the whole
system. With the new mechanism, only aspects that were thoroughly tested and registered
in the WSML could be instantiated.

An aspect causing a crash of the system has far-reaching consequences. Not only did this
result in downtime of the server, but as mentioned in section 8.4.3, it also takes a long time
to reboot the system and to recompile and reload all aspects and connectors., in a small
scenario with 10 connectors instantiating 7 aspects, the loading time of the WSML was
more than 3 minutes on a Pentium 4 with 1GB of RAM. Therefore, a caching mechanism
is provided as part of the WSML in order to reuse already compiled connector and aspect
classes. This reduced the loading time by a factor of 10. To avoid that aspects would bring
the system down, all aspects were implemented following a coding convention. This allows
for the detection of the aspects that cause exceptions and immediately removing them from
the runtime environment. The incorporation of these improvements to the JAsCo runtime
environment contributed to achieving a more robust implementation of the WSML and
enhancing evolvability of the overall solution.

8.6 WSML Deployment on SEP

Validation of the approach presented in this dissertation is not simple. Ideally, two imple-
mentations of an extensive service-oriented architecture are to be realised by two separate
development teams. One team uses traditional software engineering approaches and cur-
rent Web service technologies, while the other team uses the WSML approach based on
dynamic AOP. Then, both efforts should be compared with each other in terms of various
criteria such as number of code lines, the development time, the quality, the flexibility,
configurability and extensibility of the resulting implementation, etc. This is not a realistic
approach in the context of a PhD dissertation. As an alternative, we have opted to deploy
the WSML in an existing real-life SOA and have made a running implementation of the

196 Chapter 8. Development and Deployment of a Prototype

integrated platform, which offers more capabilities than the standalone platform.

The existing platform has been developed by Alcatel Bell, a telecommunication company,
providing solutions to telecommunication carriers, Internet Service Providers (ISP) and
enterprises for delivery of broadband applications. According to Alcatel, there is no single
killer application for broadband Internet. Rather, it is an enabling technology for accessing
a plethora of different service capabilities offered by several content providers. Each of these
providers needs a set of capabilities such as user accounting, billing, profiling, etc. However,
the current situation in the use of broadband Internet shows that service capabilities are
implemented from scratch by each service provider, increasing the effort of developing service
applications. Each service provider uses their own systems and standards, making it difficult
for network providers to accommodate to the different approaches employed by each service
provider. This places a heavy burden on the network providers since they need to provide
enough infrastructures to be able to integrate with all these different systems.

As a consequence, Alcatel observed the need and a market for a service and network
management framework that would facilitate the adoption of service capabilities. They
developed the Service Enabling Platform (SEP), a service-provisioning platform targeted
for broadband Internet. By gathering all enabling applications into one SEP, costs will be
reduced and services will have a reduced time-to-market. The SEP needs to be flexible
to adapt to changes in the business environment, support reusability and configurability
of service capabilities, allow for customisation and rapidly fine-tuning of service offerings
and provide added value in the provisioning of services. For this purpose, it combines an
extensive set of recent technologies such as enterprise JavaBeans, radius servers, session
resource brokers, network management tools, etc. Web service technology is adopted to
enable the communication among the different internal components of the SEP and also to
integrate different capabilities such as billing, accounting and personalized advertisements
with third-party Web services that deliver content.

Figure 8.8 shows the SEP deployed in a content delivery architecture. End users have
access to the broadband network via a SEP client. This SEP client communicates over
an ASDL connection to a Broadband Access Server (BAS), which connects to a variety of
online services such as ISPs, corporate networks and content providers. The SEP hosts a
set of management services and offers connectivity to third party services through the Open
Services Platform (OSP). However, the Web services techniques used during the develop-
ment of the SEP suffered from the issues identified in Chapter 3. Especially integrating
unanticipated Web services and crosscutting management concerns became a hindrance for
the further development, robustness and maintainability of the system. These are the main
motivations for the integration of the WSML framework. With the WSML integrated in the
SEP it becomes much easier to integrate and select new Web services in the SEP framework
and to enforce various management concerns that crosscut service boundaries. To illustrate
the benefits of the WSML in the context of the SEP, consider Video on Demand (VoD)
content services. The basis version of a VoD seems straightforward: a user gets access to
the network, logs in on the VoD service, browses through a selection of movies, selects one,
pays for it and watches the streamed content. However, nearly every step in this scenario
has numerous variations. A simple look at classical payment schemes (see section 7.2.1)
reveals that even the billing of every step could be done in lots of different ways. Also all
kinds of security schemes (single logon, two-phase commit . . .) exist in every different step

8.6 WSML Deployment on SEP 197

Figure 8.8: Alcatel Bell Service Enabling Platform (SEP)

as well as different streaming possibilities for the video (real time, staggered . . .). Addi-
tionally, advertisement mechanisms, network monitoring, user accounting, etc. are needed
too. In short, many VoD services are possible. However, this does not mean that these
services should all be built from scratch. The SEP-WSML platform was used to set up
a demonstrator to indicate that VoD service providers can more easily integrate existing
services into the network infrastructure, and that they can create new services more easily
using existing components and flexible configurations provided by the SEP and the WSML.

Figure 8.9 shows the complete architecture of the integrated platform. Users can watch
streaming video content on a television connected to a broadband ADSL network. Several
VoD content providers offer the content. In one of the demonstrators we have developed,
the demonstrator hosts the SEP and the WSML at the network provider and the VoD sys-
tems at several content providers. The SEP is a WSML client, and the VoD systems offer
Web services for requesting, streaming, and paying for videos. End users can play stream-
ing media on a television connected to a setup box, prepaying for the product with their
mobile phone account. In this distributed setup with multiple partners, billing, accounting,
dynamic bandwidth allocation, etc. become complex tasks.

In the described scenario, a user first logs on to the SEP via his or her television
set, which is connected to the ASDL network via a modem. Other service providers can
interface with the authentication interface of the SEP (exposed as a web service) to reuse
these credentials for their own service allowing a single log on for the users of their service.
The SEP keeps a profile for every user to present him or her with the services he uses. The
user can connect to a VoD service and select a movie. Every request from the user to the
VoD service is intercepted by the WSML, so that the network provider and content provider

198 Chapter 8. Development and Deployment of a Prototype

Figure 8.9: WSML-SEP integrated platform

can script the WSML to enforce load balancing, service selection, fail safe systems, Q0S,
etc.. . .

In one scenario, the WSML applies pre-paid billing before the selected movie is streamed
to the end-user. Depending on the customer’s subscription status (bronze, silver, or gold),
the product bought, the VoD content provider, and the mobile phone operator, a specific
billing process is initiated through a dedicated SMS server. When the customer has con-
firmed the payment with his mobile phone, the movie will start playing. The original setup
was not conceived with this mobile billing schema in mind. The VoD systems are propri-
etary and could not be modified. Therefore, the WSML was deployed to intercept all client
requests from the SEP to the VoD and vice-versa to enforce the billing and promotional
actions through dedicated aspects. The billing aspects calculate the correct price and re-
quest a customer payment through a dedicated SMS server. Additionally, these aspects
retrieve additional context information (such as the customer’s subscription status) from
other services deployed on the SEP (such as the accounting service). Once, the customer
has paid, the blocked call to the VoD is released through service redirection aspects. The
billing concern continues with distributing a percentage of the paid amount to each partner
(i.e. the network provider, the content provider, etc.). Furthermore, temporal promotions
can apply to the billing, including fee reductions, bonuses with purchases, price reductions
on other products, and so on. For instance, an aspect adds a call to the rating engine of the
network provider whenever a bandwidth upgrade is granted for a given user and another
one blocks every 10th call to the rating engine resulting in a free bandwidth upgrade every

8.7 Discussion on AOP in Enterprise Service Bus (ESB) 199

10th time. Additionally to the billing and the promotions, optional movie-related adver-
tisement mails and/or SMS messages are sent to the customer. In a next step, the video
needs to be streamed to the user. The VoD service provider uses the SEP platform (using
the exposed web service interface) to ask for a given bandwidth based on the properties
of the selected movie. Users can get bandwidth based on their subscription, increase their
bandwidth temporarily (the price for this could be included in the price of the movie or
could be charged separately by the network provider, . . .), ask for a reduced quality view
of the movie, etc. In this scenario, the VoD becomes the client and the WSML redirects
requests to the appropriate service deployed on the SEP.

These examples indicate the main advantages of the integration of the WSML into the
SEP: the WMSL allows the flexible integration of orthogonal non-functional management
concerns, and enhances the functionality of the capabilities offered by the SEP. All concerns
can be deployed in a non-invasive way, without requiring any changes to the proprietary VoD
systems. The described demonstrator uses the WSML’s redirection aspects to intercept and
redirect calls to the appropriate VoD systems and mobile phone operators. It implements
the payment schemes and promotional offers through a set of WSML management aspects.
In a typical setup with three VoD systems, two mobile operators, five billing schemes,
and three promotional actions, WSML deploys about 25 aspects (including five redirection
aspects, five selection aspects, and 15 management aspects), containing around 2,500 lines
of aspect code.

8.7 Discussion on AOP in Enterprise Service Bus (ESB)

The SEP case study illustrates the usability of the WSML framework in a complex service
oriented architecture. It is interesting to note that the WSML acts as a client for the SEP,
redirecting calls to the VoD servers, the billing and accounting services deployed on the
OSP, and the SMS servers of the mobile providers. The other way around is also possible:
the VoD acts a client of the WSML redirecting calls to the billing and accounting services of
the OSP. In this setup, the line between clients and services is more vague, and the WSML
acts as the communication hub: an Enterprise Service Bus (ESB). An ESB is software
infrastructure that simplifies the integration and flexible reuse of business components using
a SOA. As such, the WSML is an aspect-oriented extension of a ESB, offering the capability
to dynamically connect, mediate and control the communication between services.

As a concluding overview, Figure 8.10 shows the three possible kinds of applications
of AOP in the SOA context (1) AOP at the client side where service related concerns are
modularised in aspects. Joinpoints reside in the WSML and the client. (2) Evidently, AOP
can also be applied inside service implementations. As a Web service is a regular software
application (with a published API for its clients), aspects can be applied locally to help in
achieving better separation of concerns. As the service implementation is hidden away from
its clients in a black-box fashion, this does not alter anything in the service behaviour; from
outside it can be considered an unimportant technical implementation detail. However, in
[BM04] an AOP-extension to WSDL is suggested. As such, the public service interface
is made AOP aware, and clients could remotely add and remove pre-approved aspects in
the service implementation. (3) The third applicability of aspects involves deploying the

200 Chapter 8. Development and Deployment of a Prototype

WSML

Client Web Service

1. AOP in the client environment

WSML

Service

2. AOP in the
service environment

3. AOP in a distributed environment

Service

Service Service

Service

AspectAspectAspect

AspectAspectAspect

AspectAspectAspect

Figure 8.10: Applicability of AOP in SOA

aspect in a distributed fashion, meaning the underlying AOP technology requires distributed
advice support and/or the aspect deployment requires remote pointcut constructors. Note
that this kind of aspects cannot be deployed on third-party services that are not under
the same control as the rest of the SOA as they require to be AOP-enabled, something
that does not meet the original premises of this dissertation, stating that services belong to
different providers. Nevertheless, in a controlled environment, distributed AOP can have
many advantages to enforce concerns that crosscut the service boundaries.

8.8 Conclusions

In this chapter we have discussed how we can obtain implementation for the various ser-
vice related aspects present in the WSML. Various options, including generation of aspect
skeletons, full generation of service redirection aspects based on semantic web matchmaking
and high-level service compositions specifications have been presented. For selection and
management aspects, the option to provide them as reusable templates is chosen. Using
dedicated XML deployment and configuration descriptors, these aspects can be instantiated
in a concrete context, while the use of aspects as an implementation technology is hidden
away. As such, instantiating and configuring the WSML framework can be done at the
administration level, rather than on the implementation level.

A prototype of the WSML has been implemented in Java and JAsCo. It provides support

8.8 Conclusions 201

during development time to specify service types and include them in a client application
using an Eclipse IDE plugin. Next, at deployment time, the WSML can be deployed together
with the client, or run as a dedicated server. Using the XML descriptors, the WSML is
configured and web services and service compositions are registered for the service types.
Additional selection policies and management concerns are deployed accordingly. This
configuration can be changed at runtime through a dedicated web-based administration
console and services.

Finally, the WSML prototype has been integrated in a Service Enabling Platform (SEP)
of Alcatel Bell. The SEP is a service-provisioning platform targeted for broadband Inter-
net and communicates with a variety of management Web services and third-party content
providing Web services. In a integrated demonstrator, the WSML is used to redirect client
requests to Video on Demand (VoD) systems, while taking care of billing, accounting,
promotional discounts and advertisements. The original implementations were unable to
support these scenario’s without having to change the code, but with the WSML these con-
cerns were enforced non-invasively. Furthermore, using the service redirection mechanism of
the WSML could redirect requests easily to the appropriate VoD or billing service without
having to change any code in the SEP.

202 Chapter 8. Development and Deployment of a Prototype

Chapter 9

Conclusions

Abstract In this chapter, the conclusions of this dissertation are presented. First, the
ideas and work presented in this dissertation are summarised stressing on our contributions.
Finally, directions for future research are discussed.

204 Chapter 9. Conclusions

9.1 Summary and Contributions

The goal of this dissertation was to present and implement a mediation framework for the
dynamic integration, composition, selection and client-side management of Web services.

Web service technology is an open standards-based mechanism for communication over
a network. Web services are simple, self-contained applications that perform functions,
from simple requests to complicated business processes. XML is used to encode all commu-
nications to a Web service. Client applications can easily integrate an existing Web service
and communicate with it over a network, regardless of the hardware or platform used on
either side of the wire. As Web services enable computer-to-computer communications in
a heterogeneous environment, they are ideally suited for the Internet.

A Service-Oriented Architecture (SOA) is a term used for a type of application that
integrates and relies on a number of remote Web services. We have observed that the im-
plementation and deployment of a SOA integrating several third-party Web services, poses
a variety of challenges, especially if those services are to be reached over an unpredictable
network such as the Internet. We have identified these challenges and categorised them
as events occurring in a dynamic service environment. These events result in a number
of requirements for the service integration, selection and client-side management process
of the Web services in the client applications. The current approaches dealing with these
processes however, do not provide the needed runtime flexibility to deal with these events.
Web services get hard-wired in the client, or only provide limited flexibility to integrate
functionally equivalent services. The current dynamic service binding mechanisms do not
offer explicit support for key requirements such as compositional mismatches, hot-swapping
and service compositions. Explicit code needs to be added to the client application to deal
with these issues. Not only does this code end up tangled and scattered in the client at every
place where service functionality is required, it is also impossible to deal with unanticipated
events.

If client applications want to take into account non-functional properties of Web services
in order to select the most optimal service for a given request, we observe that there is no
support available for this process. Current service registries only offer key-based searches
to look-up functional compatible services. There is no way to explicitly specify selection
policies based on the Quality-of-Service of the available services, or to take into account
other criteria such as the client context, the client requests towards the services or to
do quality control of the returned results, without explicitly providing code to deal with
these concerns in the client at compile time. However, the notion of which service is most
appropriate is based on the business requirements of the client, and may vary over time. A
flexible way of specifying and enforcing service selection policies at runtime is needed.

Finally, we observe that invoking third-party services is far more complicated than
making a local method invocation. A variety of concerns needs to be dealt with, including
exception handling, billing, logging, service monitoring, authentication, etc. All of these
concerns will need to be reflected in the code of the client. Again, current approaches
require that code dealing with these concerns is provided explicitly and in advance, leading
to tangled and scattered code. Furthermore, service providers may change their policies at
any time requiring adaptations in the client. Current dynamic approaches provide limited

9.1 Summary and Contributions 205

flexibility to deal with these issues, especially when the deployment of the concern is not
limited to the message handling level. In that case, code has to be added explicitly in the
client.

Our approach to tackle these issues, is the Web Services Management Layer (WSML),
which is placed in between the Web services environment and the client. The WSML acts
as a mediation layer to deal with all service related events, leaving the client untouched.
Our approach is not intended to merely fix the flaws in the current Web service stack
and the technologies built around it. Even with improved standard mechanisms and more
robust services technologies, the services environment will remain heterogeneous, due to its
fragmented nature. The fact that service clients need to co-evolve with the Web services they
integrate will remain in the future as it is practically impossible to eradicate incompatibilities
between two independent parties through standardisation. Instead of relying completely on
standardisation it is a good design practice to assume incompatibilities will arise, and to
put mechanisms into place to easily resolve them. The WSML is intended to be a generic
framework offering exactly these capabilities. Next, we will list the contributions of this
dissertation.

The observation that dynamic service environments impose a range of requirements on
the client application and require a high level of flexibility in the client, and the observation
that current approaches fail in providing adequate solutions to offer these runtime flexibility
while realising better separation of service related concerns, lead to the first contribution:

Contribution 1 - A requirements analysis for the integration, selection and
management of Web services in dynamic service environments and an analysis
of current approaches and state-of-the art tools [CV03], [VCJ03].

To address the shortcomings of existing Web service integration approaches in dynamic
service environments, we proposed an architectural framework for the mediation of Web ser-
vices in client applications. An abstraction layer, called Web Services Management Layer
(WSML), is placed in between the client and the world of Web services dealing with all
service related concerns in a transparent way for the client. To modularise every cross-
cutting concern, while providing the ability to deploy the concerns non-invasively, we have
proposed to use Aspect-Oriented Programming (AOP). Service communication and compo-
sition details, selection policies and service management concerns are all ideal candidates
to be modularised in aspects. As the WSML requires a lot of runtime flexibility, we have
opted to use a dynamic AOP approach, which allows for the hot deployment of aspects.
This results in our second contribution:

Contribution 2 - An architecture for a reusable service mediation framework
targeted at dynamic service environments; adopting aspect-oriented design prin-
ciples to implement this framework and the employment of dynamic AOP tech-
nologies for the flexible and dynamic configuration of the framework [VCJ03],
[VCV+04], [CVV+06].

The primary goal of the WSML framework was to provide a dynamic integration mech-
anism for services. For this purpose, service types were introduced. Clients communicate

206 Chapter 9. Conclusions

with service types, which are a generic description of some service functionality without
referencing concrete services. At runtime, client requests on a service type are redirected to
an available service. This mechanism is based on dynamic AOP: all service communication
details and composition details are modularised in service redirection aspects. By manipu-
lating the around advice chains of the deployed aspects, services are dynamically bound to
the client. This brings us to the third contribution:

Contribution 3 - A dynamic service integration mechanism for Web services,
based on service types and service redirection aspects, with support for hot-
swapping, multiple and conditional service binding, compositional mismatches,
service compositions, synchronous and asynchronous communication and con-
versational messaging.[VCV+04], [VJ05]

A second goal of the WSML framework was to offer explicit support for selection poli-
cies specified by the client to guide the service integration process. Selection policies can
specify the expected Quality-of-Service of the available services or take other criteria such
as the client or service context into account. To enforce these policies we have proposed
to modularise each policy in a service selection aspect. As such, the concerns are nicely
modularised and can be deployed non-invasively so that the client code remains untouched.
For policies that take the service behaviour into account we have set up measuring points
using service monitoring aspects. Using aspects, unanticipated policies can be enforced in a
running system whenever the client changes its selection policies. This leads to the fourth
contribution:

Contribution 4 - A service selection mechanism to guide the runtime selec-
tion of services based on the client or service context, and on non-functional
and behavioural service properties by employing selection and monitoring as-
pects [VCJ04], [CV05]

The third goal of the WSML framework was to support the enforcement of a wide
variety of management concerns that are either specified by the service provider, or by
the client itself. As the enforcement of these concerns may require crosscutting code while
they evolve over time, we have encapsulated them in service management aspects. We
have made implementations of various concerns in a reusable manner while dealing with
possible feature interaction of the concerns by employing aspect combination strategies and
connector priorities. This results in the following contribution:

Contribution 5 - A client-side service management mechanism for the enforce-
ment of various service and client-side driven concerns using service manage-
ment aspects [VC04], [CVV+06].

To obtain an implementation of the WSML aspects, we have investigated various ap-
proaches including aspect skeleton code generation, the usage of aspect template libraries
for selection and management concerns and the full generation of redirection aspects using

9.2 Future Work 207

semantic service documentation or high-level UML composition specifications. These ap-
proaches have been realised in a prototype, implemented in Java and JAsCo. The WSML
prototype offers support at development time of client applications via its integration in
the Eclipse IDE; at deployment time via deployment descriptors and at runtime via ad-
ministration and monitoring console and administration services. This leads to the sixth
contribution:

Contribution 6 - A prototype of the WSML developed in Java and JAsCo and
running on a production scale server. Tool support is realised for the develop-
ment of service-oriented applications in Eclipse, a state-of-the-art IDE. Runtime
configuration of the WSML is done through web-based administration interfaces
and an XML-based configuration language [CVS+04a], [CVV+06]

As a concrete case, the WSML has been deployed on the Service Enabling Platform
(SEP) an open telecom platform for broadband service delivery of Alcatel Bell. The WSML
was used in a Video-on-Demand scenario to take care of the billing procedures and the
redirection to the appropriate content and mobile phone providers, which brings us to our
final contribution:

Contribution 7 - The successful deployment of the WSML on a Service En-
abling Platform (SEP), an open telecom platform for broadband service delivery
of Alcatel Bell to facilitate the integration with different content and mobile
phone providers [VC05], [VVJ06].

9.2 Future Work

9.2.1 High-Level Business Rules Language

As we have discussed in this dissertation, a lot of the decisions to deploy and configure the
WSML are taken at the business level, for instance the specification of selection policies
and the deployment of specific client-side management concerns. We have proposed a
framework where each of these concerns is decoupled from the rest of the application. As a
result, we have obtained a large amount of runtime flexibility and configurability. However,
which aspects are to be deployed and how they are to be configured is done manually
as aspect instances are created at runtime, e.g. through XML configuration descriptors.
Specific aspects can however partially automate this task (for instance, a caching aspect
can be triggered only when the service becomes too slow, something that is measured by
a monitoring aspect), but even then, these aspects need to be deployed manually. Also, if
a selection policy reasons about a service property that is not available in the system, this
property has to be added manually in the system, or automatically through an additional
monitoring aspect or another polling or notification mechanism.

The decisions when an aspect needs to be deployed are essentially business rules and the
properties or features these rules reason about are low-level domain specific concepts. By
externalising these business rules and by introducing a high-level domain model that allows

208 Chapter 9. Conclusions

for their specification in terms of domain concepts, the instantiation of the WSML aspects
can become more automated. Following a Model-Driven Engineering (MDE) approach,
high-level rules and their connections in the WSML could be automatically translated into
code. This approach has been proposed recently in [CDJ06]. The novelty of this approach
is the use of AOP for mapping the domain model to implementation. In [CDJ06] it is shown
how a high-level business rule language can be used to express and enforce the dynamic
business rules that guide the customisation of the WSML: existing rules are externalised
and new rules can be easily added, enhancing the adaptability of the WSML. This ap-
proach has three clear advantages: first, at runtime the varying conditions that guide the
different selection, integration and management tasks offered by the WSML; second, we can
non-invasively extend the core functionality of the WSML, abstracting from its technical
complexity; third, it is possible to add rules that refer to runtime service properties that
were not foreseen in the existing WSML implementation.

9.2.2 Usability Analysis

As discussed in Chapter 8, section 8.6, validation of the WSML approach is not trivial.
Demonstrating or proofing the usability of our approach can de done through various cri-
teria, including measuring its flexibility, operability and end-user attractiveness. In this
dissertation, we have demonstrated the operability of our approach by developing a work-
ing prototype and deploying it in a complex real-world distributed setup. The supported
flexibility of the prototype is determined by the set of events we support based on the re-
quirements analysis made in Chapter 3. However, this does not guarantee that the level
of flexibility offered is high enough to withstand any changes or evolutions in an actual
third party service environment. A possible setup to measure the level of flexibility is to
determine a set of representative third party Web services available on the Internet, in-
tegrate them through our approach in a client and then monitor if the system eventually
breaks over time or not. Measuring the quality of the approach with respect to end-user
friendliness could be done in a similar manner. Groups of test-users could be assigned in
an experiment to use the WSML and its support tools. Note that these tools, including the
WSML plugin for the Eclipse IDE, were designed and implemented as a proof-of-concept
and should therefore be further tested and debugged before being deployed in such experi-
ments. Another interesting criterium is the level of abstraction provided in our approach to
hide away the use of aspect technology for the administrative level of WSML configuration.
If the runtime flexibility and capabilities of the WSML turn out to be too limited, one will
have to resort to the manual implementation of additional aspects, which obviously requires
more expert skills. It can be assumed that this risk can be reduced by either extending
the available aspect library before deployment time or by facilitating the implementation
efforts for the developer. This can be done by providing additional tool support and API’s
or by improving the automatic generation of aspect code, the later being a research topic
on its own.

9.2 Future Work 209

9.2.3 Process Description Language

The service redirection aspects in the WSML contain service communication details or
composition details. They are either implemented manually (possibly after a step of aspect
skeleton generation), or they are generated out of mapping containing a series of state-
ments or out of a high-level UML composition specification. Completely automated code
generation is pursued using semantically annotated Web services and service types. In-
teresting future work is the further investigation of the automated determination of the
compatibility between the service types and the concrete Web services, and the automatic
generation of glue code, even if this involves the specification of (simple) service composi-
tions. For complex compositions involving complete workflows or business processes, the
automated mapping to executable code is another research track. One of the goals of
Wit-case, the follow-up IWT-project of the Mosaic project, which involved the WSML, is
to realise a service creation environment (SCE). This SCE focuses on the visualisation of
service compositions, while offering support for crosscutting concerns through a dedicated
aspect language, called Padus [BVJ+06].

9.2.4 Performance Modelling

One of the weak points of Web services technology is performance. For the developer of the
client application it becomes a problem to make assumptions about the performance, as
certain factors such as the Internet and third-party services fall outside his or her control.
As a result, it is very difficult to make performance guarantees to the customer. The
selection policies introduced in this dissertation are a first step to alleviate this problem
as the WSML will only communicate with Web services that provide the desired Quality-
of-Service. However, in order to to be able to specify selection policies that make sense
for more advanced applications, one needs more advanced performance modelling. There
are specific formalism available for performance modelling, such as the Layered Queuing
Network models (LQN). More research is needed to apply these models to the complex case
of applications where services are dynamically integrated and where the performance can
be optimised by selecting other functionally equivalent services. Another possible research
track is to specify high-level descriptions of the application, as done in [VDGD05] and to
generate automatically performance models for it. From those performance models, early
indications of the system performance can be extracted and validated at runtime.

9.2.5 Distributed WSML

In this dissertation, the WSML is primarily focussed on dealing with service related concerns
from the client perspective while the Web services remain under control of the third-party
service providers. The WSML mediates between the client and the services and adapts
to the services. However, aspects can also play an important role in a more controlled
environment where a set of services are deployed in a SOA and each service is under the same
organisational control. In that case, truly distributed aspects can be deployed for a variety
of concerns and scenarios. An example already discussed in this dissertation is distributed
monitoring. As mentioned above, SOAs are frequently performance-critical. One way to

210 Chapter 9. Conclusions

measure performance consists in setting up distributed measurement points as part of the
SOA for each sub-processes, network communication and the involved Web services. Based
on this, bottlenecks can be analysed and actions undertaken. For instance, calls to slow
services can be distributed over multiple semantically equivalent services, network traffic
on congested networks can be optimised by installing caching functionality and service
invocations that take a long time can be executed in advance.

Another possible scenario are decentralized compositions. In approaches such as WS-
BPEL and WSML, the compositions are centralised in one place, possibly causing a bot-
tleneck. In a distributed approach, the different parts of the service composition become
decentralized and each node deals with a particular subset of the business process at dif-
ferent locations within the distributed system. The nodes communicate directly with each
other to transfer data and control, instead of relying on a central coordinator. In that
case, the management concerns such as exception handling and logging also need to become
distributed. In [NSVV06] we have recently proposed a distributed version of the WSML,
where a dedicated distributed AOP language, Aspects with Explicit Distribution (AWED),
is used for modularising concerns that need to be enforced on multiple hosts.

Appendix

A prototype of the Web Services Management Layer (WSML) has been developed in Java.
It is available for download at http://ssel.vub.ac.be/wsml. The WSML runs on any ma-
chine with the Java 2 1.5 Runtime Environment installed. The system has been tested on
various platforms, including Windows, Linux and MacOS X. The WSML relies on various
technologies:

• JAsCo: the WSML uses JAsCo technology to compile and deploy aspects. The
latest version of JAsCo is included in the WSML and automatically installed with the
WSML prototype. http://ssel.vub.ac.be/jasco

• Jetty: Jetty is an open-source Java HTTP Server and Servlet Container used for the
web-based administration console used to configure the WSML at runtime. The dy-
namic content of the console is generated using a combination of XSL Transformations
and XML. Jetty is automatically installed with WSML. http://jetty.mortbay.org

• Systinet Server: When running as a server, the WSML relies on the Systinet Server
for Java, an industry scale application server, for the deployment of the service types
as Web services. Systinet Server is also used for the generation of client-side proxies
of remote Web services and for the deployment of the administration services and test
services. The Systinet Server for Java can be downloaded from the Systinet website.
http://www.systinet.com

• .NET: for cross-platform testing, some test services are developed in C# and deployed
on Microsoft Internet Information Services (IIS). An example scenario is included in
the WSML prototype, with both Java and .NET clients and Web services. There
is also a .NET version of the WSML administration console available. The .NET
framework is an optional requirement. http://msdn.microsoft.com/netframework/

Installing the WSML prototype is done in four steps:

1. Make sure Java 2 1.5 Runtime environment is installed. The bin folder of the Java
environment must be added to the system PATH environment variable.

2. Install the Systinet Server for Java. Add JAVA HOME as a new environment variable.
It should point to the installation directory of Java. Optionally you can add the /bin
folder to the PATH environment variable.

212 Chapter 9. Conclusions

3. Unzip the WSML.zip file to a folder. This will be the installation folder of the WSML.
Run setup.bat or setup.sh located in the folder of the WSML to start the setup
procedure. Follow the instructions of the installation wizard.

4. When the setup procedure completes, the WSML framework is installed. It can be
started by running WSML.bat or WSML.sh in the WSML folder.

There are various options to configure the WSML. The easiest way is to use the WSML
administration console, which is available at http://localhost:8080 when the WSML
is running. The console can be used to specify and deploy service types, Web services,
service compositions, selection policies and management concerns. Every configuration
is automatically saved as XML configuration files for persistent deployment. The XML
configuration files can also be written and manipulated directly. They are located in the
XMLconfiguration subfolder of the WSML. Alternatively, the WSML can enable a set of
administration Web services that can be invoked from the client application, third-party
Web services are other applications. More information is available in the included readme
document.

Bibliography

[ABH+02] Ankolekar, A., Burstein, M., Hobbs, J.R. et al. DAML-S: Web Service Descrip-
tion for the Semantic Web. Proceedings of First International Semantic Web
Conference (Sardinia, Italy, June 2002), ISWC’02, Lecture Notes in Computer
Science, Volume 2342, pp.348-363.

[ACD+03] Andrews, T. , Francisco Curbera, F., Dholakia, H. et al. Business Pro-
cess Execution Language for Web Services (BPEL4WS), Specification ver-
sion 1.1. International Business Machines, Siebel Systems, May 2003.
http://www.ibm.com/Developer Works/library/ws-bpel/

[ADH+02] Atkinson, B., Della-Libera, G., Hada, S., et al. Web Services Se-
curity (WS-Security), Specification version 1.0. International Business
Machines Corporation, Microsoft Corporation, VeriSign, April 2002.
ftp://www6.software.ibm.com/software/developer/library/ws-secure.pdf

[AH05] van der Aalst, W.M.P. and ter Hofstede A.H.M. YAWL: Yet Another Workflow
Language. Information Systems, Elsevier, Volume 30, Issue 4, June 2005, pp.
245-275.

[AHM+03] Arsanjani, A., Hailpern, B., Martin, J. et al. Web Services Promises and Com-
promises. ACM Queue, Volume 1, Issue 1, ACM Press, New York, USA, March
2003, pp. 48-58.

[Ana05] Ananiev, A.S. Implement a Web service that deals with complex XML
document, International Business Machines Developer Works, Novem-
ber 2005. http://www-128.ibm.com/Developer Works/webservices/library/ws-
complexml.html

[Apa02] Apache Software Foundation, Apache Axis Web Services Framework. 2002,
home page at http://ws.apache.org/axis/

[Apa03] Apache Software Foundation, Apache Web Services Invocation Framework
(WSIF). 2003. home page at http://ws.apache.org/wsif/

[BA01] Bergmans, L. and Aksit, M. Composing Crosscutting Concerns Using Compo-
sition Filters. Communications of the ACM, Volume 44, Issue 10, ACM Press,
New York, USA, October 2001, pp. 51-57.

214 BIBLIOGRAPHY

[Ban02] Ban, B. JGroups, a toolkit for reliable multicast communication, 2002, home
page at http://www.jgroups.org/

[BB03] Burke, B. and Brock, A. The Aspect Oriented Program-
ming and JBoss tutorial, OnJava, O’Reilly Media, May 2003.
http://www.onjava.com/pub/a/onjava/2003/05/28/aop jboss.html

[BBB+02] Banerji, A., Bartolini, C., Beringer, D. et al. Web Services Conversation Lan-
guage (WSCL), Specification version 1.0. W3C Note, w3.org, March 2002.

[BBC+05] Bilorusets, R.. Box, D., Cabrera, L.F. et al. Web Services Reliable Messaging
Protocol (WS-ReliableMessaging) Specification. W3C Member Submission W3C
February 2005.

[BBD+05] de Bruijn, J., Bussler, C., Domingue, J. et al. Web Service Modeling Ontology
(WSMO). W3C Member Submission, June 2005.

[BCC+04a] Box, D., Christensen, E., Curberaet, F. et al. Web Services Addressing (WS-
Addressing) Specification. W3C Member Submission, August 2004.

[BCC+04b] Bellwood, T., Capell, S., Clement, L. et al. Universal Discovery, Discovery,
and Integration (UDDI) Specification version 3.02,October 2004.

[BCC+04c] Box, D., Cabrera, L., Critchley, C. et al. Web Services Eventing (WS-Eventing),
W3C Member Submission, August 2004.

[BCH+03] Box, D., Curbera, F., Hondo, M. et al. Web services policy framework (WS-
Policy), Specification version 1.1. International Business Machines, Microsoft
Corporation, et.al., May 2003.

[BFD99] Berners-Lee, T., Fischetti, M. and Dertouzos, T. M. Weaving the Web. Harper-
Collins, New York, NY, USA, first edition, 1999.

[BHMO04] Bockisch, C., Haupt, M., Mezini, M., and Ostermann, K. Virtual machine sup-
port for dynamic join points. In Proceedings of the third international Confer-
ence on Aspect-Oriented Software Development (Lancaster, UK, March 2004).
AOSD ’04. ACM Press, New York, NY, USA, pp. 83-92.

[BM04] Baligand, F. and Monfort, V. A concrete solution for web services adaptability
using policies and aspects. Proceedings of International Conference on Service-
Oriented Computing (New York, NY, USA, November 2004), ICSOC 2004, pp.
134-142.

[Boner04] Bonér, J. What are the key issues for commercial AOP use – how does
AspectWerkz address them. Proceedings of the Third International Confer-
ence on Aspect-Oriented Software Development (Lancaster, UK, March 2004),
AOSD’04, ACM Press, New York, NY, 2004, pp. 5-6.

[BSP+01] Burstein, M,., Sycara, K., Paolucci, M., et al. OWSL-S, web ontology language.
2001, home page at http://www.daml.org/services/owl-s/

BIBLIOGRAPHY 215

[BSV06] Navarro, L.D.B., Südholt, M., Vanderperren, W., et al. Explicitly distributed
AOP using AWED. Proceedings of the Fifth International Conference on Aspect-
Oriented Software Development (Bonn, Germany, March 2006), AOSD’06, ACM
Press, New York, Npp. 51-62.

[Burn03] Burner, M. The Deliberate Revolution, ACM Queue, Volume 1, Issue 1, pp.
28-37, ACM Press, New York, USA, March 2003.

[Bus00] The Business Rules Group. Defining Business Rules: What Are They Really?
home page at http://www.businessrulesgroup.org/, July 2000.

[Butek05] Butek, R. Which style of WSDL should I use? Internation Business
Machines Developer Works, May 2005, http://www-128.ibm.com/Developer
Works/webservices/library/ws-whichwsdl

[BV85] Brans, J.P. and Vincke, P. A Preference Ranking Organisation Method: (The
PROMETHEE Method for Multiple Criteria Decision-Making). Management
Science, Volume 31, Issue 6, June 1985, pp. 647-665.

[BVJ06] Braem, M., Verlaenen, K., Joncheere, N., et al. Isolating Process-Level Concerns
Using Padus. Proceedings of the fourth International Conference on Business
Process Management (Vienna, Austria, September 2006), BPM 2006, LNCS
Springer-Verlag. (to appear)

[BW03] Balke, W.-T., Wagner, M. Towards Personalized Selection of Web Services. Pro-
ceedings of the twelfth International World Wide Web Conference (Budapest,
Hungary, May 2003), WWW ’03, ACM Press, New York, NY, USA, 2003.

[CBR03] Colyer, A., Blair, G. and Rashid, A. Managing Complexity in Middleware. Pro-
ceedings of the at Workshop on Aspects, Components and Patterns for Infras-
tructure Software at The Second International Conference on Aspect-Oriented
Software Development (Boston, MA, March 2003), AOSD’03.

[CCF+05] Cabrerra, L.F., Copeland, G., Feingold, M., et al. Web Services Atomic
Transaction (WS-AtomicTransaction) Specification version 1.0, August 2005,
available at ftp://www6.software.ibm.com/software/developer/library/WS-
AtomicTransaction.pdf

[CCMW03] Christensen, E., Curbera, F., Meredith, G., Weerawarana, S. Web Services
Description Language (WSDL) Specification version 1.2. W3C Technical Docu-
ments, W3C Web Services Activity, March 2003.

[CDJ03] Cibrán, M. A., D’Hondt, M., Jonckers, V. Aspect-Oriented Programming for
Connecting Business Rules. Proceedings of the sixth International Conference
on Business Information Systems (Colorado Springs, CO, June 2003), BIS’03.

[CDJ06] Cibrán, M. A., D’Hondt, M. and Jonckers, V. Mapping high-level business rules
to and through aspects. journal L’Object, Hèrmes (to appear 2006).

216 BIBLIOGRAPHY

[CDS03] Cibrán, M. A., D’Hondt, M., Suvee, D., Vanderperren, W. and Jonckers, V.
JAsCo for Linking Business Rules to Object-Oriented Software. Proceedings of
International Conference on Computer Science, Software Engineering, Informa-
tion Technology, e-Business, and Applications (Rio De Janeiro, Brazil, June
2003), CSITeA’03, pp. 1-7.

[CE05] Cottenier, T. and Elrad, T. Dynamic and decentralized service composition with
contextual aspect-sensitive services. Proceedings of the First International Con-
ference on Web Information Systems and Technologies (Miami, USA, May 2005),
WEBIST 2006.

[CFF+04] Czajkowski, K., Ferguson, D.F., Foster, I. et al. The Web Services Resource
Framework (WSRF). Specification version 1.0, The Globus Alliance, August
2004.

[Chin03] Chinnici, R., Java(TM) API for XML-based Remote Procedure Call (JAX-RPC)
Specification. Sun Microsystems, October 2003, pp. 167.

[Chung91] Chung, L. Representation and utilization of non-functional requirements for in-
formation system design. Proceedings of the third International conference on
Advanced information systems engineering (Trondheim, Norway, 1991), CAiSE
’91, Lecture Notes in Computer Science , Volume 498, Springer-Verlag, New
York, NY, 1991, pp. 5-30.

[CIJ+00] Casati, F., Ilnicki, S., Jin, L et al. Adaptive and Dynamic Service Composi-
tion in eFlow. Proceedings of the third International conference on Advanced
information systems engineering (Stockholm, Sweden, June 2000), CAiSE 2000,
Lecture Notes in Computer Science, Volume 1789, Springer, New York, NY,
2000, pp. 13-31.

[CJ01] Chakraborty, D. and Joshi, A. Dynamic Service Composition: State of the Art
and Research Directions” Technical Report TR-CS-01-19, Department of Com-
puter Schience and Electrical Engineering, University of Maryland, 2001.

[CM04] Charfi, A and Mezini, M. Aspect-Oriented Web Service Composition with
AO4BPEL” Proceedings of the European Conference on Web Services (Växjo,
Sweden, 2004), ECOWS’04, Lecture Notes in Computer Science, Volume 3250,
Springer, New York, NY, 2004.

[CSH+04] Cibrán, M. A., Suvée, D., D’Hondt, M., Vanderperren, W. and Jonckers,
V., Integrating Rules with Object-Oriented Software Applications using Aspect-
Oriented Programming. Proceedings of the fifth Argentine Symposium on Soft-
ware Engineering (Córdoba, Argentina, September 2004), ASSE 2004.

[CV03] Cibrán, M. A. and Verheecke, B. Modularizing Web Services Management with
AOP, Proceedings of the First European Workshop on Object-Orientation and
Web Services at the seventeenth European Conference on Object-Oriented Pro-
gramming, (Darmstadt, Germany, July 2003), ECOOP’03.

BIBLIOGRAPHY 217

[CV05] Cibrán, M. A. and Verheecke, B. Dynamic Business Rules for Web Service
Composition. Proceedings of the Second Dynamic Aspects Workshop (DAW05),
the fourth International Conference on Aspect-Oriented Software Development
(Chicago, Il, USA, March 2005), AOSD’05, RIACS Technical Report 05.01,
2005, pp. 13-18.

[CVJ03] Cibrán, M. A., Verheecke, B. and Jonckers, V. Modularizing Client-Side Web
Service Management Aspects. Proceeding of the Second Nordic Conference on
Web Services (Växjo, Sweden, November 2003), NCWS’03, Vajxo University
Press, Series: Mathematical Modelling in Physics, Engineering and Cognitive
Sciences, Volume 8, pp. 1-12.

[CVS+04a] Cibrán, M. A., Verheecke, B., Suvee, D. and Vanderperren, W. A web services
management layer for the selection, integration and management of web ser-
vices. Formal Research Demo at the eighteenth European Conference on Object-
Oriented Programming (Oslo, Noway, June 2004), ECOOP 2004.

[CVS+04b] Cibrán, M. A., Verheecke, B., Suvee, D., Vanderperren, W. and Jonckers, V.
Automatic Service Discovery and Integration using Semantic Descriptions in
the Web Services Management Layer. Proceedings of Third Nordic Conference
on Web Services (Växjo, Sweden, November 2004), NCWS’04, Journal of Math-
ematical modelling in Physics, Engineering and Cognitive Sciences, Volume 11,
2004, pp.79-89.

[CVV+06] Cibrán, M. A., Verheecke, B., Vanderperren, W., Suvee, D. and Jonckers, V.
Aspect-Oriented Programming for Dynamic Web Service Selection, Configura-
tion and Management. World Wide Web Journal (WWWJ), Springer, 2006. (to
appear).

[DEM02] Duclos, D., Estublier, J. and Morat. P. Describing and using non functional
aspects in component based applications. Proceedings of the first international
Conference on Aspect-Oriented Software Development (Enschede, The Nether-
lands, April 2002), AOSD’02, ACM Press, New York, NY, USA, 2002, pp.
65-75.

[Deu91] Deutch, P. J. The Eight Fallacies of Distributed Computing. defined at Sun
Microsystems Labs, 1991-92, http://today.java.net/jag/Fallacies.html

[DFS02] Douence, R., Fradet, P. and Südholt, M. “A framework for the detection and
resolution of aspect interactions. The ACM SIGPLAN/SIGSOFT Conference on
Generative Programming and Component Engineering (Pittsburgh, PA, USA,
October 2002), GPCE’02, Lecture Notes in Computer Science, Volume 2487,
Springer-Verlag, 2002, pp. 173–188.

[DFS04] Douence, R., Fradet, P. and Südholt, M. Composition, Reuse and Interac-
tion Analysis of Stateful Aspects. Proceedings of the third international Confer-
ence on Aspect-Oriented Software Development (Lancaster, UK, March 2004),
AOSD’04, ACM Press, New York, NY, 2004, pp. 141-150.

218 BIBLIOGRAPHY

[DJ04] D’Hondt, M., Jonckers, V. Hybrid Aspects for Weaving Object-Oriented Func-
tionality and Rule-Based Knowledge. Proceedings of the third international
Conference on Aspect-Oriented Software Development (Lancaster, UK, March
2004), AOSD’04, ACM Press, New York, NY, 2004, pp. 132-140.

[Dun02] Dunham, M.H. Data Mining, Introductory and Advanced Topics. Prentice Hall,
Upper Saddle River, New Jersey, first edition, August 2002, pp. 336.

[DVS05] De Fraine, B., Vanderperren, W., Suvee, D. et al. Jumping Aspects Revisited.
Proceedings of the Second Dynamic Aspects Workshop (DAW05), Research In-
stitute for Advanced Computer Science, Technical Report 05.01, workshop at
the fourth International Conference on Aspect-Oriented Software Development
(Chicago, Il, USA, March 2005), AOSD’05, pp. 77-86.

[EFB01] Elrad, T., Filman, R.E. and Bader, A. Aspect-oriented programming: Introduc-
tion, Communications of the ACM, Volume 44, Issue 10, pp, 29-32, ACM Press,
New York, USA, October 2001.

[EH99] Edmond. D. and Hofstede, A, Achieving Workflow Adaptability by means of
Reflection. ACM SIGGROUP bulletin, Volume 20, Issue 3, December 1999, pp.
10.

[EMP05] Erradi, A., Maheshwari, P., Padmanabhuni, S. Towards a Policy-Driven Frame-
work for Adaptive Web Services Composition Proceedings of the first Interna-
tional IEEE Conference on Next Generation Web Services Practices (Seoul,
South Korea, August 2005), NWeSP 2005, IEEE Press, pp. 33-38.

[FB02] Fensel, D. and Bussler, C. “The Web Service Modeling Framework (WSMF)”,
Electronic Commerce Research and Applications, Volume 1, Issue 2, 2002, pp.
113-137.

[FBL+02] Filman, R.E., Barrett, S. Lee D. et al. Inserting Ilities by Controlling Commu-
nications. Communications of the ACM, Volume 45, Issue 1, January 2002, pp.
116-122.

[FFG04] Foster, I., Frey, J., Graham, S. et al., Modeling stateful resource with Web ser-
vices Whitepaper, International Business Machines Developer Works, January
2004.

[FGM+99] Fielding, R., Gettys, J., Mogul, J. et al. Hypertext Transfer Pro-
tocol – HTTP/1.1. Internet RFC 2616 , W3C, October 1999,
http://www.w3.org/Protocols/rfc2616/rfc2616.html

[FGWP01] Feng, N., Gang, A., White, T., and Pagurek, B. Dynamic Evolution of Net-
work Management Software by Software Hot-Swapping Proceedings of the Sev-
enth IFIP/IEEE International Symposium on Integrated Network Management
(Seattle, WA, USA, May 2001), IM 2001, pp. 63-76.

[FICA04] Filman, R.E., Elrad, T., Clarke S. and Aksit, M. Aspected-Oriented Software
Development. Addison Wesley Professional, October 2004, pp. 800.

BIBLIOGRAPHY 219

[FR03] Fleury, M. and Reverbel, F. “The JBoss Extensible Server”, Proceedings of the
fourth Middleware International Conference (Rio de Janeiro, Brazil, January
2003), Lecture Notes in Computer Science, Volume 2672, Springer, 2003.

[FS97] Fowler, M. and Scott K. UML distilled: applying the standard object modeling
language. Addison-Wesley Longman Ltd. Essex, UK, 1997.

[FS02] Farias, A. and Südholt, M. “On components with explicit protocols satisfying a
notion of correctness by construction. International Symposium on Distributed
Objects and Applications 2002, (Irvine, CA, USA, October 2002), DOA’02,
Lecture Notes in Computer Science, Volume 2519, Springer, 2002.

[FW04] Fallside, D.C., and Walmsley., P. XML Schema Part 0: Primer, Second Edition.
W3C Recommendation Document, October 2004.

[Gar03] Garfinkel. T. Traps and pitfalls: Practical problems in system call interposition
based security tools. Proceedings of the Symposium on Network and Distributed
Systems Security (SNDSS), February 2003, pp. 163-176.

[GGT03] Gibbs, K., Goodman, B. and Torres, E. Create Web services using
Apache Axis and Castor. Technical Article, International Business Ma-
chines Developer Works, September 2003, http://www-128.ibm.com/Developer
Works/webservices/library/ws-castor/

[GHJ95] Gamma, E., Helm, R., Johnson, R. et al. Design patterns: elements of reusable
object-oriented software. Addison-Wesley, Boston, MA, USA, first edition, Jan-
uary 1995, pp. 395.

[GHM+03] Gudgin, M., Hadley, M., Mendelsohn, N., et al. “SOAP Version 1.2 Part 1:
Messaging Framework”, W3C Recommendation, June 2003.

[GKPG+05] Grosof, B. N. , Kabbaj, Y. , Poon, T. C. , Ghande, M. et al., “Semantic Web
Enabling Technology (SWEET)”, http://ebusiness.mit.edu/bgrosof/

[GNYW01] Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D. and Xu, D., An xml-based
quality of service enabling language for the web. Technical report, Champaign,
IL, USA, 2001.

[Hall01] von Halle, B. Business Rules Applied Building Better Systems Using the Busi-
ness Rules Approach. Wiley, first edition, September 2001, pp. 464.

[HHJ+99] Heinl, P., Horn, S., Jablonski, S. et al. “A comprehensive approach to flexibility
in workflow management systems. Proceedings of the International Conference
on Work activities Coordination and Collaboration (San Francisco, California,
USA, February 1999), WACC ’99, ACM Press, 1999, pp. 79-88.

[HHK02] Hofreiter, B., Huemer, C., Klas, W. ebXML: status, research issues, and obsta-
cles. Proceedings of the Twelfth International Workshop on Research Issues in
Data Engineering: Engineering E-Commerce/E-Business Systems (San Diego,
CA, USA, February 2002), RIDE-2EC 2002, pp. 7-16.

220 BIBLIOGRAPHY

[HM00] Hendler, J. and McGuinness, D. The DARPA Agent Markup Language. IEEE
Intelligent Systems, Volume 15, Issue 6, November/December 2000, pp. 72–73.

[HM01] Haarslev V. and Möller, R. RACER system description. Proceedings of Interna-
tional Joint Conference on Automated Reasoning (Siena, June 2001), IJCAR’01,
Lecture Notes in Computer Science, Volume 2083, Springer, 2001, pp. 701.

[JHA+05] Johnson, R. , Hoeller, J. , Arendsen, A. et al. “Spring- Java/J2EE
Application Framework”. Reference Documentation Version 1.2.8,
http://www.springframework.org/docs/reference/index.html

[JRM04] Jaeger, M.C., Rojec-Goldmann, G. and Muhl, G. QoS Aggregation for Web
Service Composition using Workflow Patterns. Proceedings of Eighth IEEE In-
ternational Enterprise Distributed Object Computing Conference (Monterey,
California, USA , September 2004), EDOC’04, pp. 149-159.

[KB04] Karastoyanova, D. and Buchmann, A. Extending Web Service Flow Models
to Provide for Adaptability”, Proceedings of Workshop on Web Services and
Service-Oriented Architecture Best Practices and Patterns, at the Nineteenth
ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Lan-
guages and Applications (Vancouver, Canada, October 2004), OOPSLA 2004.

[KL03] Keller, A. and Ludwig, H. The WSLA Framework: Specifying and Monitoring
Service Level Agreements for Web Services. Journal of Network and Systems
Management, Volume 11, Number 1, Springer, Netherlands, March 2003, pp.
57-81.

[KLM+97] Kiczales, G., Lamping J., Mendhekar, A., et al. Aspect-Oriented Programming.
Proceedings of the eleventh European Conference on Object-Oriented Program-
ming (Jyväskylä, Finland, June 1997), ECOOP 1997, Lecture Notes in Com-
puter Science, Volume 1241, Springer, 1997, pp.220-242.

[Kirt00] Kirtland, M. The Programmable Web: Web Services Provides Building Blocks
for the Microsoft .NET Framework. MSDN Magazine, Volume 15, Number 9,
September 2000.

[KG02] Kienzle J., and Guerraoui, R. Aop: Does it make sense? the case of concur-
rency and failures. Proceedings of the sixteenthEuropean Conference on Object-
Oriented Programming (Málaga, Spain, June 2002), ECOOP 2002, Lecture
Notes in Computer Science, Volume 2374, Springer, 2002.

[KHH+01] Kiczales, G., Hilsdale, E., Hugunin, J. et al. An overview of AspectJ. Proceed-
ings of the fifteenth European Conference on Object-Oriented Programming
(Budapest, Hungary, June 2001), ECOOP’01, Lecture Notes in Computer Sci-
ence, Volume 2072, Springer, 2001.

[KK04] Keidl, M. and Kemper, A. Towards context-aware adaptable web services. Pro-
ceedings of the 13th international World Wide Web Conference on Alternate
Track Papers & Posters (New York, NY, USA, May 2004). WWW Alt. ’04.
ACM Press, New York, NY, pp. 55-65.

BIBLIOGRAPHY 221

[KR03] Kleijnen, S. and Raju, S. An Open Web Services Arcitecture. ACM Queue,
Volume 1, Issue 1, ACM Press, New York, USA, March 2003, pp. 38-46.

[KRRS96] Kappel, G., Rausch-Schott, S. , Retschitzegger, W. and Sakkinen, M. From rules
to rule patterns. Proceedings of the International Conference on Advanced Infor-
mation Systems Engineering, (Heraklion, Crete, Greece, May 1996), CAiSE’96,
Lecture Notes in Computer Science, Volume 1080, Springer, 1996, pp. 99-115.

[LH89] Lieberherr, K. and Holland, I. Assuring Good Style for Object-Oriented Pro-
grams. IEEE Software, Volume 6, Issue 5, September 1989, pp. 38-48.

[Lind05] Lindsay, G. Increase Your Application’s Reach Using WSDL to
Combine Multiple Web Services. MSDN Magazine, March 2005.
http://msdn.microsoft.com/msdnmag/issues/05/03/WSDL/default.aspx

[LNZ04] Liu, Y., Ngu, A.H. and Zeng, L.Z. QoS computation and policing in dynamic
web service selection. Proceedings of the 13th international World Wide Web
Conference on Alternate Track Papers & Posters (New York, NY, USA, May
2004). WWW Alt. ’04. ACM Press, New York, NY, 66-73.

[LOO01] Lieberherr, K., Orleans, D. and Ovlinger, J. Aspect-oriented programming with
adaptive methods. Communications of the ACM, Volume 44, Issue 10, ACM
Press, New York, USA, October 2001, pp. 39-41.

[LPP+05] Loughran, N. ,Parlavantzas, N., Pinto, M., Fernández, L.F. et al. Survey of
aspect-oriented middleware research. Lancaster University, Lancaster, AOSD-
Europe Deliverable D8, AOSD-Europe-ULANC-10, June 2005, pp. 115.

[LS05] Loughran, S., Smith, E. Rethinking the Java SOAP Stack. Proceedings of the
IEEE International Conference on Web Services (Orlando, FLA, USA, July
2005), ICWS’o5, IEEE, 2005.

[LSS05] Lohmann, D., Schroder-Preikschat, W. and Spinczyk, O. Functional and Non-
Functional Properties in a Family of Embedded Operating Systems. Proceedings
of the tenth IEEE International Workshop on Object-Oriented Real-Time De-
pendable Systems (Sedona, Arizona, USA, February 2005) Words 2005, IEEE,
pp. 413-420.

[LVV03] Lämmel, R., Visser, E. and Visser, J. Strategic Programming Meets Adap-
tive Programming. In Proceedings of The Second International Conference on
Aspect-Oriented Software Development (Boston, MA, March 2003), AOSD’03,
ACM Press, New York, NY, USA, 2003, pp. 168-177.

[MMN+06] Mostéfaoui, G.K., Maamar, Z., Narendra, N. C. et al. Decoupling Security
Concerns in Web Services Using Aspects, Proceedings of the 3th International
Conference on Information Technology (2006), ITNG’06, pp. 20-27.

[MN02] Mani, A. and Nagarajan A., Understanding quality of service for Web services,
International Business Machines Developer Works, January 2002. http://www-
128.ibm.com/Developer Works/library/ws-quality.html

222 BIBLIOGRAPHY

[MO03] Mezini, M. and Ostermann, K. Conquering Aspects with Caesar. Proceedings
of the 2nd international Conference on Aspect-Oriented Software Development
(Boston, MA, USA, March 2003). AOSD’03. ACM Press, New York, NY, USA,
2003, pp. 90-99.

[MPM+05] Martin, D., Paolucci, M., McIlraith, S. et al. Bringing Semantics to Web Ser-
vices: The OWL-S Approach. Proceedings of First International Workshop on
Semantic Web Services and Web Process Composition (SWSWPC 2004) at the
IEEE International Conference on Web Services (San Diego, CA, USA, July
2004), ICWS’04, Lecture Notes in Computer Science, Volume 3387, Springer,
2004.

[Ms03] Microsoft. Microsoft Visual Studio.NET 2003. home page at
http://msdn.microsoft.com/vstudio/previous/2003/

[MS04] Maximilien, E.M., Singh, M.P. A framework and ontology for dynamic Web
services selection. Internet Computing, IEEE, Volume 8, Issue 5, September
2004, pp. 84-93.

[MSDN04] MSDN Network. Application Integration. MSDN Academic Alliance, Microsoft
MainFunction, July 2004.

[MTSM03] McGovern, J., Tyagi, S., Stevens, M. and Mathew, S. Java Web Services Ar-
chitecture. Morgan Kaufmann, July 2003, pp. 831.

[Ngh02] Nghiem, A IT Web Services: A Roadmap for the Enterprise. Prentice Hall
PTR., October 2002, pp. 336

[NST04] Nishizawa, M., Shiba, S. and Tatsubori, M. Remote pointcut, a language
construct for distributed AOP. Proceedings of the third international Confer-
ence on Aspect-Oriented Software Development (Lancaster, UK, March 2004),
AOSD’04, ACM Press, New York, NY, 2004, pp. 7-15.

[NSVV06] Navarro, L.D.B., südholt, M., Vanderperren, W. Verheecke, B. Modularization
of distributed web services using AWED. Submitted to the eight International
Symposium on Distributed Objects and Applications (Montpellier, France, Oc-
tober 2006), DOA06.

[OT01] Ossher, H. and Tarr, P. Using multidimensional separation of concerns to
(re)shape evolving software. Communications of the ACM, Volume 44, Issue
10, ACM Press, New York, USA, October 2001. pp. 43-50.

[PAG03] Popovici, A., Alonso, G. and Gross, T. Spontaneous Container Services. Pro-
ceedings of the seventeenthEuropean Conference on Object-Oriented Program-
ming, (Darmstadt, Germany, July 2003), ECOOP’03.

[Parn72] Parnas, D.L. On the Criteria to be Used in Decomposing Systems into Modules.
Communications of the ACM, Volume 15, Issue. 12, ACM Press, New York,
USA, May 1972, pp. 1053-1058

BIBLIOGRAPHY 223

[PDS+04] Pawlak, R., Duchien, L., Seinturier, L. et al. JAC: An Aspect-based Distributed
Dynamic Framework. Journal Software Practice and Experience (SPE), Volume
34, Issue 12, Wiley, October 2004, pp. 1119-1148.

[PG03] Papazoglou, M. P. and Georgakopoulos, D. Service Oriented Computing. Com-
munications of the ACM, Volume 46, Issue 10, ACM Press, New York, USA,
October 2003. pp. 25-28.

[PGA02] Popovici, A., Gross, T. and Alonso, G. Dynamic weaving for aspect-oriented pro-
gramming. Proceedings of the first international Conference on Aspect-Oriented
Software Development (Enschede, The Netherlands, April 2002), AOSD’02,
ACM Press, New York, NY, USA, 2002, pp. 141-147.

[PKP+02] Paolucci, M., Kawamura, T., Payne, T.R. and Sycara K. Semantic Matching
of Web Services Capabilities. Proceedings of First International Semantic Web
Conference (Sardinia, Italy, June 2002), ISWC’02, Lecture Notes in Computer
Science, Volume 2342.

[PRJL04] Pérez, J., Ramos, I., Jaén, J. and Letelier, P. “PRISMA: Towards Quality,
Aspect Oriented and Dynamic Software Architectures”, Proceedings of the In-
ternational Conference on Quality Software (Dallas, Texas, USA, November,
2003), QSIC’03, pp. 59-66.

[PSC+01] Pulvermüller, E., Speck, A., Coplien, J.O., et al. Proceedings of the Workshop on
Feature Interaction in Composed Systems at the fifteenth European Conference
on Object-Oriented Programming (Budapest, Hungary, June 2001), ECOOP’01,
Technical Report No. 2001-14, 2001.

[PSDF01] Pawlak, R., Seinturier, L. Duchien, L. and Florin, G. JAC: A flexible solution
for aspect-oriented programming in Java. Proceedings of the Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns
(Kyoto, Japan, September 2001). Reflection’01, Lecture Notes In Computer
Science, Volume 2192. Springer-Verlag, London, pp. 1-24.

[PSL03] Patel, C., Supekar, K. and Lee, Y. “A QoS Oriented Framework for Adaptive
Management of Web Service based Workflows, Database and Expert Systems
2003 conference (Prague, Czech Republic, September 2003) DEXA’03, Lecture
Notes In Computer Science, Volume 2736, Springer, pp. 826-835.

[PV04] Peer, J., Vukovic, M. A Propopsal for a Semantic Web Service Description For-
mat. Proceedings of the Second European Conference on Web Services (Erfurt,
Germany, September 2004), ECOW’04), Lecture Notes In Computer Science,
Volume 3250, Springe, 2004, pp. 285-299.

[Port03] Portier, B. Invoking Web services with Java clients, A look at Web services
clients in the J2SE and J2EE environment. Internet Business Machines Devel-
oper Works, November 2003.

[PWWR03] Parastatidis, S., Webber, J., Watson, P. and Rischbeck, T., A Grid Applica-
tion Framework based on Web Services Specifications and Practices. Technical

224 BIBLIOGRAPHY

Report, North East Regional e-Science Centre, University of Newcastle, August
2003.

[Raj98] Raj, G.S. A Detailed Comparison of CORBA, DCOM and Java/RMI. Septem-
ber 1998, available at http://my.execpc.com/∼gopalan/misc/compare.html

[Ran03] Ran, S., “ A Model for Web Services Discovery with QoS. ACM SIGecom Ex-
changes, Volume 4, Issue 1 ACM Press, New York, NY, USA, 2003, pp. 1-10.

[RDR00] Rouvellou, I., Degenaro, L., Rasmus, K., et al. “Extending business objects with
business rules”, Proceedings of Technology of Object-Oriented Languages (St-
Malo, France, June 2000), TOOLS’o1, pp. 238-249.

[RKF92] Rosenberry, W., Kenney, D. and Fisher, G. Understanding Distributed Com-
puting Environment (DCE). O’Reilly & Associates, Inc. Sebastopol, CA, USA,
First edition, October 1992, pp. 258.

[Rol05] Roloux, M. Specifying and deploying web service compositions using dynamic
aspects. Diploma thesis, Vrije Universiteit Brussel, Belgium, June 2005.

[RP94] Reynolds, J. and Postel, J. Assigned Numbers. STD 2, RFC 1700, October 1994.

[RS05] Ritter, J., Stussak C. Stub and Skeleton Generation for a Single-Sign-On Web
Service supporting Dynamic Objects. Poster Session at the Third IEEE European
Conference on Web Services (Växjo, Sweden, November 2005), ECOWS 2005.

[SA03] Sumra, R. and Arulazi, D. Quality of Service for Web Services-Demystification,
Limitations, and Best Practices. International Business Machines Developer
Works, March 2003.

[San03] Patil, S. and Newcomer, E. ebXML and Web Services. IEEE Internet Comput-
ing, Volume 07, Issue 3, , IEEE, May/June 2003, pp. 74-82.

[SDV06] uve, D., De Fraine, B. and Vanderperren, W. A Symmetric and Unified Approach
Towards Combining Aspect-Oriented and Component-Based Software Develop-
ment. To be Published in Proceedings of the 9th International SIGSOFT Sym-
posium on Component-Based Software Engineering (Västerȧs, Sweden, June
2006), CBSE 2006, in Lecture Notes In Computer Science, 2006.

[SFCV+05] Suvee, D., De Fraine, B., Cibrán, M., Verheecke, et al. W. Evaluating FuseJ as
a Web Service Composition Language. Proceedings of the third European Con-
ference on Web Services (Vaxjo, Sweden, November 2005), ECOWS’05, IEEE
Computer Society, 2005, pp.25-35.

[SGHS05] Singh, S., Grundy, J., Hosking, J and Sun, J. An architecture for developing
aspect-oriented web services:, Proceedings of the third European Conference on
Web Services (Växjo, Sweden, November 2005), ECOWS’05, IEEE Computer
Society, 2005, pp. 72-82.

[Szyp01] Szyperski, C. Components and Web Services. Beyond Objects column, Software
Development, Volume 9, Issue 8, August 2001.

BIBLIOGRAPHY 225

[STP04] Sandoz, P., Triglia, A., and Pericas-Geertsen, S. Fast Infoset. Technical Articles,
Sun Developer Network, June 2004.

[SVJ03] Suvee, D., Vanderperren, W. and Jonckers, V. JAsCo: an Aspect-Oriented ap-
proach tailored for Component Based Software Development. Proceedings of
the 2nd international Conference on Aspect-Oriented Software Development
(Boston, MA, USA, March 2003). AOSD’03. ACM Press, New York, NY, USA,
2003, pp. 21-29.

[Sun05] Sun, “Java 2 Platform Standard Edition 5.0 Overview”, 2005, home page at
http://java.sun.com/j2se/1.5.0/docs/guide/

[Sys05] Systinet, “Systinet Server for Java 6.0 Primer”, White Paper, Systinet, 2005,
pp. 166.

[Tane88] Tanenbaum, A. S. Computer Networks. Prentice Hall Professional Technical
Reference, first edition, 1988, pp. 628.

[TBE05] Taher, L., Basha, R. and El Khatib, H. QoS Information & Computation (QoS-
IC) Framework for QoS-Based Discovery of Web Services. Upgrade Journal,
CEPIS, Volume 6, Issue 4, August 2005, pp. 55-66.

[TOH+99] Tarr, P., Ossher, H., Harrison, W. et al. N degrees of separation: Multi-
dimensional separation of concerns. Proceedings of the twenty-first Interna-
tional Conference on Software Engineering (Los Angeles, CA, USA, May 1999),
ICSE’99, IEEE Computer Society, 1999, pp. 107-119.

[TPP03] Tosic, V., Pagurek, B. and Patel, K. “WSOL – A Language for the Formal Speci-
fication of Classes of Service for Web Services,” Proceedings of the International
Conference on Web Services (Las Vegas, USA, June 2003), ICWS’03.

[Truy04] Truyen, D. Dynamic and Context-Sensitive Composition in Distributed Systems.
PhD Thesis, K.U.Leuven, Belgium, November 2004.

[Tyagi04] Tyagi, S. Patterns and Strategies for Building Document-Based Web Services.
Sun Developer Network (SDN), September 2004.

[Van04] Vanderperren, W. Combining Aspect-Oriented and Component-Based Software
Engineering. Ph.D. Thesis, Vrije Universiteit Brussel, Belgium, 2004.

[VC04] Verheecke, B. and Cibrán, M. A. Dynamic Aspects for Web Service Manage-
ment. Proceedings of the Dynamic Aspect Workshop (DAW’04) at the third
international Conference on Aspect-Oriented Software Development (Lancaster,
UK, March 2004), AOSD’04, RIACS Technical Report 04.01, 2004, pp. 146-152.

[VC05] Verheecke, B. and Cibrán, M. A. Dynamic Aspects in Large Scale Distributed
Applications: An Experience report. Proceedings of the Software engineering
Properties of Languages for Aspect Technologies Workshop (SPLAT’05) at
the fourth International Conference on Aspect-Oriented Software Development
(Chicago, Il, USA, March 2005), AOSD’05.

226 BIBLIOGRAPHY

[VCJ03] Verheecke, B., Cibrán, M. A. and Jonckers, V. AOP for Dynamic Configuration
and Management of Web services in Client-Applications. Proceedings of the
International Conference on Web Services (Erfurt, Germany, September 2003),
ICWS’o3-Europe, Lecture Notes In Computer Science, Volume 2853, Springer,
2003, pp. 137-151.

[VCJ04] Verheecke, B., Cibrán, M. A. and Jonckers, V. Aspect-Oriented Programming for
Dynamic Web Service Monitoring and Selection. Proceedings of the European
Conference on Web Services (Växjo, Sweden, 2004), ECOWS’04, Lecture Notes
in Computer Science, Volume 3250, Springer, New York, NY, 2004, pp,15-29.

[VCV+04] Verheecke, B., Cibrán, M. A., Vanderperren, W., Suvee, D. and Jonckers, V.
AOP for Dynamic Configuration and Management of Web Services. Interna-
tional Journal of Web Services Research (JWSR), Volume 1, Issue 3, July-Sept
2004, pp. 25-41.

[VDGD05] Verdickt, T., Dhoedt, B., Gielen, F. and Demeester, P. Automatic Inclusion of
Middleware Performance Attributes into Architectural UML Software Models.
IEEE Transactions on Software Engineering, volume 31, issue 8, August 2005,
pp. 695-711.

[Ver03] Verheecke, B. Web Services Management Layer (WSML). 2003, home page at
http://ssel.vub.ac.be/wsml

[Ver04] Vermeir, D. Discovery and Selection of Web Services through Semantic Anno-
tations. Diploma thesis, Vrije Universiteit Brussel, Belgium, June 2003.

[Vid97] Videira Lopes, C. D: A Language Framework for Distributed Programming. PhD
thesis, College of Computer Science, Northeastern University, 1997.

[Vin97] Vinoski, S. CORBA: Integrating Diverse Applications within Distributed Hetero-
geneous Environments. Communications Magazine, Volume 35, Issue 2,? IEEE,
February 1997, pp. 46-55.

[VJ05] Verheecke, B. and Jonckers, V. Stateful Aspects for Conversational Messaging
with Stateful Web Services. Proceedings of the IEEE Next Generation Web
Services Practices (Seoul, South-Korea, August 2005), NWeSP’05, IEEE Press,
2005, pp. 363-370.

[Vogels03] Vogels, W. Web Services are not Distributed Objects. IEEE Internet Computing,
Volume 7, Issue 6, November 2003, pp. 59-66.

[VSC+04] Vanderperren, W., Suvee, D., Cibrán, M. A. and Verheecke, B. Automatic run-
time evolution of web services with JAsCo dynamic AOP. Software Evolution
and Aspect-Oriented Programming Symposium, Ghent, Belgium, May 2004.

[VSCV+05] Vanderperren, W., Suvee, D., Cibrán, M. A., Verheecke, B. et al. Adaptive
Programming in JAsCo. Proceedings of the fourth International Conference
on Aspect-Oriented Software Development (Chicago, Il, USA, March 2005),
AOSD’05, pp. 75-86.

BIBLIOGRAPHY 227

[VSV+04] Vanderperren, W., Suvee, D., Verheecke, B. and Cibrán, M. A. JAsCo & WSML:
AOP for Component-Based Software Engineering applied to a Web Services
Management Layer. Formal Research Demo at the third international Confer-
ence on Aspect-Oriented Software Development (Lancaster, UK, March 2004),
AOSD’04.

[VSV+05] Vanderperren, W., Suvee, D., Verheecke, B., et al. Automatic Feature Interac-
tion Analysis in PacoSuite. Journal of Systemics, Cybernetics and Informatics
(JSCI), January 2005.

[VVJ06] Verheecke, B., Vanderperren, W. and Jonckers, V. Unraveling Crosscutting Con-
cerns in Web Services Middleware. In IEEE Software journal, Volume 23, Issue
1, January 2006. pp.42-50.

[VVSV03] Verspecht, D., Vanderperren, W., Suvee, D. and Jonckers, V. JAsCo.NET:
Capturing Crosscutting Concerns in .NET Web Services. Proceeding of the
Second Nordic Conference on Web Services (Växjo, Sweden, November 2003),
NCWS’03, Vajxo University Press, Series: Mathematical Modelling in Physics,
Engineering and Cognitive Sciences, Volume 8, pp. 125-136.

[VS04] Vanderperren, W. and Suvee, D. Optimizing JAsCo dynamic AOP through
HotSwap and Jutta. Proceedings of the Dynamic Aspect Workshop (DAW’04)
at the third international Conference on Aspect-Oriented Software Development
(Lancaster, UK, March 2004), AOSD’04, RIACS Technical Report 04.01, 2004,
pp. 120-134.

[VSCD05] Vanderperren, W., Suvee, D., Cibrán, M. A. , De Fraine, B. Stateful Aspects
in JAsCo. Proceedings of Software Composition 2005, LNCS, (Edinburgh, UK,
April 2005), SC’05, Lecture Notes in Computer Science, Volume 3628, Springer,
New York, NY, 2004, pp.167-182.

[VSJ03] Vanderperren, W., Suvee, S., Jonckers, V. Combining AOSD and CBSD in Pa-
coSuite through Invasive Composition Adapters and JAsCo. Proceedings of the
2003 Net.ObjectDays International Conference (Erfurt, Germany, September
2003), NODe’03, 2003, pp. 36-50.

[W3C04] World Wide Web Consortium. Web Services Glossary. W3C Working Group
Note, February 2004, available at http://www.w3.org/TR/2004/NOTE-ws-
gloss-20040211.

[Wal98] Waldo, J. Remote procedure calls and Java Remote Method Invocation. Concur-
rency. IEEE Parallel & Distributed Technology, Volume 6, Issue 3, July 1998,
pp. 5-7.

[WKL03] Wu, P., Krishnamurthi, S. and Lieberherr, K. Traversing Recursive Object Struc-
tures: The Functional Visitor in Demeter. Proceedings of Software Engineer-
ing Properties of Languages for Aspect Technologies Workshop (SPLAT’o3) at
The Second International Conference on Aspect-Oriented Software Development
(Boston, MA, March 2003), AOSD’03.

228 BIBLIOGRAPHY

[WJD03] Wohlstadter, E., Jackson, S. and Devanbu. P. Dado: Enhancing middleware to
support crosscutting features in distributed, heterogeneous systems. Proceedings
of Twenty-fifth International Conference on Software Engineering (Portland,
Oregon, USA, May 2003), ICSE’03, 2003, pp. 174.

[WTM+04] Wohlstadter, E., Tai, S. Mikalsen, T. et al. GlueQoS: middleware to sweeten
quality-of-service policy interactions. Proceedings of the twenty-sixth Interna-
tional Conference on Software Engineering, (Edinburgh, UK, May 2004), ICSE
2004, pp. 189- 199.

[Za03] P. Zave. An experiment in feature engineering. Monographs In Computer Sci-
ence, Springer-Verlag, New York, New York, NY, USA, pp. 353-377.

[ZJ03] Zhang, C. and Jacobsen, H.A. ”Refactoring Middleware With Aspects,” IEEE
Transactions on Parallel and Distributed Systems, Volume 14,Issue 11,November
2003. pp. 1058-1073.

	Table of Contents
	List of Figures
	List of Tables
	List of Code Fragments
	Introduction
	Context
	Problem Statement
	Integration of Web services
	Selection of Web services
	Client-side Management of Web services

	Research Objectives and Approach
	Objectives
	Our Approach

	Contributions
	Outline

	Web Services Technologies
	Introduction
	Web Services Definition
	Web Services Interaction
	RPC-based interaction
	Document-based interaction

	The Web Services Protocol Stack
	The Transport Layer
	The Format Layer
	The Message Layer
	The Description Layer
	The Publication Layer

	The Web Services Protocol Stack Revisited
	Web Services Development
	Tool Support
	Java Web Services
	Microsoft .NET

	Related Middleware Technologies
	CORBA
	DCE
	DCOM
	Java RMI
	ebXML
	Comparison

	Conclusions

	Dynamic Web Service Environments
	Running Example
	Introduction to Dynamic Service Environments
	Service Integration Process
	Analysis of Requirements
	Evaluation of Current Practices
	Table of Comparison

	Service Selection Process
	Analysis of requirements
	Evaluating current practices

	Client-Side Service Management Process
	Analysis of Requirements
	Evaluation of Current Practices
	Table of Comparison

	Conclusion

	Web Services Management Layer
	Introduction
	Usage Scenarios
	Web Services Mediator
	Web Services Broker
	Web Services Grid
	Web Services Intermediary Stub
	Web Services Ubiquitous Environments

	Development quality attributes
	WSML Architecture
	Aspect-Oriented Programming in the WSML
	Introduction to AOP
	Motivation for AOP in the WSML
	WSML Architecture Based on Dynamic Aspects
	JAsCo

	Conclusions

	Dynamic Integration of Web Services
	Service Types
	RPC-based Web Services
	Mappings
	Dynamic Binding
	Hot-Swapping
	Changeable endpoint references
	Exception Handling
	Conditional Service Binding
	Multiple Services Binding
	Summary

	Asynchronous Web Services
	Introduction
	Asynchronous Service Redirection Aspects

	Conversational Web Services
	Introduction
	Conversational Web Services
	Conversational Service Types
	Stateful Aspects
	Conversational Service Redirection Aspects
	Dealing with Multiple Conversational Web Services

	Service Compositions
	Introduction
	Service Composition Redirection Aspects
	Relation with Web Services Composition Languages

	Related Work
	Adaptive Integration Approaches
	Aspect-Oriented Composition Approaches
	Semantic Approaches

	Conclusions

	Web Services Selection
	Introduction
	Service Selection Policies Classification
	Towards a flexible implementation of selection policies
	Selection Based on Quality of Service
	Non-Functional Properties
	QoS Service Monitoring
	QoS Service Selection
	Selection for Service Compositions

	Request/Response Initiated Service Selection
	Service Selection Based on Client Requests
	Response-Based Selection

	Context-Based Service Selection
	Example
	Client-Context Monitoring Aspect

	Related Work
	QoS-enabled Service Repositories
	QoS-based Service Selection Frameworks
	Request/Response Initiated Selection Approaches

	Conclusions

	Client-Side Web Services Management
	Introduction
	Examples of Management Concerns
	Billing
	Caching

	Feature Interaction
	Conditional Management Concerns
	Meta-level Management Concerns
	Distributed Management Concerns
	Related Work
	Conclusions

	Development and Deployment of a Prototype
	Introduction
	Travel Agent Example
	Implementation of WSML Aspects
	Overview
	Aspect Skeleton Generation
	Semantic Matchmaking for Service Mappings
	High-level Service Composition Specification
	Aspect Template Library

	Stakeholders
	Prototype
	Overview
	Design
	Realisation of Quality Development Attributes
	Synergy between WMSL Research and JAsCo Research

	WSML Deployment on SEP
	Discussion on AOP in Enterprise Service Bus (ESB)
	Conclusions

	Conclusions
	Summary and Contributions
	Future Work
	High-Level Business Rules Language
	Usability Analysis
	Process Description Language
	Performance Modelling
	Distributed WSML

