
27-09-08 ChaMDE 2008

Challenges in bootstrapping a
model-driven way of software
development

–Dennis Wagelaar
–System and Software Engineering Lab

27-09-08
ChaMDE 2008

Pag. 2 © 2008, Dennis Wagelaar

Outline

➔ Context: MDSD
➔ Case study
➔ Challenges:

– Bootstrapping model transformations and language
abstractions

– Evolving a step-wise refinement chain
– To round-trip or not to round-trip

27-09-08
ChaMDE 2008

Pag. 3 © 2008, Dennis Wagelaar

Context: MDSD (1)

➔ MDE is usually demonstrated...
– ...when it is already in place
– ...as part of a ready-to-run solution

➔ “Ready” MDE solutions generally don't do exactly
what you need, which means:
– You need to do “post-customisation” on the tool's output,
– Which can be done by writing your own model

transformation definitions

27-09-08
ChaMDE 2008

Pag. 4 © 2008, Dennis Wagelaar

Context: MDSD (2)

➔ Regardless of whether you use “ready-to-run” tools
or a customised MDSD setup:
– Sooner or later you'll have to develop/maintain your own

model transformation definitions
➔ How Do You Get There?

– How to bootstrap model transformations and language
abstractions?

– How to evolve a step-wise refinement chain?
– To round-trip or not to round-trip?

27-09-08
ChaMDE 2008

Pag. 5 © 2008, Dennis Wagelaar

Case study

➔ Instant messaging client
– One core PIM and 7 optional feature PIMs, all in UML 2.x
– 11 PIM-to-PSM refinement transformations in ATL
– Targets all Java client platforms

27-09-08
ChaMDE 2008

Pag. 6 © 2008, Dennis Wagelaar

Bootstrapping model transf's and
language abstractions

➔ The instant messenger started out with a UML model
and a simple code generator
– Several recurring patterns in the model:

– Getter and setter methods
– Design pattern implementations (observer, abstract factory, ...)

– Platform-specific API references in UML model:
– Applet, collection types, AWT, ...

➔ Use model transformation to automatically generate
recurring patterns and platform-specific references
– Replace recurring patterns by special-purpose language

abstractions

27-09-08
ChaMDE 2008

Pag. 7 © 2008, Dennis Wagelaar

Language abstractions

➔ UML provides the Profile mechanism to introduce
new language abstractions:
– Define <<EncapsulatedAttribute>> stereotype on top of

UML Property
– Each <<EncapsulatedAttribute>> will be transformed to a

private attribute with public getter and setter methods

27-09-08
ChaMDE 2008

Pag. 8 © 2008, Dennis Wagelaar

Stereotype transformation

module Accessors;
create OUT : UML2 from IN : UML2;
rule PublicPropertySingle {
 from s : UML2!"uml::Property" (
 UML2!"Accessors::EncapsulatedAttribute".allInstances()
 ->select(e|e.base_Property=s)->notEmpty())
 using { baseNameS : String = s.accessorBaseNameS; }
 to t : UML2!"uml::Property" (...),
 getOp : UML2!"uml::Operation" (name <- 'get'+baseNameS,
 class <- s.class,
 ownedParameter <- Sequence{getPar}),
 getPar : UML2!"uml::Parameter" (name <- 'return',
 type <- s.type,
 direction <- #return),
 getDep : UML2!"uml::Dependency" (name <- 'Get'+baseNameS,
 client <- getOp,
 supplier <- s),
 getDepST : UML2!"Accessors::accessor" (base_Dependency <- getDep), ...
}

Matching stereotyped
Property instances

27-09-08
ChaMDE 2008

Pag. 9 © 2008, Dennis Wagelaar

Stereotype transformation

module Accessors;
create OUT : UML2 from IN : UML2;
rule PublicPropertySingle {
 from s : UML2!"uml::Property" (
 UML2!"Accessors::EncapsulatedAttribute".allInstances()
 ->select(e|e.base_Property=s)->notEmpty())
 using { baseNameS : String = s.accessorBaseNameS; }
 to t : UML2!"uml::Property" (...),
 getOp : UML2!"uml::Operation" (name <- 'get'+baseNameS,
 class <- s.class,
 ownedParameter <- Sequence{getPar}),
 getPar : UML2!"uml::Parameter" (name <- 'return',
 type <- s.type,
 direction <- #return),
 getDep : UML2!"uml::Dependency" (name <- 'Get'+baseNameS,
 client <- getOp,
 supplier <- s),
 getDepST : UML2!"Accessors::accessor" (base_Dependency <- getDep), ...
}

Instantiating “getDep” as a
Dependency with a stereotype

applied to it

27-09-08
ChaMDE 2008

Pag. 10 © 2008, Dennis Wagelaar

Metaclass transformation

module Accessors2;
create OUT : UML2 from IN : UML2;
rule PublicPropertySingle {
 from s : UML2!"accessors::EncapsulatedProperty"
 using { baseNameS : String = s.accessorBaseNameS; }
 to t : UML2!"accessors::EncapsulatedProperty" (...),
 getOp : UML2!"uml::Operation" (name <- 'get'+baseNameS,
 class <- s.class,
 ownedParameter <- Sequence{getPar}),
 getPar : UML2!"uml::Parameter" (name <- 'return',
 type <- s.type,
 direction <- #return),
 getDep : UML2!"accessors::AccessorDependency" (name <- 'Get'+baseNameS,
 client <- getOp,
 supplier <- s), ...
}

Instantiating “getDep”
as an

AccessorDependency

Matching
EncapsulatedProperty

instances

27-09-08
ChaMDE 2008

Pag. 11 © 2008, Dennis Wagelaar

Profiles vs. metamodels

➔ Profiles allow for easier language extension than
meta-models
– No need to worry about concrete syntax, versioning

➔ Profiles make model transformation definitions more
complex
– Explicit stereotype instances require more

navigation/instantiation
➔ UML Profile paradox:

– Easy language extension causes complex model
transformation definitions

27-09-08
ChaMDE 2008

Pag. 12 © 2008, Dennis Wagelaar

Solution?
Stereotyped model

UML metamodel

Profile

Meta-representation

applied to
conforms to

Profile2Metamodel

Extended Metamodel

GenerateM2M

Model2Model

Regular model

conforms to

Translate a
stereotyped model...

...into a regular
model...

27-09-08
ChaMDE 2008

Pag. 13 © 2008, Dennis Wagelaar

Solution?
Stereotyped model

UML metamodel

Profile

Meta-representation

applied to
conforms to

Profile2Metamodel

Extended Metamodel

GenerateM2M

Model2Model

Regular model

conforms to

Translate a
stereotyped model...

...into a regular
model...

...using a generic
infrastructure

27-09-08
ChaMDE 2008

Pag. 14 © 2008, Dennis Wagelaar

Evolving a step-wise refinement
chain

➔ When defining additional refinement transformations
on your model, dependencies are introduced
– Example: Observer transformation depends on result of

getter/setter transformation
➔ Critical pair analysis can help detect dependencies

– But a detected conflict does not always mean “dependency”
– And critical pair analysis is a complex computing job

27-09-08
ChaMDE 2008

Pag. 15 © 2008, Dennis Wagelaar

Evolving a step-wise refinement
chain

➔ Rich meta-classes can make dependencies explicit in
the model:
– Observer transformation requires “Setter” instances
– Accessors transformation provides “Getter” and “Setter”

instances
➔ By converging complex dependencies into simple,

but semantically rich, metaclasses, automated
analysis of dependencies becomes much easier

27-09-08
ChaMDE 2008

Pag. 16 © 2008, Dennis Wagelaar

To round-trip or not to round-trip

➔ Often, some parts of the software are better edited
in the model, others are better edited in the code
– IDEs for code often have advanced verification/refactoring

support, that you'll want to leverage (e.g. Eclipse)
– Modelling language may not be efficient for expressing (all

kinds of) behaviour
➔ Merging-style incremental code generators seem to

provide a solution
– Manual code changes are not overwritten by the generator
– But changes to the code are also not propagated back to

the model, when applicable

27-09-08
ChaMDE 2008

Pag. 17 © 2008, Dennis Wagelaar

To round-trip or not to round-trip

➔ Round-trip engineering (RTE) aims to solve this
problem
– Model(s) and code are kept fully synchronised
– But RTE is very hard to generalise for any language
– And RTE is more than just bi-directional transformation

– Bi-directional transformation definitions are harder to write
than uni-directional transformations and are less expressive

➔ Recent work on RTE
– Use only forward transformation definition and target model

change recordings to do RTE
– Again: not proven to work in general

27-09-08
ChaMDE 2008

Pag. 18 © 2008, Dennis Wagelaar

Discussion

Questions?

