
� ����������������� �������������������� �

�

�
�

��������	
�����
����	

�

�
ChaMDE�2008�

�
First�International�Workshop�on��

Challenges�in�Model�Driven�Software�Engineering�

�

September�28th,�2008,�Toulouse,�France�

�

Organized�in�conjunction�with�MoDELS’08�
11th�International�Conference�on�Model�Driven�Engineering�Languages�and�Systems�

�

�

Edited�by:�
Stefan�Van�Baelen�(K.U.Leuven,�Belgium)�

Ragnhild�Van�Der�Straeten�(VUB,�Belgium)�
Tom�Mens�(UMH,�Belgium)�

�� �

�

Table�of�Contents�

�

Table�of�Contents�...2�

Foreword�..3�

Acknowledgments�...4�

MDE�Adoption�in�Industry:�Challenges�and�Success�Criteria�

Parastoo�Mohaghehi�(SINTEF,�Norway),Miguel�A.�Fernandez,�Juan�A.�Martell�(Telefónica�Research�
&�Development,�Spain),�Mathias�Fritzsche,�and�Wasif�Giliani�(SAP�Research,�UK)��............................5�

Scalability:�The�Holy�Grail�of�Model�Driven�Engineering�

Dimitrios�S.�Kolovos,�Richard�F.�Paige,�and�Fiona�A.C.�Polack�(University�of�York,�UK)��...................�10�

A�Foundation�for�MDE�

Ernesto�Posse,�and�Jürgen�Dingel�(Queen’s�University,�Canada)��...�15�

Behavior,�Time�and�Viewpoint�Consistency:�Three�Challenges�for�MDE�

José�Eduardo�Rivera�(Universidad�de�Málaga,�Spain),�José�Raul�Romero�(Universidad�de�Córdoba,�
Spain)�and�Antonia�Vallecillo�(Universidad�de�Málaga,�Spain)��...�20�

Challenges�in�Bootstrapping�a�Model�Driven�Way�of�Software�Development�

Dennis�Wagelaar�(Vrije�Universiteit�Brussel,�Belgium)�...�25�

UML/OCL�Verification�in�Practice�

Jordi�Cabot,�and�Robert�Clarisó�(Universitat�Oberta�de�Catalunya,�Spain)��......................................�31�

Improving�Requirements�Specifications�in�Model�Driven�Development�Processes�

Jordi�Cabot,�and�Eric�Yu�(University�of�Toronto,�Canada)��..�36�

Lessons�of�Experience�in�Model�Driven�Engineering�of�Interactive�Systems:�Grand�Challenges�for�
MDE?�

Gaëlle�Calvary�(Laboratoire�d’Informatique�de�Grenoble,�France),�and�Anne�Marie�Pinna��
(Laboratoire�I3S,�France)��..�41�

A�Feature�Model�for�the�UML�Meta�Model�Itself:�Creating�and�Composing�Lightweight�Members�of�
the�UML�Family�

Ahmed�Elkhodary�(George�Mason�University,�USA)��..�46�

Validation�Challenges�in�Model�Composition:�The�Case�of�Adaptive�Systems�

Freddy�Munoz,�and�Benoit�Baudry�(INRIA�Bretagne�Atlantique,�France)��..�51�

A�Tentative�Analysis�of�the�Factors�Affecting�the�Industrial�Adoption�of�MDE�

Adrian�Rutle�(Bergen�University�College,�Norway),�and�Alessandro�Rossini�(University�of�Bergen,�
Norway)��..�57�

�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 2

Foreword�
�

MoDELS’08�is�already�the�eleventh�conference�on�UML�and�Model�Driven�Engineering,�
Languages�and�Systems.�After�more�than�a�decade,�research�in�MDE�has�significantly�
evolved.�

Model�Driven�Engineering�is�about�creating,�transforming,�generating,�interpreting,�weaving�
models�using�modelling�languages,�tools,�etc.�After�more�than�a�decade�of�research�in�MDE,�
still�a�lot�of�fundamental�and�practical�issues�remain.�Therefore�this�workshop�addresses�the�
question�of�how�to�proceed�next�and�aims�at�identifying�future�challenges�in�MDE.�

The�objective�of�the�workshop�is�to�provide�a�forum�for�people�from�academia�as�well�as�
industry�people�to:��

� identify�obstacles�to�MDE�research�and�practice;��

� facilitate�transfer�of�research�ideas�to�industry;��

� propose�“revolutionary”�novel�ideas;�and�

� proclaim�important�challenges�that�are�either�fundamental�or�pragmatic.�

We�received�15�submissions�from�11�different�countries,�of�which�11�papers�were�accepted.�
From�these�accepted�papers,�7�papers�have�been�selected�to�give�a�workshop�presentation.�

We�hope�that�input�from�both�research�and�practice�will�help�to�identify�the�future�“grand�
challenges”�in�model�driven�software�engineering�and�discuss�revolutionary�ideas�or�new,�
original�ways�of�thinking�about�MDE.�

�

The�ChaMDE�2008�organising�committee,�

�

Ragnhild�Van�Der�Straeten,�
Tom�Mens,�
Stefan�Van�Baelen,�

September�2008.�

� �

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 3

Acknowledgments�
�

The�Organising�Committee�of�ChaMDE�2008�would�like�to�thank�the�workshop�Program�
Committee�for�their�helpful�reviews.�

Academic�members:��

� Jean�Bézivin,�Université�de�Nantes,�France�

� Xavier�Blanc,�LIP6,�France�

� Dirk�Deridder,�Vrije�Universiteit�Brussel,�Belgium�

� Gregor�Engels,�University�of�Paderborn,�Germany�

� Vincent�Englebert,�Facultés�Universitaires�de�Notre�Dame�de�la�Paix,�Belgium�

� Robert�France,�Colorado�State�University,�USA�

� Dragan�Gasevic,�Athabasca�University,�Canada�

� Sébastien�Gérard,�CEA�LIST,�France�

� Wouter�Joosen,�K.U.Leuven,�Belgium�

� Richard�Paige,�University�of�York,�UK�

� Ivan�Porres,�Åbo�Akademi�University,�Finland�

� Bernhard�Rumpe,�University�of�Braunschweig,�Germany�

� Hans�Vangheluwe,�McGill�University,�Canada�

Industry�Members:��

� Anneke�Kleppe,�Capgemini�Financial�Service,�The�Netherlands�

� Jochen�Küster,�IBM�Zurich�Research�Laboratory,�Switzerland�

� Laurent�Rioux,�THALES�Research�and�Technology,�France�
�
�

This�workshop�is�organised�as�an�event�in�the�context�of��

� the�MoVES�IAP�Phase�VI�Interuniversity�Attraction�Poles�Programme�funded�by�the�
Belgian�State,�Belgian�Science�Policy�

� the�research�project�"Model�Driven�Software�Evolution",�an�"Action�de�Recherche�

Concertée"�financed�by�the�Ministère�de�la�Communauté�française�–�Direction�générale�de�
l’Enseignement�non�obligatoire�et�de�la�Recherche�scientifique�

� the�research�project�EUREKA�ITEA�EVOLVE,�partially�funded�by�the�Flemish�government�

institution�IWT�(Institute�for�the�Promotion�of�Innovation�by�Science�and�Technology�in�
Flanders)�

�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 4

MDE Adoption in Industry: Challenges and Success
Criteria

Parastoo Mohagheghi1, Miguel A. Fernandez2, Juan A. Martell2,
Mathias Fritzsche3 and Wasif Gilani3

1 SINTEF, P.O.Box 124-Blindern, N-0314 Oslo, Norway
parastoo.mohagheghi@sintef.no

2 Telefónica Research & Development, Valladolid, Spain
mafg@tid.es, jamartell@gfi-info.com

3 SAP Research CEC Belfast, United Kingdom
{mathias.fritzsche, wasif.gilani}@sap.com

Abstract. Model-Driven Engineering has been promoted for some time as the
solution for the main problem software industry is facing, i.e. complexity of
software development, by raising the abstraction level and introducing more
automation in the process. The promises are many; among them improved
software quality by increased traceability between artifacts, early defect
detection, reducing manual and error-prone work and including knowledge in
generators. However, in our opinion MDE is still in the early adoption phase
and to be successfully adopted by industry, it must prove its superiority over
other development paradigms and be supported by a rich ecosystem of stable,
compatible and standardized tools. It should also not introduce more
complexity than it removes. The subject of this paper is the challenges in MDE
adoption from our experience of using MDE in real and research projects,
where MDE has potential for success and what the key success criteria are.

Keywords: Model-driven engineering, challenges, domain-specific modeling,
performance engineering, traceability.

1 Introduction

Today’s software systems are complex in nature; the size has been growing because
of the increased functionality, heterogeneity is also becoming a bigger concern as
systems are built from several systems or include legacy code, systems are distributed
over multiple sites and there are new requirements such as dynamicity and autonomy
(self-* properties, for example self-healing). Handling each of these challenges
requires specific approaches which often include domain-specific knowledge and
solutions. However, based on the experience gained from multiple domains and
projects, some solutions may be identified as beneficial to complex software
development in general.

Model-Driven Engineering (MDE) is an approach built upon many of the
successful techniques applied in software engineering: It can be characterized by: a)
raising the abstraction level by hiding platform-specific details ; b) taking advantage

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 5

of models in all the phases of software development to improve understanding; c)
developing specific languages and frameworks to achieve domain appropriateness;
and d) taking advantage of transformations to automate repetitive work and improve
software quality [1]. These are all techniques useful for complex system development
and therefore one may expect rapid adoption of the paradigm by industry. So far, we
cannot see such wide adoption, as also confirmed by a review of industrial
experiences presented in [2]. To be accepted by the majority, the industry must gain
confidence on the promises of MDE and have access to proper tools and experts.

The European research projects MODELWARE1 and its continuation
MODELPLEX2 have focused on MDE approaches and tools with the goal of making
them suitable for complex system development. Some of the companies involved in
these projects have experience from applying MDE in real projects while others think
that MDE is not yet mature enough to be taken from research projects to industry
production. This paper therefore elaborates on where we can expect added value from
MDE and what the barriers are from experiences gained in the context of these
projects. In the remainder of this paper we discuss industry expectations and
experience in Sections 2 and 3 and conclude our discussion in Section 4.

2 SAP Experience

SAP has already started working towards applying MDE concepts, and currently
employs models in various stages of business application development. The
Composition Environment is one example where MDE concepts are applied for
efficient development of Composite Applications. Composite Applications are self-
contained applications that combine loosely coupled services (including third party
services) with their own business logic, and thereby provide user centric front-end
processes that transcend functional boundaries, and are completely independent from
the underlying architecture, implementation and software lifecycle. With Composition
Environment even the non-technical users, such as business domain experts,
consultants, etc., having no programming skills, are able to model and deploy
customized applications suited to their specific business requirements.

Based on our experiences with the currently employed tools for MDE of business
processes, such as the Composition Environment, we identified the general need of
supporting non-technical users with regards to non-functional requirements, such as
the impact of their design decisions on performance, etc. Within the context of
performance engineering, for instance, such a support means guidance towards better
design / configuration that actually meets the timelines, and optimized resource
mapping against each activity in the business process.

We implemented such performance related decision support as an extension of
MDE. By implementing this extension, named Model-Driven Performance
Engineering (MDPE), we realized the need for supporting requirements with respect
to non-functional aspects, especially performance. The implementation of MDPE
heavily uses the MDE concepts such as meta-modeling, transformations, model

1 http://www.modelware-ist.org/
2 http://www.modelplex-ist.org/

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 6

weaving and mega-modeling. For instance, ten different meta-modeling languages are
employed in order to make the process usable for a number of domain-specific
modeling languages. During the implementation of MDPE, we recognized that the
application of MDE concepts enabled us to focus on the creative tasks of development
rather than repetitive coding. For instance, code generation for our meta-models saved
us significant development effort. The only place where a significant amount of
coding effort was required was for the integration of MDPE into the existing tool
infrastructure.

Meta-model extension is the generally employed technique for model annotations,
such as done with profiles in the case of UML [4]. However, this is not applicable
while dealing with the proprietary models. The application of model weaving enabled
us a high degree of flexibility as we are able to annotate any kind of proprietary
model with the help of a generic editor [4]. Higher-order transformations are used to
enable traceability in our approach [5]. Additionally, mega-modeling enables us to
locate our model artifacts, such as the tracing models related to the models in our
transformation chain [6].

As for the challenges, we experienced that MDE concepts are on the one hand very
systematic and efficient, but on the other hand also difficult to understand for
developers as they require quite a high level of abstraction and training. Also, the
MDE tool support is sometimes not mature enough. Especially the available tooling to
define model transformation chains lacks capabilities of modern IDEs, which could
decrease the development time for model transformations significantly.

Concluding, based on the experiences gained with the development of MDPE, we
are optimistic regarding the capabilities of MDE in case the tool support improves,
and the MDE community meets the challenges associated with the MDE process,
such as providing support for dealing with non-functional aspects of system
development.

3 Telefónica Experience

In [3], we have discussed the experience of Telefónica in moving from a code-centric
to a model-centric software development. Earlier efforts in modeling failed due to the
complexity of UML, the lack of proper tools and the inability to maintain models in
synch with code, among other issues. Due to the above problems with UML, we
decided to develop our own programming tools and frameworks addressing the
problem domain. But without any industry standards to rely on, this approach had no
future in the long term and was also difficult to use for non-technical stuff, such as
telecom domain experts, as it did not have the required abstraction level.

This was an experience from eight years ago, but not so many things seem to have
fundamentally changed. What we look for is a domain-specific modeling (DSM)
language integrated in a development environment that will permit the modeling of
our basic domain concepts, such as interfaces, devices, networks, protocols and
services. We also emphasize adhering to current industry standards in the domain,
since we now look for a domain-specific solution, not a company-wide solution.
Other requirements are: a) the ability to model in multiple abstraction levels, hiding

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 7

details as desired; b) the integration of model verification tools based on OCL or other
constraint languages and c) the composition / weaving of the models at run time to
reflect the changes in the network’s operational status.

In the road toward these objectives we foresee numerous challenges. First of all,
the UML standard has evolved but, with this evolution, the syntax has become even
more complex and the necessary supporting mechanisms and tools for dealing with
this added complexity are not yet available. Even something as conceptually simple as
exporting a UML diagram from one tool to another has not been accomplished yet
with ease. On the other hand, developing a DSM solution requires high skills related
to meta-modeling and tool development. Also a big concern with Domain-Specific
Languages (DSLs) is getting the people in that domain to agree upon a standard
syntax. Another challenge is having that DSL interact properly with anything outside
of its domain, having a different underlying syntax to that of other languages.

Model synchronization (for example applying multiple profiles to a source model)
and roundtrip engineering are yet to be addressed successfully and mechanisms for
dealing with very large and complex models, such as hierarchical models, traceability
and model management in general are also in an inception phase right now, at least
regarding to the aspect of tool support. All these features are important to make a full
fledged MDE process work in complex, real-life projects.

Another challenge for organizations wanting to get started in MDE, closely related
with the previous idea of managing all these artifacts, is that they may end up dealing
with more complexity than anticipated at first. The underlying problem here is: are
the techniques for handling complexity in danger of making the software engineering
process itself too complex? To adequately address complexity we have to substitute it
for something simpler not for something different but equally complex.

It is our opinion also that there are some basic milestones a new technology has to
go through for it to be considered mainstream. To start with, we need a proper context
for it to flourish and be nurtured in. The fabric of this context is made of the proper
professionals with the proper knowledge and expertise and supporting material which
helps in turn to create these professionals. This has to be accompanied by the
development of high-quality literature, tutorials and proper material to draw new
professionals in.

The main question that an organization has to ask itself is “do I really need MDE?”
The second question relates with its ability to adapt its processes to the ones needed
from an MDE point of view (partially discussed also in [3]), adapt their staff to new
ways of looking at problems and create new layers of software development
supporting all the aspects MDE has to offer. Companies may be reluctant to change
either their structure or part of it. Apart from software factories for product line
engineering (PLE) we have not identified very good candidates for MDE to be
applied to.

4 Conclusions

MDE is a long-term investment and needs customization of environment, tools and
processes, and training. For companies that have a product line, MDE can pay off

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 8

since this cost is amortized over several projects. For one-of–a-kind projects this will
not pay in most cases. Despite differences in domain and the type of systems
developed in the two companies, there are common challenges as described here. The
most important one is the complexity of developing an MDE environment tailored to
the company needs. This environment requires:

� Developing proper languages for communication between technical and non-
technical experts and for modeling various aspects. The major challenge here is
to have the required language engineering expertise since creating own profiles or
meta-models are difficult and for complex systems we probably need several
languages. Hence more domain-specific meta-models and profiles are needed that
are supported by tools and may be reused. The current tools for developing meta-
models and editors are not user friendly, the learning curve is steep and the
documentation and support is not satisfactory.

� Several tools are required for modeling, model-to-model and model-to-text
transformation, verification and simulation, and other tools to store, reuse and
compose models. There is no tool chain at the moment and companies must
integrate several tools and perform adaptation themselves.

Both of the above requirements put a high burden on companies that traditionally
used third-party tools for modeling and performed programming by hand. Training is
another major challenge here. We see advantages in gradual introduction and support
by management, as well as in the creation of teams of experts that can give support
and create the necessary tools for MDE adoption in the whole company.

Acknowledgments. Part of the ideas presented in this paper are based on conclusions
obtained in the MODELPLEX project (IST-FP6-2006 Contract No. 34081), co-
funded by the European Commission as part of the 6th Framework Program.

References

1. Mohagheghi, P.: Evaluating Software Development Methodologies based on their Practices
and Promises. Accepted at the 7th Int’l Conference on Software Methodologies, Tools and
Techniques (Somet’08)

2. Mohagheghi, P., Dehlen, V.: Where is the Proof? A Review of Experiences from Applying
MDE in Industry. In ECMDA-FA 2008, LNCS 5095, Springer, pp. 432—443 (2008)

3. Fernandez, M.: From Code to Models: Past, Present and Future of MDE Adoption in
Telefónica. In: 3rd Europen Workshop From Code Centric to Model Centric Software
Engineering: Practices, Implications and Return on Investment (C2M), co-located with
ECMDA 2008, pp. 41—51 (2008)

4. Fritzsche M., Johannes J., et al: Systematic Usage of Embedded Modelling Languages in
Model Transformation Chains. Accepted at the Software Language Engineering Conference
(SLE’08)

5. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of
Tracing Techniques in Model-Driven Performance Engineering. In: ECMDA-FA 4th

Workshop on Traceability (2008)
6. Barbero, F. Jouault, J. Bezivin: Model Driven Management of Complex Systems:

Implementing the Macroscope's Vision. In: 15th ECBS'08, IEEE Press, pp. 277--286 (2008)

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 9

Scalability: The Holy Grail
of Model Driven Engineering

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York, UK.
(dkolovos,paige,fiona)@cs.york.ac.uk

Abstract. Scalability is a desirable property in Model-Driven Engineer-
ing (MDE). The current focus of research in MDE is on declarative lan-
guages for model management, and scalable mechanisms for persisting
models (e.g., using databases). In this paper we claim that, instead, mod-
ularity and encapsulation in modelling languages should be the main
focus. We justify this claim by demonstrating how those two principles
apply to a related domain – code development – where the issue of scal-
ability has been addressed to a much greater extent than in MDE.

1 Introduction

The adoption of MDE technologies in an industrial context involves significant
benefits but also substantial risks. Benefits in terms of (eventual) productivity,
quality and reuse are today foreseeable. On the other hand, the most important
concerns raised of MDE are those of scalability [1], the cost of introducing MDE
technologies to the development process (training, learning curve) and longevity
of MDE tools and languages. To our perception, the latter two concerns (cost of
induction and longevity) are not preventive for the adoption of MDE; however
scalability is what is holding back a number of potential adopters.

2 Scalability in MDE

Large companies typically develop complex systems that require proportionally
large and complex models that form the basis of representation and reasoning.
Moreover, development is typically carried out in a distributed context and in-
volves many developers with different roles and responsibilities. In this context,
typical exploratory questions from industrial parties interested in adopting MDE
include the following:

1. In our company we have huge models, of the order of tens of thousands of
model elements. Can your tool/language support such models?

2. I would like to use model transformation. However, when I make a small
change in my (huge) source model, it is important that only this change to
be propagated to the target model; I don’t want the entire target model to be
regenerated.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 10

3. (similarly) I would like to use code generation. However, when I make a small
change in my (huge) model I don’t want all the code to be regenerated.

4. In my company we have many developers and each manages only a specific
part of the model. I would like each developer to be able to check out only a
part of the model, edit it locally and then merge the changes into the master
copy. The system should also let the developers know if their changes are in
conflict with the rest of the model or with changes done by other developers.

Instead of attempting to answer such questions directly, we find it useful to
consider analogies with a proven and widely used environment that addresses
those problems in a different – but highly relevant – domain. The domain is code
development and the environment is the well known and widely used Eclipse Java
Development Tools (JDT).

As a brief overview, JDT provide an environment in which developers can
manage huge code-bases consisting of (tens of) thousands of Java source code files
(concern 1). JDT supports incremental consistency checking and compilation
(concerns 2,3) in the sense that when a developer changes the source code of a
particular Java class, only that class and any other classes affected by the change
– as opposed to all the classes in the project or the workspace – are re-checked
and re-compiled. Finally, JDT is orthogonal with version control, collaborative
development (concern 4), and multi-tasking tools such as CVS and SVN and
Mylyn.

3 Managing Volume Increase

As models grow, tools that manage them, such as editors and transformation
engines, must scale proportionally. A common concern often raised is that mod-
elling frameworks such as EMF and widely-used model management languages
do not scale beyond a few tens of thousands of model elements per model. While
this is a valid concern, it is also worth mentioning that the Java compiler does not
allow source-code files that exceed 64 KB, but in the code-development domain
this is rarely a problem.

The reason for this asymmetry in perception is that in code development,
including all the code of an application in a single file is considered – at least –
bad practice. By contrast, in modelling it is deemed reasonable to store a model
that contains thousands of elements in a single file. Also, it is reasonable that
any part of the model can be hard-linked with an ID-based reference to any
other part of the model.

To deal with the growing size of models and their applications, modelling
frameworks such as EMF [2] support lazy loading and there are even approaches,
such as Teneo [3], for persisting models in databases. Although useful in practice,
such approaches appear to be temporary workarounds that attempt to compen-
sate for the lack of encapsulation and modularity constructs in modelling lan-
guages. In our view, the issue to be addressed in the long run is not how to
manage large monolithic models but how to separate them into smaller modular

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 11

and reusable models according to the well understood principles defined almost
40 years ago in [4], and similarly to the practices followed in code development.

4 Incrementality

In the MDE research community, incrementality in model management is sought
mainly by means of purely declarative model transformation approaches [5, 6].
The hypothesis is that a purely declarative transformation can be analysed au-
tomatically to determine the effects of a change in the source model to the target
model. Experience has demonstrated that incremental transformations are in-
deed possible but their application is limited to scenarios where the source and
target languages are similar, and the transformation does not involve complex
calculations.

JDT achieves incrementality without using a declarative language for compil-
ing Java source to bytecode; instead it uses Java which is an imperative language.
The reason JDT can achieve incremental transformation lies mainly within Java
itself. Unlike the majority of modelling languages, Java has a set of well-defined
modularity and encapsulation rules that, in most cases, prevent changes from
introducing extensive ripple effects.

But how does JDT know what is the scope of each change? The answer is
simple: it is hard-coded. However, due to the modular design of the language,
those cases are relatively few and the benefits delivered justify the choice to hard-
code them. Also it is worth noting that the scope of the effect caused by a change
is not related only to the change and the language but also to the intention of
the transformation. For example, if instead of compiling the Java source code to
bytecode we needed to generate a single HTML page that contained the current
names of all the classes we would unavoidably need to re-visit all the classes (or
use cached values obtained earlier).

5 Collaborative Development

As discussed in Section 2, a requirement is to enable collaborative development
of models. A common requirement is that each developer should be able to
check out a part of the model, modify it and then commit the changes back
to the master copy/repository. Again, the formulation of this requirement is
driven by the current status which typically involves constructing and working
with large monolithic models. With enhanced modularity and encapsulation,
big models can be separated into smaller models which can then be managed
using robust existing collaborative development tools such as CVS and SVN,
augmented with model-specific version comparison and merging utilities such as
EMF Compare [7]. Given the criticality of version control systems in the business
context, business users are particularly reluctant to switching to a new version

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 12

control system1. Therefore, our view is that radically different solutions, such as
dedicated model repositories, that do not build on an existing robust and proven
basis are highly unlikely to be used in practice.

6 Modularity in Modelling Languages

All the above clearly demonstrate the importance of modularity and encapsula-
tion for achieving scalability in MDE. There are two aspects related to modular-
ity in modelling: the design of the modelling language(s) used and the capabilities
offered by the underlying modelling framework. In this section we briefly discuss
how each of those aspects affect modularity and envision desirable capabilities
of modelling frameworks towards this direction.

6.1 Language Design

With the advent of technologies such as EMF and GMF, implementing a new
domain-specific modelling language and supporting graphical editors is a straight-
forward process and many individuals and organizations have started defining
custom modelling languages to harvest the advantages of the context-specific
focus of DSLs. When designing a new modelling language, modularity must be
a principal concern. The designers of the language must ensure that large mod-
els captured using the DSL can be separated into smaller models by providing
appropriate model element packaging constructs. Such constructs may not be
part of the domain and therefore they are not easily foreseeable. For example,
when designing a DSL for modelling relational databases, it is quite common to
neglect packaging, because relational databases are typically a flat list of tables.
However, when using the language to design a database with hundreds of tables,
being able to group them in conceptually coherent packages is highly important
to the manageability and understandability of the model.

6.2 Modelling Framework Capabilities

In contemporary modelling frameworks there are three ways to capture rela-
tionships between two elements in a model: containment, hard references and
soft references. Containment is the natural relationship of one element being a
composite part of another, a hard reference is a unique-ID-based reference that
can be resolved automatically by the modelling framework and a soft reference
is a reference that needs an explicit resolution algorithm to navigate [8].

To enable users to split models over multiple physical files, contemporary
modelling frameworks support cross-model containment (i.e., the ability of a
model element to contain another despite being stored in different physical files).

1 Evidence of this is that CVS which was introduced in the 1980s is still the most
popular version control system despite its obvious limitations compared to newer
systems such as SVN

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 13

With regard to hard and soft non-containment references, hard references are
typically proffered because they can be automatically resolved by the modelling
framework and thus, they enable smooth navigation over the elements of the
model with languages such as OCL and Java. Nevertheless, in our view hard
references are particularly harmful for modularity as they increase coupling be-
tween different parts of the model and prevent users from working independently
on different parts. On the other hand, soft references enable clean separation of
model fragments but require custom resolution algorithms which have to be
implemented from scratch each time.

To address this problem, we envision extensions of contemporary modelling
frameworks that will be able to integrate resolution algorithms so that soft ref-
erences can be used, and the efficient and concise navigation achievable with
languages such as OCL can still be performed.

7 Conclusions

In this paper we have demonstrated the importance of modularity and encapsu-
lation for achieving scalability in MDE. We have identified two main problems:
neglect of modularity constructs during the design of modelling languages and
extensive use of ID-based references that lead to high coupling between differ-
ent parts of the model. With regard to the first issue we have been working on
preparing a set of guidelines for the design of scalable and modular DSLs and
expect to report on this soon. The second issue is quite more complex and we
plan to elaborate and prototype a solution based on EMF in the near future.

References

1. Jos Warmer, Anneke Kleppe. Building a Flexible Software Factory Using Partial
Domain Specific Models. In Proc. 6th OOPSLA Workshop on Domain-Specific
Modeling, Portland, Oregon, USA, October 2006.

2. Eclipse Foundation. Eclipse Modelling Framework. http://www.eclipse.org/emf.
3. Eclipse Foundation. Teneo, 2008. http://www.eclipse.org/modeling/emft/

?project=teneo.
4. David L. Parnas. On the criteria to be used in decomposing systems into modules.

Communications of ACM, 15(12):1053–1058, 1972.
5. David Hearnden, Michael Lawley, Kerry Raymond. Incremental Model Transforma-

tion for the Evolution of Model-Driven Systems. In Proc. Model Driven Engineering
Languages and Systems, pages 321–335.

6. Holger Giese, Robert Wagner. From model transformation to incremental bidirec-
tional model synchronization. Software and Systems Modeling, pages 1619–1374,
March 2008.

7. Eclipse Foundation. EMF Compare, 2008. http://www.eclipse.org/modeling/emft/
?project=compare.

8. Dimitrios S. Kolovos, Richard F. Paige and Fiona A.C. Polack. Detecting and Re-
pairing Inconsistencies Across Heterogeneous Models. In Proc. 1st IEEE Interna-
tional Conference on Software Testing, Verification and Validation, pages 356–364,
Lillehammer, Norway, April 2008.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 14

� �������	�� ��
 ��

������� �����
1 ��� ������� 	
����1

1������� ��	
�� ��
���� �	���
���
��	� ���������� ���
������ �� ��
��
���
������� ��� �	��
�

!����
��" #�
�	��" ������
$������"������%&��'(������'��

��������� ��� ���
	�� ���� �� �����)*	� �� +������	��� ,�*+- ��
�
���
����� ��
��
��� �	
����
 ��
�� �	����� �� ���
��	� �� ����
��
'
#�� ��
�� .�	��� ������/ �� �*+ ��
� �� �	���
����� �
 � �	� �
��� ��

�� �� ����
��
 �	�����" �	�
 	�(��	�
��
�
� ������" �
���
��
�
���
���
���
������' 0���� �	��
 �� ����� �� � ����
���" �*+ �� �
���
���1��� ����
��� �� �� �����	�' 0� ����� �
��
 ��	 �*+
� �� � ��
�
�
� ���� ��
��
��� �

��
 	��
 �� � ����� ������
���" ���
��	���	�" ���
��
��
��� ���������� ������ �*+
���� ��
�� ��
������
��
 �� ����
������
���' 2� �	��	
� �����
	�
� ���
 ��� �� ����� ��" ���
 ��
������
��� ���
 1��� �� ������
��
 �� ���	����� �� � ���������� ���	����
�
�*+" ��
�1� � ���1 �
 ���)3�'

� �������	�
��

�
������ ���
����
�� ��� �� ����
�� ���
�� ��� ��
����
� �
������ �����
��

���� �� ���
����
�� �
��
��
��� ��� ���
����
�� ����� ����
� ��� �
��
��
��� ���

� �
���� �
 ����� ���
�
�����
���� �
� �������� �
 ������
��� ��� ����
���

��������
��� �!���

��" �
���� ���� � ������� �
��
� ������
�� ��!�
�������

��� ���
��� #��� ���
� ���
����� �
 ������ �
��� ��� �
��� �� ����
�� �
�� ����

�������� ���
�

��
� ��� ����� ������
� �����
������ #��� ����� �� ��
��� �
�

����������

�� �������
��" ���� ���
 ����� �� � ������ ������
�� �
� �
��

���
���

� ������� ��
����" ���
�����"
�����������" ����

#�� �������
� �
���� ��� �������� ���
���
�� ��� ���
����
�� ���������

#��
�� � ��� ��
�
���� ���
����
�� �
��
��
���" $
����	�
��� �
������ ���
�

����
�� ��
�
��� ��� ���
� �
����
� �
������ �����
������ %�����������" ��
�

�
�

�
� ��� ���
� �
���� ���
���
�� ��� �
������ �����
����� ��
����
� �
�

��� � ����
��"
� ��
��
� ��������
� ��� ����� $	� �
�� �
� ��� ���
� �
��������

��
��

�� &��
� ��
� ��� ����' #���� ��� ���� �
(����� ����
�� �
�����
�� �
��

)��������* ��� �����
���
������ ��
���� ���� �
������ �����
���� �����
� ��
�� �

�������
� �
�
��+ �
 ���� �
��" ������ ���� �
����" ��� ��� ����
�����
� ������

������ �������
��" �����
� ����
� ���
�
�� ��� ������

�
� $	� ����
��

�
��
� ������
� ���
�������� ,� ��� �
�� �����
��� �
��" ��� ����
���

��
�

$	� �
���
��� ���� �� ���" ��
���� ��� ���������� �
 ��� ������� ��� ������

�������
� �
�������

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 15

��� ��� �� ���	 �
�� ���
�

��
� �����

 �� ���
��
 �

	��� ��		���� ���
��������� � �

�
������� ���	� �� �� ������ ��� ����	�� ���� �		 ��

�	�

��
�
�����

 � ���� ��� ���� ���	
�	� ����������
����

���
�
 �� �� � �����

� ���� ��� ���� ���
�
�� �������

� �� � ��� ��	����� ��!�����
 �
�� ���	

�
�
�!���	�
 ��� ���	
� �����

 � ���� ���
����������
� ����		
�� 	�������
�
�����

 � ���� ��� ������ ���	
 ���� ��	� �������� ��� �
� �� ����	
�
��	��
��
����		
�� ��
���
� ���� ���������
�

��	����
 ��� ���	�

 ���	

��� �
 ����	
�������
� "�� ��� ���
� ���	
 ��� ����	������ �����

�
 �� �� ���� ������		�
����#�
�	 ��� 	�

 �� ���� ���� ���� �� �� �������� �� �
�	
� �������
��� ���
��������� �� ���� � ������� ������ �����
����
�� �� ��� �����	�
�� ������ ��
����		
��� ������ ��� ���		����

 �� #�� � ������ �������
�� ��� �� ����

������
 ��� �����

 ��
������� ����	������
� ������	� ��� ��
������ ���
���	�

 �� ����	
 ��� ��� �����
�� �� ���	

� ����
��	���

����		
�� ���	
 ������� �� ����
�� �� ��� ����		
�� 	�������
 ��
�� �
��� ��
�� ��	� �� �� ��� ���$��
�
�	 ���
��	��
�� �� ���	�

 �� ����	
� ���
� ����		
��
	�������
 ���� �� ���� � �
�� ��� �!���

��� ���

��	� ��� ��������	�
�� ��
	
���

�
� �������
 ��� ���
�����
 %����	��� �
���� & �
�� � �
��	� �����
�� %���

�	��� �
���� & ��� ��		$��#��� ����
�� %���������& ��
�� ��� ���������
�����
�������
�
 ���� �
�
� ��� ���	�

 �� ����	
� ����� ��� ����	��
 ��
����
��
��
�'���
��
����! ���
�����
�
 ��� #��
��
�
���	� ���
 �� ��
��
�� ����� ��� ��
��� ���� ���� �� ��� �������
��
 �� ����		
��� (�����������
�

 ��� ������ ��
��#�� ��� ����
�� �� � 	�������)
 ���
�����
 �� �� ��	� �� �
�
� �'���
��	�� *�

�	
� ����������	 �� ���� �� �����
����
�� �� ��
�� 	������� �������
 ��� ������
�� ��

���	� %��� ��
���
���
	
��� ������������ �����& �
 ��		 �
 �� �����
����
��
�� ��
� �����
��
� ����������
� ���
�
�� ��
����! ���
�����
�
� � �������
��
��� ��
���	� �	
� ����� �	��������� ����
� ���
��� ��� �

� ��� ���$
��� �� ��������
�� 	�������
 ��� 	
���

�
�

� ������	� +����!�
�����
�
 ���
�������
�
 ����
�� � ��

 ��� ���
��
�� ����� ����	
�

*� ����� ��
		�
����� ��� ���� ��� ��
�����
� �������
��
 �� �� � ��� ��

����
�
��� ���������
 �� ��

 ���		���� �� 	��� �� ��� �� ��� ����
����

��	
���	
,��
��
 �� �� - .�/$0�10��
���	 0�
�0��

� �� �����	�
 ��
����������

.�/$0� 234

 � .�/ ���#	�
������� ��� ��� ����
� �� �

��
������ ��������
���	$�
��
�
���
 ���� ���	��� ���� ��� 055� ����	
�� 	������� ��� ������$
�	��� 264� 0��
���	 0�
� �����
��	 ����	���� %������	� 0�
�0�&

 � ����	��$
���� ���
������� ��� .�/$0� ����	���� �� 0��
���	 +������� 7�������
��
%��� ���� �� *"��& 8 ����	
� .�/$0� ���

�
 �� � �
������
��	
���
#���
��
�� ���������
 ��		�� �������� ��
�� �����
� �����
����	
���
#���
��

� ���
���� �� +���� ����
��
� ��� ��
�� ���
������� ������� ���� ������� ������

��	��� (
���� 9
���
 �� �!���	� �� � .�/$0� ����	� (
���� 9 %�&
���
 �

��������	 �
�� �� ��� ����	 ���

�
�� �� � ���
�	� 8 �
�� ���
�	�
 " ��� 7

� ��� ���� ��	

���	�� �
 �
�� ���� ��
 ��
��
 �
 �
 ������� 	� ��	

���	�� �
 �� �

	������
 �
�� �

	������ ������������ �����

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 16

��� ��������	
 � ��	��������
 �����
	� ��� �	�������
 � ����	 ������	�

���� �� �� 	����
	 �� � ������ �� 	
�

��������� �� 	
 ��� ������ �
����
 ����������� ���� �����
��� ���������� �����
���
����
 � ��������� ���� �� ������
���� ���
 �� �
��� �� ������ � !"�

#�$%&' �������� � ��� �� �������� �
��
 �� ���
 �����

 ��� �(��������
�����
 �� ����� ����� �)����� ��� ������ �
��� ������(��)� ��� �(�����
 ��
�������� ������ ������������� !) ������ ����������� �
����
 ����� ��� ������%
���� �
� ���) ���
����� �� �
���� � �������*� ������� ���
 ������ �������������
���!��� ������������� ������� ��� �
������� ��
���� �������� ������(��)� +�
��
�(������ ������� ��������� ����� ���
���� ���
��� ���
������ �������
 �
��

��� � ������ �� ���) �������������
 ��� � ������ ���%��%���������� ���������

�
���!) �
� �)���� ����
�� � ���!�� ����� !����� ���������� �
� ��(� ������
'
��� �������� ���� ������ ������ ���������� �
��
 ���!�� � ����� ����������
������������� ��������) ��� ��������� �!��� �)������ ����
������
 �
�) ����
�� ������� �,������ ������� �� ������(����� �� ������������

	���� ���� � ������ ��� �� ���������� ��������
 #�$%&' ��-�)� � �������!�)
������ �������� ��� �)���(�
��
 ����� �������� �����������!�� ������� �
�
������(��) �� ������ ����

������
���� �������� ���
 �����

������
���� ������
��� ����� �����������
 ����"

����
������
 �� ��-�)� ���� ���� ������� �� �������� !) &���&'
 � ���� �
��
�������� ���� ����������
 ���� ������� ��� ����)��� �� ������ ����� ����������
� ������������ �������
 �� ������ �������� ����)���
" ��� �������� �
� ����� ��
���������� ����
 !) �������� ���������� �� ���%���������� ������ ������ ������
������������"

.� ������)
 #�$%&' ����� �� !� � ����%�������� �������� ���
 � ��� ��
�)������� ��� �������� �������� �� ���� �� ��������� ������� �
�� ���� �
� ���
�� ������ ����
%�
���
 �
�� ��
 �
� !������ ����
 ��!���������) ��������� ������%
�����)" �������
 �
� ������ 	�� �
��� �
������������� ���� �� �(�����
 �� ����� ��
����
 �
� ������� �� #�$%&' �� ��� �������

/�����
�����
 ��� ����)�
��� �!��� #�$%&' �� �������
 ��� �
��� �� ���

���� ��� �����������
 �� ����� �� ��������
 ���� ������� ��� ������ ����������
��� �(�����
 ���
 ������� �� ��������
 �
��� �� � �������� ���� ��� �� ������
�������� �0� �� !����� ����� ��������� ���
 �
� �(������� ����������� ����
 !)

� ��� !"#$ ��%	� �� ��&	 ����	����� '�����
��� �� ����(��	 ������	����	�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 17

���������� 	
���
�
�� ��
������ �� ��
�� �
�	�����
�� ���
�� �	�� �������
���	 �	� ���
������� �	��� ��
���
 ���� ��� ��	
���
�
� ������
�� �������
�����
������
� ����� �� �������� ��
�� �
�	������ �� ������� �
����� ��� ���
�
� ���
���� �� ��
� ���	 �	� ������
���� �� �����
�� ����������� �� �������� ������
����
�� ��������� �����
������ ������ ���������� �������� �� �������� ���	�� �!
����
�� �	� �
�" �� ������ �
������ �� ����� �� ��� �
��� ��� ��
������ �������
�����
��
��	��
�
������
�
������ �	���
�� #
��
 ��� �!
����� �� 	��	���	� �	� ���� ���
����
��	 �� ��
�
���
�� �
�
�������� �	
� ��
�� �
��	�� ��	
��� �	� �$����������
�� %�&�'�
�� '���'��
����
���� ��������� �	� ����������� ��������

(� �	� ������� ���� �	��� ��
��� ���� ��� �
�	 ����
��	�)�� ����
���� �	�
��
��*
���� �� ����
�� �
��

�� ��
�
��� �� ���
�
���� �� ���� �����
���� ������
�
��� ������! ���
�� ������ 	�� �� �

�
���� �
��������������� ���
����� ��
�	� �������� �� �
�����	��
����� �� 	�� �� ��������� ��
�������� �	��� ��
���
���� ��� ������ �
����� ��� �!��
����
��
�
������ ��� �!
���� �� �	� ���� ��
���
������ �����
���
����
�� �!��
���� ��
����

+��	 ������� �� ����
� ���
����� �� %�&�'� �	��� 	
� ���� ���� ���������
����
��	 ������ ,-�.�/�001�� �
� �	��� ���� ��� ���� �� ��
 �����
���
�������
����
� ��
��
���� ���� �	��� ��
 ���� ���
 ������
������
����� �� �	� ����
�� �	������ �	
� 	
�� ���� ���������
�� �	������� �� ���� �� ����
��
��
���
�� �	���
�� �� ���� �� �!����� �	���
�����
������� �� ��� 	�� �	��
��
�
�� ����������
�� ��
������
��
� ��������

� �������	���

 �������������
�� �$������ ��������� �
��

����� ��
 ������
�� �����2
�����
���
� �34
����
�	 �� �� �
������
�� �	� �
����� ��
�� �� �	�
�� ���� ���
��� ������� �	� "��� ��
������
����� ��2
����� 5
��
� �	�
�����
����� �� �34

���
� �� ���� �	� ������ �� ��������� �
��

��� ����� ���� ���� 6����� ����
����
��	 ���� �������� �
��

�� ������ �� ������� �������� ����
!� ���
������
��
��
�����
�� ��
������� 7� �
����
�
�� �	�� ��������� ��������� �
��

����
�� �!
������ �!������ ����� �� ���� ��8

� �������� ���� ��
�
��� �����
� �� ��������� �� �	� �������� ���
��8 ��������
�	� �
�� �� %�& -�
 �
��

�� ���	 �
�� ��
�
���� ����� �������*�� ��� �
��
������
 �
��

�� ���
� �������9 �	��� �� �������
������
����� �� 	��
��
�
�	 ��
�
��� �����
�� ���	 �
�	 ��	��
��
�
 �����2
����� ����
 �
���� ��

��� �� ��
����� ������
�����
����� �� ��
�� ��
��
�� ,01 ��
������ ��
�������
��
��
���9 �	�� 	��	���	�� �	� ������
��� �� �$���� �
�	
� �	� �%�& ����
���
� �	��	
������� �� ���
 �
�
��
���� �!��
�
��� �
���� �� �	� %�&
,:1�

� ��
���� �	��� ���
�����
�� �������� ����������
�� ��
����$�8 ��������
�
��
�	� �
�� �� %�& -
�� �� �
����
�
��
������� ��
��
�� �	��� ��"����$��
���
����� ������� ������
�� ��
����"
����
��� �
���9 ��"� �	� ���� �� �	� %�&�
�	��� �� �� ����
� ���
����� ��� ��� �	��� �
� �� ����� �� �� ��
�����
�

��������� ��
�
 �����
� ���� �� %�& -�

� ��
���� �	� ���
�� �� ����� ��
������
����� �� �����
�� ���������� �� ������8

� ������ �� �	��
�	
 ������! ���� �����
��
�� �
���
�
��� �� ��
������

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 18

�������� �� 	
���
�
��
����� �
�� �

�
 ��������������� ��
�
��
 �

 ���
���
�
������� ��� ��� ����
��� �� ���
�
�� ������ ���
��� ���
�
��� �
�������
����

� ����� �������
 ����
����
�� ��
 ���������� 	
��
� �����
� ��� ���	��
��
�������
 ����
��� ���
� ��
�� �����
� �� �

 �������
�� �
����
� ��� ������

�������
 ��� �
�����

�
 	
��
�
 �
�� ����
�� ���
	��� �����

�� ������� �

�
 ����
� ��� ������
 ��
��
����
 ����������� �
�
��

�
��� ���
 ��� �

�� �� 	
 ���
� �� ���������� ��
����
 �

 ��� 	
��

� �

 �

��� �� ����
�� ���
	��� ��� �

 �������
 �� !"#�

����� ������	
�� ��
������ �� ��� ��������

$� !����%��������� ���
������ �

 �
������� ��� ���������� �� ���
�� ���
 ���%
�
�
�� ������
��� �� ��
�� �
����	
� �� ��&
�
�� "����� '�
��(�)������
��
*� +�����,
� ���
 �
�
������� �
�� ��� �� ������,������ ��� 	
 �����
� ��
���
�� ��� ���
 �
�
���
� ���� �

��
-� .�������� �
��
��� ��� ����
�������� �� !"# �
�
����

���	����

��	�� �
 ����� ��
 �� �
�� /��� '
��� ��� !�0�� 1�� '���

��� �

�� �����
�� ���� 2!)%1.� 1������� 1��
1. ��� !"# �� �
�
����

����������

�� �� ������	
� ���
�������	 ��� ������� ������� ����������� �������
����� ����
������
� ����
������ �����
���� �� ����������	�
���
 ���� �������������
���������� �������
 �!���
 ��"#������
 	�������	 ���
��� ��
�� �� �������� ���
�������
��� ����������
!������	 "##$�

"� %� &����	 '� ���(��
����	 ��� &�

��������� $���%����� �#���&������� �� $'���
������ ��! �(���"�	 ���!
��)� *��
 �� ������ +'�,%-.	 !���� /01$$� 2��3��
4������� ���������	 �555�

0� �� 6�����

�
�����
�� 4 7����� ��������� ��� ���!��8 �(�
���� ������� �� ��"�
#'��� 	��)��""��)	 $	 �5$/�

9�
� ����	 4�

��������	 ��� *� *��� 4� 4���
����
��� ��� �(�����

���
����
��� %��,-��
�����������
(�� +'�,%-� �� 	�����!��)� �� ��� ���� �������������
���������� �� �������
 �!���
 ��"#������
 	������� *�����+��,	 ���
��� ��
��
�� �������� ��� �������
��� ���������	 "##$� -� �!!����

:� ;�<��
 '��������
 &���!� =�����
�
(�
�8 ��� � +'� 4�
��� ���������
�

!�>>333��������>����>��>#/,#$,#"�!��	 "##/�

)� ;�<��
 '��������
 &���!�
����
��� �� � ?�����
�����
����
 ��� �8���
����
+'� '������ �

!�>>333��������>����>��>#$,#:,#"�!��	 "##$�

/�
�
���
��
� ��"����� -�'�!����� ��! ���� �'##��� ��� �!���.��%�� .�%���#"���
/��� � �
 0���%��(.��)��"�� ����
�����	 +��7����
@
 +��	 "##)�

$� ��
����	 &� &��������	 ��� � -� *���� �������"� ������ �������! �!����)�
*���(A
���	 �559�

5� ��
���� ��� �� %�������� +���� +'� ��� �������� ���!��8 ����,
��� �(�
����
�

!�>>333���<��
�������>���	 �55$�

�#� '�
��3 ��� &������ �� ����/��� 0��������'��1 	���#����%�� �� �� �"��)��) !���
��#����� ���
��� 6���	 �55)�

��� '� 7�� ��� ������ 4 ������ �����
��� �� +'�,%-� �� 	�����!��)� �� �!�� .��%��
��)�������) ���)'�)�� ��! �(���"�
 2�� ������������� ����������
 �.���
���	
!���� /)$1/$"	 "##)�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 19

Behavior, Time and Viewpoint Consistency:
Three Challenges for MDE

José Eduardo Rivera1, José Raul Romero2, and Antonio Vallecillo1

1Universidad de Málaga (Spain)
2Universidad de Córdoba (Spain)

{rivera,av}@lcc.uma.es, jrromero@uco.es

Abstract. Although Model Driven Software Development (MDSD) is
achieving significant progress, it is still far from becoming a real En-
gineering discipline. In fact, many of the difficult problems of the engi-
neering of complex software systems are still unresolved, or simplistically
addressed by many of the current MDSD approaches. In this position pa-
per we outline three of the outstanding problems that we think MDSD
should tackle in order to be useful in industrial environments.

1 Introduction

Although both MDSD and MDA have experienced significant advances during
the past 8 years, some of the key difficult issues still remain unresolved. In fact,
the number of engineering practices and tools that have been developed for the
industrial design, implementation and maintenance of large-scale, enterprise-
wide software systems is still low — i.e. there are very few real Model-Driven
Engineering (MDE) practices and tools. Firstly, many of the MDSD processes,
notations and tools fall apart when dealing with large-scale systems composed of
hundred of thousands of highly interconnected elements; secondly, MDE should
go beyond conceptual modeling and generative programming: it should count
on mature tool-support for automating the design, development and analysis of
systems, as well as on measurable engineering processes and methodologies to
drive the effective use of all these artifacts towards the predictable construction of
software systems.In particular, engineering activities such as simulation, analysis,
validation, quality evaluation, etc., should be fully supported.

We are currently in a situation where the industry is interested in MDE, but
we can easily fail again if we do not deliver (promptly) anything really useful to
them. There are still many challenges ahead, which we should soon address in
order not to lose the current momentum of MDE.

In this position paper we focus on three of these challenges. Firstly, the spec-
ification of the behavioral semantics of metamodels (beyond their basic struc-
ture), so that different kinds of analysis can be conducted, e.g., simulation, val-
idation and model checking. A second challenge is the support of the notion of
time in these behavioral descriptions, another key issue to allow industrial sys-
tems to be realistically simulated and properly analyzed — to be able to conduct,

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 20

2

e.g., performance and reliability analysis. Finally, we need not only to tackle the
accidental complexity involved building software systems, but we should also try
to deal with their essential complexity. In this sense, the effective use of inde-
pendent but complementary viewpoints to model large-scale systems, and the
specification of correspondences between them to reason about the consistency
of the global specifications, is the third of our identified challenges.

2 Adding Behavioral Semantics to DSLs

Domain Specific Languages (DSLs) are usually defined only by their abstract
and concrete syntaxes. The abstract syntax of a DSL is normally specified by
a metamodel, which describes the concepts of the language, the relationships
among them, and the structuring rules that constrain the model elements and
their combinations in order to respect the domain rules.

The concrete syntax of a DSL provides a realization of the abstract syntax of
a metamodel as a mapping between the metamodel concepts and their textual
or graphical representation (see Fig. 1). A language can have several concrete
syntaxes. For visual languages, it is necessary to establish links between these
concepts and the visual symbols that represent them — as done, e.g, with GMF.
Similarly, with textual languages links are required between metamodel elements
and the syntactic structures of the textual DSL.

BehavioralSemantics

Semantic
Mapping

Concrete
Syntax
Mapping

ConcreteSyntaxAbstractSyntax

MetaModel

DSL

1..*0..1

+target
1

+source
1

0..*

+specification1+specification 0..1 +specification0..1

+target
1

+source
1

1

Fig. 1. Specification of a Domain Specific Language

Current DSM approaches have mainly focused on the structural aspects of
DSLs. Explicit and formal specification of a model semantics has not received
much attention by the DSM community until recently, despite the fact that this
creates a possibility for semantic mismatch between design models and model-
ing languages of analysis tools [1]. While this problem exists in virtually every
domain where DSLs are used, it is more common in domains in which behavior
needs to be explicitly represented, as it happens in most industrial applications
of a certain complexity. This issue is particularly important in safety-critical

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 21

3

real-time and embedded system domains, where precision is required and where
semantic ambiguities may produce conflicting results across different tools. Fur-
thermore, the lack of explicit behavioral semantics strongly hampers the develop-
ment of formal analysis and simulation tools, relegating models to their current
common role of simple illustrations.

The definition of the semantics of a language can be accomplished through
the definition of a mapping between the language itself and another language
with well-defined semantics (see Fig. 1). These semantic mappings [2] are very
useful not only to provide precise semantics to DSLs, but also to be able to sim-
ulate, analyze or reason about them using the logical and semantical framework
available in the target domain. In our opinion, in MDE these mappings can be
defined in terms of model transformations.

Describing Dynamic Behavior. There are several ways for specifying the
dynamic behavior of a DSL, from textual to graphical. We can find approaches
that make use of, e.g., UML diagrams, rewrite logic, action languages or Ab-
stract State Machines [3] for this aim. One particular way is by describing the
evolution of the state of the modeled artifacts along some time model. In MDE,
model transformation languages that support in-place update [4] can be perfect
candidates for the job. These languages are composed of rules that prescribe the
preconditions of the actions to be triggered and the effects of such actions. Fur-
thermore, if these transformations use concrete syntax of the DSL, they allow
designers to work with domain specific concepts [5], raising the level of abstrac-
tion and making behavioral specifications intuitive to specify and understand.

Model Simulation and Analysis. Once we have specified the behavior of a
DSL, the following step is to perform simulation and analysis over the produced
specifications. Defining the model behavior as a model will allow us to transform
them into different semantic domains. In general, each semantic domain is more
appropriate to represent and reason about certain properties, and to conduct
certain kinds of analysis [3]. Of course, not all the transformations can always
be accomplished: it depends on the expressiveness of the semantic approach.

3 Adding Time to Behavioral Specifications

Formal analysis and simulation are critical issues in complex and error-prone
applications such as safety-critical real-time and embedded systems. In such kind
of systems, timeouts, timing constraints and delays are predominant concepts [6],
and thus the notion of time should be explicitly included in the specification of
their behavior.

Most simulation tools that allow the modeling of time require specialized
knowledge and expertise, something that may hinder its usability by the average
DSL designer. On the other hand, current in-place transformation techniques do
not allow to model the notion of time in a quantitative way, or allow it by
adding some kind of clocks to the DSL metamodel. This latter approach forces

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 22

4

designers to modify the DSL metamodel to include time aspects, and allows them
to easily design rules that lead the system to time-inconsistent states (cf. [6]).
Furthermore, standard approaches only allow rule patterns (such as LHS) to be
composed of system states, making many useful action properties inexpressible
without unnatural changes to a system’s specification [7].

One way to avoid this problem is by extending behavioral rules with their
duration, i.e., by assigning to each action the time it needs to be performed.
Analysis of these timed rules cannot easily done using the common theoretical
results and tools defined for graph transformations. However, other semantic
domains are better suited. We are now working on the definition of a semantic
mapping to real-time Maude’s rewrite logic [8]. This mapping brings several ad-
vantages: (1) it allows to perform simulation, reachability and model-checking
analysis on the specified real-time systems; (2) it permits decoupling time infor-
mation from the structural aspects of the DSL (i.e., its metamodel); and (3) it
allows to state properties over both model states and actions, easing designers
in the modeling of complex systems.

4 Viewpoint Integration and Consistency

Large-scale heterogeneous distributed systems are inherently much more com-
plex to design, specify, develop and maintain than classical, homogeneous, cen-
tralized systems. Thus, their complete specifications are so extensive that fully
comprehending all their aspects is a difficult task. One way to cope with such
complexity is by dividing the design activity according to several areas of con-
cerns, or viewpoints, each one focusing on a specific aspect of the system, as
described in IEEE Std. 1471.

Following this standard, current architectural practices for designing open
distributed systems define several distinct viewpoints. Examples include the
viewpoints described by the growing plethora of Enterprise Architectural Frame-
works (EAF): the Zachman’s framework, ArchiMate, DoDAF, TOGAF, FEAF
or the RM-ODP. Each viewpoint addresses a particular concern and uses its own
specific (viewpoint) language, which is defined in terms of the set of concepts
specific that concern, their relationships and their well-formed rules.

Although separately specified, developed and maintained to simplify rea-
soning about the complete system specifications, viewpoints are not completely
independent: elements in each viewpoint need to be related to elements in the
other viewpoints in order to ensure the consistency and completeness of the
global specifications. The questions are: how can it be assured that indeed one
system is specified? And, how can it be assured that no views impose contra-
dictory requirements? The first problem concerns the conceptual integration of
viewpoints, while the second one concerns their consistency. There are many ap-
proaches that try tackle the problem of consistency between viewpoints, many
of them coming from ADL community (see, e.g., [3] for a list of such works).
However, many of the current viewpoint modeling approaches to system speci-

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 23

5

fication used in industry (including the IEEE Std. 1471 itself and the majority
of the existing EAFs) do not address these problems (c.f. [9]).

The most general approach to viewpoint consistency is based on the defi-
nition of correspondences between viewpoint elements. Correspondences do not
form part of any of the viewpoints, but provide statements that relate the var-
ious different viewpoint specifications—expressing their semantic relationships.
The problem is that current proposals and EAFs not consider correspondences
between viewpoints, or assume they are trivially based on name equality between
correspondent elements and are implicitly defined. Furthermore, the majority of
approaches that deal with viewpoint inconsistencies assume that we can build
an underlying metamodel containing all the views, which is not normally true.
For instance, should such a metamodel consist of the intersection or of the union
of all viewpoints elements? Besides, the granularity and level of abstraction of
the viewpoints can be arbitrarily different, and they may have very different
semantics, which greatly complicates the definition of the common metamodel.

Our efforts are currently focused on the development of a generic framework
and a set of tools to represent viewpoints, views and correspondences, which are
able to manage and maintain viewpoint synchronization in evolution scenarios,
as reported in [10], and that can be used with the most popular existing EAFs.

References

1. Kleppe, A.G.: A language description is more than a metamodel. In: Proc. of the
Fourth International Workshop on Software Language Engineering (ATEM 2007),
Nashville, USA (2007) http://megaplanet.org/atem2007/ATEM2007-18.pdf.

2. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10) (2004) 64–72

3. Vallecillo, A.: A Journey through the Secret Life of Models. Position paper at the
Dagstuhl seminar on Model Engineering of Complex Systems (MECS) (2008) http:
//www.lcc.uma.es/~av/Publicaciones/08/TheSecretJourneyOfModels.pdf.

4. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA’03 Workshop on Generative Techniques in the Context of Model-Driven
Architecture. (2003)

5. de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models. In:
Proc. of FASE 2008. Volume 4961 of LNCS., Springer (2008) 77–92

6. Gyapay, S., Heckel, R., Varró, D.: Graph transformation with time: Causality and
logical clocks. In: ICGT. (2002) 120–134

7. Meseguer, J.: The temporal logic of rewriting: A gentle introduction. In: Concur-
rency, Graphs and Models. (2008) 354–382

8. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2) (2007) 161–196

9. Romero, J.R., Vallecillo, A.: Well-formed rules for viewpoint correspondences spec-
ification. In: Proc. of WODPEC 2008, Munich, Germany (2008)

10. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management
in multi-viewpoint systems using ASP. In: Proc. of WODPEC 2008, Munich,
Germany (2008)

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 24

Challenges in bootstrapping a model-driven way
of software development

Dennis Wagelaar�

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
dennis.wagelaar@vub.ac.be

Abstract. Current MDE technologies are often demonstrated using well-
known scenarios that consider the MDE infrastructure to already be in
place. When starting up your own model-driven development infrastruc-
ture, because existing boxed-in tools are insufficient, for example, you will
come across a number of challenges. Generally, you cannot just sit down
and implement all your model transformations and other MDE infras-
tructure, because it simply takes too long before you get usable results.
An incremental approach to putting model-driven development into place
gives you the necessary “break-points”, but poses extra challenges with
regard to the MDE technologies used. This paper discusses some of these
challenges, such as bootstrapping a step-wise refinement chain of model
transformations, bootstrapping the (usage of the) modelling language,
the position of round-trip engineering and useful properties for a model
transformation tool.

1 Introduction

Current MDE technologies are often demonstrated from the point of view where
either the MDE infrastructure is already in place, or the MDE infrastructure is
part of a ready-to-run solution that only requires you to provide some models and
off you go. That leaves out the scenario where you’ll have to provide your own
MDE infrastructure, such as meta-models, model transformations, configuration
tools and build processes. A common reason for this scenario is that the existing
ready-to-run MDE tools don’t provide (exactly) what you want and require you
to do some “post-customisation” of the tool’s output. That “post-customisation”
is a typical model transformation scenario, which means that writing your own
model transformation definitions is suddenly within the scope of your software
development process. Moving model transformation definition within the scope
of your development process poses a number of challenges.

In this paper, I will elaborate on some of these challenges and relate them
to each other by means of a central case study. This case study involves the
model-driven development of an instant messenger application1.

� The author’s work is part of the VariBru project, which is funded by the Institute
for the encouragement of Scientific Research and Innovation of Brussels (ISRIB)

1 http://ssel.vub.ac.be/ssel/research:mdd:casestudies:im

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 25

2 Bootstrapping model transformations and language
abstractions

The instant messenger case study started out with a UML model and a simple
Java code generator. At this point, one could identify several recurring patterns
in the source model: getter and setter methods, explicit observer pattern imple-
mentations, explicit abstract factory pattern implementations, etc. There were
also parts in the source model that hampered platform independence, such as
explicit references to Java API (collection types, applet, AWT). These recurring
patterns as well as the platform-specific parts were all candidates for abstraction
and model transformation. I’ve decided to start with automatically generating
the getters and setters.

When you define a model transformation, you already know which recur-
ring pattern you want to generate in your output model: getters and setters in
this case. Now you need to decide what language abstractions to use in your
source model to represent the combination of an attribute and its getters and
setters. UML uses the profile mechanism for this, where you can extend the se-
mantics of existing language constructs with stereotypes. Let’s say you define
an <<EncapsulatedAttribute>> stereotype on top of the attribute language con-
struct. You can then use a model transformation to generate getter and setter
methods for each encapsulated attribute. Listing 1.1 shows what such a trans-
formation definition could look like in ATL.

module Accessors;
create OUT : UML2 from IN : UML2;
...
rule PublicPropertySingle {

from s : UML2!"uml:: Property" (
UML2!" Accessors :: EncapsulatedAttribute ". allInstances ()
->select(e|e.base_Property=s)->notEmpty ())

using { baseNameS : String = s.accessorBaseNameS; }
to t : UML2!"uml:: Property" (...),

getOp : UML2!"uml:: Operation" (name <- ’get ’+baseNameS ,
class <- s.class ,
ownedParameter <- Sequence{getPar}),

getPar : UML2!"uml:: Parameter" (name <- ’return ’,
type <- s.type ,
direction <- #return),

getDep : UML2!"uml:: Dependency" (name <- ’Get ’+baseNameS ,
client <- getOp ,
supplier <- s),

getDepST : UML2!" Accessors :: accessor" (base_Dependency <- getDep), ...
}

Listing 1.1. Accessors ATL transformation module

The interesting part of this transformation definition lies in the complex-
ity of working with stereotypes. Whereas the UML modelling tools provide a
user-friendly way of working with stereotypes, model transformation tools fail
to hide the underlying complexity of stereotypes. Stereotypes have a meta-class
representation that allows them to be instantiated at the model level: stereo-
type applications. The example transformation definition in Listing 1.1 applies
the <<accessor>> stereotype by instantiating the UML2!"Accessors::accessor"

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 26

meta-class. In order to find stereotyped elements, the model transformation
has to look up each UML2!"uml::Property" instance, as well as each UML2!-
"Accessors::EncapsulatedAttribute" instance, and match them against each
other. This inefficient procedure is a direct result of the fact that the UML2
meta-model has no knowledge of any stereotype definitions.

Another way of introducing new language abstractions is by extending the
meta-model. In the case study, that would be the UML2 meta-model. Listing 1.2
shows what the Accessors transformation definitions looks like when you use a
meta-model extension2. The input pattern is simpler, as it only needs to find
instances of UML2!"accessors::EncapsulatedProperty", and the dependency
between getters/setters and their attribute no longer requires a separate stereo-
type instance that links to it.

module Accessors2;
create OUT : UML2 from IN : UML2;
...
rule PublicPropertySingle {

from s : UML2!" accessors :: EncapsulatedProperty"
using { baseNameS : String = s.accessorBaseNameS; }
to t : UML2!" accessors :: EncapsulatedProperty" (...) ,

getOp : UML2!"uml:: Operation" (name <- ’get ’+baseNameS ,
class <- s.class ,
ownedParameter <- Sequence{getPar}),

getPar : UML2!"uml:: Parameter" (name <- ’return ’,
type <- s.type ,
direction <- #return),

getDep : UML2!" accessors :: AccessorDependency" (name <- ’Get ’+baseNameS ,
client <- getOp ,
supplier <- s), ...

}

Listing 1.2. Accessors2 ATL transformation module

The previous transformation definition examples illustrate a conflict that has
existed in the MDE community for a long time: should you use UML profiles or
meta-models for language extension? In the domain of program transformation,
people have used modular grammars, as is demonstrated by the Stratego/XT ap-
proach to implementing language extensions and transformation definitions [5].
Considering this and the added complexity of stereotypes in the domain of model
transformation, direct extension using modular meta-models seems the way to
go.

However, it is not likely that UML tools are going to support unlimited meta-
model extension any time soon. This is demonstrated by the fact that UML has
been defined by a meta-model for over 10 years, while UML extensions are still
defined as profiles today. The technical reason behind this is that in graphi-
cal languages, syntax extension is more complicated than in textual languages.
Extension by stereotypes is easy from a concrete syntax point of view: just
add UML keywords to the original graphical representation of the stereotyped
model element. Tools for defining graphical concrete syntax, such as the Eclipse

2 I still use the name UML2 to refer to the extended meta-model: UML2 is only a
symbolic name that can be bound to any concrete meta-model.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 27

Graphical Modeling Framework, are not nearly as easy to use as the tools for
meta-modelling.

I believe that this paradox, where easy language extension causes complex
model transformation definitions, can be mitigated by providing an automated
translation from UML models with profiles to models based on “pure” meta-
models. A simple transformation can generate the meta-model representation
of a UML profile. A higher-order transformation can generate a transformation
definition that translates stereotype instances applied to regular model elements
to special model elements. The result would be a situation where you can create
UML models with profiles, while you can also write the kind of transformation
definitions shown in Listing 1.2.

3 Evolving a step-wise refinement chain

The previous section started out from the initial state of the instant messen-
ger case study, which exhibited several candidates for language abstraction and
model transformation: getter and setter methods, explicit observer pattern im-
plementations, explicit abstract factory pattern implementations, explicit refer-
ences to Java API (collection types, applet, AWT), etc. Now that a language
abstraction and a model transformation definition are in place for getter and
setter methods, a start can be made with the other abstractions/transformation
definitions.

Keeping the transformation of each language abstraction you’ve introduced
nicely seperated in its own transformation definition reduces local complexity.
You can concentrate on solving a local transformation problem. Global complex-
ity does not reduce, however, and generally requires managing. Take the model
transformation for the observer pattern, for example. This model transformation
adapts the setters of each observed attribute such that the update() method
of the observers is triggered. That means that the setter methods must already
exist in the model.

Batory et al. have already pointed out that you need to manage dependen-
cies between the different refinement steps in [1]. There even are a number of
model transformation languages that support critical pair analysis [6][7], which
provides an automated analysis of any dependencies between model transforma-
tion definitions. Unfortunately, critical pair analysis is not an easy computing
task and doesn’t scale well. It is also not applicable to all model transformation
languages.

Normally, transformation definitions in a step-wise refinement chain are de-
signed to work on the output of the previous model transformation and the
developer is conscious of the dependencies. When adding alternatives for a spe-
cific model transformation definition, or when changing one of the model trans-
formation definitions in the refinement chain, the situation becomes different.
Will the alternative/changed model transformation definition still provide what
is required by the next transformation steps? Techniques such as critical pair

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 28

analysis may be able to tell whether the following transformation steps will still
trigger, but can’t say much about changes in the semantics of the outcome.

I rather believe that the dependencies between transformation steps must be
concentrated in semantically rich meta-classes. For example, when the observer
pattern transformation definition requires the presence of setter methods in or-
der to adapt them, the meta-model should provide an explicit notion of setter
methods. By converging the dependencies between transformation steps in se-
mantically rich meta-classes, automated analysis of such dependencies becomes
much easier.

4 To round-trip or not to round-trip

The instant messenger case study uses an incomplete code generator, that does
not understand any of the UML behaviour diagrams. Instead, it uses UML’s
support for adding native method bodies in Java, C++, etc. to operations. Ob-
viously, Java editing support in a UML case tool is nowhere near as advanced
as what Eclipse JDT can provide. As a result, all method bodies for the in-
stant messenger are written in Eclipse JDT, after the skeleton code is generated.
These method bodies are then manually added back to the UML model, such
that the next code generation cycle picks them up. This approach is a terri-
ble maintenance nightmare and cannot be used in real situations. Merging-style
code generators, such as EMF’s JET and Acceleo, look nice in the beginning.
They provide a way to propagate any changes in the model back to the code
while merging with the existing, hand-written code. They do not provide a way
to propagate code changes back to the model, however. That means that model
and code can still grow apart from each other and at some point the model no
longer reflects what is in the code.

A full round-trip engineering (RTE) approach can be used to solve this prob-
lem. RTE is useful in situations where the model does not provide a complete
view of the software. In the case of the instant messenger, the model provides
a complete specification, but still an incomplete view: the Eclipse JDT view of
the method bodies is far more useful. The problem with RTE is that it is very
hard to do in a general way, as is illustrated by Van Paesschen in [3] and by An-
tkiewicz et al. in [4]. First of all, the model transformations must be executable in
both directions. There are bi-directional model transformation languages, such
as QVT Relations [8] and Triple Graph Grammars [9], that support this. Writing
a bi-directional transformation definition is more complex than writing a single
direction transformation, however. Your output patterns have a double function
as input patterns as well. As such, you must make sure that your output pat-
terns function correctly as input patterns as well. Then, both Van Paesschen
and Antkiewicz acknowledge that RTE requires more than just bi-directional
transformations in the case that your model transformation definitions are not
injective. Consider a simple model transformation that applies a profile to a
model if and only if that profile was not yet applied. The reverse of this trans-
formation is not possible without having the original source model available.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 29

Recent work on RTE shows a different approach to the problem. In [10], Het-
tel et al. point to the possibility of doing RTE with only having a forward trans-
formation definition and reference source and target models available. In [11],
Xiong et al. actually go as far as claiming an initial implementation of such a
system based on ATL. If this approach can be made to work in general, where
the developer only needs to provide source model and forward model transfor-
mation definition, this removes any disadvantages that RTE has over simple
forward engineering.

References

1. Batory, D., Sarvela, J.N., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Transactions on Software Engineering 30 (2004) 355–371

2. Henriksson, A., Larsson, H.: A Definition of Round-trip Engineering. Technical
report, Department of Computer and Information Science, Linköpings Universitet,
Linköping, Sweden (2003)

3. Van Paesschen, E.: Advanced Round-Trip Engineering: An Agile Analysis-driven
Approach for Dynamic Languages. PhD thesis, Vrije Universiteit Brussel, Brussels,
Belgium (2006)

4. Antkiewicz, M., Czarnecki, K.: Framework-Specific Modeling Languages with
Round-Trip Engineering. In: Proceedings of the ACM/IEEE 9th International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2006),
Genova, Italy. Volume 4199 of Lecture Notes in Computer Science., Springer-Verlag
(2006) 692–706

5. Bravenboer, M., Visser, E.: Designing Syntax Embeddings and Assimilations for
Language Libraries. In: Models in Software Engineering. Workshops and Symposia
at MoDELS 2007. Volume 5002 of Lecture Notes in Computer Science., Springer-
Verlag (2008) 34–46

6. Mens, T., Taentzer, G., Runge, O.: Detecting Structural Refactoring Conflicts
Using Critical Pair Analysis. Electr. Notes Theor. Comput. Sci. 127 (2005) 113–
128

7. Mens, T., Kniesel, G., Runge, O.: Langages et Modèles à Objets (LMO 2006). In:
Proceedings of Langages et Modèles à Objets (LMO 2006), Nı̂mes, France. (2006)
167–183

8. Object Management Group, Inc.: Meta Object Facility (MOF) 2.0 Query/View/-
Transformation Specification. (2005) Final Adopted Specification, ptc/05-11-01.

9. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars.
In Tinhofer, G., ed.: Proceedings of the WG’94 20th Int. Workshop on Graph-
Theoretic Concepts in Computer Science. Volume 903 of Lecture Notes in Com-
puter Science., Springer-Verlag (1994) 151–163

10. Hettel, T., Lawley, M., Raymond, K.: Model Synchronisation: Definitions for
Round-Trip Engineering. In Vallecillo, A., Gray, J., Pierantonio, A., eds.: Pro-
ceedings of the First International Conference on Theory and Practice of Model
Transformations (ICMT 2008), Zürich, Switzerland. Volume 5063 of Lecture Notes
in Computer Science., Springer-Verlag (2008) 31–45

11. Xiong, Y., Liu, D., Hu, Z., Zhao, H., Takeichi, M., Mei, H.: Towards Auto-
matic Model Synchronization from Model Transformations. In: Proceedings of
the Twenty-second IEEE/ACM International Conference on Automated Software
Engineering (ASE ’07), Atlanta, Georgia, USA, ACM Press (2007) 164–173

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 30

UML/OCL Verification In Practice

Jordi Cabot and Robert Clarisó

Universitat Oberta de Catalunya
{jcabot, rclariso}@uoc.edu

Abstract. In the MDD approaches, models become the primary artifact
of the development process and the basis for code generation. Identifying
defects early, at the model-level, can help to reduce development costs
and improve software quality. There is an emerging need for verifica-
tion techniques usable in practice, i.e. able to find and notify defects in
real-life models without requiring a strong verification background or ex-
tensive model annotations. Some promising approaches revolve around
the satisfiability property of a model, i.e. deciding whether it is possible
to create a well-formed instantiation of the model. We will discuss ex-
isting solutions to this problem in the UML/OCL context. Our claim is
that this problem has not yet been satisfactorily addressed.

1 Introduction

Model-driven development (MDD) advocates for the use of models as develop-
ment artifacts. In this context, code is no longer written from scratch but syn-
thesized from models (semi-)automatically. Therefore, any defect in the model
will propagate into defects in the code. In MDD model correctness becomes a
key factor in the quality of the final software product.

Although the problem of ensuring software quality has attracted much atten-
tion and research, it is still considered to be a Grand Challenge [1]. In this sense,
this paper argues that this grand challenge must be adapted and extended to
cover the verification of modeling notations commonly used in MDD approaches.
In this field, it is essential to provide a set of tools and methods that helps in
the detection of defects at the model-level and smoothly integrates in existing
MDD-based tool-chains without an excessive overhead. Characteristics of exist-
ing tools, such as required designer interaction or manual model annotations
seriously impair its usability in practice.

We will discuss existing approaches and their limitations to motivate that this
problem is still unsolved and remains an important challenge in MDE. Through-
out the paper, we will focus on the UML as an example of a MDD modeling
language. However the contents of the paper also apply to all kinds of domain-
specific modeling languages (DSMLs). Some of the problems identified herein
already arise when just considering the graphical elements of the models. How-
ever, complexity increases when designers use textual languages (e.g. OCL) to
improve the precision/formalization of the models. Note that all existing model-
level verification approaches proceed by translating the models to a more formal

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 31

language (e.g. Alloy). Therefore, characteristics (and limitations) of correctness
techniques for UML/OCL models largely depend on the properties of available
verification techniques for those underlying formal languages.

2 A definition of “correctness”

One of the first problems when discussing correctness at the model-level is the
large number of existing correctness notions, according to many different criteria:
static vs dynamic, inter-diagram vs intra-diagram, . . .

A first degree of correctness can be that of consistency and well-formedness,
checking that all uses of a model element (possibly in different diagrams) are
consistent with its declaration and that the model as a whole can be expressed
as a correct instantiation of its meta-model.

Even though this analysis provides an initial level of defect detection, it does
not take into account the semantic correctness of the model being defined. By
semantics, we consider the set of required conditions (i.e. integrity constraints)
that should be satisfied by any correct instance of the model. These conditions
may be implicit in the model notation (like the multiplicity constraints in UML
associations) or explicitly defined using a constraint language like OCL. These
semantics problems may affect either the static (structural) or dynamic (behav-
ioral) view of the system. Examples of possible errors are the non-executability
of pre and postconditions in an operation or the presence of contradictory in-
variants or association multiplicities.

Different modeling notations and constraint languages have varying degrees
of expressivity. Therefore, each notation creates a different challenge in terms
of decidability and efficiency, and suggests a different set of analysis techniques.
Due to space limitations, we will focus our discussion on the study of UML
static models. In UML, static models may be expressed as class diagrams com-
plemented with a set of OCL constraints.

A fundamental semantic correctness notion in static models is that of model
satisfiability. (Strong) Satisfiability consists in deciding whether it is possible to
create a non-empty and finite instantiation of the model in such a way that all
integrity constraints are satisfied. Clearly, an unsatisfiable model is useless since
every time users try to create a new object, e.g. instantiating one class of the
model, at least one of the integrity constraints will become violated.

The importance of satisfiability comes from the ability to define many other
correctness properties, such as liveliness, constraint redundancy, subsumption
and so forth, in terms of the satisfiability problem. For example, a designer can
check if an integrity constraint C is redundant by formulating a satisfiability
problem where ¬C replaces C in the model. If that model is satisfiable, it means
it is possible to satisfy the remaining integrity constraints while violating C, so
C is not a redundant constraint.

In the next sections we describe current approaches for UML/OCL model
satisfiability and possible further research directions to cope with this challenging
problem as a basis for identifying semantic defects in UML/OCL models.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 32

3 State of the Art

In order to succeed in a MDD context, we believe any method for model satisfi-
ability should fulfill the following list of requirements:

– Understand the input notation used by the designer (e.g. UML/OCL), not a
formal notation nor a subset of that notation. If an internal formal notation
is used, it should be transparent to the designer.

– Analyze the designer’s model as is, without requiring any type of manual
annotation.

– Perform the analysis automatically and without requiring user interaction.
– Provide results in a format meaningful to the designer.
– Be efficient and scale up to support large real-life examples.
– Integrate seamlessly into the designer tool chain.

Existing solutions lack of one or more of the previous qualities, and that
might justify the lack of adoption of model-level verification tools in current
MDD projects. In what follows, we describe the weaknesses of existing methods
in terms of the main challenges they have to face when trying to satisfy the
previous properties.

1. Decidability: The complexity of satisfiability analysis mainly depends on
the expressiveness of the logic used to define the model and its constraints.
Allowing a notation such as OCL makes the problem undecidable. Three
different strategies are used to confront this undecidability:
– Relaxing automation: Methods based on theorem proving might require

user assistance during proofs, e.g. HOL-OCL [2].
– Constraining the logic: Some methods work on a restricted subset of OCL

(e.g. [3]) and some others do not support OCL at all (e.g. [4]). There is
a trade-off between expressiveness (e.g. “are numerical constraints sup-
ported?”) and complexity.

– Performing bounded verification: If a finite bound is defined, it is then
possible to check a property for all possible instances up to that maxi-
mum size, e.g. [5, 6]. This type of analysis can be used to prove the sat-
isfiability of a model, but the lack of counterexamples within a bounded
search space cannot be used to prove its unsatisfiability.

2. Efficiency: Reasoning on UML class diagrams is EXP-complete [7] even
without OCL constraints and thus, current tools do not scale-up well which
makes efficiency a concern for most non-trivial models.

3. Usability: Verification tools are often disappointing from the point of view
of a designer. One of the main reasons is that tools do not directly manipulate
the UML/OCL model but first translate it into a formal language (Alloy [6],
CP [5], HOL [2], DL [8]) where the verification process takes place. Therefore,
a good knowledge of this underlying language may be required to operate
effectively, e.g. while selecting adequate parameters, tuning the model for the
analysis or interacting with the tool. For this same reason, the interpretation
of the results of the analysis might be complex and should be expressed in
terms of the original model.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 33

4. Expressiveness: The richness of the modeling languages (specially of the
UML and OCL standards) creates a challenge for tool developers, who
must support a wide variety of modeling constructs. Furthermore, the varied
ecosystems of design tools, development tools and IDEs creates additional
difficulties in terms of integration and interoperability.

4 Research Agenda: Promising Research Directions

The aim of this section is to sketch possible future research directions we believe
may help in overcoming the previous limitations.

– Automatic selection of the most appropriate verification approach
for a specific model. Each approach presents a different trade-off regard-
ing the verification process. Depending on the model one approach may be
more suited than others. For instance, for UML models without integrity
constraints (a decidable problem) it may be better to use complete ap-
proaches (as those based on Description Logics) instead of approaches based
on bounded verification.

– Model partition to improve performance. In most cases, the verifica-
tion of a model m can be defined in terms of the verification of the submodels
mi, . . . , mn. Techniques for slicing the model in a subset of independent sub-
models (with the subsets to be computed depending on the property to be
verified) will definitely help in improving the efficiency of the process due to
its exponential nature.

– Establish public community benchmarks to compare different tools
and approaches. Benchmarks provide an excellent resource to measure
progress and the significance of a contribution. The existence of widely ac-
cepted benchmarks for model verification can foster progress and allow ex-
isting approaches to mature and exchange ideas.

– Search space reduction for bounded methods. Bounded methods re-
quire a finite search space. A smaller search space improves the efficiency
but impairs the completeness of the verification. A preliminary analysis of
the model could provide some insight on the best bounds of the search space
as a trade-off between the two properties.

– Apply SAT Modulo Theories to model satisfiability. SAT Modulo
Theories (SMT) is a promising technique for checking the satisfiability of a
complex formula which combines recent improvements in SAT tools with the
power of a custom solver specialised in a given logic [9]. In the case of model
satisfiability, the challenge is identifying a subset of the modeling language
which is sufficiently expressive yet allows efficient decision procedures.

– Feedback improvements for defect correction. Tools should not only
be able to answer whether the model is correct. If the answer is no, the tool
should be able to explain where, why and how it can be corrected.

– Incremental verification. The specification of a model is an iterative pro-
cess where the model is continuously refined by means of adding, changing or

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 34

deleting some of its elements. Clearly, once a first version has been verified,
we should be able to prove the correctness of new model versions without
verifying the whole model again. Instead, only the “updated” parts should
be considered.

– Model normalization. Normalizing a model, i.e. rewriting complex mod-
eling constructs in terms of more basic ones, prior to the verification process
helps to reduce the complexity of the verification algorithms that now do
not need to consider the full language expressiveness. For instance, see [10]
for some rules for normalizing OCL constraints.

5 Conclusions

Model-level verification is a key step toward improving software correctness. De-
spite the amount of research efforts devoted to this problem, existing approaches
for model verification exhibit shortcomings that limit their applicability and
adoption in MDE projects. In this paper, we have identified these problems and
a possible set of research directions that may help in the creation of a new
generation of verification tools that offer effectiveness, efficiency and usability.

References

1. Jones, C., O’Hearn, P., Woodcock, T.J.: Verified software: A grand challenge.
IEEE Computer 39(4) (2006) 93–95

2. Brucker, A.D., Wolff, B.: The HOL-OCL book. Technical Report 525, ETH Zurich
(2006)

3. Queralt, A., Teniente, E.: Reasoning on UML class diagrams with OCL constraints.
In Embley, D.W., Olivé, A., Ram, S., eds.: ER. Volume 4215 of Lecture Notes in
Computer Science., Springer-Verlag (2006) 497–512

4. Baruzzo, A., Comini, M.: Static verification of UML model consistency. In Hearn-
den, D., S, J., Rapin, N., Baudry, B., eds.: 3rd Workshop on Model Design and
Validation (MoDeV2a). (2006) 111–126

5. Cabot, J., Clarisó, R., Riera, D.: Verification of UML/OCL class diagrams using
constraint programming. In: MoDeVVa 2008. ICST Workshop. (2008) available
online: http://gres.uoc.edu/pubs/MODEVVA08.pdf

6. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: UML2Alloy: A challenging model
transformation. In: ACM/IEEE 10th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2007). Volume 4735 of Lecture
Notes in Computer Science. (2007) 436–450

7. Berardi, D., Calvanese, D., Giacomo, G.D.: Reasoning on UML class diagrams.
Artificial Intelligence 168 (2005) 70–118

8. van der Straeten, R., Mens, T., Simmonds, J., Jonckers, V.: Using description logic
to maintain consistency between UML models. In: Proceedings of 6th International
Conference UML 2003 - The Unified Modeling Language. (October 2003) 326–340

9. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT an SAT Modulo Theo-
ries: from an Abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM 53(6) (November 2006) 937–977

10. Cabot, J., Teniente, E.: Transformation techniques for OCL constraints. Science
of Computer Programming. 68(3) (2007) 179–195

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 35

�

�������	
��
����
�
	�����
���������	���	����
������
	�
�
�
����
	������
��
��

�������	
���	���
��������

���	��
{jcabot,eric}@cs.toronto.edu

���������� �������	������ ���� ���	���	����	 � �����!�� 	��� �	����	 ��� "����
#$���%&���	�� �	�����������������'����������"����#$�	��%&��� ��������	�	 ����
������	(��� ����)� ����������	�����*������������
��	��������������������������

�� ���� ���������� ������� 	 ����	�����+� ������ 	������� 	��� ����� ������	��� ���� ����
������������������������������
���	������������������
����������,��� -�������

����������� ",�
&� �������+� .�� ����� �	���� *�� 	����� ���� ���� ���������� ���
�!�������� ,�
� �������� *���� ��������� ��'���������� ������'����
	���� ���
��	 -��������� ������'���� ���� ����	�	 �����	�����������	�������� �������	���	�����
�����!��	���������������
��������	�����	 ��������������������	����+�

� �!"
�#"���
	

�

�������	���������������������	 ���	�����������������	�����*	�������������	�������	���
���������� ���� ���� ��������� � ������� 	��� ��� �����	����+�/���������	������ ������	 ���
��������������������	���	������	��
��
������	 ������*����������������	 �������������
��
���� ������+� 0�*������ ���	���	������ 	��� ���� �!� ��� �	����� 	��� ��� �����	 �� *����
	��������������������	���������������	������	 ���	���	 ����	��������	���*��������������
��� ��	������ ���� ���� �	��� �	������ "��	(��� ����&� ��	�� �	�� �	��� 	�� ��������� ��� ����
������+� ��� ���������� ��	 �	���� 	��� �� ���� ����
���� 	 ����	������ ��� 	� ��������	
 ��
��	 �����
���	�(���	���+�

��������	�� ��������	�����	���	����	 -
	����	�	 ������������������)����'����������
�	�� ���� ����
���� 	�������
�� �������� ���� -������� ������������ ",�
&� �������+� .��
�����	 �� ,�
� �������� ����� ���� ��'���������� ��������	����� ��� ���� � ����	����� ��� ����
��������	 ���'������������������������"�+�+�����
��	�����1��������1�	�(������������-��-

��������������&�
���������������������������	���	����	 ������!������������������������
���-��������	 ���'����������"234�&�5678�"	����	
� ������!�����
� ����	��������&+��

$��
� ����� ����� ����������� ��'���������� 	�	 ����� ��	 ������ ���� 	
� ���� ��� ��������
,�
� �������� ��� �������� 	�� 	����	��� ������� ���������	����� 	�� ���� ���� ��� ����
���� ������� �������+� 9�� 	� ���� ��� ���� �����	���� ������� �	�� ���� �	������ ����
��	(��� ���)���!����	������
��	������������	 ���	�������
�������������� ������������+��

����������� ��� ���� ��������� ���������� 	�
������ �������� ���� ���� ��'����������
��������	����� 	��� 	�	 ����� ��� 	� ��� � 	� ����	���� ��	 ����� ���� ,�
� 	��� ���� ��� ����
��	����� ��	�� �	�� �!� 	��� ���� �*� 	�������� ��� ,�
� �������� 	����� ����*	���
����������	 �+�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 36

�

�

.��������!������������*����������������	 -�����������������"��������:&�	��	������
 ��
��������� ��� ����� ��	 �����
�� ��	��� ��� ������	����� ������ �������� *������ ,�
�
	����	����� "�������� ;&+� � 3��	 ��� *�� �������� 	� ���� ��� ����� ���
 ���� ��	�� �����
��
�� ��������	(�������������	�������	��
 ��"��������<&�	����������*������������ ������+�

$ �%����&��
	�
���
����
�
	���'	
�	

��	
��
�"�����

���� ��'���������� ������������ ���������� �	�� 	��� �� 	��������� 	��� ����������� ����
 �	����� �� �� � 	����
�� ��	 �� ��� ���� ��'���������� ������������ �������+� 2�*	�	����

� ����� 	��� ��	 �� "���� #$���%� ��� ���� ������&� �	���
���� ��������	���� ����� �����
��'����������	�'�����������	��*��(��������� ��(��*��	����	 -�����������'����������
������������ "=>4
&� �������+� 9� ��	 � ��� 	�� �
?������� ���
�� 	��������
�� ���� �������
��������������	����+�=�	 ���	��������������������������	 �������������234�+�

.���	��
�������������	��	���!� �������	 ����� �������������	������� �����	(��� �����
�������������*���� ���� �����	 � ��'���������� ��� ���� ������� 	����	 *	���������� ���������
���
 ��	���� �	�(�� ��� 	��� ���� ������� �������+� /�� ��������� ��� ��	 �� �����	�� ���
�����������'�����������	�	 �������	
 ����	(��� ����������������	���������	� 	���	���

	����������������"�+�+���	 �&�*����*����������	���
�����������	
 ��	����	�� �	��5:8+��

>�����*� -(��*��
�������������������	 -
	������������	���������������� ��� ����*�
��� �������������'����������	������	����*������	������	 ���'������������������	�����@�
������ ��(�*����
����������	 ��	������������@� ������	
� ���������	 ������	����*��������
��'������������	����� ����������@�����	
� ����������������	 ����	������� �������	�������
�������	 � ��� �������� ���� ��	��	
� ���� ��� ���� �������
�� ���	
 ������� � �	���� ��(��

��*������������ ����������������� 	��� �������	 � �������	 ����	������ 56:8��*�����	 ���
�	�� ��	���� ���� ������� ��� ������ 	��� �	�����	���+� /�������� =>4
� �������� 	 �*�
����������	����	 ��	�����������'�����������	� ������������� ���������� �������	��������
����	�	����������������	�������������	������������������� 	������	������������������+��

(��	�

����	
�%&�'��	����'��
�"����

=�����������	�	�����������	����������	 �
�������������������=>4
����������*��
� �����
��	�������	���	���������	����	�����������������	�������������,�
�	����	�����*�������
�����������'������������������	�����	���	�	 ����+��

.��������������*������(���	��	��������	��������*	������� ����������������*���������
�����	 ���	�������,�
���������"	�	 �������������	�������-�����	����&�	������������

�� ���� �	� �� 	��� 	��� ��'���������� ��	���� ��� =>4
� �������� "�+�+� 5A8&�� ��� ��
��������� ���� ����	������ ��� ,�
� �������� �������� ���� ��� ���� ������������+� � 3���
����������� ���� �*�� ������ ��	���� *�� �������� ��� ���� ���� �����	 ����� ��� ���� ����
��	��*��(�56B8+��,C�"������� 	����C�&�	������� ����	 ��������������������+�

.�� ��� ������	��� ��� ����� ��	�� ��� ������ ����	!������ ����
�������� ��� ����� ������	������
��	 �� ���� ��
�� �	(��� ����� 	������� ��� 	 � ��	���� ��� ���� ���� ������� �������D�
��������	 � ��	 �������
�� #��	 ����%�
�� ���� ��	���� 	������	����
��	���������	�	 �����
	��� ������� ���� �� *�� �� ���-��������	 � ����� ������ ���� �� ������� ��� �����
 �� �������
	 ����	������*����������������������	������������ �*���+���������	������������������

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 37

�

������ ������� *��(�� ��	�� �	��� ������ ���
������ ���� �	��
��*���� =>4
� 	��� ,�
�
��������
�� "�	�� �&� �����	����� �!������� ��� 	�� �����	 ��,C-
	���� ��������	����� �����
������	 ��������	�����5<8�5668�5E�6<8+���

.��*�	���� �*���*����������	�����������������������	�����	��D�
− '���)��
����
�
	����"��
+�.����������"��	 �&��������	������"�+�+���	(��� ����&�

��� ���� ���	���	����	 � �����!�� 	��� ���� ��� 	��� 	�	 ����+� .�� ����� ��	��� *��
�!� ����*�������������������������*�	��	 ����	�������������!�������	��	����	���
��	 �	���*�	��	���������� ��	����������	���	 ����	���������������	(��� �����"�+�+�
*�	��
���������������������234�&+��

− *��
��
����
�
	����"��
+���������������	�����	��	���*�	�������	���	��
�����
��	���� ��� �� �� ���� ����� ��� ���� �������� ��	 �+� 9�� 	�	 ����� ��� ���� ����������
	 ����	����� �������� ��� ���������� 	��� 	� ���	 � ��������� ��� ���� ���� ���
��������
� ������ ��� �� ��	��� ��� ���� ������� ����	��+� � 3���� ����� 	����������*��
�	������������� ���������������	 ���'����������"�	�(�&�������������������
�+�

− �	��)���� �"��
 � ���� ��	���� "�+�+� ��������	 &� 	��� ���	���� "�+�+�
��	�����	 &�
	�����������������	�����'������
����������*	�����������������������������������
	��� ���������+� =�	 �� ����� ��� �
�� �	(��� ����� 	������� *���� ����������� ������
���� �+�,����	��������	��
�������������������������������	����	 �-�'���	 ����
	 ����	��������	�������*����������	��-����+������� �����������������������	
 ������
���� ���� ��������� ������� ������ ���� ������� ���� ��
�� ��� �������
�� ����
��������	 �	������-��������	 ���	 ����	�������������������� �� +��

− �
��
	��"��
 ��������������	���	�	���� ����������������� �� ��� ���� �������	 �
��	������ ��� ���� ������ ����	 � � 	������ *����� ���� ������� ��� ������ ���
��
��� �������+������ ��� ���� ��������� 	� ��'��������� ��	������	������ ��	�� �������
���� ���� �� ���� � 	 � � ������� �	��� 	� ������� ��������������� *���� ����
�����	������ ����������� 	�	� 	
 �� ��� ���� ����������� �����������+� .�� �����	 ��
	 ���	������	������	������-�������������������	��������������*���	���	����
���
��������
 ���������	 ����	��������� ������������������-��������	 �'�	 �����+�����
��	 �������������������=>4
����� �������	����� 	���������-��������	 ��������	��
�� �� ��� ��� ������ ���� ��	������	����� �������� 	��� �� ���� ����
���� 	 ����	�����
	������������������'�������234�+��

− #��
� %
	
�����	 � � � ����*	��� � ������� ��� ���� ������� "������ �	�	�
�����������F&�	��������	������������������������ �+�

+ �&�
	��
�
���"������
���

�������������������	 �
�������������!����=>4
�	���,�
����������������	���	����
���
�����������
 ������	�������
���� ��������	(��������������	�������	��
 �������	�����+�.��
�	����� 	��� �����	��� ��	 ����� ��� ���������� ��	�� ����
�����������*����� �����!��	�*��(�
��� ����
�������!� �������������������������	 ��	������
����������������,�
��������+�

����������� ���� ���� ��� ����	���� ��	 ������ ����� ��� ���� ���������� ��� ���������� ����
	�� ��	����� ��� ���� 	����	���
�� 	����	����� 	��� ���� ������� 	������� 	�������
 �� ����
��	��������
��*��������������������	���+�9��	���	 � ������������� �*���D��

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 38

�

�

- ���� ������� ��� 	� ������� "���	&���� ���� ��	��*��(+� ���
������ ���� �	��

��*���� =>4
� 	��� ,�
� ���� �� 	��� �	��� ���� ����������� ��� ���� -��-���� �
��	������	������
��*���� ������
���� (����� ��� ���� �� ���� ��
�� ���������� ������
#����	��
 �%� ���� ���� 	���	���+� �������� �������� ���� ��� ����	 ���� ���� �G�
 	���	���	��	�,>3-���� �	������	���� �"����56H8��5;8�	���568&+�

- 4������� ���� ������	����� ��� ���� ��	 � ���� �� ��� �	���	 �� �����	��� ���� ��	���� 	���
���	���� 	������� ��� ���� ������+�
!������� 	����	����� ������ ��� ���� �����	����� ���
��� ����	��� ���� �	��� ��	��	���� 	�������� ��	��	��� 	��� � 	��� ��	��	��� "���� 5I8�
5<8�5668�5E��6<8� � 5668� ��������� ������	����&+�����������	����������	 ������������
�������������	���������������-��������	 ���'���������+�����5H��6;8������!	�� ��+�

- C��(���� 	��� ��	��	
� ���� ������'����
��*���� ����
�������� ���� �� "	���
��������
���������&�	�������	�	 �����	�������������� ��	�������	����������	 ����������+�3���
����	����� *�� ���� ��
�� 	
 �� ��� �������� ���� �	��� ������� ��	 �� ���� ��
���� ��� ����
����������� ����	���������������� �� ����������	����	 +��

- .��������	 ����� �����������	�����������'����
��*����	 �(������������ �+��
- ������������	�	 �����
��*���������������������� ������ ������������������+�C�*-

 ��� ����� �������
��	������������������������������������- ��� �����+�
- J�������	�������	����*	�������	 ����*����234�����,�
�"	�������,C&+�
- 4�����������������	�����	
���������������234�������� �������������	�	 �������	���

	�����������	������������������ ��������������������	�	 ������	������������� �����	���
	������� ��� ���� ���	��� "�+�+� ��� ���������� ���� ������ ��� 	� �������� *�� ��� �� ?����
�������� 	�� 	����
���� ��� ����� ��	
� ��� ���� ����� ���� �!� �	������� ��	�� �	�� ��	���
��@� �����
���	
���	
��	
������������������
��������234�����������������*������ ������(���������������������&+��

- ���������234-
	�������� � ��	������	������ ��� 	����	���	 �� ��	�������� ����� ����
	�	 ����� ��� ���� ������� ��	��+� ����� ��	������	����� ��� ���� �������������+�
	���
���� ���� ���������� ��� ���� 	�	 ����� ���� �� ��� ��
�� �!�������� ������ ����������
�������	 ����	�����+�
	���	 ����	��������� ������	�����������������
����������������-
��������	 �'�	 �������������������+�.������������	����	����	����*����� ��	����	���
���� ��	������	�������������
�� �� ������� �����������	 ����	������ ��	��
�������	����
��������������234�����������'������������	���+������*	���*��	 ������������	������
���� ���������������
������	 ������*����������	(��� ���)�����������+�

-
��	
 ������� �������� ���� 	�?������� ,�
� ���������� ��� ���� ��	 ���� ��� ����
���� ���������	�+�9��	�	 ������������(��* �����	����(� �������	�����
����	���
��	�� ����������� *� � �� �� ��� ����� ���� ���� ������� �������� ��� ��	�� *�� �	��
�	!������������	��	
� ������	����	�� ��	���������������	�� ��	����+�

, �#�	������	���

$�� �	��� ����������� ���� ����	������ ��� �������� ,�
� �������� *���� ��� ������ ���
�������	�������������	�����	 ������������	���	�����	���������	(��� ��������	����������
����*	�������������
������ ����+������ ���������'����������	�	 ��������������������
,�
������������	���� �����	��������'�	 ����������������	����������+�$��
� �������	��
�����������������'������������������������ �	��������	���,�
�����	������	 ����+�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 39

�

9�� 	� �����
 �� �� ������ *�� �	��� ��������� ��� �!����� ,�
� �������� *���� ��	 -
��������� ��'���������� ������������ ������'���+� $�� ����(� ����� ��������� ���� �������
���������	��
��
����������������������������*	�������������	���	������������	(��� ����)�
�!����	�����+�.���	���	�������	������������	����	����� ���	���������������	������������
��������	��1������	����	��1������	���	�����+���������������
���������	 ���	 ��	���+�

��-	�.�
�

�
	���
$��(�����������
��������	�����,�����������
���	�����	�����������"���?�����.2:77H-
7B7H;&��������	���:77A�/J-9�776:I�"�	�	 	��=���������&�	�������2	���	 ���������
	���
�����������4���	���������� �����	�	�	+�

�
�
�
	�
��
6+� 9�������+���42����	���� �������	 +�9�	� 	
 �D�

����D11?����	�+����*	�������������+�	1�*�(�1
��1���*1��,1��	��K6H6,��	���� �
:+� 9������9+�.+D�=�	 �.��������	�����	���4�������������������������	������������*	��-/	����

.�����	������������+�J���������+�=�����	�.������������������ ����"6EEA&�
;+� 9�	 	���+�J+���	������+���	��	 ����+�J+��=�	���=+��0	�	��,+���	 	�	���=+��3�	�����L+��,	�� ��

+��M������+D�9�����	�	�����9�	 ���������G-/	����9����->��������,��� ����C	���	���+�
.�D�J���+��
N
O7H�":77H&�<;-H7�

<+� /���� ������+���� ������C+��,� ���� �����+��2���(���9+��>� ����9+��J����������C+��J�������9+��
������9+�����	����/+D�9��������,��� -����������� �������
����������+�.�D�J���+��9��
�
3�����:77B���":77B&�

H+� �����������C+�,+��C�������+��+��+��+�J+D�2����������	 �4�'���������D�3����
 ����	��������
��������	 �,��� ��.

���	��+�����*	���
��+�;7��":77<&�;:I-;H7�

B+� 3��*	����9+��C���
��������+��+D�J��
 ����	���>�����������������,��� -��������P������
����-������������ ������D�	���������������*	���J���������	 �+�.�D�J���+�,��
Q7I�".��
�
$��(����&���":77I&�

A+� =���������J+��N� ���,+��,� ���� �����+��J��������,+D������������,������ ���D�	��
�������*+�.�D��3+�/���������,+-J+�= �������	���3+�K	�
��� ���"���+&D�,������ ������9���
����*	���
�����������3���9������������+�N �*���9�	������J�
 �������":77;&�

I+� ��	����C+�����	 �� �����+��/�����	��9+��,� ���� �����+D�.�������	�����=�	 �9�	 ��������
�	�	
	���������D�9��	��������������/�� ����	 ��	�	�,	�	������+�.�D�J���+�4
O7B���
":77B&�6EB-:7<�

E+� ,	��R�����9+��J	������>+��
���	�	��0+D�� ����������=	��
��*����>��	���	����	 �,��� ����
	���.�����	������������,��� ���+�.�D�J���+�$
4O7;���":77;&�E;-67I�

67+�,� ���� �����+���������C+��2�!����/+�9+D�4������������	���������2����������	 �
4�'���������D�9�J������->��������9����	��+�.

���	��+�����*+�
��+�6I��"6EE:&�<I;-<EA�

66+�J�������9+��������9+D�9����	�����,��� ���	������	���������9����->��������,��� ���+�.�D�
J���+�9>�
O7H��C2�����;EH7�":77H&�6BA-6AI�

6:+�4������=+��$���	����9+D�$��������=�	 �����������S���������� �����J������ ������=�	 -
>��������4�'����������
����������+�.�D�J���+�4
O7H���":77H&�;;E-;<E�

6;+��	 	�	�-K	�	����=+��/��� 	��J+���	�	�	�	(���9+D�.��������������-��������	 ���'�������������
�,C+�.�D��,C�	����������������������+�.=.�J�
 �������":77;&�66B-6:I�

6<+��	��	������P+�3+�9+���	�������+D���������������	���������>��	���	����	 �,��� ���+�.�D�
J���+�4
O7:���":77:&�;:-<:�

6H+�������9+��J�������9+��,� ���� �����+��=���������J+D������������,��	���� �	����������+�
.�����	���	�:E��":77H&�<76-<7I�

6B+�����
+D���*	����,��� ����	���4�	�������������������
	� �-J�	���4�'����������

����������+�.�D�J���+�4
OEA���"6EEA&�::B-:;H�

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 40

Lessons of Experience in Model-Driven Engineering of
Interactive Systems: Grand challenges for MDE?

Gaëlle Calvary1, Anne-Marie Pinna2

1 Laboratoire d’Informatique de Grenoble, Equipe IIHM, 385 Rue de la Bibliothèque, BP 53

38041 Grenoble Cedex 9, France
2 Laboratoire I3S, Bâtiment ESSI, 650, Route des Colles, B.P. 145

06903 Sophia-Antipolis Cedex, France
Gaelle.Calvary@imag.fr, pinna@polytech.unice.fr

Abstract. Model-based approaches have been recognized as powerful for separating concerns
when designing a User Interface (UI). However model-based generation of UIs has not met a
wide acceptance in the past. Today, taking benefit from MDE advances, models are revisited
in Human Computer Interaction (HCI) for engineering multi-contexts interactive systems.
This paper relates some difficulties and requirements highlighted by experience. Among them
is the need of support for sustaining the collaboration between models both at design time and
runtime. Another requirement is about the capitalization of models, mappings and
metamodels for saving the know how in HCI. Last but not least requirement is about
evaluation. How shall we evaluate the strengths and weaknesses of MDE for HCI?

Keywords: Human Computer Interaction, Interactive system, User interface,
Multi-models, Multi-actors, Multi-views, Capitalization, Evolution, Evaluation.

1 Introduction

Model-based approaches have been widely explored in Human-Computer Interaction (HCI)
for long. The motivation was to force designers focus on user’s task instead of blending
several concerns including cosmetic considerations. Rapidly, task modeling has emerged as a
wise starting point when engineering interactive systems. Automatic generators of User
Interfaces (UIs) have appeared (e.g., ADEPT [2]) but the poor quality of the resulting UIs
killed the approach for long. Later on, the increasing diversity of platforms (e.g., PC or PDA)
and the rise of Platform Dependent versus Independent Models (PSM versus PIM) brought
models back to life in HCI [4]. Now, we are at the point of blurring the distinction between
design time and runtime for making it possible for the end-user to fashion his/her own
interactive space according to his/her feelings and needs as well as to the arrival and departure
of interaction resources. The purpose of this paper is to relate where we are in the tandem
MDE-HCI and which issues need to be solved for going further in Meta-Design [1].

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 41

2 Where we are in MDE for HCI

The canonical functional decomposition of interactive systems makes the distinction
between the Functional Core (FC) and the UI. From a methodological point of view,
along a forward engineering process, the starting point is most of the time a task
model which structures the user’s goal into sub-goals. Conversely, reverse
engineering consists in analyzing legacy systems for recovering the models that may
have driven the design (e.g., the task model) and/or implementation (e.g., the
architecture model). Using chains of tools (e.g., the UsiXML arsenal of tools - see
http://www.usixml.org/), it is possible to hybrid forward and reverse engineering [3].
In this section, we first focus on the UI design, and then address the implementation
of the whole interactive system.
2.1 MDE for the design of UIs
Designing a UI means setting all the degrees of freedom (e.g., the structure of the UI,
the choice of interactors) based on given requirements (e.g., the user’s task and
preferences, the ergonomic criteria that have been elicited, the targeted platforms).
Fig. 1 shows four functionally equivalent UIs: they support the same user’s task T that
consists in accomplishing T1 and T2 in interleaving. The UIs differ from an
ergonomic point of view. In a, the subtasks T1 and T2 are directly observable whilst
they are browsable in b-c-d. Browsing has a human cost: at least one physical action
for commuting between subtasks.
Along a forward engineering process, once the task is modeled, decisions have to be
made about the structure and rendering of the UI. Decisions are mostly driven by
ergonomics (e.g., minimal actions). At this point, the UI is classically a mockup either
drawn on paper sheets or prototyped using languages (e.g., Smalltalk) and tools (e.g.,
JBuilder). Predictive and/or experimental evaluations must be done.

Fig. 1. Four functionally but not non functionally equivalent UIs.

Our lessons of experience are listed below:
MDE for capturing the know-how in HCI: the relevant models (e.g., task, structure,
interactors) are identified giving rise to several notations (e.g., CTT [6]), metamodels
and versions of metamodels. One open issue specific to HCI is the modeling of
ergonomic properties.
MDE for platform independence: a plethora of Platform/Rendering Independent
Languages has appeared (e.g., UsiXML, UIML (www.uiml.org), RIML (european
CONSENSUS project), XIML (www.ximl.org), XAML (Microsoft), AUIML (IBM)).
There is a need of reconciliation to clarify the state of the art.
Miscellaneous statements about MDE in practice: as the focus has mostly been set on

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 42

high level models so far (typically the user’s task), these models are often overloaded
with information typically related to transformation (e.g., the targeted platform). Most
of the time, transformations are mono-technological (e.g., HTML). In addition, the
rendering can be improved.
2.2 MDE for the implementation of interactive systems

Software architecture models (e.g., ARCH) improve software quality. ARCH
refines the UI into sub functions among which is the Dialog Controller (DC). The DC
is in charge of piloting interaction while ensuring consistency between the FC and the
UI. The DC is a kind of implementation of the task model. General research in MDE
deals with the FC only. Below are our lessons of experience about the whole system.
MDE for models collaboration: the global picture (Fig. 2) implies biaxial mappings
and transformations: vertical for the engineering process, horizontal for
complementary descriptions and/or code [5].
MDE for models at runtime: we are at the point of keeping the design models and
design rationale (i.e., the biaxial lattice of Fig. 2) alive at runtime so that to enable the
revision at runtime of any design decision.

Fig. 2. Biaxial and bidirectional transformations/mappings.

Miscellaneous statements about MDE in practice: automatic forward generators
mostly produce "fast food" UIs in which models and transformations are lost. The
transformations do not preserve collaborations at the code level, and horizontal
collaborations between FC and UI are not yet well supported. In addition, consistency
between models, transformations and code is not ensured at runtime along the models
evolution. This calls for further research. Next section elicits three main requirements.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 43

3 What we need for going further: three requirements to conclude

To our understanding, HCI is an interesting domain for both illustrating and
inspiring research in MDE: on one hand, there is a long know-how in models and
transformations in HCI. It provides a lot of knowledge to support experiments in
MDE. On the other hand, keeping models at runtime raises new perspectives in both
HCI and MDE. Whist the global picture has been demonstrated on simple case studies
in HCI so far, we now aim at going beyond toy applications. This calls for mastering
MDE for HCI, i.e., being able to reuse mature generic supports (methods and tools)
from MDE so that to concentrate our efforts on the specific features of HCI (e.g.,
ergonomics). We identify three major requirements for going further: the support for
multi-models and multi-actors, capitalization and evaluation of models.

#1. Support for multi-models and multi-actors
From now on, an interactive system is depicted as a graph of models that conveys

both its design rationale and evolution over time. The models cover the internal state
of the system (FC and UI) as well as its deployment on the interaction resources. We
aim at formalizing the ergonomic properties so that to (1) characterize well-formed
interactive systems, (2) be aware of the validity domain of interactive systems, (3)
predict the effect of transformations, and (4) compute the conditions to satisfy and
transformations to perform for ensuring a set of properties. Defining the actors in
charge of such reasoning is interesting: who among designers and end-users might be
in charge of observing and/or controlling graphs of models? Which views would be
appropriate for whom and when? Fig. 3 and 4 provide two examples. In Fig. 3, the
designer can delete interactors by placing a toolglass on either the graph of interactors
or the UI itself. Consistency is ensured. In Fig. 4, the end-user controls the
distribution of his/her web site among the two connected platforms. One step further,
we can imagine putting metamodels under the human control as well. The global
picture gives rise to the notion of Mega-UI [7].

Fig. 3. Additional UIs for the designer: the interactors model is made observable.

The final UI,
ie. the UI of the
end-user. By
selecting a room
in the left part
(living room or
kitchen), the
end-user can set
the temperature
of this room.

The UI of
the graph of
interactors: this
UI is devoted to
the designer.

The
toolglass for
manipulating
UIs (the final UI
and the UIs of
the models): the
button deletes
the underlying
object.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 44

Fig. 4. Additional UIs for the end-user: the check boxes represent the mappings between the UI
structure (the rows: title, content, navigation) and the connected platforms (the columns).

#2. Support for capitalization
As modeling and metamodeling takes time, capitalization is crucial for going

beyond small and basic interactive systems. We need a broad capitalization of models
(e.g., post-WIMP interactors such as round windows, platforms such as multi-touch
tables), metamodels as well as gateways between languages as one will never fit all.

#3. Support for evaluation
In HCI, evaluation is necessary. If evaluating a novel interaction technique is

feasible, how can we measure the effect of MDE in HCI. More than evaluate the
performance of the approach (cost and benefit), it is important to integrate evaluation
in the design process so that to step by step check whether transformations fulfills
ergonomic properties and platforms constraints. This goes far beyond evaluating the
performance of the generated code. To that end, we need methods and tools for
benchmarking our proposals.

References

1. Fischer, G., Giaccardi, E., Ye, Y., Sutcliffe, A.G., Mehandjiev, N.: Meta-design: a manifesto
for end-user development. In: Communications of the ACM, Volume 47, Issue 9, pp 33-37,
ACM Press, (2004)

2. Johnson, P., Wilson, S., Markopoulos, P., Pycock, J.: ADEPT-Advanced Design
Environment for Prototyping with Task Models. In: Proceedings of InterCHI'93, p. 56,
ACM Press, New York, Amsterdam, 24-29 April (1993)

3. Limbourg, Q.: Multi-path Development of User Interfaces, Ph.D. thesis, Université
catholique de Louvain, Louvain-la-Neuve, Belgium, November (2004)

4. Myers, B., Hudson, S.E., Pausch, R.: Past, Present, and future of user interface software
tools, ACM Transactions on Computer-Human Interaction (TOCHI), Volume 7, Issue 1, pp
3-28, March (2000)

5. Occello, A., Casile, O., Pinna-Déry, A.-M., Riveill, M.: Making Domain-Specific Models
Collaborate. In 7th OOPSLA Workshop on Domain-Specific Modeling (DSM'07), pp 79-86,
Montréal, Canada, 21-22 October (2007)

6. Paternò, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A Diagrammatic Notation for
Specifying Task Models. In: Proceedings of Interact'97, pp. 362-369, (1997)

7. Sottet, J.S., Calvary, G., Favre, J.M., Coutaz, J.: Megamodeling and Metamodel-Driven
Engineering for Plastic User Interfaces: Mega-UI. In: Human Centred Software
Engineering: Software Engineering Architectures, Patterns and Models for Human
Computer Interaction, Seffah, A., Vanderdonckt, J. and Desmarais, M. (Eds) (2008)

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 45

A Feature-Model for the UML Meta-Model Itself:
Creating and Composing Lightweight Members of the

UML Family

Ahmed Elkhodary1

1 Department of Computer Science
George Mason University

4400 University Drive MSN 4A5
Fairfax, VA 22030 USA

aelkhoda@gmu.edu

Abstract. In this paper, we propose a new approach and suggest enhancements
to the UML Profile mechanism to combine the strength of Domain Specific
Modeling Languages (DSML) while avoiding their weaknesses. The approach
suggests creating a feature model for the UML meta-model itself. The feature-
model captures a finite list of syntactic variations in members of the UML
family. In addition, the approach overcomes a very critical weakness in current
DSML approaches when multiple DSMLs are used to model one system, which
is inconsistency. The solution proposed enables detection of inconsistencies and
interactions among profiles as soon as they are applied to a model by analyzing
feature-selections made in the profiles. It also suggests extending the UML
profile mechanism to include support for a transformation language (i.e. QVT
Relations), which will allow profile designers to define custom cross-view
relationships more efficiently. The approach benefits DSML designers as well
end users. Designers can pick desired features of UML quickly and turn-off
undesired ones producing lightweight languages to end users. In addition, end
users can detect conflicts among UML profiles when applied to one system as
soon as they are applied.

Keywords: DSML, UML, QVT, model driven engineering, domain specific
languages.

Introduction: UML is a standard language for modeling object oriented
software systems. It consists of highly reusable language features and widely used
notations. It also provides extensibility mechanisms that tailor notations for specific
domains. Thus, UML is actually regarded as a language family. A variant –or
member- of the family tailors elements of the meta-model by creating new stereotypes
and packaging them in a Profile [3, 5].

Unfortunately, due to the size of the UML meta-model, the process of creating
UML profiles is very expensive. Exploring such a large meta-model is not only time-
consuming but has also proven to cause many bad design practices. One very
common bad practice is notation fitting [1] where a profile designer thrives to fit as
much elements and views of the UML meta-model as possible rather than focusing on

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 46

the needs of the domain. The final language is always very big and cumbersome for
end users.

As a result, Domain Specific Modeling Languages (DSMLs) took significant
attention as a rivalry approach and a more efficient alternative to UML [4]. DSML
designers can define language features and tailor notations as demand arises for their
specific domain. The final outcome is often a lightweight language that does domain
specific tasks only but does them very well.

However, this comes to a cost. Most of the time, modeling one system requires
engagement of end users from multiple disciplines with multiple DSMLs. Experience
shows that for a given system, defining relationships across DSMLs is a challenge. A
typical DSML would define from scratch most of its features (i.e. concepts, notations,
views and cross-view relationships). As a result, to model one system, a lot of effort
is required in bridging all involved DSMLs back together.

In this paper, we propose a new approach that combines the strength of lightweight
DSMLs while avoiding their weaknesses. It reflects our experience in contributing to
several domain-specific languages (Emergency Response, Financial Reporting,
Queuing Network, Software Security, and Autonomic-SOA) as well as learning many
others.

Challenges: The first challenge considered in this paper is to prevent a bad
language design practice known as notation fitting. Rarely ever would a DSML need
all language features supported by the UML meta-model. In fact, the first step in
Profile design should be disabling or turning-off unneeded features of UML. We
need UML profiles that give DSML designers the ability to make a “feature selection”
and hide unwanted portions of the UML meta-model before they start. This challenge
can be further broken down into two issues:

- The UML meta-model is not feature-based; we cannot simply disable
unwanted features. As a result, any member of the UML family inherits the
entire meta-model and all the views even if they are not needed.

- The UML profile mechanism is very limited with regards to hiding unwanted
features in the base meta-model. This is an inherent problem caused by the
absence of a coarse-granular layer of abstraction in the UML meta-model
(such as a Feature-Model). Such layer would allow easy and fast projection
of desired language features.

The second challenge is to reuse and maintain consistency of cross-view
relationships (i.e. class-to-sequence diagram mappings, activity-to-usecase diagram
mappings) in a UML profile. Today, such cross-view relationships are defined
completely from scratch in the profile and mostly using OCL expressions. Besides the
fact that this is totally cumbersome, when two UML profiles are applied to one
system, we cannot detect at profile application time that there are inconsistencies. For
instance, suppose that end users attempt to apply two UML profiles to one system: the
first profile assumes that each “Use Case” maps to one “Activity” diagram; the
second profile assumes that each “Action” in an activity diagram maps to one “Use
Case”. We can only expect inconsistencies to appear if these two profiles are applied
to the models of one system.

We decompose this challenge into two issues:

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 47

- Defining cross-view relationships requires significant effort for new
members of the UML family. UML does not specify relations between
Views; therefore, any new member of the family needs to start from scratch.
Most of the time there are well-known conventions for how certain views
relate to one another; yet we always need to start from scratch.

- Cross-view relationships are often hidden features that are implicitly
inherited by a UML profile unless language designers define explicit
enforcement rules. UML profile designers must be able to select desired
cross-view relationships explicitly to avoid inconsistencies. They also need
to define their own cross-view relationships.

Proposed Solution: We introduce a new way of looking at the UML meta-
model as a true product line for visual modeling (Figure 1). Notably, variations in the
syntax of UML are finite and pre-anticipated at language design time. For instance,
we do not expect a UML profile to introduce new diagram types. UML Profiles are
rather means for adding semantic variations to fit a target domain. In other words, the
syntax of a given UML model does not change when a profile is applied to it; only the
semantics change.

Thus, introducing a feature model that modularizes UML into common and
optional syntactic features, allows profile designers to create truly customized and
lightweight members of the UML family. This prevents notation fitting from leaking
into the profile design process. It also guarantees that produced languages are tailored
for the needs of the domain.

- UML is a language family of a finite number of syntactic features; thus, we
can define a feature model [2] to give members of the UML family the
ability to turn-off unwanted features.

- UML-Profiles can be extended to make a feature-selection of the UML
feature model. Unselected features will disappear during profile creation and
no references are allowed to meta-elements belonging to unselected features.

The second challenge is actually a product of observing the first challenge. We
noticed that cross-view relationships account for a significant portion of the syntactic
variability in UML members. UML profile designers invest a lot of effort in defining
such relationships between UML views because, otherwise, they render the risk of
allowing inconsistent profile applications.

What we suggest to do in this research is to enumerate widely used cross-view
relationships (e.g. class-to-state and class-to-sequence diagram mappings) and
analyze common conventions in the community. We do not expect to find many ways
for how relationships between two views are defined for instance. Therefore,
capturing these common conventions of cross-view relationships and reusing them
eliminates a significant amount of effort on profile designers’ side.

- Cross-view relationships are significant portions of syntactic variability in
UML. However, the number of widely used variations is finite. Therefore,
we can provide predefined cross-view relationships (i.e. as QVT checking
rules) and dedicate part of the UML feature model for picking desired
relationships.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 48

- UML-Profiles can be extended to include custom cross-view relationships
(i.e. custom QVT-Relations checking rules [6]) in case predefined ones are
not sufficient for the domain.

This part of the approach addresses the second challenge directly. That is, when
end users apply multiple profiles to one system, inconsistencies and interactions
among profiles can be detected automatically. For instance, if applied profiles select
mutually exclusive features of the UML meta-model, the feature model can detect it.
In addition, if custom QVT-Relations checking rules are defined in the profiles, we
can use any static interaction analysis technique, such as critical pair analysis [7], to
detect conflicts and dependencies among the rules. This way, end users from multiple
disciplines can use the right profiles and avoid inconsistencies from the beginning.

«common feature»
UML Infrastructure

<<feature model>>
UML

requires requiresrequires

requires

«one-or-more-of
feature group»

Language Views

«optional feature»
Class Diagram

«optional feature»
State Diagram

«optional feature»
Activity Diagram

«optional feature»
Usecase Diagram

«one-or-more-of
feature group»

Cross-view
Relationships

«optional feature»
Class-to-sequence

«optional feature»
Class-to-state

«mutually exclusive
feature group»

Activity-usecase Mappings

«default feature»
Action-to-usecase

«alternative feature»
Usecase-to-activity

requires

requires

«optional feature»
Sequence Diagram requires

«common feature»
UML Profiles

Figure 1: A MOF based feature model of the UML product line (PLUS [2] notation).

Conclusion: In this paper, we proposed an approach that reduces the expense of
creating UML profiles and prevents bad language design practices, such as notation
fitting, from leaking into it. The approach suggests creating a feature model for the
UML meta-model itself. The feature model captures a finite number of syntactic
variation points, which allows DSML designers to pick desired features of UML
quickly and turn-off undesired ones.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 49

The approach also benefits DSML end users in many ways. First, by providing
lighter languages that can get the job done; and second, by enabling automated
detection of conflicts among UML profiles when applied to one system as soon as
they are applied.

In addition, the proposed approach overcomes a very critical weakness in current
DSML approaches when multiple DSMLs are used to model one system:
inconsistency of language features. The solution proposed enables detection of
inconsistencies and interactions among profiles by analyzing feature-selections made
and QVT specifications defined in the profiles.

As mentioned earlier, UML is a standard modeling language. A wide audience
base had learned the syntax of UML and used it as a documentation tool. However,
the main weakness of UML is how big it is today. Our goal is to enable large-scale
and systematic reuse of meta-modeling efforts. Model driven engineering is still
immature and a lot of experimentation effort is still going on at the meta-modeling
level. It is important to be able to reuse and reduce technical meta-modeling efforts
and shift focus towards domains’ needs. Domains shall drive meta-modeling efforts
and not the other way around.

References

1. France, R. B., Ghosh, S., Dinh-Trong, T., and Solberg, A.: Model-Driven Development
Using UML 2.0: Promises and Pitfalls. Computer 39, 2 (Feb. 2006), 59.

2. Gomaa, H.: Designing Software Product Lines with UML 2.0: From Use Cases to Pattern-
Based Software Architectures. Software Product Line Conference, 2006 10th International,
vol., no., pp. 218-218, 21-24 Aug. 2006.

3. Kleppe, A. Warmer, J. Bast, W.: MDA Explained: The Model Driven Architecture: Practice
and Promise. Addison-Wesley Object Technology Series. 2003.

4. Greenfield, J. Short, K. Cook, S. Kent, S. Software Factories. Wiley. 2004
5. Selic, B. A Systematic Approach to Domain-Specific Language Design Using UML. IBM

Canada. 2007.
6. MOF QVT Final Adopted Specification. Object Management Group. 2007.
7. Ehrig, H. Ehrig, K. Prange, U. Taentzer, G. Fundamentals of Algebraic Graph

Transformation. Springer-Verlag Berlin Heidelberg. 2006.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 50

Validation challenges in model composition: The case of
adaptive systems��

Freddy Munoz, Benoit Baudry

INRIA Bretagne Atlantique

Campus de Beaulieu F-35042, Rennes cedex
{fmunoz,bbaudry}@irisa.fr

Abstract. Model Driven Engineering helps dealing with complexity by
promoting models as abstraction units. Aspect Oriented Modeling helps
separating concerns that crosscut across different models. MDE and AOM have
well identified challenges that need to be addressed. However, there are new
challenges that appear when combining both techniques. In this paper we
present the challenges that appear when validating the model composition in the
context of MDE and AOM applied to adaptive systems.

Keywords: Model Driven Engineering, Aspect Oriented Modeling, Model
Composition Validation, Model Validation, Model Driven Engineering for
Adaptive Systems.

1 Introduction

Model Driven Engineering (MDE) promotes abstraction as a basis for managing
complexity. MDE proposes the systematic use of models as primary engineering
artifacts. Such models can have a variety of natures and range in abstraction and
complexity. Models from higher abstraction level are refined (transformed) into lower
levels until the implementation. Besides, models can be transformed from one domain
to another in order to ease the resolution of a defined problem.

Aspect Oriented Modeling (AOM) helps separating crosscutting concerns at
model level by encapsulating them into different modeling dimensions referred as
aspect. AOM enables a clear modularization of the different concerns constituting a
design model. It also allows designers to reason about each concern separately, and
later composed into a global model.

Research challenges have been widely identified for AOM and MDE [11]. Model
transformation testing[5], model verification and validation [9], and AOM weaving
mechanism definition [2] are just a few examples of the challenges faced by these
technologies.

Nevertheless, not all the challenges have been identified as far as validation in
MDE and AOM is concerned. Challenges regarding the composition and refinement
of aspect models need to be identified. This is critical to ensure that composed

� This work was partially funded by the DiVA project (EU FP7 STREP)

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 51

models will perform as expected, and therefore, their refined implementation will do
so [4, 8]. This is a fundamental issue for the adoption of AOM as a mechanism for
separation of concerns and MDE as a complexity coping mechanism.

In this paper we present the challenges that arise from the validation of model
composition. We specially address the challenges that arise in the case of adaptive
systems, where models are used to abstract from the executing platform and aspects
represent the dynamic variability of the system. Such challenges range from the
combinatorial explosion produced by the composition order of different aspects, to
the specification of the model resulting from the composition.

The remainder of this paper is organized as follows. Section 2 presents MDE and
AOM applied to adaptive systems. Section 3 presents the challenges that arise when
validating AOM and MDE in the context of adaptive systems. Finally, section 4
concludes.

2 MDE and AOM for adaptive systems

Designing, developing, maintaining and executing adaptive systems is very
complex and error prone. Model Driven and Aspect Oriented techniques can help
dealing with this complexity. In this section we present the contribution of MDE and
AOM to handle the complexity when dealing with adaptive systems.

Adaptive systems are software systems capable of change their internal structure
and behavior in response to changes in their environment [1]. They are typically
deployed in heterogeneous computing devices ranging from mobile devices such as
phones or PDAs to large computer systems. Generally, several variation points are
defined in order to develop an adaptive system. Each variation point represents a
different option in the system implementation that might be chosen to adapt the
system. The selection of different variation points to derive the adapted system leads
to a huge number of possible configurations. Reasoning over that huge set of
configurations to choose the best possible configuration to adapt is too time
consuming because of the large number of evaluations needed. Moreover, the
adaptation logic relies on reconfiguration policies that are generally complex low-
level and hand-written in the application producing large and complex reconfiguration
files. These factors make the construction, execution and maintenance of adaptive
systems highly complex. MDE and AOM help dealing with this complexity by the
meaning of abstraction and separation of concerns [19].

MDE techniques provide the means to automate and optimize the creation of
reconfiguration scripts. Besides, MDE helps abstracting from the target platform by
defining models independent of target devices and technologies. Models representing
the system in execution (models at runtime) help to manage the execution at more
abstract level; therefore, they enable designers to reason about the system properties
and adaptation logic at higher level.

Aspect-Oriented modeling techniques [10, 13, 15, 18] help encapsulating distinct
variation points into aspects separated from the base model functionalities. Different
aspects might be composed with the base model in order to obtain different

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 52

configurations. This reduces the reasoning space to a limited number of aspects,
therefore avoiding the combinatorial explosion due to different variants.

Fig. 1. Overall MDE/AOM approach for adaptive systems

Figure 1, presents an overall approach for adapting systems by using MDE and
AOM techniques. At design-time, the application base (AM) and variant architecture
(AS) models are designed. At this time, the adaptation model, which states when, and
how to adapt is built. At runtime, the adaptation mechanism processes the adaptation
model in order to adapt when needed (1). When an adaptation is required, the
adaptation mechanism chooses (driven by the adaptation model) a set of aspects
(variants) and weaves them into the base (2). This weaving results in multiple models
that could be used to adapt the executing system. The adaptation mechanism chooses
only one model (3) and then automatically generates the reconfiguration scripts used
to adapt the executing system (4).

3 Challenges

MDE and AOM can help dealing with the complexity involved in the life cycle of
adaptive systems. However, their usage raises new challenges regarding the validation
of model composition. In the following we summarize the challenges and research
questions related to the validation in the context of adaptive system.

Validation of composed models (3 in figure 1): The selection of the best possible

configuration is critical for adaptive systems. The aspects modifying the base
configuration must produce configurations that will not break down the system and
that response in the best possible way to environmental changes . Therefore, it is
crucial to ensure that the composed models fit the adaptation requirements. A model

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 53

that is valid with respect to the adaptation requirements will lead to a correct
adaptation. Testing techniques such as combinatorial testing [12, 24] and search based
testing [17] may help validating that the composed model fits the adaptation
requirements. Such testing techniques provide the means to explore a huge adaptation
space and test whether the chosen configurations are fitted adaptations. Formal
behavioral specification techniques [25] may also be useful to verify that the
composed models will fit the adaptation invariants.
 It is an intuition to think that, if the chosen aspects are valid and the base model is
valid, then the composed model will be valid. Is this always true? How can it be
ensured? These questions are fundamental because they may allow to reason about
the aspects and model validity separately and then compose a valid model. However,
event if this is true, it is still an issue how to validate the aspect models and how to
validate the base model. Moreover, the composition engine must also be valid in order
to produce valid compositions.

Combinatorial explosion of composed models (2 in figure 1): The weaving of

different aspects leads to different composed models. Likewise, the weaving order of
aspects may also generate different models. Therefore, the rate of models resulting
from the composition of different aspects and composition orders grows exponentially
with the amount of aspects to weave. Moreover, there is no assurance that the
composed models will be valid or fits the adaptation requirements. This is a serious
issue because it is necessary to validate a huge amount of composed models. Such
validation may consume an unrealistic amount of time.

Aspects effects and interactions (2, 3 in figure 1): Different aspects have

different effects on the base model. Some aspects may add new system properties
whereas others may remove them. The effect of aspects may depend on the order in
which they are weaved. For instance, consider two aspects, one relating the
communication (C) and another relating the security concerns (S). When C is woven
first, the system network response is very short, whereas when S is woven first, the
system network response is slower but more secure. Some weaving orders or
combinations of aspects could add or remove system properties unexpectedly.
Controlling the emergence of properties introduced/ removed by aspects is very
important to ensure that the composition result will be valid and aspects will perform
as expected. Similar problems have been studied at code level. Solutions such as the
specification of the aspect behavior [3, 6, 20] are used to increase the maintainability
of aspect-oriented programs. The properties added/ removed by the aspects are
controlled by the specifications.
 Aspects adapting a system will interact in a variety of ways. Some interactions may
include/ exclude the weaving of some aspects; other interactions may interfere or
partially invalidate the effect of aspects over the system. Moreover, interactions and
the effect of aspects may change according to the target model they are weaved into.
Therefore, detecting aspects interactions in advance is very important to avoid
composition conflicts and know before hand the aspects dependencies [22, 23]. This
issue is related to critical pair analysis [7, 16, 21] in which the conflicts between
different interacting features are detected via graph analysis. Critical pair analysis
detects functional inclusive/ exclusive aspects configurations. However, interaction

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 54

issues can be beyond functional interactions. Aspects can have a qualitative impact
over the system, for instance making the quality of service better or worst. At code
level, the characterization of interactions could be used to determine patterns of
interactions for instance to detect aspect interferences [14].

Runtime / Design time validation: Since adaptation happens at runtime, adaptive
systems have to respond to hard time and hardware constraints when adapting, a
fundamental question is how much of the validation and analysis can be done
statically? The ideal will be to calculate at design time all the possible interactions
and effect of aspects and their possible weaving orders. However, this may not be
possible due to the huge amount of possible weaving orders

An idea to cope with these issues is defining contracts on the aspect models. These
contracts may be an abstract specification of the effect of the aspects over the system
and the interactions between aspects. For instance, they can explicitly declare that an
aspect will increase the overall system security but making it slower. They could also
allow us to calculate optimal and valid weaving orders. By specifying include/
exclude relations between aspects. Moreover, they may be helpful to detect
interactions conflicts at design time, thus saving some computation time when
adapting at runtime. The abstract description of the aspects’ effect will help
determining whether aspects may be valid or not in relation to a base model.

4 Conclusions

In this paper we have identified the challenges that appear when validating the
model composition in the context of adaptive systems. Issues such as the weaving
order of aspect models, interaction issues and the validation of the composed model
are not trivial. Tackling these issues is fundamental to assess the usage of MDE and
AOM.

We have pointed out possible ways to address the validation challenges presented
here. We specially suggest the definition of contracts to tackle several challenges and
ease the solution of others. In future work we will explore how contracts must look
like, which information they must contain and how to successfully use them at design
time and runtime.

References

1. Aksit, M. and Z. Choukair, Dynamic, Adaptive, and Reconfigurable Systems Overview and

Prospective Vision, in 23rd Int’l Conf. Distributed Computing Systems Workshops (ICDCSW).
2003: Providence, Rhode Island USA.

2. Aldawud, O., et al. AOM: 11th International Workshop on Aspect-Oriented Modeling. in 10th
International Conference On Model Driven Engineering Languages And Systems. 2007.
Nashville, TN, USA.

3. Aldrich, J., Open Modules: Modular Reasoning About Advice, in ECOOP 2005: 19th European
Conference on Object-Oriented Programming. 2005: Glasgow, UK.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 55

4. Baleani, M., et al. Correct-by-construction transformations across design environments for
model-based embedded software development. in Design, Automation and Test in Europe, 2005.
Proceedings. 2005.

5. Baudry, B., et al. Model Transformation Testing Challenges. in IMDT workshop in conjunction
with ECMDA-FA 06. 2006. Bilbao, Spain.

6. Clifton, C. and G.T. Leavens. Observers and Assistants: A Proposal for Modular Aspect-
Oriented Reasoning. in FOAL 2002: Foundations of Aspect-Oriented Languages (AOSD-2002).
2002. Enschede, The Netherlands.

7. Detlef, P., Hypergraph rewriting: critical pairs and undecidability of confluence, in Term graph
rewriting: theory and practice. 1993, John Wiley and Sons Ltd. p. 201-213.

8. Dion, B., Correct-by-Construction Methods for the Development of Safety-Critical Applications.
SAE transactions, 2004. SAE Paper # 4AE-129(SAE World Congress).

9. Faivre, A., S. Ghosh, and A. Pretschner. MoDeVVA: 5th workshop on Model Driven
Engineering, Verification, And Validation: Integrating Verification And Validation In MDE. in
1st International Conference on Software Testing, ICST 2008. 2008. Lillehammer, Norway.

10. France, R., et al., Providing Support for Model Composition in Metamodels, in EDOC’07: 11th
Int. Enterprise Computing Conference. 2007: Annapolis, Maryland, USA.

11. France, R. and B. Rumpe, Model-driven Development of Complex Software: A Research
Roadmap, in 2007 Future of Software Engineering. 2007, IEEE Computer Society.

12. Grindal, M., Handling Combinatorial Explosion in Software Testing, in Computer Science.
2007, University of Skövde and Enea: Skövde, Sweden.

13. Jayaraman, P., et al., Model Composition in Product Lines and Feature Interaction Detection
Using Critical Pair Analysis, in Model Driven Engineering Languages and Systems. 2007. p.
151-165.

14. Katz, S., Diagnosis of Harmful Aspects Using Regression Verification, in FOAL: Foundations
Of Aspect-Oriented Languages, C.C.a.R.L.a.G.T. Leavens, Editor. 2004: Lancaster, UK.

15. Lahire, P., et al., Introducing Variability into Aspect-Oriented Modeling Approaches, in Model
Driven Engineering Languages and Systems. 2007. p. 498-513.

16. Leen, L., E. Hartmut, and O. Fernando, Efficient Conflict Detection in Graph Transformation
Systems by Essential Critical Pairs. Electron. Notes Theor. Comput. Sci., 2008. 211: p. 17-26.

17. McMinn, P., Search-based software test data generation: a survey. Software Testing
Verification Reliability, 2004. 14: p. 105 -- 156.

18. Morin, B., O. Barais, and J.-M. Jézéquel. Weaving Aspect Configurations for Managing System
Variability. in Second International Workshop on Variability Modelling of Software-intensive
Systems. 2008. Essen, Germany.

19. Morin, B., et al. An Aspect-Oriented and Model-Driven Approach for Managing Dynamic
Variability. in 11th International Conference on Model Driven Engineering Languages and
Systems (MODELS). 2008. Toulouse, France

20. Munoz, F., B. Baudry, and O. Barais, Improving Maintenance in AOP Through an Interaction
Specification Framework, in ICSM08: 24th IEEE International Conference on Software
Maintenance. 2008, IEEE Computer Society: Beijing, China.

21. Praveen, J., et al., Model Composition in Product Lines and Feature Interaction Detection
Using Critical Pair Analysis. Model Driven Engineering Languages and Systems, 2007: p. 151-
-165.

22. Sanen, F., et al. Classifying and documenting aspect interactions. in ACP4IS06 Proceedings of
the Fifth AOSD Workshop on Aspects, Components, and Patterns for Infrastructure Software.
2006. Bonn, Germany.

23. Truyen, E., et al., Support for distributed adaptations in aspect-oriented middleware.
Proceedings of the 7th international conference on Aspect-oriented software development, 2008:
p. 120-131.

24. Yilmaz, C., M.B. Cohen, and A.A. Porter, Covering Arrays for Efficient Fault Characterization
in Complex Configuration Spaces. IEEE Transactions on Software Engineering, 2006. 32: p. 20-
-34.

25. Zhang, J. and B.H.C. Cheng, Model-based development of dynamically adaptive software, in
ICSE '06: Proceedings of the 28th international conference on Software engineering. 2006,
ACM: Shanghai, China. p. 371--380.

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 56

� ��������� ���	
��� �
 ��� ������� �������� ���

���������	 �������� �
 ���

������ ��	
�1 ��� �
�������
 �
�����2

1 ������ ������	�
� �
������ ���� ����� ������ ������� �
���� ��������	

2 ������	�
�
� ������� ���� ����� ������ ������� �
���� �
���	���������	

��������� �
���� ����� !���������� "� !# $�	 ���� ������ �%%��
��
��
$� �%���&� �	
$� ��� ��	�
� �
� 	
�
���� �����
�&��
� '
������ �	
��
$

$�� ��� ����
�%$�	� �
	 ���(
���� �%%��
��%� �	 	
��� ���� ��&�
���
)� �������
$�
 &���
�
$� %$�������	
$�
 ��� �&�������
$�	 ���(
����
��
�
�
� %�� �� ����
��

$� ��%*
� �

�

� 	(��
�
� +�
$�	 �����
�� ���� �
%(
�
�
 ����	 �$��� ���	��
����

�	 ��� ���&��
�*	 ���
�

 ,(�
� 	(-%���
. �����
���� &�
�&
���	 ��� ���	�
� %
�
�
��

� �������	�
��

�� ���
�	��	 �	�� �� 	�� ��
�	�
�
� ���� �� ������
�
��� �� 	�� ����

����	

� 	��������� ��� 	

� 	��	 ����
�	 ����

���� �
��
� ��� �
��
 	�����
����
	�
�� ����� ��� �
	� ������� ��� ��	��	���� �� ���	� ����

���� ��	��
��
� 	
�
��	��� ��	� �
��
 	�����
���	�
�� �
� � ����� ��
�
�� �
���� ��� �� �����
	
��� 	�����
�������� �� �������	!
� �
��
� ����� �� ��	�
����� �! ���
���

� �������
���
 �
��

���
��������
���� 	
 	�� ������	�
�
� �
�� ��� �
��
�
� ����� ��� ��	��� �
	 ����
! ������
�
� �
	 �� ��	����� �! 	�� ���������
�
�
	�� ��� �
	���	�� �
� 	�� �����
� �
���
 �
��

���
�������� �
� ����

��
��� "��	�#�
��
�� $
������ ������	 �
���
 �
��

���
�������� ��� �
��
�%
��� ���
����
��� ���� � 	�%	��
 �!�	�%� ��� ������

!
��& �

� 	

 ����
�	�
�� ����	�
�� 	��! ��� �����
� '���	 (����)
��� "'()# ����� �
�� �
	 �
��!�
��	�� 	�� ��	����

���
� �
��

���� ��� �� ������� �
��
� �� �
�	���� �����
������� ��� ����������� ���
� '() �� �	���������� *+,� (�� �
��� �� 	��	 � �
���

���������	�� ����
��� �
� "��	�#�
��
� ��� �
��
 	�����
���	�
�� �� �
�	�
�����	���	���� �� ��� �� 	
 �
����� 	�� ��	��	�������
� ��������

�������� ��	�
	�� �����	�� ���
��
� �
���
 ����
������ ��� ���

���� �� ���	��� ��������� ��
-��	�
� .�

�
��
���� ������	���! 	

� ���� �
�	���� ��������� ����� 	
 ����
��! 	�� ���
��

����	 ��
����� �����
��� �
�������� ����

���� 	
 �	��	 ����

����	 ��	�
�
��

��� �������� 	

 ����
�	 	
 ��
���� ���	����
� 	�� ���� ���
�	! �� �
�	
���� ��
����� (��
� 	�
�� ���	���� / �����
� �
�	�

 / ��
� ������
 ��
������
�� ��������
�	! �
�	���� ����

����	 ��
������� $
������ ������	 ��� 	

�

0��
�
!
���	�� ����
�	 �
� �����
� ���������	� !����

! 	�� ��
�
�� ��
��������� ����� � 1

�&��
���!���

�&2 �

�	�
�� (� 	�� �
�	���!� �
����	�
��

�����
� �
�	�

 �!�	��� ���� �� -�������
� ��� �����
� 	�� 1�
�!��
���!������2

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 57

��������� �	

��� ���
��	��� ��
�� ���������
 �

��
������ ���� ���� ������
��
��� ����� ���
 ��� ��������� ����	��
��� ��� ������
 ��
��
��� ��� ����� ��
� ��������
��
 ����������� ��� �
�	�
	�� �
 ������ �� ������������ ��
���
���

��
� ��
���������� ����� ����
��� �����������
������	�� ��� ��
 �	�
����
��
�� � !� "��
��� #� $� �������
�� ������� ��� �	
���� � �������� ���	
����

� ��������	
 �� �	�	�
���� �	���
�	�

!� �	� �������� ��� �

�� �����
��
 ���������� �� �� ���� ��
�� ���� �
 ��
��
���� ����	�����
����$���� ���
����
� ������ ������� ��
�������� %�$�&���
�����
���� ��
������� ��� ��
 �� � �
�����

��$���
��� ��� ��� ��
���	��
� ��� ���������
�� ��������� $�� ��� ��

������
� ������ '��
�(������� !

���	���� �
����	�� 	�����
������ �
 ��
����������
������	�� ��� ����
����
�
�� $��� �� �� ��	
�	���
����$��� $���� �� ����� �� � �
����� ���������� ����
�	���� ��
���
��� ���������� $� �����&�
��
 ��� ���	
��� �	�
 ��&� �
 ����

$� ��������
�) '*(� ������
��� �
 $�������&�� ��
�������
�� �	�����
	� ����

����
��

�� ��&������� ��� ��	�� �� �������� �� �	�������� ��� '+(�
�����

����$��� $�
� � ���������
�� �����
��
�� ��������
��� �

���� ��
��������
!�
��� ���
���� $� $��� �������
�� ��,�	�
� �
 ��&������� ��
������� $�
� ��
������� ��� �	
���� � ���	
���
�
�����
��� ��,�	�
��

��� ��� ���		
���
�� ��
��� ��
���	� �

�
 ��������
�
����
 �
�� ���

��� ��
�� �� ��� ����
�

 ��
 ���
���	�
�����
�� ��
���	� �

�
	

��� !���
 ��
�� �� ��
�
���
�
" ����

-��� *) ��� �	������ ����� ������� $�
� � ������ $�.����

/� ����

�� ������� �
 �	������ ������ '-��� *�(
��� 0+1� "	�����
��

$� $��

� �	��� � $�.���
��
�� �����
��
��� �
 �	������ ������� ��� $�.���
��� ��
����� �������� �	�� �� � ����
��� �� � $����������
���� -�� ��������
�� $�
�	�����
��
 	���� �
��

��� � ����
��
 ���$�
�� ������ �
���� ��� $�.���
������
� �
 � ��
 �
 ����� '��������
�� �� �($���� ��� &��$��
���	�� � ���
�
�	���� �
 �
��� �� �����
� �����
�� � �	������ ������ /� 	�� ��
��� ����� '→(

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 58

��� �������� ����� 	♦
 �� ����
 ��� ���������� ���� ��� ���� 	�� ��������
 ����
�� ��������

�� ������� ��� ������ �� ������� ��� ��

����� ������������

� ���� ������
��� ���� ���� � ������ ��� � ������ ���� 	�� ��������
�

� � ���� ��� ����� �
���� �� �� ��� ������ �� �� ������
���� �� ��� ������ ��
��
���
� ������
�����

� � �������� ���� ��� ��� ����� �
���� ��� �� ��� ������ �� ��
���
� ������

����� ��� ���� �� ��� ������ �� ��
� ��� ������
����

 ��� !� ��� ��� !� ���� ��� ������� ���������� ����� ������������

 ��� "� #�� ��������
 ��� ��� ������ ������ �����$�� �� ��� %&' ���������

�� ���� ���� ��� �����
 ��������� %����������� &�������� '���� 	%&'

(!�)�*�+,� �� ���
��� � ��
����� ��� ��� �-���
� 	��� ��� "
� �� ���� � ����� ���
�������
 �-�
������� �� ��� ��������� �� ���� �� ��� ����������� ����� .���������
����� ��� �� �����
��� ��� � �����
 ����������� �� ��� ������������ #�� ���������
�� ��� ����������� ���� ����� ��� ��� $

�� ����
�� �� ��� ������ ��	
 ��� ��	�

������� ���� ���� �������� �� �	
������� ���� �	�
���
�� ������ ����� �� ������
�� �������� �� �
���
� � ��	������ ��� �
� �
��� /�������� ��� ����������
����� �� ��� ����� ��	
 ����� ���� �� �������� ��
��� ��� �� ��� ������ ��

���
�� �������� �� �	
��� 	���� �� ��0������
� ���

�� ��� $

�� �����1����
��
��� ��� ��	� ���� ���� ���� �������� �� ��	����� ���� �� ��� ������ ���
��� ������ �� ���� �������� �� �	
��� 	����� �� ���0������
�

 �� ���������� �������� �������� ��� ���� ��������
 �����$�� �� �� 2�
����
/���
��� �������� 	2/
 ����
� #�� ��3������� ��

 ��� ��
� �� �� ���
�����
������� �� ��� ��������
� ��� �
�� �� ��� ��� �� ����� ��� ����������� ���
�����$��� 4���������� �� 2/ ����
� 	����� ��� �����$�� �� 54' �� 6���
 ��

����
�� ������� �� 2�
���� �
��1�� ����� �� ��� 2/ 7�
������� ��������� ��
��

 ����
�� ��� ����� �� ��� �������
�� 8&9 �� 2/ � 9� ���� ������ �������
���� ��

 �� ��������� �� �-����� ��� ���������� �� ��� ����
�� ��������� �����
�� �������� �� ������� ��� �������
�� �� /%2� 9� ��� �������� ����� ���������

��� ����� ��� ��������� ����� ��� ����������� ������� ������� ���� ��� �����
� ��
��� ��
������� ����� 5� ��� ��������� ��� %&' ��������� �

��� ��� ���� ���� ��
��������� ������� ��� ���� ��� ����1������� ���� �� ��������� � ������������

�����

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 59

� ������� 	��
���

��� �������	�� �
��
������ ������� ����� ������� �� ��� ������
 ��
���� ����
���
�
�� ����� ��� ��� ������
�� ����	�����
� ��� � ��� ��� ������
�� �������
�����

�
� �!"�!!� ��� ��� ��
#��� ��������
� �� ���� � ���$ %������� &'(����� ������
����
�����)� ��
�� �
���
�
� ����� ����	��� �
 �
 �������� ��)$ *�� �+�
���
(&* ,�
���� �
� '-&'�� ��� ���
���� ������
��
� ����� ����� ��� �����
�
 � ��
���� ����
�.	�$ ��� ������
�� ����	�����
 �� ������� �
 ��� ������$ ���
/��� �� ��� ��������
 ��
����
����
��� ����� ��� ��� ���
�
�� �� ��� ��� �
�
�	�
����� ��� ��
����� 	��
�
������ ���� ���
��	��
�����
� �
� ���	��	���
��
������)$ ��� ����
� ����� �� ��� �����
�
����
 ��
���� ������
���� ����� ���
��� �������
�� �������
� �
� ���
��� ��� ��������$ 0���� ���� ����
�.	� ��� ���
����� ��
�/� �� ���
� ��
����� ��� ��������
 �� ��� �
�1���
� �� �� 	��� �
 �
����	����
 �
����

�
�$

2
 ��� ����� ��
�� �� ��
�� �������� �� �
���
�
�
��� �1���
� ������
��
�
����
�.	�� ���� ��� �	���
� 2&3 ���
�����$ 2	� ����
 �� ���� �
� �� ���
��

������
� �� ��� ���
��/�����
 ��
���� ���
�
�� �� ��/
�� �
 ��� 4&5 �����/���
���
 �!6�$ ��� 4&5 ���
���� �������� ��� ������	��� �� ���
���)
���� ���
�
���
������� 	��� �� ������
�� ���
�
�� �
���� ��� 4&5 ���	
�
�� �
� ���������
	��� �� ������
�� ���
�
�� �������) �
� ��������
��)$ -�
�� ��� ���
�� ��
 ��
	���	� �
�) �
 � ��
����
	
��� �� ������ �� ���� ���	� �	� ����	����
 �
 ��� ����
���$ 7
��������) 7
�.	� 5��
��/��� 8775'�9 �	���
��� 	
�.	�
��� ������ �����
�
� ��
�� �����	� � ��
�������� �����������
 �������$:� �	��� �
�� ��
�������
��� 775'� ��� �	������ �� �� ������
�) ���
��/��� ��� ��� ��� &'(����� ��
�
���
� ���
$ 7
����	
����)� �� �������� �
 �!;�� ���� ��
�� ��� ���� �� �	���
�
�)���
�� �

��� ������ �+�����
� �
� �
�����
� �
 4&5 ���	
�
� ���
 �
�
&'(���� �� �
����� ��	��� 775'� �� �� ��
���� �� ����
������� �	� ���� ��

�� ��� �+������ �������	� ��/
�� �
 ��� 4&5 ���
����$ %������� ���
 �
 ���
���� ����� &'(����� ��� ������ �� �+������� ���
��
 �������� �� ���� ���
���
���� ������ ����
�� ��
�����
 ��� ��) 775'� ���� �� �� ��
������$ (��

���	�� 2&3 �	������ �!<� �� � ������
�� ��������
� ����) ����
�) �
���
�
�
��� ���
��/�� ��
������
 �
 � ��������) ������
� ��)$

5� �� ��
� �� �����
 �1���
� ������
��
� ����
�.	�� ����� �
 	
�.	� ���
���
/���� ��
��� � ������
� �������� �� ���
�
� ���
��/�����
 �����/����) �����
��
��� &'($ 0� ������� ���� �
 ����� ���
��/�� ��
������
 ��������
 ���	�� ����
��� �������
� ����������� 8!9 �)
���������) �.	�����
�
���� ���
�
�� ���	�� ��
�����
�� ��� ��
� ���
��/��� �
� 869 ��� ��
������
 �� �
 ���
��/�� ��� �
����
���
�
� ���	�� �� ����� �
 ��� ��
��
�
��$ 5
 ����� ������ ���
���/�����

�� ��� ��
��
�
�� 8�$�$ ��� ������	��� �
�=��
������ �� � �����9 ���	�� ����
�� ��� ����
������
 �� ��� ���
�
�>� ���
��/��$ %�
��� ��� ������
��
� ����
�.	�
��	�� ?	�� ��
���� ��� ���
��/��� �� ����
���� ���
�
� ������ ��
����
� ���
��
��
�
��@ �
�) �
 ��� ���� �� � ������
�� �
 ��� ���
�
��> ���
��/��� �� ��	��
������� ���� ��� ��
������
 �� ����� ��
��
�
��$ 5
 �������
� ����
� �
��	��
4&5 ���
���� ���� &'(������/� ���
��/���� ��	�� ���� �� �� ��
�/� ��� �����
�
��������
�
���� ������
�� �
�
���� ���
����
����
�$

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 60

� �������	��

��� �����	�
 �� �
� �� ��� 	
������ �	�� �� � ��
�	������� ������
�� �
����
����
	����� ����� �
� ���
����� ��� ������������	
� ��� ������ ����� ��� ����
����	�
 �
�	��
��
�� ���� 	�� �
� ����� ������ ����	�� ������� ��� ��������
��
�� ��	
��
�
�� �
� � ���
�� �� ������������ �
� ����� ���
�������	�
�
�� ��� ���� ����	�� �� ��� �������� ����	��� �� �������
��	� !
��� �� ���	���
��	�� � ������ ����������	�
 ������
 �������� "�#� ���� ����	���� �
� 	
������
	�
���������

���
�����

�� ������	
�	 ��
���	 ��� ����������� �������
� ������
 �
�����
�� ����� ��� ����
��� ���� !������� �� �������� "����������� #�� "�$%� &''(� ")��*��� +����
,���������
 �� �����- ��� %������� �� ��������	 $,,$� ����
��*� .�� �**���/

&� �����0���	 ��	 1)���
�-	 2�	 %������
���	 !�	 !���
	 "�� "!2� "���*
� !�������
2�� ����� &�' .2nd "������/� $���
�����
��- %����

����� .&''3/

4� 5)���	 $�	 ������	
�	 �� �	 6�� ����������� �������
 ��� !���� ������ $�����
����)��� ��������� 5�*��� 43(��*��� ��� �� #���� ����
	
�����
��- �� 1�����	
7����- .&''8/

9� 5)���	 $�	 ������	
�	 �� �	 6�� $ 2�� �� $**����� �� !������� ��� !����
����
��� �����
 �� �������� "����������� ��������� 5�*��� 98	 ��*��� ��� ��
#���� ����
	
�����
��- �� �)��)	 2������ .&''8/

:� 5)���	 $�	 ������	
�	 �� �	 6�� $ ������ ���� $**����� �� !���� ����
��� ��
����
� #�� "$�#� &''8� ")�� $ ������ ,��������� �� ���� ����
 ��� #���� �����
�-
��
� .�� �**���/

3� 1�)�	 ,�	 !)

��	 +�	 ��)� ;	 $�� "!2 ,� *���� �����������	
����

	����
���
�	��������������
�

(� ���	 6�	 ���-	 +�	 +�)�)��	 2�� ��!��<� $ ��<����������� ���� ��� �� �����*���=�
!����
� ")��*��� +�)���� �� #���� ����� �-
��
 ��.9	 �*����� #

)� �� !�����
������ �-
��
 ������* ���/ .&''(/ 49>?43�

8� ,��������	 $�	 �� 5)
���	 ��	 %����������	 $�� $!��� ���� #���*������ $**�����
�� ��<������ 5�*��
��������� +�)���� �� @0A��� ���������- �.>	 �*����� #

)� ��
�@@�� ")��*� &''(/ .@���0�� &''(/ �3:?�8:

>� 5�����	 +�"�	 B���������	 $�� 5�*��
������ ��� @*������� ���� !���� ��<������
� #��
�@@�� ")��*� &''8� @0A���
	 ,� *�����
	 !����
 ��� %������
	 46th #�������
������ ,���������� B��) � �� �� ����)�� 7���
 �� 1)
���

 #���� ����� %����

����	
�*������ .&''8/ �9�?�3'

�'� !��
	 ��	 ��������	 ��	 5)���	 @�� ��������� ���)��)��� 5���������� ,��C���

��� ,������� %��� $���-
�
� "��������� 7���
 �� ����������� ,� *)��� �������
���.4/ .&'':/ ��4?�&8

��� ,��������	 $�	 5�

���	 $�� ������� !����
 �� ,��C��� ��������� �*���=������
� #��
�$, &''(� &''($,! �- *�
�) �� $**���� ,� *)����	 $,! .&''(/ �'4:?�'43

�&� @0A��� !����� ��� ���)*� D!� !������� #����������� .���� 0�� &''(/ �����
�����	���	������������������������ !�"�� "�

�4� $�����	 !�	 %����
	 #�� !���� #����������

��� @!� ��������
� #�� "
5@!#�
,5@ &'':� 31st "
5@!#,5@ ,��������� �� �������� "���������� ��� $�������
$**��������
	 #""" ,� *)��� ������- .&'':/ 9:'?9:>

�9� #������� "���������� ��
� 2����� 52,9�&&� $
�����
���-
��E)� #�����=��
.

#�/
57 7� �
*���� .+)�- &'':/ ����������	�
��	�����������#"��	����

MoDELS'08 ChaMDE Workshop Proceedings

Toulouse, France, September 28, 2008 61

